WorldWideScience

Sample records for significantly higher glucose

  1. Higher glucose levels associated with lower memory and reduced hippocampal microstructure.

    Science.gov (United States)

    Kerti, Lucia; Witte, A Veronica; Winkler, Angela; Grittner, Ulrike; Rujescu, Dan; Flöel, Agnes

    2013-11-12

    For this cross-sectional study, we aimed to elucidate whether higher glycosylated hemoglobin (HbA1c) and glucose levels exert a negative impact on memory performance and hippocampal volume and microstructure in a cohort of healthy, older, nondiabetic individuals without dementia. In 141 individuals (72 women, mean age 63.1 years ± 6.9 SD), memory was tested using the Rey Auditory Verbal Learning Test. Peripheral levels of fasting HbA1c, glucose, and insulin and 3-tesla MRI scans were acquired to assess hippocampal volume and microstructure, as indicated by gray matter barrier density. Linear regression and simple mediation models were calculated to examine associations among memory, glucose metabolism, and hippocampal parameters. Lower HbA1c and glucose levels were significantly associated with better scores in delayed recall, learning ability, and memory consolidation. In multiple regression models, HbA1c remained strongly associated with memory performance. Moreover, mediation analyses indicated that beneficial effects of lower HbA1c on memory are in part mediated by hippocampal volume and microstructure. Our results indicate that even in the absence of manifest type 2 diabetes mellitus or impaired glucose tolerance, chronically higher blood glucose levels exert a negative influence on cognition, possibly mediated by structural changes in learning-relevant brain areas. Therefore, strategies aimed at lowering glucose levels even in the normal range may beneficially influence cognition in the older population, a hypothesis to be examined in future interventional trials.

  2. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians12

    Science.gov (United States)

    Fretts, Amanda M; Follis, Jack L; Nettleton, Jennifer A; Lemaitre, Rozenn N; Ngwa, Julius S; Wojczynski, Mary K; Kalafati, Ioanna Panagiota; Varga, Tibor V; Frazier-Wood, Alexis C; Houston, Denise K; Lahti, Jari; Ericson, Ulrika; van den Hooven, Edith H; Mikkilä, Vera; Kiefte-de Jong, Jessica C; Mozaffarian, Dariush; Rice, Kenneth; Renström, Frida; North, Kari E; McKeown, Nicola M; Feitosa, Mary F; Kanoni, Stavroula; Smith, Caren E; Garcia, Melissa E; Tiainen, Anna-Maija; Sonestedt, Emily; Manichaikul, Ani; van Rooij, Frank JA; Dimitriou, Maria; Raitakari, Olli; Pankow, James S; Djoussé, Luc; Province, Michael A; Hu, Frank B; Lai, Chao-Qiang; Keller, Margaux F; Perälä, Mia-Maria; Rotter, Jerome I; Hofman, Albert; Graff, Misa; Kähönen, Mika; Mukamal, Kenneth; Johansson, Ingegerd; Ordovas, Jose M; Liu, Yongmei; Männistö, Satu; Uitterlinden, André G; Deloukas, Panos; Seppälä, Ilkka; Psaty, Bruce M; Cupples, L Adrienne; Borecki, Ingrid B; Franks, Paul W; Arnett, Donna K; Nalls, Mike A; Eriksson, Johan G; Orho-Melander, Marju; Franco, Oscar H; Lehtimäki, Terho; Dedoussis, George V; Meigs, James B; Siscovick, David S

    2015-01-01

    Background: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. Objective: We investigated the associations of meat intake and the interaction of meat with genotype on fasting glucose and insulin concentrations in Caucasians free of diabetes mellitus. Design: Fourteen studies that are part of the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium participated in the analysis. Data were provided for up to 50,345 participants. Using linear regression within studies and a fixed-effects meta-analysis across studies, we examined 1) the associations of processed meat and unprocessed red meat intake with fasting glucose and insulin concentrations; and 2) the interactions of processed meat and unprocessed red meat with genetic risk score related to fasting glucose or insulin resistance on fasting glucose and insulin concentrations. Results: Processed meat was associated with higher fasting glucose, and unprocessed red meat was associated with both higher fasting glucose and fasting insulin concentrations after adjustment for potential confounders [not including body mass index (BMI)]. For every additional 50-g serving of processed meat per day, fasting glucose was 0.021 mmol/L (95% CI: 0.011, 0.030 mmol/L) higher. Every additional 100-g serving of unprocessed red meat per day was associated with a 0.037-mmol/L (95% CI: 0.023, 0.051-mmol/L) higher fasting glucose concentration and a 0.049–ln-pmol/L (95% CI: 0.035, 0.063–ln-pmol/L) higher fasting insulin concentration. After additional adjustment for BMI, observed associations were attenuated and no longer statistically significant. The association of processed meat and fasting insulin did not reach statistical significance after correction for multiple comparisons. Observed associations were not modified by genetic

  3. Higher fasting glucose is associated with poorer cognition among healthy young adults.

    Science.gov (United States)

    Hawkins, Misty A W; Gunstad, John; Calvo, Dayana; Spitznagel, Mary Beth

    2016-02-01

    Obesity is associated with cognitive deficits; however, the mechanisms are unclear, especially among otherwise healthy adults. Our objectives were to examine (a) whether obesity is linked to elevations in fasting glucose and (b) whether these elevations are associated with cognitive impairment among otherwise healthy young adults. Participants were 35 normal weight adults and 35 young adults with obesity who completed a task from the Automated Neuropsychological Assessment Metrics-4 (ANAM-4). Measured body mass index (BMI) and fasting blood glucose levels (mg/dL) were examined. Persons with obesity had higher fasting glucose levels than normal weight persons (p = .03). After applying Bonferroni correction for multiple tests, higher fasting glucose predicted less accurate performance on tests of inhibitory control: Go/No-Go Commission Errors (β = .33, p = .004). No effects were observed for sustained attention or working memory (ps ≥. 049). Persons with glucose levels in the prediabetes range had nearly twice as many errors as those with normal glucose, a large effect that was independent of BMI. Young adults who were obese but otherwise healthy had higher fasting glucose levels compared with normal weight peers. Higher glucose levels were associated with poorer cognitive performance on tests of inhibitory control, especially among individuals with prediabetes levels. Thus, subclinical elevations in blood glucose may contribute to cognitive impairment and, ultimately, greater impulsivity-well in advance of the development of chronic disease states (e.g., insulin resistance or Type 2 diabetes) and independently of excess adiposity--though prospective studies are needed to determine directionality of this relationship. (c) 2016 APA, all rights reserved).

  4. [PROGNOSTIC SIGNIFICANCE OF CHANGES OF BLOOD GLUCOSE LEVEL IN PATIENTS WITH THORACOABDOMINAL INJURIES.

    Science.gov (United States)

    Sorokin, E P; Ponomarev, S V; Shilyaeva, Ye V; Bel'skih, Ye A; Gritsan, A I

    2016-07-01

    Background Currently, one of the causes of high morbidity and mortality is injuries. Predict the outcome of injuries - it is an important task of the treating physician. Trauma is a stress factor so to predict the outcome, you can use markers of stress, the most accessible ofwhich is blood glucose. to reveal the dynamics of the relationship between blood glucose levels and the outlook for the life ofpatients with thoracoabdominal injuries. A retrospective analysis of medical records of hospitalized patients were divided into two groups, depending on the outlook for the life of (favorable or unfavorable), and each of the groups - into two subgroups according to the presence or absence of signs of intoxication at admission. The subgroups were calculated and compared the mean blood glucose levels at different hours of hospital treatment. It was found that the average blood glucose levels at various hours of hospital stay were significantly higher in patients with poor outcome. The most noticeable was the difference in the first days of hospital treatment. Signs of intoxication was associated with lower values of glucose and a tendency to hypoglycaemia. In addition, among patients with high blood glucose ( 8 mg / dL) was observed over deaths in the first day of hospital stay. High blood glucose levels ( 8,0 mmol / L) in the first day of hospital treatment is a predictor ofpoor outcome in patients with thoracoabdominal injuries.

  5. Significance of insulin for glucose metabolism in skeletal muscle during contractions

    DEFF Research Database (Denmark)

    Hespel, P; Vergauwen, Lieven; Vandenberghe, K

    1996-01-01

    is essentially effected via increased blood flow, significantly contributes to stimulate glucose uptake. Again, however, increased glucose delivery appears to be a more potent stimulus of muscle glucose uptake as the circulating insulin level is increased. Furthermore, contractions and elevated flow prove...... is effected primarily via mechanisms exerted within the muscle cell related to the contractile activity per se. Yet contractions become a more potent stimulus of muscle glucose uptake as the plasma insulin level is increased. In addition, enhanced glucose delivery to muscle, which during exercise...... to be additive stimuli of muscle glucose uptake at any plasma insulin level. In conclusion, the extent to which muscle glucose uptake is stimulated during exercise depends on various factors, including 1) the intensity of the contractile activity, 2) the magnitude of the exercise-associated increase in muscle...

  6. Higher Endogenous Glucose Production during OGTT vs Isoglycemic Intravenous Glucose Infusion

    DEFF Research Database (Denmark)

    Lund, Asger; Bagger, Jonatan I; Christensen, Mikkel Bring

    2016-01-01

    CONTEXT: Oral glucose ingestion elicits a larger insulin response and delayed suppression of glucagon compared to isoglycemic intravenous (iv) glucose infusion (IIGI). OBJECTIVE: We studied whether these differences translate into effects on endogenous glucose production (EGP) and glucose disposal......); HbA1c 53.8 ± 11.0 mmol/mol; duration of diabetes 9.2 ± 5.0 years) and 10 matched non-diabetic control subjects (age 56.0±10.7 years; BMI 29.8 ± 2.9 kg/m(2); HbA1c 33.8 ± 5.5 mmol/mol) Interventions: Three experimental days: 75 g-oral glucose tolerance test (OGTT), IIGI and IIGI+glucagon (IIGI...

  7. Significance of Glucose Addition on Chitosan-Glycerophosphate Hydrogel Properties

    Directory of Open Access Journals (Sweden)

    Dian Susanthy

    2016-03-01

    Full Text Available Chitosan-glycerophosphate hydrogel can be used as dental scaffold due to its thermosensitivity, gelation performance at body temperature, suitable acidity for body condition, biocompatibility, and ability to provide good environment for cell proliferation and differentiation. Previous study showed that glucose addition to the chitosan solution before steam sterilization improved its hydrogel mechanical strength. However, the effectiveness of glucose addition was still doubted because glucose might undergo Maillard reaction in that particular condition. The aims of this study are to confirm whether the glucose addition can increase the hydrogel mechanical strength and gelation rate effectively and also to compare their performance to be dental scaffold. This research was performed through several steps, namely preparation of chitosan-glycerophosphate solution, addition of glucose, gelation time test, gel mechanical strength measurement, functional group analysis, and physical properties measurements (pH, viscosity, and pore size. The result showed that glucose addition did not improve the hydrogel mechanical strength and gelation rate, neither when it was added before nor after steam sterilization. Glucose addition before steam sterilization seemed to trigger Maillard reaction or browning effect, while glucose addition after steam sterilization increased the amount of free water molecules in the hydrogel. Chitosan and glycerophosphate interact physically, but interaction between chitosan and glucose seems to occur chemically and followed by the formation of free water molecules. Glucose addition decreases the solution viscosity and hydrogel pore size so the hydrogel performance as dental scaffold is lowered.

  8. Mechanisms and significance of brain glucose signaling in energy balance, glucose homeostasis, and food-induced reward.

    Science.gov (United States)

    Devarakonda, Kavya; Mobbs, Charles V

    2016-12-15

    The concept that hypothalamic glucose signaling plays an important role in regulating energy balance, e.g., as instantiated in the so-called "glucostat" hypothesis, is one of the oldest in the field of metabolism. However the mechanisms by which neurons in the hypothalamus sense glucose, and the function of glucose signaling in the brain, has been difficult to establish. Nevertheless recent studies probing mechanisms of glucose signaling have also strongly supported a role for glucose signaling in regulating energy balance, glucose homeostasis, and food-induced reward. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Glucose recovery after intranasal glucagon during hypoglycaemia in man

    DEFF Research Database (Denmark)

    Hvidberg, A; Djurup, R; Hilsted, J

    1994-01-01

    to exceed 3 mmol.l-1 was significantly shorter for i.m. glucagon. The mean plasma glucagon level increased faster after i.m. glucagon than after intranasal glucagon, and the levels remained higher throughout the study period. We conclude that glucose recovery was significantly better after i...... endogenous glucose counterregulation, and glucose turnover was estimated by a 3-[3H]-glucose infusion. When hypoglycaemia was reached, the subjects received either i.m. glucagon of pancreatic extraction (1 mg) or intranasal genetically engineered glucagon (2 mg). The incremental values for plasma glucose...... concentrations 15 min after intranasal and i.m. administration of glucagon differed marginally. However, after 5 min the glucose appearance rate, as well as the incremental values for plasma glucose, were significantly higher for the i.m. glucagon treatment. The mean time taken for incremental plasma glucose...

  10. Higher glucose level and systemic oxidative stress decrease the mean velocity index of the retinal artery during flickering light stimulation in type 1 diabetes.

    Science.gov (United States)

    Debelić, Vladimir; Drnovšek Olup, Brigita; Žižek, Bogomir; Skitek, Milan; Jerin, Aleš

    2016-10-31

    To determine whether higher glucose level and systemic oxidative stress decrease mean velocity (MV) index of the central retinal artery (CRA) during flickering light stimulation in type 1 diabetes (T1D). The study was performed in the period from 2008 to 2015 at the University Eye Clinic in Ljubljana. 41 patients with T1D and 37 participants without diabetes were included. MV in the CRA was measured using Doppler ultrasound diagnostics in basal conditions and during 8 Hz flickering light irritation. The plasma levels of glucose, fructosamine, 8-hydroxy-2'-deoxyguanosine (8-OHdG), triglycerides, cholesterol, and low-density lipoprotein (LDL) were measured. Patients with T1D had significantly higher levels of blood glucose (Ptriglycerides (P=0.108), cholesterol (P=0.531), and LDL (P=0.645) between the groups. Patients with T1D also had a significantly lower MV index in the CRA (1.11±0.15 vs 1.24±0.23; P=0.010). In the T1D group, a significant negative correlation was found between the level of glucose (r=0.58; Pindex in the CRA. At the same time, in this group fructosamine and 8-OHdG levels had a separate effect on the MV index (adjusted R2=0.38, Pglucose levels, the medium-term glucose level, and systemic oxidative stress could importantly reduce retinal vasodilatation during flickering light irritation in patients with T1D.

  11. Effects of Higher Dietary Protein and Fiber Intakes at Breakfast on Postprandial Glucose, Insulin, and 24-h Interstitial Glucose in Overweight Adults.

    Science.gov (United States)

    Amankwaah, Akua F; Sayer, R Drew; Wright, Amy J; Chen, Ningning; McCrory, Megan A; Campbell, Wayne W

    2017-04-02

    Dietary protein and fiber independently influence insulin-mediated glucose control. However, potential additive effects are not well-known. Men and women ( n = 20; age: 26 ± 5 years; body mass index: 26.1 ± 0.2 kg/m²; mean ± standard deviation) consumed normal protein and fiber (NPNF; NP = 12.5 g, NF = 2 g), normal protein and high fiber (NPHF; NP = 12.5 g, HF = 8 g), high protein and normal fiber (HPNF; HP = 25 g, NF = 2 g), or high protein and fiber (HPHF; HP = 25 g, HF = 8 g) breakfast treatments during four 2-week interventions in a randomized crossover fashion. On the last day of each intervention, meal tolerance tests were completed to assess postprandial (every 60 min for 240 min) serum glucose and insulin concentrations. Continuous glucose monitoring was used to measure 24-h interstitial glucose during five days of the second week of each intervention. Repeated-measures ANOVA was applied for data analyses. The HPHF treatment did not affect postprandial glucose and insulin responses or 24-h glucose total area under the curve (AUC). Higher fiber intake reduced 240-min insulin AUC. Doubling the amount of protein from 12.5 g to 25 g/meal and quadrupling fiber from 2 to 8 g/meal at breakfast was not an effective strategy for modulating insulin-mediated glucose responses in these young, overweight adults.

  12. Significance of partial pre-acidification of glucose for methanogenesis in an anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, A; Breure, A M; Schmedding, D J.M.; Zoetemeyer, R J; Andel, J.G. van

    1985-04-01

    The effect of partial pre-acidification of carbohydrate containing wastewaters on anaerobic digester performance was investigated. The influent was a 1% (w/v) glucose solution in a mineral salts medium imposing carbon-limited growth conditions. Up to 13% of the Chemical Oxygen Demand (COD) was added as volatile fatty acids (VFA). In all cases, addition of VFA to the glucose medium resulted in significant increases in the maximum specific COD-conversion rates of the sludge (both with respect to continuous feeding and following a shock loading), as compared with values found on digestion of glucose media alone.

  13. Intracerebroventricular Kainic Acid-Induced Damage Affects Blood Glucose Level in d-glucose-fed Mouse Model.

    Science.gov (United States)

    Kim, Chea-Ha; Hong, Jae-Seung

    2015-03-01

    We have previously reported that the intracerebroventricular (i.c.v.) administration of kainic acid (KA) results in significant neuronal damage on the hippocampal CA3 region. In this study, we examined possible changes in the blood glucose level after i.c.v. pretreatment with KA. The blood glucose level was elevated at 30 min, began to decrease at 60 min and returned to normal at 120 min after D-glucose-feeding. We found that the blood glucose level in the KA-pretreated group was higher than in the saline-pretreated group. The up-regulation of the blood glucose level in the KA-pretreated group was still present even after 1~4 weeks. The plasma corticosterone and insulin levels were slightly higher in the KA-treated group. Corticosterone levels decreased whereas insulin levels were elevated when mice were fed with D-glucose. The i.c.v. pretreatment with KA for 24 hr caused a significant reversal of D-glucose-induced down-regulation of corticosterone level. However, the insulin level was enhanced in the KA-pretreated group compared to the vehicle-treated group when mice were fed with D-glucose. These results suggest that KA-induced alterations of the blood glucose level are related to cell death in the CA3 region whereas the up-regulation of blood glucose level in the KA-pretreated group appears to be due to a reversal of D-glucose feeding-induced down-regulation of corticosterone level.

  14. Fluoro-deoxy-D-glucose: biological behaviour, significance and interest

    International Nuclear Information System (INIS)

    Vuillez, J.P.

    2001-01-01

    Fluorine 18-labelled fluoro-deoxy-D-glucose (FDG) demonstrated a growing interest in oncology during the fifteen past years. Biological mechanisms of its tumour uptake are well known, but uptake intensity depends on numerous factors related to cellular metabolism, tumour characteristics and environment, patient and treatments. Thus the significance of scintigraphic images and moreover their clinical interest require detailed semeiologic analysis which takes into account these factors, in order to make the best use of the FDG for the detection of lesions and recurrences, and for treatment response evaluation. (author)

  15. Higher Blood Glucose within the Normal Range Is Associated with More Severe Strokes

    DEFF Research Database (Denmark)

    Martin, Rolf J; Ratan, Rajiv R; Reding, Michael J

    2012-01-01

    Background. Higher fasting blood glucose (FBG) concentrations in the hyperglycemic range are associated with more severe strokes. Whether this association also extends into patients with FBG in the normoglycemic range is unclear. We studied the association of stroke severity and FBG in normoglyce...

  16. Postprandial glucose response to selected tropical fruits in normal glucose-tolerant Nigerians.

    Science.gov (United States)

    Edo, A; Eregie, A; Adediran, O; Ohwovoriole, A; Ebengho, S

    2011-01-01

    The glycemic response to commonly eaten fruits in Nigeria has not been reported. Therefore, this study assessed the plasma glucose response to selected fruits in Nigeria. Ten normal glucose-tolerant subjects randomly consumed 50 g carbohydrate portions of three fruits: banana (Musa paradisiaca), pineapple (Ananus comosus), and pawpaw (Carica papaya), and a 50-g glucose load at 1-week intervals. Blood samples were collected in the fasting state and half-hourly over a 2-h period post-ingestion of the fruits or glucose. The samples were analyzed for plasma glucose concentrations. Plasma glucose responses were assessed by the peak plasma glucose concentration, maximum increase in plasma glucose, 2-h postprandial plasma glucose level, and incremental area under the glucose curve and glycemic index (GI). The results showed that the blood glucose response to these three fruits was similar in terms of their incremental areas under the glucose curve, maximum increase in plasma glucose, and glycemic indices (GIs). The 2-h postprandial plasma glucose level of banana was significantly higher than that of pineapple, P < 0.025. The mean ± SEM GI values were as follows: pawpaw; 86 ± 26.8%; banana, 75.1 ± 21.8%; pineapple, 64.5 ± 11.3%. The GI of glucose is taken as 100. The GI of pineapple was significantly lower than that of glucose (P < 0.05). Banana, pawpaw, and pineapple produced a similar postprandial glucose response. Measured portions of these fruits may be used as fruit exchanges with pineapple having the most favorable glycemic response.

  17. Higher glucose, insulin and insulin resistance (HOMA-IR) in childhood predict adverse cardiovascular risk in early adulthood: the Pune Children's Study.

    Science.gov (United States)

    Yajnik, Chittaranjan S; Katre, Prachi A; Joshi, Suyog M; Kumaran, Kalyanaraman; Bhat, Dattatray S; Lubree, Himangi G; Memane, Nilam; Kinare, Arun S; Pandit, Anand N; Bhave, Sheila A; Bavdekar, Ashish; Fall, Caroline H D

    2015-07-01

    The Pune Children's Study aimed to test whether glucose and insulin measurements in childhood predict cardiovascular risk factors in young adulthood. We followed up 357 participants (75% follow-up) at 21 years of age who had undergone detailed measurements at 8 years of age (glucose, insulin, HOMA-IR and other indices). Oral glucose tolerance, anthropometry, plasma lipids, BP, carotid intima-media thickness (IMT) and arterial pulse wave velocity (PWV) were measured at 21 years. Higher fasting glucose, insulin and HOMA-IR at 8 years predicted higher glucose, insulin, HOMA-IR, BP, lipids and IMT at 21 years. A 1 SD change in 8 year variables was associated with a 0.10-0.27 SD change at 21 years independently of obesity/adiposity at 8 years of age. A greater rise in glucose-insulin variables between 8 and 21 years was associated with higher cardiovascular risk factors, including PWV. Participants whose HOMA-IR measurement remained in the highest quartile (n = 31) had a more adverse cardiovascular risk profile compared with those whose HOMA-IR measurement remained in the lowest quartile (n = 28). Prepubertal glucose-insulin metabolism is associated with adult cardiovascular risk and markers of atherosclerosis. Our results support interventions to improve glucose-insulin metabolism in childhood to reduce cardiovascular risk in later life.

  18. A higher-complex carbohydrate diet in gestational diabetes mellitus achieves glucose targets and lowers postprandial lipids: a randomized crossover study.

    Science.gov (United States)

    Hernandez, Teri L; Van Pelt, Rachael E; Anderson, Molly A; Daniels, Linda J; West, Nancy A; Donahoo, William T; Friedman, Jacob E; Barbour, Linda A

    2014-01-01

    The conventional diet approach to gestational diabetes mellitus (GDM) advocates carbohydrate restriction, resulting in higher fat (HF), also a substrate for fetal fat accretion and associated with maternal insulin resistance. Consequently, there is no consensus about the ideal GDM diet. We hypothesized that, compared with a conventional, lower-carbohydrate/HF diet (40% carbohydrate/45% fat/15% protein), consumption of a higher-complex carbohydrate (HCC)/lower-fat (LF) Choosing Healthy Options in Carbohydrate Energy (CHOICE) diet (60/25/15%) would result in 24-h glucose area under the curve (AUC) profiles within therapeutic targets and lower postprandial lipids. Using a randomized, crossover design, we provided 16 GDM women (BMI 34 ± 1 kg/m2) with two 3-day isocaloric diets at 31 ± 0.5 weeks (washout between diets) and performed continuous glucose monitoring. On day 4 of each diet, we determined postprandial (5 h) glucose, insulin, triglycerides (TGs), and free fatty acids (FFAs) following a controlled breakfast meal. There were no between-diet differences for fasting or mean nocturnal glucose, but 24-h AUC was slightly higher (∼6%) on the HCC/LF CHOICE diet (P = 0.02). The continuous glucose monitoring system (CGMS) revealed modestly higher 1- and 2-h postprandial glucose on CHOICE (1 h, 115 ± 2 vs. 107 ± 3 mg/dL, P ≤ 0.01; 2 h, 106 ± 3 vs. 97 ± 3 mg/dL, P = 0.001) but well below current targets. After breakfast, 5-h glucose and insulin AUCs were slightly higher (P diet. This highly controlled study randomizing isocaloric diets and using a CGMS is the first to show that liberalizing complex carbohydrates and reducing fat still achieved glycemia below current treatment targets and lower postprandial FFAs. This diet strategy may have important implications for preventing macrosomia.

  19. Significant association of serum creatinine with HbA1C in impaired glucose tolerant Pakistani subjects.

    Science.gov (United States)

    Farasat, Tasnim; Sharif, Saima; Naz, Shagufta; Fazal, Sabiha

    2015-01-01

    The present study was conducted to assess the serum concentration of creatinine and determine its relationship with potential risk factors of diabetes in Impaired Glucose tolerance subjects. This cross sectional study was conducted on 100 IGT patients who attended Amin Hayat diabetic center in Lahore from January 2011- June 2011. Patients with age group 34-67 years, (both sexes) were included in the study. Different demographic parameters as age, BMI, WHR, B.P, personal history and socioeconomic status were recorded. Oral Glucose Tolerance Test was performed. The biochemical parameters including HbA1c, lipid profile, urea, uric acid, creatinine and bilirubin level were measured by chemistry analyzer. A strong correlation between creatinine and HbA1c was observed. The level of creatinine was also significantly associated with age in IGT subjects. Creatinine is non-significantly correlated with Cholesterol, LDL-Chol and TG while negatively significantly associated with BMI, fasting blood glucose and HDL-Chol. The present study concluded significant association of serum creatinine with HbA1c, BMI and HDL cholesterol.

  20. The prevalence ofdiabetes mellitus and impaired glucose tolerance ...

    African Journals Online (AJOL)

    adjusted body mass indices (BMIs) of diabetic (31,3 ± 1,9) and. IGT (29,7 ± 1,9) subjects were significantly higher than those ofthe group with normal glucose toler- ance (28 ± 0,5). Female subjects with all types of glucose tolerance had significantly ...

  1. Increased glucose dependence in resting, iron-deficient rats

    International Nuclear Information System (INIS)

    Brooks, G.A.; Henderson, S.A.; Dallman, P.R.

    1987-01-01

    Rates of blood glucose and lactate turnover were assessed in resting iron-deficient and iron-sufficient (control) rats to test the hypothesis that dependence on glucose metabolism is increased in iron deficiency. Male Sprague-Dawley rats, 21 days old, were fed a diet containing either 6 mg iron/kg feed (iron-deficient group) or 50 mg iron/kg feed (iron-sufficient group) for 3-4 wk. The iron-deficient group became anemic, with hemoglobin levels of 6.4 ± 0.2 compared with 13.8 ± 0.3 g/dl for controls. Rats received a 90-min primed continuous infusion of D-[6- 3 H]glucose and sodium L-[U- 14 C]lactate via a jugular catheter. Serial samples were taken from a carotid catheter for concentration and specific activity determinations. Iron-deficient rats had significantly higher blood glucose and lactate concentrations than controls. The iron-deficient group had a significantly higher glucose turnover rate than the control group. Significantly more metabolite recycling in iron-deficient rats was indicated by greater incorporation of 14 C into blood glucose. Assuming a carbon crossover correction factor of 2, half of blood glucose arose from lactate in deficient animals. By comparison, only 25% of glucose arose from lactate in controls. Lack of a difference in lactate turnover rates between deficient rats and controls was attributed to 14 C recycling. The results indicate a greater dependence on glucose metabolism in iron-deficient rats

  2. Glucose and urea kinetics in patients with early and advanced gastrointestinal cancer: the response to glucose infusion, parenteral feeding, and surgical resection

    International Nuclear Information System (INIS)

    Shaw, J.H.; Wolfe, R.R.

    1987-01-01

    We isotopically determined rates of glucose turnover, urea turnover, and glucose oxidation in normal volunteers (n = 16), patients with early gastrointestinal (EGI) cancer (n = 6), and patients with advanced gastrointestinal (AGI) cancer (n = 10). Studies were performed in the basal state, during glucose infusion (4 mg/kg/min), and during total parenteral feeding (patients with AGI cancer only). Patients with early stages of the disease were also studied 2 to 3 months after resection of the cancer. Basal rates of glucose turnover were similar in volunteers and in patients with EGI cancer (13.9 +/- 0.3 mumol/kg/min and 13.3 +/- 0.2 mumol/kg/min, respectively) but were significantly higher in patients with AGI cancer (17.6 +/- 1.4 mumol/kg/min). Glucose infusion resulted in significantly less suppression of endogenous production in both patient groups than that seen in the volunteers (76% +/- 6% for EGI group, 69% +/- 7% for AGI group, and 94% +/- 4% for volunteers). The rate of glucose oxidation increased progressively in proportion to the tumor bulk. In the volunteers the percent of VCO2 from glucose oxidation was 23.9% +/- 0.7%, and in EGI and AGI groups the values were 32.8% +/- 2.0% and 43.0% +/- 3.0%, respectively. After curative resection of the cancer, glucose utilization decreased significantly (p less than 0.05). The rate of urea turnover was significantly higher in the AGI group (8.4 +/- 1.0 mumol/kg/min) in comparison with the volunteer group value of 5.9 +/- 0.6 mumol/kg/min (p less than 0.03). Glucose infusion resulted in a significant suppression of urea turnover in the volunteers (p less than 0.02), but in the AGI group glucose infusion did not induce a statistically significant decrease

  3. Effect of glucocorticoid therapy upon glucose metabolism in COPD patients with acute exacerbation

    International Nuclear Information System (INIS)

    Wu Sihai; Wei Zhenggan; Huang Ming'an; Yao Jianguo; Li Hongsheng

    2002-01-01

    Objective: To study the effect of glucocorticoids therapy upon glucose metabolism in COPD patients with acute exacerbation. Methods: Plasma glucose and insulin levels in COPD patients after intravenous administration of 10 mg dexamethasone daily for 5 days were determined oral with glucose tolerance test (OGTT) and insulin release test (IRT). Results: 1) The levels of basal plasma glucose and insulin were significantly higher in severe hypoxemic group than those in moderate hypoxemic group (p 2 (r = -0.5242, p < 0.05). 2) The levels of plasma glucose in intermediate and severe hypoxemic groups were remarkable higher (p < 0.05) than those in mild group. The two peak times of glucose curve were observed at one and two hour after oral glucose load. 3) After the administration of glucocorticoids, at half an hour and one hour plasma glucose levels were significantly higher than those before, the peak time of glucose levels appeared earlier and the insulin release levels were higher than they were before therapy (p < 0.05). Conclusion: COPD patients with acute exacerbation complicated with hypoxemia had problems of impaired glucose tolerance. The administration of glucocorticoids made the impairment worse

  4. Twenty-four-hour variations in blood glucose level in Japanese type 2 diabetes patients based on continuous glucose monitoring.

    Science.gov (United States)

    Hajime, Maiko; Okada, Yosuke; Mori, Hiroko; Otsuka, Takashi; Kawaguchi, Mayuko; Miyazaki, Megumi; Kuno, Fumi; Sugai, Kei; Sonoda, Satomi; Tanaka, Kenichi; Kurozumi, Akira; Narisawa, Manabu; Torimoto, Keiichi; Arao, Tadashi; Tanaka, Yoshiya

    2018-01-01

    High fluctuations in blood glucose are associated with various complications. The correlation between glycated hemoglobin (HbA1c) level and fluctuations in blood glucose level has not been studied in Japanese patients with type 2 diabetes. In the present study, blood glucose profile stratified by HbA1c level was evaluated by continuous glucose monitoring (CGM) in Japanese type 2 diabetes patients. Our retrospective study included 294 patients with type 2 diabetes who were divided by HbA1c level into five groups (≥6.0 to level and CGM data was analyzed. The primary end-point was the difference in blood glucose fluctuations among the HbA1c groups. The mean blood glucose level increased significantly with increasing HbA1c (P trend  levels of maximum blood glucose, minimum blood glucose, each preprandial blood glucose, each postprandial maximum blood glucose, range of increase in postprandial glucose from pre-meal to after breakfast, the area under the blood concentration-time curve >180 mg/dL and percentage of the area under the blood concentration-time curve >180 mg/dL were higher with higher HbA1c. Mean glucose level and pre-breakfast blood glucose level were significant and independent determinants of HbA1c. In Japanese patients treated for type 2 diabetes, the mean amplitude of glycemic excursions did not correlate with HbA1c, making it difficult to assess blood glucose fluctuations using HbA1c. Parameters other than HbA1c are required to evaluate fluctuations in blood glucose level in patients receiving treatment for type 2 diabetes. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  5. Higher Fasting Plasma Glucose Levels, within the Normal Range, are Associated with Decreased Processing Speed in High Functioning Young Elderly

    OpenAIRE

    Raizes, Meytal; Elkana, Odelia; Franko, Motty; Springer, Ramit Ravona; Segev, Shlomo; Beeri, Michal Schnaider

    2016-01-01

    We explored the association of plasma glucose levels within the normal range with processing speed in high functioning young elderly, free of type 2 diabetes mellitus (T2DM). A sample of 41 participants (mean age = 64.7, SD = 10; glucose 94.5 mg/dL, SD = 9.3), were examined with a computerized cognitive battery. Hierarchical linear regression analysis showed that higher plasma glucose levels, albeit within the normal range (

  6. Glucose Synthesis in a Protein-Based Artificial Photosynthesis System.

    Science.gov (United States)

    Lu, Hao; Yuan, Wenqiao; Zhou, Jack; Chong, Parkson Lee-Gau

    2015-09-01

    The objective of this study was to understand glucose synthesis of a protein-based artificial photosynthesis system affected by operating conditions, including the concentrations of reactants, reaction temperature, and illumination. Results from non-vesicle-based glyceraldehyde-3-phosphate (GAP) and glucose synthesis showed that the initial concentrations of ribulose-1,5-bisphosphate (RuBP) and adenosine triphosphate (ATP), lighting source, and temperature significantly affected glucose synthesis. Higher initial concentrations of RuBP and ATP significantly enhanced GAP synthesis, which was linearly correlated to glucose synthesis, confirming the proper functions of all catalyzing enzymes in the system. White fluorescent light inhibited artificial photosynthesis and reduced glucose synthesis by 79.2 % compared to in the dark. The reaction temperature of 40 °C was optimum, whereas lower or higher temperature reduced glucose synthesis. Glucose synthesis in the vesicle-based artificial photosynthesis system reconstituted with bacteriorhodopsin, F 0 F 1 ATP synthase, and polydimethylsiloxane-methyloxazoline-polydimethylsiloxane triblock copolymer was successfully demonstrated. This system efficiently utilized light-induced ATP to drive glucose synthesis, and 5.2 μg ml(-1) glucose was synthesized in 0.78-ml reaction buffer in 7 h. Light-dependent reactions were found to be the bottleneck of the studied artificial photosynthesis system.

  7. Glucose, insulin and C-peptide secretion in obese and non obese women with polycystic ovarian disease.

    Science.gov (United States)

    Mahabeer, S; Naidoo, C; Joubert, S M

    1990-06-01

    Plasma glucose, immunoreactive insulin (IRI) and C-peptide responses during oral glucose tolerance testing (OGTT) were evaluated in 10 non obese women with polycystic ovarian disease (NOB-PCOD) and 10 obese women with polycystic ovarian disease (OB-PCOD). Mean plasma glucose response at 120 minutes in OB-PCOD showed impaired glucose tolerance. Also in this group, 1 patient had frank diabetes mellitus, whilst 3 other patients had impaired glucose tolerance 1 NOB-PCOD patient had impaired glucose tolerance. Mean plasma glucose levels and mean incremental glucose areas were higher in the OB-PCOD at all time intervals and reached statistical significance at 60 and 90 minutes. Mean plasma IRI levels were also higher in OB-PCOD at all time intervals, and reached statistically significant higher levels at 0, 60 and 90 minutes. Mean serum C-peptide valves were also higher at all time intervals in OB-PCOD. The relationship between acanthosis nigricans, obesity and PCOD was also analysed. It is evident from this study that obesity has a significant negative impact on the overall carbohydrate status in women with PCOD.

  8. Lower omental t-regulatory cell count is associated with higher fasting glucose and lower β-cell function in adults with obesity.

    Science.gov (United States)

    Gyllenhammer, Lauren E; Lam, Jonathan; Alderete, Tanya L; Allayee, Hooman; Akbari, Omid; Katkhouda, Namir; Goran, Michael I

    2016-06-01

    T-lymphocytes are potential initiators and regulators of adipose tissue (AT) inflammation, but there is limited human data on omental AT. The aim of this study was to assess the relationship between T cells, particularly Foxp3+ regulatory T (Treg) cells, in human subcutaneous (subQ) and omental AT and type 2 diabetes risk. SubQ and deep subQ (DsubQ) abdominal and omental AT biopsies were collected from 44 patients (body mass index, BMI ≥25) undergoing elective abdominal surgery. Flow cytometry was used to quantify CD4+ T cell (T effector and Treg) and macrophages (M1 and M2), and systemic inflammation was measured in fasting blood. Tregs were significantly lower in omental versus subQ and DsubQ AT, and M1 cell counts were significantly higher in the omental and DsubQ depot relative to the subQ. Only omental AT Tregs were negatively associated with fasting glucose and MCP-1 and positively associated with homeostasis model assessment (HOMA)-β. M1 and M2 cell counts across multiple depots had significant relationships with HOMA-insulin resistance, tumor necrosis factor-α, insulin, and HOMA-β. All relationships were consistent across ethnicities. Tregs were significantly lower in omental versus both subQ adipose depots. Fewer omental Tregs may have metabolic implications based on depot-specific relationships with higher fasting glucose and lower β-cell function. © 2016 The Obesity Society.

  9. Glucose metabolism in lactating reindeer

    Energy Technology Data Exchange (ETDEWEB)

    White, R G; Luick, J R

    1976-01-01

    Changes in glucose synthesis during the lactation cycle were estimated in pen-fed and grazing reindeer. The pool size, space, transfer rate, and irreversible loss of glucose were determined using simultaneous injections of (2-/sup 3/H)glucose and primed infusions of (U-/sup 14/C)glucose in reindeer lactating for 1-2, 4-5, 8-9, and 12-16 weeks. Glucose transfer rate and irreversible loss were higher during early to midlactation than at other times of the year; maximum estimates were at 8-9 week postpartum (July), and a decline was noted at 12-16 weeks (August). During the first 1-2 weeks in pen-fed and 4-5 weeks in grazing reindeer, glucose transfer rate and irreversible loss were almost twice the values reported for reindeer at maintenance. No difference in the irreversible loss of glucose was noted between lactating and non-lactating reindeer at 18-20 weeks postpartum (September), and there is evidence that this may occur as early as 12-16 weeks postpartum. No significant trend was noted in the glucose space throughout lactation; however, a significant increase in plasma glucose concentration and pool size was noted when glucose synthesis was highest (8-9 weeks postpartum). Glucose turnover time was consistently faster (78-88 min) in lactating than in non-lactating reindeer (107-140 min). Reindeer used a smaller proportion of plasma glucose-C for lactose synthesis than did other domestic species. This probably results from the low lactose content of reindeer milk and the relatively low rate of milk secretion. (auth)

  10. Response to glucose and lipid infusions in sepsis: a kinetic analysis

    International Nuclear Information System (INIS)

    Shaw, J.H.; Wolfe, R.R.

    1985-01-01

    The kinetics and oxidation of glucose and free fatty acid (FFA) metabolism were assessed in control and Escherichia coli septicemic dogs by using primed, constant infusions of U- 14 C-glucose and 1,2, 13 C-palmitic acid. In the controls, the infusion of glucose suppressed endogenous glucose production completely, whereas, in the septic dogs, only a 30% suppression of glucose production occurred. The ability of the septic dogs to oxidize endogenous or exogenous glucose was decreased significantly. The basal rate of appearance of FFA was significantly higher in the septic dogs, but their ability to oxidize FFA was comparable to that of the control dogs; therefore, the basal rate of FFA oxidation was higher in the septic dogs. These studies indicate that septic dogs have a decreased capacity to oxidize glucose, but that they retain their ability to oxidize long-chain fatty acids. Because the rate of lipolysis was increased in sepsis, lipid was the predominate energy substrate in this septic model

  11. Analysis of blood glucose distribution characteristics in a health examination population in Chengdu (2007-2015).

    Science.gov (United States)

    Huang, Wenxia; Xu, Wangdong; Zhu, Ping; Yang, Hanwei; Su, Linchong; Tang, Huairong; Liu, Yi

    2017-12-01

    With socioeconomic growth and cultural changes in China, the level of blood glucose may have changed in recent years. This study aims to detect the blood glucose distribution characteristics with a large size of health examination population.A total of 641,311 cases (360,259 males and 281,052 females) more than 18 years old during 2007 to 2015 were recruited from the Health Examination Center at West China hospital, Sichuan University.The percentage of cases with abnormal glucose level and the mean level of glucose were significantly increased since 2007 to 2015 overall. The percentage of cases with abnormal glucose level in males was significantly higher than that in females every year, and the percentage of cases with abnormal glucose level in aged population was higher than the young population. In addition, the mean level of glucose was higher in aged population with normal level of glucose than the young population with normal level of glucose, and the mean level of glucose was higher in males with normal level of glucose than the females with normal level of glucose.The population showed an increased level of blood glucose. Some preventive action may be adopted early and more attention can be paid to them.

  12. Systemic Glucose Level Changes with a Carbohydrate-Restricted and Higher Protein Diet Combined with Exercise

    Science.gov (United States)

    Bowden, Rodney G.; Lanning, Beth A.; Doyle, Eva I.; Slonaker, Becky; Johnston, Holly M.; Scanes, Georgene

    2007-01-01

    Objective: The authors' purpose in this study was to compare the effects of macronutrient intake on systemic glucose levels in previously sedentary participants who followed 1 of 4 diets that were either higher protein or high carbohydrate, while initiating an exercise program. Participants and Methods: The authors randomly assigned 94 sedentary…

  13. Higher Fasting Plasma Glucose Levels, within the Normal Range, are Associated with Decreased Processing Speed in High Functioning Young Elderly.

    Science.gov (United States)

    Raizes, Meytal; Elkana, Odelia; Franko, Motty; Ravona Springer, Ramit; Segev, Shlomo; Beeri, Michal Schnaider

    2016-01-01

    We explored the association of plasma glucose levels within the normal range with processing speed in high functioning young elderly, free of type 2 diabetes mellitus (T2DM). A sample of 41 participants (mean age = 64.7, SD = 10; glucose 94.5 mg/dL, SD = 9.3), were examined with a computerized cognitive battery. Hierarchical linear regression analysis showed that higher plasma glucose levels, albeit within the normal range (levels may have an impact on cognitive function.

  14. Glucose variability negatively impacts long-term functional outcome in patients with traumatic brain injury.

    Science.gov (United States)

    Matsushima, Kazuhide; Peng, Monica; Velasco, Carlos; Schaefer, Eric; Diaz-Arrastia, Ramon; Frankel, Heidi

    2012-04-01

    Significant glycemic excursions (so-called glucose variability) affect the outcome of generic critically ill patients but has not been well studied in patients with traumatic brain injury (TBI). The purpose of this study was to evaluate the impact of glucose variability on long-term functional outcome of patients with TBI. A noncomputerized tight glucose control protocol was used in our intensivist model surgical intensive care unit. The relationship between the glucose variability and long-term (a median of 6 months after injury) functional outcome defined by extended Glasgow Outcome Scale (GOSE) was analyzed using ordinal logistic regression models. Glucose variability was defined by SD and percentage of excursion (POE) from the preset range glucose level. A total of 109 patients with TBI under tight glucose control had long-term GOSE evaluated. In univariable analysis, there was a significant association between lower GOSE score and higher mean glucose, higher SD, POE more than 60, POE 80 to 150, and single episode of glucose less than 60 mg/dL but not POE 80 to 110. After adjusting for possible confounding variables in multivariable ordinal logistic regression models, higher SD, POE more than 60, POE 80 to 150, and single episode of glucose less than 60 mg/dL were significantly associated with lower GOSE score. Glucose variability was significantly associated with poorer long-term functional outcome in patients with TBI as measured by the GOSE score. Well-designed protocols to minimize glucose variability may be key in improving long-term functional outcome. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. The significance of alteration 2-[fluorine-18]fluoro-2-deoxy-(D)-glucose uptake in the liver and skeletal muscles of patients with hyperthyroidism.

    Science.gov (United States)

    Chen, Yen-Kung; Chen, Yen-Ling; Tsui, Chih-Cheng; Wang, Su-Chen; Cheng, Ru-Hwa

    2013-10-01

    Hyperthyroidism leads to an enhanced demand for glucose. The hypothesis of the study is that 2-[fluorine-18]fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET) can demonstrate the alteration of systemic glucose metabolism in hyperthyroidism patients by measuring the FDG standard uptake value (SUV) in liver and skeletal muscle. Forty-eight active hyperthyroidism patients and 30 control participants were recruited for the study. The intensity of FDG uptake in the liver and thigh muscles was graded subjectively, comprising three groups: group I, higher FDG uptake in the liver; group II, equal FDG uptake in the liver and muscles; and group III, higher FDG uptake in the muscles. Ten subjects with FDG PET scans at hyperthyroid and euthyroid status were analyzed. Serum levels of thyroxine (T4) and triiodothyronine (T3) correlated to the SUVs of the liver and muscles. Forty-one patients (41/48, 85.4%) showed symmetrically increased FDG uptake in the muscles (22 in group I, 9 in group II, and 17 in group III). Group I patients were significantly older than group II (P = .02) and group III (P = .001) patients. The correlation coefficient between the serum T3, T4, and SUV levels in the muscles was significant (r = 0.47-0.77, P hyperthyroid and euthyroid states. In the 30 control subjects, there was normal physiological FDG uptake in the liver and muscles. In PET scans showing a pattern of decreased liver and increased skeletal muscle FDG uptake in hyperthyroidism patients, this change of FDG distribution is correspondence to the severity of hyperthyroidism status. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  16. Significant differences in parameters of glucose metabolism in children of hypertensive and normotensive parents.

    Science.gov (United States)

    Gryko, Anna; Głowińska-Olszewska, Barbara; Płudowska, Katarzyna; Smithson, W Henry; Owłasiuk, Anna; Żelazowska-Rutkowska, Beata; Wojtkielewicz, Katarzyna; Milewski, Robert; Chlabicz, Sławomir

    2017-01-01

    In the recent years, alterations in the carbohydrate metabolism, including insulin resistance, are considered as risk factors in the development of hypertension and its complications in young age. Hypertension is associated with significant cardiovascular morbidity and mortality. The onset of pathology responsible for the development of hypertension, as well as levels of biomarkers specific for early stages of atherosclerosis are poorly understood. To compare a group of children whose parents have a history of hypertension (study group) with a group of children with normotensive parents (reference group), with consideration of typical risk factors for atherosclerosis, parameters of lipid and carbohydrate metabolism, anthropometric data and new biomarkers of early cardiovascular disease (hsCRP, adiponectin, sICAM-1). The study population consists of 84 children. Of these, 40 children (mean age 13.6±2.7 years) had a parental history of hypertension, and 44 aged 13.1±3.7 yrs were children of normotensive parents. Anthropometric measurements were taken, and measurements of blood pressure, lipid profile, glucose and insulin levels were carried out. The insulin resistance index (HOMA IR) was calculated. Levels of hsCRP, soluble cell adhesion molecules (sICAM) and adiponectin were measured. There were no statistically significant differences in anthropometric parameters (body mass, SDS BMI, skin folds) between groups. Values of systolic blood pressure were statistically significantly higher in the study group (Me 108 vs. 100 mmHg, p= 0.031), as were glycaemia (Me 80 vs. 67 mg/dl pchildren of hypertensive parents) (Me 1.68 vs. 0.80 mmol/l × mU/l, p=0.007). Lower adiponectin levels (Me 13959.45 vs. 16822 ng/ml, p=0.020) were found in children with a family history of hypertension. No significant differences were found in the levels of sICAM, hsCRP, and parameters of lipid metabolism. Family history of hypertension is correlated with higher values of systolic blood

  17. Effects of ketamine on glucose uptake by glucose transporter type 3 expressed in Xenopus oocytes: The role of protein kinase C

    Energy Technology Data Exchange (ETDEWEB)

    Tomioka, Shigemasa, E-mail: tomioka@dent.tokushima-u.ac.jp [Department of Dental Anesthesiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan); Kaneko, Miyuki [Department of Dental Anesthesiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan); Satomura, Kazuhito [First Department of Oral and Maxillofacial Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan); Mikyu, Tomiko; Nakajo, Nobuyoshi [Department of Dental Anesthesiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho 18-15, Tokushima City, Tokushima 770-8504 (Japan)

    2009-10-09

    We investigated the effects of ketamine on the type 3 facilitative glucose transporter (GLUT3), which plays a major role in glucose transport across the plasma membrane of neurons. Human-cloned GLUT3 was expressed in Xenopus oocytes by injection of GLUT3 mRNA. GLUT3-mediated glucose uptake was examined by measuring oocyte radioactivity following incubation with 2-deoxy-D-[1,2-{sup 3}H]glucose. While ketamine and S(+)-ketamine significantly increased GLUT3-mediated glucose uptake, this effect was biphasic such that higher concentrations of ketamine inhibited glucose uptake. Ketamine (10 {mu}M) significantly increased V{sub max} but not K{sub m} of GLUT3 for 2-deoxy-D-glucose. Although staurosporine (a protein kinase C inhibitor) increased glucose uptake, no additive or synergistic interactions were observed between staurosporine and racemic ketamine or S(+)-ketamine. Treatment with ketamine or S(+)-ketamine partially prevented GLUT3 inhibition by the protein kinase C activator phorbol-12-myrisate-13-acetate. Our results indicate that ketamine increases GLUT3 activity at clinically relevant doses through a mechanism involving PKC inhibition.

  18. Effects of ketamine on glucose uptake by glucose transporter type 3 expressed in Xenopus oocytes: The role of protein kinase C

    International Nuclear Information System (INIS)

    Tomioka, Shigemasa; Kaneko, Miyuki; Satomura, Kazuhito; Mikyu, Tomiko; Nakajo, Nobuyoshi

    2009-01-01

    We investigated the effects of ketamine on the type 3 facilitative glucose transporter (GLUT3), which plays a major role in glucose transport across the plasma membrane of neurons. Human-cloned GLUT3 was expressed in Xenopus oocytes by injection of GLUT3 mRNA. GLUT3-mediated glucose uptake was examined by measuring oocyte radioactivity following incubation with 2-deoxy-D-[1,2- 3 H]glucose. While ketamine and S(+)-ketamine significantly increased GLUT3-mediated glucose uptake, this effect was biphasic such that higher concentrations of ketamine inhibited glucose uptake. Ketamine (10 μM) significantly increased V max but not K m of GLUT3 for 2-deoxy-D-glucose. Although staurosporine (a protein kinase C inhibitor) increased glucose uptake, no additive or synergistic interactions were observed between staurosporine and racemic ketamine or S(+)-ketamine. Treatment with ketamine or S(+)-ketamine partially prevented GLUT3 inhibition by the protein kinase C activator phorbol-12-myrisate-13-acetate. Our results indicate that ketamine increases GLUT3 activity at clinically relevant doses through a mechanism involving PKC inhibition.

  19. Higher transport and metabolism of glucose in astrocytes compared with neurons: a multiphoton study of hippocampal and cerebellar tissue slices.

    Science.gov (United States)

    Jakoby, Patrick; Schmidt, Elke; Ruminot, Iván; Gutiérrez, Robin; Barros, L Felipe; Deitmer, Joachim W

    2014-01-01

    Glucose is the most important energy substrate for the brain, and its cellular distribution is a subject of great current interest. We have employed fluorescent glucose probes, the 2-deoxy-D-glucose derivates 6- and 2-([N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose) (2-NBDG), to measure transport and metabolism of glucose in acute slices of mouse hippocampus and cerebellum. In the hippocampus, 6-NBDG, which is not metabolized and hence indicates glucose transport, was taken up faster in astrocyte-rich layers (Stratum radiatum [S.r.], Stratum oriens [S.o.]) than in pyramidal cells. Metabolizable 2-NBDG showed larger signals in S.r. and S.o. than in Stratum pyramidale, suggesting faster glucose utilization rate in the astrocyte versus the neuronal compartment. Similarly, we found higher uptake and temperature-sensitive metabolism of 2-NBDG in Bergmann glia when compared with adjacent Purkinje neurons of cerebellar slices. A comparison between 6-NBDG transport and glucose transport in cultured cells using a fluorescence resonance energy transfer nanosensor showed that relative to glucose, 6-NBDG is transported better by neurons than by astrocytes. These results indicate that the preferential transport and metabolism of glucose by glial cells versus neurons proposed for the hippocampus and cerebellum by ourselves (in vitro) and for the barrel cortex by Chuquet et al. (in vivo) is more pronounced than anticipated.

  20. Analysis of Continuous Glucose Monitoring in Pregnant Women With Diabetes

    DEFF Research Database (Denmark)

    Law, Graham R; Ellison, George T H; Secher, Anna L

    2015-01-01

    with diabetes. RESEARCH DESIGN AND METHODS: Functional data analysis (FDA) was applied to 1.68 million glucose measurements from 759 measurement episodes, obtained from two previously published randomized controlled trials of CGM in pregnant women with diabetes. A total of 117 women with type 1 diabetes (n = 89...... developed LGA. LGA was associated with lower mean glucose (7.0 vs. 7.1 mmol/L; P FDA showed that glucose was significantly lower midmorning (0900-1100 h) and early...... evening (1900-2130 h) in trimester 1, significantly higher early morning (0330-0630 h) and throughout the afternoon (1130-1700 h) in trimester 2, and significantly higher during the evening (2030-2330 h) in trimester 3 in women whose infants were LGA. CONCLUSIONS: FDA of CGM data identified specific times...

  1. Clinical significance of determination of serum leptin, insulin levels and blood sugar in pregnant women with glucose metabolism disturbances

    International Nuclear Information System (INIS)

    Yu Suqing; Li Yusheng; Wang Lin; Chu Kaiqiu

    2006-01-01

    Objective: To investigate the changes of serum leptin, insulin levels and blood sugar contents in pregnant women with gestational glucose metabolism disturbances. Methods: Fasting and 3h after oral 50g glucose serum levels of leptin were measured with RIA in 36 pregnant women with glucose metabolism disturbances (gestational diabetes mellitus or gestational impaired glucose tolerance) and 34 controls. Also, fasting serum insulin levels (with CLIA) and blood sugar contents 1h after oral 50 glucose (with glucose oxidase method) were determined in all these subjects. Results: 1. Serum levels of leptin in pregnant women with glucose metabolism disturbances were 14.9 ± 4.3 μg/L (vs controls 9.8 ± 1.7 μg/L, P<0.01). 2. The serum levels of insulin and 1 h post - 50g glucose blood sugar contents in pregnant women with glucose metabolism disturbances were 12.9±4.3mU/L and 11.0±1.4mmol/L respectively, which were both significantly positively correlated with the serum leptin levels (r=0.835, r=0.758 respectively) (vs levels in controls: 8.45±3.0mU/L and 7.84±1.3mmol/L). Conclusion: Elevation of fasting serum levels of leptin was demonstrated in pregnant women with glucose metabolism disturbances and the level of leptin was positively correlated with that of insulin and blood sugar. (authors)

  2. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Patti, Mary-Elizabeth; Houten, Sander M; Bianco, Antonio C

    2009-01-01

    , glycochenodeoxycholic, and glycodeoxycholic acids were all significantly higher in GB compared to Ov (P glucose (r = -0.59, P triglycerides (r = -0.40, P = 0.05), and positively correlated with adiponectin (r = -0.48, P ... performed cross-sectional analysis of fasting serum bile acid composition and both fasting and post-meal metabolic variables, in three subject groups: (i) post-GB surgery (n = 9), (ii) without GB matched to preoperative BMI of the index cohort (n = 5), and (iii) without GB matched to current BMI...... of the index cohort (n = 10). Total serum bile acid concentrations were higher in GB (8.90 +/- 4.84 micromol/l) than in both overweight (3.59 +/- 1.95, P = 0.005, Ov) and severely obese (3.86 +/- 1.51, P = 0.045, MOb). Bile acid subfractions taurochenodeoxycholic, taurodeoxycholic, glycocholic...

  3. Clinical significance of low result of 1-h 50-g glucose-challenge test in pregnant women.

    Science.gov (United States)

    Oawada, Nozomi; Aoki, Shigeru; Sakamaki, Kentaro; Obata, Soichiro; Seki, Kazuo; Hirahara, Fumiki

    2018-01-31

    The objective of this study is to examine the effect of low-glucose value on the 1-h 50-g glucose challenge test (GCT) on neonatal body weight in low-risk Asian singleton pregnant women. We retrospectively analyzed women who delivered a singleton neonate at term at a tertiary center and underwent GCT at 24-28 weeks of gestation between June 2001 and June 2015. The low GCT group was defined as low-birth weight, and macrosomia. The χ 2 test, Fisher's exact test, and Student's t test were used. There were 313 low GCT groups and 4611 control. The low GCT group were younger, had lower prepregnancy body weight, higher stature, and lower prepregnancy body mass index (BMI). After adjusting these variables, the low GCT group had a lower rate of LGA and a higher rate of SGA. Neonatal body weight is more influenced by maternal physique than by low GCT result (standardized coefficient (β); GCT 0.071, height 0.188, prepregnancy BMI 0.143). Neonatal body weight was only slightly influenced by low GCT result, but markedly influenced by maternal physique, such as height and prepregnancy BMI.

  4. The effects of glucose ingestion and glucose regulation on memory performance in older adults with mild cognitive impairment.

    Science.gov (United States)

    Riby, L M; Marriott, A; Bullock, R; Hancock, J; Smallwood, J; McLaughlin, J

    2009-04-01

    Previous research investigating the impact of glucose ingestion and/or improvements in glucose regulation has found selective cognitive facilitation on episodic memory tasks in successful ageing and dementia. The present study aimed to extend this research to mild cognitive impairment (MCI). In a repeated-measures design, 24 older adults with and 24 older adults without MCI performed a battery of memory and attention tasks after 25 g of glucose or a sweetness matched placebo. In addition, to assess the impact of individual differences in glucose regulation, blood glucose measurements were taken throughout the testing session. Consistent with previous research, cognitive facilitation was observed for episodic memory tasks only in both successful ageing and MCI. Older adults with MCI had a similar glucose regulatory response as controls but their fasting levels were elevated. Notably, higher levels of blood glucose were associated with impaired memory performance in both the glucose and placebo conditions. Importantly, both blood glucose and memory performance indices were significant predictors of MCI status. The utility of glucose supplementation and the use of glucose regulation as a biological marker are discussed in relation to these data.

  5. Effect of diet on insulin binding and glucose transport in rat sarcolemmal vesicles

    International Nuclear Information System (INIS)

    Grimditch, G.K.; Barnard, R.J.; Sternlicht, E.; Whitson, R.H.; Kaplan, S.A.

    1987-01-01

    The purpose of this study was to compare the effects of a high-fat, high-sucrose diet (HFS) and a low-fat, high-complex carbohydrate diet (LFC) on glucose tolerance, insulin binding, and glucose transport in rat skeletal muscle. During the intravenous glucose tolerance test, peak glucose values at 5 min were significantly higher in the HFS group; 0-, 20-, and 60-min values were similar. Insulin values were significantly higher in the HFS group at all time points (except 60 min), indicating whole-body insulin resistance. Skeletal muscle was responsible, in part, for this insulin resistance, because specific D-glucose transport in isolated sarcolemmal (SL) vesicles under basal conditions was similar between LFC and HFS rats, despite the higher plasma insulin levels. Scatchard analyses of insulin binding curves to sarcolemmal vesicles revealed that the K/sub a/ of the high-affinity binding sites was significantly reduced by the HFS diet; no other binding changes were noted. Specific D-glucose transport in SL vesicles after maximum insulin stimulation (1 U/kg) was significantly depressed in the HFS group, indicating that HFS feeding also caused a postbinding defect. These results indicate that the insulin resistance in skeletal muscle associated with a HFS diet is due to both a decrease in the K/sub a/ of the high-affinity insulin receptors and a postbinding defect

  6. A study of glucose handling by Buddhist monks.

    Science.gov (United States)

    Aung, T; Myint, H; Thein, M

    1988-04-01

    Fourteen Buddhist monks and comparable male subjects were studied in relation to their handling of glucose after a meal (consisting of 1190 kcal, 29 g protein, 21 g fat and 221 g carbohydrate) and afterwards subjected to an oral glucose tolerance test (oGTT). The time course of blood glucose levels after the meal indicated that the monks had enhanced absorption and utilization of glucose. The monks were also found to have increased tolerance to glucose on oGTT. In addition the mean total serum cholesterol level in the monks (157.2 +/- 5.53 mg/dl) was found to be significantly higher than that of the control subjects (117.4 +/- 2.85 mg/dl).

  7. Elevated 1-h post-challenge plasma glucose levels in subjects with normal glucose tolerance or impaired glucose tolerance are associated with whole blood viscosity.

    Science.gov (United States)

    Marini, Maria Adelaide; Fiorentino, Teresa Vanessa; Andreozzi, Francesco; Mannino, Gaia Chiara; Perticone, Maria; Sciacqua, Angela; Perticone, Francesco; Sesti, Giorgio

    2017-08-01

    It has been suggested that glucose levels ≥155 mg/dl at 1-h during an oral glucose tolerance test (OGTT) may predict development of type 2 diabetes and cardiovascular events among adults with normal glucose tolerance (NGT 1 h-high). Studies showed a link between increased blood viscosity and type 2 diabetes. However, whether blood viscosity is associated with dysglycemic conditions such as NGT 1 h-high, impaired glucose tolerance (IGT) or impaired fasting glucose (IFG) is unsettled. 1723 non-diabetic adults underwent biochemical evaluation and OGTT. A validated formula based on hematocrit and total plasma proteins was employed to estimate whole blood viscosity. Subjects were categorized into NGT with 1 h glucose h-low), NGT-1 h-high, IFG and/or IGT. Hematocrit and blood viscosity values appeared significantly higher in individuals with NGT 1 h-high, IFG and/or IGT as compared to NGT 1 h-low subjects. Blood viscosity was significantly correlated with age, waist circumference, blood pressure, HbA1c, fasting, 1- and 2-h post-challenge insulin levels, total cholesterol and low-density lipoprotein, triglycerides, fibrinogen, white blood cell, and inversely correlated with high-density lipoprotein and insulin sensitivity. Of the four glycemic parameters, 1-h post-challenge glucose showed the strongest correlation with blood viscosity (β = 0.158, P h post-challenge plasma glucose. They also suggest that a subgroup of NGT individuals with 1-h post-challenge plasma >155 mg/dl have increased blood viscosity comparable to that observed in subjects with IFG and/or IGT.

  8. Glucose tolerance in two unacculturated Indian tribes of Brazil.

    Science.gov (United States)

    Spielman, R S; Fajans, S S; Neel, J V; Pek, S; Floyd, J C; Oliver, W J

    1982-08-01

    Plasma levels of glucose, insulin, growth hormone, and pancreatic polypeptide in response to a standard oral glucose load were studied in the Yanomama and the Marubo, two relatively unacculturated Amerindian tribes of the Brazilian Amazon. The findings in the two tribes differed significantly from each other and in the degree of deviation from control subjects. The average responses in both tribes differed significantly from those of age- and sex-matched Caucasoid control subjects studied in Ann Arbor, Michigan; however, of the two tribes, the Marubo, the more acculturated group, resembled the controls more closely. Plasma concentrations of glucose and the hormones at three time points (fasting, 1 h, 2 h) were compared by means of a multivariate analysis. When the Marubo were compared with the control subjects, the only highly significant difference was in the plasma glucose concentrations (all three points were higher in the Marubo); however, the Yanomama differed significantly from the control subjects with respect to all four plasma indicators (p less than 0.05). Unlike the Marubo, the Yanomama showed no significant rise in plasma glucose at 1 h and no decrease at 2 h. Neither tribe exhibited the bimodality of the 2 h glucose value characteristic of acculturated Amerindians, such as the Pima, but the samples studied were small.

  9. High fasting blood glucose and obesity significantly and independently increase risk of breast cancer death in hormone receptor-positive disease.

    Science.gov (United States)

    Minicozzi, Pamela; Berrino, Franco; Sebastiani, Federica; Falcini, Fabio; Vattiato, Rosa; Cioccoloni, Francesca; Calagreti, Gioia; Fusco, Mario; Vitale, Maria Francesca; Tumino, Rosario; Sigona, Aurora; Budroni, Mario; Cesaraccio, Rosaria; Candela, Giuseppa; Scuderi, Tiziana; Zarcone, Maurizio; Campisi, Ildegarda; Sant, Milena

    2013-12-01

    We investigated the effect of fasting blood glucose and body mass index (BMI) at diagnosis on risk of breast cancer death for cases diagnosed in five Italian cancer registries in 2003-2005 and followed up to the end of 2008. For 1607 Italian women (≥15 years) with information on BMI or blood glucose or diabetes, we analysed the risk of breast cancer death in relation to glucose tertiles (≤84.0, 84.1-94.0, >94.0 mg/dl) plus diabetic and unspecified categories; BMI tertiles (≤23.4, 23.5-27.3, >27.3 kg/m(2), unspecified), stage (T1-3N0M0, T1-3N+M0 plus T4anyNM0, M1, unspecified), oestrogen (ER) and progesterone (PR) status (ER+PR+, ER-PR-, ER and PR unspecified, other), age, chemotherapy and endocrine therapy, using multiple regression models. Separate models for ER+PR+ and ER-PR- cases were also run. Patients often had T1-3N0M0, ER+PR+ cancers and received chemotherapy or endocrine therapy; only 6% were M1 and 17% ER-PR-. Diabetic patients were older and had more often high BMI (>27 kg/m(2)), ER-PR-, M1 cancers than other patients. For ER+PR+ cases, with adjustment for other variables, breast cancer mortality was higher in women with high BMI than those with BMI 23.5-27.3 kg/m(2) (hazard ratio (HR)=2.9, 95% confidence interval (CI) 1.2-6.9). Breast cancer mortality was also higher in women with high (>94 mg/dl) blood glucose compared to those with glucose 84.1-94.0mg/dl (HR=2.6, 95% CI 1.2-5.7). Our results provide evidence that in ER+PR+ patients, high blood glucose and high BMI are independently associated with increased risk of breast cancer death. Detection and correction of these factors in such patients may improve prognosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The importance of sensitive screening for abnormal glucose metabolism in patients with IgA nephropathy.

    Science.gov (United States)

    Jia, Xiaoyuan; Pan, Xiaoxia; Xie, Jingyuan; Shen, Pingyan; Wang, Zhaohui; Li, Ya; Wang, Weiming; Chen, Nan

    2016-01-01

    To investigate the prevalence of abnormal glucose metabolism, insulin resistance (IR) and the related risk factors in IgA nephropathy (IgAN) patients. We analyzed oral glucose tolerance test (OGTT) and clinical data of 107 IgAN patients and 106 healthy controls. Glucose metabolism, homeostasis model assessment of insulin resistance (HOMA-IR) and the insulin sensitivity index (ISI) of both groups were evaluated. The prevalence of abnormal glucose metabolism was significantly higher in the IgAN group than in the control group (41.12% vs. 9.43%, p glucose, fasting insulin, OGTT 2-hour blood glucose, OGTT 2-hour insulin, HOMA-IR, and lower ISI than healthy controls. Triglyceride (OR = 2.55), 24-hour urine protein excretion (OR = 1.39), and age (OR = 1.06) were independent risk factors for abnormal glucose metabolism in IgAN patients. BMI, eGFR, 24-hour urine protein excretion, triglyceride, fasting blood glucose, fasting insulin, OGTT 2-hour blood glucose, and OGTT 2-hour insulin were significantly higher in IgAN patients with IR than in IgAN patients without IR, while HDL and ISI were significantly lower. BMI, serum albumin, and 24-hour urine protein excretion were correlated factors of IR in IgAN patients. Our study highlighted that abnormal glucose metabolism was common in IgAN patients. Triglyceride and 24-hour urine protein excretion were significant risk factors for abnormal glucose metabolism. Therefore, sensitive screening for glucose metabolism status and timely intervention should be carried out in clinical work.

  11. Continuous glucose monitoring and HbA1c in the evaluation of glucose metabolism in children at high risk for type 1 diabetes mellitus.

    Science.gov (United States)

    Helminen, Olli; Pokka, Tytti; Tossavainen, Päivi; Ilonen, Jorma; Knip, Mikael; Veijola, Riitta

    2016-10-01

    Continuous glucose monitoring (CGM) parameters, self-monitored blood glucose (SMBG), HbA1c and oral glucose tolerance test (OGTT) were studied during preclinical type 1 diabetes mellitus. Ten asymptomatic children with multiple (⩾2) islet autoantibodies (cases) and 10 age and sex-matched autoantibody-negative controls from the Type 1 Diabetes Prediction and Prevention (DIPP) Study were invited to 7-day CGM with Dexcom G4 Platinum Sensor. HbA1c and two daily SMBG values (morning and evening) were analyzed. Five-point OGTTs were performed and carbohydrate intake was assessed by food records. The matched pairs were compared with the paired sample t-test. The cases showed higher mean values and higher variation in glucose levels during CGM compared to the controls. The time spent ⩾7.8mmol/l was 5.8% in the cases compared to 0.4% in the controls (p=0.040). Postprandial CGM values were similar except after the dinner (6.6mmol/l in cases vs. 6.1mmol/l in controls; p=0.023). When analyzing the SMBG values higher mean level, higher evening levels, as well as higher variation were observed in the cases when compared to the controls. HbA1c was significantly higher in the cases [5.7% (39mmol/mol) vs. 5.3% (34mmol/mol); p=0.045]. No differences were observed in glucose or C-peptide levels during OGTT. Daily carbohydrate intake was slightly higher in the cases (254.2g vs. 217.7g; p=0.034). Glucose levels measured by CGM and SMBG are useful indicators of dysglycemia during preclinical type 1 diabetes mellitus. Increased evening glucose values seem to be common in children with preclinical type 1 diabetes mellitus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. [A comparison of post-surgical plasma glucose levels in patients on fluids with different glucose concentrations].

    Science.gov (United States)

    Martínez Carapeto, Isabel; López Castilla, José Domingo; Fresneda Gutiérrez, Reyes

    2017-11-11

    To compare plasma glucose levels and incidence of hyperglycaemia in the post-operative period after general surgery using fluids with different glucose. A randomised, open-label, non-blind, clinical trial was conducted on patients admitted to Paediatric Intensive Care Unit after elective surgery. The inclusion criteria were from 6 months to 14 years of age, with a weight greater than 6kg, onset glucose level >60mg/dL, and a signed informed consent, with no oral intake and maintenance intravenous fluid therapy using fluids with 3.3% or 5% glucose. Plasma glucose levels were measured before surgery, on admission, and 8, 24, and 48h, with the mean glucose levels and incidence of hyperglycaemia (glucose level >150mg/dL) in both groups being compared. A total of 60 patients received glucose/saline 1/3 (51mEq/L sodium and 33g/L glucose), and 70 glucose/saline 5/0.9% (154mEq/L sodium and 50g/L glucose). Mean glucose levels were higher in the group receiving glucose 5%, with no statistical difference. There was no significant difference in the incidence of hyperglycaemia; 8h: 26% in the 3.3% group vs. 21.3% in the 5% group (P=.63); 24h: 20% vs. 22.7% (P=.8); and 48h: 19% vs. 23.1% (P=.78). The use of fluids with 3.3% glucose in the post-operative period of general surgery maintains mean glucose levels in a similar range to that of patients receiving fluids with 5% glucose, with no difference in the incidence of hyperglycaemia. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  13. Blood Glucose, Insulin and Inorganic Phosphorus in Healthy and Ketotic Dairy Cows after Intravenous Infusion of Glucose Solution

    Directory of Open Access Journals (Sweden)

    Radojica Djoković

    2009-01-01

    Full Text Available The aim of the present study was to determine the degree of blood glucose utilization by peripheral tissue on the basis of changes in blood concentrations of glucose, insulin and inorganic phosphorus in healthy (n = 10 and ketotic cows (n = 10 after intravenous infusion of glucose solution. Blood samples were taken in both groups of examined cows at the following time intervals: just before (time 0 and 30, 60, 120, 180 and 240 min after intravenous infusion of a total of 500 ml of 50% of glucose solution. Glucose and insulin blood serum values in both groups of cows increased significantly within 30 and 60 min of the experiment (p p p < 0.05 in the blood value of inorganic phosphorus in ketotic cows compared to the healthy ones. This is linked with the active entry of glucose into the glucolytic pathway of peripheral tissues. It can thus be concluded that there is a higher degree of blood glucose utilization by peripheral tissues in ketotic cows.

  14. Relation of Adiponectin to Glucose Tolerance Status, Adiposity, and Cardiovascular Risk Factor Load

    Directory of Open Access Journals (Sweden)

    N. Wolfson

    2012-01-01

    Full Text Available Objective. Adiponectin has anti-atherogenic and anti-inflammatory properties. We investigated the influence of adiponectin on glucose tolerance status, adiposity and cardiovascular risk factors (CVRFs. Design and Patients. Study consisted of 107 subjects: 55 with normal glucose tolerance (NGT and 52 with impaired glucose regulation (IGR who were divided into two groups: 24 subjects with impaired fasting glucose (IFG Group and 28 patients with type 2 diabetes mellitus (DM Group. In additional analysis, study participants were divided into two groups, according to CVRFs: low and high risk. Measurements: Patients were evaluated for glucose, HbA1C, insulin, lipids, CRP, HOMA-IR and adiponectin. Measurements. Patients were evaluated for glucose, HbA1C, insulin, lipids, CRP, HOMA-IR and adiponectin. Results. Adiponectin was significantly higher in NGT group than in IFG (=0.003 and DM (=0.01 groups. Adiponectin was significantly, positively associated with HDL and inversely associated with glucose, HbA1c, ALT, AST, TG, HOMA-IR. Patients with higher CVRFs load have lesser adiponectin compared to patients with low cardiovascular risk <0.0001. Adiponectin was inversely associated with the number of risk factors (=−0.430, =0.0001. Conclusions. Circulating adiponectin was significantly lower in subjects with different degree of IGR compared to subjects with normal glucose homeostasis. Adiponectin was significantly lower in high risk group than low risk group and decreased concurrently with increased number of CVRFs.

  15. Dietary fructose and glucose differentially affect lipid and glucose homeostasis.

    Science.gov (United States)

    Schaefer, Ernst J; Gleason, Joi A; Dansinger, Michael L

    2009-06-01

    Absorbed glucose and fructose differ in that glucose largely escapes first-pass removal by the liver, whereas fructose does not, resulting in different metabolic effects of these 2 monosaccharides. In short-term controlled feeding studies, dietary fructose significantly increases postprandial triglyceride (TG) levels and has little effect on serum glucose concentrations, whereas dietary glucose has the opposite effects. When dietary glucose and fructose have been directly compared at approximately 20-25% of energy over a 4- to 6-wk period, dietary fructose caused significant increases in fasting TG and LDL cholesterol concentrations, whereas dietary glucose did not, but dietary glucose did increase serum glucose and insulin concentrations in the postprandial state whereas dietary fructose did not. When fructose at 30-60 g ( approximately 4-12% of energy) was added to the diet in the free-living state, there were no significant effects on lipid or glucose biomarkers. Sucrose and high-fructose corn syrup (HFCS) contain approximately equal amounts of fructose and glucose and no metabolic differences between them have been noted. Controlled feeding studies at more physiologic dietary intakes of fructose and glucose need to be conducted. In our view, to decrease the current high prevalence of obesity, dyslipidemia, insulin resistance, and diabetes, the focus should be on restricting the intake of excess energy, sucrose, HFCS, and animal and trans fats and increasing exercise and the intake of vegetables, vegetable oils, fish, fruit, whole grains, and fiber.

  16. Copeptin, a surrogate marker for arginine vasopressin secretion, is associated with higher glucose and insulin concentrations but not higher blood pressure in obese men

    DEFF Research Database (Denmark)

    Asferg, C L; Andersen, Ulrik Bjørn; Linneberg, A

    2014-01-01

    distribution. METHODS: In 103 obese men (mean age ± standard deviation: 49.4 ± 10.2 years) and 27 normal weight control men (mean age: 51.5 ± 8.4 years), taking no medication, we measured 24-h ambulatory blood pressure, fasting blood concentrations of copeptin, lipids, glucose and insulin, and determined body...... blood pressure (r = 0.11, P = 0.29), 24-h diastolic blood pressure (r = 0.11, P = 0.28), BMI (r = 0.09, P = 0.37), total body fatness percentage (r = 0.10, P = 0.33), android fat mass percentage (r = 0.04, P = 0.66) or serum triglyceride concentrations (r = 0.04; P = 0.68). In contrast, plasma copeptin......, and is associated with abnormalities in glucose and insulin metabolism, but not with higher blood pressure or an android fat distribution in obese men....

  17. Parameters of glucose metabolism and the aging brain

    DEFF Research Database (Denmark)

    Akintola, Abimbola A; van den Berg, Annette; Altmann-Schneider, Irmhild

    2015-01-01

    Given the concurrent, escalating epidemic of diabetes mellitus and neurodegenerative diseases, two age-related disorders, we aimed to understand the relation between parameters of glucose metabolism and indices of pathology in the aging brain. From the Leiden Longevity Study, 132 participants (mean...... age 66 years) underwent a 2-h oral glucose tolerance test to assess glucose tolerance (fasted and area under the curve (AUC) glucose), insulin sensitivity (fasted and AUC insulin and homeostatic model assessment of insulin sensitivity (HOMA-IS)) and insulin secretion (insulinogenic index). 3-T brain...... significant associations were found for white matter. Thus, while higher glucose was associated with macro-structural damage, impaired insulin action was associated more strongly with reduced micro-structural brain parenchymal homogeneity. These findings offer some insight into the association between...

  18. Dysregulation of glucose metabolism even in Chinese PCOS women with normal glucose tolerance.

    Science.gov (United States)

    Li, Weiping; Li, Qifu

    2012-01-01

    To clarify the necessity of improving glucose metabolism in polycystic ovary syndrome (PCOS) women as early as possible, 111 PCOS women with normal glucose tolerance and 92 healthy age-matched controls were recruited to investigate glucose levels distribution, insulin sensitivity and β cell function. 91 PCOS women and 33 controls underwent hyperinsulinemic-euglycemic clamp to assess their insulin sensitivity, which was expressed as M value. β cell function was estimated by homeostatic model assessment (HOMA)-β index after adjusting insulin sensitivity (HOMA-βad index). Compared with lean controls, lean PCOS women had similar fasting plasma glucose (FPG), higher postprandial plasma glucose (PPG) (6.03±1.05 vs. 5.44±0.97 mmol/L, PPCOS women had higher levels of both FPG (5.24±0.58 vs. 4.90±0.39, PPCOS women separately, and the cutoff of BMI indicating impaired β cell function of PCOS women was 25.545kg/m². In conclusion, insulin resistance and dysregulation of glucose metabolism were common in Chinese PCOS women with normal glucose tolerance. BMI ≥ 25.545kg/m² indicated impaired β cell function in PCOS women with normal glucose tolerance.

  19. Correlation of salivary glucose level with blood glucose level in diabetes mellitus.

    Science.gov (United States)

    Gupta, Shreya; Nayak, Meghanand T; Sunitha, J D; Dawar, Geetanshu; Sinha, Nidhi; Rallan, Neelakshi Singh

    2017-01-01

    Saliva is a unique fluid, which is important for normal functioning of the oral cavity. Diabetes mellitus (DM) is a disease of absolute or relative insulin deficiency characterized by insufficient secretion of insulin by pancreatic beta-cells. The diagnosis of diabetes through blood is difficult in children, older adults, debilitated and chronically ill patients, so diagnosis by analysis of saliva can be potentially valuable as collection of saliva is noninvasive, easier and technically insensitive, unlike blood. The aim of the study was to correlate blood glucose level (BGL) and salivary glucose level (SGL) in DM patients. A cross-sectional study was conducted in 120 patients, who were categorized as 40 controlled diabetics, 40 uncontrolled diabetics and 40 healthy, age- and sex-matched individuals constituted the controls. The blood and unstimulated saliva samples were collected from the patients at the different intervals for fasting, random and postprandial levels. These samples were then subjected for analysis of glucose in blood and saliva using glucose oxidase/peroxidase reagent in HITACHI 902 (R) Automatic analyzer, and the results were recorded. The mean SGLs were higher in uncontrolled and controlled diabetic groups than in nondiabetic group. A highly statistically significant correlation was found between fasting saliva glucose and fasting blood glucose in all the groups. With increase in BGL, increase in SGL was observed in patients with diabetes suggesting that SGL can be used for monitoring glycemic level in DM.

  20. Assessment of insulin action in insulin-dependent diabetes mellitus using [6(14)C]glucose, [3(3)H]glucose, and [2(3)H]glucose. Differences in the apparent pattern of insulin resistance depending on the isotope used

    International Nuclear Information System (INIS)

    Bell, P.M.; Firth, R.G.; Rizza, R.A.

    1986-01-01

    To determine whether [2(3)H], [3(3)H], and [6(14)C]glucose provide an equivalent assessment of glucose turnover in insulin-dependent diabetes mellitus (IDDM) and nondiabetic man, glucose utilization rates were measured using a simultaneous infusion of these isotopes before and during hyperinsulinemic euglycemic clamps. In the nondiabetic subjects, glucose turnover rates determined with [6(14)C]glucose during insulin infusion were lower (P less than 0.02) than those determined with [2(3)H]glucose and higher (P less than 0.01) than those determined with [3(3)H]glucose. In IDDM, glucose turnover rates measured with [6(14)C]glucose during insulin infusion were lower (P less than 0.05) than those determined with [2(3)H]glucose, but were not different from those determined with [3(3)H]glucose. All three isotopes indicated the presence of insulin resistance. However, using [3(3)H]glucose led to the erroneous conclusion that glucose utilization was not significantly decreased at high insulin concentrations in the diabetic patients. [6(14)C] and [3(3)H]glucose but not [2(3)H]glucose indicated impairment in insulin-induced suppression of glucose production. These results indicate that tritiated isotopes do not necessarily equally reflect the pattern of glucose metabolism in diabetic and nondiabetic man

  1. A high-throughput colorimetric assay for glucose detection based on glucose oxidase-catalyzed enlargement of gold nanoparticles

    Science.gov (United States)

    Xiong, Yanmei; Zhang, Yuyan; Rong, Pengfei; Yang, Jie; Wang, Wei; Liu, Dingbin

    2015-09-01

    We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose.We developed a simple high-throughput colorimetric assay to detect glucose based on the glucose oxidase (GOx)-catalysed enlargement of gold nanoparticles (AuNPs). Compared with the currently available glucose kit method, the AuNP-based assay provides higher clinical sensitivity at lower cost, indicating its great potential to be a powerful tool for clinical screening of glucose. Electronic supplementary information (ESI) available: Experimental section and additional figures. See DOI: 10.1039/c5nr03758a

  2. Metabolic Effects of Glucose-Fructose Co-Ingestion Compared to Glucose Alone during Exercise in Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Lia Bally

    2017-02-01

    Full Text Available This paper aims to compare the metabolic effects of glucose-fructose co-ingestion (GLUFRU with glucose alone (GLU in exercising individuals with type 1 diabetes mellitus. Fifteen male individuals with type 1 diabetes (HbA1c 7.0% ± 0.6% (53 ± 7 mmol/mol underwent a 90 min iso-energetic continuous cycling session at 50% VO2max while ingesting combined glucose-fructose (GLUFRU or glucose alone (GLU to maintain stable glycaemia without insulin adjustment. GLUFRU and GLU were labelled with 13C-fructose and 13C-glucose, respectively. Metabolic assessments included measurements of hormones and metabolites, substrate oxidation, and stable isotopes. Exogenous carbohydrate requirements to maintain stable glycaemia were comparable between GLUFRU and GLU (p = 0.46. Fat oxidation was significantly higher (5.2 ± 0.2 vs. 2.6 ± 1.2 mg·kg−1·min−1, p < 0.001 and carbohydrate oxidation lower (18.1 ± 0.8 vs. 24.5 ± 0.8 mg·kg−1·min−1 p < 0.001 in GLUFRU compared to GLU, with decreased muscle glycogen oxidation in GLUFRU (10.2 ± 0.9 vs. 17.5 ± 1.0 mg·kg−1·min−1, p < 0.001. Lactate levels were higher (2.2 ± 0.2 vs. 1.8 ± 0.1 mmol/L, p = 0.012 in GLUFRU, with comparable counter-regulatory hormones between GLUFRU and GLU (p > 0.05 for all. Glucose and insulin levels, and total glucose appearance and disappearance were comparable between interventions. Glucose-fructose co-ingestion may have a beneficial impact on fuel metabolism in exercising individuals with type 1 diabetes without insulin adjustment, by increasing fat oxidation whilst sparing glycogen.

  3. Higher insulin sensitivity in vegans is not associated with higher mitochondrial density.

    Science.gov (United States)

    Gojda, J; Patková, J; Jaček, M; Potočková, J; Trnka, J; Kraml, P; Anděl, M

    2013-12-01

    Vegans have a lower incidence of insulin resistance (IR)-associated diseases and a higher insulin sensitivity (IS) compared with omnivores. The aim of this study was to examine whether the higher IS in vegans relates to markers of mitochondrial biogenesis and to intramyocellular lipid (IMCL) content. Eleven vegans and 10 matched (race, age, sex, body mass index, physical activity and energy intake) omnivorous controls were enrolled in a case-control study. Anthropometry, bioimpedance (BIA), ultrasound measurement of visceral and subcutaneous fat layer, parameters of glucose and lipid homeostasis, hyperinsulinemic euglycemic clamp and muscle biopsies were performed. Citrate synthase (CS) activity, mitochondrial DNA (mtDNA) and IMCL content were assessed in skeletal muscle samples. Both groups were comparable in anthropometric and BIA parameters, physical activity and protein-energy intake. Vegans had significantly higher glucose disposal (M-value, vegans 8.11±1.51 vs controls 6.31±1.57 mg/kg/min, 95% confidence interval: 0.402 to 3.212, P=0.014), slightly lower IMCL content (vegans 13.91 (7.8 to 44.0) vs controls 17.36 (12.4 to 78.5) mg/g of muscle, 95% confidence interval: -7.594 to 24.550, P=0.193) and slightly higher relative muscle mtDNA amount (vegans 1.36±0.31 vs controls 1.13±0.36, 95% confidence interval:-0.078 to 0.537, P=0.135). No significant differences were found in CS activity (vegans 18.43±5.05 vs controls 18.16±5.41 μmol/g/min, 95% confidence interval: -4.503 to 5.050, P=0.906). Vegans have a higher IS, but comparable mitochondrial density and IMCL content with omnivores. This suggests that a decrease in whole-body glucose disposal may precede muscle lipid accumulation and mitochondrial dysfunction in IR development.

  4. Dexamethasone increases glucose cycling, but not glucose production, in healthy subjects

    International Nuclear Information System (INIS)

    Wajngot, A.; Khan, A.; Giacca, A.; Vranic, M.; Efendic, S.

    1990-01-01

    We established that measurement of glucose fluxes through glucose-6-phosphatase (G-6-Pase; hepatic total glucose output, HTGO), glucose cycling (GC), and glucose production (HGP), reveals early diabetogenic changes in liver metabolism. To elucidate the mechanism of the diabetogenic effect of glucocorticoids, we treated eight healthy subjects with oral dexamethasone (DEX; 15 mg over 48 h) and measured HTGO with [2-3H]glucose and HGP with [6-3H]glucose postabsorptively and during a 2-h glucose infusion (11.1 mumol.kg-1.min-1). [2-3H]- minus [6-3H]glucose equals GC. DEX significantly increased plasma glucose, insulin, C peptide, and HTGO, while HGP was unchanged. In controls and DEX, glucose infusion suppressed HTGO (82 vs. 78%) and HGP (87 vs. 91%). DEX increased GC postabsorptively (three-fold) P less than 0.005 and during glucose infusion (P less than 0.05) but decreased metabolic clearance and glucose uptake (Rd), which eventually normalized, however. Because DEX increased HTGO (G-6-Pase) and not HGP (glycogenolysis + gluconeogenesis), we assume that DEX increases HTGO and GC in humans by activating G-6-Pase directly, rather than by expanding the glucose 6-phosphate pool. Hyperglycemia caused by peripheral effects of DEX can also contribute to an increase in GC by activating glucokinase. Therefore, measurement of glucose fluxes through G-6-Pase and GC revealed significant early effects of DEX on hepatic glucose metabolism, which are not yet reflected in HGP

  5. Fasting plasma glucose levels and coronary artery calcification in subjects with impaired fasting glucose.

    Science.gov (United States)

    Eun, Young-Mi; Kang, Sung-Goo; Song, Sang-Wook

    2016-01-01

    Prediabetes is associated with an increased risk of cardiovascular disease (CVD). While the association of impaired glucose tolerance with CVD has been shown in many studies, the relationship between impaired fasting glucose (IFG) and CVD remains unclear. The purpose of this study was to compare the coronary artery calcium (CAC) scores of participants with normal fasting glucose versus those with IFG, according to fasting plasma glucose (FPG) levels, and to assess whether differences in CAC scores were independent of important confounders. Retrospective study. Health Promotion Center of the University Hospital (Gyeonggi-do, South Korea), during the period 2010-2014. Participants were enrolled from the general population who visited for a medical check-up. CAC was assessed in asymptomatic individuals by multidetector computed tomography. Anthropometric parameters and metabolic profiles were also recorded. Subjects were divided into four fasting glucose groups. Participants with a history of CVD or diabetes mellitus were excluded. Correlation between FPG and CAC scores, CAC score categories, and association between CAC score and FPG categories. Of 1112 participants, 346 (34.2%) had a CAC score > 0. FPG values in the IFG patients were positively but weakly correlated with CAC scores (r=0.099, P=.001). The incidence of CAC differed according to FPG level (P =110 mg/dL had a significantly higher risk of CAC than did subjects with normal fasting glucose (110.

  6. Expression and clinical significance of Glucose Regulated Proteins GRP78 (BiP) and GRP94 (GP96) in human adenocarcinomas of the esophagus

    International Nuclear Information System (INIS)

    Langer, Rupert; Feith, Marcus; Siewert, Joerg Rüdiger; Wester, Hans-Juergen; Hoefler, Heinz

    2008-01-01

    Glucose regulated proteins (GRPs) are main regulators of cellular homeostasis due to their role as molecular chaperones. Moreover, the functions of GRPs suggest that they also may play important roles in cancer biology. In this study we investigated the glucose regulated proteins GRP78 (BiP) and GRP94 (GP96) in a series of human esophageal adenocarcinomas to determine their implications in cancer progression and prognosis. Formalin-fixed, paraffin-embedded tissues of primary resected esophageal (Barrett) adenocarcinomas (n = 137) and corresponding normal tissue were investigated. mRNA-gene expression levels of GRP78 and GRP94 were determined by quantitative real-time RT-PCR after mRNA extraction. Protein expression analysis was performed with immunohistochemical staining of the cases, assembled on a tissue micorarray. The results were correlated with pathologic features (pT, pN, G) and overall survival. GRP78 and GRP94 mRNA were expressed in all tumors. The relative gene expression of GRP78 was significantly higher in early cancers (pT1m and pT1sm) as compared to more advanced stages (pT2 and pT3) and normal tissue (p = 0.031). Highly differentiated tumors showed also higher GRP78 mRNA levels compared to moderate and low differentiated tumors (p = 0.035). In addition, patients with higher GRP78 levels tended to show a survival benefit (p = 0.07). GRP94 mRNA-levels showed no association to pathological features or clinical outcome. GRP78 and GRP94 protein expression was detectable by immunohistochemistry in all tumors. There was a significant correlation between a strong GRP78 protein expression and early tumor stages (pT1m and pT1sm, p = 0.038). For GRP94 low to moderate protein expression was significantly associated with earlier tumor stage (p = 0.001) and less lymph node involvement (p = 0.036). Interestingly, the patients with combined strong GRP78 and GRP94 protein expression exclusively showed either early (pT1m or pT1sm) or advanced (pT3) tumor stages and no

  7. Expression and clinical significance of Glucose Regulated Proteins GRP78 (BiP and GRP94 (GP96 in human adenocarcinomas of the esophagus

    Directory of Open Access Journals (Sweden)

    Wester Hans-Juergen

    2008-03-01

    Full Text Available Abstract Background Glucose regulated proteins (GRPs are main regulators of cellular homeostasis due to their role as molecular chaperones. Moreover, the functions of GRPs suggest that they also may play important roles in cancer biology. In this study we investigated the glucose regulated proteins GRP78 (BiP and GRP94 (GP96 in a series of human esophageal adenocarcinomas to determine their implications in cancer progression and prognosis. Methods Formalin-fixed, paraffin-embedded tissues of primary resected esophageal (Barrett adenocarcinomas (n = 137 and corresponding normal tissue were investigated. mRNA-gene expression levels of GRP78 and GRP94 were determined by quantitative real-time RT-PCR after mRNA extraction. Protein expression analysis was performed with immunohistochemical staining of the cases, assembled on a tissue micorarray. The results were correlated with pathologic features (pT, pN, G and overall survival. Results GRP78 and GRP94 mRNA were expressed in all tumors. The relative gene expression of GRP78 was significantly higher in early cancers (pT1m and pT1sm as compared to more advanced stages (pT2 and pT3 and normal tissue (p = 0.031. Highly differentiated tumors showed also higher GRP78 mRNA levels compared to moderate and low differentiated tumors (p = 0.035. In addition, patients with higher GRP78 levels tended to show a survival benefit (p = 0.07. GRP94 mRNA-levels showed no association to pathological features or clinical outcome. GRP78 and GRP94 protein expression was detectable by immunohistochemistry in all tumors. There was a significant correlation between a strong GRP78 protein expression and early tumor stages (pT1m and pT1sm, p = 0.038. For GRP94 low to moderate protein expression was significantly associated with earlier tumor stage (p = 0.001 and less lymph node involvement (p = 0.036. Interestingly, the patients with combined strong GRP78 and GRP94 protein expression exclusively showed either early (pT1m or p

  8. Effects of dietary glucose and sodium chloride on intestinal glucose absorption of common carp (Cyprinus carpio L.).

    Science.gov (United States)

    Qin, Chaobin; Yang, Liping; Zheng, Wenjia; Yan, Xiao; Lu, Ronghua; Xie, Dizhi; Nie, Guoxing

    2018-01-08

    The co-transport of sodium and glucose is the first step for intestinal glucose absorption. Dietary glucose and sodium chloride (NaCl) may facilitate this physiological process in common carp (Cyprinus carpio L.). To test this hypothesis, we first investigated the feeding rhythm of intestinal glucose absorption. Carps were fed to satiety once a day (09:00 a.m.) for 1 month. Intestinal samples were collected at 01:00, 05:00, 09:00, 13:00, 17:00 and 21:00. Result showed that food intake greatly enhanced sodium/glucose cotransporter 1 (SGLT1) and glucose transporter type 2 (GLUT2) expressions, and improved glucose absorption, with highest levels at 09:00 a.m.. Then we designed iso-nitrogenous and iso-energetic diets with graded levels of glucose (10%, 20%, 30%, 40% and 50%) and NaCl (0%, 1%, 3% and 5%), and submitted to feeding trial for 10 weeks. The expressions of SGLT1 and GLUT2, brush border membrane vesicles (BBMVs) glucose transport and intestinal villus height were determined after the feeding trial. Increasing levels of dietary glucose and NaCl up-regulated mRNA and protein levels of SGLT1 and GLUT2, enhanced BBMVs glucose transport in the proximal, mid and distal intestine. As for histological adaptive response, however, high-glucose diet prolonged while high-NaCl diet shrank intestinal villus height. Furthermore, we also found that higher mRNA levels of SGLT1 and GLUT2, higher glucose transport capacity of BBMVs, and higher intestinal villus were detected in the proximal and mid intestine, compared to the distal part. Taken together, our study indicated that intestinal glucose absorption in carp was primarily occurred in the proximal and mid intestine, and increasing levels of dietary glucose and NaCl enhanced intestinal glucose absorption in carp. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes

    DEFF Research Database (Denmark)

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt

    2010-01-01

    Achievement of efficient enzymatic degradation of cellulose to glucose is one of the main prerequisites and one of the main challenges in the biological conversion of lignocellulosic biomass to liquid fuels and other valuable products. The specific inhibitory interferences by cellobiose and glucose...... on enzyme-catalyzed cellulose hydrolysis reactions impose significant limitations on the efficiency of lignocellulose conversion especially at high-biomass dry matter conditions. To provide the base for selecting the optimal reactor conditions, this paper reviews the reaction kinetics, mechanisms......, and significance of this product inhibition, notably the cellobiose and glucose inhibition, on enzymatic cellulose hydrolysis. Particular emphasis is put on the distinct complexity of cellulose as a substrate, the multi-enzymatic nature of the cellulolytic degradation, and the particular features of cellulase...

  10. Incompatibility between fasting and postprandial plasma glucose in patients with Cushing's syndrome.

    Science.gov (United States)

    Otsuki, Michio; Kitamura, Tetsuhiro; Tamada, Daisuke; Tabuchi, Yukiko; Mukai, Kosuke; Morita, Shinya; Kasayama, Soji; Shimomura, Iichiro; Koga, Masafumi

    2016-11-30

    It is shown that glucocorticoids have discordant effects on plasma glucose concentration through their effects on hepatic glycogen deposition, gluconeogenesis and peripheral insulin resistance. Cushing's syndrome caused by cortisol overproduction is frequently accompanied with diabetes mellitus, but fasting plasma glucose (FPG) and post-glucose load plasma glucose levels are not examined in patients with Cushing's syndrome. The aim of this study was to investigate FPG, HbA1c and oral glucose tolerance test (OGTT) 2-h PG and their relationship in patients with Cushing's syndrome, in comparison with control subjects. Sixteen patients with Cushing's syndrome (ACTH-dependent 31%, ACTH-independent 69% and diabetes mellitus 50%) and 64 controls (32 patients with type 2 diabetes mellitus and 32 non-diabetic subjects matched for age, sex and BMI) were enrolled in this study. HbA1c and FPG in the patients with Cushing's syndrome were not different from the controls, whereas the FPG/HbA1c ratio was significantly lower in the patients with Cushing's syndrome than the controls. OGTT 2-h PG was significantly higher in the non-diabetic patients with Cushing's syndrome than the non-diabetic controls, while HbA1c was not different between both groups and FPG was significantly lower in the patients with Cushing's syndrome than the controls. HOMA-β but not HOMA-R was significantly higher in the patients with Cushing's syndrome than the controls. In conclusion, FPG was rather lower in the patients with Cushing's syndrome than the controls. Postprandial PG or post-glucose loaded PG, but not FPG, is useful to evaluate the abnormality of glucose metabolism in patients with Cushing's syndrome.

  11. Salivary glucose concentration and excretion in normal and diabetic subjects.

    Science.gov (United States)

    Jurysta, Cedric; Bulur, Nurdan; Oguzhan, Berrin; Satman, Ilhan; Yilmaz, Temel M; Malaisse, Willy J; Sener, Abdullah

    2009-01-01

    The present report aims mainly at a reevaluation of salivary glucose concentration and excretion in unstimulated and mechanically stimulated saliva in both normal and diabetic subjects. In normal subjects, a decrease in saliva glucose concentration, an increase in salivary flow, but an unchanged glucose excretion rate were recorded when comparing stimulated saliva to unstimulated saliva. In diabetic patients, an increase in salivary flow with unchanged salivary glucose concentration and glucose excretion rate were observed under the same experimental conditions. Salivary glucose concentration and excretion were much higher in diabetic patients than in control subjects, whether in unstimulated or stimulated saliva. No significant correlation between glycemia and either glucose concentration or glucose excretion rate was found in the diabetic patients, whether in unstimulated or stimulated saliva. In the latter patients, as compared to control subjects, the relative magnitude of the increase in saliva glucose concentration was comparable, however, to that of blood glucose concentration. The relationship between these two variables was also documented in normal subjects and diabetic patients undergoing an oral glucose tolerance test.

  12. Follow-up of blood glucose distribution characteristics in a health examination population in Chengdu from 2010 to 2016.

    Science.gov (United States)

    Wang, Yuting; Xu, Wangdong; Zhang, Qiongying; Bao, Ting; Yang, Hanwei; Huang, Wenxia; Tang, Huairong

    2018-02-01

    The worldwide prevalence and incidence of diabetes and obesity are increasing in pandemic proportions. Thus, regular health examination is an important way for early detection of diabetes and glucose intolerance. The present study aims to detect the blood glucose distribution characteristics of the participants in the Health Examination Center at West China Hospital, Sichuan University from 2010 to 2016.A prospective cohort included 9168 Chinese participants, aged 18 years or more, who had available information on fasting blood glucose concentrations at the start of the study (2010). Examination surveys were conducted every year from 2010 to 2016. Cases having serum level of fasting blood glucose between 2.2 and 6.1 mmol/L were considered as normality, while serum level of fasting blood glucose level of glucose was gradually reduced both in males and females from 2010 to 2016, by which the percentage of males having normal level of glucose was significantly lower than that in females. Moreover, the mean level of glucose was significantly increased from 2010 to 2016 both in males and females overall, and the mean level of glucose was higher in males compared with that in females every year. Furthermore, we showed that the level of glucose was gradually increased year by year in each age group, and the level of glucose was higher in aged cases compared with the young population.The study population in the current study showed higher levels of glucose with ages increasing, and males indicated higher expression of glucose than that in females. Some preventive action may be adopted early and more attention can be paid to this health-examination population.

  13. Effects of indigestible dextrin on glucose tolerance in rats.

    Science.gov (United States)

    Wakabayashi, S; Kishimoto, Y; Matsuoka, A

    1995-03-01

    A recently developed indigestible dextrin (IDex) was studied for its effects on glucose tolerance in male Sprague-Dawley rats. IDex is a low viscosity, water-soluble dietary fibre obtained by heating and enzyme treatment of potato starch. It has an average molecular weight of 1600. An oral glucose tolerance test was conducted with 8-week-old rats to evaluate the effects of IDex on the increase in plasma glucose and insulin levels after a single administration of various sugars (1.5 g/kg body weight). The increase in both plasma glucose and insulin levels following sucrose, maltose and maltodextrin loading was significantly reduced by IDex (0.15 g/kg body weight). This effect was not noted following glucose, high fructose syrup and lactose loading. To evaluate the effects of continual IDex ingestion on glucose tolerance, 5-week-old rats were kept for 8 weeks on a stock diet, a high sucrose diet or an IDex-supplemented high sucrose diet. An oral glucose (1.5 g/kg body weight) tolerance test was conducted in week 8. Increases in both plasma glucose and insulin levels following glucose loading were higher in the rats given a high sucrose diet than in the rats fed a stock diet. However, when IDex was included in the high sucrose diet, the impairment of glucose tolerance was alleviated. Moreover, IDex feeding also significantly reduced accumulation of body fat, regardless of changes in body weight. These findings suggest that IDex not only improves glucose tolerance following sucrose, maltose and maltodextrin loading but also stops progressive decrease in glucose tolerance by preventing a high sucrose diet from causing obesity.

  14. Effects of MDMA on blood glucose levels and brain glucose metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Montenegro, M.L.; Vaquero, J.J.; Garcia-Barreno, P.; Desco, M. [Hospital General Universitario Gregorio Maranon, Laboratorio de Imagen, Medicina Experimental, Madrid (Spain); Arango, C. [Hospital General Gregorio Maranon, Departamento de Psiquiatria, Madrid (Spain); Ricaurte, G. [Johns Hopkins University School of Medicine, Department of Neurology, Baltimore, MD (United States)

    2007-06-15

    This study was designed to assess changes in glucose metabolism in rats administered single or repeated doses of MDMA. Two different experiments were performed: (1) A single-dose study with four groups receiving 20 mg/kg, 40 mg/kg, saline or heat, and (2) a repeated-dose study with two groups receiving three doses, at intervals of 2 h, of 5 mg/kg or saline. Rats were imaged using a dedicated small-animal PET scanner 1 h after single-dose administration or 7 days after repeated doses. Glucose metabolism was measured in 12 cerebral regions of interest. Rectal temperature and blood glucose were monitored. Peak body temperature was reached 1 h after MDMA administration. Blood glucose levels decreased significantly after MDMA administration. In the single-dose experiment, brain glucose metabolism showed hyperactivation in cerebellum and hypo-activation in the hippocampus, amygdala and auditory cortex. In the repeated-dose experiment, brain glucose metabolism did not show any significant change at day 7. These results are the first to indicate that MDMA has the potential to produce significant hypoglycaemia. In addition, they show that MDMA alters glucose metabolism in components of the motor, limbic and somatosensory systems acutely but not on a long-term basis. (orig.)

  15. Effects of MDMA on blood glucose levels and brain glucose metabolism

    International Nuclear Information System (INIS)

    Soto-Montenegro, M.L.; Vaquero, J.J.; Garcia-Barreno, P.; Desco, M.; Arango, C.; Ricaurte, G.

    2007-01-01

    This study was designed to assess changes in glucose metabolism in rats administered single or repeated doses of MDMA. Two different experiments were performed: (1) A single-dose study with four groups receiving 20 mg/kg, 40 mg/kg, saline or heat, and (2) a repeated-dose study with two groups receiving three doses, at intervals of 2 h, of 5 mg/kg or saline. Rats were imaged using a dedicated small-animal PET scanner 1 h after single-dose administration or 7 days after repeated doses. Glucose metabolism was measured in 12 cerebral regions of interest. Rectal temperature and blood glucose were monitored. Peak body temperature was reached 1 h after MDMA administration. Blood glucose levels decreased significantly after MDMA administration. In the single-dose experiment, brain glucose metabolism showed hyperactivation in cerebellum and hypo-activation in the hippocampus, amygdala and auditory cortex. In the repeated-dose experiment, brain glucose metabolism did not show any significant change at day 7. These results are the first to indicate that MDMA has the potential to produce significant hypoglycaemia. In addition, they show that MDMA alters glucose metabolism in components of the motor, limbic and somatosensory systems acutely but not on a long-term basis. (orig.)

  16. Genipin Cross-Linked Glucose Oxidase and Catalase Multi-enzyme for Gluconic Acid Synthesis.

    Science.gov (United States)

    Cui, Caixia; Chen, Haibin; Chen, Biqiang; Tan, Tianwei

    2017-02-01

    In this work, glucose oxidase (GOD) and catalase (CAT) were used simultaneously to produce gluconic acid from glucose. In order to reduce the distance between the two enzymes, and therefore improve efficiency, GOD and CAT were cross-linked together using genipin. Improvements in gluconic acid production were due to quick removal of harmful intermediate hydrogen peroxide by CAT. GOD activity was significantly affected by the proportion of CAT in the system, with GOD activity in the cross-linked multi-enzyme (CLME) being 10 times higher than that in an un-cross-linked GOD/CAT mixture. The glucose conversion rate after 15 h using 15 % glucose was also 10 % higher using the CLME than was measured using a GOD/CAT mixture.

  17. Estimation of endogenous glucose production during hyperinsulinemic-euglycemic glucose clamps. Comparison of unlabeled and labeled exogenous glucose infusates

    International Nuclear Information System (INIS)

    Finegood, D.T.; Bergman, R.N.; Vranic, M.

    1987-01-01

    Tracer methodology has been applied extensively to the estimation of endogenous glucose production (Ra) during euglycemic glucose clamps. The accuracy of this approach has been questioned due to the observation of significantly negative estimates for Ra when insulin levels are high. We performed hyperinsulinemic (300 microU/ml)-euglycemic glucose clamps for 180 min in normal dogs and compared the standard approach, an unlabeled exogenous glucose infusate (cold GINF protocol, n = 12), to a new approach in which a tracer (D-[3- 3 H]glucose) was added to the exogenous glucose used for clamping (hot GINF protocol, n = 10). Plasma glucose, insulin and glucagon concentrations, and glucose infusion rates were similar for the two protocols. Plasma glucose specific activity was 20 +/- 1% of basal (at 120-180 min) in the cold GINF studies, and 44 +/- 3 to 187 +/- 5% of basal in the hot GINF studies. With the one-compartment, fixed pool volume model of Steele, Ra for the cold GINF studies was -2.4 +/- 0.7 mg X min-1 X kg-1 at 25 min and remained significantly negative until 110 min (P less than .05). For the hot GINF studies, Ra was never significantly less than zero (P greater than .05) and was greater than in the cold GINF studies at 20-90 min (P less than .05). There was substantially less between-(78%) and within- (40%) experiment variation for the hot GINF studies compared with the cold GINF studies. An alternate approach (regression method) to the application of the one-compartment model, which allows for a variable and estimable effective distribution volume, yielded Ra estimates that were suppressed 60-100% from basal

  18. Skeletal muscle glucose uptake during exercise

    DEFF Research Database (Denmark)

    Rose, Adam John; Richter, Erik

    2005-01-01

    The increase in skeletal muscle glucose uptake during exercise results from a coordinated increase in rates of glucose delivery (higher capillary perfusion), surface membrane glucose transport, and intracellular substrate flux through glycolysis. The mechanism behind the movement of GLUT4...

  19. Brain glucose and acetoacetate metabolism: a comparison of young and older adults.

    Science.gov (United States)

    Nugent, Scott; Tremblay, Sebastien; Chen, Kewei W; Ayutyanont, Napatkamon; Roontiva, Auttawut; Castellano, Christian-Alexandre; Fortier, Melanie; Roy, Maggie; Courchesne-Loyer, Alexandre; Bocti, Christian; Lepage, Martin; Turcotte, Eric; Fulop, Tamas; Reiman, Eric M; Cunnane, Stephen C

    2014-06-01

    The extent to which the age-related decline in regional brain glucose uptake also applies to other important brain fuels is presently unknown. Ketones are the brain's major alternative fuel to glucose, so we developed a dual tracer positron emission tomography protocol to quantify and compare regional cerebral metabolic rates for glucose and the ketone, acetoacetate. Twenty healthy young adults (mean age, 26 years) and 24 healthy older adults (mean age, 74 years) were studied. In comparison with younger adults, older adults had 8 ± 6% (mean ± SD) lower cerebral metabolic rates for glucose in gray matter as a whole (p = 0.035), specifically in several frontal, temporal, and subcortical regions, as well as in the cingulate and insula (p ≤ 0.01, false discovery rate correction). The effect of age on cerebral metabolic rates for acetoacetate in gray matter did not reach significance (p = 0.11). Rate constants (min(-1)) of glucose (Kg) and acetoacetate (Ka) were significantly lower (-11 ± 6%; [p = 0.005], and -19 ± 5%; [p = 0.006], respectively) in older adults compared with younger adults. There were differential effects of age on Kg and Ka as seen by significant interaction effects in the caudate (p = 0.030) and post-central gyrus (p = 0.023). The acetoacetate index, which expresses the scaled residuals of the voxel-wise linear regression of glucose on ketone uptake, identifies regions taking up higher or lower amounts of acetoacetate relative to glucose. The acetoacetate index was higher in the caudate of young adults when compared with older adults (p ≤ 0.05 false discovery rate correction). This study provides new information about glucose and ketone metabolism in the human brain and a comparison of the extent to which their regional use changes during normal aging. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Biochemical studies on gestational diabetes mellitus and impaired glucose tolerance in Sudanese pregnant women

    International Nuclear Information System (INIS)

    Shalayel, Mohammed Helmy Faris

    1998-01-01

    To detect the effect of some maternal risk factors such as age, parity, previous heavy babies and family history of diabetes, in glucose tolerance impairment and to stand on the state of insulin resistance which occurs in pregnancy and the possible role of cortisol, human placental lactogen and prolactin in augmentation of this state of insulin resistance as well as to show the effect of glucose tolerance deterioration on lipid metabolism, a study was carried out on Sudanese pregnant women. The study included thirty gestational diabetes mellitus (GDM) pregnant women, thirty impaired glucose tolerance (IGT) and thirty women with normal glucose tolerance as a control group. The GDM, IGT and the control group were screened from about 2000 Sudanese pregnant women in the different gestational weeks. The GDM and IGT women were all discovered in the third trimester of pregnancy, they found to be significantly older than the control group. The IGT group was found to have a first degree family history of diabetes incidence significantly more than that of the control group while the GDM group has significantly much higher results when compared with the normal control group. The incidence of previous heavy babies was significantly higher in the IGT group when compared with the control while that of GDM was significantly much higher. The GDM group was found to have significantly higher mean levels of fasting blood plasma glucose sugar than that of the IGT and the control groups. It was found that the serum cholestrol mean level and the serum triglycerides mean level of the IGT and that of the GDM were significantly higher than that of the control group. Also, there were no significant differences among serum fasting insulin mean levels of the three studied groups. Results of serum anti-insulin antibodies of the three studied groups were significantly different. Results of serum cortisol of the control group in the first, second and third trimesters revealed that cortisol

  1. Higher Magnesium Intake Is Associated with Lower Fasting Glucose and Insulin, with No Evidence of Interaction with Select Genetic Loci, in a Meta-Analysis of 15 CHARGE Consortium Studies1234

    Science.gov (United States)

    Hruby, Adela; Ngwa, Julius S.; Renström, Frida; Wojczynski, Mary K.; Ganna, Andrea; Hallmans, Göran; Houston, Denise K.; Jacques, Paul F.; Kanoni, Stavroula; Lehtimäki, Terho; Lemaitre, Rozenn N.; Manichaikul, Ani; North, Kari E.; Ntalla, Ioanna; Sonestedt, Emily; Tanaka, Toshiko; van Rooij, Frank J. A.; Bandinelli, Stefania; Djoussé, Luc; Grigoriou, Efi; Johansson, Ingegerd; Lohman, Kurt K.; Pankow, James S.; Raitakari, Olli T.; Riserus, Ulf; Yannakoulia, Mary; Zillikens, M. Carola; Hassanali, Neelam; Liu, Yongmei; Mozaffarian, Dariush; Papoutsakis, Constantina; Syvänen, Ann-Christine; Uitterlinden, André G.; Viikari, Jorma; Groves, Christopher J.; Hofman, Albert; Lind, Lars; McCarthy, Mark I.; Mikkilä, Vera; Mukamal, Kenneth; Franco, Oscar H.; Borecki, Ingrid B.; Cupples, L. Adrienne; Dedoussis, George V.; Ferrucci, Luigi; Hu, Frank B.; Ingelsson, Erik; Kähönen, Mika; Kao, W. H. Linda; Kritchevsky, Stephen B.; Orho-Melander, Marju; Prokopenko, Inga; Rotter, Jerome I.; Siscovick, David S.; Witteman, Jacqueline C. M.; Franks, Paul W.; Meigs, James B.; McKeown, Nicola M.; Nettleton, Jennifer A.

    2013-01-01

    Favorable associations between magnesium intake and glycemic traits, such as fasting glucose and insulin, are observed in observational and clinical studies, but whether genetic variation affects these associations is largely unknown. We hypothesized that single nucleotide polymorphisms (SNPs) associated with either glycemic traits or magnesium metabolism affect the association between magnesium intake and fasting glucose and insulin. Fifteen studies from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium provided data from up to 52,684 participants of European descent without known diabetes. In fixed-effects meta-analyses, we quantified 1) cross-sectional associations of dietary magnesium intake with fasting glucose (mmol/L) and insulin (ln-pmol/L) and 2) interactions between magnesium intake and SNPs related to fasting glucose (16 SNPs), insulin (2 SNPs), or magnesium (8 SNPs) on fasting glucose and insulin. After adjustment for age, sex, energy intake, BMI, and behavioral risk factors, magnesium (per 50-mg/d increment) was inversely associated with fasting glucose [β = −0.009 mmol/L (95% CI: −0.013, −0.005), P magnesium-related SNP or interaction between any SNP and magnesium reached significance after correction for multiple testing. However, rs2274924 in magnesium transporter-encoding TRPM6 showed a nominal association (uncorrected P = 0.03) with glucose, and rs11558471 in SLC30A8 and rs3740393 near CNNM2 showed a nominal interaction (uncorrected, both P = 0.02) with magnesium on glucose. Consistent with other studies, a higher magnesium intake was associated with lower fasting glucose and insulin. Nominal evidence of TRPM6 influence and magnesium interaction with select loci suggests that further investigation is warranted. PMID:23343670

  2. Noradrenaline and acetylcholine responsiveness of glucose-monitoring and glucose-insensitive neurons in the mediodorsal prefrontal cortex.

    Science.gov (United States)

    Nagy, Bernadett; Szabó, István; Csetényi, Bettina; Hormay, Edina; Papp, Szilárd; Keresztes, Dóra; Karádi, Zoltán

    2014-01-16

    The mediodorsal prefrontal cortex (mdPFC), as part of the forebrain glucose-monitoring (GM) system, plays important role in several regulatory processes to control the internal state of the organism and to initiate behavioral outputs accordingly. Little is known, however, about the neurochemical sensitivity of neurons located in this area. Substantial evidence indicates that the locus ceruleus - noradrenaline (NA) projection system and the nucleus basalis magnocellularis - cholinergic projection system regulate behavioral state and state dependent processing of sensory information, various cognitive functions already associated with the mdPFC. The main goal of the present study was to examine noradrenergic and cholinergic responsiveness of glucose-monitoring and glucose-insensitive (GIS) neurons in the mediodorsal prefrontal cortex. One fifth of the neurons tested changed in firing rate to microelectrophoretically applied NA. Responsiveness of the GM cells to this catecholamine proved to be significantly higher than that of the GIS units. Microiontophoretic application of acetylcholine (Ach) resulted in activity changes (predominantly facilitation) of more than 40% of the mdPFC neurons. Proportion of Ach sensitive units among the GM and the GIS neurons was found to be similar. The glucose-monitoring neurons of the mdPFC and their distinct NA and remarkable Ach sensitivity are suggested to be of particular significance in prefrontal control of adaptive behaviors. © 2013 Published by Elsevier B.V.

  3. Effects of Curcuma longa (turmeric) on postprandial plasma glucose and insulin in healthy subjects.

    Science.gov (United States)

    Wickenberg, Jennie; Ingemansson, Sandra Lindstedt; Hlebowicz, Joanna

    2010-10-12

    Previous animal studies have shown that Curcuma (C.) longa lowers plasma glucose. C. longa may thus be a promising ingredient in functional foods aimed at preventing type 2 diabetes. The purpose of the study is to study the effect of C. longa on postprandial plasma glucose, insulin levels and glycemic index (GI) in healthy subjects. Fourteen healthy subjects were assessed in a crossover trial. A standard 75 g oral glucose tolerance test (OGTT) was administered together with capsules containing a placebo or C. longa. Finger-prick capillary and venous blood samples were collected before, and 15, 30, 45, 60, 90, and 120 min after the start of the OGTT to measure the glucose and insulin levels, respectively. The ingestion of 6 g C. longa had no significant effect on the glucose response. The change in insulin was significantly higher 30 min (P = 0.03) and 60 min (P = 0.041) after the OGTT including C. longa. The insulin AUCs were also significantly higher after the ingestion of C. longa, 15 (P = 0.048), 30 (P = 0.035), 90 (P = 0.03), and 120 (P = 0.02) minutes after the OGTT. The ingestion of 6 g C. longa increased postprandial serum insulin levels, but did not seem to affect plasma glucose levels or GI, in healthy subjects. The results indicate that C. longa may have an effect on insulin secretion.

  4. Evidence for brain glucose dysregulation in Alzheimer's disease.

    Science.gov (United States)

    An, Yang; Varma, Vijay R; Varma, Sudhir; Casanova, Ramon; Dammer, Eric; Pletnikova, Olga; Chia, Chee W; Egan, Josephine M; Ferrucci, Luigi; Troncoso, Juan; Levey, Allan I; Lah, James; Seyfried, Nicholas T; Legido-Quigley, Cristina; O'Brien, Richard; Thambisetty, Madhav

    2018-03-01

    It is unclear whether abnormalities in brain glucose homeostasis are associated with Alzheimer's disease (AD) pathogenesis. Within the autopsy cohort of the Baltimore Longitudinal Study of Aging, we measured brain glucose concentration and assessed the ratios of the glycolytic amino acids, serine, glycine, and alanine to glucose. We also quantified protein levels of the neuronal (GLUT3) and astrocytic (GLUT1) glucose transporters. Finally, we assessed the relationships between plasma glucose measured before death and brain tissue glucose. Higher brain tissue glucose concentration, reduced glycolytic flux, and lower GLUT3 are related to severity of AD pathology and the expression of AD symptoms. Longitudinal increases in fasting plasma glucose levels are associated with higher brain tissue glucose concentrations. Impaired glucose metabolism due to reduced glycolytic flux may be intrinsic to AD pathogenesis. Abnormalities in brain glucose homeostasis may begin several years before the onset of clinical symptoms. Copyright © 2017 the Alzheimer's Association. All rights reserved.

  5. Risk factors for glucose intolerance in active acromegaly

    Directory of Open Access Journals (Sweden)

    Kreze A.

    2001-01-01

    Full Text Available In the present retrospective study we determined the frequency of glucose intolerance in active untreated acromegaly, and searched for risk factors possibly supporting the emergence of the diabetic condition. Among 43 patients, 8 (19%; 95% CI: 8-33% had diabetes mellitus and 2 (5%; 1-16% impaired glucose tolerance. No impaired fasting glycemia was demonstrable. The frequency of diabetes was on average 4.5 times higher than in the general Slovak population. Ten factors suspected to support progression to glucose intolerance were studied by comparing the frequency of glucose intolerance between patients with present and absent risk factors. A family history of diabetes and arterial hypertension proved to have a significant promoting effect (P<0.05, chi-square test. A significant association with female gender was demonstrated only after pooling our data with literature data. Concomitant prolactin hypersecretion had a nonsignificant promoting effect. In conclusion, the association of active untreated acromegaly with each of the three categories of glucose intolerance (including impaired fasting glycemia, not yet studied in this connection was defined as a confidence interval, thus permitting a sound comparison with the findings of future studies. Besides a family history of diabetes, female gender and arterial hypertension were defined as additional, not yet described risk factors.

  6. Clinical features of male patients with alcoholic liver cirrhosis or hepatitis B cirrhosis complicated by abnormal glucose metabolism

    Directory of Open Access Journals (Sweden)

    CHEN Qidan

    2016-02-01

    Full Text Available ObjectiveTo investigate the clinical features of male patients with alcoholic liver cirrhosis (ALC or hepatitis B cirrhosis (HBC complicated by abnormal glucose metabolism. MethodsA total of 287 patients with liver cirrhosis who were admitted to Guangzhou Panyu Central Hospital from January 2008 to September 2013 were selected. Among these patients, 74 had ALC and were all male, including 54 with abnormal glucose metabolism; the other 213 had HBC, including 97 with abnormal glucose metabolism (69 male patients and 28 female patients. A controlled study was performed for the clinical data of ALC and HBC patients with abnormal glucose metabolism, to investigate the association of patients′ clinical manifestations with the indices for laboratory examination, insulin resistance index, incidence rate of abnormal glucose metabolism, and Child-Pugh class. The t-test was applied for comparison of continuous data between groups, the chi-square test was applied for comparison of categorical data between groups, and the Spearman rank correlation was applied for correlation analysis. ResultsCompared with HBC patients, ALC patients had significantly higher incidence rates of abnormal glucose metabolism (730% vs 32.4%, hepatogenous diabetes (35.1% vs 14.6%, fasting hypoglycemia (27.0% vs 10.3%, and impaired glucose tolerance (31.1% vs 14.1% (χ2=4.371, 3.274, 4.784, and 1.633, all P<0.05. The Spearman correlation analysis showed that in ALC and HBC patients, the incidence rate of abnormal glucose metabolism was positively correlated with Child-Pugh class (rs=0.41, P<005. Compared with the HBC patients with abnormal glucose metabolism, the ALC patients with abnormal glucose metabolism had a significantly higher incidence rate of Child-Pugh class A (χ2=7.520, P=0.001, and a significantly lower incidence rate of Child-Pugh class C (χ2=6.542, P=0.003. There were significant differences in the incidence rates of dim complexion, telangiectasia of the

  7. In vitro evidence of glucose-induced toxicity in GnRH secreting neurons: high glucose concentrations influence GnRH secretion, impair cell viability, and induce apoptosis in the GT1-1 neuronal cell line.

    Science.gov (United States)

    Pal, Lubna; Chu, Hsiao-Pai; Shu, Jun; Topalli, Ilir; Santoro, Nanette; Karkanias, George

    2007-10-01

    To evaluate for direct toxic effects of high glucose concentrations on cellular physiology in GnRH secreting immortalized GT1-1 neurons. Prospective experimental design. In vitro experimental model using a cell culture system. GT1-1 cells were cultured in replicates in media with two different glucose concentrations (450 mg/dL and 100 mg/dL, respectively) for varying time intervals (24, 48, and 72 hours). Effects of glucose concentrations on GnRH secretion by the GT1-1 neurons were evaluated using a static culture model. Cell viability, cellular apoptosis, and cell cycle events in GT1-1 neurons maintained in two different glucose concentrations were assessed by flow cytometry (fluorescence-activated cell sorter) using Annexin V-PI staining. Adverse influences of high glucose concentrations on GnRH secretion and cell viability were noted in cultures maintained in high glucose concentration (450 mg/dL) culture medium for varying time intervals. A significantly higher percentage of cells maintained in high glucose concentration medium demonstrated evidence of apoptosis by a fluorescence-activated cell sorter. We provide in vitro evidence of glucose-induced cellular toxicity in GnRH secreting GT1-1 neurons. Significant alterations in GnRH secretion, reduced cell viability, and a higher percentage of apoptotic cells were observed in GT1-1 cells maintained in high (450 mg/dL) compared with low (100 mg/dL) glucose concentration culture medium.

  8. Continuous glucose monitoring and its relationship to hemoglobin A1c and oral glucose tolerance testing in obese and prediabetic youth.

    Science.gov (United States)

    Chan, Christine L; Pyle, Laura; Newnes, Lindsey; Nadeau, Kristen J; Zeitler, Philip S; Kelsey, Megan M

    2015-03-01

    The optimal screening test for diabetes and prediabetes in obese youth is controversial. We examined whether glycosylated hemoglobin (HbA1c) or the oral glucose tolerance test (OGTT) is a better predictor of free-living glycemia as measured by continuous glucose monitoring (CGM). This was a cross-sectional study of youth 10-18 years old, body mass index (BMI) 85th percentile or greater, with diabetes risk factors. Participants (n = 118) with BMI 85th percentile or greater, not on medications for glucose management, were recruited from primary care and pediatric endocrinology clinics around Denver, Colorado. HbA1c, fasting plasma glucose, and 2-hour glucose were collected and all participants wore a blinded CGM for 72 hours. CGM outcomes were determined and descriptive statistics calculated. Performance characteristics at current American Diabetes Association cutpoints were compared with CGM outcomes. CGM data were successfully collected on 98 obese youth. Those with prediabetes had significantly higher average glucose, area under the curve (AUC), peak glucose, and time greater than 120 and greater than 140 mg/dL (P obese youth, HbA1c and 2-hour glucose performed equally well at predicting free-living glycemia on CGM, suggesting that both are valid tests for dysglycemia screening.

  9. Effect of degree of lipomobilization on results of glucose test in dairy cows in heat stress

    Directory of Open Access Journals (Sweden)

    Cincović M.R.

    2012-01-01

    Full Text Available Cows exposed to heat stress exhibit a decreased ability to mobilize lipids due to increased sensitivity to insulin, which is expressed in a decreased concentration of NEFA. However, certain cows can preserve the level of lipid mobilization after adapting to heat stress. We assumed that cows that have a preserved ability to mobilize lipids are less sensitive to insulin and that they have a lower tolerance for glucose. The aim of this work was to compare the results of an intravenous glucose tolerance test in cows that exhibited, in prolonged heat stress, a decreased (NEFA0.30 mmol/l ability for lipid mobilization. Glucose concentration and NEFA concentration were measured following intravenous application of glucose. The mean glycaemic index value did not differ statistically significantly between the two groups of cows at 10, 15 and 20 minutes after glucose application (p>0.05, but there was a tendency at 10 and 15 minutes for the glycaemia to be higher in cows with preserved lipomobilization (p<0.1. At 30, 60 and 90 minutes after glucose application, glycaemia was statistically significantly higher (p<0.01; p<0.05 and p<0.05 in the group of cows with preserved lipomobilization. The glycaemic index values (mmol/l shown in the same order (30, 60 and 90 minutes were as follows 9.91±0.21: 9.23±0.41; 5.41±0.5: 4.67±0.33 and 4.31±0.39: 3.47±0.37. The mean value for NEFA concentration in samples originating from the two experimental groups of cows did not differ statistically significantly following glucose application. The NEFA concentration showed a tendency to be higher in cows with preserved lipid mobilization in comparison with cows with decreased lipomobilization at 20 and 30 minutes after glucose application (p<0.1. Following the intravenous glucose tolerance test, NEFA and glucose concentrations were in a significant negative correlation, and that correlation was more expressed in cows with decreased lipomobilization. Cows with preserved

  10. The effects of carbon nanotube addition and oxyfluorination on the glucose-sensing capabilities of glucose oxidase-coated carbon fiber electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ji Sun; Yun, Jumi; Kim, Jong Gu [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2 M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Bae, Tae-Sung [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2 M, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Korea Basic Science Institute (KBSI), Jeonju 561-756 (Korea, Republic of); Lee, Young-Seak, E-mail: youngslee@cnu.ac.kr [Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2 M, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2012-01-15

    Glucose-sensing electrodes were constructed from carbon fibers by electrospinning and heat treatment. By controlling the pore size, the specific surface area and pore volume of the electrospun carbon fibers were increased for efficient immobilization of the glucose oxidase. Carbon nanotubes were embedded as an electrically conductive additive to improve the electrical property of the porous carbon fibers. In addition, the surface of the porous carbon fibers was modified with hydrophilic functional groups by direct oxyfluorination to increase the affinity between the hydrophobic carbon surface and the hydrophilic glucose oxidase molecules. The porosity of the carbon fibers was improved significantly with approximately 28- and 35-fold increases in the specific surface area and pore volume, respectively. The number of chemical bonds between carbon and oxygen were increased with higher oxygen content during oxyfluorination based on the X-ray photoelectron spectroscopy results. Glucose sensing was carried out by current voltagram and amperometric methods. A high-performance glucose sensor was obtained with high sensitivity and rapid response time as a result of carbon nanotube addition, physical activation and surface modification. The mechanism of the highly sensitive prepared glucose sensor was modeled by an enzyme kinetics study using the Michaelis-Menten equation.

  11. The association between Western and Prudent dietary patterns and fasting blood glucose levels in type 2 diabetes and normal glucose metabolism in older Australian adults.

    Science.gov (United States)

    Walsh, Erin I; Jacka, Felice N; Butterworth, Peter; Anstey, Kaarin J; Cherbuin, Nicolas

    2017-06-01

    High blood glucose and type 2 diabetes are associated with a range of adverse health and cognitive outcomes. One factor that contributes to high blood glucose and type 2 diabetes is dietary intake. This study investigated the relationship between dietary patterns, fasting blood glucose and diabetes status in a sample of 209 participants aged 60-65. Blood plasma glucose was measured from venous blood samples. Individual Prudent and Western dietary patterns were estimated from a self-completed food frequency questionnaire. The relationship between dietary patterns, diabetes, and blood glucose was assessed via general linear model analyses controlling for age, sex, height, and total caloric intake. Results indicated that there was no association between Prudent diet and fasting blood glucose levels, or type 2 diabetes. In contrast, an individual in the upper tertile for Western dietary score had a significantly higher risk of having diabetes than an individual in the lower tertile for Western dietary score. However, there was no significant association between Western diet and fasting blood glucose. Western diet may be associated with type 2 diabetes through mechanisms beyond impacting blood plasma glucose directly. The fact that the association between Western diet and type 2 diabetes remained even when total caloric intake was controlled for highlights the need for policy and population health interventions targeting the reduction of unhealthy food consumption.

  12. [Cardiac risk profile in diabetes mellitus and impaired fasting glucose].

    Science.gov (United States)

    Schaan, Beatriz D'Agord; Harzheim, Erno; Gus, Iseu

    2004-08-01

    Mortality of diabetic patients is higher than that of the population at large, and mainly results from cardiovascular diseases. The purpose of the present study was to identify the prevalence of cardiovascular risk factors in subjects with diabetes mellitus (DM) or abnormal fasting glucose (FG) in order to guide health actions. A population-based cross-sectional study was carried out in a representative random cluster sampling of 1,066 adult urban population (> or =20 years) in the state of Rio Grande do Sul between 1999 and 2000. A structured questionnaire on coronary risk factors was applied and sociodemographic characteristics of all adults older than 20 years living in the same dwelling were collected. Subjects were clinically evaluated and blood samples were obtained for measuring total cholesterol and fasting glycemia. Statistical analysis was performed using Stata 7 and a 5% significance level was set. Categorical variables were compared by Pearson's chi-square and continuous variables were compared using Student's t-test or Anova and multivariate analysis, all controlled for the cluster effect. Of 992 subjects, 12.4% were diabetic and 7.4% had impaired fasting glucose. Among the risk factors evaluated, subjects who presented any kind of glucose homeostasis abnormality were at a higher prevalence of obesity (17.8, 29.2 and 35.3% in healthy subjects, impaired fasting glucose and DM respectively, pfasting glucose and DM, respectively, pfasting glucose and DM respectively, p=0.01). Subjects with any kind of glucose homeostasis abnormality represent a group, which preventive individual and population health policies should target since they have higher prevalence of coronary artery disease risk factors.

  13. The evidence for clinically significant bias in plasma glucose between liquid and lyophilized citrate buffer additive.

    Science.gov (United States)

    Juricic, Gordana; Saracevic, Andrea; Kopcinovic, Lara Milevoj; Bakliza, Ana; Simundic, Ana-Maria

    2016-12-01

    Citrate buffer additive has been suggested to be of supreme performance in inhibiting glycolysis. However, there is little evidence in the literature regarding the comparability of glucose concentrations in liquid and lyophilized citrate buffer containing tubes. The aim of this study was to compare glucose concentrations in tubes containing liquid (Glucomedics) and lyophilized citrate buffer (Terumo VENOSAFE™ Glycemia) additive, measured immediately after centrifugation. Blood was collected from forty volunteers into both Glucomedics and Venosafe Glycemia tubes. Blood was centrifuged within 15min from venipuncture and glucose concentration was measured immediately after centrifugation, on the Abbott Architect analyzer. Differences between glucose concentrations in Glucomedics and Terumo tubes were tested using the paired t-test. Mean bias was calculated and compared to recommended quality specification for glucose (i.e. 2.2%). Glucose concentration in Terumo tubes was 3.4% lower than in Glucomedics tubes (Pglucose concentrations in liquid and lyophilized citrate buffer additive tubes (Glucomedics vs. Terumo tubes) measured immediately after centrifugation. This difference may affect the patient outcome due to the misclassification of diabetes. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  14. Higher prevalence of risk factors for type 2 diabetes mellitus and subsequent higher incidence in men

    DEFF Research Database (Denmark)

    Almdal, Thomas; Scharling, Henrik; Jensen, Jan Skov

    2008-01-01

    , non-fasting blood glucose and triglycerides. Significantly more men (242, 5.4%) than women (152, 2.5%) developed type 2 DM. The odds ratio (OR) for developing diabetes with a BMI above 30 kg/m(2) compared to a BMI of 20-25 kg/m(2) was 8.1 in women and 6.3 in men; for a non-fasting plasma glucose of 8.......4-11.0 mmol/l compared to a plasma glucose of 5.5-6.4, the ORs were 7.8 in women and 4.7 in men. The OR for developing diabetes in persons with a non-fasting triglyceride level above 2.0 mmol/l compared to 1.0-2.0 mmol/l was 1.8 in both sexes; women with non -fasting triglycerides below 1.0 mmol/l had...... or non-fasting plasma glucose >11.1 mmol/l) were excluded. Some 6154 women and 4733 men were studied and followed up in 1981-1983 or in 1991-1994. The significance of risk factors was examined by multiple logistic regression analysis. RESULTS: Initially, a higher proportion of men than women had high...

  15. Glucose tolerance test - non-pregnant

    Science.gov (United States)

    ... for energy. People with untreated diabetes have high blood glucose levels. Most often, the first tests used to diagnose ... in people who are not pregnant are: Fasting blood glucose level: diabetes is diagnosed if it is higher than ...

  16. Decreased insulin clearance in individuals with elevated 1-h post-load plasma glucose levels.

    Directory of Open Access Journals (Sweden)

    Maria Adelaide Marini

    Full Text Available Reduced insulin clearance has been shown to predict the development of type 2 diabetes. Recently, it has been suggested that plasma glucose concentrations ≥ 8.6 mmol/l (155 mg/dl at 1 h during an oral glucose tolerance test (OGTT can identify individuals at high risk for type 2 diabetes among those who have normal glucose tolerance (NGT 1 h-high. The aim of this study was to examine whether NGT 1 h-high have a decrease in insulin clearance, as compared with NGT individuals with 1-h post-load glucose <8.6 mmol/l (l (155 mg/dl, NGT 1 h-low. To this end, 438 non-diabetic White individuals were subjected to OGTT and euglycemic-hyperinsulinemic clamp to evaluate insulin clearance and insulin sensitivity. As compared with NGT 1 h-low individuals, NGT 1 h-high had significantly higher 1-h and 2-h post-load plasma glucose and 2-h insulin levels as well as higher fasting glucose and insulin levels. NGT 1 h-high exhibited also a significant decrease in both insulin sensitivity (P<0.0001 and insulin clearance (P = 0.006 after adjusting for age, gender, adiposity measures, and insulin sensitivity. The differences in insulin clearance remained significant after adjustment for fasting glucose (P = 0.02 in addition to gender, age, and BMI. In univariate analyses adjusted for gender and age, insulin clearance was inversely correlated with body weight, body mass index, waist, fat mass, 1-h and 2-h post-load glucose levels, fasting, 1-h and 2-h post-load insulin levels, and insulin-stimulated glucose disposal. In conclusion, our data show that NGT 1 h-high have a reduction in insulin clearance as compared with NGT 1 h-low individuals; this suggests that impaired insulin clearance may contribute to sustained fasting and post-meal hyperinsulinemia.

  17. [Glucose-monitoring neurons of the medial ventrolateral prefrontal (orbitofrontal) cortex are involved in the maintenance of homeostasis].

    Science.gov (United States)

    Szabó, István; Hormay, Edina; Csetényi, Bettina; Nagy, Bernadett; Karádi, Zoltán

    2017-05-01

    The medial orbitofrontal cortex is involved in the regulation of feeding and metabolism. Little is known, however, about the role of local glucose-monitoring neurons in these processes, and our knowledge is also poor about characteristics of these cells. The functional significance of these chemosensory neurons was to be elucidated. Electrophysiology, by the multibarreled microelectrophoretic technique, and metabolic investigations, after streptozotocin induced selective destruction of the chemosensory neurons, were employed. Fifteen percent of the neurons responded to glucose, and these chemosensory cells displayed differential neurotransmitter and taste sensitivities. In acute glucose tolerance test, at the 30th and 60th minutes, blood glucose level in the streptozotocin-treated rats was significantly higher than that in the controls. The plasma triglyceride concentrations were also higher in the streptozotocin-treated group. Glucose-monitoring neurons of the medial orbitofrontal cortex integrate internal and external environmental signals, and monitor metabolic processes, thus, are indispensable to maintain the healthy homeostasis. Orv Hetil. 2017; 158(18): 692-700.

  18. Effect of lycium barbarum polysaccharides on high glucose-induced retinal ganglion cell apoptosis, gene expression and delayed rectifier potassium current

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Ma

    2017-05-01

    Full Text Available Objective: To study the effect of lycium barbarum polysaccharides (LBP on high glucoseinduced retinal ganglion cell apoptosis, gene expression and delayed rectifier potassium current. Methods: RGC-5 retinal ganglion cell lines were cultured and divided into control group, high glucose group and LBP group that were treated with normal DMEM, highglucose DMEM as well as high-glucose DMEM containing 500 ng/mL LBP respectively. After treatment, the Annexin V-FITC/PI kits were used to measure the number of apoptotic cells, fluorescence quantitative PCR kits were used to determine the expression of apoptosis genes and antioxidant genes, and patch clamp was used to test delayed rectifier potassium current. Results: 12, 24, 36 and 48 h after intervention, the number of apoptotic cells of high glucose group was significantly higher than that of control group, and the number of apoptotic cells of LBP group was significantly lower than that of high glucose group (P<0.05; 24 and 48 h after intervention, c-fos, c-jun, caspase-3, caspase-9, Nrf-2, NQO1 and HO-1 mRNA expression as well as potassium current amplitude (IK and maximum conductance (Gmax of high glucose group were significantly higher than those of control group while half maximum activation voltage (V1/2 was significantly lower than that of control group (P<0.05; c-fos, c-jun, caspase-3 and caspase-9 mRNA expression as well as IK and Gmax of LBP group were significantly lower than those of high glucose group, while Nrf-2, NQO1 and HO-1 mRNA expression as well as V1/2 of LBP group were significantly higher than those of high glucose group (P<0.05. Conclusions: LBP can reduce the high glucose-induced retinal ganglion cell apoptosis and inhibit the delayed rectifier potassium current amplitude.

  19. Glucose Binding Protein as a Novel Optical Glucose Nanobiosensor

    Directory of Open Access Journals (Sweden)

    Majed DWEIK

    2009-11-01

    Full Text Available Development of an in vivo optical sensor requires the utilization of Near Infra Red (NIR fluorophores due to their ability to operate within the biological tissue window. Alexa Fluor 750 (AF750 and Alexa Fluor 680 (AF680 were examined as potential NIR fluorophores for an in vivo fluorescence resonance energy transfer (FRET glucose biosensor. AF680 and AF750 found to be a FRET pair and percent energy transfer was calculated. Next, the tested dye pair was utilized in a competitive binding assay in order to detect glucose. Concanavalin A (Con A and dextran have binding affinity, but in the presence of glucose, glucose displaces dextran due to its higher affinity to Con A than dextran. Finally, the percent signal transfer through porcine skin was examined. The results showed with approximately 4.0 mm porcine skin thickness, 1.98 % of the fluorescence was transmitted and captured by the detector.

  20. Dietary Fructose and Glucose Differentially Affect Lipid and Glucose Homeostasis1–3

    OpenAIRE

    Schaefer, Ernst J.; Gleason, Joi A.; Dansinger, Michael L.

    2009-01-01

    Absorbed glucose and fructose differ in that glucose largely escapes first-pass removal by the liver, whereas fructose does not, resulting in different metabolic effects of these 2 monosaccharides. In short-term controlled feeding studies, dietary fructose significantly increases postprandial triglyceride (TG) levels and has little effect on serum glucose concentrations, whereas dietary glucose has the opposite effects. When dietary glucose and fructose have been directly compared at ∼20–25% ...

  1. Effects of Curcuma longa (turmeric on postprandial plasma glucose and insulin in healthy subjects

    Directory of Open Access Journals (Sweden)

    Ingemansson Sandra

    2010-10-01

    Full Text Available Abstract Background Previous animal studies have shown that Curcuma (C. longa lowers plasma glucose. C. longa may thus be a promising ingredient in functional foods aimed at preventing type 2 diabetes. The purpose of the study is to study the effect of C. longa on postprandial plasma glucose, insulin levels and glycemic index (GI in healthy subjects. Methods Fourteen healthy subjects were assessed in a crossover trial. A standard 75 g oral glucose tolerance test (OGTT was administered together with capsules containing a placebo or C. longa. Finger-prick capillary and venous blood samples were collected before, and 15, 30, 45, 60, 90, and 120 min after the start of the OGTT to measure the glucose and insulin levels, respectively. Results The ingestion of 6 g C. longa had no significant effect on the glucose response. The change in insulin was significantly higher 30 min (P = 0.03 and 60 min (P = 0.041 after the OGTT including C. longa. The insulin AUCs were also significantly higher after the ingestion of C. longa, 15 (P = 0.048, 30 (P = 0.035, 90 (P = 0.03, and 120 (P = 0.02 minutes after the OGTT. Conclusions The ingestion of 6 g C. longa increased postprandial serum insulin levels, but did not seem to affect plasma glucose levels or GI, in healthy subjects. The results indicate that C. longa may have an effect on insulin secretion. Trial registration number NCT01029327

  2. Glucose turnover in 48-hour-fasted running rats

    International Nuclear Information System (INIS)

    Sonne, B.; Mikines, K.J.; Galbo, H.

    1987-01-01

    In fed rats, hyperglycemia develops during exercise. This contrasts with the view based on studies of fasted human and dog that euglycemia is maintained in exercise and glucose production (R/sub a/) controlled by feedback mechanisms. Forty-eight-hour-fasted rats (F) were compared to fed rats (C) and overnight food-restricted (FR) rats. [3- 3 H]- and [U- 14 C]glucose were infused and blood and tissue sampled. During running (21 m/min, 0% grade) R/sub a/ increased most in C and least in F and only in F did R/sub a/ not significantly exceed glucose disappearance. Plasma glucose increased more in C (3.3 mmol/1) than in FR (1.6 mmol/l) and only modestly (0.6 mmol/l) and transiently in F. Resting liver glycogen and exercise glycogenolysis were highest in C and similar in FR and F. Resting muscle glycogen and exercise glycogenolysis were highest in C and lowest in F. During running, lactate production and gluconeogenesis were higher in FR than in F. At least in rats, responses of production and plasma concentration of glucose to exercise depend on size of liver and muscle glycogen stores; glucose production matches increase in clearance better in fasted than in fed states. Probably glucose production is stimulated by feedforward mechanisms and feedback mechanisms are added if plasma glucose decreases

  3. Metabolic profile of normal glucose-tolerant subjects with elevated 1-h plasma glucose values

    Directory of Open Access Journals (Sweden)

    Thyparambil Aravindakshan Pramodkumar

    2016-01-01

    Full Text Available Aim: The aim of this study was to compare the metabolic profiles of subjects with normal glucose tolerance (NGT with and without elevated 1-h postglucose (1HrPG values during an oral glucose tolerance test (OGTT. Methodology: The study group comprised 996 subjects without known diabetes seen at tertiary diabetes center between 2010 and 2014. NGT was defined as fasting plasma glucose <100 mg/dl (5.5 mmol/L and 2-h plasma glucose <140 mg/dl (7.8 mmol/L after an 82.5 g oral glucose (equivalent to 75 g of anhydrous glucose OGTT. Anthropometric measurements and biochemical investigations were done using standardized methods. The prevalence rate of generalized and central obesity, hypertension, dyslipidemia, and metabolic syndrome (MS was determined among the NGT subjects stratified based on their 1HrPG values as <143 mg/dl, ≥143-<155 mg/dl, and ≥155 mg/dl, after adjusting for age, sex, body mass index (BMI, waist circumference, alcohol consumption, smoking, and family history of diabetes. Results: The mean age of the 996 NGT subjects was 48 ± 12 years and 53.5% were male. The mean glycated hemoglobin for subjects with 1HrPG <143 mg/dl was 5.5%, for those with 1HrPG ≥143-<155 mg/dl, 5.6% and for those with 1HrPG ≥155 mg/dl, 5.7%. NGT subjects with 1HrPG ≥143-<155 mg/dl and ≥155 mg/dl had significantly higher BMI, waist circumference, systolic and diastolic blood pressure, triglyceride, total cholesterol/high-density lipoprotein (HDL ratio, triglyceride/HDL ratio, leukocyte count, and gamma glutamyl aminotransferase (P < 0.05 compared to subjects with 1HrPG <143 mg/dl. The odds ratio for MS for subjects with 1HrPG ≥143 mg/dl was 1.84 times higher compared to subjects with 1HrPG <143 mg/dl taken as the reference. Conclusion: NGT subjects with elevated 1HrPG values have a worse metabolic profile than those with normal 1HrPG during an OGTT.

  4. Oral glucose tolerance test significantly impacts the prevalence of abnormal glucose tolerance among Indian women with polycystic ovary syndrome: lessons from a large database of two tertiary care centers on the Indian subcontinent.

    Science.gov (United States)

    Ganie, Mohd Ashraf; Dhingra, Atul; Nisar, Sobia; Sreenivas, Vishnubhatla; Shah, Zaffar Amin; Rashid, Aafia; Masoodi, Shariq; Gupta, Nandita

    2016-01-01

    To estimate the prevalence of abnormal glucose tolerance (AGT) among Indian women with polycystic ovary syndrome (PCOS) and analyze the role of oral glucose tolerance (OGTT) test on its estimation. Cross-sectional clinical study. Tertiary care center. A total of 2,014 women with PCOS diagnosed on the basis of the Rotterdam 2003 criteria were enrolled, and the data of 1,746 subjects were analyzed. In addition to recording clinical, biochemical, and hormone parameters, a 75 g OGTT was administered. Prevalence of AGT and impact of age, body mass index (BMI), family history, and OGTT on its prevalence. The mean age of subjects was 23.8 ± 5.3 years, with a mean BMI of 24.9 ± 4.4 kg/m(2). The overall prevalence of AGT was 36.3% (6.3% diabetes and 30% impaired fasting plasma glucose/impaired glucose tolerance) using American Diabetes Association criteria. The glucose intolerance showed a rising trend with advancing age (30.3%, 35.4%, 51%, and 58.8% in the second, third, fourth, and fifth decades, respectively) and increasing BMI. Family history of diabetes mellitus was present in 54.6% (953/1,746) subjects, and it did not correlate with any of the studied parameters except waist circumference and BMI. Sensitivity was better with 2-hour post-OGTT glucose values as compared with fasting plasma glucose, since using fasting plasma glucose alone would have missed the diagnosis in 107 (6.1%) subjects. We conclude that AGT is high among young Indian women with PCOS and that it is not predicted by family history of type 2 DM. OGTT significantly improves the detection rate of AGT among Indian women with PCOS. Copyright © 2016. Published by Elsevier Inc.

  5. Acute effects of feeding fructose, glucose and sucrose on blood lipid levels and systemic inflammation.

    Science.gov (United States)

    Jameel, Faizan; Phang, Melinda; Wood, Lisa G; Garg, Manohar L

    2014-12-16

    Recent studies have demonstrated a relationship between fructose consumption and risk of developing metabolic syndrome. Mechanisms by which dietary fructose mediates metabolic changes are poorly understood. This study compared the effects of fructose, glucose and sucrose consumption on post-postprandial lipemia and low grade inflammation measured as hs-CRP. This was a randomized, single blinded, cross-over trial involving healthy subjects (n=14). After an overnight fast, participants were given one of 3 different isocaloric drinks, containing 50 g of either fructose or glucose or sucrose dissolved in water. Blood samples were collected at baseline, 30, 60 and 120 minutes post intervention for the analysis of blood lipids, glucose, insulin and high sensitivity C-reactive protein (hs-CRP). Glucose and sucrose supplementation initially resulted in a significant increase in glucose and insulin levels compared to fructose supplementation and returned to near baseline values within 2 hours. Change in plasma cholesterol, LDL and HDL-cholesterol (measured as area under curve, AUC) was significantly higher when participants consumed fructose compared with glucose or sucrose (PAUC for plasma triglyceride levels however remained unchanged regardless of the dietary intervention. Change in AUC for hs-CRP was also significantly higher in subjects consuming fructose compared with those consuming glucose (P<0.05), but not sucrose (P=0.07). This study demonstrates that fructose as a sole source of energy modulates plasma lipids and hsCRP levels in healthy individuals. The significance of increase in HDL-cholesterol with a concurrent increase in LDL-cholesterol and elevated hs-CRP levels remains to be delineated when considering health effects of feeding fructose-rich diets. ACTRN12614000431628.

  6. Correlation between blood glucose levels and salivary glucose levels with oral ulcer in diabetic patients

    Directory of Open Access Journals (Sweden)

    Fildzah Rahman

    2016-06-01

    Full Text Available Diabetes Mellitus (DM is a syndrome in metabolism of carbohydrates which indicated by the increased level of blood glucose and also may increase salivary glucose levels. Oral ulcer has been frequently recognized in diabetic patients, which can be due to increased glucose in oral fluids and immune dysfunction. This study aimed to determine the correlation of blood glucose levels and salivary glucose levels with oral ulcer in diabetic patients. Analytic observational study was carried out through the determination of blood glucose levels just by way of strip using a glucometer and salivary glucose levels with the method "GOD-PAP test enzymatic colorimetric". Oral ulcer was determined in presenting ulcer on 30 patients with DM. The results showed r = 0.228, which is higher salivary glucose levels followed by high levels of blood glucose, and intraoral examination of oral ulcer found in the whole sample and the most location commonly found in buccal mucosa and lingual. It was concluded that there is a correlation between blood glucose levels and salivary glucose levels, and glucose levels affect the occurrence of oral ulcer in patients with DM

  7. Natural History of Impaired Glucose Tolerance in Japanese Americans: Change in Visceral Adiposity is Associated with Remission from Impaired Glucose Tolerance to Normal Glucose Tolerance.

    Science.gov (United States)

    Onishi, Yukiko; Hayashi, Tomoshige; Sato, Kyoko K; Leonetti, Donna L; Kahn, Steven E; Fujimoto, Wilfred Y; Boyko, Edward J

    2018-05-30

    To describe the roles of intra-abdominal fat and its change in the remission of impaired glucose tolerance (IGT) to normal glucose tolerance (NGT). We followed 157 Japanese Americans with IGT at baseline for 10-11 years without external intervention. We measured intra-abdominal and abdominal subcutaneous fat area (IAFA and ASFA) by computed tomography at baseline and at 5-6 years of follow-up. Change in IAFA and ASFA (ΔIAFA and ΔASFA) were calculated by subtracting baseline fat area from 5-6 year follow-up fat area. Glucose and insulin at fasting and during a 75-g oral glucose tolerance test, insulinogenic index (IGI [Δinsulin/Δglucose (30-0 min)]) and homeostasis model assessment for insulin resistance (HOMA-IR) were measured at baseline. Fourty-four subjects remitted to NGT. Among those with lower IAFA (≤median 91.31 cm 2 ) and the lowest tertile of ΔIAFA, 45% remitted, while with higher IAFA (>91.31 cm 2 ) and the highest tertile of ΔIAFA, only 12.5% remitted. ΔIAFA was significantly associated with remission to NGT (multiple-adjusted odd ratio [1-SD decrease] 1.93, 95% CI 1.10-3.36) independent of IAFA, ASFA, ΔASFA, IGI, HOMA-IR, age, sex, and family history of diabetes. In the natural history of IGT, change in intra-abdominal fat was associated with remission to NGT. Copyright © 2018. Published by Elsevier B.V.

  8. Bisphenol A, phthalate metabolites and glucose homeostasis in healthy normal-weight children

    DEFF Research Database (Denmark)

    Carlsson, Amalie; Sørensen, Kaspar; Andersson, Anna-Maria

    2018-01-01

    . RESULTS: Children in the lowest tertile of urinary BPA had significantly higher peak insulin levels during OGTT (P = 0.01), lower insulin sensitivity index (P triglyceride (P ... toward higher fat mass index (P = 0.1) compared with children in the highest tertile for uBPA. No significant differences in anthropometrics, body composition or glucose metabolism were associated with any of the phthalate metabolites measured. CONCLUSION: This pilot study on healthy normal...... and adolescents. METHOD: This was a cross-sectional study. Participants were recruited as part of the Copenhagen Puberty Study. The subjects were evaluated by an oral glucose tolerance test (OGTT), a dual-energy X-ray absorptiometry (DXA) scan, direct oxygen uptake measurement during cycle ergometry and fasting...

  9. Significance of membrane bioreactor design on the biocatalytic performance of glucose oxidase and catalase: Free vs. immobilized enzyme systems

    DEFF Research Database (Denmark)

    Morthensen, Sofie Thage; Meyer, Anne S.; Jørgensen, Henning

    2017-01-01

    Membrane separation of xylose and glucose can be accomplished via oxidation of glucose to gluconic acid by enzymatic glucose oxidase catalysis. Oxygen for this reaction can be supplied via decomposition of hydrogen peroxide by enzymatic catalase catalysis. In order to maximize the biocatalytic...... productivity of glucose oxidase and catalase (gluconic acid yield per total amount of enzyme) the following system set-ups were compared: immobilization of glucose oxidase alone; co-immobilization of glucose oxidase and catalase; glucose oxidase and catalase free in the membrane bioreactor. Fouling......-induced enzyme immobilization in the porous support of an ultrafiltration membrane was used as strategy for entrapment of glucose oxidase and catalase. The biocatalytic productivity of the membrane reactor was found to be highly related to the oxygen availability, which in turn depended on the reactor...

  10. Interaction between exogenous insulin, endogenous insulin, and glucose in type 2 diabetes patients.

    Science.gov (United States)

    Janukonyté, Jurgita; Parkner, Tina; Bruun, Niels Henrik; Lauritzen, Torsten; Christiansen, Jens Sandahl; Laursen, Torben

    2015-05-01

    Little is known about the influence of exogenous insulin and actual glucose levels on the release of endogenous insulin in insulin-treated type 2 diabetes mellitus (T2DM) patients. This study investigated the interaction among serum endogenous insulin (s-EI), serum exogenous insulin aspart (s-IAsp), and blood glucose levels in an experimental short-term crossover design. Eight T2DM patients (63.52 years old; range, 49-69 years; mean body mass index, 28.8±3.8 kg/m(2)) were randomized to treatment with individual fixed doses of insulin aspart (0.5-1.5 IU/h) as a continuous subcutaneous insulin infusion (CSII) during a 10-h period on two occasions with different duration of hyperglycemia: (1) transient hyperglycemia for 2 h (visit TH) and (2) continuous hyperglycemia for 12 h (visit CH). During steady state the variances of plasma glucose (p-glucose), s-IAsp, and s-EI were equal within visit TH and within visit CH, but variances were significantly higher during visit CH compared with visit TH. The s-IAsp reached lower levels at visit CH compared with visit TH (test for slope=1, P=0.005). The s-EI depended on p-glucose in a nonlinear fashion during the first 100 min of both visits when s-IAsp was undetectable (adjusted R(2)=0.9). A complex but statistically significant interaction among s-IAsp, s-EI, p-glucose, and patients was observed during measurable s-IAsp levels (adjusted R(2)=0.70). Endogenous and exogenous insulin showed higher variation during continuous hyperglycemia. Significantly lower levels of exogenous insulin were observed following CSII during continuous hyperglycemia compared with transient hyperglycemia. Endogenous insulin levels could in a complex way be explained by an individual interaction among p-glucose and serum exogenous insulin, if present.

  11. Condensation reactions of glucose and aromatic ring; Glucose to hokokan tono shukugo hanno

    Energy Technology Data Exchange (ETDEWEB)

    Komano, T.; Mashimo, K.; Wainai, T.; Tanaka, C.; Yoshioka, T. [Nihon University, Tokyo (Japan). College of Science and Technology; Sugimoto, Y.; Miki, Y. [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1996-10-28

    For artificial coalification, condensation reactions of aromatic ring and activated compounds produced by dehydrating reaction of glucose were studied experimentally. In heat treatment experiment in water, three reaction specimens such as glucose, glucose and phenol, and glucose and benzaldehyde were fed into an autoclave together with distilled water, and subjected to reaction at 180{degree}C under spontaneous pressure for 50 hours. In hydrogenation experiment, the specimens were fed into an autoclave together with tetradecane and sulfurization catalyst, and subjected to reaction at 350{degree}C under initial pressure of 9.8MPa for 2 hours for gas chromatography (GC) analysis of products. As the experimental result, the reaction between glucose and aromatic ring in heat treatment in water occurred between aromatic ring and active fragment with a mean carbon number of 4-5 produced by decomposition of glucose. The reactivity was higher in benzaldehyde addition than phenol addition. 3 refs., 4 figs., 1 tab.

  12. Effect of blood glucose level on 18F-FDG PET/CT imaging

    International Nuclear Information System (INIS)

    Tan Haibo; Lin Xiangtong; Guan Yihui; Zhao Jun; Zuo Chuantao; Hua Fengchun; Tang Wenying

    2008-01-01

    Objective: The aim of this study was to investigate the effect of blood glucose level on the image quality of 18 F-fluorodeoxyglucose (FDG) PET/CT imaging. Methods: Eighty patients referred to the authors' department for routine whole-body 18 F-FDG PET/CT check up were recruited into this study. The patients were classified into 9 groups according to their blood glucose level: normal group avg and SUV max ) of liver on different slices. SPSS 12.0 was used to analyse the data. Results: (1) There were significant differences among the 9 groups in image quality scores and image noises (all P avg and SUV max : 0.60 and 0.33, P<0.05). Conclusions: The higher the blood glucose level, the worse the image quality. When the blood glucose level is more than or equal to 12.0 mmol/L, the image quality will significantly degrade. (authors)

  13. Plasma Glucose Level Is Predictive of Serum Ammonia Level After Retrograde Occlusion of Portosystemic Shunts.

    Science.gov (United States)

    Ishikawa, Tsuyoshi; Aibe, Yuki; Matsuda, Takashi; Iwamoto, Takuya; Takami, Taro; Sakaida, Isao

    2017-09-01

    The purpose of this study was to evaluate predictors of reduction in ammonia levels by occlusion of portosystemic shunts (PSS) in patients with cirrhosis. Forty-eight patients with cirrhosis (21 women, 27 men; mean age, 67.8 years) with PSS underwent balloon-occluded retrograde transvenous obliteration (BRTO) at one institution between February 2008 and June 2014. The causes of cirrhosis were hepatitis B in one case, hepatitis C in 20 cases, alcohol in 15 cases, nonalcoholic steatohepatitis in eight cases, and other conditions in four cases. The Child-Pugh classes were A in 24 cases, B in 23 cases, and C in one case. The indication for BRTO was gastric varices in 40 cases and hepatic encephalopathy in eight cases. Testing was conducted before and 1 month after the procedure. Statistical analyses were performed to identify predictors of a clinically significant decline in ammonia levels after BRTO. Occlusion of PSS resulted in a clinically significant decrease in ammonia levels accompanied by increased portal venous flow and improved Child-Pugh score. Univariate analyses showed that a reduction in ammonia levels due to BRTO was significantly related to lower plasma glucose levels, higher RBC counts, and higher hemoglobin concentration before the treatment. Furthermore, multivariate logistic regression identified preoperative plasma glucose level as the strongest independent predictor of a significant ammonia reduction in response to BRTO. In addition, although BRTO resulted in significantly declined ammonia levels in patients with normal glucose tolerance before the procedure, ammonia levels were not significantly decreased after shunt occlusion in patients with diabetes mellitus or impaired glucose tolerance before BRTO, according to 75-g oral glucose tolerance test results. Preoperative plasma glucose level is a useful predictor of clinically significant ammonia reduction resulting from occlusion of PSS in patients with cirrhosis. Even if PSS are present, control

  14. Glucose uptake and pulsatile insulin infusion: euglycaemic clamp and [3-3H]glucose studies in healthy subjects

    International Nuclear Information System (INIS)

    Schmitz, O.; Arnfred, J.; Hother Nielsen, O.; Beck-Nielsen, H.; Oerskov, H.

    1986-01-01

    To test the hypothesis that insulin has a greater effect on glucose metabolism when given as pulsatile than as continuous infusion, a 354-min euglycaemic clamp study was carried out in 8 healthy subjects. At random order soluble insulin was given intravenously either at a constant rate of 0.45mU/kg · min or in identical amounts in pulses of 1 1 / 2 to 2 1 / 4 min followed by intervals of 10 1 / 2 to 9 3 / 4 min. Average serum insulin levels were similar during the two infusion protocols, but pulsatile administration induced oscillations ranging between 15 and 62 μU/ml. Glucose uptake expressed as metabolic clearance rate (MCR) for glucose was significantly increased during pulsatile insulin delivery as compared with continuous administration (270-294 min: 8.7±0.7 vs 6.8±0.9 ml/kg · min, P 3 H]glucose infusion technique was suppressed to insignificant values. Finally, the effect of insulin on endogenous insulin secretion and lipolysis as assessed by changes in serum C-peptide and serum FFA was uninfluenced by the infusion mode. In conclusion, insulin infusion resulting in physiological serum insulin levels enhances glucose uptake in peripheral tissues in healthy subjects to a higher degree when given in a pulsed pattern mimicking that of the normal endocrine pancreas than when given as a continuous infusion. (author)

  15. Correlation of Salivary Glucose Level with Blood Glucose Level in Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Arati S. Panchbhai

    2012-07-01

    Full Text Available Objectives: There is alarming rise in number of people with diabetes mellitus over these years. If glucose in saliva is linked to glucose in blood it can be used to detect diabetes mellitus at an early stage. The present study is undertaken with the aim to assess the correlation of salivary glucose level with blood glucose level in people with diabetes mellitus. Material and Methods: For investigations, 2 sets of samples of people with diabetes and the age and sex matched non-diabetic subjects were recruited. The salivary glucose was analyzed in unstimulated whole saliva samples using glucose oxidase method. Pearson’s correlation coefficient test was applied to assess the correlation between salivary glucose level and blood glucose level. Results: The significant (P < 0.05 positive correlation of salivary glucose level and fasting blood glucose level was observed in people with uncontrolled diabetes in both the sets of samples.Conclusions: Although study suggests some potential for saliva as a marker in monitoring of diabetes mellitus, there are many aspects that need clarification before we reach to a conclusion.

  16. Correlation between high blood IL-6 level, hyperglycemia, and glucose control in septic patients.

    Science.gov (United States)

    Nakamura, Masataka; Oda, Shigeto; Sadahiro, Tomohito; Watanabe, Eizo; Abe, Ryuzo; Nakada, Taka-Aki; Morita, Yasumasa; Hirasawa, Hiroyuki

    2012-12-12

    The aim of the present study was to investigate the relationship between the blood IL-6 level, the blood glucose level, and glucose control in septic patients. This retrospective observational study in a general ICU of a university hospital included a total of 153 patients with sepsis, severe sepsis, or septic shock who were admitted to the ICU between 2005 and 2010, stayed in the ICU for 7 days or longer, and did not receive steroid therapy prior to or after ICU admission. The severity of stress hyperglycemia, status of glucose control, and correlation between those two factors in these patients were investigated using the blood IL-6 level as an index of hypercytokinemia. A significant positive correlation between blood IL-6 level and blood glucose level on ICU admission was observed in the overall study population (n = 153; r = 0.24, P = 0.01), and was stronger in the nondiabetic subgroup (n = 112; r = 0.42, P glucose control (blood glucose level blood IL-6 level on ICU admission (P blood IL-6 level after ICU admission remained significantly higher and the 60-day survival rate was significantly lower in the failed glucose control group than in the successful glucose control group (P blood IL-6 level was correlated with hyperglycemia and with difficulties in glucose control in septic patients. These results suggest the possibility that hypercytokinemia might be involved in the development of hyperglycemia in sepsis, and thereby might affect the success of glucose control.

  17. Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose below 1 mM in patients with severe traumatic brain injury

    OpenAIRE

    Meierhans, Roman; B?chir, Markus; Ludwig, Silke; Sommerfeld, Jutta; Brandi, Giovanna; Haberth?r, Christoph; Stocker, Reto; Stover, John F

    2010-01-01

    Introduction The optimal blood glucose target following severe traumatic brain injury (TBI) must be defined. Cerebral microdialysis was used to investigate the influence of arterial blood and brain glucose on cerebral glucose, lactate, pyruvate, glutamate, and calculated indices of downstream metabolism. Methods In twenty TBI patients, microdialysis catheters inserted in the edematous frontal lobe were dialyzed at 1 ?l/min, collecting samples at 60 minute intervals. Occult metabolic alteratio...

  18. Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose beneath 1 mM in patients with severe traumatic brain injury.

    OpenAIRE

    Meierhans, R; Bechir, M; Ludwig, S; Sommerfeld, J; Brandi, G; Haberthur, C; Stocker, R; Stover, J F

    2010-01-01

    ABSTRACT: INTRODUCTION: The optimal blood glucose target following severe traumatic brain injury (TBI) must be defined. Cerebral microdialysis was used to investigate the influence of arterial blood and brain glucose on cerebral glucose, lactate, pyruvate, glutamate, and calculated indices of downstream metabolism. METHODS: In twenty TBI patients, microdialysis catheters inserted in the edematous frontal lobe were dialyzed at 1 mul/ min, collecting samples at 60 minute intervals. Occult metab...

  19. Prevalence of Non-responders for Glucose Control Markers after 10 Weeks of High-Intensity Interval Training in Adult Women with Higher and Lower Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Cristian Álvarez

    2017-07-01

    Full Text Available Background: Exercise training improves performance and biochemical parameters on average, but wide interindividual variability exists, with individuals classified as responders (R or non-responders (NRs, especially between populations with higher or lower levels of insulin resistance. This study assessed the effects of high-intensity interval training (HIIT and the prevalence of NRs in adult women with higher and lower levels of insulin resistance.Methods: Forty adult women were assigned to a HIIT program, and after training were analyzed in two groups; a group with higher insulin resistance (H-IR, 40 ± 6 years; BMI: 29.5 ± 3.7 kg/m2; n = 20 and a group with lower insulin resistance (L-IR, 35 ± 9 years; 27.8 ± 2.8 kg/m2; n = 20. Anthropometric, cardiovascular, metabolic, and performance variables were measured at baseline and after 10 weeks of training.Results: There were significant training-induced changes [delta percent (Δ%] in fasting glucose, fasting insulin, and homeostasis model assessment of insulin resistance (HOMA-IR scores in the H-IR group (−8.8, −26.5, −32.1%, p < 0.0001, whereas no significant changes were observed in the L-IR. Both groups showed significant pre-post changes in other anthropometric variables [waist circumference (−5.2, p < 0.010, and −3.8%, p = 0.046 and tricipital (−13.3, p < 0.010, and −13.6%, p < 0.0001, supra-iliac (−19.4, p < 0.0001, and −13.6%, p < 0.0001, and abdominal (−18.2, p < 0.0001, and −15.6%, p < 0.010 skinfold measurements]. Systolic blood pressure decreased significantly only in the L-IR group (−3.2%, p < 0.010. Both groups showed significant increases in 1RMLE (+12.9, p < 0.010, and +14.7%, p = 0.045. There were significant differences in the prevalence of NRs between the H-IR and L-IR groups for fasting glucose (25 vs. 95%, p < 0.0001 and fasting insulin (p = 0.025 but not for HOMA-IR (25 vs. 45%, p = 0.185.Conclusion: Independent of the “magnitude” of the

  20. Assessing oral candidal carriage with mixed salivary glucose levels as non-invasive diagnostic tool in type-2 diabetics of davangere, karnataka, India.

    Science.gov (United States)

    Naik, Rashmi; Mujib B R, Ahmed; Raaju, U R; Telagi, Neethu

    2014-07-01

    The health of oral tissues is known to be related to salivary flow and its composition which may be altered in diabetic patients. The purpose of this study is to correlate mixed salivary glucose levels and oral candidal carriage and to assess the prevalence of candidal carriage in diabetics and controls. Thirty adults with type-2 diabetes and 30 without diabetes (control subjects), aged 30-60 yr, participated in the study. Unstimulated saliva was collected and investigated for glucose levels (using glucose oxidase method) and colony-forming units (CFU) of Candida, this was stained with two stains, periodic acid-schiff stain and Grocott Gomori stain. In the present study mixed salivary glucose concentration in diabetics was significantly higher (pCandida was not isolated. The diabetics without intraoral candidal carriage had lower salivary glucose levels (mean = 5.36±2.24 mg/dl). This relationship could be seen in controls (non-diabetics) also. Diabetics showed an oral candidal carriage rate of 80% which was significantly higher compared to nondiabetics who showed an oral candidal carriage rate of 40%. Mixed salivary glucose levels were significantly higher in diabetics. The possible high salivary glucose level could predispose to oral candidal infection. So saliva can be used as a quick, non-invasive tool to assess the oral candidal status and possible infection.

  1. Prevalence of the impaired glucose metabolism and its association with risk factors for coronary artery disease in women with gestational diabetes.

    Science.gov (United States)

    Rivero, Katia; Portal, Vera Lúcia; Vieira, Matias; Behle, Ivo

    2008-03-01

    Gestational diabetes (GDM) has increased risk of diabetes (DM2), a coronary artery disease (CAD) equivalent. The aim of this study was to determine the prevalence of impaired glucose metabolism (IGM) in GDM and its association with risk factors for CAD. A cohort of 109 women with GDM underwent a glucose tolerance test which classified them into three groups: diabetic (DM2) (fasting glucose (G) >or=126mg/dl or plasma glucose 2h (2-h G) >or=200mg/dl); impaired glucose tolerance (IGT) (G 100-125mg/dl and/or 2-h G 140-199mg/dl); and normal (N) (GDM2, 39.4% IGT and 43.1% were N. PBMI, CBMI, SBP and DBP were significantly higher in the DM2 than N. G was higher in DM2 and IGT. HDL-cholesterol (HDL-C) was higher in the N (p=0.02) and the triglycerides (TG) were higher in DM2 (p=0.02). The groups showed significantly different levels of hsCRP (p=0.002). We conclude that the high prevalence of IGM, overweight/obesity, dyslipidemia and altered inflammatory markers, make GDM a high-risk situation for CAD.

  2. Impaired glucose tolerance in patients with amyotrophic lateral sclerosis.

    Science.gov (United States)

    Pradat, Pierre-Francois; Bruneteau, Gaelle; Gordon, Paul H; Dupuis, Luc; Bonnefont-Rousselot, Dominique; Simon, Dominique; Salachas, Francois; Corcia, Philippe; Frochot, Vincent; Lacorte, Jean-Marc; Jardel, Claude; Coussieu, Christiane; Le Forestier, Nadine; Lacomblez, Lucette; Loeffler, Jean-Philippe; Meininger, Vincent

    2010-01-01

    Our objectives were to analyse carbohydrate metabolism in a series of ALS patients and to examine potential association with parameters of lipid metabolism and clinical features. Glucose tolerance was assessed by the oral glucose tolerance test in 21 non-diabetic ALS patients and compared with 21 age- and sex-matched normal subjects. Lipids and lactate/pyruvate ratio, levels of pro-inflammatory cytokines (tumour necrosis factor-alpha and interleukin-6) and adipocytokines (leptin and adiponectin) were also measured in ALS patients. Mann-Whitney U-tests analysed continuous data and Fisher's exact tests assessed categorical data. Blood glucose determined 120 min after the glucose bolus was significantly higher in patients with ALS (7.41 mmol/l+/-1.68) compared to controls (6.05+/-1.44, p=0.006). ALS patients with impaired glucose tolerance (IGT) according to WHO criteria (n=7, 33%) were more likely to have elevated free fatty acids (FFA) levels compared to patients with normal glucose tolerance (0.77 nmol/l+/-0.30 vs. 0.57+/-0.19, p=0.04). IGT was not associated with disease duration or severity. In conclusion, patients with ALS show abnormal glucose tolerance that could be associated with increased FFA levels, a key determinant of insulin resistance. The origin of glucose homeostasis abnormalities in ALS may be multifactorial and deserves further investigation.

  3. Chemical exchange-sensitive spin-lock MRI of glucose analog 3-O-methyl-d-glucose in normal and ischemic brain.

    Science.gov (United States)

    Jin, Tao; Mehrens, Hunter; Wang, Ping; Kim, Seong-Gi

    2018-05-01

    Glucose transport is important for understanding brain glucose metabolism. We studied glucose transport with a presumably non-toxic and non-metabolizable glucose analog, 3-O-methyl-d-glucose, using a chemical exchange-sensitive spin-lock MRI technique at 9.4 Tesla. 3-O-methyl-d-glucose showed comparable chemical exchange properties with d-glucose and 2-deoxy-d-glucose in phantoms, and higher and lower chemical exchange-sensitive spin-lock sensitivity than Glc and 2-deoxy-d-glucose in in vivo experiments, respectively. The changes of the spin-lattice relaxation rate in the rotating frame (Δ R 1 ρ) in normal rat brain peaked at ∼15 min after the intravenous injection of 1 g/kg 3-O-methyl-d-glucose and almost maintained a plateau for >1 h. Doses up to 4 g/kg 3-O-methyl-d-glucose were linearly correlated with Δ R 1 ρ. In rats with focal ischemic stroke, chemical exchange-sensitive spin-lock with 3-O-methyl-d-glucose injection at 1 h after stroke onset showed reduced Δ R 1 ρ in the ischemic core but higher Δ R 1 ρ in the peri-core region compared to normal tissue, which progressed into the ischemic core at 3 h after stroke onset. This suggests that the hyper-chemical exchange-sensitive spin-lock region observed at 1 h is the ischemic penumbra at-risk of infarct. In summary, 3-O-methyl-d-glucose-chemical exchange-sensitive spin-lock can be a sensitive MRI technique to probe the glucose transport in normal and ischemic brains.

  4. Institutional point-of-care glucometer identifies population trends in blood glucose associated with war.

    Science.gov (United States)

    Boaz, Mona; Matas, Zipora; Chaimy, Tova; Landau, Zohar; Bar Dayan, Yosefa; Berlovitz, Yitzhak; Wainstein, Julio

    2013-11-01

    Acute physiological stress has been shown to impair glucose homeostasis. War is a period of acute psychological stress, and its effect on glucose control is unknown. In this study random point-of-care (POC) glucose levels were measured using an automated, institutional glucometer in hospitalized adult patients prior to versus during the Israeli Pillar of Defense campaign (November 7-10, 2012). Random POC glucose values measured with the institutional blood glucose monitoring system were obtained 1 week prior to the Pillar of Defense campaign (November 7-10, 2012) and compared with values to those obtained during the first 4 days of the war (November 14-17, 2012). In total, 3,573 POC glucose measures were included: 1,865 during the pre-war period and 1,708 during the campaign. POC glucose measures were significantly higher during the war compared with the week preceding the war: 9.7±4.7 versus 9.3±4.2 mmol/L (P=0.02). In a general linear model, period (pre-war vs. during war) persisted as a significant predictor of POC glucose even after controlling for age, sex, and department type (internal medicine vs. surgical). Acute stress, such as a wartime situation, is associated with a significant increase in random blood glucose values in a population of hospitalized adults. Long-term follow-up of the individuals hospitalized during these two periods can reveal differences in morbidity and mortality trends.

  5. Glucose-Dependent Insulinotropic Polypeptide Augments Glucagon Responses to Hypoglycemia in Type 1 Diabetes

    DEFF Research Database (Denmark)

    Christensen, Mikkel; Calanna, Salvatore; Sparre-Ulrich, Alexander H

    2015-01-01

    constituted a "recovery phase." During the recovery phase, GIP infusions elicited larger glucagon responses (164 ± 50 [GIP] vs. 23 ± 25 [GLP-1] vs. 17 ± 46 [saline] min ⋅ pmol/L, P endogenous glucose production was higher with GIP and lower with GLP-1 compared with saline (P ... days, significantly less exogenous glucose was needed to keep plasma glucose above 2 mmol/L (155 ± 36 [GIP] vs. 232 ± 40 [GLP-1] vs. 212 ± 56 [saline] mg ⋅ kg(-1), P ... similar on all days. Our results suggest that during hypoglycemia in patients with T1DM, exogenous GIP increases glucagon responses during the recovery phase after hypoglycemia and reduces the need for glucose administration....

  6. Opium can differently alter blood glucose, sodium and potassium in male and female rats.

    Science.gov (United States)

    Karam, Gholamreza Asadi; Rashidinejad, Hamid Reza; Aghaee, Mohammad Mehdi; Ahmadi, Jafar; Rahmani, Mohammad Reza; Mahmoodi, Mehdi; Azin, Hosein; Mirzaee, Mohammad Reza; Khaksari, Mohammad

    2008-04-01

    To determine the effects of opium on serum glucose, potassium and sodium in male and female Wistar rat, opium solution (60 mg/kg) injected intraperitoneally and the same volume of distilled water was used as control (7 rats in each group). Blood samples were collected at 0, 30, 60, 120, 240 and 360 minutes after injection from orbit cavity and the values of serum glucose, sodium (Na(+)) and potassium (K(+)) were measured. The data were then analyzed by the repeated measure ANOVA based on sex and case-control group. P opium solution injection, in female rats compared to a control group. However, the male rats had this rise at 30, 60 and 120 minutes after opium solution injection compared to control group. While serum glucose in male rats was significantly higher than females at 30, 60 and 120 minutes, this value was higher in the female rats at 360 minutes. Therefore, serum glucose alterations following opium injection was significantly different in groups and in the sexes at different times. Sodium (Na(+)) rose at 60, 240 and 360 minutes significantly in all rats compared to control group. However, sodium alteration following opium injection was significantly different only between treated and control groups but sex-independent at all times. Potassium (K(+)) increased significantly at 60, 120, 240 and 360 minutes in male rats, compared to a control group. In female rats K(+) significantly raised at 30, 120, 240 and 360 minutes. Therefore, the alteration of K(+) in male and female rats was found time dependent and sex independent. According to our results, opium increased serum glucose in male and female rats differently, and it interferes with metabolic pathways differently on a gender dependent basis. Opium raised serum Na(+) and K(+), thus it interfere with water regulation and blood pressure via different mechanism.

  7. Insulin dynamics and biochemical markers for predicting impaired glucose tolerance in obese Thai youth.

    Science.gov (United States)

    Tirabanchasak, Sirapassorn; Siripunthana, Sukumarn; Supornsilchai, Vichit; Wacharasindhu, Suttipong; Sahakitrungruang, Taninee

    2015-09-01

    Subjects with impaired glucose tolerance (IGT) are at risk for type 2 diabetes mellitus (T2DM) and cardiovascular disease. The predictors of IGT in obese youth are not well described. We studied 115 obese Thai children who underwent an oral glucose tolerance test (OGTT). Plasma glucose and insulin levels were calculated for assessment of β-cell function. Hemoglobin A1c (HbA1c), lipid profile, and clinical parameters were also used to determine predictors of IGT. We found that three patients had T2DM and 30 subjects had IGT. IGT patients had significantly higher fasting glucose (FG), 1-h postload glucose, 2-h postload insulin, and lower whole-body insulin sensitivity indices than in normal glucose tolerance subjects whereas other indices were comparable. By ROC curve analyses, 1-h postload glucose was the best predictor of IGT, but FG or HbA1c represented a poor diagnostic tool for prediabetes screening. Subjects with 1-h OGTT glucose > 155 mg/dL had significantly lower high-density lipoprotein levels, lower insulin sensitivity, and more insulin resistance than those with 1-h postload glucose of ≤ 155 mg/dL. Abnormal glucose tolerance is highly prevalent in obese Thai youth. Several fasting indices and HbA1c fail to predict IGT. An 1-h OGTT glucose of > 155 mg/dL appears to be more associated with adverse insulin dynamics and metabolic profile than 2-h postload glucose.

  8. Significant improvement of thermal stability of glucose 1-dehydrogenase by introducing disulfide bonds at the tetramer interface.

    Science.gov (United States)

    Ding, Haitao; Gao, Fen; Liu, Danfeng; Li, Zeli; Xu, Xiaohong; Wu, Min; Zhao, Yuhua

    2013-12-10

    Rational design was applied to glucose 1-dehydrogenase (LsGDH) from Lysinibacillus sphaericus G10 to improve its thermal stability by introduction of disulfide bridges between subunits. One out of the eleven mutants, designated as DS255, displayed significantly enhanced thermal stability with considerable soluble expression and high specific activity. It was extremely stable at pH ranging from 4.5 to 10.5, as it retained nearly 100% activity after incubating at different buffers for 1h. Mutant DS255 also exhibited high thermostability, having a half-life of 9900min at 50°C, which was 1868-fold as that of its wild type. Moreover, both of the increased free energy of denaturation and decreased entropy of denaturation of DS255 suggested that the enzyme structure was stabilized by the engineered disulfide bonds. On account of its robust stability, mutant DS255 would be a competitive candidate in practical applications of chiral chemicals synthesis, biofuel cells and glucose biosensors. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Durand, Fabien [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France); Stines-Chaumeil, Claire [Universite de Bordeaux, CNRS, Institut de Biochimie et de Genetique Cellulaires, 1 rue Camille Saint Saens, 33077 Bordeaux Cedex (France); Flexer, Victoria [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France); Andre, Isabelle [Universite de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse (France); CNRS, UMR5504, F-31400 Toulouse (France); INRA, UMR 792 Ingenierie des Systemes Biologiques et des Procedes, F-31400 Toulouse (France); Mano, Nicolas, E-mail: mano@crpp-bordeaux.cnrs.fr [Universite de Bordeaux, Centre de Recherche Paul Pascal (CRPP), UPR 8641, Avenue Albert Schweitzer, 33600 Pessac (France)

    2010-11-26

    Research highlights: {yields} A new mutant of PQQ-GDH designed for glucose biosensors application. {yields} First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. {yields} Position N428 is a key point to increase the enzyme activity. {yields} Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to a better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.

  10. Glucose-dependent Insulinotropic Polypeptide

    DEFF Research Database (Denmark)

    Christensen, Mikkel B; Calanna, Salvatore; Holst, Jens Juul

    2014-01-01

    CONTEXT: Patients with type 2 diabetes mellitus (T2DM) have clinically relevant disturbances in the effects of the hormone glucose-dependent insulinotropic polypeptide (GIP). OBJECTIVE: We aimed to evaluate the importance of the prevailing plasma glucose levels for the effect of GIP on responses......: During fasting glycemia (plasma glucose ∼8 mmol/L), GIP elicited significant increments in both insulin and glucagon levels, resulting in neutral effects on plasma glucose. During insulin-induced hypoglycemia (plasma glucose ∼3 mmol/L), GIP elicited a minor early-phase insulin response and increased...... glucagon levels during the initial 30 minutes, resulting in less glucose needed to be infused to maintain the clamp (29 ± 8 vs 49 ± 12 mg × kg(-1), P glucose ∼12 mmol/L), GIP augmented insulin secretion throughout the clamp, with slightly less glucagon...

  11. Association of blood glucose level and hypertension in Elderly Chinese Subjects: a community based study.

    Science.gov (United States)

    Yan, Qun; Sun, Dongmei; Li, Xu; Chen, Guoliang; Zheng, Qinghu; Li, Lun; Gu, Chenhong; Feng, Bo

    2016-07-13

    There is a scarcity of epidemiological researches examining the relationship between blood pressure (BP) and glucose level among older adults. The objective of the current study was to investigate the association of high BP and glucose level in elderly Chinese. A cross-sectional study of a population of 2092 Chinese individuals aged over 65 years was conducted. Multiple logistic analysis was used to explore the association between hypertension and hyperglycemia. Independent risk factors for systolic and diastolic BP were analyzed using stepwise linear regression. Subjects in impaired fasting glucose group (IFG) (n = 144) and diabetes (n = 346), as compared with normal fasting glucose (NFG) (n = 1277), had a significant higher risk for hypertension, with odds ratios (ORs) of 1.81 (95 % CI, 1.39-2.35) (P = 0.000) and 1.40 (95 % CI, 1.09-1.80) (P = 0.009), respectively. Higher fasting plasma glucose (FPG) levels in the normal range were still significantly associated with a higher prevalence of hypertension in both genders, with ORs of 1.24 (95 % CI, 0.85-1.80), R (2) = 0.114, P = 0.023 in men and 1.61 (95 % CI, 1.12-2.30), R (2) = 0.082, P = 0.010 in women, respectively, when compared with lower FPG. Linear regression analysis revealed FPG was an independent factor of systolic and diastolic BP. Our findings suggest that hyperglycemia as well as higher FPG within the normal range is associated with a higher prevalence of hypertension independent of other cardiovascular risk factors in elderly Chinese. Further studies are needed to explore the relationship between hyperglycemia and hypertension in a longitudinal setting.

  12. Adipokine pattern in subjects with impaired fasting glucose and impaired glucose tolerance in comparison to normal glucose tolerance and diabetes.

    Directory of Open Access Journals (Sweden)

    Anke Tönjes

    Full Text Available AIM: Altered adipokine serum concentrations early reflect impaired adipose tissue function in obese patients with type 2 diabetes (T2D. It is not entirely clear whether these adipokine alterations are already present in prediabetic states and so far there is no comprehensive adipokine panel available. Therefore, the aim of this study was to assess distinct adipokine profiles in patients with normal glucose tolerance (NGT, impaired fasting glucose (IFG, impaired glucose tolerance (IGT or T2D. METHODS: Based on 75 g oral glucose tolerance tests, 124 individuals were divided into groups of IFG (n = 35, IGT (n = 45, or NGT (n = 43. Furthermore, 56 subjects with T2D were included. Serum concentrations of adiponectin, chemerin, fetuin-A, leptin, interleukin (IL-6, retinol-binding protein 4 (RBP4, monocyte chemoattractant protein (MCP-1, vaspin, progranulin, and soluble leptin receptor (sOBR were measured by ELISAs. RESULTS: Chemerin, progranulin, fetuin-A, and RBP4, IL-6, adiponectin and leptin serum concentrations were differentially regulated among the four investigated groups but only circulating chemerin was significantly different in patients with IGT compared to those with IFG. Compared to T2D the IFG subjects had higher serum chemerin, progranulin, fetuin-A and RBP4 levels which was not detectable in the comparison of the T2D and IGT group. CONCLUSION: Alterations in adipokine serum concentrations are already detectable in prediabetic states, mainly for chemerin, and may reflect adipose tissue dysfunction as an early pathogenetic event in T2D development. In addition, distinct adipokine serum patterns in individuals with IFG and IGT suggest a specific role of adipose tissue in the pathogenesis of these prediabetic states.

  13. Effects of two doses of glucose and a caffeine–glucose combination on cognitive performance and mood during multi-tasking

    Science.gov (United States)

    Scholey, Andrew; Savage, Karen; O'Neill, Barry V; Owen, Lauren; Stough, Con; Priestley, Caroline; Wetherell, Mark

    2014-01-01

    Background This study assessed the effects of two doses of glucose and a caffeine–glucose combination on mood and performance of an ecologically valid, computerised multi-tasking platform. Materials and methods Following a double-blind, placebo-controlled, randomised, parallel-groups design, 150 healthy adults (mean age 34.78 years) consumed drinks containing placebo, 25 g glucose, 60 g glucose or 60 g glucose with 40 mg caffeine. They completed a multi-tasking framework at baseline and then 30 min following drink consumption with mood assessments immediately before and after the multi-tasking framework. Blood glucose and salivary caffeine were co-monitored. Results The caffeine–glucose group had significantly better total multi-tasking scores than the placebo or 60 g glucose groups and were significantly faster at mental arithmetic tasks than either glucose drink group. There were no significant treatment effects on mood. Caffeine and glucose levels confirmed compliance with overnight abstinence/fasting, respectively, and followed the predicted post-drink patterns. Conclusion These data suggest that co-administration of glucose and caffeine allows greater allocation of attentional resources than placebo or glucose alone. At present, we cannot rule out the possibility that the effects are due to caffeine alone Future studies should aim at disentangling caffeine and glucose effects. PMID:25196040

  14. Effects of two doses of glucose and a caffeine-glucose combination on cognitive performance and mood during multi-tasking.

    Science.gov (United States)

    Scholey, Andrew; Savage, Karen; O'Neill, Barry V; Owen, Lauren; Stough, Con; Priestley, Caroline; Wetherell, Mark

    2014-09-01

    This study assessed the effects of two doses of glucose and a caffeine-glucose combination on mood and performance of an ecologically valid, computerised multi-tasking platform. Following a double-blind, placebo-controlled, randomised, parallel-groups design, 150 healthy adults (mean age 34.78 years) consumed drinks containing placebo, 25 g glucose, 60 g glucose or 60 g glucose with 40 mg caffeine. They completed a multi-tasking framework at baseline and then 30 min following drink consumption with mood assessments immediately before and after the multi-tasking framework. Blood glucose and salivary caffeine were co-monitored. The caffeine-glucose group had significantly better total multi-tasking scores than the placebo or 60 g glucose groups and were significantly faster at mental arithmetic tasks than either glucose drink group. There were no significant treatment effects on mood. Caffeine and glucose levels confirmed compliance with overnight abstinence/fasting, respectively, and followed the predicted post-drink patterns. These data suggest that co-administration of glucose and caffeine allows greater allocation of attentional resources than placebo or glucose alone. At present, we cannot rule out the possibility that the effects are due to caffeine alone Future studies should aim at disentangling caffeine and glucose effects. © 2014 The Authors. Human Psychopharmacology: Clinical and Experimental published by John Wiley & Sons, Ltd.

  15. Effects of exposure to high glucose on primary cultured hippocampal neurons: involvement of intracellular ROS accumulation.

    Science.gov (United States)

    Liu, Di; Zhang, Hong; Gu, Wenjuan; Zhang, Mengren

    2014-06-01

    Recent studies showed that hyperglycemia is the main trigger of diabetic cognitive impairment and can cause hippocampus abnormalities. The goal of this study is to explore the effects of different concentrations of high glucose for different exposure time on cell viability as well as intracellular reactive oxygen species (ROS) generation of primary cultured hippocampal neurons. Hippocampal neurons were exposed to different concentrations of high glucose (50, 75, 100, 125, and 150 mM) for 24, 48, 72 and 96 h. Cell viability and nuclear morphology were evaluated by MTT and Hoechst assays, respectively. Intracellular ROS were monitored using the fluorescent probe DCFH-DA. The results showed that, compared with control group, the cell viability of all high glucose-treated groups decreased significantly after 72 h and there also was a significant increase of apoptotic nuclei in high glucose-treated groups from 72 to 96 h. Furthermore, 50 mM glucose induced a peak rise in ROS generation at 24 h and the intracellular ROS levels of 50 mM glucose group were significantly higher than the corresponding control group from 6 to 72 h. These results suggest that hippocampal neurons could be injured by high glucose exposure and the neuronal injury induced by high glucose is potentially mediated through intracellular ROS accumulation.

  16. CSF glucose test

    Science.gov (United States)

    ... in the space surrounding the spinal cord and brain. ... Abnormal results include higher and lower glucose levels. Abnormal results may be due to: Infection (bacterial or fungus) Inflammation of the central nervous system Tumor

  17. Some observations on the use of D-glucose-2-/sup 3/H as a tracer in turnover studies in Merino sheep

    Energy Technology Data Exchange (ETDEWEB)

    Van der Walt, J G [Veterinary Research Inst., Onderstepoort (South Africa)

    1975-01-01

    Bolus injection of a mixture of D-glucose-2-/sup 3/H and -(U)-/sup 14/C into each sheep enabled a turnover rate to be calculated for each isotope and to be compared in the same animal. No statistically significant differences were found in pool size, or glucose space. The total entry rates calculated from the D-glucose-2-/sup 3/H results were found to be significantly higher (P greater than 0.95 paired t test) than those calculated from the D-glucose 1(U)-/sup 14/C results, the average difference being 18 percent. This difference indicated that the extent of glucose recycling was somewhat less than that reported for monogastric mammals (30 percent--Katz and Dunn, 1967) and similar to that found by Judson and Leng (1972) in sheep. Clycogen was isolated from skeletal, cardiac and smooth muscle as well as from the liver and the /sup 3/H:/sup 14/C ratios determined. These ratios were found to be significantly higher than those reported for monogastric mammals such as the rat or dog. (INIS)

  18. Impaired Glucose Metabolism Is Associated with Visit-to-Visit Blood Pressure Variability in Participants without Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Nobuo Sasaki

    2018-01-01

    Full Text Available We evaluated data from 10,088 participants without cardiovascular disease (CVD who underwent 75 g oral glucose tolerance tests and had more than four visits during the first 5 years following the test to investigate the association between impaired glucose metabolism and visit-to-visit blood pressure (BP variability. Participants were classified into groups of normal glucose tolerance (NGT, impaired fasting glucose (IFG, impaired glucose tolerance (IGT, and diabetes. Visit-to-visit BP variability was estimated for each individual using standard deviation (SD and coefficients of variation (CV, defined as SD/mean. SDs and CVs of systolic BP (SBP values were divided into quartiles. The samples falling in the highest quartile were considered as having high SD/CV. The adjusted odds ratio (OR for high SD of SBP in the IFG (OR, 1.39; P<0.003, IGT (OR, 1.26; P<0.001, and diabetes (OR, 1.54; P<0.001 groups was significantly higher than that for high SD of SBP in the NGT group. Similarly, the OR for high CV of SBP in the IGT and diabetes groups was significantly higher than that for high CV of SBP in the NGT group. In participants without CVD, impaired glucose metabolism may modulate visit-to-visit BP variability.

  19. Competitive Intelligence: Significance in Higher Education

    Science.gov (United States)

    Barrett, Susan E.

    2010-01-01

    Historically noncompetitive, the higher education sector is now having to adjust dramatically to new and increasing demands on numerous levels. To remain successfully operational within the higher educational market universities today must consider all relevant forces which can impact present and future planning. Those institutions that were…

  20. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing

    International Nuclear Information System (INIS)

    Kang, Xinhuang; Wang, Jun; Wu, Hong; Aksay, Ilhan A.; Liu, Jun; Lin, Yuehe

    2009-01-01

    Direct electrochemistry of a glucose oxidase (GOD)/graphene/chitosan nanocomposite was studied. The immobilized enzyme retains its bioactivity, exhibits a surface confined, reversible two-proton and two-electron transfer reaction, and has good stability, activity and a fast heterogeneous electron transfer rate with the rate constant (k s ) of 2.83 s -1 . A much higher enzyme loading (1.12 x 10 -9 mol/cm 2 ) is obtained as compared to the bare glass carbon surface. This GOD/graphene/chitosan nanocomposite film can be used for sensitive detection of glucose. The biosensor exhibits a wider linearity range from 0.08 mM to 12 mM glucose with a detection limit of 0.02 mM and much higher sensitivity (37.93 (micro)A mM -1 cm -2 ) as compared with other nanostructured supports. The excellent performance of the biosensor is attributed to large surface-to-volume ratio and high conductivity of graphene, and good biocompatibility of chitosan, which enhances the enzyme absorption and promotes direct electron transfer between redox enzymes and the surface of electrodes.

  1. Glucose intolerance in a large cohort of mediterranean women with polycystic ovary syndrome: phenotype and associated factors.

    Science.gov (United States)

    Gambineri, Alessandra; Pelusi, Carla; Manicardi, Elisa; Vicennati, Valentina; Cacciari, Mauro; Morselli-Labate, Antonio Maria; Pagotto, Uberto; Pasquali, Renato

    2004-09-01

    The aim of this study was to investigate the phenotypic parameters and associated factors characterizing the development of glucose intolerance in polycystic ovary syndrome (PCOS). Among the 121 PCOS female subjects from the Mediterranean region, 15.7 and 2.5% displayed impaired glucose tolerance and type 2 diabetes, respectively. These subjects were included in a single group of overweight or obese subjects presenting with glucose intolerance (GI) states. PCOS women with normal glucose tolerance (81.8%) were subdivided into two groups: those who were overweight or obese and those of normal weight. Metabolic and hormonal characteristics of the GI group included significantly higher fasting and glucose-stimulated insulin levels, more severe insulin resistance, hyperandrogenemia, and significantly higher cortisol and androstenedione responses to 1-24 ACTH stimulation. One important finding was that lower birth weight and earlier age of menarche were associated with GI in PCOS women. Frequency of hirsutism, oligomenorrhea, acne, and acanthosis nigricans did not characterize women with GI. Our findings indicate that PCOS patients with GI represent a subgroup with specific clinical and hormonal characteristics. Our observations may have an important impact in preventative and therapeutic strategies.

  2. Longitudinal fasting blood glucose patterns and arterial stiffness risk in a population without diabetes.

    Science.gov (United States)

    Wu, Yuntao; Yu, Junxing; Jin, Cheng; Li, Yun; Su, Jinmei; Wei, Guoqing; Zheng, Xiaoming; Gao, Jingsheng; Gao, Wenyuan; Wu, Shouling

    2017-01-01

    To identify long-term fasting blood glucose trajectories and to assess the association between the trajectories and the risk of arterial stiffness in individuals without diabetes. We enrolled 16,454 non-diabetic participants from Kailuan cohort. Fasting blood glucose concentrations were measured in 2006, 2008, and 2010 survey. Brachial-ankle pulse wave velocities were measured during 2011 to 2016. Multivariate regression model was used to estimate the difference of brachial-ankle pulse wave velocity levels and logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (95%CIs) of arterial stiffness risk, according to the fasting blood glucose trajectories. We identified five distinct fasting blood glucose trajectories and each of the trajectories was labeled according to its range and change over 2006-2010 survey: elevated-stable pattern (5.0% of participants), elevated-decreasing pattern (6.6%), moderate-increasing pattern (10.9%), moderate-stable pattern (59.3%), and low-stable pattern (18.2%). After adjustment for potential confounders, individuals with elevated-stable pattern had a 42.6 cm/s (95%CI: 24.7 to 60.6 cm/s) higher brachial-ankle pulse wave velocity level and a 37% (OR 1.37, 95%CI: 1.14 to 1.66) higher arterial stiffness risk, and individuals with moderate-increasing pattern had a 19.6 cm/s (95%CI: 6.9 to 32.3 cm/s) higher brachial-ankle pulse wave velocity level and a 17% (OR 1.17, 95%CI: 1.03 to 1.33) higher arterial stiffness risk, related to individuals with moderate-stable pattern. We did not find significant associations of the elevated-decreasing or low-stable patterns with arterial stiffness. Consistently, the cumulative average, variability, and increased rate of fasting blood glucose during 2006-2010 survey were significantly associated with the arterial stiffness risk. Discrete fasting blood glucose trajectories were associated with the arterial stiffness risk in non-diabetic individuals.

  3. Glucose improves object-location binding in visual-spatial working memory.

    Science.gov (United States)

    Stollery, Brian; Christian, Leonie

    2016-02-01

    There is evidence that glucose temporarily enhances cognition and that processes dependent on the hippocampus may be particularly sensitive. As the hippocampus plays a key role in binding processes, we examined the influence of glucose on memory for object-location bindings. This study aims to study how glucose modifies performance on an object-location memory task, a task that draws heavily on hippocampal function. Thirty-one participants received 30 g glucose or placebo in a single 1-h session. After seeing between 3 and 10 objects (words or shapes) at different locations in a 9 × 9 matrix, participants attempted to immediately reproduce the display on a blank 9 × 9 matrix. Blood glucose was measured before drink ingestion, mid-way through the session, and at the end of the session. Glucose significantly improves object-location binding (d = 1.08) and location memory (d = 0.83), but not object memory (d = 0.51). Increasing working memory load impairs object memory and object-location binding, and word-location binding is more successful than shape-location binding, but the glucose improvement is robust across all difficulty manipulations. Within the glucose group, higher levels of circulating glucose are correlated with better binding memory and remembering the locations of successfully recalled objects. The glucose improvements identified are consistent with a facilitative impact on hippocampal function. The findings are discussed in the context of the relationship between cognitive processes, hippocampal function, and the implications for glucose's mode of action.

  4. Insulin resistance and lipid profile during an oral glucose tolerance test in women with and without gestational diabetes mellitus.

    Science.gov (United States)

    Liang, Zx; Wu, Y; Zhu, Xy; Fang, Q; Chen, Dq

    2016-01-01

    We aimed to compare changes in insulin levels during an oral glucose tolerance test (OGTT) between women with normal glucose tolerance (NGT) during pregnancy and those with gestational diabetes mellitus (GDM). Overall, 105 pregnant women between 24 and 28 weeks' gestation, 50 with NGT and 55 with GDM according to NDDG standard, were enrolled into the study. The levels of fasting blood glucose, insulin, triglyceride (TG) and total cholesterol (TC) and the insulin levels, blood glucose levels at 1, 2 and 3 hours post oral glucose administration during an OGTT (5.8, 10.6, 9.2 and 8.1 mmol/L, respectively) were measured. Then, insulin resistance (IR) index was calculated. There was no significant difference in fasting, 3-h insulin levels and 3-h blood glucose levels between those with NGT and those with GDM (P > 0.05). However, 1-h and 2-h insulin levels, fasting and 1-h and 2-h blood glucose levels in women with GDM were significantly higher than those in the NGT group (P < 0.05). Fasting TC and TG levels in the GDM group were significantly higher than those with NGT (P = 0.031 and P = 0.025, respectively). Correlation analysis showed that TG and TC levels were positively correlated with homoeostasis model assessment-IR (HOMA-IR) (r = 0.67 and r = 0.78, respectively; P < 0.05). Our findings suggest that insulin sensitivity in women with GDM was significantly lower than that observed in those with NGT. Reducing IR and blood lipids in women with GDM could potentially improve maternal and foetal outcomes.

  5. The association between brain-derived neurotrophic factor and central pulse pressure after an oral glucose tolerance test.

    Science.gov (United States)

    Lee, I-Te; Chen, Chen-Huan; Wang, Jun-Sing; Fu, Chia-Po; Lee, Wen-Jane; Liang, Kae-Woei; Lin, Shih-Yi; Sheu, Wayne Huey-Herng

    2018-01-01

    Arterial stiffening blunts postprandial vasodilatation. We hypothesized that brain-derived neurotrophic factor (BDNF) may modulate postprandial central pulse pressure, a surrogate marker for arterial stiffening. A total of 82 non-diabetic subjects received a 75-g oral glucose tolerance test (OGTT) after overnight fasting. Serum BDNF concentrations were determined at 0, 30, and 120min to calculate the area under the curve (AUC). Brachial and central blood pressures were measured using a noninvasive central blood pressure monitor before blood withdrawals at 0 and 120min. With the median AUC of BDNF of 45(ng/ml)∗h as the cutoff value, the central pulse pressure after glucose intake was significantly higher in the subjects with a low BDNF than in those with a high BDNF (63±16 vs. 53±11mmHg, P=0.003), while the brachial pulse pressure was not significantly different between the 2 groups (P=0.099). In a multivariate linear regression model, a lower AUC of BDNF was an independent predictor of a higher central pulse pressure after oral glucose intake (linear regression coefficient-0.202, 95% confidence interval-0.340 to -0.065, P=0.004). After oral glucose challenge, a lower serum BDNF response is significantly associated with a higher central pulse pressure. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Fasting serum glucose and glycosylated hemoglobin level in obesity.

    Science.gov (United States)

    Das, R K; Nessa, A; Hossain, M A; Siddiqui, N I; Hussain, M A

    2014-04-01

    Obesity is a condition in which the body fat stores are increased to an extent which impairs health and leads to serious health consequences. The amount of body fat is difficult to measure directly, and is usually determined from an indirect measure - the body mass index (BMI). Increased BMI in obese persons is directly associated with an increase in metabolic disease, such as type 2 diabetes mellitus. This Analytical cross sectional study was undertaken to assess the relation between obesity and glycemic control of body by measuring fasting serum glucose and glycosylated hemoglobin. This study was carried out in the Department of Physiology, Mymensingh Medical College, Mymensingh from 1st July 2011 to 30th June 2012 on 120 equally divided male and female persons within the age range of 25 to 55 years. Age more than 55 years and less than 25 years and diagnosed case of Hypothyroidism, Cushing's syndrome, polycystic ovary, Antipsychotic drug user and regular steroid users were excluded. Non probability purposive type of sampling technique was used for selecting the study subjects. Measurement of body mass index was done as per procedure. Fasting serum glucose was estimated by glucose oxidase method and Glycosylated hemoglobin by Boronate Affinity method. Statistical analysis was done by SPSS (version 17.0). Data were expressed as Mean±SE and statistical significance of difference among the groups were calculated by unpaired student's 't' test and Pearson's correlation coefficient tests were done as applicable. The Mean±SE of fasting serum glucose was significant at 1% level (P value obese group of BMI. There was no significant difference of glycosylated hemoglobin level between control and study groups. But there was positive correlation within each group. Fasting serum glucose also showed a bit stronger positive correlation with BMI. Both obese male and female persons showed higher levels of fasting serum glucose and glycosylated hemoglobin. The observed positive

  7. Platinum decorated carbon nanotubes for highly sensitive amperometric glucose sensing

    International Nuclear Information System (INIS)

    Xie Jining; Wang Shouyan; Aryasomayajula, L; Varadan, V K

    2007-01-01

    Fine platinum nanoparticles (1-5 nm in diameter) were deposited on functionalized multi-walled carbon nanotubes (MWNTs) through a decoration technique. A novel type of enzymatic Pt/MWNTs paste-based mediated glucose sensor was fabricated. Electrochemical measurements revealed a significantly improved sensitivity (around 52.7 μA mM -1 cm -2 ) for glucose sensing without using any picoampere booster or Faraday cage. In addition, the calibration curve exhibited a good linearity in the range of 1-28 mM of glucose concentration. Transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) were performed to investigate the nanoscale structure and the chemical bonding information of the Pt/MWNTs paste-based sensing material, respectively. The improved sensitivity of this novel glucose sensor could be ascribed to its higher electroactive surface area, enhanced electron transfer, efficient enzyme immobilization, unique interaction in nanoscale and a synergistic effect on the current signal from possible multi-redox reactions

  8. Glucose turnover, oxidation, and indices of recycling in severely traumatized patients

    Energy Technology Data Exchange (ETDEWEB)

    Jeevanandam, M.; Young, D.H.; Schiller, W.R. (St. Joseph' s Hospital Medical Center, Phoenix, AZ (USA))

    1990-05-01

    Hyperglycemia is often seen in trauma patients and its etiology is not clearly understood. We have determined parameters of glucose metabolism by using simultaneous primed-constant intravenous infusion of both (6-3H) glucose and (U-14C) glucose in ten severely traumatized hypermetabolic subjects during the early flow phase of injury and in six post-absorptive normal volunteers. The mean rate of glucose production (determined by means of (6-3H) glucose) was 3.96 +/- 0.40 mg/kg/min in trauma patients, which was significantly (p = 0.025) higher than the value of 2.75 +/- 0.13 observed in normal volunteers. Glucose turnover rates determined with (U-14C) glucose as tracer were lower in all subjects. The difference between the turnover rates determined by the two tracers represents an index of recycling of glucose through three-carbon fragments. This recycling index was similar in both groups of subjects in amount (0.24 +/- 0.07 vs. 0.26 +/- 0.08 mg glucose/kg/min) but different when expressed as percentage of total glucose turnover (5.6 +/- 1.4% vs. 9.8 +/- 1.7%; p = 0.05). The absolute rates of glucose clearance, oxidation, and recycling were similar in stressed trauma patients and unstressed controls although the rate of production was increased by 44% due to injury. Post-trauma hyperglycemia was mainly due to an increased hepatic output of glucose and not due to a decreased ability of the tissue to extract glucose from the plasma. Hyperglycemia may be the driving force in the metabolic effects of injury.

  9. Glucose turnover, oxidation, and indices of recycling in severely traumatized patients

    International Nuclear Information System (INIS)

    Jeevanandam, M.; Young, D.H.; Schiller, W.R.

    1990-01-01

    Hyperglycemia is often seen in trauma patients and its etiology is not clearly understood. We have determined parameters of glucose metabolism by using simultaneous primed-constant intravenous infusion of both [6-3H] glucose and [U-14C] glucose in ten severely traumatized hypermetabolic subjects during the early flow phase of injury and in six post-absorptive normal volunteers. The mean rate of glucose production (determined by means of [6-3H] glucose) was 3.96 +/- 0.40 mg/kg/min in trauma patients, which was significantly (p = 0.025) higher than the value of 2.75 +/- 0.13 observed in normal volunteers. Glucose turnover rates determined with [U-14C] glucose as tracer were lower in all subjects. The difference between the turnover rates determined by the two tracers represents an index of recycling of glucose through three-carbon fragments. This recycling index was similar in both groups of subjects in amount (0.24 +/- 0.07 vs. 0.26 +/- 0.08 mg glucose/kg/min) but different when expressed as percentage of total glucose turnover (5.6 +/- 1.4% vs. 9.8 +/- 1.7%; p = 0.05). The absolute rates of glucose clearance, oxidation, and recycling were similar in stressed trauma patients and unstressed controls although the rate of production was increased by 44% due to injury. Post-trauma hyperglycemia was mainly due to an increased hepatic output of glucose and not due to a decreased ability of the tissue to extract glucose from the plasma. Hyperglycemia may be the driving force in the metabolic effects of injury

  10. Glucose effects on long-term memory performance: duration and domain specificity.

    Science.gov (United States)

    Owen, Lauren; Finnegan, Yvonne; Hu, Henglong; Scholey, Andrew B; Sünram-Lea, Sandra I

    2010-08-01

    Previous research has suggested that long-term verbal declarative memory is particularly sensitive to enhancement by glucose loading; however, investigation of glucose effects on certain memory domains has hitherto been neglected. Therefore, domain specificity of glucose effects merits further elucidation. The aim of the present research was to provide a more comprehensive investigation of the possible effects of glucose administration on different aspects of memory by 1) contrasting the effect of glucose administration on different memory domains (implicit/explicit memory; verbal/non-verbal memory, and recognition/familiarity processes), 2) investigating whether potential effects on memory domains differ depending on the dose of glucose administered (25 g versus 60 g), 3) exploring the duration of the glucose facilitation effect (assessment of memory performance 35 min and 1 week after encoding). A double-blind between-subjects design was used to test the effects of administration of 25 and 60 g glucose on memory performance. Implicit memory was improved following administration of 60 g of glucose. Glucose supplementation failed to improve face recognition performance but significantly improved performance of word recall and recognition following administration of 60 g of glucose. However, effects were not maintained 1 week following encoding. Improved implicit memory performance following glucose administration has not been reported before. Furthermore, the current data tentatively suggest that level of processing may determine the required glucose dosage to demonstrate memory improvement and that higher dosages may be able to exert effects on memory pertaining to both hippocampal and non-hippocampal brain regions.

  11. Effect of ground cinnamon on postprandial blood glucose concentration in normal-weight and obese adults.

    Science.gov (United States)

    Magistrelli, Ashley; Chezem, Jo Carol

    2012-11-01

    In healthy normal-weight adults, cinnamon reduces blood glucose concentration and enhances insulin sensitivity. Insulin resistance, resulting in increased fasting and postprandial blood glucose and insulin levels, is commonly observed in obese individuals. The objective of the study was to compare declines in postprandial glycemic response in normal-weight and obese subjects with ingestion of 6 g ground cinnamon. In a crossover study, subjects consumed 50 g available carbohydrate in instant farina cereal, served plain or with 6 g ground cinnamon. Blood glucose concentration, the main outcome measure, was assessed at minutes 0, 15, 30, 45, 60, 90, and 120. Repeated-measures analysis of variance evaluated the effects of body mass index (BMI) group, dietary condition, and time on blood glucose. Paired t-test assessed blood glucose at individual time points and glucose area under the curve (AUC) between dietary conditions. Thirty subjects between the ages of 18 and 30 years, 15 with BMIs between 18.5 and 24.9 and 15 with BMIs of 30.0 or more, completed the study. There was no significant difference in blood glucose between the two BMI groups at any time point. However, in a combined analysis of all subjects, the addition of cinnamon to the cereal significantly reduced 120-minute glucose AUC (P=0.008) and blood glucose at 15 (P=0.001), 30 (Pblood glucose was significantly higher with cinnamon consumption (Pglucose response in normal weight and obese adults. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  12. Weight-related differences in glucose metabolism and free fatty acid production in two South African population groups.

    Science.gov (United States)

    Punyadeera, C; van der Merwe, M T; Crowther, N J; Toman, M; Immelman, A R; Schlaphoff, G P; Gray, I P

    2001-08-01

    The effects of free fatty acids (FFA), leptin, tumour necrosis factor (TNF) alpha and body fat distribution on in vivo oxidation of a glucose load were studied in two South African ethnic groups. Anthropometric and various metabolic indices were measured at fasting and during a 7 h oral glucose tolerance test (OGTT). Body composition was measured using bioelectrical impedance analysis and subcutaneous and visceral fat mass was assessed using a five- and two-level CT-scan respectively. Glucose oxidation was evaluated by measuring the ratio of (13)CO(2) to (12)CO(2) in breath following ingestion of 1-(13)C-labelled glucose. Ten lean black women (LBW), ten obese black women (OBW), nine lean white women (LWW) and nine obese white women (OWW) were investigated after an overnight fast. Visceral fat levels were significantly higher (Pdifferences in glucose oxidation however; in the lean subjects of both ethnic groups the area under the curve (AUC) was higher than in obese subjects (Pgroups. Percentage suppression of FFAs at 30 min of the OGTT was 24+/-12% in OWW and -38+/-23% (Pgroup. AUC for FFAs during the late postprandial period (120--420 min) was significantly higher in OWW than OBW (Pgroups compared to the lean women. Glucose oxidation is reduced in obese subjects of both ethnic groups; inter- and intra-ethnic differences were observed in visceral fat mass and FFA production and it is possible that such differences may play a role in the differing prevalences of obesity-related disorders that have been reported in these two populations.

  13. A Computer-Based Glucose Management System Reduces the Incidence of Forgotten Glucose Measurements: A Retrospective Observational Study.

    Science.gov (United States)

    Okura, Tsuyoshi; Teramoto, Kei; Koshitani, Rie; Fujioka, Yohei; Endo, Yusuke; Ueki, Masaru; Kato, Masahiko; Taniguchi, Shin-Ichi; Kondo, Hiroshi; Yamamoto, Kazuhiro

    2018-04-17

    Frequent glucose measurements are needed for good blood glucose control in hospitals; however, this requirement means that measurements can be forgotten. We developed a novel glucose management system using an iPod ® and electronic health records. A time schedule system for glucose measurement was developed using point-of-care testing, an iPod ® , and electronic health records. The system contains the glucose measurement schedule and an alarm sounds if a measurement is forgotten. The number of times measurements were forgotten was analyzed. Approximately 7000 glucose measurements were recorded per month. Before implementation of the system, the average number of times measurements were forgotten was 4.8 times per month. This significantly decreased to 2.6 times per month after the system started. We also analyzed the incidence of forgotten glucose measurements as a proportion of the total number of measurements for each period and found a significant difference between the two 9-month periods (43/64,049-24/65,870, P = 0.014, chi-squared test). This computer-based blood glucose monitoring system is useful for the management of glucose monitoring in hospitals. Johnson & Johnson Japan.

  14. Type 2 Diabetes Mellitus and Simple Glucose Metabolism Parameters may Reliably Predict Nonalcoholic Fatty Liver Disease Features.

    Science.gov (United States)

    Cazzo, Everton; Jimenez, Laísa Simakawa; Gestic, Martinho Antonio; Utrini, Murillo Pimentel; Chaim, Fábio Henrique Mendonça; Chaim, Felipe David Mendonça; Pareja, José Carlos; Chaim, Elinton Adami

    2018-01-01

    This study aims to investigate the correlation between features of NAFLD among individuals with morbid obesity and the surrogate IR markers homeostasis model assessment (HOMA), product of triglycerides and glucose (TyG), and triglyceride-to-high-density-lipoprotein ratio (TG/HDL-c). A cross-sectional study, which enrolled 89 individuals who consecutively underwent bariatric surgery from February through December 2015, was conducted. NAFLD was assessed through histological examination of liver biopsies and correlated with the values of HOMA, TyG, and TG/HDL-c and their respective cutoff points for insulin resistance (IR). xThe prevalence of liver steatosis was 68.5%; the affected individuals presented significantly higher fasting glucose levels (p diabetes mellitus (T2DM) (p < 0.001). Fibrosis occurred in 66.3% of the individuals and was significantly associated with higher levels of HbA1c (p < 0.05) and a higher prevalence of T2DM (p < 0.05). Steatohepatitis was present in 64% of the individuals and was significantly associated with older age (p < 0.05), higher levels of fasting glucose (p < 0.05), and a higher prevalence of T2DM (p < 0.001). After Bonferroni's adjustment, T2DM was significantly correlated with fibrosis (p < 0.01) and steatohepatitis (p < 0.001) and older age was significantly correlated with fibrosis (p < 0.05). T2DM was the only variable independently associated with fibrosis and steatohepatitis (p < 0.05 in both cases). T2DM was a significant predictor of NAFLD features among individuals undergoing bariatric surgery; higher Hb A1c was correlated with fibrosis. T2DM was independently associated with fibrosis and steatohepatitis. HOMA, TyG, and TG/HDL-c ratio did not present significant associations with NAFLD.

  15. Trajectories of BMI change impact glucose and insulin metabolism.

    Science.gov (United States)

    Walsh, E I; Shaw, J; Cherbuin, N

    2018-03-01

    The aim of this study was to examine, in a community setting, whether trajectory of weight change over twelve years is associated with glucose and insulin metabolism at twelve years. Participants were 532 community-living middle-aged and elderly adults from the Personality and Total Health (PATH) Through Life study. They spanned the full weight range (underweight/normal/overweight/obese). Latent class analysis and multivariate generalised linear models were used to investigate the association of Body Mass Index (BMI, kg/m 2 ) trajectory over twelve years with plasma insulin (μlU/ml), plasma glucose (mmol/L), and HOMA2 insulin resistance and beta cell function at follow-up. All models were adjusted for age, gender, hypertension, pre-clinical diabetes status (normal fasting glucose or impaired fasting glucose) and physical activity. Four weight trajectories were extracted; constant normal (mean baseline BMI = 25; follow-up BMI = 25), constant high (mean baseline BMI = 36; follow-up BMI = 37), increase (mean baseline BMI = 26; follow-up BMI = 32) and decrease (mean baseline BMI = 34; follow-up BMI = 28). At any given current BMI, individuals in the constant high and increase trajectories had significantly higher plasma insulin, greater insulin resistance, and higher beta cell function than those in the constant normal trajectory. Individuals in the decrease trajectory did not differ from the constant normal trajectory. Current BMI significantly interacted with preceding BMI trajectory in its association with plasma insulin, insulin resistance, and beta cell function. The trajectory of preceding weight has an independent effect on blood glucose metabolism beyond body weight measured at any given point in time. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier

  16. Shikonin increases glucose uptake in skeletal muscle cells and improves plasma glucose levels in diabetic Goto-Kakizaki rats.

    Directory of Open Access Journals (Sweden)

    Anette I Öberg

    Full Text Available BACKGROUND: There is considerable interest in identifying compounds that can improve glucose homeostasis. Skeletal muscle, due to its large mass, is the principal organ for glucose disposal in the body and we have investigated here if shikonin, a naphthoquinone derived from the Chinese plant Lithospermum erythrorhizon, increases glucose uptake in skeletal muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: Shikonin increases glucose uptake in L6 skeletal muscle myotubes, but does not phosphorylate Akt, indicating that in skeletal muscle cells its effect is medaited via a pathway distinct from that used for insulin-stimulated uptake. Furthermore we find no evidence for the involvement of AMP-activated protein kinase in shikonin induced glucose uptake. Shikonin increases the intracellular levels of calcium in these cells and this increase is necessary for shikonin-mediated glucose uptake. Furthermore, we found that shikonin stimulated the translocation of GLUT4 from intracellular vesicles to the cell surface in L6 myoblasts. The beneficial effect of shikonin on glucose uptake was investigated in vivo by measuring plasma glucose levels and insulin sensitivity in spontaneously diabetic Goto-Kakizaki rats. Treatment with shikonin (10 mg/kg intraperitoneally once daily for 4 days significantly decreased plasma glucose levels. In an insulin sensitivity test (s.c. injection of 0.5 U/kg insulin, plasma glucose levels were significantly lower in the shikonin-treated rats. In conclusion, shikonin increases glucose uptake in muscle cells via an insulin-independent pathway dependent on calcium. CONCLUSIONS/SIGNIFICANCE: Shikonin increases glucose uptake in skeletal muscle cells via an insulin-independent pathway dependent on calcium. The beneficial effects of shikonin on glucose metabolism, both in vitro and in vivo, show that the compound possesses properties that make it of considerable interest for developing novel treatment of type 2 diabetes.

  17. Differences in cardiovascular risk profile based on relationship between post-load plasma glucose and fasting plasma levels.

    Science.gov (United States)

    Succurro, Elena; Marini, Maria Adelaide; Grembiale, Alessandro; Lugarà, Marina; Andreozzi, Francesco; Sciacqua, Angela; Hribal, Marta Letizia; Lauro, Renato; Perticone, Francesco; Sesti, Giorgio

    2009-05-01

    It has been shown that subjects with normal glucose tolerance (NGT), whose plasma glucose (PG) levels do not return to their fasting PG level within 2 h during an oral glucose tolerance test (OGTT) (Group I), have a significantly higher risk to develop type 2 diabetes than NGT subjects whose 2-h glucose returns to, or drops below, the fasting level (Group I). However, it is still unsettled whether individuals in Group II have a more atherogenic profile than Group I subjects. To address this issue, we examined 266 non-diabetic offspring of type 2 diabetic patients, recruited in the context of EUGENE2 cross-sectional study. All subjects underwent an euglycaemic-hyperinsulinemic clamp to assess glucose tolerance and insulin sensitivity. Furthermore, cardiovascular risk factors and ultrasound measurement of carotid intima-media thickness (IMT) were evaluated. Individuals in Group II exhibited significantly higher waist circumference, blood pressure, triglycerides, 2-h post-load PG, hsC-reactive protein, interleukin-6, insulin-like growth factor-1 (IGF-1), IMT, and lower insulin sensitivity than subjects in Group I. Subjects with NGT, whose PG concentration does not return to their fasting PG level within 2 h during OGTT, have an atherogenic profile, suggesting that performing OGTT with measurement of PG every 30 min may be useful to assess the risk for cardiovascular disease in glucose-tolerant subjects.

  18. The acute effect of coffee on endothelial function and glucose metabolism following a glucose load in healthy human volunteers.

    Science.gov (United States)

    Boon, Evan A J; Croft, Kevin D; Shinde, Sujata; Hodgson, Jonathan M; Ward, Natalie C

    2017-09-20

    A diet rich in plant polyphenols has been suggested to reduce the incidence of cardiovascular disease and type 2 diabetes mellitus, in part, via improvements in endothelial function. Coffee is a rich source of phenolic compounds including the phenolic acid, chlorogenic acid (CGA). The aim of the study was to investigate the effect of coffee as a whole beverage on endothelial function, blood pressure and blood glucose concentration. Twelve healthy men and women were recruited to a randomised, placebo-controlled, cross-over study, with three treatments tested: (i) 18 g of ground caffeinated coffee containing 300 mg CGA in 200 mL of hot water, (ii) 18 g of decaffeinated coffee containing 287 mg CGA in 200 mL of hot water, and (iii) 200 mL of hot water (control). Treatment beverages were consumed twice, two hours apart, with the second beverage consumed simultaneously with a 75 g glucose load. Blood pressure was recorded and the finger prick glucose test was performed at time = 0 and then every 30 minutes up to 2 hours. Endothelial function, assessed using flow-mediated dilatation (FMD) of the brachial artery, was measured at 1 hour and a blood sample taken at 2 hours to measure plasma nitrate/nitrite and 5-CGA concentrations. The FMD response was significantly higher in the caffeinated coffee group compared to both decaffeinated coffee and water groups (P coffee and water. Blood glucose concentrations and blood pressure were not different between the three treatment groups. In conclusion, the consumption of caffeinated coffee resulted in a significant improvement in endothelial function, but there was no evidence for benefit regarding glucose metabolism or blood pressure. Although the mechanism has yet to be elucidated the results suggest that coffee as a whole beverage may improve endothelial function, or that caffeine is the component of coffee responsible for improving FMD.

  19. Differences in Body Fat Distribution Play a Role in the Lower Levels of Elevated Fasting Glucose amongst Ghanaian Migrant Women Compared to Men.

    Science.gov (United States)

    Nicolaou, Mary; Kunst, Anton E; Busschers, Wim B; van Valkengoed, Irene G; Dijkshoorn, Henriette; Boateng, Linda; Brewster, Lizzy M; Snijder, Marieke B; Stronks, Karien; Agyemang, Charles

    2013-01-01

    Despite higher levels of obesity, West African migrant women appear to have lower rates of type 2 diabetes than their male counterparts. We investigated the role of body fat distribution in these differences. Cross-sectional study of Ghanaian migrants (97 men, 115 women) aged 18-60 years in Amsterdam, the Netherlands. Weight, height, waist and hip circumferences were measured. Logistic regression was used to explore the association of BMI, waist and hip measurements with elevated fasting glucose (glucose≥5.6 mmol/L). Linear regression was used to study the association of the same parameters with fasting glucose. Mean BMI, waist and hip circumferences were higher in women than men while the prevalence of elevated fasting glucose was higher in men than in women, 33% versus 19%. With adjustment for age only, men were non-significantly more likely than women to have an elevated fasting glucose, odds ratio (OR) 1.81, 95% CI: 0.95, 3.46. With correction for BMI, the higher odds among men increased and were statistically significant (OR 2.84, 95% CI: 1.32, 6.10), but with consideration of body fat distribution (by adding both hip and waist in the analysis) differences were no longer significant (OR 1.56 95% CI: 0.66, 3.68). Analysis with fasting glucose as continuous outcome measure showed somewhat similar results. Compared to men, the lower rates of elevated fasting glucose observed among Ghanaian women may be partly due to a more favorable body fat distribution, characterized by both hip and waist measurements.

  20. Differences in Body Fat Distribution Play a Role in the Lower Levels of Elevated Fasting Glucose amongst Ghanaian Migrant Women Compared to Men.

    Directory of Open Access Journals (Sweden)

    Mary Nicolaou

    Full Text Available Despite higher levels of obesity, West African migrant women appear to have lower rates of type 2 diabetes than their male counterparts. We investigated the role of body fat distribution in these differences.Cross-sectional study of Ghanaian migrants (97 men, 115 women aged 18-60 years in Amsterdam, the Netherlands. Weight, height, waist and hip circumferences were measured. Logistic regression was used to explore the association of BMI, waist and hip measurements with elevated fasting glucose (glucose≥5.6 mmol/L. Linear regression was used to study the association of the same parameters with fasting glucose.Mean BMI, waist and hip circumferences were higher in women than men while the prevalence of elevated fasting glucose was higher in men than in women, 33% versus 19%. With adjustment for age only, men were non-significantly more likely than women to have an elevated fasting glucose, odds ratio (OR 1.81, 95% CI: 0.95, 3.46. With correction for BMI, the higher odds among men increased and were statistically significant (OR 2.84, 95% CI: 1.32, 6.10, but with consideration of body fat distribution (by adding both hip and waist in the analysis differences were no longer significant (OR 1.56 95% CI: 0.66, 3.68. Analysis with fasting glucose as continuous outcome measure showed somewhat similar results.Compared to men, the lower rates of elevated fasting glucose observed among Ghanaian women may be partly due to a more favorable body fat distribution, characterized by both hip and waist measurements.

  1. Parsing glucose entry into the brain: novel findings obtained with enzyme-based glucose biosensors.

    Science.gov (United States)

    Kiyatkin, Eugene A; Wakabayashi, Ken T

    2015-01-21

    Extracellular levels of glucose in brain tissue reflect dynamic balance between its gradient-dependent entry from arterial blood and its use for cellular metabolism. In this work, we present several sets of previously published and unpublished data obtained by using enzyme-based glucose biosensors coupled with constant-potential high-speed amperometry in freely moving rats. First, we consider basic methodological issues related to the reliability of electrochemical measurements of extracellular glucose levels in rats under physiologically relevant conditions. Second, we present data on glucose responses induced in the nucleus accumbens (NAc) by salient environmental stimuli and discuss the relationships between local neuronal activation and rapid glucose entry into brain tissue. Third, by presenting data on changes in NAc glucose induced by intravenous and intragastric glucose delivery, we discuss other mechanisms of glucose entry into the extracellular domain following changes in glucose blood concentrations. Lastly, by showing the pattern of NAc glucose fluctuations during glucose-drinking behavior, we discuss the relationships between "active" and "passive" glucose entry to the brain, its connection to behavior-related metabolic activation, and the possible functional significance of these changes in behavioral regulation. These data provide solid experimental support for the "neuronal" hypothesis of neurovascular coupling, which postulates the critical role of neuronal activity in rapid regulation of vascular tone, local blood flow, and entry of glucose and oxygen to brain tissue to maintain active cellular metabolism.

  2. Frequency of diabetes, impaired fasting glucose, and glucose intolerance in high-risk groups identified by a FINDRISC survey in Puebla City, Mexico

    Directory of Open Access Journals (Sweden)

    Hirales-Tamez O

    2012-11-01

    Full Text Available Hector García-Alcalá, Christelle Nathalie Genestier-Tamborero, Omara Hirales-Tamez, Jorge Salinas-Palma, Elena Soto-VegaFaculty of Medicine, Universidad Popular Autónoma del Estado de Puebla, Puebla Pue, MexicoBackground: As a first step in the prevention of diabetes, the International Diabetes Federation recommends identification of persons at risk using the Finnish type 2 Diabetes Risk Assessment (FINDRISC survey. The frequency of diabetes mellitus, impaired fasting glucose, and glucose intolerance in high-risk groups identified by FINDRISC is unknown in our country. The aim of this study was to determine the frequency of diabetes mellitus, impaired fasting glucose, and glucose intolerance in higher-risk groups using a FINDRISC survey in an urban population.Methods: We used a television program to invite interested adults to fill out a survey at a television station. An oral glucose tolerance test was performed in all persons with a FINDRISC score ≥ 15 points (high-risk and very high-risk groups. Patients were classified as normal (fasting glucose < 100 mg/dL and 2-hour glucose < 140 mg/dL, or having impaired fasting glucose (fasting glucose 100–125 mg/dL and 2-hour glucose < 140 mg/dL, glucose intolerance (fasting glucose < 126 mg/dL and 2-hour glucose 140–199 mg/dL, and diabetes mellitus (fasting glucose ≥ 126 mg/dL or 2-hour glucose ≥ 200 mg/dL. We describe the frequency of each diagnostic category in this selected population according to gender and age.Results: A total of 186 patients had a score ≥ 15. The frequencies of diabetes mellitus, impaired fasting glucose, glucose intolerance, and normal glucose levels were 28.6%, 25.9%, 29.2%, and 16.2%, respectively. We found a higher frequency of diabetes mellitus and impaired fasting glucose in men than in women (33% versus 27% and 40% versus 21%, respectively and more glucose intolerance in women than in men (34% versus 16%, P < 0.05. Patients with diabetes mellitus (52.55 ± 9

  3. Construction of near-infrared photonic crystal glucose-sensing materials for ratiometric sensing of glucose in tears.

    Science.gov (United States)

    Hu, Yumei; Jiang, Xiaomei; Zhang, Laiying; Fan, Jiao; Wu, Weitai

    2013-10-15

    Noninvasive monitoring of glucose in tears is highly desirable in tight glucose control. The polymerized crystalline colloidal array (PCCA) that can be incorporated into contact lens represents one of the most promising materials for noninvasive monitoring of glucose in tears. However, low sensitivity and slow time response of the PCCA reported in previous arts has limited its clinical utility. This paper presents a new PCCA, denoted as NIR-PCCA, comprising a CCA of glucose-responsive sub-micrometered poly(styrene-co-acrylamide-co-3-acrylamidophenylboronic acid) microgels embedded within a slightly positive charged hydrogel matrix of poly(acrylamide-co-2-(dimethylamino)ethyl acrylate). This newly designed NIR-PCCA can reflect near-infrared (NIR) light, whose intensity (at 1722 nm) would decrease evidently with increasing glucose concentration over the physiologically relevant range in tears. The lowest glucose concentration reliably detectable was as low as ca. 6.1 μg/dL. The characteristic response time τ(sensing) was 22.1±0.2s when adding glucose to 7.5 mg/dL, and the higher the glucose concentration is, the faster the time response. Such a rationally designed NIR-PCCA is well suited for ratiometric NIR sensing of tear glucose under physiological conditions, thereby likely to bring this promising glucose-sensing material to the forefront of analytical devices for diabetes. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Correlation between Salivary Glucose and Blood Glucose and the Implications of Salivary Factors on the Oral Health Status in Type 2 Diabetes Mellitus Patients.

    Science.gov (United States)

    Puttaswamy, Kavitha A; Puttabudhi, Jaishankar H; Raju, Shashidara

    2017-01-01

    The purpose of this study was to estimate and assess any correlation between random capillary blood glucose (RCBG) and unstimulated whole salivary glucose (UWSG), as well as to estimate various salivary parameters, such as flow rate, pH, buffering capacity, and the influence of these factors on the oral health status in type 2 diabetes mellitus (DM). Sixty individuals suffering from type 2 DM and 40 healthy individuals in the age group of 30-60 years were included in the study. RCBG was estimated using glucometer and UWSG was estimated using photocolorimeter. Salivary parameters such as flow rate, pH, and buffering capacity were assessed using GC ® Saliva kit. Oral health status was recorded using the Russell's periodontal index (RPI) and the Decayed Missing Filled Teeth (DMFT) index. The Statistical Package for the Social Sciences version 16 was used for statistical analysis. Type 2 diabetics had higher mean values for RCBG levels and UWSG. Type 2 diabetics had low mean salivary flow rate, pH, and buffering capacity. Type 2 diabetics had higher mean values for RPI. Among the salivary factors studied, salivary glucose significantly influenced the periodontal status in Type 2 diabetics.

  5. Stimulation of glucose phosphorylation by fructose in isolated rat hepatocytes.

    Science.gov (United States)

    Van Schaftingen, E; Vandercammen, A

    1989-01-15

    The phosphorylation of glucose was measured by the formation of [3H]H2O from [2-3H]glucose in suspensions of freshly isolated rat hepatocytes. Fructose (0.2 mM) stimulated 2-4-fold the rate of phosphorylation of 5 mM glucose although not of 40 mM glucose, thus increasing the apparent affinity of the glucose phosphorylating system. A half-maximal stimulatory effect was observed at about 50 microM fructose. Stimulation was maximal 5 min after addition of the ketose and was stable for at least 40 min, during which period 60% of the fructose was consumed. The effect of fructose was reversible upon removal of the ketose. Sorbitol and tagatose were as potent as fructose in stimulating the phosphorylation of 5 mM glucose. D-Glyceraldehyde also had a stimulatory effect but at tenfold higher concentrations. In contrast, dihydroxyacetone had no significant effect and glycerol inhibited the detritiation of glucose. Oleate did not affect the phosphorylation of glucose, even in the presence of fructose, although it stimulated the formation of ketone bodies severalfold, indicating that it was converted to its acyl-CoA derivative. These results allow the conclusion that fructose stimulates glucokinase in the intact hepatocyte. They also suggest that this effect is mediated through the formation of fructose 1-phosphate, which presumably interacts with a competitive inhibitor of glucokinase other than long-chain acyl-CoAs.

  6. Glucose-induced effects and joker function of glucose: endocrine or genotoxic prevalence?

    Science.gov (United States)

    Berstein, L M; Vasilyev, D A; Poroshina, T E; Kovalenko, I G

    2006-10-01

    The steady increase in chronic "glycemic load" is characteristic for modern times. Among myriad of glucose functions, two principals can be emphasized: first, endocrine (in particular, ability to induce insulin secretion) and second, DNA-damaging related to formation of reactive oxygen species (ROS). It was suggested by us earlier that a shift in the ratio of mentioned functions reflects a possible "joker" role of glucose as an important modifier of human pathology. Therefore, we embarked on a study to investigate an individual effect of peroral glucose challenge on serum insulin level and ROS generation by mononuclears (luminol-dependent/latex-induced chemiluminescence) in 20 healthy people aged between 28-75. Concentrations of glucose, blood lipids, carbonylated proteins, malondialdehyde, leptin and TNF-alpha were determined as well. On the basis of received data two separate groups could be distinguished: one (n=8), in which glucose stimulation of ROS generation by mononuclears was increased and relatively prevailed over induction of insulin secretion (state of the so called glucose-induced genotoxicity, GIGT), and another (n=12), in which signs of GIGT were not revealed. People who belonged to the first group were characterized with a tendency to lower body mass index, blood leptin and cholesterol and to higher TNF-alpha concentration. Thus, if joker function of glucose is realized in "genotoxic mode", the phenotype (and probably genotype) of subjects may be rather distinctive to the one discovered in glucose-induced "endocrine prevalence". Whether such changes may serve as a pro-mutagenic or pro-endocrine basis for the rise of different chronic diseases or, rather, different features/aggressiveness of the same disease warrants further study.

  7. Impaired glucose tolerance in first-episode drug-naïve patients with schizophrenia: relationships with clinical phenotypes and cognitive deficits.

    Science.gov (United States)

    Chen, D C; Du, X D; Yin, G Z; Yang, K B; Nie, Y; Wang, N; Li, Y L; Xiu, M H; He, S C; Yang, F D; Cho, R Y; Kosten, T R; Soares, J C; Zhao, J P; Zhang, X Y

    2016-11-01

    Schizophrenia patients have a higher prevalence of type 2 diabetes mellitus with impaired glucose tolerance (IGT) than normals. We examined the relationship between IGT and clinical phenotypes or cognitive deficits in first-episode, drug-naïve (FEDN) Han Chinese patients with schizophrenia. A total of 175 in-patients were compared with 31 healthy controls on anthropometric measures and fasting plasma levels of glucose, insulin and lipids. They were also compared using a 75 g oral glucose tolerance test and the homeostasis model assessment of insulin resistance (HOMA-IR). Neurocognitive functioning was assessed using the MATRICS Consensus Cognitive Battery (MCCB). Patient psychopathology was assessed using the Positive and Negative Syndrome Scale (PANSS). Of the patients, 24.5% had IGT compared with none of the controls, and they also had significantly higher levels of fasting blood glucose and 2-h glucose after an oral glucose load, and were more insulin resistant. Compared with those patients with normal glucose tolerance, the IGT patients were older, had a later age of onset, higher waist or hip circumference and body mass index, higher levels of low-density lipoprotein and triglycerides and higher insulin resistance. Furthermore, IGT patients had higher PANSS total and negative symptom subscale scores, but no greater cognitive impairment except on the emotional intelligence index of the MCCB. IGT occurs with greater frequency in FEDN schizophrenia, and shows association with demographic and anthropometric parameters, as well as with clinical symptoms but minimally with cognitive impairment during the early course of the disorder.

  8. Effect of ezetimibe on lipid and glucose metabolism after a fat and glucose load.

    Science.gov (United States)

    Hiramitsu, Shinya; Miyagishima, Kenji; Ishii, Junichi; Matsui, Shigeru; Naruse, Hiroyuki; Shiino, Kenji; Kitagawa, Fumihiko; Ozaki, Yukio

    2012-11-01

    The clinical benefit of ezetimibe, an intestinal cholesterol transporter inhibitor, for treatment of postprandial hyperlipidemia was assessed in subjects who ingested a high-fat and high-glucose test meal to mimic westernized diet. We enrolled 20 male volunteers who had at least one of the following: waist circumference ≥ 85 cm, body mass index ≥ 25 kg/m(2), or triglycerides (TG) from 150 to 400mg/dL. After 4 weeks of treatment with ezetimibe (10mg/day), the subjects ingested a high-fat and high-glucose meal. Then changes in serum lipid and glucose levels were monitored after 0, 2, 4, and 6h, and the area under the curve (AUC) was calculated for the change in each parameter. At 4 and 6h postprandially, TG levels were decreased (pAUC for TG was also decreased (pAUC for apo-B48 was also significantly decreased (pBlood glucose and insulin levels at 2h postprandially were significantly decreased by ezetimibe (pAUCs for blood glucose and insulin were also significantly decreased (pglucose metabolism, this drug is likely to be beneficial for dyslipidemia in patients with postprandial metabolic abnormalities. Copyright © 2012 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  9. Impact of Glucose Tolerance Status, Sex, and Body Size on Glucose Absorption Patterns During OGTTs

    DEFF Research Database (Denmark)

    Faerch, K.; Pacini, G.; Nolan, J. J.

    2013-01-01

    OBJECTIVEWe studied whether patterns of glucose absorption during oral glucose tolerance tests (OGTTs) were abnormal in individuals with impaired glucose regulation and whether they were related to sex and body size (height and fat-free mass). We also examined how well differences in insulin......, reflected the differences for these parameters between those with normal and impaired glucose regulation as measured by gold-standard tests.CONCLUSIONSGlucose absorption patterns during an OGTT are significantly related to plasma glucose levels and body size, which should be taken into account when.......RESULTSMore rapid glucose absorption (P 0.036) and reduced late glucose absorption (P 0.039) were observed in the i-IFG group relative to NGT and i-IGT groups. Women with i-IGT had a lower early glucose absorption than did men with i-IGT (P = 0.041); however, this difference did not persist when differences in body...

  10. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... EXPO Volunteer Opportunities Sponsorship and Exhibit Opportunities Camp ... when ketones are present may make your blood glucose level go even higher. You'll need to work with your doctor ...

  11. The progression from a lower to a higher invasive stage of bladder cancer is associated with severe alterations in glucose and pyruvate metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Vanessa R. [CICS-UBI–Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Oliveira, Pedro F. [CICS-UBI–Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences, University of Porto – UMIB/ICBAS/UP (Portugal); Nunes, Ana R.; Rocha, Cátia S. [CICS-UBI–Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Ramalhosa, Elsa; Pereira, José A. [Mountain Research Centre (CIMO), School of Agriculture, Polytechnic Institute of Bragança (Portugal); Alves, Marco G., E-mail: alvesmarc@gmail.com [CICS-UBI–Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Silva, Branca M., E-mail: bmcms@ubi.pt [CICS-UBI–Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal)

    2015-07-01

    Cancer cells present a particular metabolic behavior. We hypothesized that the progression of bladder cancer could be accompanied by changes in cells glycolytic profile. We studied two human bladder cancer cells, RT4 and TCCSUP, in which the latter represents a more invasive stage. The levels of glucose, pyruvate, alanine and lactate in the extracellular media were measured by Proton Nuclear Magnetic Resonance. The protein expression levels of glucose transporters 1 (GLUT1) and 3 (GLUT3), monocarboxylate transporter 4 (MCT4), phosphofructokinase-1 (PFK1), glutamic-pyruvate transaminase (GPT) and lactate dehydrogenase (LDH) were determined. Our data showed that glucose consumption and GLUT3 levels were similar in both cell lines, but TCCSUP cells displayed lower levels of GLUT1 and PFK expression. An increase in pyruvate consumption, concordant with the higher levels of lactate and alanine production, was also detected in TCCSUP cells. Moreover, TCCSUP cells presented lower protein expression levels of GPT and LDH. These results illustrate that bladder cancer progression is associated with alterations in cells glycolytic profile, namely the switch from glucose to pyruvate consumption in the more aggressive stage. This may be useful to develop new therapies and to identify biomarkers for cancer progression. - Highlights: • Metabolic phenotype of less and high invasive bladder cancer cells was studied. • Bladder cancer progression involves alterations in cells glycolytic profile. • More invasive bladder cancer cells switch from glucose to pyruvate consumption. • Our results may help to identify metabolic biomarkers of bladder cancer progression.

  12. Insulin resistance, β-cell dysfunction and differences in curves of plasma glucose and insulin in the intermediate points of the standard glucose tolerance test in adults with cystic fibrosis.

    Science.gov (United States)

    Cano Megías, Marta; González Albarrán, Olga; Guisado Vasco, Pablo; Lamas Ferreiro, Adelaida; Máiz Carro, Luis

    2015-02-01

    diabetes has become a co-morbidity with a negative impact on nutritional status, lung function and survival in cystic fibrosis. To identify any changes in intermediate points after a 2-hour oral glucose tolerance test (OGTT), pancreatic β-cell dysfunction, and insulin resistance in cystic fibrosis-related diabetes. It was carried out a retrospective analysis in a cohort of 64 patients affected of cystic fibrosis, older than 14 years, using the first pathological OGTT. Peripheral insulin resistance was measured using the homeostasis model assessment for insulin resistance (HOMA- IR), and pancreatic β-cell function was calculated according to Wareham. Time to maximum plasma insulin and glucose levels and area under the curve (AUC0-120) were also measured. Twenty-eight women and 36 men with a mean age of 26.8 years were enrolled, of whom 26.7% had normal glucose tolerance (NGT), 18.3% cystic fibrosis-related diabetes without fasting hyperglycemia (CFRD w/o FPG), 10% indeterminate (INDET), and 45% impaired glucose tolerance (IGT). HOMA-IR values were not significantly different between the diagnostic categories. Patients with any pathological change had worse β cell function, with a significant delay in insulin secretion, although there were no differences in total insulin production (AUC0-120). Time to maximum glucose levels was significantly shorter in NGT patients as compared to other categories, with glucose AUC0-120 being higher in the different diagnostic categories as compared to NGT. In over half the cases, peak blood glucose levels during a standard OGTT are reached in the intermediate time points, rather than at the usual time of 120minutes. Patients with cystic fibrosis and impaired glucose metabolism have a delayed insulin secretion during the standard OGTT due to loss of first-phase insulin secretion, with no differences in total insulin production. Absence of significant changes in HOMA-IR suggests that β-cell dysfunction is the main pathogenetic

  13. Personalized State-space Modeling of Glucose Dynamics for Type 1 Diabetes Using Continuously Monitored Glucose, Insulin Dose, and Meal Intake

    Science.gov (United States)

    Molenaar, Peter; Harsh, Saurabh; Freeman, Kenneth; Xie, Jinyu; Gold, Carol; Rovine, Mike; Ulbrecht, Jan

    2014-01-01

    An essential component of any artificial pancreas is on the prediction of blood glucose levels as a function of exogenous and endogenous perturbations such as insulin dose, meal intake, and physical activity and emotional tone under natural living conditions. In this article, we present a new data-driven state-space dynamic model with time-varying coefficients that are used to explicitly quantify the time-varying patient-specific effects of insulin dose and meal intake on blood glucose fluctuations. Using the 3-variate time series of glucose level, insulin dose, and meal intake of an individual type 1 diabetic subject, we apply an extended Kalman filter (EKF) to estimate time-varying coefficients of the patient-specific state-space model. We evaluate our empirical modeling using (1) the FDA-approved UVa/Padova simulator with 30 virtual patients and (2) clinical data of 5 type 1 diabetic patients under natural living conditions. Compared to a forgetting-factor-based recursive ARX model of the same order, the EKF model predictions have higher fit, and significantly better temporal gain and J index and thus are superior in early detection of upward and downward trends in glucose. The EKF based state-space model developed in this article is particularly suitable for model-based state-feedback control designs since the Kalman filter estimates the state variable of the glucose dynamics based on the measured glucose time series. In addition, since the model parameters are estimated in real time, this model is also suitable for adaptive control. PMID:24876585

  14. Serum Insulin, Glucose, Indices of Insulin Resistance, and Risk of Lung Cancer.

    Science.gov (United States)

    Argirion, Ilona; Weinstein, Stephanie J; Männistö, Satu; Albanes, Demetrius; Mondul, Alison M

    2017-10-01

    Background: Although insulin may increase the risk of some cancers, few studies have examined fasting serum insulin and lung cancer risk. Methods: We examined serum insulin, glucose, and indices of insulin resistance [insulin:glucose molar ratio and homeostasis model assessment of insulin resistance (HOMA-IR)] and lung cancer risk using a case-cohort study within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study of Finnish men. A total of 196 cases and 395 subcohort members were included. Insulin and glucose were measured in fasting serum collected 5 to 12 years before diagnosis. Cox proportional hazards models were utilized to estimate the relative risk of lung cancer. Results: The average time between blood collection and lung cancer was 9.6 years. Fasting serum insulin levels were 8.7% higher in subcohort members than cases. After multivariable adjustment, men in the fourth quartile of insulin had a significantly higher risk of lung cancer than those in the first quartile [HR = 2.10; 95% confidence interval (CI), 1.12-3.94]. A similar relationship was seen with HOMA-IR (HR = 1.83; 95% CI, 0.99-3.38). Risk was not strongly associated with glucose or the insulin:glucose molar ratio ( P trend = 0.55 and P trend = 0.27, respectively). Conclusions: Higher fasting serum insulin concentrations, as well as the presence of insulin resistance, appear to be associated with an elevated risk of lung cancer development. Impact: Although insulin is hypothesized to increase risk of some cancers, insulin and lung cancer remain understudied. Higher insulin levels and insulin resistance were associated with increased lung cancer risk. Although smoking cessation is the best method of lung cancer prevention, other lifestyle changes that affect insulin concentrations and sensitivity may reduce lung cancer risk. Cancer Epidemiol Biomarkers Prev; 26(10); 1519-24. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. Glucose in vaginal secretions before and after oral glucose tolerance testing in women with and without recurrent vulvovaginal candidiasis.

    Science.gov (United States)

    Ehrström, Sophia; Yu, Anna; Rylander, Eva

    2006-12-01

    To measure the change of glucose in vaginal secretions during glucose tolerance testing in women with recurrent vulvovaginal candidiasis and in healthy control subjects. Thirty-eight women with recurrent vulvovaginal candidiasis and 45 healthy, age-matched controls completed a health questionnaire regarding general and gynecologic health and food and alcohol habits. They all underwent an oral glucose tolerance test and a vaginal examination. Vaginal secretion was collected from the proximal part of the vagina. Glucose in plasma and in vaginal secretions were measured at fasting and after 2 hours and analyzed with the hexokinase method. A sample size analysis showed that the number of subjects included in the study was sufficient for a beta value of 0.80, at the significance level of alpha=.05, at a difference in glucose in vaginal secretions of 30% after oral glucose tolerance test. In healthy women, the median level of glucose in vaginal secretions was 5.2 mM before and 3.7 mM after oral glucose tolerance test, and plasma glucose was 5.0 mM before and 5.8 mM after oral glucose tolerance test. No significant difference was seen regarding change of glucose level in vaginal secretions and plasma glucose after testing, compared with before oral glucose tolerance testing. There were no differences between women with recurrent vulvovaginal candidiasis and control subjects regarding change in glucose level in vaginal secretions or in plasma during oral glucose tolerance test. II-2.

  16. Glucose absorption in acute peritoneal dialysis.

    Science.gov (United States)

    Podel, J; Hodelin-Wetzel, R; Saha, D C; Burns, G

    2000-04-01

    During acute peritoneal dialysis (APD), it is known that glucose found in the dialysate solution contributes to the provision of significant calories. It has been well documented in continuous ambulatory peritoneal dialysis (CAPD) that glucose absorption occurs. In APD, however, it remains unclear how much glucose absorption actually does occur. Therefore, the purpose of this study was to determine whether it is appropriate to use the formula used to calculate glucose absorption in CAPD (Grodstein et al) among patients undergoing APD. Actual measurements of glucose absorption (Method I) were calculated in 9 patients undergoing APD treatment for >24 hours who were admitted to the intensive care unit. Glucose absorption using the Grodstein et al formula (Method II) was also determined and compared with the results of actual measurements. The data was then further analyzed based on the factors that influence glucose absorption, specifically dwell time and concentration. The mean total amount of glucose absorbed was 43% +/- 15%. However, when dwell time and concentration were further examined, significant differences were noted. Method I showed a cumulative increase over time. Method II showed that absorption was fixed. This suggests that with the variation in dwell time commonly seen in the acute care setting, the use of Method II may not be accurate. In each of the 2 methods, a significant difference in glucose absorption was noted when comparing the use of 1.5% and 4.25% dialysate concentrations. The established formula designed for CAPD should not be used for calculating glucose absorption in patients receiving APD because variation in dwell time and concentration should be taken into account. Because of the time constraints and staffing required to calculate each exchange individually, combined with the results of the study, we recommend the use of the percentage estimate of 40% to 50%.

  17. Insulin secretion and incretin hormones after oral glucose in non-obese subjects with impaired glucose tolerance

    DEFF Research Database (Denmark)

    Rask, E; Olsson, T; Söderberg, S

    2004-01-01

    of glucose, insulin, C-peptide, GLP-1, and GIP. Insulin secretion (TIS) and insulin sensitivity (OGIS) were assessed using models describing the relationship between glucose, insulin and C-peptide data. These models allowed estimation also of the hepatic extraction of insulin. The age (54.2 +/- 9.7 [mean......Subjects with impaired glucose tolerance (IGT) are usually overweight and exhibit insulin resistance with a defective compensation of insulin secretion. In this study, we sought to establish the interrelation between insulin secretion and insulin sensitivity after oral glucose in non-obese subjects...... over the whole 180-minute period was higher in IGT (26.2 +/- 2.4 v 20.0 +/- 2.0 nmol/L; P =.035). Hepatic insulin extraction correlated linearly with OGIS (r = 0.71; P

  18. Early Glucose Derangement Detected by Continuous Glucose Monitoring and Progression of Liver Fibrosis in Nonalcoholic Fatty Liver Disease: An Independent Predictive Factor?

    Science.gov (United States)

    Schiaffini, Riccardo; Liccardo, Daniela; Alisi, Anna; Benevento, Danila; Cappa, Marco; Cianfarani, Stefano; Nobili, Valerio

    2016-01-01

    Glucose derangement has been reported to increase oxidative stress, one of the most important factors underlying the progression of hepatic fibrosis in adults with nonalcoholic fatty liver disease (NAFLD). To date, careful evaluation of the glucose profile in pediatric NAFLD has not been performed. A total of 30 severely obese children (15 males; mean age 12.87 ± 2.19 years) with biopsy-proven NAFLD were enrolled in this study from September to December 2013. All patients underwent anthropometric and laboratory evaluation, including the oral glucose tolerance test (OGTT) and continuous glucose monitoring (CGM). Our study reveals some differences between OGTT and CGM in detecting NAFLD children with impaired fasting glucose (IFG) and impaired glucose tolerance (IGT). OGTT showed 2 (6.67%) patients with IFG and 1 (3.34%) with IGT, while CGM showed 5 (16.67%) patients with IFG and 6 (20%) with IGT. The daily blood glucose profile positively correlated with the baseline blood glucose (r = 0.39, p = 0.04) and the homeostatic model assessment (r = 0.56, p = 0.05). A positive correlation between hyperglycemia and liver fibrosis was found (r = 0.65, p < 0.05). Mean glucose values (F3-F4 group: 163.2 ± 35.92 mg/dl vs. F1 group: 136.58 ± 46.83 mg/dl and F2 group: 154.12 ± 22.51 mg/dl) and the difference between the minimum and maximum blood glucose levels (F3-F4 group: 110.21 ± 25.26 mg/dl vs. F1 group: 91.67 ± 15.97 mg/dl and F2 group: 92 ± 15.48 mg/dl) were significantly (p < 0.05) higher in the F3-F4 group compared to the F1 and F2 groups. Glucose profile derangement as detected by CGM is associated with the severity of hepatic fibrosis in children with NAFLD. © 2015 S. Karger AG, Basel.

  19. Effects of medetomidine on serum glucose in cattle calves.

    Science.gov (United States)

    Tariq, Muhammad; Kalhoro, Amir Bukhsh; Sarwar, Mian Saeed; Khan, Hamayun; Ahmad, Shakoor; Hassan, Sayed Mubashir; Zahoor, Arshad

    2016-05-01

    An experimental study was carried out to compare physiological effects (serum glucose level) of medetomidine in Red Sindhi cattle calves at three different doses i.e. 8, 10 and 12µg/kg body weight intravenously. Medetomidine produced a dose dependent significant (P<0.01) increase in serum glucose level with a maximum increase observed at 30 minutes with 8µg/kg, 10μg/kg and 12μg/kg body weight respectively. Start of sedation, degree of sedation and total duration of sedation were all dose dependent and the values obtained were significantly (P<0.01) different from each other. It was observed that the sedation was rapid, deep and longer with the higher doses of medetomidine i.e. 12μg/kg. The results of the present study shows that medetomidine is a very effective and safest drug use as sedative for calves which in lower doses (8μg/kg) can be used as a pre-anesthetic and for restraining of the animal, while higher calculated doses (10μg/kg, 12μg/kg) can be used to execute the minor surgical procedures.

  20. The association between estimated average glucose levels and fasting plasma glucose levels

    Directory of Open Access Journals (Sweden)

    Giray Bozkaya

    2010-01-01

    Full Text Available OBJECTIVE: The level of hemoglobin A1c (HbA1c, also known as glycated hemoglobin, determines how well a patient's blood glucose level has been controlled over the previous 8-12 weeks. HbA1c levels help patients and doctors understand whether a particular diabetes treatment is working and whether adjustments need to be made to the treatment. Because the HbA1c level is a marker of blood glucose for the previous 120 days, average blood glucose levels can be estimated using HbA1c levels. Our aim in the present study was to investigate the relationship between estimated average glucose levels, as calculated by HbA1c levels, and fasting plasma glucose levels. METHODS: The fasting plasma glucose levels of 3891 diabetic patient samples (1497 male, 2394 female were obtained from the laboratory information system used for HbA1c testing by the Department of Internal Medicine at the Izmir Bozyaka Training and Research Hospital in Turkey. These samples were selected from patient samples that had hemoglobin levels between 12 and 16 g/dL. The estimated glucose levels were calculated using the following formula: 28.7 x HbA1c - 46.7. Glucose and HbA1c levels were determined using hexokinase and high performance liquid chromatography (HPLC methods, respectively. RESULTS: A strong positive correlation between fasting plasma glucose levels and estimated average blood glucose levels (r=0.757, p<0.05 was observed. The difference was statistically significant. CONCLUSION: Reporting the estimated average glucose level together with the HbA1c level is believed to assist patients and doctors determine the effectiveness of blood glucose control measures.

  1. Thermogenic Effect of Glucose in Hypothyroid Subjects

    Directory of Open Access Journals (Sweden)

    Agnieszka Kozacz

    2014-01-01

    Full Text Available The importance of thyroid hormone, catecholamines, and insulin in modification of the thermogenic effect of glucose (TEG was examined in 34 healthy and 32 hypothyroid subjects. We calculated the energy expenditure at rest and during oral glucose tolerance test. Blood samples for determinations of glucose, plasma insulin, adrenaline (A, and noradrenaline (NA were collected. It was found that TEG was lower in hypothyroid than in control group (19.68±3.90 versus 55.40±7.32 kJ, resp., P<0.0004. Mean values of glucose and insulin areas under the curve were higher in women with hypothyroidism than in control group (286.79±23.65 versus 188.41±15.84 mmol/L·min, P<0.003 and 7563.27±863.65 versus 4987.72±583.88 mU/L·min, P<0.03 resp.. Maximal levels of catecholamines after glucose ingestion were higher in hypothyroid patients than in control subjects (Amax—0.69±0.08 versus 0.30±0.07 nmol/L, P<0.0001, and NAmax—6.42±0.86 versus 2.54±0.30 nmol/L, P<0.0002. It can be concluded that in hypothyroidism TEG and glucose tolerance are decreased while the adrenergic response to glucose administration is enhanced. Presumably, these changes are related to decreased insulin sensitivity and responsiveness to catecholamine action.

  2. Leaves Of Cut Rose Flower Convert Exogenously Applied Glucose To Sucrose And Translocate It To Petals

    Directory of Open Access Journals (Sweden)

    Horibe Takanori

    2014-12-01

    Full Text Available To understand the role that the leaves play in the translocation of soluble carbohydrates in cut rose flowers, we first evaluated the effect of leaf removal on flower quality and the sugar content in petals. Cut rose flowers with leaves had higher soluble sugar content in petals compared with cut flower without leaves. Next, we treated cut flowers with radioactive glucose to clarify translocation routes of exogenously applied sugar. There was no significant difference between the specific radioactivity of sucrose and glucose in leaves, but specific radioactivity of sucrose in petals was much higher than that of glucose. These results suggested that most of the exogenously applied glucose first moved to the leaves, where it was converted into sucrose and then the synthesised sucrose was translocated to the petals. Our results showed that the leaves of cut rose flowers play an important role in the metabolism and transportation of exogenously applied soluble carbohydrates toward the petals, thus contributing to sustaining the post-harvest quality.

  3. Identifying metabolic syndrome in African American children using fasting HOMA-IR in place of glucose.

    Science.gov (United States)

    Sharma, Sushma; Lustig, Robert H; Fleming, Sharon E

    2011-05-01

    Metabolic syndrome (MetS) is increasing among young people. We compared the use of homeostasis model assessment of insulin resistance (HOMA-IR) with the use of fasting blood glucose to identify MetS in African American children. We performed a cross-sectional analysis of data from a sample of 105 children (45 boys, 60 girls) aged 9 to 13 years with body mass indexes at or above the 85th percentile for age and sex. Waist circumference, blood pressure, and fasting levels of blood glucose, insulin, triglycerides, and high-density lipoprotein cholesterol were measured. We found that HOMA-IR is a stronger indicator of MetS in children than blood glucose. Using HOMA-IR as 1 of the 5 components, we found a 38% prevalence of MetS in this sample of African American children and the proportion of false negatives decreased from 94% with blood glucose alone to 13% with HOMA-IR. The prevalence of MetS was higher in obese than overweight children and higher among girls than boys. Using HOMA-IR was preferred to fasting blood glucose because insulin resistance was more significantly interrelated with the other 4 MetS components.

  4. Longer habitual afternoon napping is associated with a higher risk for impaired fasting plasma glucose and diabetes mellitus in older adults: results from the Dongfeng-Tongji cohort of retired workers.

    Science.gov (United States)

    Fang, Weimin; Li, Zhongliang; Wu, Li; Cao, Zhongqiang; Liang, Yuan; Yang, Handong; Wang, Youjie; Wu, Tangchun

    2013-10-01

    Afternoon napping is a common habit in China. We used data obtained from the Dongfeng-Tongji cohort to examine if duration of habitual afternoon napping was associated with risks for impaired fasting plasma glucose (IFG) and diabetes mellitus (DM) in a Chinese elderly population. A total of 27,009 participants underwent a physical examination, laboratory tests, and face-to-face interview. They were categorized into four groups according to nap duration (no napping, or =90 min). Logistic regression models were used to examine the odds ratios (ORs) of napping duration with IFG and DM. Of the participants, 18,515 (68.6%) reported regularly taking afternoon naps. Those with longer nap duration had considerably higher prevalence of IFG and DM. Napping duration was associated in a dose-dependent manner with IFG and DM (Pnap duration (>60 min; all Pnap duration (>30 min) was associated with increased risk for DM; however, this finding was not significant in the group with a nap duration of 60-90 min. Longer habitual afternoon napping was associated with a moderate increase for DM risk, independent of several covariates. This finding suggests that longer nap duration may represent a novel risk factor for DM and higher blood glucose levels. Copyright © 2013. Published by Elsevier B.V.

  5. Screening of Glucose-6-Phosphate Dehydrogenase Deficiency in Cord Blood

    Directory of Open Access Journals (Sweden)

    Can Acipayam

    2014-02-01

    Aim: Glucose-6-phosphate dehydrogenase deficiency is an important factor in etiology of pathologic neonatal jaundice. The aim of this study was to indicate the significance of screening glucose-6-phosphate dehydrogenase deficiency in the cord blood of neonates and the frequency of this deficiency in the etiology of neonatal hyperbilirubinemia. Material and Method: The study was performed consecutive 1015 neonates were included. Five hundred fifty six (54.8% of them were male and 459 (45.2% were female. The following parameters were recorded: Gender, birth weight, birth height, head circumference and gestational age. The glucose-6-phosphate dehydrogenase level of neonates were measured with quantitative method in cord blood. Also, hemoglobine, hematocrite, red blood cell count and blood group were measured. The following parameters were recorded in cases with jaundice: exchange transfusion, phototherapy, physiologic and pathologic jaundice, peak bilirubin day, maximum bilirubin level, total bilirubin level at the first day of jaundice, beginning time of jaundice. Results: Enzyme deficiency was detected in 133 (13.1% of neonates and 76 (57% of them were male, 57 (43% were female. Significant difference was detected in low glucose-6-phosphate dehydrogenase enzyme level with jaundice group for total bilirubin level at the first day of jaundice, maximum total bilirubin level and pathologic jaundice (p<0.05. Discussion: The ratio of glucose-6-phosphate dehydrogenase deficiency was found in Edirne in this study and this ratio was higher than other studies conducted in our country. For this reason, glucose-6-phosphate dehydrogenase enzyme level in cord blood of neonates should be measured routinely and high risk neonates should be followed up for hyperbilirubinemia and parents should be informed in our region.

  6. Short-term high-fat diet alters postprandial glucose metabolism and circulating vascular cell adhesion molecule-1 in healthy males.

    Science.gov (United States)

    Numao, Shigeharu; Kawano, Hiroshi; Endo, Naoya; Yamada, Yuka; Takahashi, Masaki; Konishi, Masayuki; Sakamoto, Shizuo

    2016-08-01

    Short-term intake of a high-fat diet aggravates postprandial glucose metabolism; however, the dose-response relationship has not been investigated. We hypothesized that short-term intake of a eucaloric low-carbohydrate/high-fat diet (LCHF) would aggravate postprandial glucose metabolism and circulating adhesion molecules in healthy males. Seven healthy young males (mean ± SE; age: 26 ± 1 years) consumed either a eucaloric control diet (C, approximately 25% fats), a eucaloric intermediate-carbohydrate/intermediate-fat diet (ICIF, approximately 50% fats), or an LCHF (approximately 70% fats) for 3 days. An oral meal tolerance test (MTT) was performed after the 3-day dietary intervention. The concentrations of plasma glucose, insulin, glucagon-like peptide-1 (GLP-1), intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 (VCAM-1) were determined at rest and during MTT. The incremental area under the curve (iAUC) of plasma glucose concentration during MTT was significantly higher in LCHF than in C (P = 0.009). The first-phase insulin secretion indexes were significantly lower in LCHF than in C (P = 0.04). Moreover, the iAUC of GLP-1 and VCAM-1 concentrations was significantly higher in LCHF than in C (P = 0.014 and P = 0.04, respectively). The metabolites from ICIF and C were not significantly different. In conclusion, short-term intake of eucaloric diet containing a high percentage of fats in healthy males excessively increased postprandial glucose and VCAM-1 concentrations and attenuated first-phase insulin release.

  7. Design of Cyclic Peptide Based Glucose Receptors and Their Application in Glucose Sensing.

    Science.gov (United States)

    Li, Chao; Chen, Xin; Zhang, Fuyuan; He, Xingxing; Fang, Guozhen; Liu, Jifeng; Wang, Shuo

    2017-10-03

    Glucose assay is of great scientific significance in clinical diagnostics and bioprocess monitoring, and to design a new glucose receptor is necessary for the development of more sensitive, selective, and robust glucose detection techniques. Herein, a series of cyclic peptide (CP) glucose receptors were designed to mimic the binding sites of glucose binding protein (GBP), and CPs' sequence contained amino acid sites Asp, Asn, His, Asp, and Arg, which constituted the first layer interactions of GBP. The properties of these CPs used as a glucose receptor or substitute for the GBP were studied by using a quartz crystal microbalance (QCM) technique. It was found that CPs can form a self-assembled monolayer at the Au quartz electrode surface, and the monolayer's properties were characterized by using cyclic voltammetry, electrochemical impedance spectroscopy, and atomic force microscopy. The CPs' binding affinity to saccharide (i.e., galactose, fructose, lactose, sucrose, and maltose) was investigated, and the CPs' sensitivity and selectivity toward glucose were found to be dependent upon the configuration,i.e., the amino acids sequence of the CPs. The cyclic unit with a cyclo[-CNDNHCRDNDC-] sequence gave the highest selectivity and sensitivity for glucose sensing. This work suggests that a synthetic peptide bearing a particular functional sequence could be applied for developing a new generation of glucose receptors and would find huge application in biological, life science, and clinical diagnostics fields.

  8. Glucose, Lactate and Glutamine but not Glutamate Support Depolarization-Induced Increased Respiration in Isolated Nerve Terminals

    DEFF Research Database (Denmark)

    Hohnholt, Michaela C; Andersen, Vibe H; Bak, Lasse K

    2017-01-01

    Synaptosomes prepared from various aged and gene modified experimental animals constitute a valuable model system to study pre-synaptic mechanisms. Synaptosomes were isolated from whole brain and the XFe96 extracellular flux analyzer (Seahorse Bioscience) was used to study mitochondrial respiration...... and antimycin A. The synaptosomes exhibited intense respiratory activity using glucose as substrate. The FCCP-dependent respiration was significantly higher with 10 mM glucose compared to 1 mM glucose. Synaptosomes also readily used pyruvate as substrate, which elevated basal respiration, activity......-dependent respiration induced by veratridine and the respiratory response to uncoupling compared to that obtained with glucose as substrate. Also lactate was used as substrate by synaptosomes but in contrast to pyruvate, mitochondrial lactate mediated respiration was comparable to respiration using glucose as substrate...

  9. Glucose turnover, gluconeogenesis from glycerol, and estimation of net glucose cycling in cancer patients

    International Nuclear Information System (INIS)

    Lundholm, K.; Edstroem, S.; Karlberg, I.; Ekman, L.; Schersten, T.

    1982-01-01

    A double isotope method was used in patients with progressive malignancy and in control patients to measure: glucose turnover, conversion rate of carbon skeleton of glycerol into glucose, and the interorgan cycling of glucose carbons (Cori-cycle plus alanine-glucose cycle). [U- 14 C]glycerol and [6- 3 H]glucose were given intravenously as a single dose injection. The time course of the specific radioactivities of [6- 3 H] and [U- 14 C]glucose was followed in blood. The pool size and the turnover rate of glucose were increased in the cancer group as compared with the control patients. The net recycling of glucose carbons was not increased in the cancer group, despite the increased turnover of glucose. The alterations in the metabolism of glucose did not correlate with the plasma levels of insulin or thyroid hormones (T4, T3, rT3) neither in the entire cancer group nor in those cancer patients who were repeatedly investigated at different intervals of time. The turnover rate of glucose in the cancer patients correlated inversely to their body weight index. The gluconeogenesis rate, given as the fractional conversion rate of the injected radioactive dose of [ 14 C]glycerol, or as mol glucose . kg body weight-1 . day-1, was increased in the cancer group, but still contributed only 3% of the glucose turnover rate in both cancer and control patients. We conclude that an increased gluconeogenesis from glycerol is not significant in terms of energy expenditure in patients with progressive malignancy, as has previously been concluded for the gluconeogenesis from alanine. It seems that increased turnover of glucose may contribute to inappropriately high energy expenditure in cancer patients

  10. Glucose enhancement of memory depends on initial thirst.

    Science.gov (United States)

    Scholey, Andrew B; Sünram-Lea, Sandra I; Greer, Joanna; Elliott, Jade; Kennedy, David O

    2009-12-01

    This double-blind, placebo-controlled study examined the influence of appetitive state on glucose enhancement of memory. Participants rated their mood, hunger and thirst, then consumed a 25 g glucose drink or a matched placebo 20 min prior to a verbal memory task. There was a double dissociation when the effects of thirst ratings and drink on subsequent memory performance were considered. Those who were initially less thirsty recalled significantly more words following glucose than placebo; those who were more thirsty recalled significantly fewer words after glucose than placebo. Glucose enhancement of memory may therefore critically depend on participants' initial thirst.

  11. Weight loss after bariatric surgery reverses insulin-induced increases in brain glucose metabolism of the morbidly obese.

    Science.gov (United States)

    Tuulari, Jetro J; Karlsson, Henry K; Hirvonen, Jussi; Hannukainen, Jarna C; Bucci, Marco; Helmiö, Mika; Ovaska, Jari; Soinio, Minna; Salminen, Paulina; Savisto, Nina; Nummenmaa, Lauri; Nuutila, Pirjo

    2013-08-01

    Obesity and insulin resistance are associated with altered brain glucose metabolism. Here, we studied brain glucose metabolism in 22 morbidly obese patients before and 6 months after bariatric surgery. Seven healthy subjects served as control subjects. Brain glucose metabolism was measured twice per imaging session: with and without insulin stimulation (hyperinsulinemic-euglycemic clamp) using [18F]fluorodeoxyglucose scanning. We found that during fasting, brain glucose metabolism was not different between groups. However, the hyperinsulinemic clamp increased brain glucose metabolism in a widespread manner in the obese but not control subjects, and brain glucose metabolism was significantly higher during clamp in obese than in control subjects. After follow-up, 6 months postoperatively, the increase in glucose metabolism was no longer observed, and this attenuation was coupled with improved peripheral insulin sensitivity after weight loss. We conclude that obesity is associated with increased insulin-stimulated glucose metabolism in the brain and that this abnormality can be reversed by bariatric surgery.

  12. Hyperglycemia (High Blood Glucose)

    Medline Plus

    Full Text Available ... blood glucose level go even higher. You'll need to work with your doctor to find the ... lead to ketoacidosis. Ketoacidosis is life-threatening and needs immediate treatment. Symptoms include: Shortness of breath Breath ...

  13. High glycemic variability assessed by continuous glucose monitoring after surgical treatment of obesity by gastric bypass.

    Science.gov (United States)

    Hanaire, Helene; Bertrand, Monelle; Guerci, Bruno; Anduze, Yves; Guillaume, Eric; Ritz, Patrick

    2011-06-01

    Obesity surgery elicits complex changes in glucose metabolism that are difficult to observe with discontinuous glucose measurements. We aimed to evaluate glucose variability after gastric bypass by continuous glucose monitoring (CGM) in a real-life setting. CGM was performed for 4.2 ± 1.3 days in three groups of 10 subjects each: patients who had undergone gastric bypass and who were referred for postprandial symptoms compatible with mild hypoglycemia, nonoperated diabetes controls, and healthy controls. The maximum interstitial glucose (IG), SD of IG values, and mean amplitude of glucose excursions (MAGE) were significantly higher in operated patients and in diabetes controls than in healthy controls. The time to the postprandial peak IG was significantly shorter in operated patients (42.8 ± 6.0 min) than in diabetes controls (82.2 ± 11.1 min, P = 0.0002), as were the rates of glucose increase to the peak (2.4 ± 1.6 vs. 1.2 ± 0.3 mg/mL/min; P = 0.041). True hypoglycemia (glucose fasting state and 2 h postmeal. Glucose variability is exaggerated after gastric bypass, combining unusually high and early hyperglycemic peaks and rapid IG decreases. This might account for postprandial symptoms mimicking hypoglycemia but often seen without true hypoglycemia. Early postprandial hyperglycemia might be underestimated if glucose measurements are done 2 h postmeal.

  14. Impaired Fasting Glucose in Nondiabetic Range: Is It a Marker of Cardiovascular Risk Factor Clustering?

    Directory of Open Access Journals (Sweden)

    Giovanna Valentino

    2015-01-01

    Full Text Available Background. Impaired fasting glucose (IFG through the nondiabetic range (100–125 mg/dL is not considered in the cardiovascular (CV risk profile. Aim. To compare the clustering of CV risk factors (RFs in nondiabetic subjects with normal fasting glucose (NFG and IFG. Material and Methods. Cross-sectional study in 3739 nondiabetic subjects. Demographics, medical history, and CV risk factors were collected and lipid profile, fasting glucose levels (FBG, C-reactive protein (hsCRP, blood pressure (BP, anthropometric measurements, and aerobic capacity were determined. Results. 559 (15% subjects had IFG: they had a higher mean age, BMI, waist circumference, non-HDL cholesterol, BP, and hsCRP (p<0.0001 and lower HDL (p<0.001 and aerobic capacity (p<0.001. They also had a higher prevalence of hypertension (34% versus 25%; p<0.001, dyslipidemia (79% versus 74%; p<0.001, and obesity (29% versus 16%; p<0.001 and a higher Framingham risk score (8% versus 6%; p<0.001. The probability of presenting 3 or more CV RFs adjusted by age and gender was significantly higher in the top quintile of fasting glucose (≥98 mg/dL; OR = 2.02; 1.62–2.51. Conclusions. IFG in the nondiabetic range is associated with increased cardiovascular RF clustering.

  15. In vitro antioxidant, hypoglycemic and oral glucose tolerance test of banana peels

    Directory of Open Access Journals (Sweden)

    V.V. Navghare

    2017-08-01

    Full Text Available Banana fruit is claimed to have antidiabetic effects despite its high calorie content, and its peels also contain vital phytoconstituents including gallocatechin. Previously banana pulp has been studied for antihyperglycemic effects, and in the present investigation antihyperglycemic effect of ethanolic extract of inner peels of Musa sapientum (EMS, Musa paradisiaca (EMP, Musa cavendish (EMC and Musa acuminata (EMA fruit was evaluated using oral glucose tolerance test in normoglycemic rats. In vitro antioxidant study was conducted using DPPH, H2O2 radical scavenging assay and ferric reducing power assay. Wistar rats were divided into fourteen groups and twelve groups received different doses of aforementioned extracts, while control group received gum acacia solution and remaining group received standard drug, glimepiride. All the rats received glucose load at a dose of 2 g/kg body weight. Groups treated with EMC and EMA showed significant decrease in glucose level (p < 0.01 at 150 min as compared to control group. In hypoglycemic study, only EMP 500 mg/kg, p.o. treated group revealed a significant decrease (p < 0.05 in glucose level at 120 min, while other groups did not show any sign of hypoglycemia. In glucose tolerance test, animals treated with EMC and EMA depicted dose dependent antihyperglycemic effect at 150 min while EMS and EMP showed significant reduction in plasma glucose at higher doses. In a similar fashion, EMA i.e. M. acuminata demonstrated highest antioxidant activity followed by EMC against DPPH radical. In ferric reducing power and H2O2 scavenging assay, EMA demonstrated maximal antioxidant activity when compared with other extracts.

  16. Normal secretion of the incretin hormones glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 during gestational diabetes mellitus

    DEFF Research Database (Denmark)

    Cypryk, Katarzyna; Vilsbøll, Tina; Nadel, Iwona

    2007-01-01

    in the GDM group than in the NGT group (p insulin concentration was higher (p insulin response (AUCtotal) was significantly greater (p = 0.01) in the GDM group than in the NGT group. Insulin resistance was significantly higher in GDM compared with control women...... correlations were observed between fasting GLP-1 and insulin concentration (r = 0.56, p insulin resistance (r = 0.43, p ... gestational women with diabetes mellitus in whom GDM was diagnosed according to the World Health Organization criteria (75-g oral glucose tolerance test (OGTT)). The control group consisted of 13 pregnant women with normal glucose tolerance (NGT), matched according to age and duration of pregnancy. For all...

  17. THE CHALLENGE OF PD PATIENTS: GLUCOSE AND GLUCOSE DEGRADATION PRODUCTS IN PD SOLUTION

    Directory of Open Access Journals (Sweden)

    Yong-Lim Kim

    2012-06-01

    Full Text Available The main osmotic agent found in the peritoneal dialysis (PD solution is glucose. It has been of a wide use for great crystalloid osmotic power at a low concentration, simple metabolism, and excellent safety. On the other hand, anywhere between 60 to 80% of the glucose in the PD solution is absorbed - a 100 to 300 mg of daily glucose absorption. Once into the systemic circulation, glucose can be a cause for metabolic complications including obesity. Indeed, the diabetiform change observed in the peritoneal membrane in the long-term PD patients is believed attributable to the high-concentration glucose in the PD solution. The glucose absorbed from peritoneal cavity raises the risk of ‘glucose toxicity’, leading to insulin resistance and beta cell failure. Clinical similarity can be found in postprandial hyperglycemia, which is known to be associated with oxidative stress, endothelial dysfunction, NF-κb, and inflammation, affecting myocardial blood flow. Moreover, it is a proven independent risk factor of coronary artery disease in patients with type 2 diabetes, particularly of female gender. Though speculative yet, glucose toxicity might explain a higher mortality of PD patients after the first year compared with those on hemodialysis (more so in female, advanced-age patients with diabetes. Also included in the picture are glucose degradation products (GDPs generated along the course of heat sterilization or storage of the PD solution. They have been shown to induce apoptosis of peritoneal mesothelial cells, renal tubular epithelial cells, and endothelial cells, while spurring production of TGF-β and VEGF and facilitating epithelial mesenchymal transition. GDPs provide a stronger reactivity than glucose in the formation of AGEs, a known cause for microvascular complications and arteriosclerosis. Unfortunately, clinical studies using a low-GDP PD solution have provided mixed results on the residual renal function, peritonitis, peritoneal

  18. The glucose oxidase-peroxidase assay for glucose

    Science.gov (United States)

    The glucose oxidase-peroxidase assay for glucose has served as a very specific, sensitive, and repeatable assay for detection of glucose in biological samples. It has been used successfully for analysis of glucose in samples from blood and urine, to analysis of glucose released from starch or glycog...

  19. Elucidation of the glucose transport pathway in glucose transporter 4 via steered molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Aswathy Sheena

    Full Text Available BACKGROUND: GLUT4 is a predominant insulin regulated glucose transporter expressed in major glucose disposal tissues such as adipocytes and muscles. Under the unstimulated state, GLUT4 resides within intracellular vesicles. Various stimuli such as insulin translocate this protein to the plasma membrane for glucose transport. In the absence of a crystal structure for GLUT4, very little is known about the mechanism of glucose transport by this protein. Earlier we proposed a homology model for GLUT4 and performed a conventional molecular dynamics study revealing the conformational rearrangements during glucose and ATP binding. However, this study could not explain the transport of glucose through the permeation tunnel. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the molecular mechanism of glucose transport and its energetic, a steered molecular dynamics study (SMD was used. Glucose was pulled from the extracellular end of GLUT4 to the cytoplasm along the pathway using constant velocity pulling method. We identified several key residues within the tunnel that interact directly with either the backbone ring or the hydroxyl groups of glucose. A rotation of glucose molecule was seen near the sugar binding site facilitating the sugar recognition process at the QLS binding site. CONCLUSIONS/SIGNIFICANCE: This study proposes a possible glucose transport pathway and aids the identification of several residues that make direct interactions with glucose during glucose transport. Mutational studies are required to further validate the observation made in this study.

  20. Glycolysis-induced discordance between glucose metabolic rates measured with radiolabeled fluorodeoxyglucose and glucose

    International Nuclear Information System (INIS)

    Ackermann, R.F.; Lear, J.L.

    1989-01-01

    We have developed an autoradiographic method for estimating the oxidative and glycolytic components of local CMRglc (LCMRglc), using sequentially administered [ 18 F]fluorodeoxyglucose (FDG) and [ 14 C]-6-glucose (GLC). FDG-6-phosphate accumulation is proportional to the rate of glucose phosphorylation, which occurs before the divergence of glycolytic (GMg) and oxidative (GMo) glucose metabolism and is therefore related to total cerebral glucose metabolism GMt: GMg + GMo = GMt. With oxidative metabolism, the 14 C label of GLC is temporarily retained in Krebs cycle-related substrate pools. We hypothesize that with glycolytic metabolism, however, a significant fraction of the 14 C label is lost from the brain via lactate production and efflux from the brain. Thus, cerebral GLC metabolite concentration may be more closely related to GMo than to GMt. If true, the glycolytic metabolic rate will be related to the difference between FDG- and GLC-derived LCMRglc. Thus far, we have studied normal awake rats, rats with limbic activation induced by kainic acid (KA), and rats visually stimulated with 16-Hz flashes. In KA-treated rats, significant discordance between FDG and GLC accumulation, which we attribute to glycolysis, occurred only in activated limbic structures. In visually stimulated rats, significant discordance occurred only in the optic tectum

  1. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: A meta-analysis of 50,345 Caucasians

    NARCIS (Netherlands)

    A.M. Fretts (Amanda M.); J.L. Follis (Jack ); J.A. Nettleton (Jennifer ); R.N. Lemaitre (Rozenn ); J.S. Ngwa; M.K. Wojczynski (Mary ); I.-P. Kalafati (Ioanna-Panagiota); T.V. Varga (Tibor V.); A.C. Frazier-Wood (Alexis C.); D.K. Houston (Denise); J. Lahti (Jari); U. Ericson (Ulrika); E.H. van den Hooven (Edith); V. Mikkilä (Vera); J.C. Kiefte-de Jong (Jessica); D. Mozaffarian (Dariush); K.M. Rice (Kenneth); F. Renström (Frida); K.E. North (Kari); N.M. McKeown (Nicola ); M.F. Feitosa (Mary Furlan); S. Kanoni (Stavroula); C.E. Smith (Caren); M. Garcia (Melissa); A.-M. Tiainen (Anna-Maija); E. Sonestedt (Emily); A. Manichaikul (Ani); F.J.A. van Rooij (Frank); M. Dimitriou (Maria); O. Raitakari (Olli); J.S. Pankow (James); L. Djoussé (Luc); M.A. Province (Mike); F.B. Hu (Frank); C.-Q. Lai (Chao-Qiang); M.F. Keller (Margaux); M.-M. Perälä (Mia-Maria); J.I. Rotter (Jerome I.); A. Hofman (Albert); M.J. Graff (Maud J.L.); M. Kähönen (Mika); K. Mukamal (Kenneth); I. Johansson (Ingegerd); J.M. Ordovas (Jose); Y. Liu (YongMei); S. Männistö (Satu); A.G. Uitterlinden (André); P. Deloukas (Panagiotis); I. Seppälä (Ilkka); B.M. Psaty (Bruce); L.A. Cupples (Adrienne); I.B. Borecki (Ingrid); P.W. Franks (Paul W.); D.K. Arnett (Donna); M.A. Nalls (Michael); K. Hagen (Knut); M. Orho-Melander (Marju); O.H. Franco (Oscar); T. Lehtimäki (Terho); G.V. Dedoussis (George); J.B. Meigs (James); D.S. Siscovick (David)

    2015-01-01

    textabstractBackground: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. Objective: We investigated the

  2. Maternal ethanol ingestion: effect on maternal and neonatal glucose balance

    International Nuclear Information System (INIS)

    Witek-Janusek, L.

    1986-01-01

    Liver glycogen availability in the newborn is of major importance for the maintenance of postnatal blood glucose levels. This study examined the effect of maternal ethanol ingestion on maternal and neonatal glucose balance in the rate. Female rats were placed on 1) the Lieber-DeCarli liquid ethanol diet, 2) an isocaloric liquid pair-diet, or 3) an ad libitum rat chow diet at 3 wk before mating and throughout gestation. Blood and livers were obtained from dams and rat pups on gestational days 21 and 22. The pups were studied up to 6 h in the fasted state and up to 24 h in the fed state. Maternal ethanol ingestion significantly decreased litter size, birth weight, and growth. A significantly higher mortality during the early postnatal period was seen in the prenatal ethanol exposed pups. Ethanol significantly decreased fed maternal liver glycogen stores but not maternal plasma glucose levels. The newborn rats from ethanol ingesting dams also had significantly decreased liver glycogen stores. Despite mobilizing their available glycogen, these prenatal ethanol exposed pups became hypoglycemic by 6 h postnatal. This was more marked in the fasted pups. Ethanol did not affect maternal nor neonatal plasma insulin levels. Thus maternal ethanol ingestion reduces maternal and neonatal liver glycogen stores and leads to postnatal hypoglycemia in the newborn rat

  3. Аbоut a theoretical yield of glucose from starch

    Directory of Open Access Journals (Sweden)

    V. V. Ananskikh

    2016-01-01

    Full Text Available Starch is the raw materials for production of crystal food glucose. With at enzyme conversion of the high purity starch, it is possible to receive glucosic syrups of a glucose equivalent (GE 98%, where there is about 95% glucose and maltose and maltotriose – of about 5%. Starch hydrolysis is carried out with a gain of solids. Thus, 100 kg of amylum is possible to give up to 109.81 kg of glucose syrup on dry basis. Taking in account the losses at manufacture steps a yield can decrease to 105.61 kg. The purified glucose syrup is concentrated up to 73–75% of dry matters and goes to a crystallization step. Crystallization of glucose is carried out in a supersaturated solution within 56–70 hours at reduced temperature from 46–48 °C to 24–26 °C, resulting a mixture of glucose crystals and an intercrystal run-off syrup called a massecuite. The crystallization process is stopped when a 50% of crystals content in massecuite is reached. At the same time glucose yield will be 105.61/2 = 52.8%. Crystallization is carried out according to the single-stage scheme, with partial return of the end product – hydrol into the hydrolised syrup. Then the massecuite is sent to a centrifugation step for dividing glucose crystals and a run-off syrup, which is partially returned to the initial syrup to reduce in GE. The second part of the run-off syrup goes to realization. It must be kept in mind: the higher GE of the glucose syrup sent to a crystallization step, the more quantity of a hydrol is possible to be returned to hydrolysed syrup. Therefore, it is in a resulted a higher yield of glucose crystals. On the basis of the carried-out calculations the computer program was made with which it is possible to define a theoretical glucose and a hydrol yield, while changing values of a hydrolysed syrup. The higher GE values of a hydrolysed syrup are the higher yield of crystal glucose and the lower one of hydrol are. So, at 98% GE of a hydrolysed syrup it is

  4. Glucose metabolic alterations in hippocampus of diabetes mellitus rats and the regulation of aerobic exercise.

    Science.gov (United States)

    Li, Jingjing; Liu, Beibei; Cai, Ming; Lin, Xiaojing; Lou, Shujie

    2017-11-04

    Diabetes could negatively affect the structures and functions of the brain, especially could cause the hippocampal dysfunction, however, the potential metabolic mechanism is unclear. The aim of this study was to investigate the changes of glucose metabolism in hippocampus of diabetes mellitus rats and the regulation of aerobic exercise, and to analyze the possible mechanisms. A rat model of type 2 diabetes mellitus was established by high-fat diet feeding in combination with STZ intraperitoneal injection, then 4 weeks of aerobic exercise was conducted. The glucose metabolites and key enzymes involved in glucose metabolism in hippocampus were respectively detected by GC/MS based metabolomics and western blot. Metabolomics results showed that compared with control rats, the level of citric acid was significantly decreased, while the levels of lactic acid, ribose 5-phosphate, xylulose 5-phosphate and glucitol were significantly increased in the diabetic rat. Compared with diabetic rats, the level of citric acid was significantly increased, while the lactic acid, ribose 5-phosphate and xylulose 5-phosphate were significantly decreased in the diabetic exercise rats. Western blot results showed that lower level of citrate synthase and oxoglutarate dehydrogenase, higher level of aldose reductase and glucose 6-phosphatedehydrogenase were found in the diabetic rats when compared to control rats. After 4 weeks of aerobic exercise, citrate synthase was upregulated and glucose 6-phosphatedehydrogenase was downregulated in the diabetic rats. These results suggest that diabetes could cause abnormal glucose metabolism, and aerobic exercise plays an important role in regulating diabetes-induced disorder of glucose metabolism in the hippocampus. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The lipid accumulation product as a useful index for identifying abnormal glucose regulation in young Korean women.

    Science.gov (United States)

    Oh, J-Y; Sung, Y-A; Lee, H J

    2013-04-01

    The lipid accumulation product, a combination of waist circumference and triglycerides concentration, has been suggested as a better marker for abnormal glucose regulation than BMI. We aimed to compare the lipid accumulation product and BMI as useful markers for abnormal glucose regulation in young Korean women. The lipid accumulation product was calculated using the formula [waist circumference (cm) - 58] × triglycerides (mmol/l). Glucose tolerance status was determined using a 75-g oral glucose tolerance test in 2810 Korean women aged 18-39 years from the general population. The prevalence of abnormal glucose regulation was 6.8% (isolated impaired fasting glucose 1.8%, isolated impaired glucose tolerance 4.0%; impaired fasting glucose + impaired glucose tolerance 0.4% and diabetes mellitus 0.6%). According to the quintile distributions of the lipid accumulation product and BMI, women with a lipid accumulation product quintile greater than their BMI quintile exhibited significantly greater areas under the curve and higher levels of 2-h post-load glucose, insulin, homeostasis model analysis of insulin resistance and lipid profiles than did women with a BMI quintile greater than their lipid accumulation product quintile. Multiple logistic regression revealed that the lipid accumulation product exhibited a higher odds ratio for abnormal glucose regulation than did BMI after adjusting for age, systolic blood pressure, HDL cholesterol, previous history of gestational diabetes and family history of diabetes (odds ratios 3.5 and 2.6 of the highest vs. the lowest quintiles of lipid accumulation product and BMI, respectively). The lipid accumulation product could be useful for identifying the young Korean women with abnormal glucose regulation. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  6. Assessment of circulating betatrophin concentrations in lean glucose-tolerant women with polycystic ovary syndrome.

    Science.gov (United States)

    Erol, Onur; Özel, Mustafa Kemal; Ellidağ, Hamit Yaşar; Toptaş, Tayfun; Derbent, Aysel Uysal; Yılmaz, Necat

    2017-07-01

    The aims of the current study were to investigate the betatrophin levels in lean glucose-tolerant women with polycystic ovary syndrome (PCOS), and to explore the relationships between these levels and antropometric, hormonal and metabolic parameters. The study population consisted of 50 lean (body mass index [BMI] production and improved glucose tolerance. Few studies have investigated the association between PCOS and betatrophin. However, in contrast to our study, the authors included overweight/obese patients and glucose tolerance was not evaluated before recruitment. What the results of this study add: Our results showed that serum betatrophin levels were significantly higher in lean glucose-tolerant PCOS women than in age- and BMI-matched healthy controls. What are the implications of these findings for clinical practice and/or further research: Elevated betatrophin levels in PCOS women, in the absence of obesity and glucose intolerance, may reflect a compensatory mechanism in order to counteract metabolic syndrome-related risk factors.

  7. The association between estimated average glucose levels and fasting plasma glucose levels in a rural tertiary care centre

    Directory of Open Access Journals (Sweden)

    Raja Reddy P

    2013-01-01

    Full Text Available The level of hemoglobin A1c (HbA1c, also known as glycated hemoglobin, determines how well a patient’s blood glucose level has been controlled over the previous 8-12 weeks. HbA1c levels help patients and doctors understand whether a particular diabetes treatment is working and whether adjustments need to be made to the treatment. Because the HbA1c level is a marker of blood glucose for the previous 60- 90 days, average blood glucose levels can be estimated using HbA1c levels. Aim in the present study was to investigate the relationship between estimated average glucose levels, as calculated by HbA1c levels, and fasting plasma glucose levels. Methods: Type 2 diabetes patients attending medicine outpatient department of RL Jalappa hospital, Kolar between March 2010 and July 2012 were taken. The estimated glucose levels (mg/dl were calculated using the following formula: 28.7 x HbA1c-46.7. Glucose levels were determined using the hexokinase method. HbA1c levels were determined using an HPLC method. Correlation and independent t- test was the test of significance for quantitative data. Results: A strong positive correlation between fasting plasma glucose level and estimated average blood glucose levels (r=0.54, p=0.0001 was observed. The difference was statistically significant. Conclusion: Reporting the estimated average glucose level together with the HbA1c level is believed to assist patients and doctors determine the effectiveness of blood glucose control measures.

  8. Nonsuppressed Glucagon After Glucose Challenge as a Potential Predictor for Glucose Tolerance.

    Science.gov (United States)

    Wagner, Róbert; Hakaste, Liisa H; Ahlqvist, Emma; Heni, Martin; Machann, Jürgen; Schick, Fritz; Van Obberghen, Emmanuel; Stefan, Norbert; Gallwitz, Baptist; Tuomi, Tiinamaija; Häring, Hans-Ulrich; Groop, Leif; Fritsche, Andreas

    2017-05-01

    Glucagon levels are classically suppressed after glucose challenge. It is still not clear as to whether a lack of suppression contributes to hyperglycemia and thus to the development of diabetes. We investigated the association of postchallenge change in glucagon during oral glucose tolerance tests (OGTTs), hypothesizing that higher postchallenge glucagon levels are observed in subjects with impaired glucose tolerance (IGT). Glucagon levels were measured during OGTT in a total of 4,194 individuals without diabetes in three large European cohorts. Longitudinal changes in glucagon suppression were investigated in 50 participants undergoing a lifestyle intervention. Only 66-79% of participants showed suppression of glucagon at 120 min (fold change glucagon 120/0 change glucagon 120/0 ≥1). Participants with nonsuppressed glucagon 120 had a lower risk of IGT in all cohorts (odds ratio 0.44-0.53, P change glucagon 120/0 was associated with an improvement in insulin sensitivity ( P = 0.003). We characterize nonsuppressed glucagon 120 during the OGTT. Lower glucagon suppression after oral glucose administration is associated with a metabolically healthier phenotype, suggesting that it is not an adverse phenomenon. © 2017 by the American Diabetes Association.

  9. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians

    Science.gov (United States)

    Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. We investigated the associations of meat intake and the intera...

  10. Postprandial Glucose Surges after Extremely Low Carbohydrate Diet in Healthy Adults.

    Science.gov (United States)

    Kanamori, Koji; Ihana-Sugiyama, Noriko; Yamamoto-Honda, Ritsuko; Nakamura, Tomoka; Sobe, Chie; Kamiya, Shigemi; Kishimoto, Miyako; Kajio, Hiroshi; Kawano, Kimiko; Noda, Mitsuhiko

    2017-09-01

    Carbohydrate-restricted diets are prevalent not only in obese people but also in the general population to maintain appropriate body weight. Here, we report that extreme carbohydrate restriction for one day affects the subsequent blood glucose levels in healthy adults. Ten subjects (median age 30.5 years, BMI 21.1 kg/m 2 , and HbA1c 5.5%), wearing with a continuous glucose monitoring device, were given isoenergetic test meals for 4 consecutive days. On day 1, day 2 (D2), and day 4 (D4), they consumed normal-carbohydrate (63-66% carbohydrate) diet, while on day 3, they took low-carbohydrate/high-fat (5% carbohydrate) diet. The daily energy intake was 2,200 kcal for males and 1,700 kcal for females. On D2 and D4, we calculated the mean 24-hr blood glucose level (MEAN/24h) and its standard deviation (SD/24h), the area under the curve (AUC) for glucose over 140 mg/dL within 4 hours after each meal (AUC/4h/140), the mean amplitude of the glycemic excursions (MAGE), the incremental AUC of 24-hr blood glucose level above the mean plus one standard deviation (iAUC/MEAN+SD). Indexes for glucose fluctuation on D4 were significantly greater than those on D2 (SD/24h; p = 0.009, MAGE; p = 0.013, AUC/4h/140 after breakfast and dinner; p = 0.006 and 0.005, and iAUC/MEAN+SD; p = 0.007). The value of MEAN/24h and AUC/4h/140 after lunch on D4 were greater than those on D2, but those differences were not statistically significant. In conclusion, consumption of low-carbohydrate/high-fat diet appears to cause higher postprandial blood glucose on subsequent normal-carbohydrate diet particularly after breakfast and dinner in healthy adults.

  11. Does green tea affect postprandial glucose, insulin and satiety in healthy subjects: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Lindstedt Sandra

    2010-11-01

    Full Text Available Abstract Background Results of epidemiological studies have suggested that consumption of green tea could lower the risk of type 2 diabetes. Intervention studies show that green tea may decrease blood glucose levels, and also increase satiety. This study was conducted to examine the postprandial effects of green tea on glucose levels, glycemic index, insulin levels and satiety in healthy individuals after the consumption of a meal including green tea. Methods The study was conducted on 14 healthy volunteers, with a crossover design. Participants were randomized to either 300 ml of green tea or water. This was consumed together with a breakfast consisting of white bread and sliced turkey. Blood samples were drawn at 0, 15, 30, 45, 60, 90, and 120 minutes. Participants completed several different satiety score scales at the same times. Results Plasma glucose levels were higher 120 min after ingestion of the meal with green tea than after the ingestion of the meal with water. No significant differences were found in serum insulin levels, or the area under the curve for glucose or insulin. Subjects reported significantly higher satiety, having a less strong desire to eat their favorite food and finding it less pleasant to eat another mouthful of the same food after drinking green tea compared to water. Conclusions Green tea showed no glucose or insulin-lowering effect. However, increased satiety and fullness were reported by the participants after the consumption of green tea. Trial registration number NCT01086189

  12. Arsenate-induced maternal glucose intolerance and neural tube defects in a mouse model

    International Nuclear Information System (INIS)

    Hill, Denise S.; Wlodarczyk, Bogdan J.; Mitchell, Laura E.; Finnell, Richard H.

    2009-01-01

    Background: Epidemiological studies have linked environmental arsenic (As) exposure to increased type 2 diabetes risk. Periconceptional hyperglycemia is a significant risk factor for neural tube defects (NTDs), the second most common structural birth defect. A suspected teratogen, arsenic (As) induces NTDs in laboratory animals. Objectives: We investigated whether maternal glucose homeostasis disruption was responsible for arsenate-induced NTDs in a well-established dosing regimen used in studies of arsenic's teratogenicity in early neurodevelopment. Methods: We evaluated maternal intraperitoneal (IP) exposure to As 9.6 mg/kg (as sodium arsenate) in LM/Bc/Fnn mice for teratogenicity and disruption of maternal plasma glucose and insulin levels. Selected compounds (insulin pellet, sodium selenate (SS), N-acetyl cysteine (NAC), L-methionine (L-Met), N-tert-Butyl-α-phenylnitrone (PBN)) were investigated for their potential to mitigate arsenate's effects. Results: Arsenate caused significant glucose elevation during an IP glucose tolerance test (IPGTT). Insulin levels were not different between arsenate and control dams before (arsenate, 0.55 ng/dl; control, 0.48 ng/dl) or after glucose challenge (arsenate, 1.09 ng/dl; control, 0.81 ng/dl). HOMA-IR index was higher for arsenate (3.9) vs control (2.5) dams (p = 0.0260). Arsenate caused NTDs (100%, p < 0.0001). Insulin pellet and NAC were the most successful rescue agents, reducing NTD rates to 45% and 35%. Conclusions: IPGTT, insulin assay, and HOMA-IR results suggest a modest failure of glucose stimulated insulin secretion and insulin resistance characteristic of glucose intolerance. Insulin's success in preventing arsenate-induced NTDs provides evidence that these arsenate-induced NTDs are secondary to elevated maternal glucose. The NAC rescue, which did not restore maternal glucose or insulin levels, suggests oxidative disruption plays a role.

  13. The influence of blood glucose level on distribution of 18F-FDG in mice with tumor

    International Nuclear Information System (INIS)

    Fu Zhanli; Lin Jinghui; Wang Rongfu; Zhu Shaoli; Zhang Chunli; Pan Zhongyun

    2003-01-01

    To explore the influence of blood glucose level on 18 F-FDG uptake in tumor and normal tissues of mice, thirty five mice carrying Ehrlich ascitic cancer (EAC) are fasted 20 h and divided into four groups. The glucose loading group (n=12) and the control group (n=11) is given a solution of 50% glucose and distilled water orally just one hour before the 18 F FDG injection. Another two groups (n=5, n=7) is given a solution of 10%, 30% glucose respectively. Before 18 F-FDG intravenous injection, blood glucose levels are measured. The mice are killed one hour after the 18 F FDG injection. The tumor and normal tissues are excised, weighed, and counted by a γ well counter. The quantity of 18 F-FDG uptake is expressed as standardized uptake value (SUV). Blood glucose levels of the mice with EAC in the glucose loading group are significantly elevated than the control group (11.98 ± 3.01 mmol/L vs. 3.95 ± 1. 11 mmol/L, P 18 F-FDG uptake ratios of tumor and muscle in the glucose-loading group (1.34, 0.86, 0.48, 0.09, 1.38 respectively) are significantly lower than those in the control group (3.02, 2.62, 0.80, 0.16, 5.38 respectively) (P 18 F-FDG uptake ratios of tumor and brain, heart and blood in the glucose loading group (8.31. 1.05, 1.58, 103.00 respectively) are significantly higher than those in the control group (1.57, 0.64, 1.20, 9.73 respectively) (P 18 F-FDG distribution in mice. suggesting the blood glucose level should be controlled during clinically 18 F-FDG imaging

  14. suPAR associates to glucose metabolic aberration during glucose stimulation in HIV-infected patients on HAART

    DEFF Research Database (Denmark)

    Andersen, Ove; Eugen-Olsen, Jesper; Kofoed, Kristian

    2008-01-01

    extend these findings by investigating the association of suPAR to glucose metabolic insufficiency during an oral glucose challenge (OGTT). METHODS: In 16 HIV-infected patients with lipodystrophy and 15 HIV-infected patients without lipodystrophy, glucose tolerance, insulin sensitivity (ISI......PAR correlated inversely with ISI(composite) and positively with 2h plasma glucose, fasting insulin secretion, fasting intact proinsulin and FFA level during the OGTT (all P...-RNA, duration of HIV infection), and dyslipidemia (plasma total cholesterol, triglyceride and free fatty acid level during the OGTT) were included, suPAR remained a significant marker of glucose tolerance and insulin sensitivity. Plasma suPAR exhibited a small CV (11%) during the 3h OGTT. CONCLUSIONS: su...

  15. Clinical Observations of Abnormal Glucose Tolerance in Hyperthyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Ja; Lee, Hong Kyu [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1969-09-15

    Plasma glucose levels before and after oral glucose administration have been compared in g group of 76 thyrotoxic subjects and a group of 8 normal control subjects in order to study the effect of glucose loading in thyrotoxicosis. Following were the results: 1) The mean fasting plasma glucose level was elevated in thyrotoxic group (95.5 mg%) compared to normal control group (88 mg%). 2) The peak of glucose tolerance curve is at 30 minutes after glucose administration in both groups, but its mean value was 44 mg% higher in thyrotoxic group than in control group. 3) The plasma glucose levels returned towards the fasting level in the later stage of the test more rapidly in thyrotoxic group than in control group. 4) 69.6% of oral glucose tolerance tests were impaired in the thyrotoxic group, and the occurrence of abnormal glucose tolerance could be related to the degree of thyrotoxicity, sex and age. 5) The mechanisms of the impaired glucose tolerance in thyrotoxicosis are thought to be related to an increased rate of glucose absorption from gastrointestinal tract, abnormal liver function with decreased hepatic glycogenesis, increased glucose oxidation, decreased pancreatic release of insulin, and genetic relationship between diabetes and thyrotoxicosis.

  16. Effect of blood glucose level on acute stress response of grass carp Ctenopharyngodon idella.

    Science.gov (United States)

    Jiang, Danli; Wu, Yubo; Huang, Di; Ren, Xing; Wang, Yan

    2017-10-01

    Stress has a considerable impact on welfare and productivity of fish, and blood glucose level of fish may be a factor modulating stress response. This study evaluated the effect of blood glucose level and handling on acute stress response of grass carp Ctenopharyngodon idella. Fish were intraperitoneally injected with glucose at 0, 0.2, 0.5, and 1.0 mg g -1 body mass (BM) and then were exposed to handling for 5 min. Glucose injection resulted in increase of plasma glucose level and liver glycogen content and decrease of plasma lactate level. Handling resulted in increase of plasma levels of cortisol, glucose, and lactate and plasma lactic dehydrogenase (LDH) activity and decrease of liver glycogen content. At 1 h post-stress, the plasma cortisol level was lower in the stressed fish injected with glucose at 0.5 mg g -1 BM than the stressed fish injected with glucose at 0, 0.2, and 1.0 mg g -1 BM. No significant differences were found in the activities of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate kinase (PK) in the liver between the stressed and unstressed fish, regardless of the dose of glucose injection. At 1 h post-stress, the liver glucose-6-phosphatase (G6Pase) activity was higher in the fish without glucose injection than in the fish injected with glucose. This study reveals that blood glucose level can affect stress response of grass carp by modulating cortisol release and glucose homeostasis through glycogen metabolism and gluconeogenesis in the liver.

  17. Kinetic and stoichiometric modelling of acidogenic fermentation of glucose and fructose

    International Nuclear Information System (INIS)

    Fernandez, F.J.; Villasenor, J.; Infantes, D.

    2011-01-01

    In this work, a model based on Monod equation for the description of the acidogenic fermentation of glucose and fructose as the main substrates contained in the winery wastewater was developed. The data used for calibration and validation of the model parameters were obtained from an acidogenic mixed culture fermenting glucose and fructose in a batch reactor at 35 o C and pH 5. The calibrated model accurately describes the experimental results from biomass growth, substrate consumption and fermentation products generation. The results showed that the microorganisms growth rate and biomass yield were higher when glucose was used as substrate: μ max-Glucose = 0.163 h -1 , μ max-Fructose = 0.108 h -1 , Y x-Glucose = 0.027 g VSS per mmol Glucose and Y x-Fructose 0.017 g VSS per mmol Fructose. Regarding to the fermentation products, the acetic acid was the main fermentation product obtained in both fermentations, followed by lactic and butyric acid. Comparing glucose and fructose fermentations, the main difference was the yield of butyric acid in both fermentations, 0.249 mol per mol Glucose and 0.131 mol per mol Fructose since the other acids concentration were quite similar. In the case of the H 2 production, it was 0.76 mol H 2 per mol Glucose while 0.85 was the yield in fructose fermentation. -- Highlights: → Acidogenic fermentation of glucose and fructose was studied. → A model describing the kinetics and stoichiometry of the fermentation was developed. → The model developed predicted accurately the substrate, products and biomass profiles along the fermentation process. → The microorganisms growth rate was higher in the glucose fermentation. → The fructose fermentation presented higher hydrogen yields.

  18. Hemoglobin A1c, fasting plasma glucose, and 2-hour plasma glucose distributions in U.S. population subgroups: NHANES 2005-2010.

    Science.gov (United States)

    Menke, Andy; Rust, Keith F; Savage, Peter J; Cowie, Catherine C

    2014-02-01

    Although mean concentrations of hemoglobin A1c (A1C), fasting plasma glucose, and 2-hour plasma glucose differ by demographics, it is unclear what other characteristics of the distributions may differ, such as the amount of asymmetry of the distribution (skewness) and shift left or right compared with another distribution (shift). Using kernel density estimation, we created smoothed plots of the distributions of fasting plasma glucose (N = 7250), 2-hour plasma glucose (N = 5851), and A1C (N = 16,209) by age, race-ethnicity, and sex in the 2005-2010 National Health and Nutrition Examination Survey, a nationally representative sample of U.S. adults including people with and without diabetes. We tested differences in distributions using cumulative logistic regression. The distributions were generally unimodal and right-skewed. All distributions were shifted higher and more right-skewed for older age groups (P Mexican-Americans (P = .01), whereas the distribution of A1C was shifted higher for non-Hispanic blacks (P rights reserved.

  19. Circulating Betatrophin Correlates with Triglycerides and Postprandial Glucose among Different Glucose Tolerance Statuses--A Case-Control Study.

    Science.gov (United States)

    Gao, Ting; Jin, Kairui; Chen, Peihong; Jin, Hua; Yang, Lili; Xie, Xinmiao; Yang, Meili; Hu, Cheng; Yu, Xuemei

    2015-01-01

    Previous researches of betatrophin on glucose and lipids metabolism under insulin-resistant condition have reached controversial conclusions. To further identify the possible impact of betatrophin, we measured the circulating betatrophin levels in newly diagnosed type 2 diabetes (T2DM) patients, and in subjects with both impaired glucose tolerance (IGT) and normal glucose tolerance (NGT) and investigated the relationship between serum betatrophin and other clinical parameters in these patients with different glucose tolerance statuses. A total of 460 permanent residents of the Fengxian District, aged 40-60 years, were enrolled. Based on the results of a 75 g oral glucose tolerance test, we selected newly diagnosed T2DM (n = 50) patients and subjects with IGT (n = 51) and NGT (n = 50) according to their age, gender and body mass index (18-28 kg/m2). Anthropometric parameters, glycosylated haemoglobin, blood lipids and fasting insulin were measured. Serum betatrophin concentrations were determined via ELISA. Serum betatrophin levels in T2DM patients were increased significantly compared with IGT and NGT groups, and decreased in subjects with better islet beta cell function. Serum betatrophin was positively correlated with triglyceride, 2-hour postprandial glucose, alanine aminotransferase and aspartate transaminase after adjusting for age, sex and body mass index in all subjects. Multiple regression analysis showed that 2-hour postprandial glucose was independently associated with serum betatrophin significantly. Circulating betatrophin is increased in newly-diagnosed T2DM patients and positively correlated with the triglycerides and postprandial glucose levels. The results suggest that betatrophin may participate in glucose and triglycerides metabolism.

  20. Sex-specific effects of dehydroepiandrosterone (DHEA) on glucose metabolism in the CNS.

    Science.gov (United States)

    Vieira-Marques, Claudia; Arbo, Bruno Dutra; Cozer, Aline Gonçalves; Hoefel, Ana Lúcia; Cecconello, Ana Lúcia; Zanini, Priscila; Niches, Gabriela; Kucharski, Luiz Carlos; Ribeiro, Maria Flávia M

    2017-07-01

    DHEA is a neuroactive steroid, due to its modulatory actions on the central nervous system (CNS). DHEA is able to regulate neurogenesis, neurotransmitter receptors and neuronal excitability, function, survival and metabolism. The levels of DHEA decrease gradually with advancing age, and this decline has been associated with age related neuronal dysfunction and degeneration, suggesting a neuroprotective effect of endogenous DHEA. There are significant sex differences in the pathophysiology, epidemiology and clinical manifestations of many neurological diseases. The aim of this study was to determine whether DHEA can alter glucose metabolism in different structures of the CNS from male and female rats, and if this effect is sex-specific. The results showed that DHEA decreased glucose uptake in some structures (cerebral cortex and olfactory bulb) in males, but did not affect glucose uptake in females. When compared, glucose uptake in males was higher than females. DHEA enhanced the glucose oxidation in both males (cerebral cortex, olfactory bulb, hippocampus and hypothalamus) and females (cerebral cortex and olfactory bulb), in a sex-dependent manner. In males, DHEA did not affect synthesis of glycogen, however, glycogen content was increased in the cerebral cortex and olfactory bulb. DHEA modulates glucose metabolism in a tissue-, dose- and sex-dependent manner to increase glucose oxidation, which could explain the previously described neuroprotective role of this hormone in some neurodegenerative diseases. Copyright © 2016. Published by Elsevier Ltd.

  1. Dietary patterns predict changes in two-hour post-oral glucose tolerance test plasma glucose concentrations in middle-aged adults.

    Science.gov (United States)

    Lau, Cathrine; Toft, Ulla; Tetens, Inge; Carstensen, Bendix; Jørgensen, Torben; Pedersen, Oluf; Borch-Johnsen, Knut

    2009-03-01

    We examined whether the adherence to major dietary patterns at baseline of 5824 nondiabetic Danes (30-60 y) enrolled in the nonpharmacological Inter99 intervention predicted changes in fasting plasma glucose (FPG) and postchallenge 2-h plasma glucose (2h-PG) concentrations during a 5 y period and whether a potential association was dependent on baseline glucose tolerance status. Through principal component analysis, a score for a traditional dietary pattern (characterized by higher intakes of high-fat sandwich spreads, red meat, potatoes, butter and lard, low-fat fish, sandwich meat, and sauces) and a score for a modern dietary pattern (characterized by higher intakes of vegetables, fruit, vegetable oil/vinegar dressing, poultry, pasta, rice, and cereals) were estimated for each person at baseline. Random effect models adjusting for relevant confounders were used to estimate changes in repetitive measures of FPG and 2h-PG. A higher modern score (of 1 SD) predicted an annual decrease in 2h-PG of 0.015 mmol/L (P dressing, poultry, pasta, rice, and cereals.

  2. Fabrication of Amperometric Glucose Sensor Using Glucose Oxidase-Cellulose Nanofiber Aqueous Solution.

    Science.gov (United States)

    Yasuzawa, Mikito; Omura, Yuya; Hiura, Kentaro; Li, Jiang; Fuchiwaki, Yusuke; Tanaka, Masato

    2015-01-01

    Cellulose nanofiber aqueous solution, which remained virtually transparent for more than one week, was prepared by using the clear upper layer of diluted cellulose nanofiber solution produced by wet jet milling. Glucose oxidase (GOx) was easily dissolved in this solution and GOx-immobilized electrode was easily fabricated by simple repetitious drops of GOx-cellulose solution on the surface of a platinum-iridium electrode. Glucose sensor properties of the obtained electrodes were examined in phosphate buffer solution of pH 7.4 at 40°C. The obtained electrode provided a glucose sensor response with significantly high response speed and good linear relationship between glucose concentration and response current. After an initial decrease of response sensitivity for a few days, relatively constant sensitivity was obtained for about 20 days. Nevertheless, the influence of electroactive compounds such as ascorbic acid, uric acid and acetoaminophen were not negletable.

  3. Diabetes-related symptom distress in association with glucose metabolism and comorbidity

    DEFF Research Database (Denmark)

    Adriaanse, Marcel C; Pouwer, Frans; Dekker, Jacqueline M

    2008-01-01

    OBJECTIVE: The purpose of this study was to determine the associations between diabetes-related symptom distress, glucose metabolism status, and comorbidities of type 2 diabetes. RESEARCH DESIGN AND METHODS: This was a cross-sectional sample of 281 individuals with normal glucose metabolism (NGM......), 181 individuals with impaired glucose metabolism (IGM), and 107 subjects with type 2 diabetes. We used the revised type 2 Diabetes Symptom Checklist (DSC-R) to assess diabetes-related symptom distress. RESULTS: The total symptom distress score (range 0-100) was relatively low for diabetic subjects...... (mean +/- SD 8.4 +/- 9.4), although it was significantly different from that for subjects with IGM (6.5 +/- 7.1) and NGM (6.1 +/- 7.9) (F = 3.1, 2 d.f., P = 0.046). Ischemic heart disease was associated with elevated DSC-R scores on three subscales, whereas depression showed higher symptom distress...

  4. Intraperitoneal lactate/pyruvate ratio and the level of glucose and glycerol concentration differ between patients surgically treated for upper and lower perforations of the gastrointestinal tract

    DEFF Research Database (Denmark)

    Sabroe, Jonas E; Axelsen, Anne R; Ellebæk, Mark B

    2017-01-01

    collected every 4th hour for up to 7 postoperative days. Samples were analysed for concentrations of glucose, lactate, pyruvate and glycerol. RESULTS: Microdialysis results showed that patients with upper gastrointestinal tract lesions had significantly higher levels of postoperative intraperitoneal glucose...... and glycerol concentrations, as well as lower lactate/pyruvate ratios and lactate/glucose ratios. In the group with perforation of the lower gastrointestinal tract, those patients with a complicated course showed lower levels of postoperative intraperitoneal glucose concentration and glycerol concentration...... and higher lactate/pyruvate ratios and lactate/glucose ratios than those patients with an uncomplicated course. CONCLUSION: Patients with upper and lower gastrointestinal tract lesions showed differences in postoperative biomarker levels. A difference was also seen between patients with complicated...

  5. Alanine aminotransferase is associated with an adverse nocturnal blood glucose profile in individuals with normal glucose regulation.

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    Full Text Available OBJECTIVE: Although the association between alanine aminotransferase (ALT levels and risk of type 2 diabetes is well-studied, the effects of slightly increased ALT levels within the normal range on the temporal normal glucose profile remains poorly understood. METHODS: A total of 322 Chinese subjects without impaired glucose tolerance or previous diagnoses of diabetes were recruited for study from 10 hospitals in urban areas across China. All subjects wore a continuous glucose monitoring (CGM system for three consecutive days. The diurnal (06∶00-20∶00 and nocturnal (20∶00-06∶00 mean blood glucose (MBG levels were calculated. Subjects were stratified by ALT quartile level and correlation analyses were performed. RESULTS: The median ALT level was 17 IU/L, and subjects with ALT ≥17 IU/L had higher nocturnal MBG level than those with ALT 0.05. Multivariate stepwise regression analysis of elevated nocturnal MBG identified increased HOMA-IR, elevated ALT levels, and decreased homeostatic model assessment of ß-cell function as independent factors (all, P<0.05. CONCLUSIONS: Mildly elevated ALT levels, within the normal range, are associated with unfavorable nocturnal glucose profiles in Chinese subjects with normal glucose regulation.

  6. Crosslinked basement membrane-based coatings enhance glucose sensor function and continuous glucose monitoring in vivo.

    Science.gov (United States)

    Klueh, Ulrike; Ludzinska, Izabela; Czajkowski, Caroline; Qiao, Yi; Kreutzer, Donald L

    2018-01-01

    Overcoming sensor-induced tissue reactions is an essential element of achieving successful continuous glucose monitoring (CGM) in the management of diabetes, particularly when used in closed loop technology. Recently, we demonstrated that basement membrane (BM)-based glucose sensor coatings significantly reduced tissue reactions at sites of device implantation. However, the biocompatible BM-based biohydrogel sensor coating rapidly degraded over a less than a 3-week period, which effectively eliminated the protective sensor coating. In an effort to increase the stability and effectiveness of the BM coating, we evaluated the impact of crosslinking BM utilizing glutaraldehyde as a crosslinking agent, designated as X-Cultrex. Sensor performance (nonrecalibrated) was evaluated for the impact of these X-Cultrex coatings in vitro and in vivo. Sensor performance was assessed over a 28-day time period in a murine CGM model and expressed as mean absolute relative difference (MARD) values. Tissue reactivity of Cultrex-coated, X-Cultrex-coated, and uncoated glucose sensors was evaluated over a 28-day time period in vivo using standard histological techniques. These studies demonstrated that X-Cultrex-based sensor coatings had no effect on glucose sensor function in vitro. In vivo, glucose sensor performance was significantly enhanced following X-Cultrex coating throughout the 28-day study. Histological evaluations of X-Cultrex-treated sensors demonstrated significantly less tissue reactivity when compared to uncoated sensors. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 7-16, 2018. © 2017 Wiley Periodicals, Inc.

  7. Deteriorated glucose metabolism with a high-protein, low-carbohydrate diet in db mice, an animal model of type 2 diabetes, might be caused by insufficient insulin secretion.

    Science.gov (United States)

    Arimura, Emi; Pulong, Wijang Pralampita; Marchianti, Ancah Caesarina Novi; Nakakuma, Miwa; Abe, Masaharu; Ushikai, Miharu; Horiuchi, Masahisa

    2017-02-01

    We previously showed the deleterious effects of increased dietary protein on renal manifestations and glucose metabolism in leptin receptor-deficient (db) mice. Here, we further examined its effects on glucose metabolism, including urinary C-peptide. We also orally administered mixtures corresponding to low- or high-protein diets to diabetic mice. In diet experiments, under pair-feeding (equivalent energy and fat) conditions using a metabolic cage, mice were fed diets with different protein content (L diet: 12 % protein, 71 % carbohydrate, 17 % fat; H diet: 24 % protein, 59 % carbohydrate, 17 % fat) for 15 days. In oral administration experiments, the respective mixtures (L mixture: 12 % proline, 71 % maltose or starch, 17 % linoleic acid; H mixture: 24 % proline, 59 % maltose or starch, 17 % linoleic acid) were supplied to mice. Biochemical parameters related to glucose metabolism were measured. The db-H diet mice showed significantly higher water intake, urinary volume, and glucose levels than db-L diet mice but similar levels of excreted urinary C-peptide. In contrast, control-H diet mice showed significantly higher C-peptide excretion than control-L diet mice. Both types of mice fed H diet excreted high levels of urinary albumin. When maltose mixtures were administered, db-L mixture mice showed significantly higher blood glucose after 30 min than db-H mixture mice. However, db mice administered starch-H mixture showed significantly higher blood glucose 120-300 min post-administration than db-L mixture mice, although both groups exhibited similar insulin levels. High-protein, low-carbohydrate diets deteriorated diabetic conditions and were associated with insufficient insulin secretion in db mice. Our findings may have implications for dietary management of diabetic symptoms in human patients.

  8. Sodium-glucose co-transporter (SGLT) and glucose transporter (GLUT) expression in the kidney of type 2 diabetic subjects.

    Science.gov (United States)

    Norton, Luke; Shannon, Christopher E; Fourcaudot, Marcel; Hu, Cheng; Wang, Niansong; Ren, Wei; Song, Jun; Abdul-Ghani, Muhammad; DeFronzo, Ralph A; Ren, Jimmy; Jia, Weiping

    2017-09-01

    The sodium-glucose co-transporters (SGLTs) are responsible for the tubular reabsorption of filtered glucose from the kidney into the bloodstream. The inhibition of SGLT2-mediated glucose reabsorption is a novel and highly effective strategy to alleviate hyperglycaemia in patients with type 2 diabetes mellitus (T2DM). However, the effectiveness of SGLT2 inhibitor therapy is diminished due, in part, to a compensatory increase in the maximum reabsorptive capacity (Tm) for glucose in patients with T2DM. We hypothesized that this increase in Tm could be explained by an increase in the tubular expression of SGLT and glucose transporters (GLUT) in these patients. To examine this, we obtained human kidney biopsy specimens from patients with or without T2DM and examined the mRNA expression of SGLTs and GLUTs. The expression of SGLT1 is markedly increased in the kidney of patients with T2DM, and SGLT1 mRNA is highly and significantly correlated with fasting and postprandial plasma glucose and HbA1c. In contrast, our data demonstrate that the levels of SGLT2 and GLUT2 mRNA are downregulated in diabetic patients, but not to a statistically significant level. These important findings are clinically significant and may have implications for the treatment of T2DM using strategies that target SGLT transporters in the kidney. © 2017 John Wiley & Sons Ltd.

  9. Comparative analysis of salivary glucose and electrolytes in diabetic individuals with periodontitis.

    Science.gov (United States)

    Lasisi, T J; Fasanmade, A A

    2012-06-01

    A high incidence of periodontal disease has been reported among diabetics, however the role of saliva in the occurrence of this oral disease in these patients is yet to be understood. To determine the effects of type-2 diabetes and periodontal disease on salivary flow rate and biochemical composition. A prospective study involving 40 adult human subjects divided equally into four groups of diabetics with periodontitis (group 1), diabetics without periodontitis (group 2), non diabetics with periodontitis (group 3) and non diabetics without periodontitis (group 4). Saliva samples were collected and analyzed for salivary glucose, total protein, calcium, sodium, potassium, chloride and bicarbonate. Salivary flow rates were also determined. Salivary glucose and potassium levels were significantly higher (P = 0.002 and 0.04 respectively) in diabetic patients regardless of periodontal disease (mean = 100.7 ± 9.33 mg/dl; 111.5 ± 32.85 mg/dl and 23.79 ± 5.19 mg/dl; 22.9 ± 6.25 mg/dl respectively) compared with non diabetic participants (mean = 80.5 ± 30.85 mg/ dl; 62.5 ± 31.89 mg/dl and 19.23 ± 5.04 mg/dl; 17.74 ± 4.68 mg/dl respectively). In contrast, there was no significant difference in saliva flow rates and levels of total protein, Na(+), Ca(++), Cl(-) and HCO3 (-)between the groups. Salivary glucose and potassium levels were significantly higher among diabetics with or without periodontitis compared with non-diabetics with or without periodontitis. However, biochemical composition of saliva in diabetic individuals has probably little role in their susceptibility to periodontitis.

  10. Acute effects of traditional Japanese alcohol beverages on blood glucose and polysomnography levels in healthy subjects

    Directory of Open Access Journals (Sweden)

    Megumi Kido

    2016-04-01

    Full Text Available Background. Alcohol consumption is a lifestyle factor associated with type 2 diabetes. This relationship is reportedly different depending on the type of alcohol beverage. The purpose of this study was to examine the acute effects of traditional Japanese alcohol beverages on biochemical parameters, physical and emotional state, and sleep patterns. Methods. Six healthy subjects (three men and three women; age, 28.8 ± 9.5 years; body mass index, 21.4 ± 1.6 kg/m2 consumed three different types of alcohol beverages (beer, shochu, and sake, each with 40 g ethanol or mineral water with dinner on different days in the hospital. Blood samples were collected before and 1, 2, and 12 h after drinking each beverage, and assessments of physical and emotional state were administered at the same time. In addition, sleep patterns and brain waves were examined using polysomnography. Results. Blood glucose levels at 1 h and the 12-h area under the curve (AUC value after drinking shochu were significantly lower than that with water and beer. The 12-h blood insulin AUC value after drinking shochu was significantly lower than that with beer. Blood glucose × insulin level at 1 h and the 2-h blood glucose × insulin AUC value with shochu were significantly lower than that with beer. The insulinogenic indexes at 2 h with beer and sake, but not shochu, were significantly higher than that with water. The visual analogue scale scores of physical and emotional state showed that the tipsiness levels with beer, shochu, and sake at 1 h were significantly higher than that with water. These tipsiness levels were maintained at 2 h. The polysomnography showed that the rapid eye movement (REM sleep latency with shochu and sake were shorter than that with water and beer. Conclusions. Acute consumption of alcohol beverages with a meal resulted in different responses in postprandial glucose and insulin levels as well as REM sleep latency. Alcohol beverage type should be taken into

  11. Acute effects of traditional Japanese alcohol beverages on blood glucose and polysomnography levels in healthy subjects.

    Science.gov (United States)

    Kido, Megumi; Asakawa, Akihiro; Koyama, Ken-Ichiro K; Takaoka, Toshio; Tajima, Aya; Takaoka, Shigeru; Yoshizaki, Yumiko; Okutsu, Kayu; Takamine, Kazunori T; Sameshima, Yoshihiro; Inui, Akio

    2016-01-01

    Background. Alcohol consumption is a lifestyle factor associated with type 2 diabetes. This relationship is reportedly different depending on the type of alcohol beverage. The purpose of this study was to examine the acute effects of traditional Japanese alcohol beverages on biochemical parameters, physical and emotional state, and sleep patterns. Methods. Six healthy subjects (three men and three women; age, 28.8 ± 9.5 years; body mass index, 21.4 ± 1.6 kg/m(2)) consumed three different types of alcohol beverages (beer, shochu, and sake, each with 40 g ethanol) or mineral water with dinner on different days in the hospital. Blood samples were collected before and 1, 2, and 12 h after drinking each beverage, and assessments of physical and emotional state were administered at the same time. In addition, sleep patterns and brain waves were examined using polysomnography. Results. Blood glucose levels at 1 h and the 12-h area under the curve (AUC) value after drinking shochu were significantly lower than that with water and beer. The 12-h blood insulin AUC value after drinking shochu was significantly lower than that with beer. Blood glucose × insulin level at 1 h and the 2-h blood glucose × insulin AUC value with shochu were significantly lower than that with beer. The insulinogenic indexes at 2 h with beer and sake, but not shochu, were significantly higher than that with water. The visual analogue scale scores of physical and emotional state showed that the tipsiness levels with beer, shochu, and sake at 1 h were significantly higher than that with water. These tipsiness levels were maintained at 2 h. The polysomnography showed that the rapid eye movement (REM) sleep latency with shochu and sake were shorter than that with water and beer. Conclusions. Acute consumption of alcohol beverages with a meal resulted in different responses in postprandial glucose and insulin levels as well as REM sleep latency. Alcohol beverage type should be taken into consideration

  12. Dehydration of Glucose to 5-Hydroxymethylfurfural Using Nb-doped Tungstite

    KAUST Repository

    Yue, Chaochao

    2016-08-05

    Dehydration of glucose to 5-hydroxymethylfurfural (HMF) remains a significant problem in the context of the valorization of lignocellulosic biomass. Hydrolysis of WCl6 and NbCl5 leads to precipitation of Nb-containing tungstite (WO3H2O) at low Nb content and mixtures of tungstite and niobic acid at higher Nb content. Tungstite is a promising catalyst for the dehydration of glucose to HMF. Compared with Nb2O5, fewer by-products are formed because of the low BrOnsted acidity of the (mixed) oxides. In water, an optimum yield of HMF was obtained for Nb-W oxides with low Nb content owing to balanced Lewis and BrOnsted acidity. In THF/water, the strong Lewis acidity and weak BrOnsted acidity caused the reaction to proceed through isomerization to fructose and dehydration of fructose to a partially dehydrated intermediate, which was identified by LC-ESI-MS. The addition of HCl to the reaction mixture resulted in rapid dehydration of this intermediate to HMF. The HMF yield obtained in this way was approximately 56% for all tungstite catalysts. Density functional theory calculations show that the Lewis acid centers on the tungstite surface can isomerize glucose into fructose. Substitution of W by Nb lowers the overall activation barrier for glucose isomerization by stabilizing the deprotonated glucose adsorbate.

  13. T1ρ-weighted Dynamic Glucose-enhanced MR Imaging in the Human Brain.

    Science.gov (United States)

    Paech, Daniel; Schuenke, Patrick; Koehler, Christina; Windschuh, Johannes; Mundiyanapurath, Sibu; Bickelhaupt, Sebastian; Bonekamp, David; Bäumer, Philipp; Bachert, Peter; Ladd, Mark E; Bendszus, Martin; Wick, Wolfgang; Unterberg, Andreas; Schlemmer, Heinz-Peter; Zaiss, Moritz; Radbruch, Alexander

    2017-12-01

    Purpose To evaluate the ability to detect intracerebral regions of increased glucose concentration at T1ρ-weighted dynamic glucose-enhanced (DGE) magnetic resonance (MR) imaging at 7.0 T. Materials and Methods This prospective study was approved by the institutional review board. Nine patients with newly diagnosed glioblastoma and four healthy volunteers were included in this study from October 2015 to July 2016. Adiabatically prepared chemical exchange-sensitive spin-lock imaging was performed with a 7.0-T whole-body unit with a temporal resolution of approximately 7 seconds, yielding the time-resolved DGE contrast. T1ρ-weighted DGE MR imaging was performed with injection of 100 mL of 20% d-glucose via the cubital vein. Glucose enhancement, given by the relative signal intensity change at T1ρ-weighted MR imaging (DGEρ), was quantitatively investigated in brain gray matter versus white matter of healthy volunteers and in tumor tissue versus normal-appearing white matter of patients with glioblastoma. The median signal intensities of the assessed brain regions were compared by using the Wilcoxon rank-sum test. Results In healthy volunteers, the median signal intensity in basal ganglia gray matter (DGEρ = 4.59%) was significantly increased compared with that in white matter tissue (DGEρ = 0.65%) (P = .028). In patients, the median signal intensity in the glucose-enhanced tumor region as displayed on T1ρ-weighted DGE images (DGEρ = 2.02%) was significantly higher than that in contralateral normal-appearing white matter (DGEρ = 0.08%) (P brain glucose physiology and pathophysiologically increased glucose uptake and may have the potential to provide information about glucose metabolism in tumor tissue. © RSNA, 2017 Online supplemental material is available for this article.

  14. Circulating Betatrophin Correlates with Triglycerides and Postprandial Glucose among Different Glucose Tolerance Statuses—A Case-Control Study

    Science.gov (United States)

    Chen, Peihong; Jin, Hua; Yang, Lili; Xie, Xinmiao; Yang, Meili; Hu, Cheng; Yu, Xuemei

    2015-01-01

    Purpose Previous researches of betatrophin on glucose and lipids metabolism under insulin-resistant condition have reached controversial conclusions. To further identify the possible impact of betatrophin, we measured the circulating betatrophin levels in newly diagnosed type 2 diabetes (T2DM) patients, and in subjects with both impaired glucose tolerance (IGT) and normal glucose tolerance (NGT) and investigated the relationship between serum betatrophin and other clinical parameters in these patients with different glucose tolerance statuses. Methods A total of 460 permanent residents of the Fengxian District, aged 40–60 years, were enrolled. Based on the results of a 75 g oral glucose tolerance test, we selected newly diagnosed T2DM (n = 50) patients and subjects with IGT (n = 51) and NGT (n = 50) according to their age, gender and body mass index (18–28 kg/m2). Anthropometric parameters, glycosylated haemoglobin, blood lipids and fasting insulin were measured. Serum betatrophin concentrations were determined via ELISA. Results Serum betatrophin levels in T2DM patients were increased significantly compared with IGT and NGT groups, and decreased in subjects with better islet beta cell function. Serum betatrophin was positively correlated with triglyceride, 2-hour postprandial glucose, alanine aminotransferase and aspartate transaminase after adjusting for age, sex and body mass index in all subjects. Multiple regression analysis showed that 2-hour postprandial glucose was independently associated with serum betatrophin significantly. Conclusions Circulating betatrophin is increased in newly-diagnosed T2DM patients and positively correlated with the triglycerides and postprandial glucose levels. The results suggest that betatrophin may participate in glucose and triglycerides metabolism. PMID:26247824

  15. Glucose homeostasis in Egyptian children and adolescents with β-Thalassemia major: Relationship to oxidative stress

    Directory of Open Access Journals (Sweden)

    Kotb Abbass Metwalley

    2014-01-01

    Full Text Available Background: Oxidative stress in children with β-thalassemia may contribute to shortened life span of erythrocytes and endocrinal abnormalities. Aim: This study was aimed to evaluate glucose homeostasis in Egyptian children and adolescents with β-thalassemia major and its relation to oxidative stress. Materials and Methods: Sixty children and adolescents with β-thalassemia major were studied in comparison to 30 healthy age and sex-matched subjects. Detailed medical history, thorough clinical examination, and laboratory assessment of oral glucose tolerance test (OGTT, serum ferritin, alanine transferase (ALT, fasting insulin levels, plasma malondialdehyde (MDA as oxidant marker and serum total antioxidants capacity (TAC were performed. Patients were divided into two groups according to the presence of abnormal OGTT. Results: The prevalence of diabetes was 5% (3 of 60 and impaired glucose tolerance test (IGT was 8% (5 of 60. Fasting blood glucose, 2-hour post-load plasma glucose, serum ferritin, ALT, fasting insulin level, homeostatic model assessment for insulin resistance index (HOMA-IR and MDA levels were significantly elevated while TAC level was significantly decreased in thalassemic patients compared with healthy controls (P < 0.001 for each. The difference was more evident in patients with abnormal OGTT than those with normal oral glucose tolerance (P < 0.001 for each. We also observed that thalassemic patients not receiving or on irregular chelation therapy had significantly higher fasting, 2-h post-load plasma glucose, serum ferritin, ALT, fasting insulin, HOMA-IR, oxidative stress markers OSI and MDA levels and significantly lower TAC compared with either those on regular chelation or controls. HOMA-IR was positively correlated with age, serum ferritin, ALT, MDA, and negatively correlated with TAC. Conclusions: The development of abnormal glucose tolerance in Egyptian children and adolescents with β--thalassemia is associated with

  16. [IMPACT OF PERIOPERATIVE AVERAGE BLOOD-GLUCOSE LEVEL ON PROGNOSIS OF PATIENTS WITH HIP FRACTURE AND DIABETES MELLITUS].

    Science.gov (United States)

    Wang, Guoqi; Long, Anhua; Zhang, Lihai; Zhang, Hao; Yin, Peng; Tang, Peifu

    2014-07-01

    To explore the impact of perioperative average blood-glucose level on the prognosis of patients with hip fracture and diabetes mellitus. A retrospective analysis was made on the clinical data of 244 patients with hip fracture and diabetes mellitus who accorded with the inclusion criteria between September 2009 and September 2012. Of 244 patients, 125 patients with poorly controlled fasting blood-glucose (average fasting blood-glucose level > 7.8 mmol/L) were assigned in group A, and 119 patients with well controlled fasting blood-glucose (average fasting blood-glucose level ≤ 7.8 mmol/L) were assigned in group B according to "China guideline for type 2 diabetes" criteria. There was no significant difference in gender, age, disease duration of diabetes mellitus, serum albumin, fracture type and disease duration, surgical procedure, anaesthesia, and complications between 2 groups (P > 0.05). Group A had a higher hemoglobin level and fewer patients who can do some outdoor activities than group B (t = -2.353, P = 0.020; χ2 = 4.333, P = 0.037). The hospitalization time, days to await surgery, stitch removal time, the postoperative complication rate, the mortality at 1 month and 1 year after operation, and ambulatory ability at 1 year after operation were compared between the 2 groups. A total of 223 patients (114 in group A and 109 in group B) were followed up 12-15 months (mean, 13.5 months). The days to await surgery of group A were significantly more than those of group B (t = -2.743, P=0.007), but no significant difference was found in hospitalization time and stitch removal time between 2 groups (P > 0.05). The postoperative complication rate of group A (19.2%, 24/125) was significantly higher than that of group B (8.4%, 10/119) (χ2 =5.926, P = 0.015). Group A had a higher mortality at 1 month after operation than group B (6.1% vs. 0) (χ2 = 5.038, P = 0.025), but no significant difference was shown at 1 year after operation between groups A and B (8.8% vs. 4

  17. Effects of blood glucose level on FDG uptake by liver: a FDG-PET/CT study

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Kazuo, E-mail: kkubota@cpost.plala.or.j [Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, Tokyo 162-8655 (Japan); Watanabe, Hiroshige; Murata, Yuji [Department of Radiology, Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan); Yukihiro, Masashi; Ito, Kimiteru; Morooka, Miyako; Minamimoto, Ryogo [Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, Tokyo 162-8655 (Japan); Hori, Ai [Department of Epidemiology and International Health, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655 (Japan); Shibuya, Hitoshi [Department of Radiology, Faculty of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519 (Japan)

    2011-04-15

    In FDG-PET for abdominal malignancy, the liver may be assumed as an internal standard for grading abnormal FDG uptake both in early images and in delayed images. However, physiological variables of FDG uptake by the liver, especially the effects of blood glucose level, have not yet been elucidated. Methods: FDG-PET studies of 70 patients examined at 50 to 70 min after injection (60{+-}10 min: early images) and of 68 patients examined at 80 to 100 min after injection (90{+-}10 min: delayed images) were analyzed for liver FDG uptake. Patients having lesions in the liver, spleen and pancreas; patients having bulk tumor in other areas; and patients early after chemotherapy or radiotherapy were excluded; also, patients with blood glucose level over 125 mg/dl were excluded. Results: Mean standardized uptake value (SUV) of the liver, blood glucose level and sex showed no significant differences between early images and delayed images. However, liver SUV in the delayed image showed a larger variation than that in the early image and showed significant correlation to blood glucose level. The partial correlation coefficient between liver SUV and blood glucose level in the delayed image with adjustment for sex and age was 0.73 (P<.0001). Multivariate regression coefficient (95% confidence interval) of blood glucose was 0.017 (0.013-0.021). Conclusion: Blood glucose level is an important factor affecting the normal liver FDG uptake in nondiabetic patients. In the case of higher glucose level, liver FDG uptake is elevated especially in the delayed image. This may be due to the fact that the liver is the key organ responsible for glucose metabolism through gluconeogenesis and glycogen storage.

  18. Glucose Homeostasis During Short-term and Prolonged Exposure to High Altitudes

    Science.gov (United States)

    Ader, Marilyn; Bergman, Richard N.

    2015-01-01

    Most of the literature related to high altitude medicine is devoted to the short-term effects of high-altitude exposure on human physiology. However, long-term effects of living at high altitudes may be more important in relation to human disease because more than 400 million people worldwide reside above 1500 m. Interestingly, individuals living at higher altitudes have a lower fasting glycemia and better glucose tolerance compared with those who live near sea level. There is also emerging evidence of the lower prevalence of both obesity and diabetes at higher altitudes. The mechanisms underlying improved glucose control at higher altitudes remain unclear. In this review, we present the most current evidence about glucose homeostasis in residents living above 1500 m and discuss possible mechanisms that could explain the lower fasting glycemia and lower prevalence of obesity and diabetes in this population. Understanding the mechanisms that regulate and maintain the lower fasting glycemia in individuals who live at higher altitudes could lead to new therapeutics for impaired glucose homeostasis. PMID:25675133

  19. Experimentally Induced Bleaching in the Sea Anemone Exaiptasia Supports Glucose as a Main Metabolite Associated with Its Symbiosis

    Directory of Open Access Journals (Sweden)

    Víctor Hugo Molina

    2017-01-01

    Full Text Available Our current understanding of carbon exchange between partners in the Symbiodinium-cnidarian symbioses is still limited, even though studies employing carbon isotopes have made us aware of the metabolic complexity of this exchange. We examined glycerol and glucose metabolism to better understand how photosynthates are exchanged between host and symbiont. The levels of these metabolites were compared between symbiotic and bleached Exaiptasia pallida anemones, assaying enzymes directly involved in their metabolism. We measured a significant decrease of glucose levels in bleached animals but a significant increase in glycerol and G3P pools, suggesting that bleached animals degrade lipids to compensate for the loss of symbionts and seem to rely on symbiotic glucose. The lower glycerol 3-phosphate dehydrogenase but higher glucose 6-phosphate dehydrogenase specific activities measured in bleached animals agree with a metabolic deficit mainly due to the loss of glucose from the ruptured symbiosis. These results corroborate previous observations on carbon translocation from symbiont to host in the sea anemone Exaiptasia, where glucose was proposed as a main translocated metabolite. To better understand photosynthate translocation and its regulation, additional research with other symbiotic cnidarians is needed, in particular, those with calcium carbonate skeletons.

  20. Association between blood glucose level derived using the oral glucose tolerance test and glycated hemoglobin level.

    Science.gov (United States)

    Kim, Hyoung Joo; Kim, Young Geon; Park, Jin Soo; Ahn, Young Hwan; Ha, Kyoung Hwa; Kim, Dae Jung

    2016-05-01

    Glycated hemoglobin (HbA1c) is widely used as a marker of glycemic control. Translation of the HbA1c level to an average blood glucose level is useful because the latter figure is easily understood by patients. We studied the association between blood glucose levels revealed by the oral glucose tolerance test (OGTT) and HbA1c levels in a Korean population. A total of 1,000 subjects aged 30 to 64 years from the Cardiovascular and Metabolic Diseases Etiology Research Center cohort were included. Fasting glucose levels, post-load glucose levels at 30, 60, and 120 minutes into the OGTT, and HbA1c levels were measured. Linear regression of HbA1c with mean blood glucose levels derived using the OGTT revealed a significant correlation between these measures (predicted mean glucose [mg/dL] = 49.4 × HbA1c [%] - 149.6; R (2) = 0.54, p Glucose (ADAG) study and Diabetes Control and Complications Trial (DCCT) cohort. Discrepancies between our results and those of the ADAG study and DCCT cohort may be attributable to differences in the test methods used and the extent of insulin secretion. More studies are needed to evaluate the association between HbA1c and self monitoring blood glucose levels.

  1. Rare Sugar Syrup Containing d-Allulose but Not High-Fructose Corn Syrup Maintains Glucose Tolerance and Insulin Sensitivity Partly via Hepatic Glucokinase Translocation in Wistar Rats.

    Science.gov (United States)

    Shintani, Tomoya; Yamada, Takako; Hayashi, Noriko; Iida, Tetsuo; Nagata, Yasuo; Ozaki, Nobuaki; Toyoda, Yukiyasu

    2017-04-05

    Ingestion of high-fructose corn syrup (HFCS) is associated with the risk of both diabetes and obesity. Rare sugar syrup (RSS) has been developed by alkaline isomerization of HFCS and has anti-obesity and anti-diabetic effects. However, the influence of RSS on glucose metabolism has not been explored. We investigated whether long-term administration of RSS maintains glucose tolerance and whether the underlying mechanism involves hepatic glucokinase translocation. Wistar rats were administered water, RSS, or HFCS in drinking water for 10 weeks and then evaluated for glucose tolerance, insulin tolerance, liver glycogen content, and subcellular distribution of liver glucokinase. RSS significantly suppressed body weight gain and abdominal fat mass (p glucose tolerance test revealed significantly higher blood glucose levels in the HFCS group compared to the water group, whereas the RSS group had significantly lower blood glucose levels from 90 to 180 min (p water group (p glucose loading, the nuclear export of glucokinase was significantly increased in the RSS group compared to the water group. These results imply that RSS maintains glucose tolerance and insulin sensitivity, at least partly, by enhancing nuclear export of hepatic glucokinase.

  2. Associations between ultrasound measures of abdominal fat distribution and indices of glucose metabolism in a population at high risk of type 2 diabetes: the ADDITION-PRO study.

    Directory of Open Access Journals (Sweden)

    Annelotte Philipsen

    Full Text Available Visceral adipose tissue measured by CT or MRI is strongly associated with an adverse metabolic risk profile. We assessed whether similar associations can be found with ultrasonography, by quantifying the strength of the relationship between different measures of obesity and indices of glucose metabolism in a population at high risk of type 2 diabetes.A cross-sectional analysis of 1342 participants of the ADDITION-PRO study. We measured visceral adipose tissue and subcutaneous adipose tissue with ultrasonography, anthropometrics and body fat percentage by bioelectrical impedance. Indices of glucose metabolism were derived from a three point oral glucose tolerance test. Linear regression of obesity measures on indices of glucose metabolism was performed.Mean age was 66.2 years, BMI 26.9kg/m2, subcutaneous adipose tissue 2.5cm and visceral adipose tissue 8.0cm. All measures of obesity were positively associated with indicators of glycaemia and inversely associated with indicators of insulin sensitivity. Associations were of equivalent magnitude except for subcutaneous adipose tissue and the visceral/subcutaneous adipose tissue ratio, which showed weaker associations. One standard deviation difference in BMI, visceral adipose tissue, waist circumference, waist/height ratio and body fat percentage corresponded approximately to 0.2mmol/l higher fasting glucose, 0.7mmol/l higher 2-hr glucose, 0.06-0.1% higher HbA1c, 30 % lower HOMA index of insulin sensitivity, 20% lower Gutt's index of insulin sensitivity, and 100 unit higher Stumvoll's index of beta-cell function. After adjustment for waist circumference visceral adipose tissue was still significantly associated with glucose intolerance and insulin resistance, whereas there was a trend towards inverse or no associations with subcutaneous adipose tissue. After adjustment, a 1cm increase in visceral adipose tissue was associated with ~5% lower insulin sensitivity (p≤0.0004 and ~0.18mmol/l higher 2-hr

  3. Glucose intolerance and General Health Questionnaire 12-item version scores of male two-shift workers stratified by precariousness of work.

    Science.gov (United States)

    Kawada, Tomoyuki

    2016-01-01

    This study examined the relationship between precariousness of work, glucose intolerance and psychological wellbeing for male workers, stratified by age. I recruited 2542 manufacturing two-shift workers, aged from 35 to 54 years. Glucose intolerance was defined as fasting plasma glucose of ≥100mg/dL or current medication of diabetes mellitus. The rating scale of General Health Questionnaire 12-item version (GHQ-12) was used for evaluating psychological well-being. There was a significant increase in the prevalence of glucose intolerance by aging in permanent workers. In addition, the prevalence of glucose intolerance except 30s and the prevalence of positive GHQ-12 scores except 50s of permanent workers were both significantly higher than that of temporary workers in each age class. Temporary workers in this study sign contracts for 3 years, and heather worker's effect, compared with permanent workers, would be reflected in this study. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  4. Acute metabolic and endocrine responses induced by glucose and fructose in healthy young subjects: A double-blinded, randomized, crossover trial.

    Science.gov (United States)

    Cai, Wenwen; Li, Jie; Shi, Jiahui; Yang, Bo; Tang, Jun; Truby, Helen; Li, Duo

    2018-04-01

    A rise in fructose consumption has been implicated in the etiology of obesity, diabetes and cardiovascular disease. Serum uric acid (UA) elevates after fructose ingestion, increasing the risk of cardiovascular disease. However, the impact of fructose ingestion on nitric oxide (NO) has not yet been confirmed. The aim of this study was to investigate the postprandial metabolic and endocrine responses following an acute ingestion of fructose and glucose in healthy subjects. This was a double-blinded, randomized, crossover postprandial trial. Eighteen healthy young subjects (9 males and 9 females) with a mean age of 23.6 ± 2.3 years and mean BMI of 20.2 ± 1.5 kg/m 2 completed the experiment that was conducted in Hangzhou, China. Volunteers were randomized to two groups (A and B): after an 8-h overnight fast, volunteers either ingested 300 mL of 25% glucose (group A) or fructose (group B) solution at 0830 within 5 min. After a one-week washout period, volunteers were crossed over to receive the alternate test solution. Blood pressure was measured at 0 h, 1 h, 2 h and 3 h and venous blood was drawn at 0 h, 0.5 h, 1 h, 2 h and 3 h after ingestion of the test solution. Eighteen subjects completed the study. Serum NO level tended to be lower at 1 h (59.40 ± 3.10 μmol/L and 68.1 ± 3.40 μmol/L, respectively, p ≤ 0.05) and 2 h (62.70 ± 3.10 μmol/L and 70.10 ± 3.50 μmol/L, respectively, p ≤ 0.05) after fructose ingestion than after glucose. The 3-h AUC (area under curve) of NO was significantly lower after fructose ingestion than after glucose (p ≤ 0.05). UA level was higher at 1 h (512.17 ± 17.74 μmol/L and 372.11 ± 17.41 μmol/L, respectively, p ≤ 0.01) and 2 h (440.22 ± 16.07 μmol/L and 357.39 ± 14.80 μmol/L, respectively, p ≤ 0.05) after fructose ingestion than after glucose. The 3-h AUC of UA was significantly higher after fructose ingestion than after glucose (p ≤ 0.01). Correlation

  5. Snack patterns are associated with biomarkers of glucose metabolism in US men.

    Science.gov (United States)

    Shin, Dayeon; Song, SuJin; Krumhar, Kim; Song, Won O

    2015-01-01

    Few studies have made distinctions between dietary intake from meals and snacks in relating them to biomarkers. We aimed to examine if snack patterns are associated with biomarkers of glucose metabolism, specifically hemoglobin A1c and HOMA-IR in US adults. Using 24-h dietary recall data from National Health and Nutrition Examination Survey (NHANES) in 2007-2008, we derived snack patterns using factor analyses. Multivariate logistic regressions were performed to estimate adjusted odds ratios (AOR) for biomarkers of glucose metabolism by quintiles of snack pattern scores. Men in the highest quintile of dairy and sugary snack pattern had higher risk of having hemoglobin A1c ≥ 6.5% (AOR: 2.06; 95% CI: 1.20-3.51) and HOMA-IR > 3.0 (AOR: 1.73; 95% CI: 1.01-2.95) than did those in the lowest quintile. No significant association was found in women between snack patterns and biomarkers of glucose metabolism. Dairy and sugary snack patterns of US men had the greatest association with poor control of glucose metabolism.

  6. Asymmetry of cerebral glucose metabolism in very low-birth-weight infants without structural abnormalities.

    Directory of Open Access Journals (Sweden)

    Jae Hyun Park

    Full Text Available Thirty-six VLBW infants who underwent F-18 fluorodeoxyglucose (F-18 FDG brain PET and MRI were prospectively enrolled, while infants with evidence of parenchymal brain injury on MRI were excluded. The regional glucose metabolic ratio and asymmetry index were calculated. The asymmetry index more than 10% (right > left asymmetry or less than -10% (left > right asymmetry were defined as abnormal. Regional cerebral glucose metabolism were compared between right and left cerebral hemispheres, and between the following subgroups: multiple gestations, premature rupture of membrane, bronchopulmonary dysplasia, and low-grade intraventricular hemorrhage.In the individual analysis, 21 (58.3% of 36 VLBW infants exhibited asymmetric cerebral glucose metabolism. Fifteen infants (41.7% exhibited right > left asymmetry, while six (16.7% exhibited left > right asymmetry. In the regional analysis, right > left asymmetry was more extensive than left > right asymmetry. The metabolic ratio in the right frontal, temporal, and occipital cortices and right thalamus were significantly higher than those in the corresponding left regions. In the subgroup analyses, the cerebral glucose metabolism in infants with multiple gestations, premature rupture of membrane, bronchopulmonary dysplasia, or low-grade intraventricular hemorrhage were significantly lower than those in infants without these.VLBW infants without structural abnormalities have asymmetry of cerebral glucose metabolism. Decreased cerebral glucose metabolism are noted in infants with neurodevelopmental risk factors. F-18 FDG PET could show microstructural abnormalities not detected by MRI in VLBW infants.

  7. The modulatory role of spinally located histamine receptors in the regulation of the blood glucose level in d-glucose-fed mice.

    Science.gov (United States)

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won

    2014-02-01

    The possible roles of spinal histamine receptors in the regulation of the blood glucose level were studied in ICR mice. Mice were intrathecally (i.t.) treated with histamine 1 (H1) receptor agonist (2-pyridylethylamine) or antagonist (cetirizine), histamine 2 (H2) receptor agonist (dimaprit) or antagonist (ranitidine), histamine 3 (H3) receptor agonist (α-methylhistamine) or antagonist (carcinine) and histamine 4 (H4) receptor agonist (VUF 8430) or antagonist (JNJ 7777120), and the blood glucose level was measured at 30, 60 and 120 min after i.t. administration. The i.t. injection with α-methylhistamine, but not carcinine slightly caused an elevation of the blood glucose level. In addition, histamine H1, H2, and H4 receptor agonists and antagonists did not affect the blood glucose level. In D-glucose-fed model, i.t. pretreatment with cetirizine enhanced the blood glucose level, whereas 2-pyridylethylamine did not affect. The i.t. pretreatment with dimaprit, but not ranitidine, enhanced the blood glucose level in D-glucose-fed model. In addition, α-methylhistamine, but not carcinine, slightly but significantly enhanced the blood glucose level D-glucose-fed model. Finally, i.t. pretreatment with JNJ 7777120, but not VUF 8430, slightly but significantly increased the blood glucose level. Although histamine receptors themselves located at the spinal cord do not exert any effect on the regulation of the blood glucose level, our results suggest that the activation of spinal histamine H2 receptors and the blockade of spinal histamine H1 or H3 receptors may play modulatory roles for up-regulation and down-regulation, respectively, of the blood glucose level in D-glucose fed model.

  8. Intermittent hypoxia training in prediabetes patients: Beneficial effects on glucose homeostasis, hypoxia tolerance and gene expression.

    Science.gov (United States)

    Serebrovska, Tetiana V; Portnychenko, Alla G; Drevytska, Tetiana I; Portnichenko, Vladimir I; Xi, Lei; Egorov, Egor; Gavalko, Anna V; Naskalova, Svitlana; Chizhova, Valentina; Shatylo, Valeriy B

    2017-09-01

    The present study aimed at examining beneficial effects of intermittent hypoxia training (IHT) under prediabetic conditions. We investigate the effects of three-week IHT on blood glucose level, tolerance to acute hypoxia, and leukocyte mRNA expression of hypoxia inducible factor 1α (HIF-1α) and its target genes, i.e. insulin receptor, facilitated glucose transporter-solute carrier family-2, and potassium voltage-gated channel subfamily J. Seven healthy and 11 prediabetic men and women (44-70 years of age) were examined before, next day and one month after three-week IHT (3 sessions per week, each session consisting 4 cycles of 5-min 12% O 2 and 5-min room air breathing). We found that IHT afforded beneficial effects on glucose homeostasis in patients with prediabetes reducing fasting glucose and during standard oral glucose tolerance test. The most pronounced positive effects were observed at one month after IHT termination. IHT also significantly increased the tolerance to acute hypoxia (i.e. SaO 2 level at 20th min of breathing with 12% O 2 ) and improved functional parameters of respiratory and cardiovascular systems. IHT stimulated HIF-1α mRNA expression in blood leukocytes in healthy and prediabetic subjects, but in prediabetes patients the maximum increase was lagged. The greatest changes in mRNA expression of HIF-1α target genes occurred a month after IHT and coincided with the largest decrease in blood glucose levels. The higher expression of HIF-1α was positively associated with higher tolerance to hypoxia and better glucose homeostasis. In conclusion, our results suggest that IHT may be useful for preventing the development of type 2 diabetes. Impact statement The present study investigated the beneficial effects of intermittent hypoxia training (IHT) in humans under prediabetic conditions. We found that three-week moderate IHT induced higher HIF-1α mRNA expressions as well as its target genes, which were positively correlated with higher tolerance

  9. Change of blood glucose level and its possible mechanism in patients with cerebral stroke

    International Nuclear Information System (INIS)

    Chen Weizhen; Zhang Yong; Zhang Zikang; Mo Congjian

    2003-01-01

    To study the mechanism of the change of blood glucose levels in patients with cerebral stroke, the levels of blood glucose, cortisol, glucogen, insulin, growth hormone, triiodothyronine (T 3 ), thyroxine (T 4 ) and adrenocorticotropic hormone (ACTH) were dynamically measured in 90 patients with cerebral stroke. The circumstances of brain middle line movement, lateral ventricle oppression and entrance brain ventricle of burst hematoma of the patients were examines by CT scan. The total incidence of hyperglycemia in the patients was 42.22%. The blood glucose level was positively related to the cortisol and glucogen levels, and negatively related to the T 3 level. The changed level of blood glucose and its related hormones both returned to normal range in 10 days. Both the ACTH level and the rate of cerebral pathological change in hyperglycemia group were significantly higher than that in normoglycemia and control groups. The rate of cerebral pathological change in elevated ACTH level group was higher than that in normal ACTH level group. The mechanism of hyperglycemia in the patients with cerebral stroke might be related to the stimulation of the hypothalamus, which may induce the discharge of ACTH and glucagon releasing factor, and to that the level of cortisol and glucagon increased, the level of T 3 decreased

  10. Morning cortisol is lower in obese individuals with normal glucose tolerance

    Directory of Open Access Journals (Sweden)

    Praveen EP

    2011-09-01

    Full Text Available Edavan P Praveen1, Jaya Prakash Sahoo1, Bindu Kulshreshtha2, Madan L Khurana3, Nandita Gupta1, Sada Nand Dwivedi3, Guresh Kumar3, Ariachery C Ammini11Department of Endocrinology, All India Institute of Medical Sciences, 2Ram Manohar Lohia Hospital, 3Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, IndiaBackground: There is no consensus on the role of cortisol in the pathogenesis of obesity and metabolic syndrome (MS. This cross-sectional study aimed to analyze the relationship of morning plasma cortisol and adrenocorticotropic hormone (ACTH levels with body mass index (BMI and glucose tolerance.Subjects and methods: The sample frame was the “Offspring of individuals with diabetes study” database. A total of 358 offspring of individuals with type 2 diabetes mellitus (T2DM and 287 individuals without a known family history of T2DM were recruited for the study. Subjects who were ≥10 years of age were selected from the database for analysis. Subjects with T2DM were excluded. All participants underwent a 75 g oral glucose tolerance test (OGTT, and blood samples were collected at 0, 30, 60, and 120 minutes for glucose, insulin and C-peptide. Plasma cortisol, ACTH, and lipid profile were estimated from the fasting sample.Results: Four hundred and ninety-five participants (305 males [62%] and 190 females [38%] were included in the analysis. ACTH and cortisol levels were higher in normal-weight subjects than in overweight/obese subjects. Both ACTH and cortisol increased as fasting plasma glucose increased. Cortisol levels were significantly lower in offspring of T2DM subjects with MS than in offspring of T2DM subjects without MS. When adjusted for BMI, the significance was marginal. In males, cortisol levels were negatively correlated with early insulin secretion during OGTT (insulinogenic index [0–30] and positively with waist circumference and serum high-density lipoprotein cholesterol. In females, fasting

  11. Significance of 18F-2-deoxy-2-fluoro-glucose accumulation in the stomach on positron emission tomography

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi; Ukawa, Kunio; Ohkawa, Nobuhiko

    2009-01-01

    To explain the accumulation of 18 F-2-deoxy-2-fluoro-glucose ( 18 FDG) on positron emission tomography (PET) in the stomach and differences in its pattern, we focus on the accumulation pattern in association with endoscopic findings of the gastric mucosa and Helicobacter pylori (Hp) infection. Of 599 cases undergoing 18 FDG-PET examinations, we retrospectively analyzed the pattern of 18 FDG accumulation in the stomach, findings of upper gastrointestinal endoscopy, and Hp infection. The pattern of 18 FDG accumulation was classified into three groups: localized accumulation only in the fornix (Group A, 32 patients), diffuse accumulation throughout the entire stomach (Group B, 49 patients), and no accumulation (Group C, 191 patients). Regarding the relation between Hp infection and 18 FDG accumulation, Hp infection was positive in 56.3% of Group A, 73.5% of Group B, and 24.1% of Group C, with significant differences (p 18 FDG accumulation and gastric mucosal inflammation, when Groups A and B were compared with Group C, nearly half of the cases in the former groups had papular redness with a significantly higher frequency of redness and erosion. Three cases found to have malignant tumor were limited to the former groups. One mucosa-associated lymphoid tissue (MALT) lymphoma case was also found in the same group. Accumulation of 18 FDG largely corresponded to mucosal inflammation including superficial gastritis and erosive gastritis, and therefore the main cause of non-specific 18 FDG accumulation was considered to be inflammatory mucosa (mainly redness). The accumulation pattern was not associated with atrophic changes of the gastric mucosa or with Hp infection, but with mucosal inflammatory changes, including redness and erosion localized to the fornix. Accumulation of 18 FDG in the stomach suggests a high probability of the presence of inflammatory change in the gastric mucosa forming a background for the development of cancer or malignant lymphoma, and thus requires

  12. Self-reported discrimination, diabetes distress, and continuous blood glucose in women with type 2 diabetes.

    Science.gov (United States)

    Wagner, Julie A; Tennen, Howard; Feinn, Richard; Osborn, Chandra Y

    2015-04-01

    We investigated whether self-reported racial discrimination was associated with continuous glucose levels and variability in individuals with diabetes, and whether diabetes distress mediated these associations. Seventy-four Black and White women with type 2 diabetes completed the Experience of Discrimination scale, a measure of lifetime racial discrimination, and the Problem Areas in Diabetes, a measure of diabetes distress. Participants wore a continuous glucose monitor for 24 h after 8 h of fasting, a standard meal, and a 4-h run in period. Higher discrimination predicted higher continuous mean glucose and higher standard deviation of glucose. For both mean and standard deviation of glucose, a race × discrimination interaction indicated a stronger relationship between discrimination and glucose for Whites than for Blacks. Diabetes distress mediated the discrimination-mean glucose relationship. Whites who report discrimination may be uniquely sensitive to distress. These preliminary findings suggest that racial discrimination adversely affects glucose control in women with diabetes, and does so indirectly through diabetes distress. Diabetes distress may be an important therapeutic target to reduce the ill effects of racial discrimination in persons with diabetes.

  13. Effect of intrapleural oxytocin injection on blood glucose level in rat (rattus norvegicous).

    Science.gov (United States)

    Dezhkam, Y; Dezhkam, N

    2014-01-01

    The effect of Oxytocin on energy metabolism is still question. The aim of the present study was to investigate the effect of exogenous oxytocin injection in different dose and timetable on blood glucose level in rat. In this study 16 adult female rats were divided into 2 groups (Treatment 1(T1) and Treatment 2(T2)). T1 with 8 adult female rats received 0.2 IU/Kg oxytocin via intrapleural (IP) and blood glucose level was tested at 0th, 20th, 40th and 60th min after injection by collecting the blood from jugular vein. In T2 eight female rats received 0.4 IU/kg oxytocin via IP taking blood glucose measure at the same minutes as T1. The experiment tested in three replicates. Blood glucose meter (Model: 3TMSO1G) was used with glucose smart blood glucose monitoring system to the measurement of blood glucose level in rats. Data were analyzed using the GLM procedure of SAS (SAS, version 9) PDIFF was used to compare least square means among treatments adjusting by tukey test. There were hypoglycemic tendency in the changes of the blood glucose level in both T1 and T2, 20th min after injection (88.79 ± 3.28, 68.58 ± 3.63, respectively), while in the remaining subjects (4th and 60th min) blood glucose level increased (115.54 ± 4, 79.7 ± 2.09 and 136.33 ± 5.8, 123.54 ± 0.9, respectively). These results showed that blood glucose level in T1 significantly higher than T2 (p blood glucose level very fast.

  14. Evaluation of different disinfectants on the performance of an on-meter dosed amperometric glucose-oxidase-based glucose meter.

    Science.gov (United States)

    Sarmaga, Don; Dubois, Jeffrey A; Lyon, Martha E

    2011-11-01

    Off-meter dosed photometric glucose-oxidase-based glucose meters have been reported to be susceptible to interference by hydrogen-peroxide-based disinfecting agents. The objective of this study was to determine if a single application of hydrogen-peroxide-containing Accel® wipe to disinfect an on-meter dosed amperometric glucose-oxidase-based glucose meter will influence its performance. The performance of five on-meter dosed amperometric glucose-oxidase-based glucose meters was determined before and after disinfecting the devices with a single application of either CaviWipes® (14.3% isopropanol and 0.23% diisobutyl-phenoxy-ethoxyethyl dimethyl benzyl ammonium chloride) or Accel (0.5% hydrogen peroxide) wipes. Replicate glucose measurements were conducted before disinfecting the devices, immediately after disinfecting, and then 1 and 2 min postdisinfecting, with measurements in triplicate. Analysis was sequentially completed for five different meters. Results were analyzed by a two-way analysis of variance (Analyze-it software). No clinical ( .05) in glucose concentration were detected when the on-meter dosed amperometric glucose-oxidase-based glucose meters were disinfected with either CaviWipes or Accel wipes and measured immediately or 1 or 2 min postdisinfecting. No clinically significant difference in glucose concentration was detected between meters (glucose oxidase amperometric-based glucose meters are not analytically susceptible to interference by a single application of hydrogen-peroxide-containing Accel disinfectant wipes. © 2011 Diabetes Technology Society.

  15. N-Methyl-D aspartate receptor-mediated effect on glucose transporter-3 levels of high glucose exposed-SH-SY5Y dopaminergic neurons.

    Science.gov (United States)

    Engin, Ayse Basak; Engin, Evren Doruk; Karakus, Resul; Aral, Arzu; Gulbahar, Ozlem; Engin, Atilla

    2017-11-01

    High glucose and insulin lead to neuronal insulin resistance. Glucose transport into the neurons is achieved by regulatory induction of surface glucose transporter-3 (GLUT3) instead of the insulin. N-methyl-D aspartate (NMDA) receptor activity increases GLUT3 expression. This study explored whether an endogenous NMDA receptor antagonist, kynurenic acid (KynA) affects the neuronal cell viability at high glucose concentrations. SH-SY5Y neuroblastoma cells were exposed to 150-250 mg/dL glucose and 40 μU/mL insulin. In KynA and N-nitro-l-arginine methyl ester (L-NAME) supplemented cultures, oxidative stress, mitochondrial metabolic activity (MTT), nitric oxide as nitrite+nitrate (NOx) and GLUT3 were determined at the end of 24 and 48-h incubation periods. Viable cells were counted by trypan blue dye. High glucose-exposed SH-SY5Y cells showed two-times more GLUT3 expression at second 24-h period. While GLUT3-stimulated glucose transport and oxidative stress was increased, total mitochondrial metabolic activity was significantly reduced. Insulin supplementation to high glucose decreased NOx synthesis and GLUT3 levels, in contrast oxidative stress increased three-fold. KynA significantly reduced oxidative stress, and increased MTT by regulating NOx production and GLUT3 expression. KynA is a noteworthy compound, as an endogenous, specific NMDA receptor antagonist; it significantly reduces oxidative stress, while increasing cell viability at high glucose and insulin concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fasting Plasma Glucose, Self-Appraised Diet Quality and Depressive Symptoms: A US-Representative Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Erin Hoare

    2017-12-01

    Full Text Available Depression and type 2 diabetes (T2D contribute significantly to global burden of disease and often co-occur. Underpinning type 2 diabetes is poor glycaemic control and glucose is also an obligatory substrate for brain metabolism, with potential implications for cognition, motivation and mood. This research aimed to examine the relationships between fasting plasma glucose and depressive symptoms in a large, population representative sample of US adults, controlling for other demographic and lifestyle behavioural risk factors. Using the 2013–2014 National Health and Nutrition Examination Survey (NHANES data, this study first investigated the relationship between fasting plasma glucose and mental disorders at a population-level, accounting for demographic, health behavioural and weight-related factors known to co-occur with both type 2 diabetes and mental disorders. Depressive symptoms were derived from the 9-item Patient Health Questionnaire. Fasting plasma glucose was obtained through medical examination and demographic (age, household income, sex and health characteristics (perceived diet quality, daily time sedentary were self-reported. Body mass index was calculated from objectively measured height and weight. In the univariate model, higher fasting plasma glucose was associated with greater depressive symptoms among females (b = 0.24, 95% CI = 0.05, 0.43, p < 0.05, but not males. In the final fully adjusted model, the relationship between fasting plasma glucose and depressive symptoms was non-significant for both males and females. Of all independent variables, self-appraised diet quality was strongly and significantly associated with depressive symptoms and this remained significant when individuals with diabetes were excluded. Although diet quality was self-reported based on individuals’ perceptions, these findings are consistent with a role for poor diet in the relationship between fasting plasma glucose and depressive symptoms.

  17. Effect of ultrasound treatment on the wet heating Maillard reaction between mung bean [Vigna radiate (L.)] protein isolates and glucose and on structural and physico-chemical properties of conjugates.

    Science.gov (United States)

    Wang, Zhongjiang; Han, Feifei; Sui, Xiaonan; Qi, Baokun; Yang, Yong; Zhang, Hui; Wang, Rui; Li, Yang; Jiang, Lianzhou

    2016-03-30

    The objective of this study was to determine the effect of ultrasound treatment on the wet heating Maillard reaction between mung bean protein isolates (MBPIs) and glucose, and on structural and physico-chemical properties of the conjugates. The degree of glycosylation of MBPI-glucose conjugates treated by ultrasound treatment and wet heating (MBPI-GUH) was higher than that of MBPI-glucose conjugates only treated by wet heating (MBPI-GH). Solubility, emulsification activity, emulsification stability and surface hydrophobicity of MBPI-GUH were higher than that of MBPI-GH. Grafted MBPIs had a lower content of α-helix and unordered coil, but a higher content of β-sheet and β-turn structure than MBPIs. No significant structural changes were observed in β-turn and random coil structure of MBPI-GUH, while α-helix content increased with ultrasonic time, and decreased at 300 W ultrasonic power with the increase of β-sheet. MBPI-GUH had a less compact tertiary structure compared to MBPI-GH and MBPI. Grafting MBPIs with glucose formed conjugates of higher molecular weight, while no significant changes were observed in electrophoresis profiles of MBPI-GUH. Ultrasound-assisted wet heating Maillard reaction between MBPIs and glucose could be a promising way to improve functional properties of MBPIs. © 2015 Society of Chemical Industry.

  18. Biosynthesis of higher alcohol flavour compounds by the yeast Saccharomyces cerevisiae: impact of oxygen availability and responses to glucose pulse in minimal growth medium with leucine as sole nitrogen source.

    Science.gov (United States)

    Espinosa Vidal, Esteban; de Morais, Marcos Antonio; François, Jean Marie; de Billerbeck, Gustavo M

    2015-01-01

    Higher alcohol formation by yeast is of great interest in the field of fermented beverages. Among them, medium-chain alcohols impact greatly the final flavour profile of alcoholic beverages, even at low concentrations. It is widely accepted that amino acid metabolism in yeasts directly influences higher alcohol formation, especially the catabolism of aromatic and branched-chain amino acids. However, it is not clear how the availability of oxygen and glucose metabolism influence the final higher alcohol levels in fermented beverages. Here, using an industrial Brazilian cachaça strain of Saccharomyces cerevisiae, we investigated the effect of oxygen limitation and glucose pulse on the accumulation of higher alcohol compounds in batch cultures, with glucose (20 g/l) and leucine (9.8 g/l) as the carbon and nitrogen sources, respectively. Fermentative metabolites and CO2 /O2 balance were analysed in order to correlate the results with physiological data. Our results show that the accumulation of isoamyl alcohol by yeast is independent of oxygen availability in the medium, depending mainly on leucine, α-keto-acids and/or NADH pools. High-availability leucine experiments showed a novel and unexpected accumulation of isobutanol, active amyl alcohol and 2-phenylethanol, which could be attributed to de novo biosynthesis of valine, isoleucine and phenylalanine and subsequent outflow of these pathways. In carbon-exhausted conditions, our results also describe, for the first time, the metabolization of isoamyl alcohol, isobutanol, active amyl alcohol but not of 2-phenylethanol, by yeast strains in stationary phase, suggesting a role for these higher alcohols as carbon source for cell maintenance and/or redox homeostasis during this physiological phase. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  20. Glucose Tolerance, Lipids, and GLP-1 Secretion in JCR:LA-cp Rats Fed a High Protein Fiber Diet

    Science.gov (United States)

    Reimer, Raylene A.; Russell, James C.

    2013-01-01

    Background We have shown that individually, dietary fiber and protein increase secretion of the anorexigenic and insulinotropic hormone, glucagon-like peptide-1 (GLP-1). Objective Our objective was to combine, in one diet, high levels of fiber and protein to maximize GLP-1 secretion, improve glucose tolerance, and reduce weight gain. Methods and Procedures Lean (+/?) and obese (cp/cp) male James C Russell corpulent (JCR:LA-cp) rats lacking a functional leptin receptor were fed one of four experimental diets (control, high protein (HP), high fiber (HF, prebiotic fiber inulin), or combination (CB)) for 3 weeks. An oral glucose tolerance test (OGTT) was performed to evaluate plasma GLP-1, insulin and glucose. Plasma lipids and intestinal proglucagon mRNA expression were determined. Results Energy intake was lower with the HF diet in lean and obese rats. Weight gain did not differ between diets. Higher colonic proglucagon mRNA in lean rats fed a CB diet was associated with higher GLP-1 secretion during OGTT. The HP diet significantly reduced plasma glucose area under the curve (AUC) during OGTT in obese rats, which reflected both an increased GLP-1 AUC and higher fasting insulin. Diets containing inulin resulted in the lowest plasma triglyceride and total cholesterol levels. Discussion Overall, combining HP with HF in the diet increased GLP-1 secretion in response to oral glucose, but did not improve glucose tolerance or lipid profiles more than the HF diet alone did. We also suggest that glycemic and insulinemic response to prebiotics differ among rat models and future research work should examine their role in improving glucose tolerance in diet-induced vs. genetic obesity with overt hyperleptinemia. PMID:18223610

  1. Glucose ingestion stimulates atherothrombotic inflammation in polycystic ovary syndrome

    Science.gov (United States)

    Kirwan, John P.; Rote, Neal S.; Minium, Judi

    2013-01-01

    Women with polycystic ovary syndrome (PCOS) have chronic low-grade inflammation that can increase the risk of atherothrombosis. We performed a cross-sectional study to examine the effect of glucose ingestion on markers of atherothrombotic inflammation in mononuclear cells (MNC) of 16 women with PCOS (8 lean, 8 obese) and 16 weight-matched controls. Activator protein-1 (AP-1) activation and the protein content of early growth response-1 (EGR-1), matrix matalloproteinases-2 (MMP2), and tissue factor (TF) were quantified from MNC obtained from blood drawn fasting and 2 h after glucose ingestion. Plasma MMP9 and C-reactive protein (CRP) were measured from fasting blood samples. Truncal fat was determined by DEXA. Lean women with PCOS exhibited greater AP-1 activation and MMP2 protein content after glucose ingestion and higher plasma MMP9 and CRP levels than lean controls. Obese women with PCOS exhibited greater EGR-1 and TF protein content after glucose ingestion, and plasma CRP levels were even higher compared with lean subjects regardless of PCOS status. Truncal fat correlated with MMP9 and CRP levels and glucose-stimulated increases in AP-1 activation and EGR-1 and TF protein content. Testosterone correlated with glucose-stimulated AP-1 activation, and androstenedione correlated with MMP9 and CRP levels and glucose-stimulated AP-1 activation. Thus, both PCOS and obesity contribute to an atherothrombotic state in which excess abdominal adiposity and hyperandrogenism may be specific risk factors for developing atherothrombosis. PMID:23249695

  2. Glucose metabolism during rotational shift-work in healthcare workers.

    Science.gov (United States)

    Sharma, Anu; Laurenti, Marcello C; Dalla Man, Chiara; Varghese, Ron T; Cobelli, Claudio; Rizza, Robert A; Matveyenko, Aleksey; Vella, Adrian

    2017-08-01

    Shift-work is associated with circadian rhythm disruption and an increased risk of obesity and type 2 diabetes. We sought to determine the effect of rotational shift-work on glucose metabolism in humans. We studied 12 otherwise healthy nurses performing rotational shift-work using a randomised crossover study design. On each occasion, participants underwent an isotope-labelled mixed meal test during a simulated day shift and a simulated night shift, enabling simultaneous measurement of glucose flux and beta cell function using the oral minimal model. We sought to determine differences in fasting and postprandial glucose metabolism during the day shift vs the night shift. Postprandial glycaemic excursion was higher during the night shift (381±33 vs 580±48 mmol/l per 5 h, pshift. While insulin action did not differ between study days, the beta cell responsivity to glucose (59±5 vs 44±4 × 10 -9  min -1 ; pshift. Impaired beta cell function during the night shift may result from normal circadian variation, the effect of rotational shift-work or a combination of both. As a consequence, higher postprandial glucose concentrations are observed during the night shift.

  3. Institutional blood glucose monitoring system for hospitalized patients: an integral component of the inpatient glucose control program.

    Science.gov (United States)

    Boaz, Mona; Landau, Zohar; Matas, Zipora; Wainstein, Julio

    2009-09-01

    The ability to measure patient blood glucose levels at bedside in hospitalized patients and to transmit those values to a central database enables and facilitates glucose control and follow-up and is an integral component in the care of the hospitalized diabetic patient. The goal of this study was to evaluate the performance of an institutional glucometer employed in the framework of the Program for the Treatment of the Hospitalized Diabetic Patient (PTHDP) at E. Wolfson Medical Center, Holon, Israel. As part of the program to facilitate glucose control in hospitalized diabetic patients, an institutional glucometer was employed that permits uploading of data from stands located in each inpatient department and downloading of that data to a central hospital-wide database. Blood glucose values from hospitalized diabetic patients were collected from August 2007 to October 2008. The inpatient glucose control program was introduced gradually beginning January 2008. During the follow-up period, more than 150,000 blood glucose measures were taken. Mean glucose was 195.7 +/- 99.12 mg/dl during the follow-up period. Blood glucose values declined from 206 +/- 105 prior to PTHDP (August 2007-December 2007) to 186 +/- 92 after its inception (January 2008-October 2008). The decline was associated significantly with time (r = 0.11, p < 0.0001). The prevalence of blood glucose values lower than 60 mg/dl was 1.48% [95% confidence interval (CI) 0.36%] prior to vs 1.55% (95% CI 0.37%) following implementation of the PTHDP. Concomitantly, a significant increase in the proportion of blood glucose values between 80 and 200 mg/dl was observed, from 55.5% prior to program initiation vs 61.6% after program initiation (p < 0.0001). The present study was designed to observe changes in institution-wide glucose values following implementation of the PTHDP. Information was extracted from the glucometer system itself. Because the aforementioned study was not a clinical trial, we cannot rule out

  4. Correlations between blood glucose,lipid,oxidative stress and pancreatic β-cell function in patients with type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Yong-ling LI

    2011-06-01

    Full Text Available Objective To investigate the relationship between glucose,lipid,oxidative stress and the first-phase of pancreatic β-cell insulin secretion in individuals with different degrees of glucose tolerance.Methods The intravenous glucose tolerance test(IVGTT was performed in 40 patients with newly diagnosed type 2 diabetes mellitus(DM group,37 patients with impaired glucose tolerance(IGT group,and 43 subjects with normal glucose tolerance(NGT group.Glucose,lipid,fasting plasma 8-hydroxydeoxyguanosin(8-OHdG,malondialdehyde(MDA and the activity of superoxide dismutase(SOD were measured.0-10 minutes of insulin area under the curve(AUC,acute insulin response(AIR3-5,homeostasis model assessment(HOMA-IR and homeostasis model assessment-B(HOMA-B were calculated to analyze the relationship between oxidative stress and the fasting plasma glucose(FPG,high density lipoprotein cholesterol(HDL-C,low density lipoprotein cholesterol(LDL-C,triglyceride(TG,total cholesterol(TC,AUC,AIR3-5,HOMA-B and HOMA-IR.Results SOD,AIR3-5 and AUC were significantly lower in DM and IGT group than in NGT group(P < 0.05;LDL-C,TG,8-OHdG and MDA were significantly higher in IGT and DM group than in NGT group(P < 0.05;SOD,AIR3-5 and AUC were significantly lower in DM group than in IGT group(P < 0.05;LDL-C,TG,8-OHdG and MDA were significantly higher in DM group than in IGT group(P < 0.05.MDA and 8-OHdG were positively correlated with FPG,TG and LDL-C,and negatively correlated with FINS,HOMA-B,AUC and AIR3-5.SOD was positively correlated with FINS,HOMA-B,AUC and AIR3-5,and negatively correlated with FPG,TG and LDL-C.Multiple stepwise regression analysis showed that FPG and LDL-C were the independent factors of plasma 8-OHdG and SOD,while 8-OHdG and SOD were the independent factors of AIR3-5.Conclusion Patients with type 2 diabetes have obvious glycometabolic disorder,lipoidosis and oxidative stress.Oxidative stress takes a significant effect on the first phase of pancreatic β cell insulin

  5. Waist circumference as a predictor for blood glucose levels in adults

    Directory of Open Access Journals (Sweden)

    Shinta L Hardiman

    2016-02-01

    Full Text Available Anthropometric indexes such as body mass index (BMI, waist circumference (WC, hip ciucumference (HC, and waist–hip ratio (WHR, are all useful anthropometric measurements to provide important information on blood glucose concentrations. The aim of this study was to determine different anthropometric measurements, in particular BMI, waist circumference, hip circumference and waist-to-hip ratio, in their ability to predict the blood glucose levels in men and women 40 to 60. A cross-sectional study was conducted on a sample of 44 men and 127 women aged 40 to 50 who lived in Cipete Selatan subdistrict, South Jakarta. Blood glucose levels was assessed and anthropometric measurements comprising BMI, WC, HC, WHR were collected. Multiple linear regression analysis was used to determine the best predictor for blood glucose levels. The study showed that the prevalence of DM type 2 was 25.7% and the prevalence was higher in men (40.9% compared to women (23.5%. The significant predictive variables in the simple regression analysis were age and waist circumference. Multiple linear regression showed that after adjustment for age, WC was positively associated with blood glucose levels. Standardized a value was 0.172 (p=0.026. WC predict blood glucose levels, beyond that explained by traditional diabetic risk factors and BMI. These findings provide support for the recommendation that WC be a routine measure for identification of diabetes mellitus type 2 in men and women aged 40 to 60 years.

  6. Osmotic load from glucose polymers.

    Science.gov (United States)

    Koo, W W; Poh, D; Leong, M; Tam, Y K; Succop, P; Checkland, E G

    1991-01-01

    Glucose polymer is a carbohydrate source with variable chain lengths of glucose units which may result in variable osmolality. The osmolality of two commercial glucose polymers was measured in reconstituted powder infant formulas, and the change in osmolality of infant milk formulas at the same increases in energy density (67 kcal/dL to 81 and 97 kcal/dL) from the use of additional milk powder or glucose polymers was compared. All samples were prepared from powders (to nearest 0.1 mg), and osmolality was measured by freezing point depression. For both glucose polymers the within-batch variability of the measured osmolality was less than 3.5%, and between-batch variability of the measured osmolality was less than 9.6%. The measured osmolality varies linearly with energy density (p less than 0.001) and was highest in infant formula reconstituted from milk powder alone. However, there exist significant differences in the measured osmolality between different glucose polymer preparations. At high energy densities (greater than or equal to 97 kcal/dL), infant milk formulas prepared with milk powder alone or with the addition of certain glucose polymer preparation may have high osmolality (greater than or equal to 450 mosm/kg) and theoretically predispose the infant to complications of hyperosmotic feeds.

  7. Brain glucose metabolism in an animal model of depression.

    Science.gov (United States)

    Detka, J; Kurek, A; Kucharczyk, M; Głombik, K; Basta-Kaim, A; Kubera, M; Lasoń, W; Budziszewska, B

    2015-06-04

    An increasing number of data support the involvement of disturbances in glucose metabolism in the pathogenesis of depression. We previously reported that glucose and glycogen concentrations in brain structures important for depression are higher in a prenatal stress model of depression when compared with control animals. A marked rise in the concentrations of these carbohydrates and glucose transporters were evident in prenatally stressed animals subjected to acute stress and glucose loading in adulthood. To determine whether elevated levels of brain glucose are associated with a change in its metabolism in this model, we assessed key glycolytic enzymes (hexokinase, phosphofructokinase and pyruvate kinase), products of glycolysis, i.e., pyruvate and lactate, and two selected enzymes of the tricarboxylic acid cycle (pyruvate dehydrogenase and α-ketoglutarate dehydrogenase) in the hippocampus and frontal cortex. Additionally, we assessed glucose-6-phosphate dehydrogenase activity, a key enzyme in the pentose phosphate pathway (PPP). Prenatal stress increased the levels of phosphofructokinase, an important glycolytic enzyme, in the hippocampus and frontal cortex. However, prenatal stress had no effect on hexokinase or pyruvate kinase levels. The lactate concentration was elevated in prenatally stressed rats in the frontal cortex, and pyruvate levels remained unchanged. Among the tricarboxylic acid cycle enzymes, prenatal stress decreased the level of pyruvate dehydrogenase in the hippocampus, but it had no effect on α-ketoglutarate dehydrogenase. Like in the case of glucose and its transporters, also in the present study, differences in markers of glucose metabolism between control animals and those subjected to prenatal stress were not observed under basal conditions but in rats subjected to acute stress and glucose load in adulthood. Glucose-6-phosphate dehydrogenase activity was not reduced by prenatal stress but was found to be even higher in animals exposed to

  8. Personalized State-space Modeling of Glucose Dynamics for Type 1 Diabetes Using Continuously Monitored Glucose, Insulin Dose, and Meal Intake: An Extended Kalman Filter Approach.

    Science.gov (United States)

    Wang, Qian; Molenaar, Peter; Harsh, Saurabh; Freeman, Kenneth; Xie, Jinyu; Gold, Carol; Rovine, Mike; Ulbrecht, Jan

    2014-03-01

    An essential component of any artificial pancreas is on the prediction of blood glucose levels as a function of exogenous and endogenous perturbations such as insulin dose, meal intake, and physical activity and emotional tone under natural living conditions. In this article, we present a new data-driven state-space dynamic model with time-varying coefficients that are used to explicitly quantify the time-varying patient-specific effects of insulin dose and meal intake on blood glucose fluctuations. Using the 3-variate time series of glucose level, insulin dose, and meal intake of an individual type 1 diabetic subject, we apply an extended Kalman filter (EKF) to estimate time-varying coefficients of the patient-specific state-space model. We evaluate our empirical modeling using (1) the FDA-approved UVa/Padova simulator with 30 virtual patients and (2) clinical data of 5 type 1 diabetic patients under natural living conditions. Compared to a forgetting-factor-based recursive ARX model of the same order, the EKF model predictions have higher fit, and significantly better temporal gain and J index and thus are superior in early detection of upward and downward trends in glucose. The EKF based state-space model developed in this article is particularly suitable for model-based state-feedback control designs since the Kalman filter estimates the state variable of the glucose dynamics based on the measured glucose time series. In addition, since the model parameters are estimated in real time, this model is also suitable for adaptive control. © 2014 Diabetes Technology Society.

  9. Serum Bile Acids Are Higher in Humans With Prior Gastric Bypass: Potential Contribution to Improved Glucose and Lipid Metabolism

    Science.gov (United States)

    Patti, Mary-Elizabeth; Houten, Sander M.; Bianco, Antonio C.; Bernier, Raquel; Larsen, P. Reed; Holst, Jens J.; Badman, Michael K.; Maratos-Flier, Eleftheria; Mun, Edward C.; Pihlajamaki, Jussi; Auwerx, Johan; Goldfine, Allison B.

    2015-01-01

    The multifactorial mechanisms promoting weight loss and improved metabolism following Roux-en-Y gastric bypass (GB) surgery remain incompletely understood. Recent rodent studies suggest that bile acids can mediate energy homeostasis by activating the G-protein coupled receptor TGR5 and the type 2 thyroid hormone deiodinase. Altered gastrointestinal anatomy following GB could affect enterohepatic recirculation of bile acids. We assessed whether circulating bile acid concentrations differ in patients who previously underwent GB, which might then contribute to improved metabolic homeostasis. We performed cross-sectional analysis of fasting serum bile acid composition and both fasting and post-meal metabolic variables, in three subject groups: (i) post-GB surgery (n = 9), (ii) without GB matched to preoperative BMI of the index cohort (n = 5), and (iii) without GB matched to current BMI of the index cohort (n = 10). Total serum bile acid concentrations were higher in GB (8.90 ± 4.84 µmol/l) than in both overweight (3.59 ± 1.95, P = 0.005, Ov) and severely obese (3.86 ± 1.51, P = 0.045, MOb). Bile acid subfractions taurochenodeoxycholic, taurodeoxycholic, glycocholic, glycochenodeoxycholic, and glycodeoxycholic acids were all significantly higher in GB compared to Ov (P fasting triglycerides (r = −0.40, P = 0.05), and positively correlated with adiponectin (r = −0.48, P < 0.02) and peak glucagon-like peptide-1 (GLP-1) (r = 0.58, P < 0.003). Total bile acids strongly correlated inversely with thyrotropic hormone (TSH) (r = −0.57, P = 0.004). Together, our data suggest that altered bile acid levels and composition may contribute to improved glucose and lipid metabolism in patients who have had GB. PMID:19360006

  10. Differential effects of vildagliptin and glimepiride on glucose fluctuations in patients with type 2 diabetes mellitus assessed using continuous glucose monitoring.

    Science.gov (United States)

    He, Y L; Foteinos, G; Neelakantham, S; Mattapalli, D; Kulmatycki, K; Forst, T; Taylor, A

    2013-12-01

    To assess whether there is a difference in the effects of vildagliptin and glimepiride on glucose fluctuation in patients with type 2 diabetes mellitus (T2DM) using continuous glucose monitoring (CGM). This was an open-label, randomized cross-over study conducted in T2DM patients. A total of 24 patients (age: 58.3 ± 5.56 years, baseline HbA1c: 7.6 ± 0.50%) who were on stable metformin monotherapy (500-3000 mg) were enrolled, and all completed the study. Each patient received two 5-day treatments (vildagliptin 50 mg b.i.d. or glimepiride 2 mg q.d.) in a cross-over manner. Various biomarkers and blood glucose concentrations were measured following breakfast. The 24-h glucose profiles were also measured using the CGM device at baseline and after 5 days of treatment, and fluctuations in glucose levels were estimated from CGM data. Both vildagliptin and glimepiride reduced postprandial glucose levels, based on both CGM data (15% vs. 16%) and measured plasma glucose (13% vs.17%). Vildagliptin showed lower glucose fluctuations than glimepiride as measured by mean amplitude of glycaemic excursions (MAGE, p = 0.1076), standard deviation (s.d., p = 0.1346) of blood glucose rate of change, but did not reach statistical significance attributed to the small sample size. MAGE was reduced by ∼20% with vildagliptin versus glimepiride. Vildagliptin led to statistically significant lowering of the rate of change in the median curve (RCMC) and interquartile range (IQR) of glucose. Treatment with vildagliptin significantly increased the levels of active glucagon-like peptide-1 by 2.36-fold (p ≤ 0.0001) and suppressed glucagon by 8% (p = 0.01), whereas glimepiride significantly increased the levels of insulin and C-peptide by 21% (p = 0.012) and 12% (p = 0.003), respectively. Vildagliptin treatment was associated with less fluctuation of glucose levels than glimepiride treatment as assessed by 24-h CGM device, suggesting vildagliptin may

  11. [Effects of blood glucose control on glucose variability and clinical outcomes in patients with severe acute pancreatitis in intensive care unit].

    Science.gov (United States)

    Wu, Jing; Sun, Qiuhong; Yang, Hua

    2015-05-19

    To explore the effects of blood glucose control on glucose variability and clinical outcomes in patients with severe acute pancreatitis in intensive care unit (ICU). A total of 72 ICU patients with severe acute pancreatitis were recruited and divided randomly into observation and control groups (n = 36 each). Both groups were treated conventionally. And the observation group achieved stable blood glucose at 6.1-8.3 mmol/L with intensive glucose control. The length of ICU and hospital stays, ICU mortality rate, transit operative rate, concurrent infection rate, admission blood glucose, glycosylated hemoglobin, mean insulin dose, mean blood glucose, blood glucose value standard deviation (GLUSD), glycemic liability index (GLUGLI) and mean amplitude of glycemic excursion (GLUMAGE) of two groups were compared. At the same time, the relationship between blood glucose variability, ICU mortality rate and its predictive value were analyzed by correlation analysis and receiver operating characteristic curve (ROC). The lengths of ICU and hospital stays of observation group were all significantly less than those of the control group [(11.7 ± 9.9) vs (15.9 ± 8.02) days, (21.8 ± 10.8) vs (28.2 ± 12.7) days, P blood glucose value and GLUSD of observation group were significantly lower than those of control group [(7.4 ± 1.1) vs (9.6 ± 1.2), (1.8 ± 1.0) vs (2.5 ± 1.3) mmol/L]. The differences were statistically significant (P curve analysis showed that, AUC of GLUGLI was 0.748 and 95% CI 0.551-0.965 (P glucose control in patients with severe acute pancreatitis helps reduce the blood sugar fluctuations, lower the risks of infectious complications and promote the patient rehabilitation. And GLUGLI is positively correlated with ICU mortality rate. It has good predictive values.

  12. Effects of xylitol on carbohydrate digesting enzymes activity, intestinal glucose absorption and muscle glucose uptake: a multi-mode study.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2015-03-01

    The present study investigated the possible mechanism(s) behind the effects of xylitol on carbohydrate digesting enzymes activity, muscle glucose uptake and intestinal glucose absorption using in vitro, ex vivo and in vivo experimental models. The effects of increasing concentrations of xylitol (2.5%-40% or 164.31 mM-2628.99 mM) on alpha amylase and alpha glucosidase activity in vitro and intestinal glucose absorption and muscle glucose uptake were investigated under ex vivo conditions. Additionally, the effects of an oral bolus dose of xylitol (1 g per kg BW) on gastric emptying and intestinal glucose absorption and digesta transit in the different segments of the intestinal tract were investigated in normal and type 2 diabetic rats at 1 hour after dose administration, when phenol red was used as a recovery marker. Xylitol exhibited concentration-dependent inhibition of alpha amylase (IC₅₀ = 1364.04 mM) and alpha glucosidase (IC₅₀ = 1127.52 mM) activity in vitro and small intestinal glucose absorption under ex vivo condition. Xylitol also increased dose dependent muscle glucose uptake with and without insulin, although the uptake was not significantly affected by the addition of insulin. Oral single bolus dose of xylitol significantly delayed gastric emptying, inhibited intestinal glucose absorption but increased the intestinal digesta transit rate in both normal and diabetic rats compared to their respective controls. The data of this study suggest that xylitol reduces intestinal glucose absorption via inhibiting major carbohydrate digesting enzymes, slowing gastric emptying and fastening the intestinal transit rate, but increases muscle glucose uptake in normal and type 2 diabetic rats.

  13. No interactions between previously associated 2-hour glucose gene variants and physical activity or BMI on 2-hour glucose levels

    DEFF Research Database (Denmark)

    Scott, Robert A; Chu, Audrey Y; Grarup, Niels

    2012-01-01

    to determine 2-h glucose levels is unknown. We meta-analyzed single nucleotide polymorphism (SNP) × BMI and SNP × physical activity (PA) interaction regression models for five SNPs previously associated with 2-h glucose levels from up to 22 studies comprising 54,884 individuals without diabetes. PA levels were......Gene-lifestyle interactions have been suggested to contribute to the development of type 2 diabetes. Glucose levels 2 h after a standard 75-g glucose challenge are used to diagnose diabetes and are associated with both genetic and lifestyle factors. However, whether these factors interact...... dichotomized, with individuals below the first quintile classified as inactive (20%) and the remainder as active (80%). BMI was considered a continuous trait. Inactive individuals had higher 2-h glucose levels than active individuals (ß = 0.22 mmol/L [95% CI 0.13-0.31], P = 1.63 × 10(-6)). All SNPs were...

  14. Real-time continuous glucose monitoring shows high accuracy within 6 hours after sensor calibration: a prospective study.

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Yue

    Full Text Available Accurate and timely glucose monitoring is essential in intensive care units. Real-time continuous glucose monitoring system (CGMS has been advocated for many years to improve glycemic management in critically ill patients. In order to determine the effect of calibration time on the accuracy of CGMS, real-time subcutaneous CGMS was used in 18 critically ill patients. CGMS sensor was calibrated with blood glucose measurements by blood gas/glucose analyzer every 12 hours. Venous blood was sampled every 2 to 4 hours, and glucose concentration was measured by standard central laboratory device (CLD and by blood gas/glucose analyzer. With CLD measurement as reference, relative absolute difference (mean±SD in CGMS and blood gas/glucose analyzer were 14.4%±12.2% and 6.5%±6.2%, respectively. The percentage of matched points in Clarke error grid zone A was 74.8% in CGMS, and 98.4% in blood gas/glucose analyzer. The relative absolute difference of CGMS obtained within 6 hours after sensor calibration (8.8%±7.2% was significantly less than that between 6 to 12 hours after calibration (20.1%±13.5%, p<0.0001. The percentage of matched points in Clarke error grid zone A was also significantly higher in data sets within 6 hours after calibration (92.4% versus 57.1%, p<0.0001. In conclusion, real-time subcutaneous CGMS is accurate in glucose monitoring in critically ill patients. CGMS sensor should be calibrated less than 6 hours, no matter what time interval recommended by manufacturer.

  15. [Thromboresistance of glucose-containing hydrogels].

    Science.gov (United States)

    Valuev, I L; Valuev, L I; Vanchugova, L V; Obydennova, I V; Valueva, T A

    2013-01-01

    The thromboresistance of glucose-sensitive polymer hydrogels, modeling one of the functions of the pancreas, namely, the ability to secrete insulin in response to the introduction of glucose into the environment, has been studied. Hydrogels were synthesized by the copolymerization of hydroxyethyl methacrylate with N-acryloyl glucosamine in the presence of a cross-linking agent and subsequently treated with concanavalin A. Introduction of glucose residues into the hydrogel did not result in significant changes in either the number of trombocytes adhered to the hydrogel or the degree of denaturation of blood plasma proteins interacting with the hydrogel. Consequently, the biological activity of insulin did not change after release from the hydrogel. The use of glucose-sensitive hydrogels is supposed to contribute to the development of a novel strategy for the treatment of diabetes.

  16. One-Hour Postload Hyperglycemia Confers Higher Risk of Hepatic Steatosis to HbA1c-Defined Prediabetic Subjects.

    Science.gov (United States)

    Fiorentino, Teresa Vanessa; Andreozzi, Francesco; Mannino, Gaia Chiara; Pedace, Elisabetta; Perticone, Maria; Sciacqua, Angela; Perticone, Francesco; Sesti, Giorgio

    2016-11-01

    Individuals with glycated hemoglobin (HbA1c)-defined prediabetes (HbA1c value of 5.7-6.4%) and 1-hour plasma glucose ≥155 mg/dL during an oral glucose tolerance test have an increased risk of developing type 2 diabetes. To evaluate the degree to which HbA1c-defined prediabetes and 1-hour postload glucose ≥155 mg/dL individually and jointly associate with hepatic steatosis and related biomarkers. A cross-sectional analysis was performed on 1108 White individuals. Ambulatory care. Anthropometric and metabolic characteristics including hepatic steatosis assessed by ultrasonography. Compared with the normal group (HbA1c prediabetic and diabetic individuals exhibit higher values of fasting, 1-hour, and 2-hour postload glucose; fasting and 2-hour postload insulin; triglycerides; uric acid; homeostasis model of assessment for insulin resistance; liver insulin resistance index; liver enzymes; and inflammatory biomarkers; and lower levels of high-density lipoprotein cholesterol and IGF-1. Prediabetic and diabetic subjects have increased risk of hepatic steatosis (1.5- and 2.46-fold, respectively). Stratifying participants according to HbA1c and 1-hour postload glucose, we found that individuals with HbA1c-defined prediabetes and 1-hour postload glucose ≥155 mg/dL have significantly higher risk of hepatic steatosis as compared with individuals with HbA1c-defined prediabetes but 1-hour postload glucose prediabetes and 1-hour postload glucose ≥155 mg/dL exhibit higher values of liver enzymes; fasting, 1-hour, and 2-hour postload glucose; insulin; triglycerides; uric acid; and inflammatory biomarkers; and lower levels of high-density lipoprotein and IGF-1. These data suggest that a value of 1-hour postload glucose ≥155 mg/dL may be helpful to identify a subset of individuals within HbA1c-defined glycemic categories at higher risk of hepatic steatosis.

  17. [The association between early blood glucose fluctuation and prognosis in critically ill patients].

    Science.gov (United States)

    Tang, Jian; Gu, Qin

    2012-01-01

    To investigate the association between early blood glucose level fluctuation and prognosis of critically ill patients. A retrospective study involving 95 critically ill patients in intensive care unit (ICU) was conducted. According to the 28-day outcome after admission to ICU, the patients were divided into nonsurvivors (43 cases) and survivors (52 cases), and the blood glucose level in them was monitored in the first 72 hours. Blood glucose concentration at admission (BGadm), mean blood glucose level (MBG), hyperglycemia index (HGI), glycemic lability index (GLI), incidence of hypoglycemia and total dosage of intravenous insulin for each patient were compared. The index as an independent risk factor of mortality was determined by multivariate logistic regression analysis and the predictor value by comparing the area under the receiver operating characteristic curve (ROC curve, AUC) of each index. The BGadm (mmol/L), MBG (mmol/L), HGI and the incidence of hypoglycemia showed no significant differences between nonsurvivors and survivors [BGadm: 9.87 ± 4.48 vs. 9.26 ± 3.07, MBG: 8.59 ± 1.23 vs. 8.47 ± 1.01, HGI(6.0): 2.45 ± 0.94 vs. 1.68 ± 1.05, HGI(8.3): 0.84 ± 0.70 vs. 0.68 ± 0.51, the incidence of hypoglycemia: 9.30% vs. 5.77%, all P > 0.05], but acute physiology and chronic health evaluation II (APACHE II ) score, GLI and the total dosage of intravenous insulin (U) were significantly higher in nonsurvivors than survivors [APACHE II score: 23 ± 6 vs. 19 ± 6, GLI: 56.96 (65.43) vs. 23.87 (41.62), the total dosage of intravenous insulin: 65.5 (130.5) vs. 12.5 (90.0), all P curve was plotted, the AUC of APACHE II score and GLI was respectively 0.69 and 0.71, and there was no significant difference (P > 0.05). Early fluctuation of blood glucose is a significant independent risk factor of mortality in critically ill patients. Control the early fluctuation of blood glucose concentration might improve the patients' outcome.

  18. Deletion of interleukin 1 receptor-associated kinase 1 (Irak1) improves glucose tolerance primarily by increasing insulin sensitivity in skeletal muscle.

    Science.gov (United States)

    Sun, Xiao-Jian; Kim, Soohyun Park; Zhang, Dongming; Sun, Helen; Cao, Qi; Lu, Xin; Ying, Zhekang; Li, Liwu; Henry, Robert R; Ciaraldi, Theodore P; Taylor, Simeon I; Quon, Michael J

    2017-07-21

    Chronic inflammation may contribute to insulin resistance via molecular cross-talk between pathways for pro-inflammatory and insulin signaling. Interleukin 1 receptor-associated kinase 1 (IRAK-1) mediates pro-inflammatory signaling via IL-1 receptor/Toll-like receptors, which may contribute to insulin resistance, but this hypothesis is untested. Here, we used male Irak1 null (k/o) mice to investigate the metabolic role of IRAK-1. C57BL/6 wild-type (WT) and k/o mice had comparable body weights on low-fat and high-fat diets (LFD and HFD, respectively). After 12 weeks on LFD (but not HFD), k/o mice ( versus WT) had substantially improved glucose tolerance (assessed by the intraperitoneal glucose tolerance test (IPGTT)). As assessed with the hyperinsulinemic euglycemic glucose clamp technique, insulin sensitivity was 30% higher in the Irak1 k/o mice on chow diet, but the Irak1 deletion did not affect IPGTT outcomes in mice on HFD, suggesting that the deletion did not overcome the impact of obesity on glucose tolerance. Moreover, insulin-stimulated glucose-disposal rates were higher in the k/o mice, but we detected no significant difference in hepatic glucose production rates (± insulin infusion). Positron emission/computed tomography scans indicated higher insulin-stimulated glucose uptake in muscle, but not liver, in Irak1 k/o mice in vivo Moreover, insulin-stimulated phosphorylation of Akt was higher in muscle, but not in liver, from Irak1 k/o mice ex vivo In conclusion, Irak1 deletion improved muscle insulin sensitivity, with the effect being most apparent in LFD mice. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Comparison of vildagliptin twice daily vs. sitagliptin once daily using continuous glucose monitoring (CGM: Crossover pilot study (J-VICTORIA study

    Directory of Open Access Journals (Sweden)

    Sakamoto Masaya

    2012-08-01

    Full Text Available Abstract Background No previous studies have compared the DPP-4 inhibitors vildagliptin and sitagliptin in terms of blood glucose levels using continuous glucose monitoring (CGM and cardiovascular parameters. Methods Twenty patients with type 2 diabetes mellitus were randomly allocated to groups who received vildagliptin then sitagliptin, or vice versa. Patients were hospitalized at 1 month after starting each drug, and CGM was used to determine: 1 mean (± standard deviation 24-hour blood glucose level, 2 mean amplitude of glycemic excursions (MAGE, 3 fasting blood glucose level, 4 highest postprandial blood glucose level and time, 5 increase in blood glucose level after each meal, 6 area under the curve (AUC for blood glucose level ≥180 mg/dL within 3 hours after each meal, and 7 area over the curve (AOC for daily blood glucose level Results The mean 24-hour blood glucose level was significantly lower in patients taking vildagliptin than sitagliptin (142.1 ± 35.5 vs. 153.2 ± 37.0 mg/dL; p = 0.012. In patients taking vildagliptin, MAGE was significantly lower (110.5 ± 33.5 vs. 129.4 ± 45.1 mg/dL; p = 0.040, the highest blood glucose level after supper was significantly lower (206.1 ± 40.2 vs. 223.2 ± 43.5 mg/dL; p = 0.015, the AUC (≥180 mg/dL within 3 h was significantly lower after breakfast (484.3 vs. 897.9 mg/min/dL; p = 0.025, and urinary CPR level was significantly higher (97.0 ± 41.6 vs. 85.2 ± 39.9 μg/day; p = 0.008 than in patients taking sitagliptin. There were no significant differences in plasma HbA1c, GA, 1,5AG, IRI, CPR, BNP, or PAI-1 levels between patients taking vildagliptin and sitagliptin. Conclusions CGM showed that mean 24-h blood glucose, MAGE, highest blood glucose level after supper, and hyperglycemia after breakfast were significantly lower in patients with type 2 diabetes mellitus taking vildagliptin than those taking sitagliptin. There

  20. Glucose effectiveness is a critical pathogenic factor leading to glucose intolerance and type 2 diabetes: An ignored hypothesis.

    Science.gov (United States)

    Alford, F P; Henriksen, J E; Rantzau, C; Beck-Nielsen, H

    2018-02-16

    Although the ability of glucose to mediate its own in vivo metabolism is long documented, the quantitative measurement of whole body glucose-mediated glucose disposal at basal insulin levels (glucose effectiveness [GE]), followed the introduction of the Minimal Model intravenous glucose tolerance test technique. A literature review, combined with our own studies, of the role of GE in glucose metabolism in normal and "at risk" individuals, was undertaken to determine GE's contribution to glucose homeostasis. GE accounts for ~45% to 65% of glucose disposal in man. A negative association between GE and insulin meditated glucose disposal (Si), is present in normal subjects without a family history of type 2 diabetes mellitus but is absent in normoglycaemic "at risk" relatives with a positive family history of diabetes mellitus. Intracellular GE disposal is mediated by mass action of glucose through the skeletal muscle membrane via facilitated Glut 4 transporters. However, GE is frequently forgotten as a significant contributor to the development of glucose intolerance in "at risk" individuals. Only limited studies have examined the role of a lower GE in such normoglycemic subjects with preexisting mild insulin resistance and β-cell dysfunction. These studies demonstrate that in "at risk" individuals, an initial low GE is a key contributor and predictor of future glucose intolerance, whereas an initial raised GE is protective against future glucose intolerance. In "at risk" individuals, a low GE and genetically determined vulnerable β-cell function are more critical determinants of future glucose intolerance than their preexisting insulin-resistant state. Copyright © 2018 John Wiley & Sons, Ltd.

  1. Benfotiamine increases glucose oxidation and downregulates NADPH oxidase 4 expression in cultured human myotubes exposed to both normal and high glucose concentrations.

    Science.gov (United States)

    Fraser, D A; Hessvik, N P; Nikolić, N; Aas, V; Hanssen, K F; Bøhn, S K; Thoresen, G H; Rustan, A C

    2012-07-01

    The aim of the present work was to study the effects of benfotiamine (S-benzoylthiamine O-monophosphate) on glucose and lipid metabolism and gene expression in differentiated human skeletal muscle cells (myotubes) incubated for 4 days under normal (5.5 mM glucose) and hyperglycemic (20 mM glucose) conditions. Myotubes established from lean, healthy volunteers were treated with benfotiamine for 4 days. Glucose and lipid metabolism were studied with labeled precursors. Gene expression was measured using real-time polymerase chain reaction (qPCR) and microarray technology. Benfotiamine significantly increased glucose oxidation under normoglycemic (35 and 49% increase at 100 and 200 μM benfotiamine, respectively) as well as hyperglycemic conditions (70% increase at 200 μM benfotiamine). Benfotiamine also increased glucose uptake. In comparison, thiamine (200 μM) increased overall glucose metabolism but did not change glucose oxidation. In contrast to glucose, mitochondrial lipid oxidation and overall lipid metabolism were unchanged by benfotiamine. The expression of NADPH oxidase 4 (NOX4) was significantly downregulated by benfotiamine treatment under both normo- and hyperglycemic conditions. Gene set enrichment analysis (GSEA) showed that befotiamine increased peroxisomal lipid oxidation and organelle (mitochondrial) membrane function. In conclusion, benfotiamine increases mitochondrial glucose oxidation in myotubes and downregulates NOX4 expression. These findings may be of relevance to type 2 diabetes where reversal of reduced glucose oxidation and mitochondrial capacity is a desirable goal.

  2. Platelet indices and glucose control in type 1 and type 2 diabetes mellitus: A case-control study.

    Science.gov (United States)

    Zaccardi, F; Rocca, B; Rizzi, A; Ciminello, A; Teofili, L; Ghirlanda, G; De Stefano, V; Pitocco, D

    2017-10-01

    The relationship between platelet indices and glucose control may differ in type 1 (T1DM) and type 2 (T2DM) diabetes. We aimed to investigate differences in mean platelet volume (MPV), platelet count, and platelet mass between patients with T1DM, T2DM, and healthy controls and to explore associations between these platelet indices and glucose control. A total of 691 T1DM and 459 T2DM patients and 943 control subjects (blood donors) were included. HbA1c was measured in all subjects with diabetes and 36 T1DM patients further underwent 24 h-continuous glucose monitoring to estimate short-term glucose control (glucose mean and standard deviation). Adjusting for age and sex, platelet count was higher and MPV lower in both T1DM and T2DM patients vs control subjects, while platelet mass (MPV × platelet count) resulted higher only in T2DM. Upon further adjustment for HbA1c, differences in platelet count and mass were respectively 19.5 × 10 9 /L (95%CI: 9.8-29.3; p 1) and 101 fL/nL (12-191; p = 0.027) comparing T2DM vs T1DM patients. MPV and platelet count were significantly and differently related in T2DM patients vs both T1DM and control subjects; this difference was maintained also accounting for HbA1c, age, and sex. Platelet mass and the volume-count relationship were significantly related to HbA1c only in T1DM patients. No associations were found between platelet indices and short-term glucose control. By accounting for confounders and glucose control, our data evidenced higher platelet mass and different volume-count kinetics in subjects with T2DM vs T1DM. Long-term glucose control seemed to influence platelet mass and the volume-count relationship only in T1DM subjects. These findings suggest different mechanisms behind platelet formation in T1DM and T2DM patients with long-term glycaemic control being more relevant in T1DM than T2DM. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian

  3. Direct comparison of gluco-oligosaccharide oxidase variants and glucose oxidase: substrate range and H2O2 stability.

    Science.gov (United States)

    Vuong, Thu V; Foumani, Maryam; MacCormick, Benjamin; Kwan, Rachel; Master, Emma R

    2016-11-21

    Glucose oxidase (GO) activity is generally restricted to glucose and is susceptible to inactivation by H 2 O 2 . By comparison, the Y300A variant of gluco-oligosaccharide oxidase (GOOX) from Sarocladium strictum showed broader substrate range and higher H 2 O 2 stability. Specifically, Y300A exhibited up to 40 times higher activity on all tested sugars except glucose, compared to GO. Moreover, fusion of the Y300A variant to a family 22 carbohydrate binding module from Clostridium thermocellum (CtCBM22A) nearly doubled its catalytic efficiency on glucose, while retaining significant activity on oligosaccharides. In the presence of 200 mM of H 2 O 2 , the recombinant CtCBM22A_Y300A retained 80% of activity on glucose and 100% of activity on cellobiose, the preferred substrate for this enzyme. By contrast, a commercial glucose oxidase reported to contain ≤0.1 units catalase/ mg protein, retained 60% activity on glucose under the same conditions. GOOX variants appear to undergo a different mechanism of inactivation, as a loss of histidine instead of methionine was observed after H 2 O 2 incubation. The addition of CtCBM22A also promoted functional binding of the fusion enzyme to xylan, facilitating its simultaneous purification and immobilization using edible oat spelt xylan, which might benefit the usage of this enzyme preparation in food and baking applications.

  4. Glucose sensing based on Pt-MWCNT and MWCNT

    Science.gov (United States)

    Aryasomayajula, Lavanya; Xie, Jining; Wang, Shouyan; Varadan, Vijay K.

    2007-04-01

    It is known that multi walled carbon nanotubes (MWCNTs) is an excellent materials for biosensing applications and with the introduction of Pt nanoparticles (Pt-MWCNTs) of about 3nm in diameter in MWCNTs greatly increases the current sensitivity and also the signal to noise ratio. We fabricated the CNT- based glucose sensor by immobilization the bio enzyme, glucose oxidase (GoX), on the Pt-MWCNT and electrode were prepared. The sensor has been tested effectively for both the abnormal blood glucose levels- greater than 6.9 mM and less than 3.5 mM which are the prediabetic and diabetic glucose levels, respectively. The current signal obtained from the Pt-MWCNT was much higher compared to the MWCNT based sensors.

  5. Relationships between obesity, lipids and fasting glucose in the menopause.

    Science.gov (United States)

    Netjasov, Aleksandra Simoncig; Vujović, Svetlana; Ivović, Miomira; Tancić-Gajić, Milina; Marina, Ljiljana; Barać, Marija

    2013-01-01

    Menopause leads to the development of central adiposity, a more atherogenic lipid profile and increased incidence of metabolic syndrome independent of age and other factors. The aim of the study was to investigate the relationships between anthropometric characteristics, sex hormones, lipids and fasting glucose in menopausal women. The study included 87 menopausal women, who where divided into groups according to two criteria: BMI > or = 26.7 kg/m2 and BMI > or = 25 kg/m2. Anthropometric characteristics and blood pressure were measured. Blood was taken at 08.00 h for fasting glucose, triglycerides, cholesterol, HDL, LDL, apolipoprotein A, apolipoprotein B, lipoprotein(a) (Lp(a)), C-reactive protein, fibrinogen, follicle stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), estradiol, progesterone, testosterone and sex hormone binding globulin (SHBG). Significant differences between groups were found for weight, BMI, waist, hips circumference, waist/hip ratio (WHR), systolic and diastolic blood pressure, Lp(a), FSH, LH, PRL (for systolic blood pressure p fasting glucose (p obese and overweight women with BMI > or = 26.7 kg/m2 significant negative correlations were found for FSH and glucose, SHBG and LDL, SHBG and total cholesterol, SHBG and glucose, BMI and HDL, WC and HDL. In obese and overweight women with BMI > or = 25 kg/m2 significant negative correlations were found for BMI and HDL, waist circumference (WC) and HDL, WHR and HDL, FSH and glucose, SHBG and glucose; significant positive correlations were between BMI and glucose, WC and glucose and WHR with triglycerides. Gaining weight and decreased SHBG are related to dyslipidemia and increased fasting glucose confirming increased incidence of metabolic abnormalities in the menopause.

  6. Molecular Weight Dependent Glucose Lowering Effect of Low Molecular Weight Chitosan Oligosaccharide (GO2KA1 on Postprandial Blood Glucose Level in SD Rats Model

    Directory of Open Access Journals (Sweden)

    Emmanouil Apostolidis

    2013-07-01

    Full Text Available This research investigated the effect of enzymatically digested low molecular weight (MW chitosan oligosaccharide on type 2 diabetes prevention. Three different chitosan oligosaccharide samples with varying MW were evaluated in vitro for inhibition of rat small intestinal α-glucosidase and porcine pancreatic α-amylase (GO2KA1; 10,000 Da. The in vitro results showed that all tested samples had similar rat α-glucosidase inhibitory and porcine α-amylase inhibitory activity. Based on these observations, we decided to further investigate the effect of all three samples at a dose of 0.1 g/kg, on reducing postprandial blood glucose levels in Sprague-Dawley (SD rat model after sucrose loading test. In the animal trial, all tested samples had postprandial blood glucose reduction effect, when compared to control, however GO2KA1 supplementation had the strongest effect. The glucose peak (Cmax for GO2KA1 and control was 152 mg/dL and 193 mg/dL, respectively. The area under the blood glucose-time curve (AUC for GO2KA1 and control was 262 h mg/dL and 305 h mg/dL, respectively. Furthermore, the time of peak plasma concentration of blood glucose (Tmax for GO2KA1 was significantly delayed (0.9 h compared to control (0.5 h. These results suggest that GO2KA1 could have a beneficial effect for blood glucose management relevant to diabetes prevention in normal and pre-diabetic individuals. The suggested mechanism of action is via inhibition of the carbohydrate hydrolysis enzyme α-glucosidase and since GO2KA1 (MW < 1000 Da had higher in vivo effect, we hypothesize that it is more readily absorbed and might exert further biological effect once it is absorbed in the blood stream, relevant to blood glucose management.

  7. Dynamics of Nampt/visfatin and high molecular weight adiponectin in response to oral glucose load in obese and lean women.

    Science.gov (United States)

    Unlütürk, Uğur; Harmanci, Ayla; Yildiz, Bülent Okan; Bayraktar, Miyase

    2010-04-01

    High molecular weight adiponectin (HMWA) is the active circulating form of adiponectin. Nampt/visfatin is the enzyme secreted from adipocytes in an active form and is one of the putative regulators of insulin secretion. To investigate the dynamics of total adiponectin (TA), HMWA and Nampt/visfatin in obese and lean women during oral glucose tolerance test (OGTT). We studied normal glucose-tolerant (NGT), age-matched, 30 obese and 30 lean women. All subjects underwent a standard 75 g, 2-h OGTT, and area under the curve (AUC) during OGTT for glucose, insulin, Nampt/visfatin, TA and HMWA was calculated. Body fat mass was assessed by bioimpedance analysis. Results Obese women had significantly higher basal and AUC values for insulin and Nampt/visfatin, whereas basal and AUC-HMWA were significantly lower in this group. Alternatively, obese and lean groups had similar basal and AUC values for glucose and TA. Basal insulin levels were negatively correlated with HMWA levels, but not with basal Nampt/visfatin. AUC-insulin was correlated positively with AUC-visfatin, and negatively with AUC-HMWA. Total and truncal body fat mass showed positive correlation with basal and AUC-visfatin, and negative correlation with basal and AUC-HMWA. In the NGT state, obese women have higher Nampt/visfatin and lower HMWA levels, both basally and in response to oral glucose challenge. The dynamics of Nampt/visfatin and HMWA during OGTT appear to be linked with insulin and adiposity. Counter-regulatory adaptations in HMWA and Nampt/visfatin might have an impact on suggested adipoinsular axis, contributing to maintenance of normal glucose tolerance.

  8. CuO nanoparticles supported on nitrogen and sulfur co-doped graphene nanocomposites for non-enzymatic glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Meixia [Hebei University of Engineering, Faculty of Material Science and Engineering (China); Guo, Qingbin, E-mail: guoqingbinhue@163.com [Hebei University of Engineering, Academic Affairs office (China); Xie, Juan; Li, Yongde; Feng, Yapeng [Hebei University of Engineering, Faculty of Material Science and Engineering (China)

    2017-01-15

    Developing highly active catalysts to promote the electrocatalytic glucose oxidation (EGO) is a crucial demand for non-enzymatic glucose sensing. Herein, we reported the use of nitrogen and sulfur co-doped graphene (NSG) as a novel support material for anchoring CuO nanoparticles and obtained CuO/NSG was employed as an efficient EGO catalyst for non-enzymatic glucose sensing. The results showed that the NSG endowed the CuO/NSG with large surface area, increased structural defects, improved conductivity, and strong covalent coupling between NSG and CuO. Owing to the significant contribution of NSG and the synergistic effect of NSG and CuO, the CuO/NSG exhibited a remarkably higher EGO activity than CuO and CuO/reduced graphene oxide. The CuO/NSG-based sensor displayed excellent glucose sensing performances with a considerably low detection limit of 0.07 μM. These findings elucidate that the NSG is a promising support material for non-enzymatic glucose detection.

  9. Ethnic differences in glucose effectiveness and disposition index in overweight/obese African American and white women with prediabetes: A study of compensatory mechanisms.

    Science.gov (United States)

    Osei, Kwame; Gaillard, Trudy

    2017-08-01

    Prediabetes, a major precursor of type 2 diabetes, varies among ethnic populations. Therefore, we compared the pathophysiologic mechanisms of prediabetes in overweight/obese African American (AA) and White American (WA) women. We recruited 95 women (67 AA, 28 WA) with prediabetes. Standard OGTT and FSIVGTT were performed in each subject. Insulin sensitivity (Si), glucose effectiveness (Sg), beta cell function (acute insulin response to glucose (AIRg) and disposition index (DI: Si×AIRg) were calculated using Bergman's Minmod. Mean BMI was greater in AA vs WA with prediabetes (38.3±8.2vs 34.6±8.5kg/m 2 , p=0.05). Mean fasting serum glucose, and insulin levels were lower in AA vs WA. Similarly, mean peak serum glucose levels were lower while peak insulin levels were higher at 30 and 60minutes in AA vs WA. In contrast, mean fasting and peak serum c-peptide levels at 60 and 90minutes were significantly lower in AA vs WA. Mean AIRg was higher but not significantly different in AA vs WA (633±520.92 vs 414.8±246.8, p=0.193). Although, Si (2.93±3.25vs 44 2.50±1.76 (×10 -4 ×min -1 [μU/ml] -1 ), p=0.448) was not different, DI was significantly higher in AA vs WA (1381±1126 vs 901.9±477.1, p=0.01). In addition, mean Sg was significantly higher in AAvs WA (2.51±1.17 vs 1.97±0.723 (×10 -2 /min), p=0.02). We found that in overweight/obese prediabetic AA and WA women with similar Si, the mean Sg and DI were significantly higher in AA. We conclude that the pathophysiologic mechanisms of prediabetes differ in the overweight/obese AA and WA women. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Validity of a portable glucose, total cholesterol, and triglycerides multi-analyzer in adults.

    Science.gov (United States)

    Coqueiro, Raildo da Silva; Santos, Mateus Carmo; Neto, João de Souza Leal; Queiroz, Bruno Morbeck de; Brügger, Nelson Augusto Jardim; Barbosa, Aline Rodrigues

    2014-07-01

    This study investigated the accuracy and precision of the Accutrend Plus system to determine blood glucose, total cholesterol, and plasma triglycerides in adults and evaluated its efficiency in measuring these blood variables. The sample consisted of 53 subjects (≥ 18 years). For blood variable laboratory determination, venous blood samples were collected and processed in a Labmax 240 analyzer. To measure blood variables with the Accutrend Plus system, samples of capillary blood were collected. In the analysis, the following tests were included: Wilcoxon and Student's t-tests for paired samples, Lin's concordance coefficient, Bland-Altman method, receiver operating characteristic curve, McNemar test, and k statistics. The results show that the Accutrend Plus system provided significantly higher values (p ≤ .05) of glucose and triglycerides but not of total cholesterol (p > .05) as compared to the values determined in the laboratory. However, the system showed good reproducibility (Lin's coefficient: glucose = .958, triglycerides = .992, total cholesterol = .940) and high concordance with the laboratory method (Lin's coefficient: glucose = .952, triglycerides = .990, total cholesterol = .944) and high sensitivity (glucose = 80.0%, triglycerides = 90.5%, total cholesterol = 84.4%) and specificity (glucose = 100.0%, triglycerides = 96.9%, total cholesterol = 95.2%) in the discrimination of high values of the three blood variables analyzed. It could be concluded that despite the tendency to overestimate glucose and triglyceride levels, a portable multi-analyzer is a valid alternative for the monitoring of metabolic disorders and cardiovascular risk factors. © The Author(s) 2013.

  11. Use of continuous glucose monitoring as an outcome measure in clinical trials.

    Science.gov (United States)

    Beck, Roy W; Calhoun, Peter; Kollman, Craig

    2012-10-01

    Although developed to be a management tool for individuals with diabetes, continuous glucose monitoring (CGM) also has potential value for the assessment of outcomes in clinical studies. We evaluated using CGM as such an outcome measure. Data were analyzed from six previously completed inpatient studies in which both CGM (Freestyle Navigator™ [Abbott Diabetes Care, Alameda, CA] or Guardian(®) [Medtronic, Northridge, CA]) and reference glucose measurements were available. The analyses included 97 days of data from 93 participants with type 1 diabetes (age range, 5-57 years; mean, 18 ± 12 years). Mean glucose levels per day were similar for the CGM and reference measurements (median, 148 mg/dL vs. 143 mg/dL, respectively; P = 0.92), and the correlation of the two was high (r = 0.89). Similarly, most glycemia metrics showed no significant differences comparing CGM and reference values, except that the nadir glucose tended to be slightly lower and peak glucose slightly higher with reference measurements than CGM measurements (respective median, 59 mg/dL vs. 66 mg/dL [P = 0.05] and 262 mg/dL vs. 257 mg/dL [P = 0.003]) and glucose variability as measured with the coefficient of variation was slightly lower with CGM than reference measurements (respective median, 31% vs. 35%; Pblood glucose measurements. CGM inaccuracy and underestimation of the extremes of hyperglycemia and hypoglycemia can be accounted for in a clinical trial's study design. Thus, in appropriate settings, CGM can be a very meaningful and feasible outcome measure for clinical trials.

  12. The effects of maternal and post-weaning diet interaction on glucose metabolism and gut microbiota in male mice offspring

    Science.gov (United States)

    Zheng, Jia; Xiao, Xinhua; Zhang, Qian; Yu, Miao; Xu, Jianping; Qi, Cuijuan; Wang, Tong

    2016-01-01

    Substantial studies demonstrated that maternal nutrition can significantly determine the susceptibility to developing some metabolic diseases in offspring. However, investigations into the later-life effects of these diets on gut microbiota in the offspring are limited. Our objective was to explore the effects of maternal and post-weaning diet interaction on offspring's gut microbiota and glucose metabolism in later life. The male offspring of dams fed on either a high-fat (HF) diet or control (C) diet and then weaned to either a HF or C diet, generating four groups: C–C, HF–C, C–HF and HF–HF (n=8 in each group). The C–C offspring had lower body weight than C–HF group at 16 weeks of age (Pblood glucose (BG) levels of the male offspring from the C and HF dams weaned HF diet were significantly higher at 30 min, 60 min and 120 min (Pglucose administration compared with those of the C–C group. The C–HF group had higher BG at 30 min than HF–HF group (Pcurve (AUC) in C–HF and HF–HF groups was also significantly larger than C–C group (Pglucose response to a glucose load (Pglucose metabolism and alterations of gut microbiota in later life. Our study is novel in focusing on the effects of maternal and post-weaning diet interaction on offspring gut microbiota and glucose metabolism in later life. PMID:27129301

  13. The glucose-dependent insulinotropic polypeptide and glucose-stimulated insulin response to exercise training and diet in obesity.

    Science.gov (United States)

    Kelly, Karen R; Brooks, Latina M; Solomon, Thomas P J; Kashyap, Sangeeta R; O'Leary, Valerie B; Kirwan, John P

    2009-06-01

    Aging and obesity are characterized by decreased beta-cell sensitivity and defects in the potentiation of nutrient-stimulated insulin secretion by GIP. Exercise and diet are known to improve glucose metabolism and the pancreatic insulin response to glucose, and this effect may be mediated through the incretin effect of GIP. The purpose of this study was to assess the effects of a 12-wk exercise training intervention (5 days/wk, 60 min/day, 75% Vo(2 max)) combined with a eucaloric (EX, n = 10) or hypocaloric (EX-HYPO, pre: 1,945 +/- 190, post: 1,269 +/- 70, kcal/day; n = 9) diet on the GIP response to glucose in older (66.8 +/- 1.5 yr), obese (34.4 +/- 1.7 kg/m(2)) adults with impaired glucose tolerance. In addition to GIP, plasma PYY(3-36), insulin, and glucose responses were measured during a 3-h, 75-g oral glucose tolerance test. Both interventions led to a significant improvement in Vo(2 max) (P HYPO (-8.3 +/- 1.1 vs. -2.8 +/- 0.5, P = 0.002). The glucose-stimulated insulin response was reduced after EX-HYPO (P = 0.02), as was the glucose-stimulated GIP response (P caloric restriction and exercise reduces the GIP response to ingested glucose, 2) GIP may mediate the attenuated glucose-stimulated insulin response after exercise/diet interventions, and 3) the increased PYY(3-36) response represents an improved capacity to regulate satiety and potentially body weight in older, obese, insulin-resistant adults.

  14. Continuous glucose monitoring, oral glucose tolerance, and insulin - glucose parameters in adolescents with simple obesity.

    Science.gov (United States)

    El Awwa, A; Soliman, A; Al-Ali, M; Yassin, M; De Sanctis, V

    2012-09-01

    In obese adolescents pancreatic beta-cells may not be able to cope with insulin resistance leading to hyperglycemia and type2 diabetes (T2DM To assess oral glucose tolerance, 72-h continuous blood glucose concentrations (CGM) and calculate homeostatic model assessment (HOMA), and the quantitative insulin sensitivity check index (QUICKI) in 13 adolescents with simple obesity (BMI SDS=4 ± 1.06). OGTT performed in 13 obese adolescents (13.47 ± 3 years) revealed 3 cases (23%) with impaired fasting glucose (IFG: fasting glucose >5.6 mmol/L), 4 cases (30%) with impaired glucose tolerance (IGT: 2h blood glucose >7.8 continuous glucose monitoring system ( CGMS), IFG was detected in 4 cases, the maximum serum blood glucose (BG : 2h or more after meal) was >7.8 and 11.1 mmol/L (diabetes) in one case (7.6%). Five cases had a minimum BG recorded of 2.6 and QUICKI values obese adolescents, CGMS is superior to OGTT and HbA1C in detecting glycemic abnormalities, which appears to be secondary to insulin resistance.

  15. The effect of an instant hand sanitizer on blood glucose monitoring results.

    Science.gov (United States)

    Mahoney, John J; Ellison, John M; Glaeser, Danielle; Price, David

    2011-11-01

    People with diabetes mellitus are instructed to clean their skin prior to self-monitoring of blood glucose to remove any dirt or food residue that might affect the reading. Alcohol-based hand sanitizers have become popular when soap and water are not available. The aim of this study was to determine whether a hand sanitizer is compatible with glucose meter testing and effective for the removal of exogenous glucose. We enrolled 34 nonfasting subjects [14 male/20 female, mean ages 45 (standard deviation, 9.4)] years, 2 with diagnosed diabetes/32 without known diabetes]. Laboratory personnel prepared four separate fingers on one hand of each subject by (1) cleaning the second finger with soap and water and towel drying (i.e., control finger), (2) cleaning the third finger with an alcohol-based hand sanitizer, (3) coating the fourth finger with cola and allowing it to air dry, and (4) coating the fifth finger with cola and then cleaning it with the instant hand sanitizer after the cola had dried. Finger sticks were performed on each prepared finger and blood glucose was measured. Several in vitro studies were also performed to investigate the effectiveness of the hand sanitizer for removal of exogenous glucose.z Mean blood glucose values from fingers cleaned with instant hand sanitizer did not differ significantly from the control finger (p = .07 and .08, respectively) and resulted in 100% accurate results. Blood glucose data from the fourth (cola-coated) finger were substantially higher on average compared with the other finger conditions, but glucose data from the fifth finger (cola-coated then cleaned with hand sanitizer) was similar to the control finger. The data from in vitro experiments showed that the hand sanitizer did not adversely affect glucose meter results, but when an exogenous glucose interference was present, the effectiveness of the hand sanitizer on glucose bias (range: 6% to 212%) depended on the surface area and degree of dilution. In our study

  16. The association of admission blood glucose level with the clinical picture and prognosis in cardiogenic shock - Results from the CardShock Study.

    Science.gov (United States)

    Kataja, Anu; Tarvasmäki, Tuukka; Lassus, Johan; Cardoso, Jose; Mebazaa, Alexandre; Køber, Lars; Sionis, Alessandro; Spinar, Jindrich; Carubelli, Valentina; Banaszewski, Marek; Marino, Rossella; Parissis, John; Nieminen, Markku S; Harjola, Veli-Pekka

    2017-01-01

    Critically ill patients often present with hyperglycemia, regardless of previous history of diabetes mellitus (DM). Hyperglycemia has been associated with adverse outcome in acute myocardial infarction and acute heart failure. We investigated the association of admission blood glucose level with the clinical picture and short-term mortality in cardiogenic shock (CS). Consecutively enrolled CS patients were divided into five categories according to plasma glucose level at the time of enrolment: hypoglycemia (glucose glucose level of 211 CS patients was recorded. Glucose levels were distributed equally between normoglycemia (26% of patients), mild (27%), moderate (19%) and severe (25%) hyperglycemia, while hypoglycemia (2%) was rare. Severe hyperglycemia was associated with higher blood leukocyte count (17.3 (5.8) E9/L), higher lactate level (4.4 (3.3-8.4) mmol/L) and lower arterial pH (7.23 (0.14)) compared with normoglycemia or mild to moderate hyperglycemia (pblood glucose level has prognostic significance in CS. Mortality is highest among patients with severe hyperglycemia or hypoglycemia. Severe hyperglycemia is independently associated with high in-hospital mortality in CS. It is also associated with biomarkers of systemic hypoperfusion and stress response. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. [Influence of an infusion of 5- or 20% glucose solution on blood glucose and inorganic phosphate concentrations in dairy cows].

    Science.gov (United States)

    Aldaek, T A A; Failing, K; Wehrend, A; Klymiuk, M C

    2011-01-01

    The study was performed to evaluate the influence of an intravenous infusion of 5% and 20% dextrose solution on the plasma concentration of glucose and inorganic phosphate in healthy, dairy cows. Ten healthy, lactating, nonpregnant 3 to 6 year-old Holstein-Friesian cows were included in this investigation. The daily milk yield was 20.3±2.7 liters. Blood plasma concentrations of inorganic phosphate and glucose were determined before, during, immediately and 60 minutes after infusion of 0.9% physiological saline, 5% or 20% dextrose solution. A statistically significant influence of dextrose infusion on blood glucose concentration was observed. After 20% dextrose infusion (200 g dextrose) the blood glucose concentration increased by approximately 13.26 mmol/l. The administration of 5% dextrose solution (50 g dextrose) yielded an increase of blood glucose concentration by 3.31 mmol/l. There was no significant correlation between plasma inorganic phosphate concentrations and infusion of 0.9% saline, 5% or 20% dextrose solution. Intravenous administration of 1000 ml of 5% or 20% dextrose solution does not induce a lasting plasma phosphate reduction and is suitable for elevating the blood glucose concentration.

  18. Growth and enzymatic responses of phytopathogenic fungi to glucose in culture media and soil

    Directory of Open Access Journals (Sweden)

    Beatriz de Oliveira Costa

    2012-03-01

    Full Text Available The effect of inoculation of Aspergillus flavus, Fusarium verticillioides, and Penicillium sp. in Dystrophic Red Latosol (DRL and Eutroferric Red Latosol (ERL soils with or without glucose on the total carbohydrate content and the dehydrogenase and amylase activities was studied. The fungal growth and spore production in culture medium with and without glucose were also evaluated. A completely randomized design with factorial arrangement was used. The addition of glucose in the culture medium increased the growth rate of A. flavus and Penicillium sp. but not of F. verticillioides. The number of spores increased 1.2 for F. verticillioides and 8.2 times for A. flavus in the medium with glucose, but was reduced 3.5 times for Penicillium sp. The total carbohydrates contents reduced significantly according to first and second degree equations. The consumption of total carbohydrates by A. flavus and Penicillium sp. was higher than the control or soil inoculated with F. verticillioides. The addition of glucose to soils benefited the use of carbohydrates, probably due to the stimulation of fungal growth. Dehydrogenase activity increased between 1.5 to 1.8 times (p <0.05 in soils with glucose and inoculated with the fungi (except F. verticillioides, in relation to soil without glucose. Amylase activity increased 1.3 to 1.5 times due to the addition of glucose in the soil. Increased amylase activity was observed in the DRL soil with glucose and inoculated with A. flavus and Penicillium sp. when compared to control.

  19. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia.

    Science.gov (United States)

    Abi-Saab, Walid M; Maggs, David G; Jones, Tim; Jacob, Ralph; Srihari, Vinod; Thompson, James; Kerr, David; Leone, Paola; Krystal, John H; Spencer, Dennis D; During, Matthew J; Sherwin, Robert S

    2002-03-01

    Brain levels of glucose and lactate in the extracellular fluid (ECF), which reflects the environment to which neurons are exposed, have never been studied in humans under conditions of varying glycemia. The authors used intracerebral microdialysis in conscious human subjects undergoing electrophysiologic evaluation for medically intractable epilepsy and measured ECF levels of glucose and lactate under basal conditions and during a hyperglycemia-hypoglycemia clamp study. Only measurements from nonepileptogenic areas were included. Under basal conditions, the authors found the metabolic milieu in the brain to be strikingly different from that in the circulation. In contrast to plasma, lactate levels in brain ECF were threefold higher than glucose. Results from complementary studies in rats were consistent with the human data. During the hyperglycemia-hypoglycemia clamp study the relationship between plasma and brain ECF levels of glucose remained similar, but changes in brain ECF glucose lagged approximately 30 minutes behind changes in plasma. The data demonstrate that the brain is exposed to substantially lower levels of glucose and higher levels of lactate than those in plasma; moreover, the brain appears to be a site of significant anaerobic glycolysis, raising the possibility that glucose-derived lactate is an important fuel for the brain.

  20. Enzymatic activity of Glucose Oxidase from Aspergillus niger IPBCC.08.610 On Modified Carbon Paste Electrode as Glucose Biosensor

    Science.gov (United States)

    Rohmayanti, T.; Ambarsari, L.; Maddu, A.

    2017-03-01

    Glucose oxidase (GOx) has been developed as glucose sensor for measuring blood glucose level because of its specificity to glucose oxidation. This research aimed to determine kinetic parameters of GOx activity voltametrically and further test its potential as a glucose biosensor. GOx, in this research, was produced by local fungi Aspergillus niger IPBCC.08.610 which was isolated from local vine in Tarakan, East Borneo, Indonesia. GOx was immobilized with glutaraldehyde, which cross-linked onto modified carbon paste electrode (MCPE) nanofiber polyaniline. Intracellular GOx activity was higher than extracellular ones. Immobilized GOx used glutaraldehyde 2.5% and dripped on the surface of MCPE nanofiber polyaniline. MCPE have a high conductance in copper with the diameter of 3 mm. The concentration of glucose in the lowest concentration of 0.2 mM generated a current value of 0.413 mA while 2 mM of glucose induced a current of 3,869 mA value. Km and Imax of GOx in MCPE activities polyaniline nanofiber were 2.88 mM and 3.869 mA,respectively, with turnover (Kcat) of 13 s-1. Sensitivity was 1.09 mA/mM and response time to produce a maximum peak current was 25 seconds. Km value was then converted into units of mg/dL and obtained 56.4 mg/dL. GOximmo-IPB|MCPE electrode is potential to be able to detect blood glucose level in a normal condition and hypoglycemia conditions

  1. Peripheral Blood Transcriptomic Signatures of Fasting Glucose and Insulin Concentrations

    Science.gov (United States)

    Chen, Brian H.; Hivert, Marie-France; Peters, Marjolein J.; Pilling, Luke C.; Hogan, John D.; Pham, Lisa M.; Harries, Lorna W.; Fox, Caroline S.; Bandinelli, Stefania; Dehghan, Abbas; Hernandez, Dena G.; Hofman, Albert; Hong, Jaeyoung; Joehanes, Roby; Johnson, Andrew D.; Munson, Peter J.; Rybin, Denis V.; Singleton, Andrew B.; Uitterlinden, André G.; Ying, Saixia; Melzer, David; Levy, Daniel; van Meurs, Joyce B.J.; Ferrucci, Luigi; Florez, Jose C.; Dupuis, Josée

    2016-01-01

    Genome-wide association studies (GWAS) have successfully identified genetic loci associated with glycemic traits. However, characterizing the functional significance of these loci has proven challenging. We sought to gain insights into the regulation of fasting insulin and fasting glucose through the use of gene expression microarray data from peripheral blood samples of participants without diabetes in the Framingham Heart Study (FHS) (n = 5,056), the Rotterdam Study (RS) (n = 723), and the InCHIANTI Study (Invecchiare in Chianti) (n = 595). Using a false discovery rate q fasting glucose and 433 transcripts associated with fasting insulin levels after adjusting for age, sex, technical covariates, and complete blood cell counts. Among the findings, circulating IGF2BP2 transcript levels were positively associated with fasting insulin in both the FHS and RS. Using 1000 Genomes–imputed genotype data, we identified 47,587 cis-expression quantitative trait loci (eQTL) and 6,695 trans-eQTL associated with the 433 significant insulin-associated transcripts. Of note, we identified a trans-eQTL (rs592423), where the A allele was associated with higher IGF2BP2 levels and with fasting insulin in an independent genetic meta-analysis comprised of 50,823 individuals. We conclude that integration of genomic and transcriptomic data implicate circulating IGF2BP2 mRNA levels associated with glucose and insulin homeostasis. PMID:27625022

  2. Raised concentrations of lipid peroxidation products (LPO in pregnant women with impaired glucose tolerance

    Directory of Open Access Journals (Sweden)

    Krzysztof C. Lewandowski

    2014-06-01

    Full Text Available introduction. Lipid peroxidation (LPO results from oxidative damage to membrane lipids. Whereas LPO rises in normal pregnancy, the effect of gestational diabetes mellitus (GDM on this process has not been clearly defined. materials and method. Fasting blood concentrations of malondialdehyde+4-hydroxyalkenals (MDA+4-HDA, as LPO index, TNFa soluble receptors (sTNF-R1 and sTNF-R2, and soluble adhesion molecules (sICAM-1, sVCAM-1, were measured in 51 women at 28 weeks of gestation. The women were divided according to the results of 50.0 g glucose challenge test (GCT and 75.0 g oral glucose tolerance test (OGTT: Controls (n=20, normal responses to both GCT and OGTT; Intermediate Group (IG (n=15, abnormal GCT but normal OGTT; GDM group (n=16, abnormal both GCT and OGTT. results. Glucose concentrations in women diagnosed with GDM were within the range of impaired glucose tolerance. There were no significant differences in concentrations of either TNF a soluble receptors R1 and R2, or sICAM-1 or sVCAM-1. LPO concentrations [MDA+4-HDA (nmol/mg protein] were significantly higher in women with GDM than in the other two groups [64.1±24.3 (mean±SD, 39.3±23.1, 47.0±18.1, for GDM, IG and Controls, respectively; p<0.05]. In multivariate analysis, the only significant independent correlation was between LPO level and glucose at 120 minutes of OGTT (rs=0.42; p=0.009. conclusions. Oxidative damage to membrane lipids is increased in GDM and might result directly from hyperglycaemia. Physiological significance of this phenomenon remains to be elucidated.

  3. Glucose-induced glucagon-like Peptide 1 secretion is deficient in patients with non-alcoholic fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Christine Bernsmeier

    Full Text Available The incretins glucagon-like peptide-1 (GLP-1 and glucose-dependent insulinotropic polypeptide (GIP are gastrointestinal peptide hormones regulating postprandial insulin release from pancreatic β-cells. GLP-1 agonism is a treatment strategy in Type 2 diabetes and is evaluated in Non-alcoholic fatty liver disease (NAFLD. However, the role of incretins in its pathophysiology is insufficiently understood. Studies in mice suggest improvement of hepatic steatosis by GLP-1 agonism. We determined the secretion of incretins after oral glucose administration in non-diabetic NAFLD patients.N=52 patients (n=16 NAFLD and n=36 Non-alcoholic steatohepatitis (NASH patients and n=50 matched healthy controls were included. Standardized oral glucose tolerance test was performed. Glucose, insulin, glucagon, GLP-1 and GIP plasma levels were measured sequentially for 120 minutes after glucose administration.Glucose induced GLP-1 secretion was significantly decreased in patients compared to controls (p<0.001. In contrast, GIP secretion was unchanged. There was no difference in GLP-1 and GIP secretion between NAFLD and NASH subgroups. All patients were insulin resistant, however HOMA2-IR was highest in the NASH subgroup. Fasting and glucose-induced insulin secretion was higher in NAFLD and NASH compared to controls, while the glucose lowering effect was diminished. Concomitantly, fasting glucagon secretion was significantly elevated in NAFLD and NASH.Glucose-induced GLP-1 secretion is deficient in patients with NAFLD and NASH. GIP secretion is contrarily preserved. Insulin resistance, with hyperinsulinemia and hyperglucagonemia, is present in all patients, and is more severe in NASH compared to NAFLD. These pathophysiologic findings endorse the current evaluation of GLP-1 agonism for the treatment of NAFLD.

  4. Pre-gravid physical activity and reduced risk of glucose intolerance in pregnancy: the role of insulin sensitivity.

    Science.gov (United States)

    Retnakaran, Ravi; Qi, Ying; Sermer, Mathew; Connelly, Philip W; Zinman, Bernard; Hanley, Anthony J G

    2009-04-01

    Pre-gravid physical activity has been associated with a reduced risk of gestational diabetes mellitus (GDM), although neither the types of exercise nor the physiologic mechanisms underlying this protective effect have been well-studied. Thus, we sought to study the relationships between types of pre-gravid physical activity and metabolic parameters in pregnancy, including glucose tolerance, insulin sensitivity and beta-cell function. A total of 851 women underwent a glucose challenge test (GCT) and a 3-h oral glucose tolerance test (OGTT) in late pregnancy, yielding four glucose tolerance groups: (i) GDM; (ii) gestational impaired glucose tolerance (GIGT); (iii) abnormal GCT with normal glucose tolerance on OGTT (abnormal GCT NGT); and (iv) normal GCT with NGT on OGTT (normal GCT NGT). Pre-gravid physical activity was assessed using the Baecke questionnaire, which measures (i) total physical activity and (ii) its three component domains: work, nonsport leisure-time, and vigorous/sports activity. Glucose tolerance status improved across increasing quartiles of pre-gravid total physical activity (P = 0.0244). Whereas neither work nor nonsport leisure-time activity differed between glucose tolerance groups, pre-gravid vigorous/sports activity was significantly higher in women with normal GCT NGT compared to women with (i) abnormal GCT NGT (P = 0.0018) (ii) GIGT (P = 0.0025), and (iii) GDM (P = 0.0044). In particular, vigorous/sports activity correlated with insulin sensitivity (measured by IS(OGTT)) (r = 0.21, P sports activity emerged as a significant independent predictor of IS(OGTT) in pregnancy (t = 4.97, P sports activity is associated with a reduced risk of glucose intolerance in pregnancy, an effect likely mediated by enhanced insulin sensitivity.

  5. Glucose: the worst of all evils?

    African Journals Online (AJOL)

    occurs secondary to elevated levels of cortisol, epinephrine, norepinephrine ... recovery and higher mortality in stroke patients,14,15,16,17 and an increased morbidity and .... TGC come into play.1,24 Avoiding variable blood glucose and exact.

  6. Accuracy evaluation of contour next compared with five blood glucose monitoring systems across a wide range of blood glucose concentrations occurring in a clinical research setting.

    Science.gov (United States)

    Klaff, Leslie J; Brazg, Ronald; Hughes, Kristen; Tideman, Ann M; Schachner, Holly C; Stenger, Patricia; Pardo, Scott; Dunne, Nancy; Parkes, Joan Lee

    2015-01-01

    This study evaluated the accuracy of Contour(®) Next (CN; Bayer HealthCare LLC, Diabetes Care, Whippany, NJ) compared with five blood glucose monitoring systems (BGMSs) across a wide range of clinically occurring blood glucose levels. Subjects (n=146) were ≥ 18 years and had type 1 or type 2 diabetes. Subjects' glucose levels were safely lowered or raised to provide a wide range of glucose values. Capillary blood samples were tested on six BGMSs and a YSI glucose analyzer (YSI Life Sciences, Inc., Yellow Springs, OH) as the reference. Extreme glucose values were achieved by glucose modification of the blood sample. System accuracy was assessed by mean absolute difference (MAD) and mean absolute relative difference (MARD) across several glucose ranges, with glucose range (Abbott Diabetes Care, Inc., Alameda, CA), 2.77 mg/dL; OneTouch(®) Ultra(®) 2 (LifeScan, Inc., Milpitas, CA), 10.20 mg/dL; OneTouch(®) Verio(®) Pro (LifeScan, Inc.), 4.53 mg/dL; and Truetrack(®) (Nipro Diagnostics, Inc., Fort Lauderdale, FL), 11.08 mg/dL. The lowest MAD in the low glucose range, from CN, was statistically significantly lower than those of the other BGMSs with the exception of the FSL. CN also had a statistically significantly lower MARD than all other BGMSs in the low glucose range. In the overall glucose range (21-496 mg/dL), CN yielded the lowest MAD and MARD values, which were statistically significantly lower in comparison with the other BGMSs. When compared with other BGMSs, CN demonstrated the lowest mean deviation from the reference value (by MAD and MARD) across multiple glucose ranges.

  7. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite

    International Nuclear Information System (INIS)

    Palanisamy, Selvakumar; Cheemalapati, Srikanth; Chen, Shen-Ming

    2014-01-01

    An amperometric glucose biosensor based on enhanced and fast direct electron transfer (DET) of glucose oxidase (GOx) at enzyme dispersed multiwalled carbon nanotubes/graphene oxide (MWCNT/GO) hybrid biocomposite was developed. The fabricated hybrid biocomposite was characterized by transmission electron microscopy (TEM), Raman and infrared spectroscopy (IR). The TEM image of hybrid biocomposite reveals that a thin layer of GOx was covered on the surface of MWCNT/GO hybrid composite. IR results validate that the hybrid biocomposite was formed through the electrostatic interactions between GOx and MWCNT/GO hybrid composite. Further, MWCNT/GO hybrid composite has also been characterized by TEM and UV–visible spectroscopy. A pair of well-defined redox peak was observed for GOx immobilized at the hybrid biocomposite electrode than that immobilized at the MWCNT modified electrode. The electron transfer rate constant (K s ) of GOx at the hybrid biocomposite was calculated to be 11.22 s −1 . The higher K s value revealed that fast DET of GOx occurred at the electrode surface. Moreover, fabricated biosensor showed a good sensitivity towards glucose oxidation over a linear range 0.05–23.2 mM. The limit of detection (LOD) was estimated to be 28 μM. The good features of the proposed biosensor could be used for the accurate detection of glucose in the biological samples. - Highlights: • An amperometric glucose biosensor has been developed at MWCNT/GO hybrid biocomposite. • Enhanced and fast direct electron transfer kinetics of glucose oxidase has been achieved at hybrid biocomposite. • Hybrid biocomposite has been characterized by TEM, IR and Raman spectroscopy. • Highly sensitive and selective for glucose determination

  8. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Palanisamy, Selvakumar; Cheemalapati, Srikanth; Chen, Shen-Ming, E-mail: smchen78@ms15.hinet.net

    2014-01-01

    An amperometric glucose biosensor based on enhanced and fast direct electron transfer (DET) of glucose oxidase (GOx) at enzyme dispersed multiwalled carbon nanotubes/graphene oxide (MWCNT/GO) hybrid biocomposite was developed. The fabricated hybrid biocomposite was characterized by transmission electron microscopy (TEM), Raman and infrared spectroscopy (IR). The TEM image of hybrid biocomposite reveals that a thin layer of GOx was covered on the surface of MWCNT/GO hybrid composite. IR results validate that the hybrid biocomposite was formed through the electrostatic interactions between GOx and MWCNT/GO hybrid composite. Further, MWCNT/GO hybrid composite has also been characterized by TEM and UV–visible spectroscopy. A pair of well-defined redox peak was observed for GOx immobilized at the hybrid biocomposite electrode than that immobilized at the MWCNT modified electrode. The electron transfer rate constant (K{sub s}) of GOx at the hybrid biocomposite was calculated to be 11.22 s{sup −1}. The higher K{sub s} value revealed that fast DET of GOx occurred at the electrode surface. Moreover, fabricated biosensor showed a good sensitivity towards glucose oxidation over a linear range 0.05–23.2 mM. The limit of detection (LOD) was estimated to be 28 μM. The good features of the proposed biosensor could be used for the accurate detection of glucose in the biological samples. - Highlights: • An amperometric glucose biosensor has been developed at MWCNT/GO hybrid biocomposite. • Enhanced and fast direct electron transfer kinetics of glucose oxidase has been achieved at hybrid biocomposite. • Hybrid biocomposite has been characterized by TEM, IR and Raman spectroscopy. • Highly sensitive and selective for glucose determination.

  9. An improved glucose/O2 membrane-less biofuel cell through glucose oxidase purification.

    Science.gov (United States)

    Gao, Feng; Courjean, Olivier; Mano, Nicolas

    2009-10-15

    A key objective in any bioelectrochemical systems is to improve the current densities and mass transport limitation. Most of the work is focused on increasing the specific surface of the electrodes or improving the electron transfer between enzymes and electrodes. However, nothing is said about the comparison of purified and non-purified enzyme and their effects on the biosensor efficiency. To illustrate the effect of the enzyme purity, we studied the widely used commercial Glucose Oxidase (GOx) from Aspergillus niger that we are using in our miniature membrane-less biofuel cell. Our results indicate that even if additional compounds contained in the lyophilized enzyme powder do not interfere with its intrinsic catalytic properties, they could prevent a good electron transfer between the enzyme and the electrode surface. By introducing a purified glucose oxidase into a bioelectrocatalyst immobilized on an electrode surface, we show that we can increase the interaction between the enzyme and the redox polymer, forming a better homogenous, leather like gel. At 5mM glucose concentration and under oxygen atmosphere, the current is three-fold higher when using a purified enzyme than it is when using a non-purified enzyme. Built with this novel anode, we showed that a miniature implantable membrane-less glucose-O(2) biofuel cell could produce, under air, twice the power density that is usually obtained when using a non-purified GOx.

  10. Estimation of glucose carbon recycling in children with glycogen storage disease: A 13C NMR study using [U-13C]glucose

    International Nuclear Information System (INIS)

    Kalderon, B.; Korman, S.H.; Gutman, A.; Lapidot, A.

    1989-01-01

    A stable isotope procedure to estimate hepatic glucose carbon recycling and thereby elucidate the mechanism by which glucose is produced in patients lacking glucose 6-phosphatase is described. A total of 10 studies was performed in children with glycogen storage disease type I (GSD-I) and type III (GSD-III) and control subjects. A primed dose-constant nasogastric infusion of D-[U- 13 C]glucose or an infusion diluted with nonlabeled glucose solution was administered following different periods of fasting. Hepatic glucose carbon recycling was estimated from 13 C NMR spectra. The values obtained for GSD-I patients coincided with the standard [U- 13 C]glucose dilution curve. These results indicate that the plasma glucose of GSD-I subjects comprises only a mixture of 99% 13 C-enriched D-[U- 13 C]glucose and unlabeled glucose but lacks any recycled glucose. Significantly different glucose carbon recycling values were obtained for two GSD-III patients in comparison to GSD-I patients. The results eliminate a mechanism for glucose production in GSD-I children involving gluconeogenesis. However, glucose release by amylo-1,6-glucosidase activity would result in endogenous glucose production of non- 13 C-labeled and nonrecycled glucose carbon, as was found in this study. In GSD-III patients gluconeogenesis is suggested as the major route for endogenous glucose synthesis. The contribution of the triose-phosphate pathway in these patients has been determined

  11. Comparative study of the concentration of salivary and blood glucose in type 2 diabetic patients.

    Science.gov (United States)

    Vasconcelos, Ana Carolina U; Soares, Maria Sueli M; Almeida, Paulo C; Soares, Teresa C

    2010-06-01

    The objective of the present study was to comparatively evaluate the concentrations of blood and salivary glucose as well as salivary flow and xerostomia in type 2 diabetic and non-diabetic patients. The mean salivary glucose level in diabetic patients was 14.03 +/-16.76 mg/dl and 6.35 +/- 6.02 mg/dl (P = 0.036) in the control group. The mean capillary blood glucose level in diabetic patients was 213 +/- 88 mg/dl, while that in non-diabetic patients was 99 +/- 14 mg/dl (P = 0.000). The mean value for resting salivary flow was 0.21 +/- 0.16 ml/min in diabetic patients and 0.33 +/- 0.20 ml/min in the control group (P = 0.002). The stimulated salivary flow was lower in the group of diabetic patients, with a mean of 0.63 +/- 0.43 ml/min, whereas the control group showed a mean of 1.20 +/- 0.70 ml/min (P = 0.000). Of the diabetic patients, 45% exhibited hyposalivation, in contrast to 2.5% of the non-diabetic patients (P = 0.000). Xerostomia was reported in 12.5% of diabetic patients and 5% of non-diabetic patients (P = 0.23). We can conclude that salivary glucose concentration was significantly higher in the experimental group and that there was no correlation between salivary and blood glucose concentrations in diabetic patients. The total salivary flow was significantly reduced in diabetic patients and there was no significant difference as to the presence of xerostomia in both groups.

  12. Rice (Oryza sativa japonica) Albumin Suppresses the Elevation of Blood Glucose and Plasma Insulin Levels after Oral Glucose Loading.

    Science.gov (United States)

    Ina, Shigenobu; Ninomiya, Kazumi; Mogi, Takashi; Hase, Ayumu; Ando, Toshiki; Matsukaze, Narumi; Ogihara, Jun; Akao, Makoto; Kumagai, Hitoshi; Kumagai, Hitomi

    2016-06-22

    The suppressive effect of rice albumin (RA) of 16 kDa on elevation of blood glucose level after oral loading of starch or glucose and its possible mechanism were examined. RA suppressed the increase in blood glucose levels in both the oral starch tolerance test and the oral glucose tolerance test. The blood glucose concentrations 15 min after the oral administration of starch were 144 ± 6 mg/dL for control group and 127 ± 4 mg/dL for RA 200 mg/kg BW group, while those after the oral administration of glucose were 157 ± 7 mg/dL for control group and 137 ± 4 mg/dL for RA 200 mg/kg BW group. However, in the intraperitoneal glucose tolerance test, no significant differences in blood glucose level were observed between RA and the control groups, indicating that RA suppresses the glucose absorption from the small intestine. However, RA did not inhibit the activity of mammalian α-amylase. RA was hydrolyzed to an indigestible high-molecular-weight peptide (HMP) of 14 kDa and low-molecular-weight peptides by pepsin and pancreatin. Furthermore, RA suppressed the glucose diffusion rate through a semipermeable membrane like dietary fibers in vitro. Therefore, the indigestible HMP may adsorb glucose and suppress its absorption from the small intestine.

  13. Genistein improves spatial learning and memory in male rats with elevated glucose level during memory consolidation.

    Science.gov (United States)

    Kohara, Yumi; Kawaguchi, Shinichiro; Kuwahara, Rika; Uchida, Yutaro; Oku, Yushi; Yamashita, Kimihiro

    2015-03-01

    Cognitive dysfunction due to higher blood glucose level has been reported previously. Genistein (GEN) is a phytoestrogen that we hypothesized might lead to improved memory, despite elevated blood glucose levels at the time of memory consolidation. To investigate this hypothesis, we compared the effects of orally administered GEN on the central nervous system in normal versus glucose-loaded adult male rats. A battery of behavioral assessments was carried out. In the MAZE test, which measured spatial learning and memory, the time of normal rats was shortened by GEN treatment compared to the vehicle group, but only in the early stages of testing. In the glucose-loaded group, GEN treatment improved performance as mazes were advanced. In the open-field test, GEN treatment delayed habituation to the new environment in normal rats, and increased the exploratory behaviors of glucose-loaded rats. There were no significant differences observed for emotionality or fear-motivated learning and memory. Together, these results indicate that GEN treatment improved spatial learning and memory only in the early stages of testing in the normal state, but improved spatial learning and memory when glucose levels increased during memory consolidation. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Serum galectin-1 levels are positively correlated with body fat and negatively with fasting glucose in obese children.

    Science.gov (United States)

    Acar, Sezer; Paketçi, Ahu; Küme, Tuncay; Tuhan, Hale; Gürsoy Çalan, Özlem; Demir, Korcan; Böber, Ece; Abacı, Ayhan

    2017-09-01

    Galectin-1, a recently identified peptide, is primarily released from the adipose tissue. Although galectin-1 was shown to have an anti-inflammatory effect, its specific function is not clearly understood. We aimed to evaluate the relationship of serum galectin-1 levels with clinical and laboratory parameters in childhood obesity. A total of 45 obese children (mean age: 12.1±3.1years) and 35 normal-weight children (mean age: 11.8±2.2years) were enrolled. Clinical [body mass index (BMI), waist circumference (WC), percentage of body fat and blood pressure] and biochemical [glucose, insulin, lipids, galectin-1, high-sensitive C-reactive protein (hsCRP) and leptin levels] parameters were assessed. Serum galectin-1, hsCRP and leptin levels were significantly higher in obese children than those in normal-weight children (12.4 vs 10.2ng/mL, pobese children, galectin-1 levels correlated negatively with fasting glucose (r=-0.346, p=0.020) and positively with fat mass (r=0.326, p=0.026) and WC standard deviation score (SDS) (r=0.451, p=0.002). The multivariate regression analysis demonstrated that serum galectin-1 levels were significantly associated with fasting glucose and WC SDS. This study showed that obese children had significantly higher galectin-1 levels in proportion to fat mass in obese cases than those in healthy children, which may be interpreted as a compensatory increase in an attempt to improve glucose metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Clinical significance of changes of serum true insulin and proinsulin levels in relations of patients with type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Tian Xiaoping; Huang Huijian; Huang Haibo; Wu Yan; He Haoming

    2004-01-01

    Objective: To explore the degree of insulin resistance and β-cell secretory function impairment in close (1st degree) relations of patients with type 2 diabetes (DMII). Methods: Serum true insulin (TI), pro-insulin (PI), immunoreactive insulin (IRI) levels at fasting and after oral 75g glucose loading were determined in: 1) patients with DM 2, n=65 2)relations of DM 2 patients with impaired glucose tolerance (IGT), n=34 3) relations of DM 2 patients with normal glucose tolerance (NGT), n=66 and 4) controls, n=48. HOMA-IR and HOMA-β cell secretory indices were calculated from the data. Results: Fasting serum PI levels were significantly higher in DM 2 patients, relations with IGT and NGT than those in the controls (t=2.38, t=2.16, t=1.95, P 1 C percentages were significantly higher in DM 2 patients and IGT, NGT groups than those in controls (t=3.67, t=2.45, t=1.97, P 1 C percentage, fasting TI and IRI levels. Conclusion: Insulin resistance was already obvious in those relations of DM 2 patients with normal glucose tolerance and β-cell secretory function impairment was also present. Early intervention in these subjects might be beneficial. (authors)

  16. A randomised trial of glucose tablets to aid smoking cessation.

    Science.gov (United States)

    West, Robert; May, Sylvia; McEwen, Andy; McRobbie, Hayden; Hajek, Peter; Vangeli, Eleni

    2010-01-01

    Oral glucose has been found to decrease tobacco craving among abstaining smokers. One study has demonstrated an effect of glucose on short-term abstinence. There is a need to examine any long-term benefit of glucose on abstinence. To assess whether glucose tablets improve 6-month continuous abstinence rates compared with low-calorie placebo tablets. Smokers attempting to stop (n = 928) were randomised to receive glucose or sorbitol (placebo) in a double-blind placebo-controlled trial. All participants received group-based psychological support, and approximately half (n = 474) received nicotine replacement therapy (NRT), buproprion, or both. Smokers were seen weekly for 5 weeks and used tablets ad libitum, with a recommended minimum of 12 per day. Participants were recruited through general practitioner referral, word of mouth, and advertising. The participants were 38% male, smoked an average of 23.5 cigarettes per day, and had a mean age of 44 years. There were no significant pretreatment differences between groups. The primary outcome measure was continuous, CO-verified abstinence from the target quit date for 6 months. No significant effect of glucose tablets on abstinence was found (14.6% vs 13.4% abstinence in the glucose and placebo groups, respectively). However, there was a significant interaction with a glucose effect observed in smokers also receiving other medication (18.2% vs 12.6%, p < 0.05) but not otherwise (10.7% vs 14.3% ; p < 0.05 for the interaction). No significant effect of glucose tablets over and above sweet tasting tablets could be detected overall, but the possibility of an effect as an adjunct to NRT or bupropion merits further investigation.

  17. Evaluating the clinical accuracy of two continuous glucose sensors using continuous glucose-error grid analysis.

    Science.gov (United States)

    Clarke, William L; Anderson, Stacey; Farhy, Leon; Breton, Marc; Gonder-Frederick, Linda; Cox, Daniel; Kovatchev, Boris

    2005-10-01

    To compare the clinical accuracy of two different continuous glucose sensors (CGS) during euglycemia and hypoglycemia using continuous glucose-error grid analysis (CG-EGA). FreeStyle Navigator (Abbott Laboratories, Alameda, CA) and MiniMed CGMS (Medtronic, Northridge, CA) CGSs were applied to the abdomens of 16 type 1 diabetic subjects (age 42 +/- 3 years) 12 h before the initiation of the study. Each system was calibrated according to the manufacturer's recommendations. Each subject underwent a hyperinsulinemic-euglycemic clamp (blood glucose goal 110 mg/dl) for 70-210 min followed by a 1-mg.dl(-1).min(-1) controlled reduction in blood glucose toward a nadir of 40 mg/dl. Arterialized blood glucose was determined every 5 min using a Beckman Glucose Analyzer (Fullerton, CA). CGS glucose recordings were matched to the reference blood glucose with 30-s precision, and rates of glucose change were calculated for 5-min intervals. CG-EGA was used to quantify the clinical accuracy of both systems by estimating combined point and rate accuracy of each system in the euglycemic (70-180 mg/dl) and hypoglycemic (<70 mg/dl) ranges. A total of 1,104 data pairs were recorded in the euglycemic range and 250 data pairs in the hypoglycemic range. Overall correlation between CGS and reference glucose was similar for both systems (Navigator, r = 0.84; CGMS, r = 0.79, NS). During euglycemia, both CGS systems had similar clinical accuracy (Navigator zones A + B, 88.8%; CGMS zones A + B, 89.3%, NS). However, during hypoglycemia, the Navigator was significantly more clinically accurate than the CGMS (zones A + B = 82.4 vs. 61.6%, Navigator and CGMS, respectively, P < 0.0005). CG-EGA is a helpful tool for evaluating and comparing the clinical accuracy of CGS systems in different blood glucose ranges. CG-EGA provides accuracy details beyond other methods of evaluation, including correlational analysis and the original EGA.

  18. Subthalamic nucleus stimulation does not influence basal glucose metabolism or insulin sensitivity in patients with Parkinson's disease.

    Science.gov (United States)

    Lammers, Nicolette M; Sondermeijer, Brigitte M; Twickler, Th B Marcel; de Bie, Rob M; Ackermans, Mariëtte T; Fliers, Eric; Schuurman, P Richard; La Fleur, Susanne E; Serlie, Mireille J

    2014-01-01

    Animal studies have shown that central dopamine signaling influences glucose metabolism. As a first step to show this association in an experimental setting in humans, we studied whether deep brain stimulation (DBS) of the subthalamic nucleus (STN), which modulates the basal ganglia circuitry, alters basal endogenous glucose production (EGP) or insulin sensitivity in patients with Parkinson's disease (PD). We studied 8 patients with PD treated with DBS STN, in the basal state and during a hyperinsulinemic euglycemic clamp using a stable glucose isotope, in the stimulated and non-stimulated condition. We measured EGP, hepatic insulin sensitivity, peripheral insulin sensitivity (Rd), resting energy expenditure (REE), glucoregulatory hormones, and Parkinson symptoms, using the Unified Parkinson's Disease Rating Scale (UPDRS). Basal plasma glucose and EGP did not differ between the stimulated and non-stimulated condition. Hepatic insulin sensitivity was similar in both conditions and there were no significant differences in Rd and plasma glucoregulatory hormones between DBS on and DBS off. UPDRS was significantly higher in the non-stimulated condition. DBS of the STN in patients with PD does not influence basal EGP or insulin sensitivity. These results suggest that acute modulation of the motor basal ganglia circuitry does not affect glucose metabolism in humans.

  19. Insulin resistance in first-trimester pregnant women with pre-pregnant glucose tolerance and history of recurrent spontaneous abortion.

    Science.gov (United States)

    Hong, Y; Xie, Q X; Chen, C Y; Yang, C; Li, Y Z; Chen, D M; Xie, M Q

    2013-01-01

    Insulin resistance (IR) has been reported to play an important role in recurrent spontaneous abortion (RSA) among patients with polycystic ovary syndrome (PCOS). However, scanted materials exist regarding the independent effect of IR on RSA. The aim of this study is to investigate the status of IR in first trimester pregnant patients with normal pre-pregnant glucose tolerance and history of RSA. This two-center case-control study enrolled totally 626 first trimester pregnant women including 161 patients with a history of recurrent spontaneous abortion, who were pre-pregnantly glucose-tolerant according to oral glucose tolerance test (OGTT), and 465 women with no history of abnormal pregnancies of any kind. Clinical, biochemical and hormonal parameters were simultaneously measured in all participants. Serum beta-HCG, estradiol, progesterone, fasting plasma glucose and fasting plasma insulin levels, as well, the calculated homeostasis model assessment of insulin resistance index (HOMA-IR), fasting plasma glucose/insulin ratio(G/I) and pregnancy outcome were analyzed and compared. Serum beta-HCG and progesterone were found to be significantly lower in RSA group compared to controls. Subjects in RSA group were found to have higher HOMA-IR and lower G/I ratio than those in control group. Serum beta-HCG and progesterone were negatively correlated with HOMA-IR, and positively with G/I ratio even after adjustment for BMI. The spontaneous abortion rate within first trimester pregnancy of RSA patients was significantly higher than that in controls. In conclusion, woman with recurrent spontaneous abortion and normal pre-pregnant glucose metabolism tends to be more insulin resistant during first trimester pregnancy than healthy controls, no matter whether she has PCOS or not. Insulin resistance might be one of the direct causes that lead to recurrent abortion.

  20. Comparison of vildagliptin twice daily vs. sitagliptin once daily using continuous glucose monitoring (CGM): Crossover pilot study (J-VICTORIA study)

    Science.gov (United States)

    2012-01-01

    Background No previous studies have compared the DPP-4 inhibitors vildagliptin and sitagliptin in terms of blood glucose levels using continuous glucose monitoring (CGM) and cardiovascular parameters. Methods Twenty patients with type 2 diabetes mellitus were randomly allocated to groups who received vildagliptin then sitagliptin, or vice versa. Patients were hospitalized at 1 month after starting each drug, and CGM was used to determine: 1) mean (± standard deviation) 24-hour blood glucose level, 2) mean amplitude of glycemic excursions (MAGE), 3) fasting blood glucose level, 4) highest postprandial blood glucose level and time, 5) increase in blood glucose level after each meal, 6) area under the curve (AUC) for blood glucose level ≥180 mg/dL within 3 hours after each meal, and 7) area over the curve (AOC) for daily blood glucose level vildagliptin than sitagliptin (142.1 ± 35.5 vs. 153.2 ± 37.0 mg/dL; p = 0.012). In patients taking vildagliptin, MAGE was significantly lower (110.5 ± 33.5 vs. 129.4 ± 45.1 mg/dL; p = 0.040), the highest blood glucose level after supper was significantly lower (206.1 ± 40.2 vs. 223.2 ± 43.5 mg/dL; p = 0.015), the AUC (≥180 mg/dL) within 3 h was significantly lower after breakfast (484.3 vs. 897.9 mg/min/dL; p = 0.025), and urinary CPR level was significantly higher (97.0 ± 41.6 vs. 85.2 ± 39.9 μg/day; p = 0.008) than in patients taking sitagliptin. There were no significant differences in plasma HbA1c, GA, 1,5AG, IRI, CPR, BNP, or PAI-1 levels between patients taking vildagliptin and sitagliptin. Conclusions CGM showed that mean 24-h blood glucose, MAGE, highest blood glucose level after supper, and hyperglycemia after breakfast were significantly lower in patients with type 2 diabetes mellitus taking vildagliptin than those taking sitagliptin. There were no significant differences in BNP and PAI-1 levels between patients taking vildagliptin and

  1. Serial plasma glucose changes in dogs suffering from severe dog bite wounds.

    Science.gov (United States)

    Schoeman, J P; Kitshoff, A M; du Plessis, C J; Thompson, P N

    2011-03-01

    The objective of this study was to describe the changes in plasma glucose concentration in 20 severely injured dogs suffering from dog bite wounds over a period of 72 hours from the initiation of trauma. Historical, signalment, clinical and haematological factors were investigated for their possible effect on plasma glucose concentration. Haematology was repeated every 24 hours and plasma glucose concentrations were measured at 8-hourly intervals post-trauma. On admission, 1 dog was hypoglycaemic, 8 were normoglycaemic and 11 were hyperglycaemic. No dogs showed hypoglycaemia at any other stage during the study period. The median blood glucose concentrations at each of the 10 collection points, excluding the 56-hour and 64-hour collection points, were in the hyperglycaemic range (5.8- 6.2 mmol/l). Puppies and thin dogs had significantly higher median plasma glucose concentrations than adult and fat dogs respectively (P dogs survived the 72-hour study period. Overall 13 dogs (81.3 %) made a full recovery after treatment. Three of 4 dogs that presented in a collapsed state died, whereas all dogs admitted as merely depressed or alert survived (P = 0.004). The high incidence of hyperglycaemia can possibly be explained by the "diabetes of injury" phenomenon. However, hyperglycaemia in this group of dogs was marginal and potential benefits of insulin therapy are unlikely to outweigh the risk of adverse effects such as hypoglycaemia.

  2. Relative accuracy of the BD Logic and FreeStyle blood glucose meters.

    Science.gov (United States)

    2007-04-01

    The BD Logic((R)) (Becton, Dickinson and Co., Franklin Lakes, NJ) and FreeStyle((R)) (Abbott Diabetes Care, Alameda, CA) meters are used to transmit data directly to insulin pumps for calculation of insulin doses and to calibrate continuous glucose sensors as well as to monitor blood glucose levels. The accuracy of the two meters was evaluated in two inpatient studies conducted by the Diabetes Research in Children Network (DirecNet). In both studies, meter glucose measurements made with either venous or capillary blood were compared with reference glucose measurements made by the DirecNet Central Laboratory at the University of Minnesota using a hexokinase enzymatic method. The BD Logic tended to read lower than the laboratory reference regardless of whether venous (median difference = -9 mg/dL) or capillary blood (median difference = -7 mg/dL) was used. This resulted in lower accuracy of the BD Logic compared with the FreeStyle meter based on the median relative absolute difference (RAD) for both venous blood (median RAD, 9% vs. 5%, P blood (median RAD, 11% vs. 6%, P = 0.008). The greatest discrepancy in the performance of the two meters was at higher reference glucose values. Accuracy was not significantly different when the reference was < or = 70 mg/dL. The BD Logic meter is less accurate than the FreeStyle meter.

  3. Glucose biosensor based on glucose oxidase immobilized at gold nanoparticles decorated graphene-carbon nanotubes.

    Science.gov (United States)

    Devasenathipathy, Rajkumar; Mani, Veerappan; Chen, Shen-Ming; Huang, Sheng-Tung; Huang, Tsung-Tao; Lin, Chun-Mao; Hwa, Kuo-Yuan; Chen, Ting-Yo; Chen, Bo-Jun

    2015-10-01

    Biopolymer pectin stabilized gold nanoparticles were prepared at graphene and multiwalled carbon nanotubes (GR-MWNTs/AuNPs) and employed for the determination of glucose. The formation of GR-MWNTs/AuNPs was confirmed by scanning electron microscopy, X-ray diffraction, UV-vis and FTIR spectroscopy methods. Glucose oxidase (GOx) was successfully immobilized on GR-MWNTs/AuNPs film and direct electron transfer of GOx was investigated. GOx exhibits highly enhanced redox peaks with formal potential of -0.40 V (vs. Ag/AgCl). The amount of electroactive GOx and electron transfer rate constant were found to be 10.5 × 10(-10) mol cm(-2) and 3.36 s(-1), respectively, which were significantly larger than the previous reports. The fabricated amperometric glucose biosensor sensitively detects glucose and showed two linear ranges: (1) 10 μM - 2 mM with LOD of 4.1 μM, (2) 2 mM - 5.2 mM with LOD of 0.95 mM. The comparison of the biosensor performance with reported sensors reveals the significant improvement in overall sensor performance. Moreover, the biosensor exhibited appreciable stability, repeatability, reproducibility and practicality. The other advantages of the fabricated biosensor are simple and green fabrication approach, roughed and stable electrode surface, fast in sensing and highly reproducible. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Regional differences in adipocyte lactate production from glucose

    International Nuclear Information System (INIS)

    Newby, F.D.; Sykes, M.N.; DiGirolamo, M.

    1988-01-01

    Having shown that lactate is an important product of glucose metabolism by rat epididymal adipocytes, the authors investigated possible regional differences in adipocyte lactate production and the role of the animals' nutritional state and stage of development. [U- 14 C]glucose metabolism, lactate production, and response to insulin were measured in fat cells isolated from four adipose regions from young lean and older fatter rats, killed either in the fed state or after fasting for 48 h. In the absence of insulin, mesenteric fat cells from either age group metabolized significantly more glucose per cell and converted more glucose to lactate than cells from other depots, regardless of nutritional state. Adipocytes from fasted lean rats showed a significant increase in the relative glucose conversion to lactate in all depots when compared with cells from fed lean rats. Fasting of older fatter rats, however, had limited effects on the relative adipocyte glucose conversion to lactate since lactate production was already high. Mesenteric fat cells had the lowest relative response to insulin, possibly due to the high basal rate of glucose metabolism. These findings indicate that differences exist among adipose regions in the rates of glucose metabolism, lactate production and response to insulin. The anatomical location of the mesenteric adipose depot, coupled with a high metabolic rate and blood perfusion, suggests that mesenteric adipocytes may provide a unique and more direct contribution of metabolic substrates for hepatic metabolism than adipocytes from other depots

  5. Dynamic Functional Imaging of Brain Glucose Utilization using fPET-FDG

    Science.gov (United States)

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; Catana, Ciprian; Polimeni, Jonathan R.; Sander, Christin Y.; Zürcher, Nicole R.; Chonde, Daniel B.; Fowler, Joanna S.; Rosen, Bruce R.; Hooker, Jacob M.

    2014-01-01

    Glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. This new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis is straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism. PMID:24936683

  6. Influence of gastrointestinal factors on glucose metabolism in patients with cirrhosis

    DEFF Research Database (Denmark)

    Junker, Anders E; Gluud, Lise L; Holst, Jens Juul

    2015-01-01

    BACKGROUND AND AIMS: The impaired glucose tolerance in cirrhosis is poorly understood. We evaluated the influence of gastrointestinal-mediated glucose disposal and incretin effect in patients with cirrhosis. METHODS: Non-diabetic patients with Child Pugh A or B cirrhosis (n = 10) and matched...... of intravenous glucose in patients with cirrhosis compared to 24 ± 10 g in healthy controls (P = 0.003). The gastrointestinal-mediated glucose disposal was markedly lower in patients with cirrhosis (30 ± 23 vs. 52 ± 20%; P = 0.003). Despite higher levels of the incretin hormones glucagon-like peptide-1 (GLP-1......) and glucose-dependent insulinotropic peptide (GIP) patients with cirrhosis had reduced incretin effect (35 ± 44 vs. 55 ± 30%; P = 0.008). CONCLUSIONS: Impaired gastrointestinal-mediated glucose disposal and reduced incretin effect may contribute to the glucose intolerance seen in patients with cirrhosis....

  7. Myocardial glucose utilisation in type II diabetes mellitus patients treated with sulphonylurea drugs

    International Nuclear Information System (INIS)

    Yokoyama, Ikuo; Inoue, Yusuke; Moritan, Toshiyuki; Ohtomo, Kuni; Nagai, Ryozo

    2006-01-01

    Chronic sulphonylurea treatment maintains improved glycaemic control through mechanisms other than enhancement of insulin secretion and may act on various organs. The aim of this study was to investigate whether the chronic use of sulphonylurea drugs influences PET measurement of myocardial glucose utilisation (MGU) in type II diabetes mellitus. Forty-two patients with type II diabetes mellitus and 17 control subjects underwent dynamic 18 F-FDG PET to measure MGU during hyperinsulinaemic euglycaemic clamping. Twenty-one patients had been taking sulphonylurea drugs for more than 1 year (SU group), and the other 21 patients were drug naive (non-SU group). The haemoglobin A1c levels in the two patient groups were similar. Glucose disposal rate (GDR) was also determined as a marker of whole-body insulin resistance. GDR in the SU group (9.01±2.53 mg min -1 kg -1 ) was significantly higher than that in the non-SU group (4.10±2.47, p -1 100 g -1 ) was significantly higher than that in the non-SU group (5.53±2.05, p<0.01) and was similar to that in the controls (7.49±2.74). (orig.)

  8. Blood glucose level reconstruction as a function of transcapillary glucose transport.

    Science.gov (United States)

    Koutny, Tomas

    2014-10-01

    A diabetic patient occasionally undergoes a detailed monitoring of their glucose levels. Over the course of a few days, a monitoring system provides a detailed track of their interstitial fluid glucose levels measured in their subcutaneous tissue. A discrepancy in the blood and interstitial fluid glucose levels is unimportant because the blood glucose levels are not measured continuously. Approximately five blood glucose level samples are taken per day, and the interstitial fluid glucose level is usually measured every 5min. An increased frequency of blood glucose level sampling would cause discomfort for the patient; thus, there is a need for methods to estimate blood glucose levels from the glucose levels measured in subcutaneous tissue. The Steil-Rebrin model is widely used to describe the relationship between blood and interstitial fluid glucose dynamics. However, we measured glucose level patterns for which the Steil-Rebrin model does not hold. Therefore, we based our research on a different model that relates present blood and interstitial fluid glucose levels to future interstitial fluid glucose levels. Using this model, we derived an improved model for calculating blood glucose levels. In the experiments conducted, this model outperformed the Steil-Rebrin model while introducing no additional requirements for glucose sample collection. In subcutaneous tissue, 26.71% of the calculated blood glucose levels had absolute values of relative differences from smoothed measured blood glucose levels less than or equal to 5% using the Steil-Rebrin model. However, the same difference interval was encountered in 63.01% of the calculated blood glucose levels using the proposed model. In addition, 79.45% of the levels calculated with the Steil-Rebrin model compared with 95.21% of the levels calculated with the proposed model had 20% difference intervals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Hypothalamic and Striatal Insulin Action Suppresses Endogenous Glucose Production and May Stimulate Glucose Uptake During Hyperinsulinemia in Lean but Not in Overweight Men.

    Science.gov (United States)

    Heni, Martin; Wagner, Robert; Kullmann, Stephanie; Gancheva, Sofiya; Roden, Michael; Peter, Andreas; Stefan, Norbert; Preissl, Hubert; Häring, Hans-Ulrich; Fritsche, Andreas

    2017-07-01

    Intranasal spray application facilitates insulin delivery to the human brain. Although brain insulin modulates peripheral metabolism, the mechanisms involved remain elusive. Twenty-one men underwent two hyperinsulinemic-euglycemic clamps with d-[6,6- 2 H 2 ]glucose infusion to measure endogenous glucose production and glucose disappearance. On two separate days, participants received intranasal insulin or placebo. Insulin spillover into circulation after intranasal insulin application was mimicked by an intravenous insulin bolus on placebo day. On a different day, brain insulin sensitivity was assessed by functional MRI. Glucose infusion rates (GIRs) had to be increased more after nasal insulin than after placebo to maintain euglycemia in lean but not in overweight people. The increase in GIRs was associated with regional brain insulin action in hypothalamus and striatum. Suppression of endogenous glucose production by circulating insulin was more pronounced after administration of nasal insulin than after placebo. Furthermore, glucose uptake into tissue tended to be higher after nasal insulin application. No such effects were detected in overweight participants. By increasing insulin-mediated suppression of endogenous glucose production and stimulating peripheral glucose uptake, brain insulin may improve glucose metabolism during systemic hyperinsulinemia. Obese people appear to lack these mechanisms. Therefore, brain insulin resistance in obesity may have unfavorable consequences for whole-body glucose homeostasis. © 2017 by the American Diabetes Association.

  10. The effect of food with different glycaemic index on the blood glucose level

    Directory of Open Access Journals (Sweden)

    Lenka Kouřimská

    2015-08-01

    Full Text Available Blood glucose levels are affected by many factors including the type of foods consumed, processing technology and cooking method. Hormone insulin lowers blood glucose to its constant level, while glucagon, growth hormone, adrenalin and glucocorticoids have the opposite effect. High steepness of the blood glucose level rise after meals may be unfavourable for the organism. Sugars are transferred into the blood at different speeds according to the type of food. Therefore the aim of this study was to confirm experimentally the effect of food on blood glucose levels in men and women of different ages. Two types of low, medium and high-glycaemic index (GI foods were given to 4 men and 4 women of different age (from 35 to 65 years. All volunteers were healthy, slightly overweight, and without any regular sporting activity. None of them had any idea about their daily carbohydrates consumption and what the term glycaemic index meant. The volunteers came to the GI determination fasted in the morning. Their rise in blood glucose level was monitored by glucometer before the meal and after 1 and 2 hours of the consumption of baked potatoes (GI 85, white bread bun (GI 70, boiled potatoes (GI 64, rye bread (GI 62, potato dumplings (GI 52 and white cooked spaghetti (GI 41. Fasting blood sugar levels of volunteers highly depended on their age (p <0.0001 and gender (p <0.0001. The blood glucose values increased with age and were higher in men than in women. Significant influence of food GI on blood glucose levels in both men and women in all the age categories was observed (p <0.0001. An interaction between age and gender was also statistically highly significant (p <0.0001. One hour after consuming food the blood glucose values were significantly different from the values of fasting (p = 0.0035. The differences of these values did not depend on the age (p = 0.0574 and sex (p = 0.8256 of volunteers, but there was a significant difference on the GI value of food

  11. The use of different glucose oxidases for the development of an amperometric reagentless glucose biosensor based on gold nanoparticles covered by polypyrrole

    International Nuclear Information System (INIS)

    German, Natalija; Kausaite-Minkstimiene, Asta; Ramanavicius, Arunas; Semashko, Tatiana; Mikhailova, Raisa; Ramanaviciene, Almira

    2015-01-01

    Graphical abstract: Display Omitted -- ABSTRACT: The amperometric glucose biosensors based on adsorbed electron transfer mediator (ETM) tetrathiafulvalene (TTF) or 1,10-phenanthroline-5,6-dione (PD) and glucose oxidase (GOx) from Aspergillus niger (GOx A.niger ), Penicillium adametzii (GOx P.adametzii ) or Penicillium funiculosum (GOx P.funiculosum ) cross-linked with glutaraldehyde were investigated. ETM and enzyme were immobilized layer by layer on bare graphite rod electrode (GR) premodified with gold nanoparticles (AuNP) of (i) 3.5 nm (GOx/ETM/AuNP 3.5 /GR), (ii) 6.0 nm (GOx/ETM/AuNP 6.0 /GR) and (iii) 13.0 nm (GOx/ETM/AuNP 13.0 /GR) size. The amperometric signals for all the developed biosensors were higher using PD in comparison with TTF. The biosensor based on GOx P.funiculosum showed higher analytical signal to glucose in a comparison to biosensors based on GOx A.niger and GOx P.adametzii . The registered current to glucose using GOx P.funiculosum /PD/AuNP 3.5 /GR electrode was linear in the glucose range from 0.1 to 10.0 mmol L −1 and the limit of detection was 0.024 mmol L −1 . Enzymatical synthesis of polypyrrole (Ppy) layer on the electrode was applied in order to expand the linear glucose detection range. After 22 h of polymerization the amperometric signal was linear in the glucose concentration range from 0.1 to 25.0 mmol L −1 , while after 69 h this rage was increased up to 50.0 mmol L −1 . Additionally Ppy layer on the electrode surface reduced the influence of interfering species on the amperometric signal. The performance of developed biosensor was investigated in human serum samples

  12. Glucose transport in brain - effect of inflammation.

    Science.gov (United States)

    Jurcovicova, J

    2014-01-01

    Glucose is transported across the cell membrane by specific saturable transport system, which includes two types of glucose transporters: 1) sodium dependent glucose transporters (SGLTs) which transport glucose against its concentration gradient and 2) sodium independent glucose transporters (GLUTs), which transport glucose by facilitative diffusion in its concentration gradient. In the brain, both types of transporters are present with different function, affinity, capacity, and tissue distribution. GLUT1 occurs in brain in two isoforms. The more glycosylated GLUT1 is produced in brain microvasculature and ensures glucose transport across the blood brain barrier (BBB). The less glycosylated form is localized in astrocytic end-feet and cell bodies and is not present in axons, neuronal synapses or microglia. Glucose transported to astrocytes by GLUT1 is metabolized to lactate serving to neurons as energy source. Proinflammatory cytokine interleukin (IL)-1β upregulates GLUT1 in endothelial cells and astrocytes, whereas it induces neuronal death in neuronal cell culture. GLUT2 is present in hypothalamic neurons and serves as a glucose sensor in regulation of food intake. In neurons of the hippocampus, GLUT2 is supposed to regulate synaptic activity and neurotransmitter release. GLUT3 is the most abundant glucose transporter in the brain having five times higher transport capacity than GLUT1. It is present in neuropil, mostly in axons and dendrites. Its density and distribution correlate well with the local cerebral glucose demands. GLUT5 is predominantly fructose transporter. In brain, GLUT5 is the only hexose transporter in microglia, whose regulation is not yet clear. It is not present in neurons. GLUT4 and GLUT8 are insulin-regulated glucose transporters in neuronal cell bodies in the cortex and cerebellum, but mainly in the hippocampus and amygdala, where they maintain hippocampus-dependent cognitive functions. Insulin translocates GLUT4 from cytosol to plasma

  13. The Effects of Glucose Therapy Agents-Apple Juice, Orange Juice, and Cola-on Enteral Tube Flow and Patency.

    Science.gov (United States)

    Steinberg, Daphna J; Montreuil, Jasmine; Santoro, Andrea L; Zettas, Antonia; Lowe, Julia

    2016-06-01

    To develop evidence-based hypoglycemia treatment protocols in patients receiving total enteral nutrition, this study determined the effect on enteral tube flow of glucose therapy agents: apple juice, orange juice, and cola, and it also examined the effects of tube type and feed type with these glucose therapy agents. For this study, 12 gastrostomy tubes (6 polyethylene and 6 silicone) were set at 50 mL/h. Each feeding set was filled with Isosource HN with fibre or Novasource Renal. Each tube was irrigated with 1 glucose therapy agent, providing approximately 20 g of carbohydrate every 4 h. Flow-rate measurements were collected at 2 h intervals. The results showed that the glucose therapy agent choice affected flow rates: apple juice and cola had higher average flow rates than orange juice (P = 0.01). A significant difference was found between tube type and enteral formula: polyethylene tubes had higher average flow rates than silicone tubes (P orange juice, and thus may be considered as primary treatment options for hypoglycemia in enterally fed patients. Polyethylene tubes and Isosource HN with fibre were less likely to clog than silicone tubes and Novasource Renal.

  14. Increased response to insulin of glucose metabolism in the 6-day unloaded rat soleus muscle

    Science.gov (United States)

    Henriksen, Erik J.; Tischler, Marc E.; Johnson, David G.

    1986-01-01

    Hind leg muscles of female rats were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D(U-C-14) glucose, release of lactate and pyruvate, incorporation of D-(U-C-14) glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-(1,2-H-3) glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased, by 50 percent the concentration of insuling receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.

  15. Glucose kinetics in infants of diabetic mothers

    International Nuclear Information System (INIS)

    Cowett, R.M.; Susa, J.B.; Giletti, B.; Oh, W.; Schwartz, R.

    1983-01-01

    Glucose kinetic studies were performed to define the glucose turnover rate with 78% enriched D-[U-13C] glucose by the prime constant infusion technique at less than or equal to 6 hours of age in nine infants of diabetic mothers (four insulin-dependent and five chemical diabetic patients) at term. Five normal infants were studied as control subjects. All infants received 0.9% saline intravenously during the study with the tracer. Fasting plasma glucose, insulin, and glucose13/12C ratios were measured during the steady state, and the glucose turnover rate was derived. The average plasma glucose concentration was similar during the steady state in the infants of the diabetic mothers and in the control infants, and the glucose turnover rate was not significantly different among the groups: 2.3 +/- 0.6 mg . kg-1 min-1 in infants of insulin-dependent diabetic patients; 2.4 +/- 0.4 mg . kg-1 min-1 in infants of chemical diabetic patients; and 3.2 +/- 0.3 mg . kg-1 min-1 in the control subjects. Good control of maternal diabetes evidenced by the normal maternal hemoglobin A1c and plasma glucose concentration at delivery and cord plasma glucose concentration resulted in glucose kinetic values in the infants of diabetic mothers that were indistinguishable from those of control subjects. The data further support the importance of good control of the diabetic state in the pregnant woman to minimize or prevent neonatal hypoglycemia

  16. Consumption of Honey, Sucrose, and High-Fructose Corn Syrup Produces Similar Metabolic Effects in Glucose-Tolerant and -Intolerant Individuals.

    Science.gov (United States)

    Raatz, Susan K; Johnson, LuAnn K; Picklo, Matthew J

    2015-10-01

    Public health recommendations call for a reduction in added sugars; however, controversy exists over whether all nutritive sweeteners produce similar metabolic effects. The objective was to compare the effects of the chronic consumption of 3 nutritive sweeteners [honey, sucrose, and high-fructose corn syrup containing 55% fructose (HFCS55)] on circulating glucose, insulin, lipids, and inflammatory markers; body weight; and blood pressure in individuals with normal glucose tolerance (GT) and those with impaired glucose tolerance (IGT). In a crossover design, participants consumed daily, in random order, 50 g carbohydrate from assigned sweeteners for 2 wk with a 2- to 4-wk washout period between treatments. Participants included 28 GT and 27 IGT volunteers with a mean age of 38.9 ± 3.6 y and 52.1 ± 2.7 y, respectively, and a body mass index (in kg/m(2)) of 26 ± 0.8 and 31.5 ± 1.0, respectively. Body weight, blood pressure (BP), serum inflammatory markers, lipids, fasting glucose and insulin, and oral-glucose-tolerance tests (OGTTs) were completed pre- and post-treatment. The OGTT incremental areas under the curve (iAUCs) for glucose and insulin were determined and homeostasis model assessment of insulin resistance (HOMA-IR) scores were calculated. Body weight and serum glucose, insulin, inflammatory markers, and total and LDL-cholesterol concentrations were significantly higher in the IGT group than in the GT group at baseline. Glucose, insulin, HOMA-IR, and the OGTT iAUC for glucose or insulin did not differ by treatment, but all responses were significantly higher in the IGT group compared with the GT group. Body weight was unchanged by treatment. Systolic BP was unchanged, whereas diastolic BP was significantly lower in response to sugar intake across all treatments. An increase in high-sensitivity C-reactive protein (hsCRP) was observed in the IGT group in response to all sugars. No treatment effect was observed for interleukin 6. HDL cholesterol did not

  17. Study on N-Amino, Protein and Total Glucose of Etawah Crossbreed Goat and Boer Crossbreed Goat Meat Sauce

    OpenAIRE

    Khothibul Umam Al Awwaly; Aris Sri Widati; Vina Rahmadani

    2012-01-01

    The aim of this study was to know the difference between Etawah crossbreed goat meat sauce and Boer crossbreed goat meat sauce evaluated on N-amino, protein, and total glucose.The material used in the research were meat sauce from Etawah crossbreed goat and Boer crossbreed goat. The result showed that the different species of goat statistically gave  no significant  effect (P>0.05) on N-amino, protein and total glucose of goat meat sauce. Boer crossbreed meat sauce tend higher than Etawah cro...

  18. Genetically elevated fetuin-A levels, fasting glucose levels, and risk of type 2 diabetes: the cardiovascular health study.

    Science.gov (United States)

    Jensen, Majken K; Bartz, Traci M; Djoussé, Luc; Kizer, Jorge R; Zieman, Susan J; Rimm, Eric B; Siscovick, David S; Psaty, Bruce M; Ix, Joachim H; Mukamal, Kenneth J

    2013-10-01

    Fetuin-A levels are associated with higher risk of type 2 diabetes, but it is unknown if the association is causal. We investigated common (>5%) genetic variants in the fetuin-A gene (AHSG) fetuin-A levels, fasting glucose, and risk of type 2 diabetes. Genetic variation, fetuin-A levels, and fasting glucose were assessed in 2,893 Caucasian and 542 African American community-living individuals 65 years of age or older in 1992-1993. Common AHSG variants (rs4917 and rs2248690) were strongly associated with fetuin-A concentrations (Pfasting glucose concentrations (1.9 mg/dL [95% CI, 1.2-2.7] higher per SD in Caucasians), but Mendelian randomization analyses using both SNPs as unbiased proxies for measured fetuin-A did not support an association between genetically predicted fetuin-A levels and fasting glucose (-0.3 mg/dL [95% CI, -1.9 to 1.3] lower per SD in Caucasians). The difference between the associations of fasting glucose with actual and genetically predicted fetuin-A level was statistically significant (P=0.001). Results among the smaller sample of African Americans trended in similar directions but were statistically insignificant. Common variants in the AHSG gene are strongly associated with plasma fetuin-A concentrations, but not with risk of type 2 diabetes or glucose concentrations, raising the possibility that the association between fetuin-A and type 2 diabetes may not be causal.

  19. Greater impairment of postprandial triacylglycerol than glucose response in metabolic syndrome subjects with fasting hyperglycaemia.

    Science.gov (United States)

    Jackson, Kim G; Walden, Charlotte M; Murray, Peter; Smith, Adrian M; Minihane, Anne M; Lovegrove, Julie A; Williams, Christine M

    2013-08-01

    Studies have started to question whether a specific component or combinations of metabolic syndrome (MetS) components may be more important in relation to cardiovascular disease risk. Our aim was to examine the impact of the presence of raised fasting glucose as a MetS component on postprandial lipaemia. Men classified with the MetS underwent a sequential test meal investigation, in which blood samples were taken at regular intervals after a test breakfast (t=0 min) and lunch (t=330 min). Lipids, glucose and insulin were measured in the fasting and postprandial samples. MetS subjects with 3 or 4 components were subdivided into those without (n=34) and with (n=23) fasting hyperglycaemia (≥5.6 mmol/l), irrespective of the combination of components. Fasting lipids and insulin were similar in the two groups, with glucose significantly higher in the men with glucose as a MetS component (Pcurve (AUC) and incremental AUC (P ≤0.016) for the postprandial triacylglycerol (TAG) response in men with fasting hyperglycaemia. Greater glucose AUC (Pglucose to be an important predictor of the postprandial TAG and glucose response. Our data analysis has revealed a greater impairment of postprandial TAG than glucose response in MetS subjects with raised fasting glucose. The worsening of postprandial lipaemic control may contribute to the greater CVD risk reported in individuals with MetS component combinations which include hyperglycaemia. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Dynamic glucose enhanced (DGE) MRI for combined imaging of blood-brain barrier break down and increased blood volume in brain cancer.

    Science.gov (United States)

    Xu, Xiang; Chan, Kannie W Y; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T; van Zijl, Peter C M

    2015-12-01

    Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared with contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (P blood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. © 2015 Wiley Periodicals, Inc.

  1. Dynamic Glucose Enhanced (DGE) MRI for Combined Imaging of Blood Brain Barrier Break Down and Increased Blood Volume in Brain Cancer

    Science.gov (United States)

    Xu, Xiang; Chan, Kannie WY; Knutsson, Linda; Artemov, Dmitri; Xu, Jiadi; Liu, Guanshu; Kato, Yoshinori; Lal, Bachchu; Laterra, John; McMahon, Michael T.; van Zijl, Peter C.M.

    2015-01-01

    Purpose Recently, natural d-glucose was suggested as a potential biodegradable contrast agent. The feasibility of using d-glucose for dynamic perfusion imaging was explored to detect malignant brain tumors based on blood brain barrier breakdown. Methods Mice were inoculated orthotopically with human U87-EGFRvIII glioma cells. Time-resolved glucose signal changes were detected using chemical exchange saturation transfer (glucoCEST) MRI. Dynamic glucose enhanced (DGE) MRI was used to measure tissue response to an intravenous bolus of d-glucose. Results DGE images of mouse brains bearing human glioma showed two times higher and persistent changes in tumor compared to contralateral brain. Area-under-curve (AUC) analysis of DGE delineated blood vessels and tumor and had contrast comparable to the AUC determined using dynamic contrast enhanced (DCE) MRI with GdDTPA, both showing a significantly higher AUC in tumor than in brain (pblood volume and permeability with respect to normal brain. We expect DGE will provide a low-risk and less expensive alternative to DCE MRI for imaging cancer in vulnerable populations, such as children and patients with renal impairment. PMID:26404120

  2. Hypothalamic glucose sensing: making ends meet

    Directory of Open Access Journals (Sweden)

    Vanessa eRouth

    2014-12-01

    Full Text Available The neuroendocrine system governs essential survival and homeostatic functions. For example, growth is needed for development. Thermoregulation maintains optimal core temperature in a changing environment. Reproduction ensures species survival. Stress and immune responses enable an organism to overcome external and internal threats. The circadian system regulates arousal and sleep such that vegetative and active functions do not overlap. All of these functions require a significant portion of the body’s energy. As the integrator of the neuroendocrine system, the hypothalamus carefully assesses the energy status of the body in order to appropriately partition resources to provide for each system without compromising the others. While doing so the hypothalamus must ensure that adequate glucose levels are preserved for brain function since glucose is the primary fuel of the brain. To this end, the hypothalamus contains specialized glucose sensing neurons which are scattered throughout the nuclei controlling distinct neuroendocrine functions. We hypothesize that these neurons play a key role in enabling the hypothalamus to partition energy to meet these peripheral survival needs without endangering the brain’s glucose supply. The goal of this review is to describe the varied mechanisms underlying glucose sensing in neurons within discrete hypothalamic nuclei. We will then evaluate the way in which peripheral energy status regulates glucose sensitivity. For example, during energy deficit such as fasting specific hypothalamic glucose sensing neurons become sensitized to decreased glucose. This increases the gain of the information relay when glucose availability is a greater concern for the brain. Finally, changes in glucose sensitivity under pathological conditions (e.g., recurrent insulin-hypoglycemia, diabetes will be addressed. The overall goal of this review is to place glucose sensing neurons within the context of hypothalamic control of

  3. Moderate glucose supply reduces hemolysis during systemic inflammation

    Directory of Open Access Journals (Sweden)

    Jägers J

    2018-03-01

    Full Text Available Johannes Jägers,1 Stephan Brauckmann,2 Michael Kirsch,1 Katharina Effenberger-Neidnicht1,3 1Institute of Physiological Chemistry, University Hospital Essen, Essen, Germany; 2Clinic for Anesthesiology and Intensive Care, University Hospital Essen, Essen, Germany; 3Institute of Physiological Chemistry, University Hospital Essen, Essen, Germany Background: Systemic inflammation alters energy metabolism. A sufficient glucose level, however, is most important for erythrocytes, since erythrocytes rely on glucose as sole source of energy. Damage to erythrocytes leads to hemolysis. Both disorders of glucose metabolism and hemolysis are associated with an increased risk of death. The objective of the study was to investigate the impact of intravenous glucose on hemolysis during systemic inflammation.Materials and methods: Systemic inflammation was accomplished in male Wistar rats by continuous lipopolysaccharide (LPS infusion (1 mg LPS/kg and h, 300 min. Sham control group rats received Ringer’s solution. Glucose was supplied moderately (70 mg glucose/kg and h or excessively (210 mg glucose/kg and h during systemic inflammation. Vital parameters (eg, systemic blood pressure as well as blood and plasma parameters (eg, concentrations of glucose, lactate and cell-free hemoglobin, and activity of lactate dehydrogenase were measured hourly. Clot formation was analyzed by thromboelastometry.Results: Continuous infusion of LPS led to a so-called post-aggression syndrome with disturbed electrolyte homeostasis (hypocalcemia, hyperkalemia, and hypernatremia, changes in hemodynamics (tachycardia and hypertension, and a catabolic metabolism (early hyperglycemia, late hypoglycemia, and lactate formation. It induced severe tissue injury (significant increases in plasma concentrations of transaminases and lactate dehydrogenase, alterations in blood coagulation (disturbed clot formation, and massive hemolysis. Both moderate and excessive glucose supply reduced LPS

  4. Co-consumption of sugars or ethanol and glucose in a Saccharomyces cerevisiae strain deleted in the HXK2 gene.

    Science.gov (United States)

    Raamsdonk, L M; Diderich, J A; Kuiper, A; van Gaalen, M; Kruckeberg, A L; Berden, J A; Van Dam, K; Kruckberg, A L

    2001-08-01

    In previous studies it was shown that deletion of the HXK2 gene in Saccharomyces cerevisiae yields a strain that hardly produces ethanol and grows almost exclusively oxidatively in the presence of abundant glucose. This paper reports on physiological studies on the hxk2 deletion strain on mixtures of glucose/sucrose, glucose/galactose, glucose/maltose and glucose/ethanol in aerobic batch cultures. The hxk2 deletion strain co-consumed galactose and sucrose, together with glucose. In addition, co-consumption of glucose and ethanol was observed during the early exponential growth phase. In S.cerevisiae, co-consumption of ethanol and glucose (in the presence of abundant glucose) has never been reported before. The specific respiration rate of the hxk2 deletion strain growing on the glucose/ethanol mixture was 900 micromol.min(-1).(g protein)(-1), which is four to five times higher than that of the hxk2 deletion strain growing oxidatively on glucose, three times higher than its parent growing on ethanol (when respiration is fully derepressed) and is almost 10 times higher than its parent growing on glucose (when respiration is repressed). This indicates that the hxk2 deletion strain has a strongly enhanced oxidative capacity when grown on a mixture of glucose and ethanol. Copyright 2001 John Wiley & Sons, Ltd.

  5. Deletion of hepatic FoxO1/3/4 genes in mice significantly impacts on glucose metabolism through downregulation of gluconeogenesis and upregulation of glycolysis.

    Directory of Open Access Journals (Sweden)

    Xiwen Xiong

    Full Text Available Forkhead transcription factors FoxO1/3/4 have pleiotrophic functions including anti-oxidative stress and metabolism. With regard to glucose metabolism, most studies have been focused on FoxO1. To further investigate their hepatic functions, we generated liver-specific FoxO1/3/4 knockout mice (LTKO and examined their collective impacts on glucose homeostasis under physiological and pathological conditions. As compared to wild-type mice, LTKO mice had lower blood glucose levels under both fasting and non-fasting conditions and they manifested better glucose and pyruvate tolerance on regular chow diet. After challenged by a high-fat diet, wild-type mice developed type 2 diabetes, but LTKO mice remained euglycemic and insulin-sensitive. To understand the underlying mechanisms, we examined the roles of SIRT6 (Sirtuin 6 and Gck (glucokinase in the FoxO-mediated glucose metabolism. Interestingly, ectopic expression of SIRT6 in the liver only reduced gluconeogenesis in wild-type but not LTKO mice whereas knockdown of Gck caused glucose intolerance in both wild-type and LTKO mice. The data suggest that both decreased gluconeogenesis and increased glycolysis may contribute to the overall glucose phenotype in the LTKO mice. Collectively, FoxO1/3/4 transcription factors play important roles in hepatic glucose homeostasis.

  6. Hypothalamic neurones governing glucose homeostasis.

    Science.gov (United States)

    Coppari, R

    2015-06-01

    The notion that the brain directly controls the level of glucose in the blood (glycaemia) independent of its known action on food intake and body weight has been known ever since 1849. That year, the French physiologist Dr Claude Bernard reported that physical puncture of the floor of the fourth cerebral ventricle rapidly leads to an increased level of sugar in the blood (and urine) in rabbits. Despite this important discovery, it took approximately 150 years before significant efforts aimed at understanding the underlying mechanism of brain-mediated control of glucose metabolism were made. Technological developments allowing for genetically-mediated manipulation of selected molecular pathways in a neurone-type-specific fashion unravelled the importance of specific molecules in specific neuronal populations. These neuronal pathways govern glucose metabolism in the presence and even in the absence of insulin. Also, a peculiarity of these pathways is that certain biochemically-defined neurones govern glucose metabolism in a tissue-specific fashion. © 2015 British Society for Neuroendocrinology.

  7. Predicting glucose intolerance with normal fasting plasma glucose by the components of the metabolic syndrome

    International Nuclear Information System (INIS)

    Pei, D.; Lin, J.; Kuo, S.; Wu, D.; Li, J.; Hsieh, C.; Wu, C.; Hung, Y.; Kuo, K.

    2007-01-01

    Surprisingly it is estimated that about half of type 2 diabetics remain undetected. The possible causes may be partly attributable to people with normal fasting plasma glucose (FPG) but abnormal postprandial hyperglycemia. We attempted to develop an effective predictive model by using the metabolic syndrome (MeS) components as parameters to identify such persons. All participants received a standard 75 gm oral glucose tolerance test which showed that 106 had normal glucose tolerance, 61 had impaired glucose tolerance and 6 had diabetes on isolated postchallenge hyperglycemia. We tested five models which included various MeS components. Model 0: FPG; Model 1 (Clinical history model): family history (FH), FPG, age and sex; Model 2 (MeS model): Model 1 plus triglycerides, high-density lipoprotein cholesterol, body mass index, systolic blood pressure and diastolic blood pressure; Model 3: Model 2 plus fasting plasma insulin (FPI); Model 4: Model 3 plus homeostasis model assessment of insulin resistance. A receiver-operating characteristic (ROC) curve was used to determine the predictive discrimination of these models. The area under the ROC curve of the Model 0 was significantly larger than the area under the diagonal reference line. All the other 4 models had a larger area under the ROC curve than Model 0. Considering the simplicity and lower cost of Model 2, it would be the best model to use. Nevertheless, Model 3 had the largest area under the ROC curve. We demonstrated that Model 2 and 3 have a significantly better predictive discrimination to identify persons with normal FPG at high risk for glucose intolerance. (author)

  8. Glucose kinetics at rest and during exercise in gluconeogenesis-inhibited rats

    International Nuclear Information System (INIS)

    Turcotte, L.P.

    1988-01-01

    To evaluate the role played by gluconeogenesis in blood glucose homeostasis, untrained and trained rats were injected with mercaptopicolinic acid (MPA), a known inhibitor of the gluconeogenic enzyme, phosphoenolpyruvate carboxykinase. Glucose turnover, recycling and oxidation rates were assessed by primed-continuous infusion of [U- 14 C]- and [6- 3 H] glucose at rest and during submaximal exercise at 13.4 m/min on level grade. When compared to the untrained sham-injected animals, the untrained MPA-treated animals had 22% lower and 44% higher resting blood glucose and lactate concentrations, respectively. Resting glucose turnover, calculated from [6- 3 H]glucose, was 32% lower in the MPA-treated animals than in the sham-injected animals. During exercise, turnover increased in the sham-injected animals but remained unchanged in the MPA-treated animals. MPA-treated animals had no glucose recycling at rest or during exercise. Exercise further decreased blood glucose concentration and increased blood lactate concentration in the MPA-treated animals, but MPA treatment did not change the exercise-induced increases in glucose oxidation rate, % total VCO 2 arising from glucose oxidation and metabolic clearance rate of glucose

  9. MKR mice have increased dynamic glucose disposal despite metabolic inflexibility, and hepatic and peripheral insulin insensitivity.

    Science.gov (United States)

    Vaitheesvaran, B; LeRoith, D; Kurland, I J

    2010-10-01

    Recent work has shown that there can be significant differences when glucose disposal is assessed for high-fat induced insulin resistance by static clamp methods vs dynamic assessment during a stable isotope i.p. glucose tolerance test. MKR mice, though lean, have severe insulin resistance and decreased muscle fatty acid oxidation. Our goal was to assess dynamic vs static glucose disposal in MKR mice, and to correlate glucose disposal and muscle-adipose-liver flux interactions with metabolic flexibility (indirect calorimetry) and muscle characteristics. Stable isotope flux phenotyping was performed using [6,6-(2)H(2)]glucose, [U-(13)C(6)]glucose and [2-(13)C]glycerol. Muscle triacylglycerol (TAG) and diacylglycerol (DAG) content was assessed by thin layer chromatography, and histological determination of fibre type and cytochrome c activity performed. Metabolic flexibility was assessed by indirect calorimetry. Indirect calorimetry showed that MKR mice used more glucose than FVB/N mice during fasting (respiratory exchange ratio [RER] 0.88 vs 0.77, respectively). Compared with FVB/N mice, MKR mice had faster dynamic glucose disposal, despite increased whole-muscle DAG and TAG, and similar hepatic glucose production with higher fasting insulin and unchanged basal glucose. Fed MKR muscle had more glycogen, and increased levels of GLUT1 and GLUT4 than FVB/N muscle. Histology indicated that MKR soleus had mildly decreased cytochrome c activity overall and more type II (glycolytic) fibres compared with that in FVB/N mice. MKR muscle adapts to using glucose, with more type II fibres present in red muscle. Fasting RER is elevated and glucose disposal during an i.p. glucose tolerance test is accelerated despite increased muscle DAG and TAG. Metabolic inflexibility may result from the compensatory use of fuel that can be best utilised for energy requirements; static vs dynamic glucose disposal assessments may measure complementary aspects of metabolic flexibility and insulin

  10. Gestational Weight Gain and Pregnancy Outcomes in 481 Obese Glucose-Tolerant Women

    DEFF Research Database (Denmark)

    Jensen, Dorte Møller; Ovesen, Per; Beck-Nielsen, Henning

    2005-01-01

    OBJECTIVE: To investigate the effect of gestational weight gain in obese glucose-tolerant women. RESEARCH DESIGN AND METHODS: We performed a historical cohort study of 481 women with prepregnancy BMI > or = 30 kg/m2 and a normal 2-h 75-g oral glucose tolerance test (OGTT) during the third trimester......-weight women (3,478 g). In multivariate analyses, increasing weight gain was associated with significantly higher rates of hypertension (OR 4.8 [95% CI for group 4 vs. group 1: 1.7-13.1]), cesarean section (3.5 [1.6-7.8]), induction of labor (3.7 [1.7-8.0]), and large-for-gestational-age infants (4.7 [2.......0-11.0]). There was no difference in rates of small-for-gestational-age infants. Significant predictors for birth weight (determined by multiple linear regression) were gestational weight gain, 2-h OGTT result, pre-gestational BMI, maternal age, gestational age, and smoking. CONCLUSIONS: Increasing weight gain in obese women...

  11. Impact of Admission Blood Glucose on Coronary Collateral Flow in Patients with ST-Elevation Myocardial Infarction.

    Science.gov (United States)

    Kurmus, Ozge; Aslan, Turgay; Ekici, Berkay; Baglan Uzunget, Sezen; Karaarslan, Sukru; Tanindi, Asli; Erkan, Aycan Fahri; Akgul Ercan, Ebru; Kervancıoglu, Celal

    2018-01-01

    In patients with acute myocardial infarction, glucose metabolism is altered and acute hyperglycemia on admission is common regardless of diabetes status. The development of coronary collateral is heterogeneous among individuals with coronary artery disease. In this study, we aimed to investigate whether glucose value on admission is associated with collateral flow in ST-elevation myocardial infarction (STEMI) patients. We retrospectively evaluated 190 consecutive patients with a diagnosis of first STEMI within 12 hours of onset of chest pain. Coronary collateral development was graded according to Rentrop classification. Rentrop 0-1 was graded as poor collateral development, and Rentrop 2-3 was graded as good collateral development. Admission glucose was measured and compared between two groups. Mean admission glucose level was 173.0 ± 80.1 mg/dl in study population. Forty-five (23.7%) patients had good collateral development, and 145 (76.3%) patients had poor collateral development. There were no statistically significant differences in demographic characteristics between two groups. Three-vessel disease was more common in patients with good collateral development ( p =0.026). Mean admission glucose level was higher in patients with poor collateral than good collateral (180.6 ± 84.9 mg/dl versus 148.7 ± 56.6 mg/dl, resp., p =0.008). In univariate analysis, higher admission glucose was associated with poor collateral development, but multivariate logistic regression analysis revealed a borderline result (odds ratio 0.994, 95% CI 0.989-1.000, p =0.049). Our results suggest that elevated glucose on admission may have a role in the attenuation of coronary collateral blood flow in acute myocardial infarction. Further studies are needed to validate our results.

  12. Effect of body mass index on diabetogenesis factors at a fixed fasting plasma glucose level.

    Science.gov (United States)

    Lin, Jiunn-Diann; Hsu, Chun-Hsien; Wu, Chung-Ze; Hsieh, An-Tsz; Hsieh, Chang-Hsun; Liang, Yao-Jen; Chen, Yen-Lin; Pei, Dee; Chang, Jin-Biou

    2018-01-01

    The present study evaluated the relative influence of body mass index (BMI) on insulin resistance (IR), first-phase insulin secretion (FPIS), second-phase insulin secretion (SPIS), and glucose effectiveness (GE) at a fixed fasting plasma glucose level in an older ethnic Chinese population. In total, 265 individuals aged 60 years with a fasting plasma glucose level of 5.56 mmol/L were enrolled. Participants had BMIs of 20.0-34.2 kg/m2. IR, FPIS, SPIS, and GE were estimated using our previously developed equations. Pearson correlation analysis was conducted to assess the correlations between the four diabetogenesis factors and BMI. A general linear model was used to determine the differences in the percentage of change among the four factor slopes against BMI. Significant correlations were observed between BMI and FPIS, SPIS, IR, and GE in both women and men, which were higher than those reported previously. In men, BMI had the most profound effect on SPIS, followed by IR, FPIS, and GE, whereas in women, the order was slightly different: IR, followed by FPIS, SPIS, and GE. Significant differences were observed among all these slopes, except for the slopes between FPIS and SPIS in women (p = 0.856) and IR and FPIS in men (p = 0.258). The contribution of obesity to all diabetes factors, except GE, was higher than that reported previously. BMI had the most profound effect on insulin secretion in men and on IR in women in this 60-year-old cohort, suggesting that lifestyle modifications for obesity reduction in women remain the most important method for improving glucose metabolism and preventing future type 2 diabetes mellitus.

  13. Measuring brain glucose phosphorylation with labeled glucose

    International Nuclear Information System (INIS)

    Brondsted, H.E.; Gjedde, A.

    1988-01-01

    This study tested whether glucose labeled at the C-6 position generates metabolites that leave brain so rapidly that C-6-labeled glucose cannot be used to measure brain glucose phosphorylation (CMRGlc). In pentobarbital-anesthetized rats, the parietal cortex uptake of [ 14 C]glucose labeled in the C-6 position was followed for times ranging from 10 s to 60 min. We subtracted the observed radioactivity from the radioactivity expected with no loss of labeled metabolites from brain by extrapolation of glucose uptake in an initial period when loss was negligible. The observed radioactivity was a monoexponentially declining function of the total radioactivity expected in the absence of metabolite loss. The constant of decline was 0.0077.min-1 for parietal cortex. Metabolites were lost from the beginning of the experiment. However, with correction for the loss of labeled metabolites, it was possible to determine an average CMRGlc between 4 and 60 min of circulation of 64 +/- 4 (SE; n = 49) mumol.hg-1.min-1

  14. Glucose counterregulation in diabetes secondary to chronic pancreatitis

    DEFF Research Database (Denmark)

    Larsen, S; Hilsted, J; Philipsen, E K

    1990-01-01

    Glucose counterregulation and hormonal responses after insulin-induced hypoglycemia were investigated in six patients with diabetes mellitus secondary to chronic pancreatitis, in seven with insulin-dependent (type I) diabetes mellitus, and in seven healthy subjects. Glucose counterregulation...... was identical in type I patients and in the patients with chronic pancreatitis, whereas both groups had impaired glucose recovery compared with the healthy subjects. The patients with chronic pancreatitis had no glucagon response to hypoglycemia, whereas epinephrine increased significantly. In an additional...... experiment, glucose recovery did not occur after hypoglycemia during concomitant beta-adrenoceptor blockade in these patients. In conclusion, glucose counterregulation is preserved but slightly impaired in patients with diabetes secondary to chronic pancreatitis, and the combination of total glucagon...

  15. AMPK is involved in the regulation of incretin receptors expression in pancreatic islets under a low glucose concentration.

    Directory of Open Access Journals (Sweden)

    Kazuki Tajima

    Full Text Available The precise role of AMP-activated protein kinase (AMPK, a target of metformin, in pancreatic β cells remains controversial, even though metformin was recently shown to enhance the expression of incretin receptors (GLP-1 and GIP receptors in pancreatic β cells. In this study, we investigated the effect of AMPK in the regulation of incretin receptors expression in pancreatic islets. The phosphorylation of AMPK in the mouse islets was decreased by increasing glucose concentrations. We showed the expression of incretin receptors in bell-shaped response to glucose. Expression of the incretin receptors in the isolated islets showed higher levels under a medium glucose concentration (11.1 mM than that under a low glucose concentration (2.8 mM, but was suppressed under a high glucose concentration (22.2 mM. Both treatment with an AMPK inhibitor and DN-AMPK expression produced a significant increase of the incretin receptors expression under a low glucose concentration. By contrast, in hyperglycemic db/db islets, the enhancing effect of the AMPK inhibitor on the expression of incretin receptors was diminished under a low glucose concentration. Taken together, AMPK is involved in the regulation of incretin receptors expression in pancreatic islets under a low glucose concentration.

  16. Striatal dopamine transporter, regional cerebral blood flow and glucose utilization in MPTP-induced parkinson disease mice model

    International Nuclear Information System (INIS)

    Gao Yunchao; Wu Chunying; Xiang Jingde; Lin Xiangtong; Zhu Huiqing

    2005-01-01

    Objective: To explore the variation of regional cerebral blood flow (rCBF), glucose utilization as well as the neurotoxic effect on dopaminergic neurons induced by neurotoxin 1-methy-4-phenyl-1,2,3,6-tetrahy-dropyridine (MPTP). Methods: Eight-week old male C57BL/6 mice were given a total dose of 0-80 mg/kg MPTP intraperitoneally. Ten days later the mice were sacrificed for tyrosine hydroxylase (TH)-immunopositive cell count- ing in substantia nigra using SP immunohistochemistry. Vivo autoradiography was employed to measure striatal do- pamine transporter (DAT) loss, rCBF and glucose utilization in striatum and thalamus. Results: The extents of DAT depletion and TH-immunopositive cell loss were positively correlated (r=0.998, P O.2), while glucose utilization was only slightly reduced in caudate/putamen and thalamus by 3.0% and 5.4% in 80 mg/kg MPTP-treated mice (P<0.05). Conclusion: Significant dose-dependent relationship was in presence of MPTP induced dopaminergic neurons loss, changes of rCBF in caudate/putamen and thalamus were not significant, while the glucose utilization was slightly decreased in higher dose group. (authors)

  17. A comparative study of serum uric acid, glucose, calcium and magnesium in pre-eclampsia and normal pregnancy

    Directory of Open Access Journals (Sweden)

    Arun Dhungana

    2017-09-01

    Full Text Available Background: Preeclampsia is associated with liver function abnormalities and renal function impairment. The objective of this study is to compare serum uric acid, glucose, calcium and magnesium in pre-eclampsia with normal pregnancy. Materials and Methods: Normal pregnant women and pre eclamptic women of age group 20-40 years were included. Serum magnesium, calcium, glucose, uric acid were analyzed.Results: Mean serum magnesium level in preeclampsia (1.83 ± 0.21mg/dl was lesser in comparison to normal pregnant women (2.03 ± 0.16 mg/dl. Serum calcium level was lower (8.10 ±0.56mg/dl than control (9.59 ±0.62 mg/dl with p<0.001. Uric acid, glucose and lactate dehydrogenase in preeclamptic women was significantly higher than that in normal pregnant women (6.14 ± 0.85 vs.4.01 ± 0.62, p=<0.001, (94.17± 18.65 vs.86.34 ± 10.19, p=0.033 and ( 466.80 ± 97.29 vs. 194.22 ± 39.76, p=<0.001 respectively.Conclusion: There were significant changes in serum magnesium, uric acid, calcium, glucose, lactate dehydrogenase and total protein in pregnant women.

  18. Sorbitol increases muscle glucose uptake ex vivo and inhibits intestinal glucose absorption ex vivo and in normal and type 2 diabetic rats.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2017-04-01

    Previous studies have suggested that sorbitol, a known polyol sweetener, possesses glycemic control potentials. However, the effect of sorbitol on intestinal glucose absorption and muscle glucose uptake still remains elusive. The present study investigated the effects of sorbitol on intestinal glucose absorption and muscle glucose uptake as possible anti-hyperglycemic or glycemic control potentials using ex vivo and in vivo experimental models. Sorbitol (2.5% to 20%) inhibited glucose absorption in isolated rat jejuna (IC 50 = 14.6% ± 4.6%) and increased glucose uptake in isolated rat psoas muscle with (GU 50 = 3.5% ± 1.6%) or without insulin (GU 50 = 7.0% ± 0.5%) in a concentration-dependent manner. Furthermore, sorbitol significantly delayed gastric emptying, accelerated digesta transit, inhibited intestinal glucose absorption, and reduced blood glucose increase in both normoglycemic and type 2 diabetic rats after 1 h of coingestion with glucose. Data of this study suggest that sorbitol exhibited anti-hyperglycemic potentials, possibly via increasing muscle glucose uptake ex vivo and reducing intestinal glucose absorption in normal and type 2 diabetic rats. Hence, sorbitol may be further investigated as a possible anti-hyperglycemic sweetener.

  19. Spatial relationship between tumor perfusion and endogeneous glucose distribution

    International Nuclear Information System (INIS)

    Schroeder, T.; Larrier, N.; Viglianti, B.; Rabbani, Z.N.; Peltz, C.; Vujascovic, Z.; Dewhirst, M.W.

    2003-01-01

    Earlier studies detecting glucose in tissue and solid tumors by bioluminescence imaging suggested, that glucose distribution patterns may be spatially related to functional vascularity. The purpose of this study was to evaluate this relationship by comparing glucose distribution patterns as determined by bioluminescence imaging to perfusion patterns of endogeneous Hoechst 33342 in rats bearing mammary carcinomas. R 3230 mammary carcinoma cells have been implanted subcutaneously into 7 female Fischer 344 rats. Two months post implantation, after injection of Hoechst 33342 the tumors were removed and snap frozen to conserve metabolite levels. Concomitantly, blood was sampled from the animals for analysis of glucose concentrations using a micodialysis analyzer. Cryosections of the tumors have been prepared, and every slice has been analyzed for both, Hoechst binding by fluorescence microscopy, and for glucose distribution patterns using bioluminescence imaging. In many cases vascular structures could be retrieved by the spatial pattern of glucose distribution. In some cases however, higher glucose concentrations could be found independent from Hoechst signal. On the other hand, regions of high Hoechst signal are not necessarily correlated with high glucose concentrations. When comparing blood and tissue glucose levels, tissue glucose content as measured with bioluminescence imaging (1.9-3.5 mM) is considerably lower than blood glucose (5.6-8.0 mM), demonstrating the expected gradient from blood to tissue. This study demonstrates the feasibility of monitoring glucose gradients in relation to functional vasculature throughout the body, from blood down to tissue or tumor and further, throughout the microenvironment of the solid tumor. Glucose distribution patterns may be an important tool in perfusion studies, e. g. in detecting the direction of blood flow in ex-vivo samples or in estimating glucose consumption rates of tumor cells adjacent to or in between perfused

  20. Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake.

    Directory of Open Access Journals (Sweden)

    Jong Hyun Kim

    2010-03-01

    Full Text Available Glucose homeostasis is maintained by a balance between hepatic glucose production and peripheral glucose utilization. In skeletal muscle cells, glucose utilization is primarily regulated by glucose uptake. Deprivation of cellular energy induces the activation of regulatory proteins and thus glucose uptake. AMP-activated protein kinase (AMPK is known to play a significant role in the regulation of energy balances. However, the mechanisms related to the AMPK-mediated control of glucose uptake have yet to be elucidated.Here, we found that AMPK-induced phospholipase D1 (PLD1 activation is required for (14C-glucose uptake in muscle cells under glucose deprivation conditions. PLD1 activity rather than PLD2 activity is significantly enhanced by glucose deprivation. AMPK-wild type (WT stimulates PLD activity, while AMPK-dominant negative (DN inhibits it. AMPK regulates PLD1 activity through phosphorylation of the Ser-505 and this phosphorylation is increased by the presence of AMP. Furthermore, PLD1-S505Q, a phosphorylation-deficient mutant, shows no changes in activity in response to glucose deprivation and does not show a significant increase in (14C-glucose uptake when compared to PLD1-WT. Taken together, these results suggest that phosphorylation of PLD1 is important for the regulation of (14C-glucose uptake. In addition, extracellular signal-regulated kinase (ERK is stimulated by AMPK-induced PLD1 activation through the formation of phosphatidic acid (PA, which is a product of PLD. An ERK pharmacological inhibitor, PD98059, and the PLD inhibitor, 1-BtOH, both attenuate (14C-glucose uptake in muscle cells. Finally, the extracellular stresses caused by glucose deprivation or aminoimidazole carboxamide ribonucleotide (AICAR; AMPK activator regulate (14C-glucose uptake and cell surface glucose transport (GLUT 4 through ERK stimulation by AMPK-mediated PLD1 activation.These results suggest that AMPK-mediated PLD1 activation is required for (14C-glucose

  1. Plasma glucagon and glucose recovery after hypoglycemia

    DEFF Research Database (Denmark)

    Hilsted, J; Frandsen, Henrik Lund; Holst, Janett

    1991-01-01

    ) and of isolated alpha-adrenergic blockade on hormonal responses to hypoglycemia and on blood glucose recovery after hypoglycemia in healthy subjects. Neither of the pharmacological blockades had any significant effects on plasma glucagon responses to hypoglycemia nor had they any effect on the rate of blood...... glucose recovery after hypoglycemia. We conclude that the autonomic nervous system has no major influence on the glucagon response to hypoglycemia in healthy man. Changes in autonomic nervous activity are not essential for blood glucose recovery after hypoglycemia in healthy man....

  2. Modeling error and apparent isotope discrimination confound estimation of endogenous glucose production during euglycemic glucose clamps

    International Nuclear Information System (INIS)

    Finegood, D.T.; Bergman, R.N.; Vranic, M.

    1988-01-01

    We previously demonstrated that conventional tracer methods applied to euglycemic-hyperinsulinemic glucose clamps result in substantially negative estimates for the rate of endogenous glucose production, particularly during the first half of 180-min clamps. We also showed that addition of tracer to the exogenous glucose infusate resulted in nonnegative endogenous glucose production (Ra) estimates. In this study, we investigated the underlying cause of negative estimates of Ra from conventional clamp/tracer methods and the reason for the difference in estimates when tracer is added to the exogenous glucose infusate. We performed euglycemic-hyperinsulinemic (300-microU/ml) clamps in normal dogs without (cold GINF protocol, n = 6) or with (hot GINF protocol, n = 6) tracer (D-[3-3H]glucose) added to the exogenous glucose infusate. In the hot GINF protocol, sufficient tracer was added to the exogenous glucose infusate such that arterial plasma specific activity (SAa) did not change from basal through the clamp period (P greater than .05). In the cold GINF studies, plasma SAa fell 81 +/- 2% from the basal level by the 3rd h of clamping. We observed a significant, transient, positive venous-arterial difference in specific activity (SAv-SAa difference) during the cold GINF studies. The SAv-SAa difference reached a peak of 27 +/- 6% at 30 min and diminished to a plateau of 7 +/- 1% between 70 and 180 min. We also observed a positive but constant SAv-SAa difference (4.6 +/- 0.2% between 10 and 180 min) during the hot GINF studies

  3. Magnesium deficiency improves glucose homeostasis in the rat: studies in vivo and in isolated islets in vitro.

    Science.gov (United States)

    Reis, M A; Latorraca, M Q; Carneiro, E M; Boschero, A C; Saad, M J; Velloso, L A; Reyes, F G

    2001-05-01

    The serum mineral levels, glucose disappearance rate (kg), total area under the glucose (DeltaG) and insulin (DeltaI) curves, and static insulin secretion were compared among rats fed a Mg-deficient diet for 6 (DF-6) or 11 (DF-11) weeks, and rats fed a control diet for the same periods (CO-6 and CO-11 groups). No change in glucose homeostasis was observed among DF-6, CO-6 and CO-11 rats. DF-11 rats showed an elevated kg and a reduced DeltaG and DeltaI. For evaluating the effect of supplementation, rats fed a control or Mg-deficient diet for 6 weeks were then fed a Mg- supplemented diet for 5 weeks (SCO and SDF groups respectively). The serum Mg levels in SDF rats were similar to those in CO-11 and SCO rats, but higher than in the DF-11 group. SDF rats showed similar kg, DeltaG and DeltaI compared with the CO-11 and SCO groups. However, a significantly lower kg and higher DeltaG and DeltaI were observed in SDF compared with DF-11 rats. Basal and 8.3 mmol glucose/l-stimulated insulin secretion by islets from DF-11 rats were higher than by islets from CO-11 rats. These results indicate that moderate Mg depletion for a long period may increase the secretion and sensitivity to insulin, while Mg supplementation in formerly Mg-deficient rats may prevent the increase in sensitivity and secretion of insulin.

  4. Effect of guava (Psidium guajava Linn.) leaf soluble solids on glucose metabolism in type 2 diabetic rats.

    Science.gov (United States)

    Shen, Szu-Chuan; Cheng, Fang-Chi; Wu, Ning-Jung

    2008-11-01

    This study investigated the effect of aqueous and ethanol soluble solid extracts of guava (Psidium guajava Linn.) leaves on hypoglycemia and glucose metabolism in type 2 diabetic rats. Low-dose streptozotocin (STZ) and nicotinamide were injected into Sprague-Dawley (SD) rats to induce type 2 diabetes. Acute and long-term feeding tests were carried out, and an oral glucose tolerance test (OGTT) to follow the changes in plasma glucose and insulin levels was performed to evaluate the antihyperglycemic effect of guava leaf extracts in diabetic rats.The results of acute and long-term feeding tests showed a significant reduction in the blood sugar level in diabetic rats fed with either the aqueous or ethanol extract of guava leaves (p guava leaf extracts increased the plasma insulin level and glucose utilization in diabetic rats. The results also indicated that the activities of hepatic hexokinase, phosphofructokinase and glucose-6-phosphate dehydrogenase in diabetic rats fed with aqueous extracts were higher than in the normal diabetic group (p guava leaf extract and the health function of guava leaves against type 2 diabetes.

  5. SCAPIS Pilot Study: Sitness, Fitness and Fatness - Is Sedentary Time Substitution by Physical Activity Equally Important for Everyone's Markers of Glucose Regulation?

    Science.gov (United States)

    Ekblom-Bak, Elin; Ekblom, Örjan; Bolam, Kate A; Ekblom, Björn; Bergström, Göran; Börjesson, Mats

    2016-07-01

    Although moderate-to-vigorous physical activity (MVPA) is mainly recommended for glucose control, light physical activity (LIPA) may also have the potential to induce favorable changes. We investigated sedentary time (SED) substitution with equal time in LIPA and MVPA, and the association with markers of glucose regulation and insulin sensitivity after stratification by waist circumference, fitness and fasting glucose levels. A total of 654 men and women, 50 to 64 years, from the SCAPIS pilot study were included. Daily SED, LIPA and MVPA were assessed using hip-worn accelerometers. Fasting plasma glucose, insulin and HOMA-IR were determined. Substituting 30 min of SED with LIPA was significantly associated with 3.0% lower fasting insulin values and 3.1% lower HOMA-IR values, with even lower levels when substituting SED with MVPA. Participants with lower fitness and participants with high fasting glucose levels benefited significantly more from substituting 30 min of SED with LIPA compared with participants with normal to high fitness levels and participants with normal glucose levels, respectively. LIPA, and not only MVPA, may have beneficial associations with glucose regulation. This is of great clinical and public health importance, not least because it may confer a higher compliance rate to regular PA.

  6. Ratiometric glucose sensing based on fluorescent oxygen films and glucose oxidase

    Directory of Open Access Journals (Sweden)

    Fengyu Su

    2017-06-01

    Full Text Available A new two-layer sensor film was constructed for sensing glucose based on glucose oxidase and oxygen sensing material. The first layer of film containing the oxygen sensor and intra-reference material was polymerized, then the second layer of glucose oxidase and glutaraldehyde was formed on the oxygen sensor layer. The two-layer sensor film has a resolution up to 0.05 mM and a detection range from 0 to 5 mM to glucose. The effects of pH and temperature on the sensing performance were systematically investigated. The selective detection of glucose among other monosaccharides, such as fructose, mannose and galactose indicated that the sensing film has excellent selectivity. The prepared sensor was successfully applied for glucose sample detection of glucose concentration in artificial tears. Keywords: Glucose sensor, Glucose oxidase, Fluorescence, Oxygen film, Diabetes

  7. Sweet taste disorder and vascular complications in patients with abnormal glucose tolerance.

    Science.gov (United States)

    Tsujimoto, Tetsuro; Imai, Kenjiro; Kanda, Sayaka; Kakei, Masafumi; Kajio, Hiroshi; Sugiyama, Takehiro

    2016-10-15

    It remains unknown whether taste disorders can be a risk factor for micro- and macro-vascular diseases in patients with abnormal glucose tolerance. A cross-sectional study in a nationally representative samples of 848 and 849 US adults (aged ≥40years) with diabetes or prediabetes who had sweet and salt taste disorders, respectively, from the National Health and Nutrition Examination Survey 2011-2012. Among the study population, 5.7% had sweet taste disorder and 8.6% had salt taste disorder. These data correspond to approximately 1.5 million and 1.8 million individuals with abnormal glucose tolerance aged 40years or older in the US population, respectively. In the adjusted model, sweet taste disorder was significantly associated with complication of ischemic heart disease (adjusted odds ratio [OR], 2.45; 95% confidence interval [CI], 1.03-5.81; P=0.04). Moreover, sweet taste disorder in patients with diabetes was significantly associated with diabetic retinopathy (adjusted OR, 2.89; 95% CI, 1.09-7.69; P=0.03) and diabetic nephropathy (adjusted OR, 3.17; 95% CI, 1.07-9.36; P=0.03). Meanwhile, salt taste disorder was not significantly associated with diabetic retinopathy, diabetic nephropathy, ischemic heart disease, or stroke. Total sugar intake was significantly higher in patients with sweet taste disorder than in those without it, whereas total daily intake of carbohydrate did not differ significantly. No significant association was observed between salt taste disorder and daily intake of sodium after multivariate analysis. Sweet taste disorder in patients with abnormal glucose tolerance was associated with increased sugar intake and vascular complications. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. Gender-dependent association of HSD11B1 single nucleotide polymorphisms with glucose and HDL-C levels

    Directory of Open Access Journals (Sweden)

    Luciane Viater Turek

    2014-09-01

    Full Text Available In this study, we investigated the influence of two SNPs (rs846910 and rs12086634 of the HSD11B1 gene that encodes 11β-hydroxysteroid dehydrogenase type 1(11β-HSD1, the enzyme that catalyzes the conversion of cortisol to cortisone, on variables associated with obesity and metabolic syndrome in 215 individuals of both sexes from southern Brazil. The HSD11B1 gene variants were genotyped using the TaqMan SNP genotyping assay. Glucose, triglycerides, total cholesterol, HDL-cholesterol and LDL-cholesterol were measured by standard automated methods. Significant results were found in women, with carriers of the G allele of SNP rs12086634 having higher glucose levels than non-carriers. Carriers of the A allele of SNP rs846910 had higher levels of HDL-cholesterol. The involvement of both polymorphisms as independent factors in determining the levels of glucose and HDL-cholesterol was confirmed by multiple regression analysis (β = 0.19 ± 0.09, p = 0.03 and β = 0.22 ± 0.10, p = 0.03, respectively. Our findings suggest that the HSD11B1SNPs studied may indirectly influence glucose and HDL-cholesterol metabolism in women, possibly through down-regulation of the HSD11B1 gene by estrogen.

  9. Pancreatic beta-cell responses to GLP-1 after near-normalization of blood glucose in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Asmar, Meena; Højberg, Patricia V; Deacon, Carolyn F

    2010-01-01

    glucose (BG) using insulin (mean diurnal BG: 6.4+/-0.3 mmol/l; HbA(1)c: 6.6+/-0.3%). Nine matched healthy subjects acted as controls. In controls, area-under-curve (AUC) for amylin, C-peptide and proinsulin were higher with GLP-1 than saline (PAUC amylin/C-peptide ratio was similar on both......This study investigated the effects of strict glycaemic control on beta-cell function in nine obese subjects with type 2 diabetes (T2DM), using graded glucose infusions together with infusions of saline or GLP-1 before (HbA(1)c: 8.0+/-0.4%) and after four weeks of near-normalization of blood...... amylin/C-peptide ratios rose to control levels. Near-normoglycaemia tended to reduce AUC proinsulin/C-peptide ratio, which was significant (P=0.04) with GLP-1, but still higher than with saline (P=0.004). In conclusion, amylin, C-peptide and proinsulin responses to glucose were unaffected by four weeks...

  10. Pancreatic ß-cell responses to GLP-1 after near-normalization of blood glucose in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Asmar, Meena; Højberg, Patricia; Deacon, Carolyn F.

    2010-01-01

    glucose (BG) using insulin (mean diurnal BG: 6.4+/-0.3 mmol/l; HbA(1)c: 6.6+/-0.3%). Nine matched healthy subjects acted as controls. In controls, area-under-curve (AUC) for amylin, C-peptide and proinsulin were higher with GLP-1 than saline (PAUC amylin/C-peptide ratio was similar on both......This study investigated the effects of strict glycaemic control on beta-cell function in nine obese subjects with type 2 diabetes (T2DM), using graded glucose infusions together with infusions of saline or GLP-1 before (HbA(1)c: 8.0+/-0.4%) and after four weeks of near-normalization of blood...... amylin/C-peptide ratios rose to control levels. Near-normoglycaemia tended to reduce AUC proinsulin/C-peptide ratio, which was significant (P=0.04) with GLP-1, but still higher than with saline (P=0.004). In conclusion, amylin, C-peptide and proinsulin responses to glucose were unaffected by four weeks...

  11. Heteropoly acid catalyzed hydrolysis of glycogen to glucose

    International Nuclear Information System (INIS)

    Klein, Miri; Pulidindi, Indra Neel; Perkas, Nina; Gedanken, Aharon

    2015-01-01

    Complete conversion of glycogen to glucose is achieved by using H 3 PW 12 O 40 ·nH 2 O (HPW) and H 4 SiW 12 O 40 ·nH 2 O (HSiW) as catalysts for the hydrolysis under optimized hydrothermal conditions (mass fraction of catalyst 2.4%, 373 K and 2 h reaction time). The reusability of the catalyst (HPW) was demonstrated. In addition to carrying out the glycogen hydrolysis in an autoclave, other novel methods such as microwave irradiation and sonication have also been investigated. At higher mass fraction of the heteropoly acids (10.5%), glycogen could be completely converted to glucose under microwave irradiation. Sonication of an aqueous solution of glycogen in the presence of HPW and HSiW also yielded glucose. Thus, heteropoly acids are efficient, environmentally friendly and reusable catalysts for the conversion of glycogen to glucose. - Highlights: • Hydrothermal, microwave and sonication based methods of hydrolysis. • Heteropoly acids are green catalysts for glycogen hydrolysis. • Glycogen from cyanobacteria is demonstrated as a potential feedstock for glucose

  12. Lifestyle may modify the glucose-raising effect of genetic loci. A study in the Greek population.

    Science.gov (United States)

    Marouli, E; Kanoni, S; Dimitriou, M; Kolovou, G; Deloukas, P; Dedoussis, G

    2016-03-01

    Lifestyle habits including dietary intake and physical activity are closely associated with multiple body processes including glucose metabolism and are known to affect human health. Recent genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) associated with glucose levels. The hypothesis tested here is whether a healthy lifestyle assessed via a score is associated with glycaemic traits and whether there is an interaction between the lifestyle and known glucose-raising genetic variants in association with glycaemic traits. Participants of Greek descent from the THISEAS study were included in this analysis. We developed a glucose preventive score (GPS) including dietary and physical activity characteristics. We also modelled a weighted genetic risk score (wGRS), based on 20 known glucose-raising loci, in order to investigate the impact of lifestyle-gene interaction on glucose levels. The GPS was observed to be significantly associated with lower glucose concentrations (β ± SE: -0.083 ± 0.021 mmol/L, P = 1.6 × 10(-04)) and the wGRS, as expected, with increased glucose levels (β ± SE: 0.020 ± 0.007 mmol/L, P = 8.4 × 10(-3)). The association of the wGRS with glucose levels was attenuated after interaction with the GPS. A higher GPS indicated decreasing glucose levels in the presence of an increasing wGRS (β interaction ± SE: -0.019 ± 0.007 mmol/L, P = 0.014). Our results indicate that lower glucose levels underlie a healthier lifestyle and also support an interaction between the wGRS for known glycaemic loci and GPS associated with lower glucose levels. These scores could be useful tools for monitoring glucose metabolism. Copyright © 2016. Published by Elsevier B.V.

  13. Fructose replacement of glucose or sucrose in food or beverages lowers postprandial glucose and insulin without raising triglycerides: a systematic review and meta-analysis.

    Science.gov (United States)

    Evans, Rebecca A; Frese, Michael; Romero, Julio; Cunningham, Judy H; Mills, Kerry E

    2017-08-01

    Background: Conflicting evidence exists on the effects of fructose consumption in people with type 1 and type 2 diabetes mellitus. No systematic review has addressed the effect of isoenergetic fructose replacement of glucose or sucrose on peak postprandial glucose, insulin, and triglyceride concentrations. Objective: The objective of this study was to review the evidence for postprandial glycemic and insulinemic responses after isoenergetic replacement of either glucose or sucrose in foods or beverages with fructose. Design: We searched the Cochrane Library, MEDLINE, EMBASE, the WHO International Clinical Trials Registry Platform Search Portal, and clinicaltrials.gov The date of the last search was 26 April 2016. We included randomized controlled trials measuring peak postprandial glycemia after isoenergetic replacement of glucose, sucrose, or both with fructose in healthy adults or children with or without diabetes. The main outcomes analyzed were peak postprandial blood glucose, insulin, and triglyceride concentrations. Results: Replacement of either glucose or sucrose by fructose resulted in significantly lowered peak postprandial blood glucose, particularly in people with prediabetes and type 1 and type 2 diabetes. Similar results were obtained for insulin. Peak postprandial blood triglyceride concentrations did not significantly increase. Conclusions: Strong evidence exists that substituting fructose for glucose or sucrose in food or beverages lowers peak postprandial blood glucose and insulin concentrations. Isoenergetic replacement does not result in a substantial increase in blood triglyceride concentrations. © 2017 American Society for Nutrition.

  14. Brain Glucose Metabolism Controls Hepatic Glucose and Lipid Production

    OpenAIRE

    Lam, Tony K.T.

    2007-01-01

    Brain glucose-sensing mechanisms are implicated in the regulation of feeding behavior and hypoglycemic-induced hormonal counter-regulation. This commentary discusses recent findings indicating that the brain senses glucose to regulate both hepatic glucose and lipid production.

  15. Glucose tolerance, insulin release, and insulin binding to monocytes in kidney transplant recipients

    International Nuclear Information System (INIS)

    Briggs, W.A.; Wielechowski, K.S.; Mahajan, S.K.; Migdal, S.D.; McDonald, F.D.

    1982-01-01

    In order to evaluate glucose tolerance following renal transplantation, intravenous glucose tolerance tests (IVGTT), with evaluation of hormonal responses to the intravenous glucose load and percent specific 125 I-insulin binding to peripheral blood monocytes, were studied in eight clinically stable kidney transplant recipients. For comparison purposes, identical studies were done in eight control subjects and seven clinically stable hemodialysis patients. One transplant recipient was glucose intolerant, with fasting hyperglycemia, elevated HbA1C, and abnormal glucose decay constant. Impaired pancreatic insulin release appeared to be the major factor accounting for his glucose intolerance. The seven glucose-tolerant transplant recipients had significantly increased insulin release during IVGTT compared to control subjects, and significant correlations were found among insulin release, glucose decay constant, and fasting blood sugar in those patients. Insulin binding to monocytes was significantly greater in transplant recipients than control subjects due to an increase in insulin binding capacity per cell. A significant correlation was found between percent specific 125 I-insulin binding and steroid dose, expressed as mg/kg body weight/day, in those patients. Thus, chronic steroid administration does not cause glucose intolerance in transplant recipients who manifest steroid-associated increases in pancreatic insulin release and cellular insulin binding capacity

  16. Effect of leptin gene methylation on glucose metabolism in pregnant rats

    Directory of Open Access Journals (Sweden)

    Zhen LI

    2011-11-01

    Full Text Available Objective To examine the dynamic level of progesterone,insulin,and leptin,as well as the change in the features of leptin gene methylation in the promoter region of pregnant rats during different gestation stages and to analyze the correlation and effect of these conditions on glucose metabolism during gestation.Methods C57BL/6J pregnant rats are divided to four different groups,namely,early,mid-,and late gestation,as well as seven days postpartum(five rats for each group.Five C57BL/6J non-pregnant rats are taken as the control group.The change in glucose metabolism during gestation was determined by measuring the glucose tolerance of rats in different groups and by testing the level of progesterone,insulin,and leptin in the sera and the level of the methylation of leptin gene promoters during different stages of gestation.Results The levels of insulin [(13.70±0.70,14.78±0.91,and 16.07±0.55mU/L],progesterone [(10.10±0.37,11.41±0.50,and 15.34±0.65μg/L],and leptin [(1356.73±100.41,1628.02±53.03,and 1954.12±39.71ng/L] in pregnant rats in the three groups(early,mid-,and late gestation are apparently higher than that of the non-pregnant rats [(12.25±1.62mU/L,(7.14±0.38μg/L,and(934.38±62.29ng/L] and the postpartum group [(12.46±0.93mU/L,(9.74±0.82μg/L,and(1259.19±105.74ng/L].The difference among the different stages of gestation has statistical significance(P < 0.01,but the difference between the non-pregnant and postpartum groups is statistically insignificant.Fasting blood glucose during gestation is low.The level of blood glucose in mid-gestation and late-gestation rats after being injected with glucose is apparently higher than that of the non-pregnant group(P < 0.01.The level of methylation in the leptin gene promoter zone of the placenta drops along with gestation.Conclusions High levels of progesterone,insulin,and leptin contribute to physiological insulin resistance during gestation,resulting in reduced fasting blood glucose

  17. High environmental temperature increases glucose requirement in the developing chicken embryo.

    Directory of Open Access Journals (Sweden)

    Roos Molenaar

    Full Text Available Environmental conditions during the perinatal period influence metabolic and developmental processes in mammals and avian species, which could impact pre- and postnatal survival and development. The current study investigated the effect of eggshell temperature (EST on glucose metabolism in broiler chicken embryos. Broiler eggs were incubated at a high (38.9°C or normal (37.8°C EST from day 10.5 of incubation onward and were injected with a bolus of [U-(13C]glucose in the chorio-allantoic fluid at day 17.5 of incubation. After [U-(13C]glucose administration, (13C enrichment was determined in intermediate pools and end-products of glucose metabolism. Oxidation of labeled glucose occurred for approximately 3 days after injection. Glucose oxidation was higher in the high than in the normal EST treatment from day 17.6 until 17.8 of incubation. The overall recovery of (13CO2 tended to be 4.7% higher in the high than in the normal EST treatment. An increase in EST (38.9°C vs 37.8°C increased (13C enrichment in plasma lactate at day 17.8 of incubation and (13C in hepatic glycogen at day 18.8 of incubation. Furthermore, high compared to normal EST resulted in a lower yolk-free body mass at day 20.9 (-2.74 g and 21.7 (-3.81 g of incubation, a lower hepatic glycogen concentration at day 18.2 (-4.37 mg/g and 18.8 (-4.59 mg/g of incubation, and a higher plasma uric acid concentration (+2.8 mg/mL/+43% at day 21.6 of incubation. These results indicate that the glucose oxidation pattern is relatively slow, but the intensity increased consistently with an increase in developmental stage of the embryo. High environmental temperatures in the perinatal period of chicken embryos increased glucose oxidation and decreased hepatic glycogen prior to the hatching process. This may limit glucose availability for successful hatching and could impact body development, probably by increased gluconeogenesis from glucogenic amino acids to allow anaerobic glycolysis.

  18. Impact of buccal glucose spray, liquid sugars and dextrose tablets on the evolution of plasma glucose concentration in healthy persons.

    Science.gov (United States)

    Chlup, Rudolf; Zapletalova, Jana; Peterson, Karolina; Poljakova, Iveta; Lenhartova, Eva; Tancred, Adam; Perera, Russel; Smital, Jan

    2009-09-01

    The purpose of this prospective controlled trial was to assess the efficacy of three commercially available glucose products, (1) buccal glucose spray, (2) liquid sugars, and (3) dextrose tablet, on the evolution of plasma glucose concentration (PG). Sixteen healthy volunteers aged 21.8 +/- 0.78 y (mean +/- SE), BMI 23.5 +/- 0.84 kg/m(2), tested their PG over the course of 3 sets of 4 sessions (S) each: S(0)-control fasting, S(1)-buccal administration of 10 glucose spray-doses (0.84 g of glucose) without swallowing; S(2-) consumption of 1 sachet (13 ml) of liquid sugar (ca. 5.2 g glucose, 5.2 g fructose, 5.2 g sucrose); S(3-) consumption of one dextrose tablet (6 g). PG was tested in finger-prick capillary blood using a personal glucometer Linus at the start, and at 5, 10, 15, 20 and 30 min. The means of 3 respective sessions for each of the 16 subjects were analyzed. The Wilcoxon signed rank test revealed no significant differences between changes in the mean PG at the start vs. 5-minute interval either in control, or any intervention sessions. Analysis of regression coefficients after 30 min compared to the control session, demonstrated an increase in PG with the sachet of liquid sugars (0.068 mmol/l/min, p = 0.001) which was greater than a single dextrose tablet (0.052 mmol/l/min, p = 0.002), but no significant PG increase was found after buccal glucose spray. Liquid sugars or dextrose tablets, but not the buccal glucose spray, are effective means to increase PG within 10 minutes after ingestion.

  19. Simulation and qualitative analysis of glucose variability, mean glucose, and hypoglycemia after subcutaneous insulin therapy for stress hyperglycemia.

    Science.gov (United States)

    Strilka, Richard J; Stull, Mamie C; Clemens, Michael S; McCaver, Stewart C; Armen, Scott B

    2016-01-27

    The critically ill can have persistent dysglycemia during the "subacute" recovery phase of their illness because of altered gene expression; it is also not uncommon for these patients to receive continuous enteral nutrition during this time. The optimal short-acting subcutaneous insulin therapy that should be used in this clinical scenario, however, is unknown. Our aim was to conduct a qualitative numerical study of the glucose-insulin dynamics within this patient population to answer the above question. This analysis may help clinicians design a relevant clinical trial. Eight virtual patients with stress hyperglycemia were simulated by means of a mathematical model. Each virtual patient had a different combination of insulin resistance and insulin deficiency that defined their unique stress hyperglycemia state; the rate of gluconeogenesis was also doubled. The patients received 25 injections of subcutaneous regular or Lispro insulin (0-6 U) with 3 rates of continuous nutrition. The main outcome measurements were the change in mean glucose concentration, the change in glucose variability, and hypoglycemic episodes. These end points were interpreted by how the ultradian oscillations of glucose concentration were affected by each insulin preparation. Subcutaneous regular insulin lowered both mean glucose concentrations and glucose variability in a linear fashion. No hypoglycemic episodes were noted. Although subcutaneous Lispro insulin lowered mean glucose concentrations, glucose variability increased in a nonlinear fashion. In patients with high insulin resistance and nutrition at goal, "rebound hyperglycemia" was noted after the insulin analog was rapidly metabolized. When the nutritional source was removed, hypoglycemia tended to occur at higher Lispro insulin doses. Finally, patients with severe insulin resistance seemed the most sensitive to insulin concentration changes. Subcutaneous regular insulin consistently lowered mean glucose concentrations and glucose

  20. Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucose Metabolism

    Science.gov (United States)

    Volkow, Nora D.; Tomasi, Dardo; Wang, Gene-Jack; Vaska, Paul; Fowler, Joanna S.; Telang, Frank; Alexoff, Dave; Logan, Jean; Wong, Christopher

    2011-01-01

    Context The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. Objective To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Design, Setting, and Participants Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with (18F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes (“on” condition) and once with both cell phones deactivated (“off” condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm3) and P < .05 (corrected for multiple comparisons) were considered significant. Main Outcome Measure Brain glucose metabolism computed as absolute metabolism (µmol/100 g per minute) and as normalized metabolism (region/whole brain). Results Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 µmol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67–4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001

  1. The role of pre-operative and post-operative glucose control in surgical-site infections and mortality.

    Directory of Open Access Journals (Sweden)

    Christie Y Jeon

    Full Text Available The impact of glucose control on surgical-site infection (SSI and death remains unclear. We examined how pre- and post-operative glucose levels and their variability are associated with the risk of SSI or in-hospital death.This retrospective cohort study employed data on 13,800 hospitalized patients who underwent a surgical procedure at a large referral hospital in New York between 2006 and 2008. Over 20 different sources of electronic data were used to analyze how thirty-day risk of SSI and in-hospital death varies by glucose levels and variability. Maximum pre- and post-operative glucose levels were determined for 72 hours before and after the operation and glucose variability was defined as the coefficient of variation of the glucose measurements. We employed logistic regression to model the risk of SSI or death against glucose variables and the following potential confounders: age, sex, body mass index, duration of operation, diabetes status, procedure classification, physical status, emergency status, and blood transfusion.While association of pre- and post-operative hyperglycemia with SSI were apparent in the crude analysis, multivariate results showed that SSI risk did not vary significantly with glucose levels. On the other hand, in-hospital deaths were associated with pre-operative hypoglycemia (OR = 5.09, 95% CI (1.80, 14.4 and glucose variability (OR = 1.14, 95% CI (1.03, 1.27 for 10% increase in coefficient of variation.In-hospital deaths occurred more often among those with pre-operative hypoglycemia and higher glucose variability. These findings warrant further investigation to determine whether stabilization of glucose and prevention of hypoglycemia could reduce post-operative deaths.

  2. The role of pre-operative and post-operative glucose control in surgical-site infections and mortality.

    Science.gov (United States)

    Jeon, Christie Y; Furuya, E Yoko; Berman, Mitchell F; Larson, Elaine L

    2012-01-01

    The impact of glucose control on surgical-site infection (SSI) and death remains unclear. We examined how pre- and post-operative glucose levels and their variability are associated with the risk of SSI or in-hospital death. This retrospective cohort study employed data on 13,800 hospitalized patients who underwent a surgical procedure at a large referral hospital in New York between 2006 and 2008. Over 20 different sources of electronic data were used to analyze how thirty-day risk of SSI and in-hospital death varies by glucose levels and variability. Maximum pre- and post-operative glucose levels were determined for 72 hours before and after the operation and glucose variability was defined as the coefficient of variation of the glucose measurements. We employed logistic regression to model the risk of SSI or death against glucose variables and the following potential confounders: age, sex, body mass index, duration of operation, diabetes status, procedure classification, physical status, emergency status, and blood transfusion. While association of pre- and post-operative hyperglycemia with SSI were apparent in the crude analysis, multivariate results showed that SSI risk did not vary significantly with glucose levels. On the other hand, in-hospital deaths were associated with pre-operative hypoglycemia (OR = 5.09, 95% CI (1.80, 14.4)) and glucose variability (OR = 1.14, 95% CI (1.03, 1.27) for 10% increase in coefficient of variation). In-hospital deaths occurred more often among those with pre-operative hypoglycemia and higher glucose variability. These findings warrant further investigation to determine whether stabilization of glucose and prevention of hypoglycemia could reduce post-operative deaths.

  3. Mechanocatalytic Production of Lactic Acid from Glucose by Ball Milling

    Directory of Open Access Journals (Sweden)

    Luyang Li

    2017-06-01

    Full Text Available A solvent-free process was developed for the direct production of lactic acid from glucose in a mechanocatalytic process in the presence of Ba(OH2, and a moderate lactic acid yield of 35.6% was obtained. Glucose conversion and lactic acid formation were favorable at higher catalyst/glucose mass ratios. However, at relatively lower catalyst/glucose mass ratios, they were greatly inhibited, and the promotion of fructose formation was observed. The mechanocatalytic process was applicable for various carbohydrates such as C5 sugars, C6 sugars, and disaccharides with 20–36% lactic acid yields achieved. This work provides a new pathway for the production of value-added chemicals from biomass resources.

  4. Postprandial glucose-lowering effect of premeal consumption of protein-enriched, dietary fiber-fortified bar in individuals with type 2 diabetes mellitus or normal glucose tolerance.

    Science.gov (United States)

    Bae, Jae Hyun; Kim, Lee Kyung; Min, Se Hee; Ahn, Chang Ho; Cho, Young Min

    2018-03-04

    Protein preload improves postprandial glycemia by stimulating secretion of insulin and incretin hormones. However, it requires a large dose of protein to produce a significant effect. The present study was carried out to investigate the postprandial glucose-lowering effect of a premeal protein-enriched, dietary fiber-fortified bar (PFB), which contains moderate amounts of protein, in individuals with type 2 diabetes mellitus or normal glucose tolerance (NGT). The participants (15 type 2 diabetes mellitus and 15 NGT) were randomly assigned to either a premeal or postmeal PFB group and underwent two mixed meal tolerance tests, 1 week apart in reverse order. Plasma levels of glucose, insulin, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide were measured. During the mixed meal tolerance tests, the incremental area under the curve from 0 to 180 min of plasma glucose levels was lower with premeal PFB than with postmeal PFB in the type 2 diabetes mellitus (14,723 ± 1,310 mg min/dL vs 19,642 ± 1,367 mg min/dL; P = 0.0002) and NGT participants (3,943 ± 416 mg min/dL vs 4,827 ± 520 mg min/dL, P = 0.0296). In the type 2 diabetes mellitus participants, insulinogenic index and the incremental area under the curve from 0 to 180 min of plasma total glucagon-like peptide-1 levels were higher with premeal PFB than with postmeal PFB, but not in the NGT participants. There was no difference in postprandial glucose-dependent insulinotropic polypeptide levels between premeal and postmeal PFB in both groups. Acute administration of premeal PFB decreased postprandial glucose excursion in both type 2 diabetes mellitus and NGT participants. In the type 2 diabetes mellitus participants, premeal PFB augmented the early-phase insulin secretion, possibly through enhancing glucagon-like peptide-1 secretion. © 2018 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons

  5. Interaction between exogenous insulin, endogenous insulin, and glucose in type 2 diabetes patients

    DEFF Research Database (Denmark)

    Janukonyté, Jurgita; Parkner, Tina; Bruun, Niels Henrik

    2015-01-01

    insulin aspart (s-IAsp), and blood glucose levels in an experimental short-term crossover design. STUDY DESIGN AND METHODS: Eight T2DM patients (63.52 years old; range, 49-69 years; mean body mass index, 28.8±3.8 kg/m2) were randomized to treatment with individual fixed doses of insulin aspart (0.5-1.5 IU......-IAsp, and s-EI were equal within visit TH and within visit CH, but variances were significantly higher during visit CH compared with visit TH. The s-IAsp reached lower levels at visit CH compared with visit TH (test for slope=1, P=0.005). The s-EI depended on p-glucose in a nonlinear fashion during the first...

  6. Sweet taste signaling functions as a hypothalamic glucose sensor

    Directory of Open Access Journals (Sweden)

    Xueying Ren

    2009-06-01

    Full Text Available Brain glucosensing is essential for normal body glucose homeostasis and neuronal function. However, the exact signaling mechanisms involved in the neuronal sensing of extracellular glucose levels remain poorly understood. Of particular interest is the identification of candidate membrane molecular sensors allowing neurons to change firing rates independently of intracellular glucose metabolism. Here we describe for the first time the expression of the taste receptor genes Tas1r1, Tas1r2 and Tas1r3, and their associated G-protein genes, in the mammalian brain. Neuronal expression of taste genes was detected in different nutrient-sensing forebrain regions, including the paraventricular and arcuate nuclei of the hypothalamus, the CA fields and dentate gyrus of the hippocampus, the habenula, and cortex. Expression was also observed in the intra-ventricular epithelial cells of the choroid plexus. These same regions were found to express the corresponding gene products that form the heterodimeric T1R2/T1R3 and T1R1/T1R3 sweet and L-amino acid taste G-protein coupled receptors, respectively. These regions were also found to express the taste G-protein α-Gustducin. Moreover, in vivo studies in mice demonstrate that the hypothalamic expression of taste-related genes is regulated by the nutritional state of the animal, with food deprivation significantly increasing expression levels of Tas1r1 and Tas1r2 in hypothalamus, but not in cortex. Furthermore, exposing mouse hypothalamic cells to a low-glucose medium, while maintaining normal L-amino acid concentrations, specifically resulted in higher expression levels of the sweet-associated gene Tas1r2. This latter effect was reversed by adding the non-metabolizable artificial sweetener sucralose to the low-glucose medium, indicating that taste-like signaling in hypothalamic neurons does not require intracellular glucose oxidation. Our findings suggest that the G-protein coupled sweet receptor T1R2/T1R3 is a

  7. Turnover of 14C-glucose in soils and its relationship with soil characters

    International Nuclear Information System (INIS)

    Ni Jinzhi; Xu Jianmin; Xie Zhengmiao; Ye Qingfu

    2001-01-01

    The turnover of 14 C-glucose added in 13 soils was studied. The turnover rate of 14 C-glucose can be divided into three phases: 0 - 3d, 3 - 28d and 28 - 294d. The range of the turnover rate and half -life of 14 C-glucose were 1.3 x 10 -1 - 2.5 x 10 -1 d -1 and 3 - 5d, 0.7x 10 -2 - 1.2 x 10 -2 d -1 and 58 - 97d, 0.5 x 10 -3 - 1.4 x 10 -3 d -1 and 491 - 1504d, respectively. Correlation analysis showed that from 0 to 3 days the turnover rate of 14 C-glucose had significant positive correlation with soil qCO 2 , from 3 to 28 days, the turnover rate of 14 C-glucose had no significant correlation with soil physico-chemical and biological properties. The turnover rate of 14 C-glucose had significant or highly significant negative correlation with soil total organic carbon, total nitrogen, CEC and significant positive correlation with soil sand content during the period from 28 to 294 days. Turnover of 14 C-glucose during the third period has close correlation with soil properties

  8. Effects of Insulin on Brain Glucose Metabolism in Impaired Glucose Tolerance

    Science.gov (United States)

    Hirvonen, Jussi; Virtanen, Kirsi A.; Nummenmaa, Lauri; Hannukainen, Jarna C.; Honka, Miikka-Juhani; Bucci, Marco; Nesterov, Sergey V.; Parkkola, Riitta; Rinne, Juha; Iozzo, Patricia; Nuutila, Pirjo

    2011-01-01

    OBJECTIVE Insulin stimulates brain glucose metabolism, but this effect of insulin is already maximal at fasting concentrations in healthy subjects. It is not known whether insulin is able to stimulate glucose metabolism above fasting concentrations in patients with impaired glucose tolerance. RESEARCH DESIGN AND METHODS We studied the effects of insulin on brain glucose metabolism and cerebral blood flow in 13 patients with impaired glucose tolerance and nine healthy subjects using positron emission tomography (PET). All subjects underwent PET with both [18F]fluorodeoxyglucose (for brain glucose metabolism) and [15O]H2O (for cerebral blood flow) in two separate conditions (in the fasting state and during a euglycemic-hyperinsulinemic clamp). Arterial blood samples were acquired during the PET scans to allow fully quantitative modeling. RESULTS The hyperinsulinemic clamp increased brain glucose metabolism only in patients with impaired glucose tolerance (whole brain: +18%, P = 0.001) but not in healthy subjects (whole brain: +3.9%, P = 0.373). The hyperinsulinemic clamp did not alter cerebral blood flow in either group. CONCLUSIONS We found that insulin stimulates brain glucose metabolism at physiological postprandial levels in patients with impaired glucose tolerance but not in healthy subjects. These results suggest that insulin stimulation of brain glucose metabolism is maximal at fasting concentrations in healthy subjects but not in patients with impaired glucose tolerance. PMID:21270256

  9. The biphasic effect of extracellular glucose concentration on carbachol-induced fluid secretion from mouse submandibular glands.

    Science.gov (United States)

    Terachi, Momomi; Hirono, Chikara; Kitagawa, Michinori; Sugita, Makoto

    2018-06-01

    Cholinergic agonists evoke elevations of the cytoplasmic free-calcium concentration ([Ca 2+ ] i ) to stimulate fluid secretion in salivary glands. Salivary flow rates are significantly reduced in diabetic patients. However, it remains elusive how salivary secretion is impaired in diabetes. Here, we used an ex vivo submandibular gland perfusion technique to characterize the dependency of salivary flow rates on extracellular glucose concentration and activities of glucose transporters expressed in the glands. The cholinergic agonist carbachol (CCh) induced sustained fluid secretion, the rates of which were modulated by the extracellular glucose concentration in a biphasic manner. Both lowering the extracellular glucose concentration to less than 2.5 mM and elevating it to higher than 5 mM resulted in decreased CCh-induced fluid secretion. The CCh-induced salivary flow was suppressed by phlorizin, an inhibitor of the sodium-glucose cotransporter 1 (SGLT1) located basolaterally in submandibular acinar cells, which is altered at the protein expression level in diabetic animal models. Our data suggest that SGLT1-mediated glucose uptake in acinar cells is required to maintain the fluid secretion by sustaining Cl - secretion in real-time. High extracellular glucose levels may suppress the CCh-induced secretion of salivary fluid by altering the activities of ion channels and transporters downstream of [Ca 2+ ] i signals. © 2018 Eur J Oral Sci.

  10. Relationship between fluctuations in glucose levels measured by continuous glucose monitoring and vascular endothelial dysfunction in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Torimoto Keiichi

    2013-01-01

    Full Text Available Abstract Background Fluctuations in blood glucose level cause endothelial dysfunction and play a critical role in onset and/or progression of atherosclerosis. We hypothesized that fluctuation in blood glucose levels correlate with vascular endothelial dysfunction and that this relationship can be assessed using common bedside medical devices. Methods Fluctuations in blood glucose levels were measured over 24 hours by continuous glucose monitoring (CGM on admission day 2 in 57 patients with type 2 diabetes mellitus. The reactive hyperemia index (RHI, an index of vascular endothelial function, was measured using peripheral arterial tonometry (EndoPAT on admission day 3. Results The natural logarithmic-scaled RHI (L_RHI correlated with SD (r=−0.504; PPP=0.001 and percentage of time ≥200 mg/dl (r=−0.292; P=0.028. In 12 patients with hypoglycemia, L_RHI also correlated with the percentage of time at hypoglycemia (r=−0.589; P=0.044. L_RHI did not correlate with HbA1c or fasting plasma glucose levels. Furthermore, L_RHI did not correlate with LDL cholesterol, HDL cholesterol, and triglyceride levels or with systolic and diastolic blood pressures. Finally, multivariate analysis identified MAGE as the only significant determinant of L_RHI. Conclusions Fluctuations in blood glucose levels play a significant role in vascular endothelial dysfunction in type 2 diabetes. Trial registration UMIN000007581

  11. A review of metabolism of labeled glucoses for use in measuring glucose recycling

    International Nuclear Information System (INIS)

    Russell, R.W.; Young, J.W.

    1990-01-01

    The fate of tritium from each carbon of D-glucose and the metabolism of L-glucose and 2-deoxy-D-glucose are known. Differences in metabolism of labeled glucoses can be used to quantify physical and chemical recycling of glucose. Only physical recycling is measured by [1- 3 H]-L-glucose, whereas [U- 14 C]-D-glucose measures total recycling. The difference between [1- 3 H]-L-glucose and [U- 14 C]-D-glucose, therefore, is chemical recycling. Recycling from extracellular binding sites and hepatic glucose 6-phosphate can be measured by difference between [1,2- 3 H]-2-deoxy-D-glucose and [1- 3 H]-L-glucose, and the difference in irreversible loss of the two will measure extrahepatic uptake of D-glucose. Recycling via Cori-alanine cycle plus CO 2 is the difference in irreversible loss measured by using [6- 3 H]-glucose and [U- 14 C]-D-glucose. Recycling via the hexose monophosphate pathway can be determined by difference in irreversible loss between [1- 3 H]-D-glucose and [6- 3 H]-D-glucose. Recycling via CO 2 and glycerol must be measured directly with [U- 14 C]glucose, bicarbonate, and glycerol. Recycling via hepatic glycogen can be estimated by subtracting all other measured chemical recycling from total chemical recycling. This review describes means to quantify glucose recycling in vivo, enabling studies of mechanisms for conservation and utilization of glucose. 54 references

  12. Evaluation of blood glucose and thyroid function in Sudanese diabetic patients

    International Nuclear Information System (INIS)

    Agarib, M.O.A.

    2008-03-01

    groups had a higher incidence of thyroid dysfunction, compared with control group. Experimental part : the present study found highly significant (P=0.028) low level of thyroid stimulating hormone. And significant negative (r=- 0.272, P= 0.001) correlation was observed between glucose level and thyroid stimulating hormone. And highly significant (P=0.03) low level of triiodothyronine (T 3 ) of diabetic patients compared with non diabetic group. No significant variation was found at level of tetraiodothyronine (T 4 ). Highly significant (p=0.001) elevated level of blood glucose was found among diabetic patients compared to non diabetic group. The study found a significant (p=0.001, p=0.009, p=0.001 respectively) elevated level of some serum lipids (TC, LDL, TG) of diabetic patients compared to non diabetic group. And significant (p=0.001, p=0.023, p=0.001 respectively) positive correlation (r=0.307, r=0.296, r=0.186 respectively) was found between glucose and some serum lipids (TC, LDL, TG). No variation was found at the level of HDL and Hb. This study conclude that regular screening for thyroid hormones levels especially thyroid stimulating hormone in all diabetic patients will allow early treatment of sub clinical thyroid dysfunction which affects glucose level and development of cardiovascular disease.(Author)

  13. Evaluation of blood glucose and thyroid function in Sudanese diabetic patients

    Energy Technology Data Exchange (ETDEWEB)

    Agarib, M O.A. [Department of Biochemistry, Atomic Energy Council, Sudan Academy of Sciences, Khartoum (Sudan)

    2008-03-15

    disease but all patient groups had a higher incidence of thyroid dysfunction, compared with control group. Experimental part : the present study found highly significant (P=0.028) low level of thyroid stimulating hormone. And significant negative (r=- 0.272, P= 0.001) correlation was observed between glucose level and thyroid stimulating hormone. And highly significant (P=0.03) low level of triiodothyronine (T{sub 3}) of diabetic patients compared with non diabetic group. No significant variation was found at level of tetraiodothyronine (T{sub 4}). Highly significant (p=0.001) elevated level of blood glucose was found among diabetic patients compared to non diabetic group. The study found a significant (p=0.001, p=0.009, p=0.001 respectively) elevated level of some serum lipids (TC, LDL, TG) of diabetic patients compared to non diabetic group. And significant (p=0.001, p=0.023, p=0.001 respectively) positive correlation (r=0.307, r=0.296, r=0.186 respectively) was found between glucose and some serum lipids (TC, LDL, TG). No variation was found at the level of HDL and Hb. This study conclude that regular screening for thyroid hormones levels especially thyroid stimulating hormone in all diabetic patients will allow early treatment of sub clinical thyroid dysfunction which affects glucose level and development of cardiovascular disease.(Author)

  14. Comparative study of HbA1c and fasting plasma glucose vs the oral glucose tolerance test for diagnosis of diabetes in people with tuberculosis

    DEFF Research Database (Denmark)

    Aftab, H.; Ambreen, A.; Jamil, M.

    2017-01-01

    Aim: To compare HbA1c and fasting plasma glucose assessment, with the 2-h oral glucose tolerance test as reference, in screening for diabetes in people with turberculosis. Methods: Individuals (N=268) with newly diagnosed smear-positive tuberculosis were screened for diabetes at a tertiary hospital...... in Lahore, Pakistan. Diabetes diagnosis was based on WHO criteria: thresholds were ≥48 mmol/mol (≥6.5%) for HbA1c and ≥7.0mmol/l for fasting plasma glucose. Results: The proportion of participants diagnosed with diabetes was 4.9% (n =13) by oral glucose tolerance test, while 11.9% (n =32) and 14.6% (n =39...... the two tests (P=0.07). Conclusions: HbA1c and fasting plasma glucose performed equally in terms of diagnosing new diabetes cases in individuals with tuberculosis, but the proportion of participants falsely classified as positive was higher for fasting plasma glucose. This may be explained by acute blood...

  15. Investigation on the correlationship between plasma homocysteine and blood glucose, insulin levels in patients with type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Ma Zhongwei

    2005-01-01

    Objective: To explore the correlationship between plasma homocysteine and blood glucose, insulin levels in patients with type 2 diabetes mellitus. Methods: Plasma homocysteine (with ELISA), blood glucose (with hexokinase method) and insulin (with RIA) levels were measured in 66 patients with type 2 diabetes mellitus as well as in 35 controls. Results: Plasma homocysteine levels in the diabetic patients (n=66) were significantly higher than those in controls (P<0.01), especially in those patients complicated with nephropathy (n=32). The homocysteine levels were positively correlated with those of blood glucose and insulin (r=0.3515, r=0.3486, both P<0.01). Conclusion: Plasma homocysteine is an independent risk factor for vascular diseases. The levels of plasma cysteine are significantly increased in patients with type 2 diabetes mellitus, especially in those complicated with nephropathy. Therefore, monitoring of plasma homocysteine level changes is clinically useful. (authors)

  16. Preparation of patients submitted to thyroidectomy with oral glucose solutions.

    Science.gov (United States)

    Libiszewski, Michał; Drozda, Rafał; Smigielski, Janusz; Kuzdak, Krzysztof; Kołomecki, Krzysztof

    2012-05-01

    The AIM OF THE STUDY was to determine postoperative insulin-resistance in patients subject to total thyroidectomy, the prevalence of subjective feelings of hunger immediately before surgery, and the incidence of nausea/vomiting after surgery in patients prepared for elective operations by means of oral glucose solutions. The study group comprised 115 patients, including 71 patients prepared for surgery by means of oral glucose solutions (12.5% glucose) administered 12 and 3 hours before the procedure, at a dose of 800 and 400 ml. The control group comprised 44 patients prepared for surgery by means of the traditional manner- the last meal was served before 2pm the day before the surgical procedure, while fluids before 10pm. Considering both groups, we evaluated glucose and insulin levels three times, as well as determined the insulin-resistance ratio (HOMA-IR) 24 before, and 12 hours and 7 days after surgery. The incidence of nausea and vomiting after surgery, and the subjective feeling of hunger before surgery were also evaluated. Statistically significant differences considering insulin level and HOMA-IR values were observed during the II and III measurements. The glucose and insulin values, and the HOMA-IR insulin-resistance ratio, showed no statistically significant differences during measurement I. No statistically significant glucose level differences were observed during measurements II and III. A significantly greater subjective feeling of hunger before surgery and nausea/vomiting afterwards were observed in the control group. The preparation of patients with oral glucose solutions decreases the incidence of postoperative (thyroidectomy) insulin-resistance, and occurrence of nausea/vomiting during the postoperative period.

  17. Continued glucose output after re-feeding contributes to glucose intolerance in hyperthyroidism.

    OpenAIRE

    Holness, M J; Sugden, M C

    1987-01-01

    The effects of hyperthyroidism to elicit glucose intolerance after glucose administration were decreased under conditions where hepatic glucose output was suppressed. It is concluded that continued hepatic glucose output contributes to abnormal glucose tolerance in hyperthyroidism.

  18. Fasting blood glucose level and prognosis in non-small cell lung cancer (NSCLC) patients.

    Science.gov (United States)

    Luo, Juhua; Chen, Yea-Jyh; Chang, Li-Jung

    2012-05-01

    Diabetes has been consistently linked to many forms of cancers, such as liver, colorectal, pancreatic, and breast cancer, however, the role of diabetes in outcome among cancer patients remains unclear. In this study, we retrospectively reviewed electronic medical records of 342 inpatients newly diagnosed with NSCLC referred by a teaching hospital cancer center in southern Taiwan between 2005 and 2007 to examine the effects of fasting glucose levels at time of cancer diagnosis on overall survival in patients with non-small cell lung cancer (NSCLC). All patients were followed up until the end of 2010. The Kaplan-Meier method was used to compare survival curves for patients with and without diabetes. The Cox proportional hazards model was used to estimate hazard ratios for the association between diabetes, other prognostic factors and patient survival. We observed that significant prognostic factors for poor overall survival in patients with NSCLC included older age, smoking, poor performance status, advanced stage (stage IIIB or IV), and no cancer-directed surgery treatment. Particularly, we identified that diabetic state defined by fasting blood glucose level ≥126 mg/dl was another independent prognostic factor for these patients. Compared with those who had normal range of fasting glucose level (70-99 mg/dl), patients with high fasting glucose level (≥126 mg/dl) had 69% excess risk of all-cause mortality in patients with NSCLC. Diabetes as indicated by elevated fasting blood glucose was independently associated with a significantly higher risk of all-cause mortality in patients with NSCLC, indicating that diabetes or hyperglycemia effectively controlled may present an opportunity for improving prognosis in NSCLS patients with abnormal glucose level. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Serial plasma glucose changes in dogs suffering from severe dog bite wounds

    Directory of Open Access Journals (Sweden)

    J. P. Schoeman

    2011-04-01

    Full Text Available The objective of this study was to describe the changes in plasma glucose concentration in 20 severely injured dogs suffering from dog bite wounds over a period of 72 hours from the initiation of trauma. Historical, signalment, clinical and haematological factors were investigated for their possible effect on plasma glucose concentration. Haematology was repeated every 24 hours and plasma glucose concentrations were measured at 8-hourly intervals post-trauma. On admission, 1 dog was hypoglycaemic, 8 were normoglycaemic and 11 were hyperglycaemic. No dogs showed hypoglycaemia at any other stage during the study period. The median blood glucose concentrations at each of the 10 collection points, excluding the 56-hour and 64-hour collection points, were in the hyperglycaemic range (5.8– 6.2 mmol/ . Puppies and thin dogs had significantly higher median plasma glucose concentrations than adult and fat dogs respectively (P < 0.05 for both. Fifteen dogs survived the 72-hour study period. Overall 13 dogs (81.3 % made a full recovery after treatment. Three of 4 dogs that presented in a collapsed state died, whereas all dogs admitted as merely depressed or alert survived (P = 0.004. The high incidence of hyperglycaemia can possibly be explained by the ’diabetes of injury“ phenomenon. However, hyperglycaemia in this group of dogs was marginal and potential benefits of insulin therapy are unlikely to outweigh the risk of adverse effects such as hypoglycaemia.

  20. Evaluation of Salivary Glucose, IgA and Flow Rate in Diabetic Patients: A Case-Control Study

    Directory of Open Access Journals (Sweden)

    P. Bakianian Vaziri

    2010-03-01

    Full Text Available Objective: An association between diabetes mellitus and alterations in the oral cavity has been noted. In this study, we evaluated differences between salivary IgA, glucose and flow rate in diabetic patients compared with healthy controls.Materials and Methods: Forty patients with type 1 diabetes, 40 patients with type 2 diabetes and 40 healthy controls were selected. Whole unstimulated saliva samples were collected by the standard method and the salivary flow rate was determined. Nephelometricand Pars method were used to measure salivary IgA and salivary glucose concentrations,respectively. Statistical analysis was performed by Chi-square and t test.Results: There were no significant differences in salivary IgA and glucose concentrations between type 1 and type 2 diabetic patients and their matched control subjects (P>0.05.Salivary flow rate was significantly lower in diabetic patients (P<0.05. In addition,DMFT was higher in diabetic patients than the controls.Conclusion: Determination of salivary constituents may be useful in the description and management of oral findings in diabetic patients.

  1. Pseudo-bi-enzyme glucose sensor: ZnS hollow spheres and glucose oxidase concerted catalysis glucose.

    Science.gov (United States)

    Shuai, Ying; Liu, Changhua; Wang, Jia; Cui, Xiaoyan; Nie, Ling

    2013-06-07

    This work creatively uses peroxidase-like ZnS hollow spheres (ZnS HSs) to cooperate with glucose oxidase (GOx) for glucose determinations. This approach is that the ZnS HSs electrocatalytically oxidate the enzymatically generated H2O2 to O2, and then the O2 circularly participates in the previous glucose oxidation by glucose oxidase. Au nanoparticles (AuNPs) and carbon nanotubes (CNTs) are used as electron transfer and enzyme immobilization matrices, respectively. The biosensor of glucose oxidase-carbon nanotubes-Au nanoparticles-ZnS hollow spheres-gold electrode (GOx-CNT-AuNPs-ZnS HSs-GE) exhibits a rapid response, a low detection limit (10 μM), a wide linear range (20 μM to 7 mM) as well as good anti-interference, long-term longevity and reproducibility.

  2. Genetic variation of fasting glucose and changes in glycemia in response to 2-year weight-loss diet intervention: the POUNDS Lost trial

    Science.gov (United States)

    Wang, Tiange; Huang, Tao; Zheng, Yan; Rood, Jennifer; Bray, George A.; Sacks, Frank M.; Qi, Lu

    2016-01-01

    Objective Weight loss intervention through diet modification has been widely used to improve obesity-related hyperglycemia; however, little is known about whether genetic variation modifies the intervention effect. We examined the interaction between weight-loss diets and genetic variation of fasting glucose on changes in glycemic traits in a dietary intervention trial. Research Design and Methods The Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial is a randomized, controlled 2-year weight-loss trial. We assessed overall genetic variation of fasting glucose by calculating a genetic risk score (GRS) based on 14 fasting glucose-associated single nucleotide polymorphisms, and examined the progression in fasting glucose and insulin levels, and insulin resistance and insulin sensitivity in 733 adults from this trial. Results The GRS was associated with 6-month changes in fasting glucose (Pfasting insulin (P=0.042), homeostasis model assessment of insulin resistance (HOMA-IR, P=0.009) and insulin sensitivity (HOMA-S, P=0.043). We observed significant interaction between the GRS and dietary fat on 6-month changes in fasting glucose, HOMA-IR and HOMA-S after multivariable adjustment (P-interaction=0.007, 0.045, and 0.028, respectively). After further adjustment for weight loss, the interaction remained significant on change in fasting glucose (P=0.015). In the high-fat diet group, participants in the highest GRS tertile showed increased fasting glucose, whereas participants in the lowest tertile showed decreased fasting glucose (P-trend<0.001); in contrast, the genetic association was not significant in the low-fat diet group (P-trend=0.087). Conclusions Our data suggest that participants with a higher genetic risk may benefit more by eating a low-fat diet to improve glucose metabolism. PMID:27113490

  3. Effect of glucose on the biomechanical function of arterial elastin.

    Science.gov (United States)

    Wang, Yunjie; Zeinali-Davarani, Shahrokh; Davis, Elaine C; Zhang, Yanhang

    2015-09-01

    Elastin is essential to provide elastic support for blood vessels. As a remarkably long-lived protein, elastin can suffer from cumulative effects of exposure to biochemical damages, which can greatly compromise its biomechanical properties. Non-enzymatic glycation is one of the main mechanisms of aging and its effect is magnified in diabetic patients. The purpose of this study is to investigate the effects of glucose on mechanical properties of isolated porcine aortic elastin. Elastin samples were incubated in 2 M glucose solution and were allowed to equilibrate for 4, 7, 14, 21 or 28 days at 37 °C. Equibiaxial tensile tests were performed to study the changes of elastic properties of elastin due to glycation. Significant decreases in tissue dimension were observed after 7 days glucose incubation. Elastin samples treated for 14, 21 or 28 days demonstrate a significant increase in hysteresis in the stress-stretch curves, indicating a greater energy loss due to glucose treatment. Both the longitudinal and the circumferential directions show significant increases in tangent modulus with glucose treatment, however only significant increases are observed after 7 days for the circumferential direction. An eight-chain statistical mechanics based microstructural model was used to study the hyperelastic and orthotropic behavior of the glucose-treated elastin and the material parameters were estimated using a nonlinear least squares method. Material parameters in the model were related to elastin density and fiber orientation, and, hence, the possible microstructural changes in glucose-treated elastin. Estimated material parameters show a general increasing trend in elastin density per unit volume with glucose incubation. The simulation results also indicate that more elastic fibers are aligned in the longitudinal and circumferential directions, rather than in the radial direction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Preliminary evidence that glucose ingestion facilitates prospective memory performance.

    Science.gov (United States)

    Riby, Leigh M; Law, Anna S; McLaughlin, Jennifer; Murray, Jennifer

    2011-05-01

    Previous research has found that the ingestion of glucose boosts task performance in the memory domain (including tasks tapping episodic, semantic, and working memory). The present pilot study tested the hypothesis that glucose ingestion would enhance performance on a test of prospective memory. In a between-subjects design, 56 adults ranging from 17 to 80 years of age performed a computerized prospective memory task and an attention (filler) task after 25 g of glucose or a sweetness-matched placebo. Blood glucose measurements were also taken to assess the impact of individual differences on glucose regulation. After the drink containing glucose, cognitive facilitation was observed on the prospective memory task after excluding subjects with impaired fasting glucose level. Specifically, subjects receiving glucose were 19% more accurate than subjects receiving a placebo, a trend that was marginally nonsignificant, F₁,₄₁ = 3.4, P = .07, but that had a medium effect size, d = 0.58. Subjects receiving glucose were also significantly faster on the prospective memory task, F₁,₃₅ = 4.8, P glucose (indicative of poor glucose regulation) was associated with slower prospective memory responding, F₁,₃₅ = 4.4, P memory and executive functioning can benefit from the increased provision of glucose to the brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Glucose-induced insulin resistance of skeletal-muscle glucose transport and uptake

    DEFF Research Database (Denmark)

    Richter, Erik; Hansen, B F; Hansen, S A

    1988-01-01

    in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure......, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.......The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing...

  6. Neuroscience of glucose homeostasis

    NARCIS (Netherlands)

    La Fleur, S E; Fliers, E; Kalsbeek, A

    2014-01-01

    Plasma glucose concentrations are homeostatically regulated and maintained within strict boundaries. Several mechanisms are in place to increase glucose output when glucose levels in the circulation drop as a result of glucose utilization, or to decrease glucose output and increase tissue glucose

  7. The rate of cerebral utilization of glucose, ketone bodies, and oxygen: a comparative in vivo study of infant and adult rats.

    Science.gov (United States)

    Dahlquist, G; Persson, B

    1976-11-01

    Cerebral blood flow (CBF) was measured by means of Celabeled microspheres in infant (20-day-old) and adult (3-month-old) rats, anesthetised with Na-5-ethyl-5-(1-methylpropyl)2-thiobarbituric acid. Cerebral arteriovenous differences of acetoacetate, D-beta-hydroxybutyrate, glucose, lactate, and oxygen and brain DNA content were determined in other groups of similarly treated infant and adult animals fed or starved for 48 or 72 hr. The mean CBF values of 0.48+/-0.04 and 0.62+/-0.07 ml/(g X min), +/- SEM, in infant and adult animals, respectively, were not significantly different. CBF was unaffected by starvation. At any given arterial concentration the cerebral arteriovenous difference of acetoacetate was significantly higher in infant than adult rats. The same was true for D-beta-hydroxybutyrate at arterial concentrations above 1 mmol/liter. There was an approximately linear relationship between arterial concentration of acetoacetate and its cerebral arteriovenous difference in both infant and adult rats. A similar relationship was found for D-beta-hydroxybutyrate only in infant animals. In the fed state, the cerebral uptake of glucose and ketone bodies (micromoles per (mg DNA X min)) was not different in infant and adult rats. During starvation, cerebral uptake of ketone bodies expressed as micromoles per (mg DNA X min) was higher in infant than adult rats, indicating a higher rate of utilization of ketone bodies per cell in these animals. For glucose, no such difference was found in either fed or starved groups (Table 3). The average percentage of the total cerebral uptake of substrates (micromoles per min) accounted for by ketone bodies increased in both infant and adult rats during starvation. This percentage value was clearly higher in infant than adult rats during starvation. After 72 hr of starvation the values were 38.8% and 15.2% in infant and adult rats, respectively (Fig. 3). Calculated cerebral metabolic rate for oxygen (CMRO2), assuming complete

  8. Metabolomic analysis reveals amino-acid responses to an oral glucose tolerance test in women with prior history of gestational diabetes mellitus

    Directory of Open Access Journals (Sweden)

    R. Bentley-Lewis, MD, MBA, MMSc

    2014-06-01

    Conclusions: Greater change in metabolite levels after a glucose challenge was significantly associated with a longer duration of breastfeeding and higher BMI. Further exploration of these preliminary observations and closer examination of the specific pathways implicated are warranted.

  9. Development of a nanowire based titanium needle probe sensor for glucose monitoring

    Science.gov (United States)

    Deshpande, Devesh C.

    The need for continuous monitoring of various physiological functions such as blood glucose levels, neural functions and cholesterol levels has fostered the research and development of various schemes of biosensors to sense and help control the respective function. The needs of patients for sensors with minimal discomfort, longer life and better performance have necessitated the development towards smaller and more efficient sensors. In addition, the need for higher functionality from smaller sensors has led to the development of sensors with multiple electrodes, each electrode capable of sensing a different body function. Such multi-electrode sensors need to be fabricated using micro-fabrication processes in order to achieve precise control over the size, shape and placement of the electrodes. Multielectrode sensors fabricated using silicon and polymers have been demonstrated. One physiological function that attracts widespread interest is continuous glucose monitoring in our blood, since Diabetes affects millions of people all over the world. Significant deviations of blood glucose levels from the normal levels of 4-8 mM can cause fainting, coma and damage to the eyes, kidneys, nerves and blood vessels. For chronic patients, continuous monitoring of glucose levels is essential for accurate and timely treatment. A few continuous monitoring sensors are available in the market, but they have problems and cannot replace the strip type one-time glucose monitoring systems as yet. To address this need, large scale research efforts have been targeted towards continuous monitoring. The demand for higher accuracy and sensitivity has motivated researchers to evaluate the use of nanostructures in sensing. The large surface area-to-volume ratio of such structures could enable further miniaturization and push the detection limits, potentially enabling even single molecule detection. This research involved the development of a biocompatible titanium needle probe sensor for

  10. Glucose homeostasis in mice is transglutaminase 2 independent.

    Directory of Open Access Journals (Sweden)

    Siiri E Iismaa

    Full Text Available Transglutaminase type 2 (TG2 has been reported to be a candidate gene for maturity onset diabetes of the young (MODY because three different mutations that impair TG2 transamidase activity have been found in 3 families with MODY. TG2 null (TG2(-/- mice have been reported to be glucose intolerant and have impaired glucose-stimulated insulin secretion (GSIS. Here we rigorously evaluated the role of TG2 in glucose metabolism using independently generated murine models of genetic TG2 disruption, which show no compensatory enhanced expression of other TGs in pancreatic islets or other tissues. First, we subjected chow- or fat-fed congenic SV129 or C57BL/6 wild type (WT and TG2(-/- littermates, to oral glucose gavage. Blood glucose and serum insulin levels were similar for both genotypes. Pancreatic islets isolated from these animals and analysed in vitro for GSIS and cholinergic potentiation of GSIS, showed no significant difference between genotypes. Results from intraperitoneal glucose tolerance tests (GTTs and insulin tolerance tests (ITTs were similar for both genotypes. Second, we directly investigated the role of TG2 transamidase activity in insulin secretion using a coisogenic model that expresses a mutant form of TG2 (TG2(R579A, which is constitutively active for transamidase activity. Intraperitoneal GTTs and ITTs revealed no significant differences between WT and TG2(R579A/R579A mice. Given that neither deletion nor constitutive activation of TG2 transamidase activity altered basal responses, or responses to a glucose or insulin challenge, our data indicate that glucose homeostasis in mice is TG2 independent, and question a link between TG2 and diabetes.

  11. Perception of difficulty and glucose control: Effects on academic performance in youth with type I diabetes.

    Science.gov (United States)

    Potts, Tiffany M; Nguyen, Jacqueline L; Ghai, Kanika; Li, Kathy; Perlmuter, Lawrence

    2015-04-15

    To investigate whether perceptions of task difficulty on neuropsychological tests predicted academic achievement after controlling for glucose levels and depression. Participants were type 1 diabetic adolescents, with a mean age = 12.5 years (23 females and 16 males), seen at a northwest suburban Chicago hospital. The sample population was free of co-morbid clinical health conditions. Subjects completed a three-part neuropsychological battery including the Digit Symbol Task, Trail Making Test, and Controlled Oral Word Association test. Following each task, individuals rated task difficulty and then completed a depression inventory. Performance on these three tests is reflective of neuropsychological status in relation to glucose control. Blood glucose levels were measured immediately prior to and after completing the neuropsychological battery using a glucose meter. HbA1c levels were obtained from medical records. Academic performance was based on self-reported grades in Math, Science, and English. Data was analyzed using multiple regression models to evaluate the associations between academic performance, perception of task difficulty, and glucose control. Perceptions of difficulty on a neuropsychological battery significantly predicted academic performance after accounting for glucose control and depression. Perceptions of difficulty on the neuropsychological tests were inversely correlated with academic performance (r = -0.48), while acute (blood glucose) and long-term glucose levels increased along with perceptions of task difficulty (r = 0.47). Additionally, higher depression scores were associated with poorer academic performance (r = -0.43). With the first regression analysis, perception of difficulty on the neuropsychological tasks contributed to 8% of the variance in academic performance after controlling for peripheral blood glucose and depression. In the second regression analysis, perception of difficulty accounted for 11% of the variance after

  12. First-pass uptake and oxidation of glucose by the splanchnic tissue in young goats fed soy protein-based milk diets with or without amino acid supplementation: glucose metabolism in goat kids after soy feeding.

    Science.gov (United States)

    Schönhusen, U; Junghans, P; Flöter, A; Steinhoff-Wagner, J; Görs, S; Schneider, F; Metges, C C; Hammon, H M

    2013-04-01

    The study was designed to examine whether feeding soy protein isolate as partial replacement of casein (CN) affects glucose metabolism in young goats and whether effects may be ameliorated by supplementation of those AA known to be lower concentrated in soy than in CN. Goat kids (d 20 of age) were fed comparable milk protein diets, in which 50% of the crude protein was either CN (control, CON), soy protein isolate (SPI), or soy protein isolate supplemented with AA (SPIA) for 43 d (n=8 per group). On d 62 of age, a single bolus dose of d-[(13)C6]glucose (10mg/kg of BW) was given with the morning diet, and simultaneously, a single bolus dose of d-[6,6-(2)H2]glucose (5mg/kg of BW) was injected into a jugular vein. Blood samples were collected between -30 and +420 min relative to the tracer administration to measure the (13)C and (2)H enrichments of plasma glucose and the (13)C enrichment of blood CO2. Glucose first-pass uptake by the splanchnic tissues was calculated from the rate of appearance of differentially labeled glucose tracer in plasma. Glucose oxidation was calculated from (13)C enrichment in blood CO2. In addition, plasma concentrations of triglycerides, nonesterified fatty acids, glucose, insulin, and glucagon were measured. On d 63 of age, kids were killed and jejunal mucosa and liver samples were collected to measure lactase mRNA levels and lactase and maltase activities in the jejunum and activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (PEPCK) in the liver. Basal plasma glucose concentration tended to be higher in the CON than the SPIA group, whereas basal insulin was higher in the CON group than the SPI and SPIA groups, and glucagon was higher in the CON than the SPIA group. Plasma glucose and insulin concentrations increased during the first hour after feeding, whereas plasma glucagon increased immediately after feeding and after 1h of feeding. First-pass uptake and glucose oxidation were not affected by diet. Maltase

  13. Triglycerides/glucose index is a useful surrogate marker of insulin resistance among adolescents.

    Science.gov (United States)

    Kang, B; Yang, Y; Lee, E Y; Yang, H K; Kim, H-S; Lim, S-Y; Lee, J-H; Lee, S-S; Suh, B-K; Yoon, K-H

    2017-05-01

    Our aim was to investigate the association between the triglycerides/glucose index (TyG index) and the homeostasis model assessment-estimated insulin resistance (HOMA-IR) in the prediction of insulin resistance (IR) among adolescents. We conducted a cross-sectional study among 221 Korean adolescents (168 males and 53 females aged 9-13 years) from May to June 2014 in Chung-ju city. The TyG index was calculated as ln [triglycerides (mg dl -1 ) × fasting glucose (mg dl -1 )/2]. IR was defined using HOMA-IR >95th percentile for age and sex. In the IR group, weight, body mass index (BMI), waist circumference, body fat, fasting insulin, fasting plasma glucose, triglyceride levels and triglycerides/high-density lipoprotein cholesterol (TG/HDL-C) were significantly higher than that in the non-IR group. The TG index was significantly different between the IR group (n=22) and non-IR group (n=199), at 8.43±0.45 and 8.05±0.41, respectively (Pindex was well correlated with HOMA-IR (r=0.41; Pindex for diagnosis of insulin resistance was 8.18. The TyG index is a simple, cost-effective surrogate marker of insulin resistance among adolescents compared with HOMA-IR.

  14. Differential facilitative effects of glucose administration on Stroop task conditions.

    Science.gov (United States)

    Brandt, Karen R; Gibson, E Leigh; Rackie, James M

    2013-12-01

    Previous research has demonstrated that glucose administration improves memory performance. These glucose facilitation effects have been most reliably demonstrated in medial temporal lobe tasks with the greatest effects found for cognitively demanding tasks. The aim of the proposed research was to first explore whether such effects might be demonstrated in a frontal lobe task. A second aim was to investigate whether any beneficial effects of glucose may arise more prominently under tasks of increasing cognitive demand. To achieve these aims, the Stroop Task was administered to participants and effects of a drink of glucose (25 g) were compared with an aspartame-sweetened control drink on performance in young adults. Results demonstrated that glucose ingestion significantly reduced RTs in the congruent and incongruent conditions. No effect on error rates was observed. Of most importance was the finding that this glucose facilitative effect was significantly greatest in the most cognitively demanding task, that is, the incongruent condition. The present results support the contention that the glucose facilitation effect is most robust under conditions of enhanced task difficulty and demonstrate that such benefits extend to frontal lobe function.

  15. Diet restriction in Ramadan and the effect of fasting on glucose levels in pregnancy.

    Science.gov (United States)

    Baynouna Al Ketbi, Latifa Mohammad; Niglekerke, Nico J D; Zein Al Deen, Sanna M; Mirghani, Hisham

    2014-06-24

    Maternal diet restriction might be associated with adverse maternal and perinatal outcomes due to metabolic changes. This study aimed to investigate the prevalence of changes in glucose levels due to Ramadan fasting in Emirati pregnant women. We conducted a cross-sectional observational study of 150 women from the United Arab Emirates, (76 during Ramadan and 74 after Ramadan), with uncomplicated pregnancies at a gestational age between 20 and 36 weeks. The two groups of pregnant women had similar physiological parameters. Using the oral glucose tolerance test, the mean random blood glucose level after 1 hour of breaking the fast was significantly higher (p = 0.002) in the Ramadan fasting group than in the control group, and this was not affected by the number of fasting days. In 50% of patients after Ramadan and 70.5% during Ramadan, this value was more than 6.7 mmol/l, which is high and not an acceptable postprandial level in pregnancy. Caregivers need to consider the 1-hour postprandial glucose level response after fasting in Muslim pregnant women. Research of an interventional design is required to determine remedial actions for this issue.

  16. Plasma Periostin Levels Are Increased in Chinese Subjects with Obesity and Type 2 Diabetes and Are Positively Correlated with Glucose and Lipid Parameters.

    Science.gov (United States)

    Luo, Yuanyuan; Qu, Hua; Wang, Hang; Wei, Huili; Wu, Jing; Duan, Yang; Liu, Dan; Deng, Huacong

    2016-01-01

    The purpose of this study is to examine the relations among plasma periostin, glucose and lipid metabolism, insulin resistance and inflammation in Chinese patients with obesity (OB), and type 2 diabetes mellitus (T2DM). Plasma periostin levels in the T2DM group were significantly higher than the NGT group (P index (BMI), waist-hip ratio (WHR), fasting plasma glucose (FPG), 2 h postchallenge plasma glucose (2 h PG), glycated hemoglobin (HbA1c), triglyceride (TG), total cholesterol (TC), fasting insulin (FINS), homeostasis model assessment of insulin resistance (HOMA-IR), TNF-α, and IL-6 (P < 0.05 or 0.001) and negatively correlated with high-density lipoprotein cholesterol (HDL-C) (P < 0.001). Multiple linear regression analysis showed that TG, TNF-α, and HOMA-IR were independent related factors in influencing the levels of plasma periostin (P < 0.001). These results suggested that Chinese patients with obesity and T2DM had significantly higher plasma periostin levels. Plasma periostin levels were strongly associated with plasma TG, chronic inflammation, and insulin resistance.

  17. D-[U-11C]glucose uptake and metabolism in the brain of insulin-dependent diabetic subjects

    International Nuclear Information System (INIS)

    Gutniak, M.; Blomqvist, G.; Widen, L.; Stone-Elander, S.; Hamberger, B.; Grill, V.

    1990-01-01

    We used D-[U-11C]glucose to evaluate transport and metabolism of glucose in the brain in eight nondiabetic and six insulin-dependent diabetes mellitus (IDDM) subjects. IDDM subjects were treated by continuous subcutaneous insulin infusion. Blood glucose was regulated by a Biostator-controlled glucose infusion during a constant insulin infusion. D-[U-11C]-glucose was injected for positron emission tomography studies during normoglycemia as well as during moderate hypoglycemia [arterial plasma glucose 2.74 +/- 0.14 in nondiabetic and 2.80 +/- 0.26 mmol/l (means +/- SE) in IDDM subjects]. Levels of free insulin were constant and similar in both groups. The tracer data were analyzed using a three-compartment model with a fixed correction for 11CO2 egression. During normoglycemia the influx rate constant (k1) and blood-brain glucose flux did not differ between the two groups. During hypoglycemia k1 increased significantly and similarly in both groups (from 0.061 +/- 0.007 to 0.090 +/- 0.006 in nondiabetic and from 0.061 +/- 0.006 to 0.093 +/- 0.013 ml.g-1.min-1 in IDDM subjects). During normoglycemia the tracer-calculated metabolism of glucose was higher in the whole brain in the nondiabetic than in the diabetic subjects (22.0 +/- 1.9 vs. 15.6 +/- 1.1 mumol.100 g-1.min-1, P less than 0.01). During hypoglycemia tracer-calculated metabolism was decreased by 40% in nondiabetic subjects and by 28% in diabetic subjects. The results indicate that uptake of glucose is normal, but some aspect of glucose metabolism is abnormal in a group of well-controlled IDDM subjects

  18. Apolipoprotein E Genotype and Sex Influence Glucose Tolerance in Older Adults: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Angela J. Hanson

    2016-03-01

    Full Text Available Background: Glucose intolerance and apolipoprotein ε4 allele (E4+ are risk factors for Alzheimer's disease (AD. Insulin sensitizers show promise for treating AD, but are less effective in E4+ individuals. Little is known about how the APOE genotype influences glucose metabolism. Methods: Cross-sectional analysis of 319 older adults who underwent oral glucose tolerance tests; a subset had insulin, amyloid beta (Aβ42, and Mini Mental Status Examination. Glucose and insulin patterns with respect to cognitive diagnosis, E4 status, and sex were examined with analysis of covariance and Pearson correlation. Results: People with cognitive impairment had higher fasting insulin levels. E4 status did not affect fasting glucose values, whereas men had higher fasting glucose levels than women. E4+ men had the lowest and E4+ women had the highest glucose levels, compared to E4- groups; insulin did not differ by sex or E4 group. E4 status and sex moderated correlations between metabolic measures and AD risk factors including age and Aβ. Conclusions: Insulin resistance was associated with cognitive impairment, and sex, E4 status, and glucose values are interrelated in older adults at risk of AD. Understanding glucose metabolism for different APOE and sex groups may help elucidate differences in therapeutic responses.

  19. Development of Silicalite/Glucose Oxidase-Based Biosensor and Its Application for Glucose Determination in Juices and Nectars

    Science.gov (United States)

    Dudchenko, Oleksandr Ye; Pyeshkova, Viktoriya M.; Soldatkin, Oleksandr O.; Akata, Burcu; Kasap, Berna O.; Soldatkin, Alexey P.; Dzyadevych, Sergei V.

    2016-02-01

    The application of silicalite for improvement of enzyme adsorption on new stainless steel electrodes is reported. Glucose oxidase (GOx) was immobilized by two methods: cross-linking by glutaraldehyde (GOx-GA) and cross-linking by glutaraldehyde along with GOx adsorption on silicalite-modified electrode (SME) (GOx-SME-GA). The GOx-SME-GA biosensors were characterized by a four- to fivefold higher sensitivity than GOx-GA biosensor. It was concluded that silicalite together with GA sufficiently enhances enzyme adhesion on stainless steel electrodes. The developed GOx-SME-GA biosensors were characterized by good reproducibility of biosensor preparation (relative standard deviation (RSD)—18 %), improved signal reproducibility (RSD of glucose determination was 7 %), and good storage stability (29 % loss of activity after 18-day storage). A series of fruit juices and nectars was analyzed using GOx-SME-GA biosensor for determination of glucose concentration. The obtained results showed good correlation with the data of high-performance liquid chromatography (HPLC) ( R = 0.99).

  20. Glucose allostasis

    DEFF Research Database (Denmark)

    Stumvoll, Michael; Tataranni, P Antonio; Stefan, Norbert

    2003-01-01

    individuals with normal glucose tolerance, normoglycemia can always be maintained by compensatorily increasing AIR in response to decreasing M (and vice versa). This has been mathematically described by the hyperbolic relationship between AIR and M and referred to as glucose homeostasis, with glucose......In many organisms, normoglycemia is achieved by a tight coupling of nutrient-stimulated insulin secretion in the pancreatic beta-cell (acute insulin response [AIR]) and the metabolic action of insulin to stimulate glucose disposal (insulin action [M]). It is widely accepted that in healthy...... concentration assumed to remain constant along the hyperbola. Conceivably, glucose is one of the signals stimulating AIR in response to decreasing M. Hypothetically, as with any normally functioning feed-forward system, AIR should not fully compensate for worsening M, since this would remove the stimulus...

  1. Glucose Homeostasis, Pancreatic Endocrine Function, and Outcomes in Advanced Heart Failure.

    Science.gov (United States)

    Melenovsky, Vojtech; Benes, Jan; Franekova, Janka; Kovar, Jan; Borlaug, Barry A; Segetova, Marketa; Tura, Andrea; Pelikanova, Tereza

    2017-08-07

    The mechanisms and relevance of impaired glucose homeostasis in advanced heart failure (HF) are poorly understood. The study goals were to examine glucose regulation, pancreatic endocrine function, and metabolic factors related to prognosis in patients with nondiabetic advanced HF. In total, 140 advanced HF patients without known diabetes mellitus and 21 sex-, age-, and body mass index-matched controls underwent body composition assessment, oral glucose tolerance testing, and measurement of glucose-regulating hormones to model pancreatic β-cell secretory response. Compared with controls, HF patients had similar fasting glucose and insulin levels but higher levels after oral glucose tolerance testing. Insulin secretion was not impaired, but with increasing HF severity, there was a reduction in glucose, insulin, and insulin/glucagon ratio-a signature of starvation. The insulin/C-peptide ratio was decreased in HF, indicating enhanced insulin clearance, and this was correlated with lower cardiac output, hepatic insufficiency, right ventricular dysfunction, and body wasting. After a median of 449 days, 41% of patients experienced an adverse event (death, urgent transplant, or assist device). Increased glucagon and, paradoxically, low fasting plasma glucose displayed the strongest relations to outcome ( P =0.01). Patients in the lowest quartile of fasting plasma glucose (3.8-5.1 mmol·L -1 , 68-101 mg·dL -1 ) had 3-times higher event risk than in the top quartile (6.0-7.9 mmol·L -1 , 108-142 mg·dL -1 ; relative risk: 3.05 [95% confidence interval, 1.46-6.77]; P =0.002). Low fasting plasma glucose and increased glucagon are robust metabolic predictors of adverse events in advanced HF. Pancreatic insulin secretion is preserved in advanced HF, but levels decrease with increasing HF severity due to enhanced insulin clearance that is coupled with right heart failure and cardiac cachexia. © 2017 The Authors. Published on behalf of the American Heart Association, Inc

  2. Ventromedial hypothalamic glucose sensing and glucose homeostasis vary throughout the estrous cycle.

    Science.gov (United States)

    Santiago, Ammy M; Clegg, Deborah J; Routh, Vanessa H

    2016-12-01

    17β-Estradiol (17βE) regulates glucose homeostasis in part by centrally mediated mechanisms. In female rodents, the influence of the ovarian cycle on hypoglycemia counterregulation and glucose tolerance is unclear. We found previously that in prepubertal females, 17βE modulates glucose sensing in nonadapting glucose-inhibited (GI) and adapting GI (AdGI) neurons within the ventrolateral portion of the ventromedial nucleus (VL-VMN). Nonadapting GI neurons persistently decrease their activity as glucose increases while AdGI neurons transiently respond to a glucose increase. To begin to understand if endogenous fluctuations in estrogen levels across the estrous cycle impact hypothalamic glucose sensing and glucose homeostasis, we assessed whether hypoglycemia counterregulation and glucose tolerance differed across the phases of the estrous cycle. We hypothesized that the response to insulin-induced hypoglycemia (IIH) and/or glucose tolerance would vary throughout the estrous cycle according to changes in 17βE availability. Moreover, that these changes would correlate with estrous-dependent changes in the glucose sensitivity of VL-VMN glucose-sensing neurons (GSNs). These hypotheses were tested in female mice by measuring the response to IIH, glucose tolerance and the glucose sensitivity of VL-VMN GSNs during each phase of the estrous cycle. Furthermore, a physiological brain concentration of 17βE seen during proestrus was acutely applied to brain slices isolated on the day of diestrous and the response to low glucose in VL-VMN GSNs was assayed. The response to IIH was strongest during diestrous. The response of nonadapting GI and AdGI neurons to a glucose decrease from 2.5 to 0.5mM also peaked during diestrous; an effect which was blunted by the addition of 17βE. In contrast, the glucose sensitivity of the subpopulation of GSNs which are excited by glucose (GE) was not affected by estrous phase or exogenous 17βE application. These data suggest that physiological

  3. Ventromedial hypothalamic glucose sensing and glucose homeostasis vary throughout the estrous cycle

    Science.gov (United States)

    Santiago, Ammy M.; Clegg, Deborah J.; Routh, Vanessa H.

    2016-01-01

    Objective 17β-Estradiol (17βE) regulates glucose homeostasis in part by centrally mediated mechanisms. In female rodents, the influence of the ovarian cycle on hypoglycemia counterregulation and glucose tolerance is unclear. We found previously that in prepubertal females, 17βE modulates glucose sensing in nonadapting glucose-inhibited (GI) and adapting GI (AdGI) neurons within the ventrolateral portion of the ventromedial nucleus (VL-VMN). Nonadapting GI neurons persistently decrease their activity as glucose increases while AdGI neurons transiently respond to a glucose increase. To begin to understand if endogenous fluctuations in estrogen levels across the estrous cycle impact hypothalamic glucose sensing and glucose homeostasis, we assessed whether hypoglycemia counterregulation and glucose tolerance differed across the phases of the estrous cycle. We hypothesized that the response to insulin-induced hypoglycemia (IIH) and/or glucose tolerance would vary throughout the estrous cycle according to changes in 17βE availability. Moreover, that these changes would correlate with estrous-dependent changes in the glucose sensitivity of VL-VMN glucose-sensing neurons (GSNs). Methods These hypotheses were tested in female mice by measuring the response to IIH, glucose tolerance and the glucose sensitivity of VL-VMN GSNs during each phase of the estrous cycle. Furthermore, a physiological brain concentration of 17βE seen during proestrus was acutely applied to brain slices isolated on the day of diestrous and the response to low glucose in VL-VMN GSNs was assayed. Results The response to IIH was strongest during diestrous. The response of nonadapting GI and AdGI neurons to a glucose decrease from 2.5 to 0.5mM also peaked during diestrous; an effect which was blunted by the addition of 17βE. In contrast, the glucose sensitivity of the subpopulation of GSNs which are excited by glucose (GE) was not affected by estrous phase or exogenous 17βE application. Conclusion

  4. Impaired glucose homeostasis in non-diabetic Greek hypertensives with diabetes family history. Effect of the obesity status.

    Science.gov (United States)

    Vyssoulis, Gregory P; Liakos, Charalampos I; Karpanou, Eva A; Triantafyllou, Athanasios I; Michaelides, Andreas P; Tzamou, Vanessa E; Markou, Maria I; Stefanadis, Christodoulos I

    2013-01-01

    Arterial hypertension (AH) and diabetes mellitus (DM) are established cardiovascular risk factors. Impaired glucose homeostasis (IGH; impaired fasting glucose or/and impaired glucose tolerance) or pre-diabetes, obesity, and DM family history identify individuals at risk for type 2 DM in whom preventive interventions are necessary. The aim of this study was to determine the glycemic profile in non-diabetic Greek adult hypertensive men and women according to DM family history and the obesity status. Diabetes family history, obesity markers (waist-to-hip ratio, WHR; body mass index, BMI), glycemic parameters (fasting and 2-hour post-load plasma glucose, if necessary; glycated hemoglobin, HbA1c; fasting insulin), insulin resistance indices (homeostasis model assessment, HOMA; quantitative insulin sensitivity check index, QUICKI; Bennett; McAuley), and IGH prevalence were determined in a large cohort of 11,540 Greek hypertensives referred to our institutions. Positive DM family history was associated with elevated fasting glucose (98.6 ± 13.1 vs 96.5 ± 12.3 mg/dL), HbA1c (5.58% ± 0.49% vs 5.50% ± 0.46%), fasting insulin (9.74 ± 4.20 vs 9.21 ± 3.63 μU/mL) and HOMA (2.43 ± 1.19 vs 2.24 ± 1.01) values, lower QUICKI (0.342 ± 0.025 vs 0.345 ± 0.023), Bennett (0.285 ± 0.081 vs 0.292 ± 0.078) and McAuley (6.73 ± 3.43 vs 6.95 ± 3.44) values, and higher IGH prevalence (45.3% vs 38.7%); P history was significant (P history present with higher IGH prevalence and worse glycemic indices levels compared with those with negative family history, especially in the higher WHR/BMI subgroups. Copyright © 2013 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  5. Predictive models of glucose control: roles for glucose-sensing neurones

    Science.gov (United States)

    Kosse, C.; Gonzalez, A.; Burdakov, D.

    2018-01-01

    The brain can be viewed as a sophisticated control module for stabilizing blood glucose. A review of classical behavioural evidence indicates that central circuits add predictive (feedforward/anticipatory) control to the reactive (feedback/compensatory) control by peripheral organs. The brain/cephalic control is constructed and engaged, via associative learning, by sensory cues predicting energy intake or expenditure (e.g. sight, smell, taste, sound). This allows rapidly measurable sensory information (rather than slowly generated internal feedback signals, e.g. digested nutrients) to control food selection, glucose supply for fight-or-flight responses or preparedness for digestion/absorption. Predictive control is therefore useful for preventing large glucose fluctuations. We review emerging roles in predictive control of two classes of widely projecting hypothalamic neurones, orexin/hypocretin (ORX) and melanin-concentrating hormone (MCH) cells. Evidence is cited that ORX neurones (i) are activated by sensory cues (e.g. taste, sound), (ii) drive hepatic production, and muscle uptake, of glucose, via sympathetic nerves, (iii) stimulate wakefulness and exploration via global brain projections and (iv) are glucose-inhibited. MCH neurones are (i) glucose-excited, (ii) innervate learning and reward centres to promote synaptic plasticity, learning and memory and (iii) are critical for learning associations useful for predictive control (e.g. using taste to predict nutrient value of food). This evidence is unified into a model for predictive glucose control. During associative learning, inputs from some glucose-excited neurones may promote connections between the ‘fast’ senses and reward circuits, constructing neural shortcuts for efficient action selection. In turn, glucose-inhibited neurones may engage locomotion/exploration and coordinate the required fuel supply. Feedback inhibition of the latter neurones by glucose would ensure that glucose fluxes they

  6. Predictive models of glucose control: roles for glucose-sensing neurones.

    Science.gov (United States)

    Kosse, C; Gonzalez, A; Burdakov, D

    2015-01-01

    The brain can be viewed as a sophisticated control module for stabilizing blood glucose. A review of classical behavioural evidence indicates that central circuits add predictive (feedforward/anticipatory) control to the reactive (feedback/compensatory) control by peripheral organs. The brain/cephalic control is constructed and engaged, via associative learning, by sensory cues predicting energy intake or expenditure (e.g. sight, smell, taste, sound). This allows rapidly measurable sensory information (rather than slowly generated internal feedback signals, e.g. digested nutrients) to control food selection, glucose supply for fight-or-flight responses or preparedness for digestion/absorption. Predictive control is therefore useful for preventing large glucose fluctuations. We review emerging roles in predictive control of two classes of widely projecting hypothalamic neurones, orexin/hypocretin (ORX) and melanin-concentrating hormone (MCH) cells. Evidence is cited that ORX neurones (i) are activated by sensory cues (e.g. taste, sound), (ii) drive hepatic production, and muscle uptake, of glucose, via sympathetic nerves, (iii) stimulate wakefulness and exploration via global brain projections and (iv) are glucose-inhibited. MCH neurones are (i) glucose-excited, (ii) innervate learning and reward centres to promote synaptic plasticity, learning and memory and (iii) are critical for learning associations useful for predictive control (e.g. using taste to predict nutrient value of food). This evidence is unified into a model for predictive glucose control. During associative learning, inputs from some glucose-excited neurones may promote connections between the 'fast' senses and reward circuits, constructing neural shortcuts for efficient action selection. In turn, glucose-inhibited neurones may engage locomotion/exploration and coordinate the required fuel supply. Feedback inhibition of the latter neurones by glucose would ensure that glucose fluxes they stimulate

  7. Incretin responses to oral glucose and mixed meal tests and changes in fasting glucose levels during 7 years of follow-up

    DEFF Research Database (Denmark)

    Koopman, A D M; Rutters, F; Rauh, S P

    2018-01-01

    . We used data from the Hoorn Meal Study; a population-based cohort study among 121 subjects, aged 61.0±6.7y. GIP and GLP-1 responses were determined at baseline and expressed as total and incremental area under the curve (tAUC and iAUC). The association between incretin response at baseline...... and changes in fasting glucose levels was assessed using linear regression. The average change in glucose over 7 years was 0.43 ± 0.5 mmol/l. For GIP, no significant associations were observed with changes in fasting glucose levels. In contrast, participants within the middle and highest tertile of GLP-1 iAUC...... responses to OGTT had significantly smaller increases (actually decreases) in fasting glucose levels; -0.28 (95% confidence interval: -0.54;-0.01) mmol/l and -0.39 (-0.67;-0.10) mmol/l, respectively, compared to those in the lowest tertile. The same trend was observed for tAUC GLP-1 following OGTT (highest...

  8. Influence of dietary protein on postprandial blood glucose levels in individuals with Type 1 diabetes mellitus using intensive insulin therapy.

    Science.gov (United States)

    Paterson, M A; Smart, C E M; Lopez, P E; McElduff, P; Attia, J; Morbey, C; King, B R

    2016-05-01

    To determine the effects of protein alone (independent of fat and carbohydrate) on postprandial glycaemia in individuals with Type 1 diabetes mellitus using intensive insulin therapy. Participants with Type 1 diabetes mellitus aged 7-40 years consumed six 150 ml whey isolate protein drinks [0 g (control), 12.5, 25, 50, 75 and 100] and two 150 ml glucose drinks (10 and 20 g) without insulin, in randomized order over 8 days, 4 h after the evening meal. Continuous glucose monitoring was used to assess postprandial glycaemia. Data were collected from 27 participants. Protein loads of 12.5 and 50 g did not result in significant postprandial glycaemic excursions compared with control (water) throughout the 300 min study period (P > 0.05). Protein loads of 75 and 100 g resulted in lower glycaemic excursions than control in the 60-120 min postprandial interval, but higher excursions in the 180-300 min interval. In comparison with 20 g glucose, the large protein loads resulted in significantly delayed and sustained glucose excursions, commencing at 180 min and continuing to 5 h. Seventy-five grams or more of protein alone significantly increases postprandial glycaemia from 3 to 5 h in people with Type 1 diabetes mellitus using intensive insulin therapy. The glycaemic profiles resulting from high protein loads differ significantly from the excursion from glucose in terms of time to peak glucose and duration of the glycaemic excursion. This research supports recommendations for insulin dosing for large amounts of protein. © 2015 The Authors. Diabetic Medicine published by John Wiley & Sons Ltd on behalf of Diabetes UK.

  9. Eating on nightshift: A big vs small snack impairs glucose response to breakfast

    Directory of Open Access Journals (Sweden)

    Stephanie Centofanti

    2018-01-01

    Full Text Available Shift work is a risk factor for chronic diseases such as Type 2 diabetes. Food choice may play a role, however simply eating at night when the body is primed for sleep may have implications for health. This study examined the impact of consuming a big versus small snack at night on glucose metabolism. N = 31 healthy subjects (21–35 y; 18 F participated in a simulated nightshift laboratory study that included one baseline night of sleep (22:00 h-07:00 h and one night awake with allocation to either a big snack (2100 kJ or small snack (840 kJ group. The snack was consumed between 00:00–00:30 h and consisted of low fat milk, a sandwich, chips and fruit (big snack or half sandwich and fruit (small snack. Subjects ate an identical mixed meal breakfast (2100 kJ at 08:30 h after one full night of sleep and a simulated nightshift. Interstitial glucose was measured continuously during the entire study using Medtronic Continual Glucose Monitors. Only subjects with identical breakfast consumption and complete datasets were analysed (N = 20. Glucose data were averaged into 5-minute bins and area under the curve (AUC was calculated for 90 min post-breakfast. Pre-breakfast, glucose levels were not significantly different between Day1 and Day2, nor were they different between snack groups (p > 0.05. A snack group by day interaction effect was found (F1,16 = 5.36, p = 0.034 and post-hocs revealed that in the big snack group, AUC response to breakfast was significantly higher following nightshift (Day2 compared to Day1 (p = 0.001. This translated to a 20.8% (SEM 5.6 increase. AUC was not significantly different between days in the small snack group. Consuming a big snack at 00:00 h impaired the glucose response to breakfast at 08:30 h, compared to a smaller snack. Further research in this area will inform dietary advice for shift workers, which could include recommendations on how much to eat as well as content.

  10. Improved glucose tolerance after high-load strength training in patients undergoing dialysis

    DEFF Research Database (Denmark)

    Mølsted, Stig; Harrison, Adrian Paul; Eidemak, Inge

    2013-01-01

    glucose tolerance (n = 9). Conclusion: The conducted strength training was associated with a significant improvement in glucose tolerance in patients with impaired glucose tolerance or type 2 diabetes undergoing dialysis. The effect was apparently not associated with muscle hypertrophy, whereas the muscle...... a week. Muscle fiber size, composition and capillary density were analyzed in biopsies obtained in the vastus lateralis muscle. Glucose tolerance and the insulin response were measured by a 2-hour oral glucose tolerance test. Results: All outcome measures remained unchanged during the control period....... After strength training the relative area of type 2X fibers was decreased. Muscle fiber size and capillary density remained unchanged. After the strength training, insulin concentrations were significantly lower in patients with impaired glucose tolerance or type 2 diabetes (n = 14) (fasting insulin...

  11. Glucose uptake and its effect on gene expression in prochlorococcus.

    Directory of Open Access Journals (Sweden)

    Guadalupe Gómez-Baena

    Full Text Available The marine cyanobacteria Prochlorococcus have been considered photoautotrophic microorganisms, although the utilization of exogenous sugars has never been specifically addressed in them. We studied glucose uptake in different high irradiance- and low irradiance-adapted Prochlorococcus strains, as well as the effect of glucose addition on the expression of several glucose-related genes. Glucose uptake was measured by adding radiolabelled glucose to Prochlorococcus cultures, followed by flow cytometry coupled with cell sorting in order to separate Prochlorococcus cells from bacterial contaminants. Sorted cells were recovered by filtration and their radioactivity measured. The expression, after glucose addition, of several genes (involved in glucose metabolism, and in nitrogen assimilation and its regulation was determined in the low irradiance-adapted Prochlorococcus SS120 strain by semi-quantitative real time RT-PCR, using the rnpB gene as internal control. Our results demonstrate for the first time that the Prochlorococcus strains studied in this work take up glucose at significant rates even at concentrations close to those found in the oceans, and also exclude the possibility of this uptake being carried out by eventual bacterial contaminants, since only Prochlorococcus cells were used for radioactivity measurements. Besides, we show that the expression of a number of genes involved in glucose utilization (namely zwf, gnd and dld, encoding glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and lactate dehydrogenase, respectively is strongly increased upon glucose addition to cultures of the SS120 strain. This fact, taken together with the magnitude of the glucose uptake, clearly indicates the physiological importance of the phenomenon. Given the significant contribution of Prochlorococcus to the global primary production, these findings have strong implications for the understanding of the phytoplankton role in the carbon

  12. Parameters of glucose metabolism and the aging brain: a magnetization transfer imaging study of brain macro- and micro-structure in older adults without diabetes.

    Science.gov (United States)

    Akintola, Abimbola A; van den Berg, Annette; Altmann-Schneider, Irmhild; Jansen, Steffy W; van Buchem, Mark A; Slagboom, P Eline; Westendorp, Rudi G; van Heemst, Diana; van der Grond, Jeroen

    2015-08-01

    Given the concurrent, escalating epidemic of diabetes mellitus and neurodegenerative diseases, two age-related disorders, we aimed to understand the relation between parameters of glucose metabolism and indices of pathology in the aging brain. From the Leiden Longevity Study, 132 participants (mean age 66 years) underwent a 2-h oral glucose tolerance test to assess glucose tolerance (fasted and area under the curve (AUC) glucose), insulin sensitivity (fasted and AUC insulin and homeostatic model assessment of insulin sensitivity (HOMA-IS)) and insulin secretion (insulinogenic index). 3-T brain MRI was used to detect macro-structural damage (atrophy, white matter hyper-intensities, infarcts and/or micro-bleeds) and magnetization transfer imaging (MTI) to detect loss of micro-structural homogeneity that remains otherwise invisible on conventional MRI. Macro-structurally, higher fasted glucose was significantly associated with white matter atrophy (P = 0.028). Micro-structurally, decreased magnetization transfer ratio (MTR) peak height in gray matter was associated with higher fasted insulin (P = 0.010), AUCinsulin (P = 0.001), insulinogenic index (P = 0.008) and lower HOMA-IS index (P glucose was associated with macro-structural damage, impaired insulin action was associated more strongly with reduced micro-structural brain parenchymal homogeneity. These findings offer some insight into the association between different parameters of glucose metabolism (impairment of which is characteristic of diabetes mellitus) and brain aging.

  13. Septal co-infusions of glucose with the benzodiazepine agonist chlordiazepoxide impair memory, but co-infusions of glucose with the opiate morphine do not.

    Science.gov (United States)

    Krebs-Kraft, Desiree L; Parent, Marise B

    2010-03-30

    We have found repeatedly that medial septal (MS) infusions of glucose impair memory when co-infused with the gamma-amino butyric acid (GABA) agonist muscimol. The present experiments sought to determine whether the memory-impairing effects of this concentration of glucose would generalize to another GABA(A) receptor agonist and to an agonist from another neurotransmitter system that is known to impair memory. Specifically, we determined whether the dose of glucose that produces memory deficits when combined with muscimol in the MS would also impair memory when co-infused with the GABA(A) receptor modulator chlordiazepoxide (CDP) or the opiate morphine. Male Sprague-Dawley rats were given MS co-infusions and then 15 min later tested for spontaneous alternation or given shock avoidance training (retention tested 48 h later). The results showed that MS infusions of the higher dose of glucose with morphine did not produce memory deficits, whereas, the performance of rats given MS co-infusions of CDP with glucose was impaired. These findings suggest that the memory-impairing effects of brain glucose administration may involve an interaction with the GABA(A) receptor. (c) 2009 Elsevier Inc. All rights reserved.

  14. Trace glucose and lipid metabolism in high androgen and high-fat diet induced polycystic ovary syndrome rats

    Directory of Open Access Journals (Sweden)

    Zhai Hua-Ling

    2012-01-01

    Full Text Available Abstract Background There is a high prevalence of diabetes mellitus (DM and dyslipidemia in women with polycystic ovary syndrome (PCOS. The purpose of this study was to investigate the role of different metabolic pathways in the development of diabetes mellitus in high-androgen female mice fed with a high-fat diet. Methods Female Sprague-Dawley rats were divided into 3 groups: the control group(C, n = 10; the andronate-treated group (Andronate, n = 10 (treated with andronate, 1 mg/100 g body weight/day for 8 weeks; and the andronate-treated and high-fat diet group (Andronate+HFD, n = 10. The rate of glucose appearance (Ra of glucose, gluconeogenesis (GNG, and the rate of glycerol appearance (Ra of glycerol were assessed with a stable isotope tracer. The serum sex hormone levels, insulin levels, glucose concentration, and the lipid profile were also measured. Results Compared with control group, both andronate-treated groups exhibited obesity with higher insulin concentrations (P P Conclusions Andronate with HFD rat model showed ovarian and metabolic features of PCOS, significant increase in glucose Ra, GNG, and lipid profiles, as well as normal blood glucose levels. Therefore, aberrant IR, increased glucose Ra, GNG, and lipid metabolism may represent the early-stage of glucose and lipid kinetics disorder, thereby might be used as potential early-stage treatment targets for PCOS.

  15. Low transferrin saturation is associated with impaired fasting glucose and insulin resistance in the South Korean adults: the 2010 Korean National Health and Nutrition Examination Survey.

    Science.gov (United States)

    Park, R J; Moon, J D

    2015-05-01

    The associations of transferrin saturation with diabetes have not been well evaluated and conflicting results have been reported. The purpose of this study is to examine the association of iron indices (serum ferritin and transferrin saturation) with risk of impaired fasting glucose and insulin resistance. We conducted a cross-sectional study in 2413 individuals (1150 men and 1263 women) aged 20-50 years who participated in the 2010 Korean National Health and Nutrition Examination Survey. Participants were free of diabetes, malignancy, liver cirrhosis, chronic renal failure, anaemia, pregnancy and menopause. Fasting plasma glucose, insulin and the homeostasis model assessment of insulin resistance (HOMA-IR) were measured as the outcomes. Impaired fasting glucose was more prevalent in the highest compared with the lowest serum ferritin quartile among men (odds ratio [OR], 1.97; 95% confidence interval [CI], 1.20-3.24) after adjustment for multiple covariates. Following the same adjustment, impaired fasting glucose was less prevalent in the highest compared with the lowest transferrin saturation quartile among men (OR, 0.45; 95% CI, 0.25-0.80) and women (OR, 0.33; 95% CI, 0.14-0.77). Moreover, a higher ferritin level was significantly associated with higher HOMA-IR after adjusting for confounders in men. Lower transferrin saturation was also significantly associated with higher insulin levels and HOMA-IR in both sexes. Lower transferrin saturations were associated with an increased risk of impaired fasting glucose and insulin resistance among general South Korean population. © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK.

  16. Comparison of the changes in blood glucose level during sedation with midazolam and propofol in implant surgery: a prospective randomized clinical trial.

    Science.gov (United States)

    Kaviani, Nasser; Koosha, Farzad; Shahtusi, Mina

    2014-09-01

    Reducing the patients' stress can prevent, or at least, limit the increase in blood glucose level. The study compares the effect of propofol and midazolam on blood glucose level in the patients undergoing dental implant surgery. The effect of pre-operational stress on blood glucose level during the surgery is also evaluated. This prospective randomized clinical trial recruited 33 patients undergoing dental implant surgery and divided into two groups. Conscious sedation was performed by midazolam in one group and with propofol in another group. The pre-operational stress was scored and the blood glucose level was measured in 4 different stages; before the operation, two minutes after the local anesthetic injection; thirty minutes after the onset of operation and at the end of the operation. The results were analyzed by employing ANOVA and Pearson test. The p Value was adopted 0.05 and the confidence coefficient was assumed 95%. The average levels of the blood glucose in midazolam and propofol group were 93.82 mg/dl and 94 mg/dl before the operation which displayed a meaningful increase of blood glucose level in both groups as the operation went on. The values were 103.76 mg/dl for midazolam and 108.56 mg/dl for the propofol group (pblood glucose level between two groups in the different stages of the operation (p= 0.466). The Pearson correlation coefficient test revealed a higher increase in the blood glucose level in the patients with a higher pre-operational stress score (r= 0.756, pblood glucose level while undergoing an operation. No statistically significant difference was detected between midazolam and propofol.

  17. Cardiac damage associated with stress hyperglycaemia and acute coronary syndrome changes according to level of presenting blood glucose.

    Science.gov (United States)

    Al Jumaily, Talib; Rose'Meyer, Roselyn B; Sweeny, Amy; Jayasinghe, Rohan

    2015-10-01

    To determine the prevalence of stress hyperglycaemia in people presenting with acute coronary syndrome (ACS), and the relationships between admission glucose and cardiac damage, cardiovascular mortality and morbidity. In a prospective observational study people presenting with ACS at the Gold Coast Hospital had their admission glucose (AG) level tested to determine stress hyperglycaemia. A range of measurements supplemented this data including troponin levels, category of ACS and major adverse coronary events (MACEs) were obtained through hospital records and patient follow-up post-discharge. One hundred eighty-eight participants were recruited. The prevalence of stress hyperglycaemia in ACS was 44% with 31% having a previous diagnosis of type 2 diabetes and 7.7% had undiagnosed diabetes. The stress hyperglycaemic group had a significantly higher median troponin levels compared to participants with normal blood glucose levels on admission (pglucose group (>15 mmol/L) had troponin levels similar to people presenting with normal blood glucose levels and ACS (p>0.05). Cardiac necrosis as measured by troponin levels is significantly increased in people with ACS and stress hyperglycaemia. This study found that one in four participants presenting with ACS and an admission glucose of >7.0 had no previous diagnosis for diabetes. Consistently ordering HbA1C testing on patients with high AG can enable earlier diagnosis and treatment of diabetes. Copyright © 2015. Published by Elsevier Ireland Ltd.

  18. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose

    International Nuclear Information System (INIS)

    Xia, Xiaodong; Long, Yunfei; Wang, Jianxiu

    2013-01-01

    Highlights: ► A glucose oxidase/gold nanocluster conjugates formed by etching chemistry. ► Integration of the bioactivities and fluorescence properties within a single unit. ► These conjugates serve as novel fluorescent probe for glucose. -- Abstract: Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ em max = 650 nm, λ ex max = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O 2 to produce H 2 O 2 , which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10 −6 –140 × 10 −6 M and a detection limit of 0.7 × 10 −6 M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells

  19. Effects of heated hydrotherapy on muscle HSP70 and glucose metabolism in old and young vervet monkeys.

    Science.gov (United States)

    Kavanagh, Kylie; Davis, Ashely T; Jenkins, Kurt A; Flynn, D Mickey

    2016-07-01

    Increasing heat shock protein 70 (HSP70) in aged and/or insulin-resistant animal models confers benefits to healthspan and lifespan. Heat application to increase core temperature induces HSPs in metabolically important tissues, and preliminary human and animal data suggest that heated hydrotherapy is an effective method to achieve increased HSPs. However, safety concerns exist, particularly in geriatric medicine where organ and cardiovascular disease commonly will preexist. We evaluated young vervet monkeys compared to old, insulin-resistant vervet monkeys (Chlorocebus aethiops sabaeus) in their core temperatures, glucose tolerance, muscle HSP70 level, and selected safety biomarkers after 10 sessions of hot water immersions administered twice weekly. Hot water immersion robustly induced the heat shock response in muscles. We observed that heat-treated old and young monkeys have significantly higher muscle HSP70 than control monkeys and treatment was without significant adverse effects on organ or cardiovascular health. Heat therapy improved pancreatic responses to glucose challenge and tended to normalize glucose excursions. A trend for worsened blood pressure and glucose values in the control monkeys and improved values in heat-treated monkeys were seen to support further investigation into the safety and efficacy of this intervention for metabolic syndrome or diabetes in young or old persons unable to exercise.

  20. Production of extracellular proteases by Mucor circinelloides using D-glucose as carbon source / substrate

    Directory of Open Access Journals (Sweden)

    Andrade Vânia Sousa

    2002-01-01

    Full Text Available Recently, some Mucorales species have been reported as protease producers. The production of extracellular proteases by Mucor circinelloides using glucose as substrate was studied. Experiments were carried out with different D-glucose concentrations (40, 60 and 80 g/L. Biomass, pH and protease activity were determined. Although biomass production had reached best yields for the medium containing D-glucose in a concentration of 80 g/L, the enzymatic production was higher when the substrate concentration was reduced to 40 g/L. The yield factor for product on cell growth and the yield factor for product on carbon substrate were higher when the microorganism grew in medium containing 40 g/L glucose. The kinetics parameters suggest that this strain seems to be promising as an alternative microorganism for protease production.

  1. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    International Nuclear Information System (INIS)

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.; Sicotte, N.; Bunney, W.E. Jr.; Gillin, J.C.

    1989-01-01

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increase in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep

  2. Alterations in body weight and blood glucose level of female hamsters exposed to electromagnetic fields of cell phones

    Directory of Open Access Journals (Sweden)

    A.R Lotfi

    2010-02-01

    Group 2 was exposed to electromagnetic field emitted by cell phones for 10 days (short term and group 3 for 50 day (long term. In the latter groups, the exposure was 1 hour per day. At the end of the experimental period, the animals were weighed and blood glucose concentrations were determined by obtaining blood samples from 8 randomly selected hamsters in each group.  The blood glucose level was significantly higher in long-term exposed group in comparison with the control and short-term exposed groups (175, 11.6 and 107 mg/dl, respectively (p

  3. Local cerebral blood flow and glucose metabolism during seizure in spontaneously epileptic El mice

    International Nuclear Information System (INIS)

    Hosokawa, Chisa; Ochi, Hironobu; Yamagami, Sakae; Kawabe, Joji; Kobashi, Toshiko; Okamura, Terue; Yamada, Ryusaku

    1995-01-01

    Local cerebral blood flow and glucose metabolism were examined in spontaneously epileptic El mice using autoradiography with 125 I-IMP and 14 C-DG in the interictal phase and during seizure. El (+) mice that developed generalized tonic-clonic convulsions and El (-) mice that received no stimulation and had no history of epileptic seizures were examined. The seizure non-susceptible, maternal strain ddY mice were used as control. Uptake ratios for IMP and DG in mouse brain were calculated using the autoradiographic density. In the interictal phase, the pattern of local cerebral blood flow of El (+) mice was similar to that of ddY and El (-) mice, and glucose metabolism in the hippocampus was higher in El (+) mice than in El (-) and ddY mice, but flow and metabolism were nearly matched. During seizure, no significant changed blood flow and increased glucose metabolism in the hippocampus, the epileptic focus, and no markedly changed blood flow and depressed glucose metabolism in other brain regions were observed and considered to be flow-metabolism uncoupling. These observations have never been reported in clinical or experimental studies of epilepsy. Seizures did not cause large regional differences in cerebral blood flow. Therefore, only glucose metabolism is useful for detection of the focus of secondary generalized seizures in El mice, and appeared possibly to be related to the pathophysiology of secondary generalized epilepsy in El mice. (author)

  4. Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment.

    Science.gov (United States)

    2018-01-01

    Type 1 diabetes is a condition in which the pancreas produces little or no insulin. People with type 1 diabetes must manage their blood glucose levels by monitoring the amount of glucose in their blood and administering appropriate amounts of insulin via injection or an insulin pump. Continuous glucose monitoring may be beneficial compared to self-monitoring of blood glucose using a blood glucose meter. It provides insight into a person's blood glucose levels on a continuous basis, and can identify whether blood glucose levels are trending up or down. We conducted a health technology assessment, which included an evaluation of clinical benefit, value for money, and patient preferences related to continuous glucose monitoring. We compared continuous glucose monitoring with self-monitoring of blood glucose using a finger-prick and a blood glucose meter. We performed a systematic literature search for studies published since January 1, 2010. We created a Markov model projecting the lifetime horizon of adults with type 1 diabetes, and performed a budget impact analysis from the perspective of the health care payer. We also conducted interviews and focus group discussions with people who self-manage their type 1 diabetes or support the management of a child with type 1 diabetes. Twenty studies were included in the clinical evidence review. Compared with self-monitoring of blood glucose, continuous glucose monitoring improved the percentage of time patients spent in the target glycemic range by 9.6% (95% confidence interval 8.0-11.2) to 10.0% (95% confidence interval 6.75-13.25) and decreased the number of severe hypoglycemic events.Continuous glucose monitoring was associated with higher costs and small increases in health benefits (quality-adjusted life-years). Incremental cost-effectiveness ratios (ICERs) ranged from $592,206 to $1,108,812 per quality-adjusted life-year gained in analyses comparing four continuous glucose monitoring interventions to usual care

  5. Modulation of parathion toxicity by glucose feeding: Is nitric oxide involved?

    International Nuclear Information System (INIS)

    Liu Jing; Gupta, Ramesh C.; Goad, John T.; Karanth, Subramanya; Pope, Carey

    2007-01-01

    Glucose feeding can markedly exacerbate the toxicity of the anticholinesterase insecticide, parathion. We determined the effects of parathion on brain nitric oxide and its possible role in potentiation of toxicity by glucose feeding. Adult rats were given water or 15% glucose in water for 3 days and challenged with vehicle or parathion (18 mg/kg, s.c.) on day 4. Functional signs, plasma glucose and brain cholinesterase, citrulline (an indicator of nitric oxide production) and high-energy phosphates (HEPs) were measured 1-3 days after parathion. Glucose feeding exacerbated cholinergic toxicity. Parathion increased plasma glucose (15-33%) and decreased cortical cholinesterase activity (81-90%), with no significant differences between water and glucose treatment groups. In contrast, parathion increased brain regional citrulline (40-47%) and decreased HEPs (18-40%) in rats drinking water, with significantly greater changes in glucose-fed rats (248-363% increase and 31-61% decrease, respectively). We then studied the effects of inhibiting neuronal nitric oxide synthase (nNOS) by 7-nitroindazole (7NI, 30 mg/kg, i.p. x4) on parathion toxicity and its modulation by glucose feeding. Co-exposure to parathion and 7NI led to a marked increase in cholinergic signs of toxicity and lethality, regardless of glucose intake. Thus, glucose feeding enhanced the accumulation of brain nitric oxide following parathion exposure, but inhibition of nitric oxide synthesis was ineffective at counteracting increased parathion toxicity associated with glucose feeding. Evidence is therefore presented to suggest that nitric oxide may play both toxic and protective roles in cholinergic toxicity, and its precise contribution to modulation by glucose feeding requires further investigation

  6. Effect of glucose and insulin infusion on the myocardial extraction of a radioiodinated methyl-substituted fatty acid

    International Nuclear Information System (INIS)

    Bianco, J.A.; Elmaleh, D.R.; Leppo, J.A.; King, M.A.; Moring, A.; Livni, E.; Espinoza, E.; Alpert, J.S.; Strauss, H.W.; Massachusetts General Hospital, Boston

    1986-01-01

    We investigated the one-way. An extraction of 14-iodophenyl-tetradecanoic acid (BMTDA) in the canine heart under fasting conditions and during infusion of glucose plus insulin in eight an esthetized greyhound dogs. Myocardial extraction measurements were made with dual tracer approach, using Tc-99m albumin as reference tracer. Prior to, and during, infusion of 10% glucose and 25 units of regular insulin, heart rate, blood pressure, plasma glucose, insulin and free fatty acid levels were measured. Myocardial blood flow was determined using Sn-113 and Ru-103 radioactive microspheres. The mean extraction fraction of BMTDA was 0.38+-SEM 0.06 at baseline and increased to 0.44+-0.06 during hyperglycemia plus insulin (P<0.025). Plasma glucose and insulin were higher during the infusion (P<0.01) while plasma free fatty acids significantly declined (P<0.01). There were no changes in hemodynamics or myocardial blood flow during the infusion. We conclude that glucose and insulin infusion result in increased first-pass extraction fraction of radioiodinated BMTDA unaccompanied by changes in coronary flow or hemodynamics, implying an insulin-mediated augmented transport of BMTDA. (orig.)

  7. Effects of blood glucose, blood lipids and blood pressure control on recovery of patients with gastric cancer complicated with metabolic syndrome after radical gastrectomy.

    Science.gov (United States)

    Sun, Li; Zhou, Pingping; Hua, Qingli; Jin, Changming; Guo, Chunling; Song, Bing

    2018-06-01

    This study aimed to investigate the effects of blood glucose, blood lipids and blood pressure control on recovery of patients with gastric cancer complicated with metabolic syndrome (MS) after radical gastrectomy. A total of 150 patients with gastric cancer, who were treated in Daqing Longnan Hospital from November, 2015 to May, 2017, were enrolled in this study. The patients were divided into the MS group (80 cases) and non-MS group (70 cases). Patients in the MS group were given corresponding drugs to control blood pressure, blood lipids and blood glucose, while patients in the non-MS group were not treated with those drugs. Patients in the MS group were divided into the normal and abnormal groups according to the levels of blood glucose, blood lipids and blood pressure. Moreover, occurrences of complications were compared between the normal and abnormal groups. Before surgery, blood glucose, blood lipids and blood pressure in the MS group were significantly higher than those in the non-MS group (pblood glucose, blood lipids and blood pressure of the MS group decreased significantly compared to those before operation (pblood glucose, 2 h postprandial blood glucose, glycosylated hemoglobin, total triglycerides (TGs), LDL, mean blood pressure and BMI (pblood glucose, blood lipids and blood pressure in patients with gastric cancer complicated with MS after radical gastrectomy can reduce the incidence of postoperative complications and promote postoperative recovery.

  8. Nanosensors and nanomaterials for monitoring glucose in diabetes.

    Science.gov (United States)

    Cash, Kevin J; Clark, Heather A

    2010-12-01

    Worldwide, diabetes is a rapidly growing problem that is managed at the individual level by monitoring and controlling blood glucose levels to minimize the negative effects of the disease. Because of limitations in diagnostic methods, significant research efforts are focused on developing improved methods to measure glucose. Nanotechnology has impacted these efforts by increasing the surface area of sensors, improving the catalytic properties of electrodes and providing nanoscale sensors. Here, we discuss developments in the past several years on both nanosensors that directly measure glucose and nanomaterials that improve glucose sensor function. Finally, we discuss challenges that must be overcome to apply these developments in the clinic. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Blood Glucose Monitoring Before and After Type 1 Diabetes Clinic Visits.

    Science.gov (United States)

    Driscoll, Kimberly A; Johnson, Suzanne Bennett; Wang, Yuxia; Wright, Nancy; Deeb, Larry C

    2017-12-23

    To determine patterns of blood glucose monitoring in children and adolescents with type 1 diabetes (T1D) before and after routine T1D clinic visits. Blood glucose monitoring data were downloaded at four consecutive routine clinic visits from children and adolescents aged 5-18 years. Linear mixed models were used to analyze patterns of blood glucose monitoring in patients who had at least 28 days of data stored in their blood glucose monitors. In general, the frequency of blood glucose monitoring decreased across visits, and younger children engaged in more frequent blood glucose monitoring. Blood glucose monitoring increased before the T1D clinic visits in younger children, but not in adolescents. It declined after the visit regardless of age. Members of the T1D care team need to consider that a T1D clinic visit may prompt an increase in blood glucose monitoring when making treatment changes and recommendations. Tailored interventions are needed to maintain that higher level of adherence across time. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  10. Brain glucose content in fetuses of ethanol-fed rats

    Energy Technology Data Exchange (ETDEWEB)

    Pullen, G.; Singh, S.P.; Snyder, A.K.; Hoffen, B.

    1986-03-01

    The authors have previously demonstrated impaired placental glucose transfer and fetal hypoglycemia in association with ethanol ingestion by pregnant rats. The present study examines the relationship between glucose availability and fetal brain growth under the same conditions. Rats (EF) were fed ethanol (30% of caloric intake) in liquid diet throughout gestation. Controls received isocaloric diet without ethanol by pair-feeding (PF) or ad libitum (AF). On the 22nd day of gestation fetuses were obtained by cesarean section. Fetal brains were removed and freeze-clamped. Brain weight was significantly reduced (p < 0.001) by maternal ethanol ingestion (206 +/- 2, 212 +/- 4 and 194 +/- 2 mg in AF, FP and EF fetuses respectively). Similarly, fetal brain glucose content was lower (p < 0.05) in the EF group (14.3 +/- 0.9 mmoles/g dry weight) than in the PF (18.6 +/- 1.0) or the AF (16.2 +/- 0.9) groups. The protein: DNA ratio, an indicator of cell size, correlated positively (r = 0.371, p < 0.005) with brain glucose content. In conclusion, maternal ethanol ingestion resulted in lower brain weight and reduced brain glucose content. Glucose availability may be a significant factor in the determination of cell size in the fetal rat brain.

  11. Simultaneous measurement of glucose transport and utilization in the human brain

    Science.gov (United States)

    Shestov, Alexander A.; Emir, Uzay E.; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R.

    2011-01-01

    Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, KMt and Vmaxt, in humans have so far been obtained by measuring steady-state brain glucose levels by proton (1H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMRglc) obtained from other tracer studies, such as 13C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state 1H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMRglc, this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain. PMID:21791622

  12. Glucose concentration and blood acid-basis status in high-yielding dairy cows during heat stress

    Directory of Open Access Journals (Sweden)

    Vujanac Ivan

    2011-01-01

    Full Text Available The objective of this work was to examine the effect of heat stress on glucose and pH values in blood of high-yielding dairy cows in the early stage of lactation, as well as to determine whether the changes in these parameters are interdependent under such conditions. An experiment was performed on high-yielding dairy cows during the summer and the spring periods. Forty cows were selected, twenty each for the two periods under investigation. In the course of the experiment, the temperature humidity index (THI was determined for the entire period of investigations, and then also the average daily THI, nightmorning THI (average value of hourly THI measured from 22h on the previous day until 10h of the current day, as well as the day-night THI (average value of hourly THI measured during the period from 10h to 22h of the current day. The pH and glucose concentration were determined in blood samples taken in the morning and afternoon of days 30, 60, and 90 of lactation during the spring and summer periods of the investigations. Based on the results for the THI, it was established that the animals were not exposed to the effect of extreme heat stress during the spring period of investigations, while they were periodically exposed to moderate but also extreme heat stress during the summer, in particular in the afternoon hours. It can be concluded from the results obtained for the blood pH that the cows were in respiratory alkalosis during the summer in the morning and afternoon hours on day 30, in the afternoon hours of days 60 and 90 of lactation, as well as in the afternoon on day 90 of lactation during the spring period of investigations. During the summer period, there were no statistically significant differences between the pH value determined in the morning and afternoon hours on day 30 of lactation, while the pH value was significantly higher in the afternoon hours than in the morning hours on days 60 and 90 of lactation. There were no

  13. Glucose consumption and rate constants for 18F-fluorodeoxyglucose in human gliomas

    International Nuclear Information System (INIS)

    Ishikawa, Masatsune; Kikuchi, Haruhiko; Nagata, Izumi; Yamagata, Sen; Taki, Waro; Yonekura, Yoshiharu; Nishizawa, Sadahiko; Iwasaki, Yasushi; Mukai, Takao

    1990-01-01

    To investigate the value of direct measurement of the rate constants by performing 18 F-labeled fluorodeoxyglucose (FDG) studies of glucose consumption in human gliomas in vivo, a kinetic method with 3- and 4-parameter rate constant models for FDG uptake was used to analyze data from dynamic scans obtained by positron emission tomography after injection of FDG into 14 patients with glioma. The results were compared with those obtained by the autoradiographic method using 3- and 4-parameter rate constant models. There were no significant differences in the glucose consumption calculated by the four different methods both in the gliomas and in the contralateral intact cortex. It was found that the rate constant k4 could be neglected in calculation of glucose consumption in gliomas as well as in the contralateral intact cortex. The rate constant k3, an index of hexokinase function, was higher in malignant gliomas than in benign gliomas and was close to that in the contralateral cortex. This study indicates that the 3-parameter autoradiographic method, which is the most common one used in clinical practice, is reliable for the calculation of glucose consumption in human gliomas. Furthermore, direct measurement of the regional rate constants for FDG by the kinetic method was found to be useful for evaluation of the biochemical and physiological characteristics of human gliomas in vivo. (author)

  14. Ficus Deltoidea Enhance Glucose Uptake Activity in Cultured Muscle Cells

    International Nuclear Information System (INIS)

    Zainah Adam; Shafii Khamis; Amin Ismail; Muhajir Hamid

    2015-01-01

    Ficus deltoidea or locally known as Mas cotek is one of the common medicinal plants used in Malaysia. Our previous studies showed that this plant have blood glucose lowering effect. Glucose uptake into muscle and adipocytes cells is one of the known mechanisms of blood glucose lowering effect. This study was performed to evaluate the effect of Ficus deltoidea on glucose uptake activity into muscle cells. The cells were incubated with Ficus deltoidea extracts either alone or combination with insulin. Amount of glucose uptake by L6 myotubes was determined using glucose tracer, 2-deoxy-(1- 3 H 1 )-glucose. The results showed that Ficus deltoidea extracts at particular doses enhanced basal or insulin-mediated glucose uptake into muscle cells significantly. Hot aqueous extract enhanced glucose uptake at the low concentration (10 μg/ ml) whereas methanolic extract enhanced glucose uptake at low and high concentrations. Methanolic extract also mimicked insulin activity during enhancing glucose uptake into L^ muscle cells. Glucose uptake activity of Ficus deltoidea could be attributed by the phenolic compound presence in the plant. This study had shown that Ficus deltoidea has the ability to enhance glucose uptake into muscle cells which is partly contributed the antidiabetic activity of this plant. (author)

  15. Pre-exercise blood glucose affects glycemic variation of aerobic exercise in patients with type 2 diabetes treated with continuous subcutaneous insulin infusion.

    Science.gov (United States)

    Hu, Yun; Zhang, Dan-Feng; Dai, Lu; Li, Zheng; Li, Hui-Qin; Li, Feng-Fei; Liu, Bing-Li; Sun, Xiao-Juan; Ye, Lei; He, Ke; Ma, Jian-Hua

    2018-05-03

    Considering the insulin sensitivity may increase by exercise particularly in patients with type 2 diabetes (T2D), glycemic variation during exercise needs to be studied when the patients are treated with insulin. This study aimed to explore the influence factors of the efficacy and safety of aerobic exercise in patients with T2D treated with Continuous Subcutaneous Insulin Infusion (CSII). A total of 267 patients with T2D, treated with CSII, were included. Glycemic variations were assessed by continuous glucose monitoring (CGM). Patients were asked to complete 30 min aerobic exercise for at least one time during CGM. The patients were divided into effective and ineffective group by incremental glucose area under curve from 0 to 60 min after exercise (AUC 0-60 min ). The patients completed a total of 776 times of aerobic exercises. Blood glucose decreased fastest in the first 60 min of exercise. Pre-exercise blood glucose (PEBG) was negatively correlated with AUC 0-60 min (standardized β = -0.386, P AUC of blood glucose ≤ 4.4 mmol/L (standardized β = -0.078, P = 0.034), and was significantly higher in effective group than in ineffective group (P AUC 0-60 min during post-dinner was significantly higher than that during pre-lunch, post-lunch and pre-dinner (P  16.7 mmol/L. Post-dinner exercise decreases the blood glucose better than other periods of the day. ChiCTR-ONC-17010400, www.chictr.org.cn. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Exenatide improves glucocorticoid-induced glucose intolerance in mice

    Directory of Open Access Journals (Sweden)

    Ruiying Zhao

    2011-01-01

    Full Text Available Ruiying Zhao1,2*, Enrique Fuentes-Mattei1,2*, Guermarie Velazquez-Torres1,3, Chun-Hui Su1,2, Jian Chen1, Mong-Hong Lee1,2, Sai-Ching Jim Yeung4,51Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; 2Program in Genes and Development, 3Program in Cancer Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center in Houston, Houston, TX, USA; 4Department of Endocrine Neoplasia and Hormonal Disorders, 5Department of Emergency Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA *Both authors contributed equally.Abstract: Exenatide is an incretin mimetic that is recently available in the US for the treatment of diabetes. There is a paucity of information on the effects of exenatide in glucocorticoid (GC-induced diabetes. Although the effect of continuous intravenous infusion of exenatide on GC-induced glucose intolerance has been investigated before in healthy human males receiving oral prednisolone, we investigated the efficacy of a single subcutaneous dose of exenatide (3 µg/kg in lowering blood glucose in GC-induced glucose intolerance in C57BL/6 mice. In a longitudinal experiment, the area under the curve (AUC of oral glucose tolerance tests (OGTT significantly increased after dexamethasone (P = 0.004, which was subsequently decreased by exenatide (P < 0.001. A cross-sectional experiment showed that exenatide improved glucose tolerance compared with placebo in a mouse model of dexamethasone-induced glucose intolerance. AUC of OGTT in the exenatide group were significantly (P < 0.001 lower than in the placebo group. Insulin tolerance tests (ITT demonstrated that exenatide decreased the ability of the mice to tolerate insulin compared with placebo. The AUC of ITT in the exenatide group were also significantly (P = 0.006 lower than in the placebo group. In conclusion, a single dose of exenatide was able to decrease glucose intolerance and

  17. Prediction of Glucose Tolerance without an Oral Glucose Tolerance Test

    Directory of Open Access Journals (Sweden)

    Rohit Babbar

    2018-03-01

    Full Text Available IntroductionImpaired glucose tolerance (IGT is diagnosed by a standardized oral glucose tolerance test (OGTT. However, the OGTT is laborious, and when not performed, glucose tolerance cannot be determined from fasting samples retrospectively. We tested if glucose tolerance status is reasonably predictable from a combination of demographic, anthropometric, and laboratory data assessed at one time point in a fasting state.MethodsGiven a set of 22 variables selected upon clinical feasibility such as sex, age, height, weight, waist circumference, blood pressure, fasting glucose, HbA1c, hemoglobin, mean corpuscular volume, serum potassium, fasting levels of insulin, C-peptide, triglyceride, non-esterified fatty acids (NEFA, proinsulin, prolactin, cholesterol, low-density lipoprotein, HDL, uric acid, liver transaminases, and ferritin, we used supervised machine learning to estimate glucose tolerance status in 2,337 participants of the TUEF study who were recruited before 2012. We tested the performance of 10 different machine learning classifiers on data from 929 participants in the test set who were recruited after 2012. In addition, reproducibility of IGT was analyzed in 78 participants who had 2 repeated OGTTs within 1 year.ResultsThe most accurate prediction of IGT was reached with the recursive partitioning method (accuracy = 0.78. For all classifiers, mean accuracy was 0.73 ± 0.04. The most important model variable was fasting glucose in all models. Using mean variable importance across all models, fasting glucose was followed by NEFA, triglycerides, HbA1c, and C-peptide. The accuracy of predicting IGT from a previous OGTT was 0.77.ConclusionMachine learning methods yield moderate accuracy in predicting glucose tolerance from a wide set of clinical and laboratory variables. A substitution of OGTT does not currently seem to be feasible. An important constraint could be the limited reproducibility of glucose tolerance status during a

  18. Glucose metabolism disorder in obese children assessed by continuous glucose monitoring system.

    Science.gov (United States)

    Zou, Chao-Chun; Liang, Li; Hong, Fang; Zhao, Zheng-Yan

    2008-02-01

    Continuous glucose monitoring system (CGMS) can measure glucose levels at 5-minute intervals over a few days, and may be used to detect hypoglycemia, guide insulin therapy, and control glucose levels. This study was undertaken to assess the glucose metabolism disorder by CGMS in obese children. Eighty-four obese children were studied. Interstitial fluid (ISF) glucose levels were measured by CGMS for 24 hours covering the time for oral glucose tolerance test (OGTT). Impaired glucose tolerance (IGT), impaired fasting glucose (IFG), type 2 diabetic mellitus (T2DM) and hypoglycemia were assessed by CGMS. Five children failed to complete CGMS test. The glucose levels in ISF measured by CGMS were highly correlated with those in capillary samples (r=0.775, Pobese children who finished the CGMS, 2 children had IFG, 2 had IGT, 3 had IFG + IGT, and 2 had T2DM. Nocturnal hypoglycemia was noted during the overnight fasting in 11 children (13.92%). Our data suggest that glucose metabolism disorder including hyperglycemia and hypoglycemia is very common in obese children. Further studies are required to improve the precision of the CGMS in children.

  19. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiaodong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Long, Yunfei, E-mail: l_yunfei927@163.com [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Wang, Jianxiu, E-mail: jxiuwang@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2013-04-15

    Highlights: ► A glucose oxidase/gold nanocluster conjugates formed by etching chemistry. ► Integration of the bioactivities and fluorescence properties within a single unit. ► These conjugates serve as novel fluorescent probe for glucose. -- Abstract: Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ{sub em} {sub max} = 650 nm, λ{sub ex} {sub max} = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O{sub 2} to produce H{sub 2}O{sub 2}, which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10{sup −6}–140 × 10{sup −6} M and a detection limit of 0.7 × 10{sup −6} M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells.

  20. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite.

    Science.gov (United States)

    Palanisamy, Selvakumar; Cheemalapati, Srikanth; Chen, Shen-Ming

    2014-01-01

    An amperometric glucose biosensor based on enhanced and fast direct electron transfer (DET) of glucose oxidase (GOx) at enzyme dispersed multiwalled carbon nanotubes/graphene oxide (MWCNT/GO) hybrid biocomposite was developed. The fabricated hybrid biocomposite was characterized by transmission electron microscopy (TEM), Raman and infrared spectroscopy (IR). The TEM image of hybrid biocomposite reveals that a thin layer of GOx was covered on the surface of MWCNT/GO hybrid composite. IR results validate that the hybrid biocomposite was formed through the electrostatic interactions between GOx and MWCNT/GO hybrid composite. Further, MWCNT/GO hybrid composite has also been characterized by TEM and UV-visible spectroscopy. A pair of well-defined redox peak was observed for GOx immobilized at the hybrid biocomposite electrode than that immobilized at the MWCNT modified electrode. The electron transfer rate constant (Ks) of GOx at the hybrid biocomposite was calculated to be 11.22s(-1). The higher Ks value revealed that fast DET of GOx occurred at the electrode surface. Moreover, fabricated biosensor showed a good sensitivity towards glucose oxidation over a linear range 0.05-23.2mM. The limit of detection (LOD) was estimated to be 28μM. The good features of the proposed biosensor could be used for the accurate detection of glucose in the biological samples. © 2013.

  1. Glucose activates prenyltransferases in pancreatic islet {beta}-cells

    Energy Technology Data Exchange (ETDEWEB)

    Goalstone, Marc [Department of Medicine, University of Colorado, VA Medical Center, Denver, CO 80220 (United States); Kamath, Vasudeva [Department of Pharmaceutical Sciences, Wayne State University, VA Medical Center, Detroit, MI 48201 (United States); Kowluru, Anjaneyulu, E-mail: akowluru@med.wayne.edu [Department of Pharmaceutical Sciences, Wayne State University, VA Medical Center, Detroit, MI 48201 (United States)

    2010-01-01

    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet {beta}-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 {beta}-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20 mM] markedly stimulated the expression of the {alpha}-subunits of FTase/GGTase-1, but not the {beta}-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  2. Glucose activates prenyltransferases in pancreatic islet β-cells

    International Nuclear Information System (INIS)

    Goalstone, Marc; Kamath, Vasudeva; Kowluru, Anjaneyulu

    2010-01-01

    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet β-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 β-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20 mM] markedly stimulated the expression of the α-subunits of FTase/GGTase-1, but not the β-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  3. Could Continuous Glucose Monitoring Facilitate Identifying Diabetes Patients with a Higher Risk of Hypoglycemia during Driving?

    Czech Academy of Sciences Publication Activity Database

    Brož, J.; Doničová, V.; Brabec, Marek; Janíčková Žďárská, D.; Polák, J.

    2013-01-01

    Roč. 7, č. 6 (2013), s. 1644-1645 ISSN 1932-2968 Institutional support: RVO:67985807 Keywords : continuous glucose monitoring * driving * hypoglycemia * insulin pump * prevention * type 1 diabetes mellitus Subject RIV: BB - Applied Statistics, Operational Research http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3876343/

  4. GLUCOSE-FRUCTOSE INDEX IN THE GRAPES

    Directory of Open Access Journals (Sweden)

    N. V. Gnilomedova

    2016-01-01

    Full Text Available Results summarize literature and experimental data on the content of glucose and fructose of different varieties in grapes belonging to different botanical species of Vitis. The ratio of glucose and fructose indicator can be used for fermentation control and prevention of under fermentation in the production of dry wines, as well as an identification parameter to assess the authenticity of grape juice and concentratedmust. The object of the study were grapes of red and white winemaking European and autochthonous varieties, belonging to Vitis, as well as varieties of new selection (Aligote, Albilio, Verdelho, Sersial, Rkatsiteli, White Muscat, Cabernet-Sauvignon, Bastardo of Magarach, Kephesiya, Ekim kara, Golubok. Sugar content in grape samples was inthe range of 180-260 g/l. Total hexoses were determined by HPLC method according to a modified methodology developed by the Department of Chemistry and Biochemistry of Wine of "FSBSI "Magarach ". It was established that the value range of the glucose-fructose index in the grapes cultivated in different viniviticultural regions of the world makes 0.74-1.19. It has been revealed that the glucose-fructose index decreases with the ripening of berries. Low index values are characteristic for the grape that ripens at high temperatures and was cultivated in regions with hot climate. High index valuesare characteristic of table grapes and winemaking grape varieties of the species Vitis labrusca, Vitis amurensis and interspecific hybrids. Within the botanical species we canidentify varieties that tend to accumulate higher volumes of either glucose or fructose. These patterns are equally characteristic of white and red grape varieties. The analytical analyzes of the Crimean winemaking grape varieties resulted in the establishment of the glucose-fructose index for the first time, varying within the range of 0.9-1.06.

  5. Effect of the consumption of β-lactoglobulin and epigallocatechin-3-gallate with or without calcium on glucose tolerance in C57BL/6 mice.

    Science.gov (United States)

    Carnovale, Valérie; Pilon, Geneviève; Britten, Michel; Bazinet, Laurent; Couillard, Charles

    2016-01-01

    Interactions between β-lactoglobulin (β-lg) and epigallocatechin-3-gallate (EGCG) may modulate their health benefits. The objective of this study was therefore to investigate the synergistic effect of consuming β-lg and EGCG complexes on glucose tolerance of C57BL/6 male mice given an oral glucose tolerance test (OGTT) and randomized to one of the following treatments administered prior to the OGTT: 1) simulated milk ultrafiltrate (SMUF(-)), 2) SMUF(-) + EGCG, 3) SMUF(-) + β-lg, 4) SMUF(-) + EGCG + β-lg, 5) SMUF + calcium (SMUF(+)) and 6) SMUF(+) + EGCG + β-lg. We found no significant between-group difference in postprandial glucose response. However, when mice were separated in those who received β-lg from those who did not, we found that the latter displayed significantly higher postprandial glucose concentrations. Our results support the beneficial impact of β-lg on glycemic control and suggest that concomitant EGCG or calcium consumption does not improve this effect.

  6. Involvement of α(2)-adrenergic receptor in the regulation of the blood glucose level induced by immobilization stress.

    Science.gov (United States)

    Kang, Yu-Jung; Sim, Yun-Beom; Park, Soo-Hyun; Sharma, Naveen; Suh, Hong-Won

    2015-01-01

    The blood glucose profiles were characterized after mice were forced into immobilization stress with various exposure durations. The blood glucose level was significantly enhanced by immobilization stress for 30 min or 1 h, respectively. On the other hand, the blood glucose level was not affected in the groups which were forced into immobilization stress for 2 or 4 h. We further examined the effect of yohimbine (an α2-adrenergic receptor antagonist) administered systemically or centrally in the immobilization stress model. Mice were pretreated intraperitoneally (i.p.; from 0.5 to 5 mg/kg), intracerebroventricularly (i.c.v.; from 1 to 10 µg/5 µl), or intrathecally (i.t.; from 1 to 10 µg/5 µl) with yohimbine for 10 min and then, forced into immobilization stress for 30 min. The blood glucose level was measured right after immobilization stress. We found that up-regulation of the blood glucose level induced by immobilization stress was abolished by i.p. pretreatment with yohimbine. And the immobilization stress-induced blood glucose level was not inhibited by i.c.v. or i.t. pretreatment with yohimbine at a lower dose (1 µg/5 µl). However, immobilization stress-induced blood glucose level was significantly inhibited by i.c.v. or i.t. pretreatment with yohimbine at higher doses (5 and 10 µg/5 µl). In addition, the i.p. (5 mg/kg), i.c.v. (10 µg/5 µl), or i.t. (10 µg/5 µl) pretreatment with yohimbine reduced hypothalamic glucose transporter 4 expression. The involvement of α2-adrenergic receptor in regulation of immobilization stress- induced blood glucose level was further confirmed by the i.p, i.c.v, or i.t pretreatment with idazoxan, another specific α2-adrenergic receptor antagonist. Finally, i.p., i.c.v., or i.t. pretreatment with yohimbine attenuated the blood glucose level in D-glucose-fed model. We suggest that α2-adrenergic receptors located at the peripheral, the brain and the spinal cord play important roles in the up

  7. The association between socio-demographic marginalization and plasma glucose levels at diagnosis of gestational diabetes.

    Science.gov (United States)

    Sampson, L; Dasgupta, K; Ross, N A

    2014-12-01

    We examined the association between socio-demographic marginalization and plasma glucose levels at diagnosis of gestational diabetes in a multi-ethnic and socio-economically diverse patient group. Medical charts at a Toronto gestational diabetes clinic were reviewed for women with a recorded pregnancy between 1 March 2006 and 26 April 2011. One-hour 50-g glucose challenge test values and postal code data were abstracted. Postal codes were merged with 2006 Canadian census data to compute neighbourhood-level ethnic concentration (% recent immigrants, % visible minorities) and material deprivation (% low education, % low income, single-parent households). We compared women in the highest neighbourhood quintiles for both ethnic concentration and material deprivation with all other women to explore an association between marginalization and diagnostic glucose levels. Multivariate regression models of glucose challenge test values and insulin prescription were adjusted for age, prior gestational diabetes, parity and diabetes family history. Among 531 patients with complete glucose challenge test data (mean 11.94 mmol/l, sd 1.83), those in the most marginalized neighbourhoods had 0.43 mmol/l higher glucose challenge test values (95% CI 0.08-0.78) compared with the rest of the study population. Other factors associated with higher glucose challenge test values were prior gestational diabetes (0.59 mmol/l increment, 95% CI 0.19-0.99) and diabetes family history (0.32 mmol/l increment, 95% CI -0.01 to 0.66). Each additional 1 mmol/l glucose challenge test result was associated with an increased likelihood of being prescribed insulin (odds ratio 1.33, 95% CI 1.17-1.51). Women living in the most materially deprived and ethnically concentrated neighbourhoods have higher glucose levels at diagnosis of gestational diabetes. They may need close monitoring for timely initiation of insulin. © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK.

  8. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice

    Science.gov (United States)

    Yan, Shengmin; Zhang, Hongxia; Zheng, Fei; Sheng, Nan; Guo, Xuejiang; Dai, Jiayin

    2015-06-01

    Perfluoroalkyl acids (PFAAs) are widely used in many applications due to their unique physical and chemical characteristics. Because of the increasing prevalence of metabolic syndromes, including obesity, dyslipidemia and insulin resistance, concern has arisen about the roles of environmental pollutants in such diseases. Earlier epidemiologic studies showed a potential association between perfluorooctanoic acid (PFOA) and glucose metabolism, but how PFOA influences glucose homeostasis is still unknown. Here, we report on the modulation of the phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT) signaling pathway in the livers of mice after 28 d of exposure to PFOA. Compared with normal mice, PFOA exposure significantly decreased the expression of the phosphatase and tensin homologue (PTEN) protein and affected the PI3K-AKT signaling pathway in the liver. Tolerance tests further indicated that PFOA exposure induced higher insulin sensitivity and glucose tolerance in mice. Biochemical analysis revealed that PFOA exposure reduced hepatic glycogen synthesis, which might be attributed to gluconeogenesis inhibition. The levels of several circulating proteins were altered after PFOA exposure, including proteins potentially related to diabetes and liver disease. Our results suggest that PFOA affected glucose metabolism and induced insulin hypersensitivity in mice.

  9. Effects on the glucose metabolism in type II diabetes model mice treated with dose-rates irradiation

    International Nuclear Information System (INIS)

    Nomura, Takaharu; Sakai, Kazuo

    2004-01-01

    The effects of low-dose rate gamma-irradiation on the type II diabetes mellitus were investigated in C57BL/KsJ-ab/db (db mouse). This mouse develops the type II diabetes within 8 weeks of the birth due to a dysfunction of the insulin receptors. As a result the db mouse shows obese and exhibits hyperinsulinism. Ten-week old female mice (12 mice in each group) were irradiated with gamma-rays at 0.35 mGy/hr, 0.65 mGy/hr or 1.2 mGy/hr in the low-dose rate irradiation facility in the Low Dose Radiation Research Center. The level of plasma glucose and insulin was measured. After 2 weeks irradiation, the glucose level slightly increased, however the difference between the irradiated mice and non-irradiated groups was not significant. The plasma insulin concentration decreased in the non-irradiated group to half of the initial level. In the irradiated group, it also decreased but in the group of 0.65 mGy/hr and 0.35 mGy/hr, it was significantly differed from that in the non-irradiated group. In the glucose tolerance test, plasma glucose level increased shortly after 0.1 mg/head glucose injection by mouth and reached to a peak at 90-120 min after the injection. The glucose level of the non-irradiated mice was slightly higher than that of irradiated mice. The plasma insulin level of non-irradiated group was enhanced after the injection and maintained the level during the test. However the levels of irradiated mice were decreased at 30-60 min after the injection. Both the level of non-irradiated an irradiated was almost same but the non-irradiated one was a little high. In all of mice, the plasma insulin level was highly elevated right after the 0.05 units/head insulin injection by i.p. and the levels were also gradually decreased. The level of the non-irradiated group was slowly decreased and was higher than the irradiated mice. The plasma glucose levels of all mice did not change after the test; however, the levels of irradiated mice were slightly lower than that of non

  10. Stimulation of the endogenous incretin glucose-dependent insulinotropic peptide by enteral dextrose improves glucose homeostasis and inflammation in murine endotoxemia.

    Science.gov (United States)

    Shah, Faraaz Ali; Singamsetty, Srikanth; Guo, Lanping; Chuan, Byron W; McDonald, Sherie; Cooper, Bryce A; O'Donnell, Brett J; Stefanovski, Darko; Wice, Burton; Zhang, Yingze; O'Donnell, Christopher P; McVerry, Bryan J

    2018-03-01

    Loss of glucose homeostasis during sepsis is associated with increased organ dysfunction and higher mortality. Novel therapeutic strategies to promote euglycemia in sepsis are needed. We have previously shown that early low-level intravenous (IV) dextrose suppresses pancreatic insulin secretion and induces insulin resistance in septic mice, resulting in profound hyperglycemia and worsened systemic inflammation. In this study, we hypothesized that administration of low-level dextrose via the enteral route would stimulate intestinal incretin hormone production, potentiate insulin secretion in a glucose-dependent manner, and thereby improve glycemic control in the acute phase of sepsis. We administered IV or enteral dextrose to 10-week-old male C57BL/6J mice exposed to bacterial endotoxin and measured incretin hormone release, glucose disposal, and proinflammatory cytokine production. Compared with IV administration, enteral dextrose increased circulating levels of the incretin hormone glucose-dependent insulinotropic peptide (GIP) associated with increased insulin release and insulin sensitivity, improved mean arterial pressure, and decreased proinflammatory cytokines in endotoxemic mice. Exogenous GIP rescued glucose metabolism, improved blood pressure, and increased insulin release in endotoxemic mice receiving IV dextrose, whereas pharmacologic inhibition of GIP signaling abrogated the beneficial effects of enteral dextrose. Thus, stimulation of endogenous GIP secretion by early enteral dextrose maintains glucose homeostasis and attenuates the systemic inflammatory response in endotoxemic mice and may provide a therapeutic target for improving glycemic control and clinical outcomes in patients with sepsis. Published by Elsevier Inc.

  11. Adaptation of Escherichia coli to glucose promotes evolvability in lactose.

    Science.gov (United States)

    Phillips, Kelly N; Castillo, Gerardo; Wünsche, Andrea; Cooper, Tim F

    2016-02-01

    The selective history of a population can influence its subsequent evolution, an effect known as historical contingency. We previously observed that five of six replicate populations that were evolved in a glucose-limited environment for 2000 generations, then switched to lactose for 1000 generations, had higher fitness increases in lactose than populations started directly from the ancestor. To test if selection in glucose systematically increased lactose evolvability, we started 12 replay populations--six from a population subsample and six from a single randomly selected clone--from each of the six glucose-evolved founder populations. These replay populations and 18 ancestral populations were evolved for 1000 generations in a lactose-limited environment. We found that replay populations were initially slightly less fit in lactose than the ancestor, but were more evolvable, in that they increased in fitness at a faster rate and to higher levels. This result indicates that evolution in the glucose environment resulted in genetic changes that increased the potential of genotypes to adapt to lactose. Genome sequencing identified four genes--iclR, nadR, spoT, and rbs--that were mutated in most glucose-evolved clones and are candidates for mediating increased evolvability. Our results demonstrate that short-term selective costs during selection in one environment can lead to changes in evolvability that confer longer term benefits. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  12. Glucose enhancement of memory is modulated by trait anxiety in healthy adolescent males.

    Science.gov (United States)

    Smith, Michael A; Hii, Hilary L; Foster, Jonathan K; van Eekelen, J A M

    2011-01-01

    Glucose administration is associated with memory enhancement in healthy young individuals under conditions of divided attention at encoding. While the specific neurocognitive mechanisms underlying this 'glucose memory facilitation effect' are currently uncertain, it is thought that individual differences in glucoregulatory efficiency may alter an individual's sensitivity to the glucose memory facilitation effect. In the present study, we sought to investigate whether basal hypothalamic-pituitary-adrenal axis function (itself a modulator of glucoregulatory efficiency), baseline self-reported stress and trait anxiety influence the glucose memory facilitation effect. Adolescent males (age range = 14-17 years) were administered glucose and placebo prior to completing a verbal episodic memory task on two separate testing days in a counter-balanced, within-subjects design. Glucose ingestion improved verbal episodic memory performance when memory recall was tested (i) within an hour of glucose ingestion and encoding, and (ii) one week subsequent to glucose ingestion and encoding. Basal hypothalamic-pituitary-adrenal axis function did not appear to influence the glucose memory facilitation effect; however, glucose ingestion only improved memory in participants reporting relatively higher trait anxiety. These findings suggest that the glucose memory facilitation effect may be mediated by biological mechanisms associated with trait anxiety.

  13. [Evaluation of Optium Xceed (Abbott) and One Touch Ultra (Lifescan) glucose meters].

    Science.gov (United States)

    Coyne, S; Lacour, B; Hennequin-Le Meur, C

    2008-01-01

    In order to build a continuous quality improvement approach for control of glucose meters in clinical divisions at Necker-Enfants Malades hospital, the analytical performances (precision and accuracy) of 2 glucose meters have been evaluated in our laboratory according to SFBC recommendations. Fifty-six heparinized whole blood specimens from patients and thirty-nine from healthy volunteers were analyzed on each of the two meters and compared to plasma glucose measurement on the Roche Hitachi 917 system. The correlation coefficient was 0.938 for Optium Xceed and 0.911 for One Touch Ultra. However, 14.7% and 18.9% of the results (n = 95) for respectively Optium Xceed and One Touch Ultra were discordant, i.e. higher than a 20% difference compared to reference blood glucose concentrations. Inaccuracy was more important for low glucose concentrations (glucose concentrations. Capillary blood glucose concentrations must therefore be interpreted with caution concerning the diagnosis of hypoglycemia and treatment of unstable patients. Moreover, quality control of glucose meters (blood glucose determinations concurrently at bedside and in the laboratory) is difficult to perform. It also raises questions about the responsibility of "point-of-care testing", an area still subject to discussion.

  14. The Effect of Selenium Supplementation on Glucose Homeostasis and the Expression of Genes Related to Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Ewa Jablonska

    2016-12-01

    Full Text Available The aim of the study was to evaluate the effect of selenium supplementation on the expression of genes associated with glucose metabolism in humans, in order to explain the unclear relationship between selenium and the risk of diabetes. For gene expression analysis we used archival samples of cDNA from 76 non-diabetic subjects supplemented with selenium in the previous study. The supplementation period was six weeks and the daily dose of selenium was 200 µg (as selenium yeast. Blood for mRNA isolation was collected at four time points: before supplementation, after two and four weeks of supplementation, and after four weeks of washout. The analysis included 15 genes encoding selected proteins involved in insulin signaling and glucose metabolism. In addition, HbA1c and fasting plasma glucose were measured at three and four time points, respectively. Selenium supplementation was associated with a significantly decreased level of HbA1c but not fasting plasma glucose (FPG and significant down-regulation of seven genes: INSR, ADIPOR1, LDHA, PDHA, PDHB, MYC, and HIF1AN. These results suggest that selenium may affect glycemic control at different levels of regulation, linked to insulin signaling, glycolysis, and pyruvate metabolism. Further research is needed to investigate mechanisms of such transcriptional regulation and its potential implication in direct metabolic effects.

  15. Closed-loop controlled noninvasive ultrasonic glucose sensing and insulin delivery

    Science.gov (United States)

    Park, Eun-Joo; Werner, Jacob; Jaiswal, Devina; Smith, Nadine Barrie

    2010-03-01

    To prevent complications in diabetes, the proper management of blood glucose levels is essential. Previously, ultrasonic transdermal methods using a light-weight cymbal transducer array has been studied for noninvasive methods of insulin delivery for Type-1 diabetes and glucose level monitoring. In this study, the ultrasound systems of insulin delivery and glucose sensing have been combined by a feedback controller. This study was designed to show the feasibility of the feedback controlled ultrasound system for the noninvasive glucose control. For perspective human application, in vivo experiments were performed on large animals that have a similar size to humans. Four in vivo experiments were performed using about 200 lbs pigs. The cymbal array of 3×3 pattern has been used for insulin delivery at 30 kHz with the spatial-peak temporal-peak intensity (Isptp) of 100 mW/cm2. For glucose sensing, a 2×2 array was operated at 20 kHz with Isptp = 100 mW/cm2. Based on the glucose level determined by biosensors after the ultrasound exposure, the ultrasound system for the insulin delivery was automatically operated. The glucose level of 115 mg/dl was set as a reference value for operating the insulin delivery system. For comparison, the glucose levels of blood samples collected from the ear vein were measured by a commercial glucose meter. Using the ultrasound system operated by the close-loop, feed-back controller, the glucose levels of four pigs were determined every 20 minutes and continuously controlled for 120 minutes. In comparison to the commercial glucose meter, the glucose levels determined by the biosensor were slightly higher. The results of in vivo experiments indicate the feasibility of the feedback controlled ultrasound system using the cymbal array for noninvasive glucose sensing and insulin delivery. Further studies on the extension of the glucose control will be continued for the effective method of glucose control.

  16. Human monoclonal antibodies against glucagon receptor improve glucose homeostasis by suppression of hepatic glucose output in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Wook-Dong Kim

    Full Text Available AIM: Glucagon is an essential regulator of hepatic glucose production (HGP, which provides an alternative therapeutic target for managing type 2 diabetes with glucagon antagonists. We studied the effect of a novel human monoclonal antibody against glucagon receptor (GCGR, NPB112, on glucose homeostasis in diet-induced obese (DIO mice. METHODS: The glucose-lowering efficacy and safety of NPB112 were investigated in DIO mice with human GCGR for 11 weeks, and a hyperinsulinemic-euglycemic clamp study was conducted to measure HGP. RESULTS: Single intraperitoneal injection of NPB112 with 5 mg/kg effectively decreased blood glucose levels in DIO mice for 5 days. A significant reduction in blood glucose was observed in DIO mice treated with NPB112 at a dose ≥5 mg/kg for 6 weeks, and its glucose-lowering effect was dose-dependent. Long-term administration of NPB112 also caused a mild 29% elevation in glucagon level, which was returned to the normal range after discontinuation of treatment. The clamp study showed that DIO mice injected with NPB112 at 5 mg/kg were more insulin sensitive than control mice, indicating amelioration of insulin resistance by treatment with NPB112. DIO mice treated with NPB112 showed a significant improvement in the ability of insulin to suppress HGP, showing a 33% suppression (from 8.3 mg/kg/min to 5.6 mg/kg/min compared to the 2% suppression (from 9.8 mg/kg/min to 9.6 mg/kg/min in control mice. In addition, no hypoglycemia or adverse effect was observed during the treatment. CONCLUSIONS: A novel human monoclonal GCGR antibody, NPB112, effectively lowered the glucose level in diabetic animal models with mild and reversible hyperglucagonemia. Suppression of excess HGP with NPB112 may be a promising therapeutic modality for the treatment of type 2 diabetes.

  17. A community-based survey for different abnormal glucose metabolism among pregnant women in a random household study (SAUDI-DM)

    Science.gov (United States)

    Al-Rubeaan, Khalid; Al-Manaa, Hamad A; Khoja, Tawfik A; Youssef, Amira M; Al-Sharqawi, Ahmad H; Siddiqui, Khalid; Ahmad, Najlaa A

    2014-01-01

    Objective To assess the prevalence and risk factors of gestational diabetes mellitus (GDM) in a population known to have a high prevalence of abnormal glucose metabolism. Methods A household random population-based cross-sectional study of 13 627 women in the childbearing age, who were subjected to fasting plasma glucose if they were not known to have been diagnosed before with any type of diabetes. GDM cases were diagnosed using the International Association of Diabetes and Pregnancy Study Group (IAPSG) criteria. Results The overall GDM prevalence was 36.6%, categorised into 32.4% new cases and 4.2% known cases. Another 3.6% had preconception type 1 or 2 diabetes. GDM cases were older and had a significantly higher body mass index, in addition to a higher rate of macrocosmic baby and history of GDM. Monthly income, educational level, living in urban areas and smoking were not found to be significantly different between normal and GDM cases. The most important and significant risk factors for GDM were history of GDM, macrosomic baby, obesity and age >30 years. However, hypertension, low high-density lipoprotein, family history of diabetes and increased triglycerides did not show any significant effect on GDM prevalence in this cohort. Conclusions This society is facing a real burden of abnormal glucose metabolism during pregnancy, where almost half of the pregnant women are subjected to maternal and neonatal complications. Early screening of pregnant women, especially those at a high risk for GDM, is mandatory to identify and manage those cases. PMID:25138813

  18. A Novel EPO Receptor Agonist Improves Glucose Tolerance via Glucose Uptake in Skeletal Muscle in a Mouse Model of Diabetes

    Directory of Open Access Journals (Sweden)

    Michael S. Scully

    2011-01-01

    Full Text Available Patients treated with recombinant human Epo demonstrate an improvement in insulin sensitivity. We aimed to investigate whether CNTO 530, a novel Epo receptor agonist, could affect glucose tolerance and insulin sensitivity. A single administration of CNTO 530 significantly and dose-dependently reduced the area under the curve in a glucose tolerance test in diet-induced obese and diabetic mice after 14, 21, and 28 days. HOMA analysis suggested an improvement in insulin sensitivity, and this effect was confirmed by a hyperinsulinemic-euglycemic clamp. Uptake of 14C-2-deoxy-D-glucose indicated that animals dosed with CNTO 530 transported more glucose into skeletal muscle and heart relative to control animals. In conclusion, CNTO530 has a profound effect on glucose tolerance in insulin-resistant rodents likely because of improving peripheral insulin sensitivity. This effect was observed with epoetin-α and darbepoetin-α, suggesting this is a class effect, but the effect with these compounds relative to CNTO530 was decreased in duration and magnitude.

  19. Altered glucose kinetics in diabetic rats during Gram-negative infection

    International Nuclear Information System (INIS)

    Lang, C.H.; Dobrescu, C.; Bagby, G.J.; Spitzer, J.J.

    1987-01-01

    The present study examined the purported exacerbating effect of sepsis on glucose metabolism in diabetes. Diabetes was induced in rats by an intravenous injection of 70 or 45 mg/kg streptozotocin. The higher dose produced severe diabetes, whereas the lower dose of streptozotocin produced a miler, latent diabetes. After a chronic diabetic state had developed for 4 wk, rats had catheters implanted and sepsis induced by intraperitoneal injections of live Escherichia coli. After 24 h of sepsis the blood glucose concentration was unchanged in nondiabetics and latent diabetics, but glucose decreased from 15 to 8 mM in the septic severe diabetic group. This decrease in blood glucose was not accompanied by alterations in the plasma insulin concentration. Glucose turnover, assessed by the constant intravenous infusion of [6- 3 H]- and [U- 14 C]glucose, was elevated in the severe diabetic group, compared with either latent diabetics or nondiabetics. Sepsis increased the rate of glucose disappearance in nondiabetic rats but had no effect in either group of diabetic animals. Sepsis also failed to alter the insulinogenic index, used to estimate the insulin secretory capacity, in diabetic rats. Thus the present study suggests that the imposition of nonlethal Gram-negative sepsis on severe diabetic animals does not further impair glucose homeostasis and that the milder latent diabetes was not converted to a more severe diabetic state by the septic challenge

  20. Effects of dietary substitution of mixed amino acids for glucose on the splanchnic metabolism of plasma triglycerides, cholesterol, carbohydrates, and amino acids in conscious fed baboons.

    Science.gov (United States)

    Wolfe, B M; Redinger, R N; Marliss, E B; Grace, D M

    1983-04-01

    Splanchnic metabolism was studied in the fed state during prolonged constant intravenous administration of tracer amounts of [9,10]-3H palmitic acid and the calculated isocaloric intraduodenal administration (13 mg/min X kg body wt0.75) of either (1) glucose, (2) 15% mixed amino acids and 85% glucose or (3) 45% mixed amino acids and 55% glucose to conscious, restrained female baboons that had been maintained on a similar diet (supplemented in essential nutrients) for the previous 9 days. Secretion of plasma triglycerides from the splanchnic region was quantified from splanchnic flow and radiochemical measurements of transsplanchnic gradients of 3H-labeled free fatty acids and triglycerides. Mean splanchnic secretion of plasma triglycerides increased significantly as the proportion of dietary calories derived from amino acids was varied from 0 to 15 to 45% (mean values 1.1 +/- 0.1, 2.6 +/- 0.2 and 4.2 +/- 0.3 mumol/min kg body wt0.75, respectively, p less than 0.05). Increased triglyceride secretion was attributable to both significantly higher rates of esterification of free fatty acids taken up in the splanchnic region to triglycerides released into hepatic venous blood plasma (mean values 10 +/- 1, 16 +/- 2 and 34 +/- 5%, respectively) and to significantly higher rates of secretion of triglycerides derived from precursors other than free fatty acids. Higher intake of amino acids was also associated with both higher plasma concentrations of cholesterol and higher values for hepatic oxidation of cholesterol to bile acids.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Transport equations in an enzymatic glucose fuel cell

    Science.gov (United States)

    Jariwala, Soham; Krishnamurthy, Balaji

    2018-01-01

    A mathematical model is developed to study the effects of convective flux and operating temperature on the performance of an enzymatic glucose fuel cell with a membrane. The model assumes isothermal operating conditions and constant feed rate of glucose. The glucose fuel cell domain is divided into five sections, with governing equations describing transport characteristics in each region, namely - anode diffusion layer, anode catalyst layer (enzyme layer), membrane, cathode catalyst layer and cathode diffusion layer. The mass transport is assumed to be one-dimensional and the governing equations are solved numerically. The effects flow rate of glucose feed on the performance of the fuel cell are studied as it contributes significantly to the convective flux. The effects of operating temperature on the performance of a glucose fuel cell are also modeled. The cell performances are compared using cell polarization curves, which were found compliant with experimental observations.

  2. Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment

    Science.gov (United States)

    Vandersluis, Stacey; Kabali, Conrad; Djalalov, Sandjar; Gajic-Veljanoski, Olga; Wells, David; Holubowich, Corinne

    2018-01-01

    Background Type 1 diabetes is a condition in which the pancreas produces little or no insulin. People with type 1 diabetes must manage their blood glucose levels by monitoring the amount of glucose in their blood and administering appropriate amounts of insulin via injection or an insulin pump. Continuous glucose monitoring may be beneficial compared to self-monitoring of blood glucose using a blood glucose meter. It provides insight into a person's blood glucose levels on a continuous basis, and can identify whether blood glucose levels are trending up or down. Methods We conducted a health technology assessment, which included an evaluation of clinical benefit, value for money, and patient preferences related to continuous glucose monitoring. We compared continuous glucose monitoring with self-monitoring of blood glucose using a finger-prick and a blood glucose meter. We performed a systematic literature search for studies published since January 1, 2010. We created a Markov model projecting the lifetime horizon of adults with type 1 diabetes, and performed a budget impact analysis from the perspective of the health care payer. We also conducted interviews and focus group discussions with people who self-manage their type 1 diabetes or support the management of a child with type 1 diabetes. Results Twenty studies were included in the clinical evidence review. Compared with self-monitoring of blood glucose, continuous glucose monitoring improved the percentage of time patients spent in the target glycemic range by 9.6% (95% confidence interval 8.0–11.2) to 10.0% (95% confidence interval 6.75–13.25) and decreased the number of severe hypoglycemic events. Continuous glucose monitoring was associated with higher costs and small increases in health benefits (quality-adjusted life-years). Incremental cost-effectiveness ratios (ICERs) ranged from $592,206 to $1,108,812 per quality-adjusted life-year gained in analyses comparing four continuous glucose monitoring

  3. MIL-53(Fe) MOF-mediated catalytic chemiluminescence for sensitive detection of glucose.

    Science.gov (United States)

    Yi, Xueling; Dong, Wenfei; Zhang, Xiaodan; Xie, Jianxin; Huang, Yuming

    2016-12-01

    Various analytical applications of metal-organic frameworks (MOFs) have been rapidly developed in the past few years. However, the employment of MOFs as catalysts in chemiluminescence (CL) analysis is rare. Here, for the first time, we found that MIL-53(Fe) MOFs could significantly enhance the CL of luminol in the presence of H 2 O 2 in an alkaline medium. The CL intensity in the luminol-H 2 O 2 -MIL-53(Fe) system was about 20 times higher than that in the luminol-H 2 O 2 system. Moreover, the XRD pattern of MIL-53(Fe) after CL reaction was almost the same as that of the original MIL-53(Fe), confirming the catalytic role of MIL-53(Fe) in the luminol-H 2 O 2 -MIL-53(Fe) system. The possible mechanism behind the enhancing phenomenon was discussed based on the results from the CL spectra, FL probe experiments, and active oxygen species measurements. By coupling with the glucose oxidase-based catalytic oxidation reaction, a sensitive and selective CL method was developed for the detection of glucose. There is a linear relationship between the logarithm of CL intensity and the logarithm of glucose concentration in the range from 0.1 to 10 μM, and a detection limit of 0.05 μM (S/N = 3) is obtained. The proposed method has been applied to the determination of glucose in human serum samples with satisfactory results. Graphical abstract MIL-53(Fe) MOFs are found to greatly enhance the chemiluminescence emission of the luminol-H 2 O 2 system, and this finding resulted in a new chemiluminescence method for biosensing of glucose when coupled with the glucose oxidase.

  4. Glucose-Treated Manganese Hexacyanoferrate for Sodium-Ion Secondary Battery

    OpenAIRE

    Moritomo, Yutaka; Goto, Kensuke; Shibata, Takayuki

    2015-01-01

    Manganese hexacyanoferrate (Mn-PBA) is a promising cathode material forsodium-ion secondary battery (SIB) with high average voltage (=3.4 V) against Na. Here,we find that the thermal decomposition of glucose modifies the surface state of Mn-PBA,without affecting the bulk crystal structure. The glucose treatment significantly improves therate properties of Mn-PBA in SIB. The critical discharge rate increases from 1 C (as-grown)to 15 C (glucose-treated). Our observation suggests that thermal tr...

  5. Cellular and molecular cues of glucose sensing in the rat olfactory bulb

    Directory of Open Access Journals (Sweden)

    Dolly eAl Koborssy

    2014-10-01

    Full Text Available In the brain, glucose homeostasis of extracellular fluid is crucial to the point that systems specifically dedicated to glucose sensing are found in areas involved in energy regulation and feeding behavior. Olfaction is a major sensory modality regulating food consumption. Nutritional status in turn modulates olfactory detection. Recently it has been proposed that some olfactory bulb (OB neurons respond to glucose similarly to hypothalamic neurons. However, the precise molecular cues governing glucose sensing in the OB are largely unknown. To decrypt these molecular mechanisms, we first used immunostaining to demonstrate a strong expression of two neuronal markers of glucose-sensitivity, insulin-dependent glucose transporter type 4 (GLUT4, and sodium glucose co-transporter type 1 (SGLT1 in specific OB layers. We showed that expression and mapping of GLUT4 but not SGLT1 were feeding state-dependent. In order to investigate the impact of metabolic status on the delivery of blood-borne glucose to the OB, we measured extracellular fluid glucose concentration using glucose biosensors simultaneously in the OB and cortex of anesthetized rats. We showed that glucose concentration in the OB is higher than in the cortex, that metabolic steady-state glucose concentration is independent of feeding state in the two brain areas, and that acute changes in glycemic conditions affect bulbar glucose concentration alone. These data provide new evidence of a direct relationship between the OB and peripheral metabolism, and emphasize the importance of glucose for the OB network, providing strong arguments toward establishing the OB as a glucose-sensing organ.

  6. Experience-dependent escalation of glucose drinking and the development of glucose preference over fructose - association with glucose entry into the brain.

    Science.gov (United States)

    Wakabayashi, Ken T; Spekterman, Laurence; Kiyatkin, Eugene A

    2016-06-01

    Glucose, a primary metabolic substrate for cellular activity, must be delivered to the brain for normal neural functions. Glucose is also a unique reinforcer; in addition to its rewarding sensory properties and metabolic effects, which all natural sugars have, glucose crosses the blood-brain barrier and acts on glucoreceptors expressed on multiple brain cells. To clarify the role of this direct glucose action in the brain, we compared the neural and behavioural effects of glucose with those induced by fructose, a sweeter yet metabolically equivalent sugar. First, by using enzyme-based biosensors in freely moving rats, we confirmed that glucose rapidly increased in the nucleus accumbens in a dose-dependent manner after its intravenous delivery. In contrast, fructose induced a minimal response only after a large-dose injection. Second, we showed that naive rats during unrestricted access consumed larger volumes of glucose than fructose solution; the difference appeared with a definite latency during the initial exposure and strongly increased during subsequent tests. When rats with equal sugar experience were presented with either glucose or fructose in alternating order, the consumption of both substances was initially equal, but only the consumption of glucose increased during subsequent sessions. Finally, rats with equal glucose-fructose experience developed a strong preference for glucose over fructose during a two-bottle choice procedure; the effect appeared with a definite latency during the initial test and greatly amplified during subsequent tests. Our results suggest that direct entry of glucose in the brain and its subsequent effects on brain cells could be critical for the experience-dependent escalation of glucose consumption and the development of glucose preference over fructose. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  7. High glucose concentration induces endothelial cell proliferation by regulating cyclin-D2-related miR-98.

    Science.gov (United States)

    Li, Xin-Xin; Liu, Yue-Mei; Li, You-Jie; Xie, Ning; Yan, Yun-Fei; Chi, Yong-Liang; Zhou, Ling; Xie, Shu-Yang; Wang, Ping-Yu

    2016-06-01

    Cyclin D2 is involved in the pathology of vascular complications of type 2 diabetes mellitus (T2DM). This study investigated the role of cyclin-D2-regulated miRNAs in endothelial cell proliferation of T2DM. Results showed that higher glucose concentration (4.5 g/l) significantly promoted the proliferation of rat aortic endothelial cells (RAOECs), and significantly increased the expression of cyclin D2 and phosphorylation of retinoblastoma 1 (p-RB1) in RAOECs compared with those under low glucose concentration. The cyclin D2-3' untranslated region is targeted by miR-98, as demonstrated by miRNA analysis software. Western blot also confirmed that cyclin D2 and p-RB1 expression was regulated by miR-98. The results indicated that miR-98 treatment can induce RAOEC apoptosis. The suppression of RAOEC growth by miR-98 might be related to regulation of Bcl-2, Bax and Caspase 9 expression. Furthermore, the expression levels of miR-98 decreased in 4.5 g/l glucose-treated cells compared with those treated by low glucose concentration. Similarly, the expression of miR-98 significantly decreased in aortas of established streptozotocin (STZ)-induced diabetic rat model compared with that in control rats; but cyclin D2 and p-RB1 levels remarkably increased in aortas of STZ-induced diabetic rats compared with those in healthy control rats. In conclusion, this study demonstrated that high glucose concentration induces cyclin D2 up-regulation and miR-98 down-regulation in the RAOECs. By regulating cyclin D2, miR-98 can inhibit human endothelial cell growth, thereby providing novel therapeutic targets for vascular complication of T2DM. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. A glucose oxidase-coupled DNAzyme sensor for glucose detection in tears and saliva.

    Science.gov (United States)

    Liu, Chengcheng; Sheng, Yongjie; Sun, Yanhong; Feng, Junkui; Wang, Shijin; Zhang, Jin; Xu, Jiacui; Jiang, Dazhi

    2015-08-15

    Biosensors have been widely investigated and utilized in a variety of fields ranging from environmental monitoring to clinical diagnostics. Glucose biosensors have triggered great interest and have been widely exploited since glucose determination is essential for diabetes diagnosis. In here, we designed a novel dual-enzyme biosensor composed of glucose oxidase (GOx) and pistol-like DNAzyme (PLDz) to detect glucose levels in tears and saliva. First, GOx, as a molecular recognition element, catalyzes the oxidation of glucose forming H2O2; then PLDz recognizes the produced H2O2 as a secondary signal and performs a self-cleavage reaction promoted by Mn(2+), Co(2+) and Cu(2+). Thus, detection of glucose could be realized by monitoring the cleavage rate of PLDz. The slope of the cleavage rate of PLDz versus glucose concentration curve was fitted with a Double Boltzmann equation, with a range of glucose from 100 nM to 10mM and a detection limit of 5 μM. We further applied the GOx-PLDz 1.0 biosensor for glucose detection in tears and saliva, glucose levels in which are 720±81 μM and 405±56 μM respectively. Therefore, the GOx-PLDz 1.0 biosensor is able to determine glucose levels in tears and saliva as a noninvasive glucose biosensor, which is important for diabetic patients with frequent/continuous glucose monitoring requirements. In addition, induction of DNAzyme provides a new approach in the development of glucose biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Incretin responses to oral glucose and mixed meal tests and changes in fasting glucose levels during 7 years of follow-up: The Hoorn Meal Study

    Science.gov (United States)

    Rutters, F.; Rauh, S. P.; Nijpels, G.; Holst, J. J.; Beulens, J. W.; Alssema, M.; Dekker, J. M.

    2018-01-01

    We conducted the first prospective observational study in which we examined the association between incretin responses to an oral glucose tolerance test (OGTT) and mixed meal test (MMT) at baseline and changes in fasting glucose levels 7 years later, in individuals who were non-diabetic at baseline. We used data from the Hoorn Meal Study; a population-based cohort study among 121 subjects, aged 61.0±6.7y. GIP and GLP-1 responses were determined at baseline and expressed as total and incremental area under the curve (tAUC and iAUC). The association between incretin response at baseline and changes in fasting glucose levels was assessed using linear regression. The average change in glucose over 7 years was 0.43 ± 0.5 mmol/l. For GIP, no significant associations were observed with changes in fasting glucose levels. In contrast, participants within the middle and highest tertile of GLP-1 iAUC responses to OGTT had significantly smaller increases (actually decreases) in fasting glucose levels; -0.28 (95% confidence interval: -0.54;-0.01) mmol/l and -0.39 (-0.67;-0.10) mmol/l, respectively, compared to those in the lowest tertile. The same trend was observed for tAUC GLP-1 following OGTT (highest tertile: -0.32 (0.61;-0.04) mmol/l as compared to the lowest tertile). No significant associations were observed for GLP-1 responses following MMT. In conclusion, within our non-diabetic population-based cohort, a low GLP-1 response to OGTT was associated with a steeper increase in fasting glucose levels during 7 years of follow-up. This suggests that a reduced GLP-1 response precedes glucose deterioration and may play a role in the etiology of type 2 diabetes mellitus. PMID:29324870

  10. Decreased serum glucose and glycosylated hemoglobin levels in patients with Chuvash polycythemia: a role for HIF in glucose metabolism

    Science.gov (United States)

    McClain, Donald A.; Abuelgasim, Khadega A.; Nouraie, Mehdi; Salomon-Andonie, Juan; Niu, Xiaomei; Miasnikova, Galina; Polyakova, Lydia A.; Sergueeva, Adelina; Okhotin, Daniel J.; Cherqaoui, Rabia; Okhotin, David; Cox, James E.; Swierczek, Sabina; Song, Jihyun; Simon, M.Celeste; Huang, Jingyu; Simcox, Judith A.; Yoon, Donghoon; Prchal, Josef T.; Gordeuk, Victor R.

    2012-01-01

    In Chuvash polycythemia, a homozygous 598C>T mutation in the von Hippel-Lindau gene (VHL) leads to an R200W substitution in VHL protein, impaired degradation of α-subunits of hypoxia inducible factor (HIF)-1 and HIF-2, and augmented hypoxic responses during normoxia. Chronic hypoxia of high altitude is associated with decreased serum glucose and insulin concentrations. Other investigators reported that HIF-1 promotes cellular glucose uptake by increased expression of GLUT1 and increased glycolysis by increased expression of enzymes such as PDK. On the other hand, inactivation of Vhl in murine liver leads to hypoglycemia associated with a HIF-2-related decrease in the expression of the gluconeogenic enzymes genes Pepck, G6pc, and Glut2. We therefore hypothesized that glucose concentrations are decreased in individuals with Chuvash polycythemia. We found that 88 Chuvash VHLR200W homozygotes had lower random glucose and glycosylated hemoglobin A1c levels than 52 Chuvash subjects with wildtype VHL alleles. Serum metabolomics revealed higher glycerol and citrate levels in the VHLR200W homozygotes. We expanded these observations in VHLR200W homozygote mice and found that they had lower fasting glucose values and lower glucose excursions than wild-type control mice but no change in fasting insulin concentrations. Hepatic expression of Glut2 and G6pc but not Pdk2 was decreased and skeletal muscle expression of Glut1, Pdk1 and Pdk4 was increased. These results suggest that both decreased hepatic gluconeogenesis and increased skeletal uptake and glycolysis contribute to the decreased glucose concentrations. Further study is needed to determine whether pharmacologically manipulating HIF expression might be beneficial for treatment of diabetic patients. PMID:23015148

  11. Insulin-dependent glucose metabolism in dairy cows with variable fat mobilization around calving.

    Science.gov (United States)

    Weber, C; Schäff, C T; Kautzsch, U; Börner, S; Erdmann, S; Görs, S; Röntgen, M; Sauerwein, H; Bruckmaier, R M; Metges, C C; Kuhla, B; Hammon, H M

    2016-08-01

    Dairy cows undergo significant metabolic and endocrine changes during the transition from pregnancy to lactation, and impaired insulin action influences nutrient partitioning toward the fetus and the mammary gland. Because impaired insulin action during transition is thought to be related to elevated body condition and body fat mobilization, we hypothesized that over-conditioned cows with excessive body fat mobilization around calving may have impaired insulin metabolism compared with cows with low fat mobilization. Nineteen dairy cows were grouped according to their average concentration of total liver fat (LFC) after calving in low [LLFC; LFC 24.4% total fat/DM; n=10) fat-mobilizing cows. Blood samples were taken from wk 7 antepartum (ap) to wk 5 postpartum (pp) to determine plasma concentrations of glucose, insulin, glucagon, and adiponectin. We applied euglycemic-hyperinsulinemic (EGHIC) and hyperglycemic clamps (HGC) in wk 5 ap and wk 3 pp to measure insulin responsiveness in peripheral tissue and pancreatic insulin secretion during the transition period. Before and during the pp EGHIC, [(13)C6] glucose was infused to determine the rate of glucose appearance (GlucRa) and glucose oxidation (GOx). Body condition, back fat thickness, and energy-corrected milk were greater, but energy balance was lower in HLFC than in LLFC. Plasma concentrations of glucose, insulin, glucagon, and adiponectin decreased at calving, and this was followed by an immediate increase of glucagon and adiponectin after calving. Insulin concentrations ap were higher in HLFC than in LLFC cows, but the EGHIC indicated no differences in peripheral insulin responsiveness among cows ap and pp. However, GlucRa and GOx:GlucRa during the pp EGHIC were greater in HLFC than in LLFC cows. During HGC, pancreatic insulin secretion was lower, but the glucose infusion rate was higher pp than ap in both groups. Plasma concentrations of nonesterified fatty acids decreased during HGC and EGHIC, but in both

  12. Generation of a glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis.

    Science.gov (United States)

    Iwakuma, Hidekazu; Koyama, Yoshiyuki; Miyachi, Ayako; Nasukawa, Masashi; Matsumoto, Hitoshi; Yano, Shuntaro; Ogihara, Jun; Kasumi, Takafumi

    2016-01-01

    We obtained a novel glucose de-repressed mutant of Trichoderma reesei using disparity mutagenesis. A plasmid containing DNA polymerase δ lacking proofreading activity, and AMAI, an autonomously replicating sequence was introduced into T. reesei ATCC66589. The rate of mutation evaluated with 5-fluoroorotic acid resistance was approximately 30-fold higher than that obtained by UV irradiation. The transformants harboring incompetent DNA polymerase δ were then selected on 2-deoxyglucose agar plates with hygromycin B. The pNP-lactoside hydrolyzing activities of mutants were 2 to 5-fold higher than the parent in liquid medium containing glucose. Notably, the amino acid sequence of cre1, a key gene involved in glucose repression, was identical in the mutant and parent strains, and further, the cre1 expression levels was not abolished in the mutant. Taken together, these results demonstrate that the strains of T. reesei generated by disparity mutagenesis are glucose de-repressed variants that contain mutations in yet-unidentified factors other than cre1.

  13. Application of optical coherence tomography for noninvasive blood glucose monitoring during hyperglycemia

    Science.gov (United States)

    Larin, Kirill V.; Ashitkov, Taras V.; Motamedi, Massoud; Esenaliev, Rinat O.

    2003-10-01

    Approximately 14 million people in the USA and more than 140 million people worldwide suffer from Diabetes Mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for chemical analysis. Recently we proposed to use optical coherence tomography (OCT) for continuous noninvasive blood glucose sensing through skin. In this paper we tested the OCT technique for noninvasive monitoring of blood glucose concentration in lip tissue of New Zealand rabbits and Yucatan micropigs during glucose clamping experiments. Obtained results show good agreement with results obtained in skin studies, good correlation of changes in the OCT signal slope measured at the depth of 250 to 500 μm with changes in blood glucose concentration, and higher stability of the OCT data points than that obtained from skin.

  14. Study of the levels of beta hydroxy butyrate, glucose, protein and albumin in Holstein cows with subclinical ketosis

    Directory of Open Access Journals (Sweden)

    B Amouoghli Tabrizi

    2007-08-01

    Full Text Available The objective of this study was to comparatively evaluate the levels of beta hydroxy butyrate (BHB, glucose, protein and albumin in serum of healthy Holstein cows and those with subclinical ketosis. In this survey, blood samples were collected at two stages from cows selected at 7 dairy farms in Shahriar province of Tehran. Five to 7 ml of blood were taken from the coccygeal vein of 100 cows during the last week of pregnancy when the animals were dry and once again 2 months after parturition from the same cows, their sera separated and the amounts of BHB, glucose, protein and albumin determined by enzymatic techniques and commercially available kits. With the cut point of BHB at 1.2, 1.4 and 1.7 mmol/lit, the percentage of cows affected with subclinical ketosis were 18, 14 and 4 percent, respectively. Mean levels of BHB in ketotic cows was significantly higher than healthy cows before and after parturition while mean levels of glucose, protein and albumin was significantly lower during the same periods (P

  15. Changes in blood glucose and insulin responses to intravenous glucose tolerance tests and blood biochemical values in adult female Japanese black bears (Ursus thibetanus japonicus).

    Science.gov (United States)

    Kamine, Akari; Shimozuru, Michito; Shibata, Haruki; Tsubota, Toshio

    2012-02-01

    The metabolic mechanisms to circannual changes in body mass of bears have yet to be elucidated. We hypothesized that the Japanese black bear (Ursus thibetanus japonicus) has a metabolic mechanism that efficiently converts carbohydrates into body fat by altering insulin sensitivity during the hyperphagic stage before hibernation. To test this hypothesis, we investigated the changes in blood biochemical values and glucose and insulin responses to intravenous glucose tolerance tests (IVGTT) during the active season (August, early and late November). Four, adult, female bears (5-17 years old) were anesthetized with 6 mg/kg TZ (tiletamine HCl and zolazepam HCl) in combination with 0.1 mg/kg acepromazine maleate. The bears were injected intravenously with glucose (0.5 g/kg of body mass), and blood samples were obtained before, at, and intermittently after glucose injection. The basal triglycerides concentration decreased significantly with increase in body mass from August to November. Basal levels of plasma glucose and serum insulin concentrations were not significantly different among groups. The results of IVGTT demonstrated the increased peripheral insulin sensitivity and glucose tolerance in early November. In contrast, peripheral insulin resistance was indicated by the exaggerated insulin response in late November. Our findings suggest that bears shift their glucose and lipid metabolism from the stage of normal activity to the hyperphagic stage in which they show lipogenic-predominant metabolism and accelerate glucose uptake by increasing the peripheral insulin sensitivity.

  16. Obese Japanese adults with type 2 diabetes have higher basal metabolic rates than non-diabetic adults.

    Science.gov (United States)

    Miyake, Rieko; Ohkawara, Kazunori; Ishikawa-Takata, Kazuko; Morita, Akemi; Watanabe, Shaw; Tanaka, Shigeho

    2011-01-01

    Several cross-sectional studies in Pima Indians and Caucasians have indicated that obese individuals with type 2 diabetes have a higher basal metabolic rate (BMR) than healthy, obese individuals. However, no study has investigated this comparison in Japanese subjects, who are known to be susceptible to type 2 diabetes due to genetic characteristics. Thirty obese Japanese adults with pre-type 2 diabetes (n=7) or type 2 diabetes (n=13) or without diabetes (n=10) participated in this study. BMR was measured using indirect calorimetry. The relationships between residual BMR (calculated as measured BMR minus BMR adjusted for fat-free mass, fat mass, age, and sex) and biomarkers including fasting glucose, glycosylated hemoglobin (HbA(1c)), fasting insulin, homeostasis model assessment of insulin resistance (HOMA-R), triglycerides, and free fatty acids were examined using Pearson's correlation. BMR in diabetic subjects adjusted for fat-free mass, fat mass, age, and sex was 7.1% higher than in non-diabetic subjects. BMR in diabetic subjects was also significantly (pBMR and fasting glucose (r=0.391, p=0.032). These results indicate that in the Japanese population, obese subjects with type 2 diabetes have higher BMR compared with obese non-diabetic subjects. The fasting glucose level may contribute to these differences.

  17. Interactions between Candida albicans and Candida glabrata in biofilms: Influence of the strain type, culture medium and glucose supplementation.

    Science.gov (United States)

    Hosida, Thayse Yumi; Cavazana, Thamires Priscila; Henriques, Mariana; Pessan, Juliano Pelim; Delbem, Alberto Carlos Botazzo; Monteiro, Douglas Roberto

    2018-04-01

    The relationship among Candida species may be influenced by several factors. Thus, this study evaluated the interactions between Candida albicans and Candida glabrata in biofilms, varying the strain type, culture medium and glucose supplementation. Biofilms were formed for 48 hours in Sabouraud dextrose broth (SDB) or RPMI 1640, supplemented with 0%, 1% or 5% glucose. Each strain of C. albicans was combined with two strains of C. glabrata, generating four biofilm associations, which were quantified by colony-forming units (CFUs), total biomass and metabolic activity. Data were analysed by ANOVA and Tukey's HSD test (α = 0.05). For CFUs, all associations were classified as indifferent for biofilms formed in RPMI 1640, while for SDB the interactions were antagonistic for C. albicans and indifferent for C. glabrata. The association of reference strains resulted in a dual-species biofilm with biomass significantly higher than that observed for each single biofilm developed in SDB. The metabolic activity of dual-species biofilms did not significantly differ from that found for single ones, except for co-culture of the reference strains. Glucose supplementation and culture media had a significant influence on all parameters. In conclusion, the strain type, culture medium and glucose supplementation influenced the interactions between C. albicans and C. glabrata. © 2017 Blackwell Verlag GmbH.

  18. The effects of irradiated fungi to produce glucose from sago starch

    International Nuclear Information System (INIS)

    Andini, L.S.; Sjarief, Sri Hariani; Sumartono, Agustin; Sudradjat, Dadang; Anastasia, S.D.

    1994-01-01

    The effects of irradiated fungi to produce glucose from sago starch had been studied. Fungi used in this experiment were Aspergillus niger K-23, Rhizopus oryzae K-22, and Rhizopus oligosporus K-18. The experiment was carried out to find the optimum doses of irradiation for glucose production of sago starch. Irradiation dose at 0; 0.25; 0.5; and 0.75 kGy respectively from cobalt-60 gamma-cell 220 at a dose rate of 0.42 kGy/h. Concentration of sago starch is 6%. Total glucose and pH were measured on the 3rd and 6th day after incubation at 30 Celcius degrees in shaker incubator. The optimum irradiation doses obtained were 0.25 kGy for Rhizopus oryzae K-22, and 0.75 kGy for Aspergillus niger K-23, and Rhizopus oligosporus K-18. Higher dose of irradiation decreased the pH value of sago substrat, for Aspergillus niger K-23 and Rhizopus oligosporus K-18, but the opposite result was obtained for Rhizopus oryzae K-22. The glucose content at 3 days incubation was higher than at 6 days. (author). 13 refs, 5 tabs, 3 figs

  19. Maltitol inhibits small intestinal glucose absorption and increases insulin mediated muscle glucose uptake ex vivo but not in normal and type 2 diabetic rats.

    Science.gov (United States)

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2017-02-01

    This study investigated the effects of maltitol on intestinal glucose absorption and muscle glucose uptake using ex vivo and in vivo experimental models. The ex vivo experiment was conducted in isolated jejunum and psoas muscle from normal rats. The in vivo study investigated the effects of a single bolus dose of maltitol on gastric emptying, intestinal glucose absorption and digesta transit in normal and type 2 diabetic rats. Maltitol inhibited glucose absorption in isolated rat jejunum and increased glucose uptake in isolated rat psoas muscle in the presence of insulin but not in the absence of insulin. In contrast, maltitol did not significantly (p > 0.05) alter small intestinal glucose absorption or blood glucose levels as well as gastric emptying and digesta transit in normal or type 2 diabetic rats. The results suggest that maltitol may not be a suitable dietary supplement for anti-diabetic food and food products to improve glycemic control.

  20. Glucose uptake and transport in contracting, perfused rat muscle with different pre-contraction glycogen concentrations

    DEFF Research Database (Denmark)

    Hespel, P; Richter, Erik

    1990-01-01

    1. Glucose uptake and transport, muscle glycogen, free glucose and glucose-6-phosphate concentrations were studied in perfused resting and contracting rat skeletal muscle with different pre-contraction glycogen concentrations. Rats were pre-conditioned by a combination of swimming exercise and diet......, resulting in either low (glycogen-depleted rats), normal (control rats) or high (supercompensated rats) muscle glycogen concentrations at the time their hindlimbs were perfused. 2. Compared with control rats, pre-contraction muscle glycogen concentration was approximately 40% lower in glycogen-depleted rats......, whereas it was 40% higher in supercompensated rats. Muscle glycogen break-down correlated positively (r = 0.76; P less than 0.001) with pre-contraction muscle glycogen concentration. 3. Glucose uptake during contractions was approximately 50% higher in glycogen-depleted hindquarters than in control...