WorldWideScience

Sample records for significant wind capacity

  1. Assessing Capacity Value of Wind Power

    Energy Technology Data Exchange (ETDEWEB)

    Frew, Bethany A.

    2017-04-18

    This presentation provides a high-level overview of assessing capacity value of wind power, including Impacts of multiple-year data sets, impacts of transmission assumptions, and future research needs.

  2. Capacity credit of wind power in the Netherlands

    International Nuclear Information System (INIS)

    Wijk, A.J.M. van; Turkenburg, W.C.

    1993-01-01

    The Dutch Government has stated that by the year 2000 a total amount of 1000 MW wind power should be installed in the Netherlands. The penetration of wind power into the electricity supply system poses questions about the costs and benefits of wind power. One of the parameters affecting the benefits is the amount of conventional capacity that can be saved by wind power, the so-called 'capacity credit'. In this study the capacity credit of wind power in the Netherlands is analysed. The capacity credit is calculated using a probabilistic method which evaluates the loss of load expectation (LOLE) of the total electricity generating system. In these evaluations the available wind power is treated as 'negative load'. The capacity credit is evaluated with respect to the Dutch electricity generating system and the electricity demand that is projected for the year 2000 by the Dutch utilities. Special attention is given to modelling the hourly wind power production. The model incorporates detailed siting information, wind speed data for several meteorological stations and the power curves of five different types of wind turbines. The average amount of electricity produced by wind power can be expressed by the capacity factor. For the set of assumptions and for the meteorological conditions for the years investigated the capacity factor has a value of 22%. 30 refs, 10 figs, 3 tabs

  3. A variance analysis of the capacity displaced by wind energy in Europe

    DEFF Research Database (Denmark)

    Giebel, Gregor

    2007-01-01

    into a longer-term context. The results are that wind energy can contribute more than 20% of the European demand without significant changes in the system and can replace conventional capacity worth about 10% of the installed wind power capacity. The long-term reference shows that the analysed year is the worst...... simulating the scheduling of the European power plants to cover the demand at every hour of the year. The wind power generation was modelled using wind speed measurements from 60 meteorological stations, for 1 year. The distributed wind power also displaces fossil-fuelled capacity. However, every assessment...... of the displaced capacity (or a capacity credit) by means of a chronological model is highly sensitive to single events. Therefore the wind time series was shifted by integer days against the load time series, and the different results were aggregated. The some set of results is shown for two other options, one...

  4. NedWind with 80 MW wind power capacity leader in the Netherlands

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    At 31 December 1995 1050 wind turbines were in operation in the Netherlands with a total capacity of 255 MW. An overview is given of the top locations of wind turbines in different categories and from different manufacturers and owners. The wind turbine manufacturer NedWind is leading the field. 9 figs

  5. Capacity expansion model of wind power generation based on ELCC

    Science.gov (United States)

    Yuan, Bo; Zong, Jin; Wu, Shengyu

    2018-02-01

    Capacity expansion is an indispensable prerequisite for power system planning and construction. A reasonable, efficient and accurate capacity expansion model (CEM) is crucial to power system planning. In most current CEMs, the capacity of wind power generation is considered as boundary conditions instead of decision variables, which may lead to curtailment or over construction of flexible resource, especially at a high renewable energy penetration scenario. This paper proposed a wind power generation capacity value(CV) calculation method based on effective load-carrying capability, and a CEM that co-optimizes wind power generation and conventional power sources. Wind power generation is considered as decision variable in this model, and the model can accurately reflect the uncertainty nature of wind power.

  6. Capacity factor of wind power realized values vs. estimates

    International Nuclear Information System (INIS)

    Boccard, Nicolas

    2009-01-01

    For two decades now, the capacity factor of wind power measuring the average energy delivered has been assumed in the 30-35% range of the name plate capacity. Yet, the mean realized value for Europe over the last five years is below 21%; accordingly private cost is two-third higher and the reduction of carbon emissions is 40% less than previously expected. We document this discrepancy and offer rationalizations that emphasize the long term variations of wind speeds, the behavior of the wind power industry, political interference and the mode of finance. We conclude with the consequences of the capacity factor miscalculation and some policy recommendations.

  7. Interconnector capacity allocation in offshore grids with variable wind generation

    DEFF Research Database (Denmark)

    Schröder, Sascha Thorsten

    2013-01-01

    the interconnector capacity should be allocated for wind generation and for international power trading. The main difficulty arises from the stochastic nature of wind generation: in a case with radial connections to the national coast, the wind park owner has the possibility of aggregating the offshore wind park....... It is concluded that treating offshore generation as a single price zone within the interconnector reduces the wind operator’s ability to pool it with other generation. Furthermore, a single offshore price zone between two markets will always receive the lower spot market price of the neighbouring zones, although...

  8. The Capacity Value of Wind in the United States: Methods and Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Michael; Porter, Kevin

    2006-03-01

    As more wind energy capacity is added in the nation, the question of wind's capacity value is raised. This article shows how the capacity value of wind is determined, both in theory and in practice. (author)

  9. Wind distribution and capacity factor estimation for wind turbines in the coastal region of South Africa

    International Nuclear Information System (INIS)

    Ayodele, T.R.; Jimoh, A.A.; Munda, J.L.; Agee, J.T.

    2012-01-01

    Highlights: ► We evaluate capacity factor of some commercially available wind turbines. ► Wind speed in the sites studied can best be modelled using Weibull distribution. ► Site WM05 has the highest wind power potential while site WM02 has the lowest. ► More wind power can be harnessed during the day period compared to the night. ► Turbine K seems to be the best turbine for the coastal region of South Africa. - Abstract: The operating curve parameters of a wind turbine should match the local wind regime optimally to ensure maximum exploitation of available energy in a mass of moving air. This paper provides estimates of the capacity factor of 20 commercially available wind turbines, based on the local wind characteristics of ten different sites located in the Western Cape region of South Africa. Ten-min average time series wind-speed data for a period of 1 year are used for the study. First, the wind distribution that best models the local wind regime of the sites is determined. This is based on root mean square error (RMSE) and coefficient of determination (R 2 ) which are used to test goodness of fit. First, annual, seasonal, diurnal and peak period-capacity factor are estimated analytically. Then, the influence of turbine power curve parameters on the capacity factor is investigated. Some of the key results show that the wind distribution of the entire site can best be modelled statistically using the Weibull distribution. Site WM05 (Napier) presents the highest capacity factor for all the turbines. This indicates that this site has the highest wind power potential of all the available sites. Site WM02 (Calvinia) has the lowest capacity factor i.e. lowest wind power potential. This paper can assist in the planning and development of large-scale wind power-generating sites in South Africa.

  10. Wind plant capacity credit variations: A comparison of results using multiyear actual and simulated wind-speed data

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, M.R. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    Although it is widely recognized that variations in annual wind energy capture can be significant, it is not clear how significant this effect is on accurately calculating the capacity credit of a wind plant. An important question is raised concerning whether one year of wind data is representative of long-term patterns. This paper calculates the range of capacity credit measures based on 13 years of actual wind-speed data. The results are compared to those obtained with synthetic data sets that are based on one year of data. Although the use of synthetic data sets is a considerable improvement over single-estimate techniques, this paper finds that the actual inter-annual variation in capacity credit is still understated by the synthetic data technique.

  11. Statistical analysis of installed wind capacity in the United States

    International Nuclear Information System (INIS)

    Staid, Andrea; Guikema, Seth D.

    2013-01-01

    There is a large disparity in the amount of wind power capacity installed in each of the states in the U.S. It is often thought that the different policies of individual state governments are the main reason for these differences, but this may not necessarily be the case. The aim of this paper is to use statistical methods to study the factors that have the most influence on the amount of installed wind capacity in each state. From this analysis, we were able to use these variables to accurately predict the installed wind capacity and to gain insight into the driving factors for wind power development and the reasons behind the differences among states. Using our best model, we find that the most important variables for explaining the amount of wind capacity have to do with the physical and geographic characteristics of the state as opposed to policies in place that favor renewable energy. - Highlights: • We conduct a statistical analysis of factors influencing wind capacity in the U.S. • We find that state policies do not strongly influence the differences among states. • Driving factors are wind resources, cropland area, and available percentage of land

  12. Probabilistic Capacity Assessment of Lattice Transmission Towers under Strong Wind

    Directory of Open Access Journals (Sweden)

    Wei eZhang

    2015-10-01

    Full Text Available Serving as one key component of the most important lifeline infrastructure system, transmission towers are vulnerable to multiple nature hazards including strong wind and could pose severe threats to the power system security with possible blackouts under extreme weather conditions, such as hurricanes, derechoes, or winter storms. For the security and resiliency of the power system, it is important to ensure the structural safety with enough capacity for all possible failure modes, such as structural stability. The study is to develop a probabilistic capacity assessment approach for transmission towers under strong wind loads. Due to the complicated structural details of lattice transmission towers, wind tunnel experiments are carried out to understand the complex interactions of wind and the lattice sections of transmission tower and drag coefficients and the dynamic amplification factor for different panels of the transmission tower are obtained. The wind profile is generated and the wind time histories are simulated as a summation of time-varying mean and fluctuating components. The capacity curve for the transmission towers is obtained from the incremental dynamic analysis (IDA method. To consider the stochastic nature of wind field, probabilistic capacity curves are generated by implementing IDA analysis for different wind yaw angles and different randomly generated wind speed time histories. After building the limit state functions based on the maximum allowable drift to height ratio, the probabilities of failure are obtained based on the meteorological data at a given site. As the transmission tower serves as the key nodes for the power network, the probabilistic capacity curves can be incorporated into the performance based design of the power transmission network.

  13. Probabilistic Capacity of a Grid connected Wind Farm

    DEFF Research Database (Denmark)

    Zhao, Menghua; Chen, Zhe; Blaabjerg, Frede

    2005-01-01

    This paper proposes a method to find the maximum acceptable wind power injection regarding the thermal limits, steady state stability limits and voltage limits of the grid system. The probabilistic wind power is introduced based on the probability distribution of wind speed. Based on Power Transfer...... Distribution Factor (PTDF) and voltage sensitivities, a predictor-corrector method is suggested to calculate the acceptable active power injection. Then this method is combined with the probabilistic model of wind power to compute the allowable capacity of the wind farm. Finally, an example is illustrated...... to test this method. It is concluded that proposed method in this paper is a feasible, fast, and accurate approach to find the size of a wind farm....

  14. Optimal Capacity Proportion and Distribution Planning of Wind, Photovoltaic and Hydro Power in Bundled Transmission System

    Science.gov (United States)

    Ye, X.; Tang, Q.; Li, T.; Wang, Y. L.; Zhang, X.; Ye, S. Y.

    2017-05-01

    The wind, photovoltaic and hydro power bundled transmission system attends to become common in Northwest and Southwest of China. To make better use of the power complementary characteristic of different power sources, the installed capacity proportion of wind, photovoltaic and hydro power, and their capacity distribution for each integration node is a significant issue to be solved in power system planning stage. An optimal capacity proportion and capacity distribution model for wind, photovoltaic and hydro power bundled transmission system is proposed here, which considers the power out characteristic of power resources with different type and in different area based on real operation data. The transmission capacity limit of power grid is also considered in this paper. Simulation cases are tested referring to one real regional system in Southwest China for planning level year 2020. The results verify the effectiveness of the model in this paper.

  15. Location of Swedish wind power—Random or not? A quantitative analysis of differences in installed wind power capacity across Swedish municipalities

    International Nuclear Information System (INIS)

    Ek, Kristina; Persson, Lars; Johansson, Maria; Waldo, Åsa

    2013-01-01

    The amount of installed wind power varies significantly across municipalities although the financial support for wind power production and the technology available is identical in all Swedish municipalities. This study analyses how local differences between municipalities, such as local wind prerequisites and socioeconomic conditions, might explain the establishment of wind power. The analysis is carried out for a cross section of Swedish municipalities. The time periods before and after 2006 are analyzed separately; and results reveal that the factors affecting wind power establishments are different between the two periods. In the later time period we found a statistically significant positive relationship between good wind resources and the presence of wind power as well as with the amount of wind energy installed. This result is consistent with the idea that the first wind power investments in Sweden were highly affected by individual wind energy enthusiasts, while in the more recent large-scale investments market-based judgments about future profitability may have become increasingly important. In addition, previous experience seems to be a factor that in itself facilitates additional future wind power establishments, thereby pointing to the role of accumulated institutional capacity. - Highlights: ► Local differences in installed wind power capacity in Sweden is analysed. ► The amount of installed wind power capacity varies significantly in time and space. ► Results reveal different determinants of installed capacity before/after 2006. ► Good wind resources have become increasingly important over time. ► Previous experience of wind power has a positive impact on installed capacity

  16. Economic viability of transmission capacity expansion at high wind penetrations

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2005-01-01

    investments and analyses of the Nord Pool price variations. The analyses are done for varying degrees of wind power penetrations ranging from 20% of the West Danish electricity demand up to 100% of the demand. The analyses demonstrate, that while there is an economic potential for some expansion in some years......With growing wind power penetrations in many countries, grid and system integration becomes more and more important issues. This is particularly the case in countries or regions with good wind resources as well as substantial installed wind power capacity as found in e.g. Northern Europe. At 20......% penetration in Western Denmark, the issue is pertinent here in relation to future plans of further expansion which is planned in accordance with the Danish Government’s climate change mitigation initiatives. This paper analyses the potential economic benefit of selling excess electricity production...

  17. Wind turbine cost of electricity and capacity factor

    International Nuclear Information System (INIS)

    Cavallo, A.J.

    1995-01-01

    Wind turbines are currently designed to minimize the cost of electricity at the wind turbine (the busbar cost) in a given wind regime, ignoring constraints on the capacitor factor (the ratio of the average power output to the maximum power output). The trade-off between these two quantities can be examined in a straightforward fashion; it is found that the capacitor factor can be increased by a factor of 1.3 above its value at the cost minimum for a 10 percent increase in the cost of electricity. This has important implications for the large scale integration of wind electricity on utility grids where the cost of transmission and storage may be a significant fraction of the cost of delivered electricity. (Author)

  18. Impact of Flexibility Options on Grid Economic Carrying Capacity of Solar and Wind: Three Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Novacheck, Joshua [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jorgenson, Jennie [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Connell, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    In this study, we attempt to quantify the benefits of various options of grid flexibility by measuring their impact on two measures: economic carrying capacity and system costs. Flexibility can increase economic carrying capacity and reduce overall system costs. In some cases, options that provide a limited increase in economic carrying capacity can provide significant operational savings, thus demonstrating the need to evaluate flexibility options using multiple metrics. The value of flexibility options varies regionally due to different generation mixes and types of renewables. The more rapid decline in PV value compared to wind makes PV more dependent on adding flexibility options, including transmission and energy storage.

  19. Reconsidering the Capacity Credit of Wind Power: Application of Cumulative Prospect Theory

    NARCIS (Netherlands)

    Wilton, E.; Delarue, E.; D'haeseleer, W.; Sark, W.G.J.H.M. van

    2014-01-01

    The capacity credit is often erroneously considered to be a time-invariant quantity. A multi-year analysis of the incident wind profile of various potential wind sites uncovered that there exist large differences between annual capacity credit figures. The uniformity of these capacity credit

  20. Reconsidering the capacity credit of wind power : Application of cumulative prospect theory

    NARCIS (Netherlands)

    Wilton, Edgar; Delarue, Erik; D'haeseleer, William; van Sark, Wilfried

    The capacity credit is often erroneously considered to be a time-invariant quantity. A multi-year analysis of the incident wind profile of various potential wind sites uncovered that there exist large differences between annual capacity credit figures. The uniformity of these capacity credit figures

  1. Short-term optimal wind power generation capacity in liberalized electricity markets

    International Nuclear Information System (INIS)

    Olsina, Fernando; Roescher, Mark; Larisson, Carlos; Garces, Francisco

    2007-01-01

    Mainly because of environmental concerns and fuel price uncertainties, considerable amounts of wind-based generation capacity are being added to some deregulated power systems. The rapid wind development registered in some countries has essentially been driven by strong subsidizing programs. Since wind investments are commonly isolated from market signals, installed wind capacity can be higher than optimal, leading to distortions of the power prices with a consequent loss of social welfare. In this work, the influence of wind generation on power prices in the framework of a liberalized electricity market has been assessed by means of stochastic simulation techniques. The developed methodology allows investigating the maximal wind capacity that would be profitably deployed if wind investments were subject to market conditions only. For this purpose, stochastic variables determining power prices are accurately modeled. A test system resembling the size and characteristics of the German power system has been selected for this study. The expected value of the optimal, short-term wind capacity is evaluated for a considerable number of random realizations of power prices. The impact of dispersing the wind capacity over statistical independent wind sites has also been evaluated. The simulation results reveal that fuel prices, installation and financing costs of wind investments are very influential parameters on the maximal wind capacity that might be accommodated in a market-based manner

  2. Economic Operation of Power Systems with Significant Wind Power Penetration

    DEFF Research Database (Denmark)

    Farashbashi-Astaneh, Seyed-Mostafa

    This dissertation addresses economic operation of power systems with high penetration of wind power. Several studies are presented to address the economic operation of power systems with high penetration of variable wind power. The main concern in such power systems is high variability...... and unpredictability. Unlike conventional power plants, the output power of a wind farm is not controllable. This brings additional complexity to operation and planning of wind dominant power systems. The key solution in face of wind power uncertainty is to enhance power system flexibility. The enhanced flexibility......, cooperative wind-storage operation is studied. Lithium-Ion battery units are chosen as storage units. A novel formulation is proposed to investigate optimal operation of a storage unit considering power system balancing conditions and wind power imbalances. An optimization framework is presented to increase...

  3. Co-generation of hydrogen from nuclear and wind: the effect on costs of realistic variations in wind capacity and power prices

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.

    2005-01-01

    Can electricity from high-capacity nuclear reactors be blended with the variable output of wind turbines to produce electrolytic hydrogen competitively? Future energy hopes and emissions reduction scenarios place significant reliance on renewables, actually meaning largely new wind power both onshore and offshore. The opportunity exists for a synergy between high capacity factor nuclear plants and wind power using hydrogen by both as a 'currency' for use in transportation and industrial processing. But this use of hydrogen needs to be introduced soon. To be competitive with alternative sources, hydrogen produced by conventional electrolysis requires low-cost electricity (likely <2.5 Cent US/kW.h). One approach is to operate interruptibly allowing an installation to sell electricity when the grid price is high and to make hydrogen when it is low. Our previous studies have shown that this could be a cost-competitive approach with a nuclear power generator producing electricity around 3 Cent US/kW.h. Although similar unit costs are projected for wind-generated electricity, idleness of the hydrogen production (electrolysis) facility due to the variability of wind generated electricity imposes a serious cost penalty. This paper reports our latest results on the potential economics of blending electricity from nuclear and wind sources by using wind-generated power, when available, to augment the current through electrolysis equipment that is primarily nuclear-powered. A voltage penalty accompanies the higher current. A 10% increase in capital cost for electrolysis equipment enables it to accommodate the higher rate of hydrogen generation, while still being substantially cheaper than the capital cost of wind-dedicated electrolysis. Real-time data for electricity costs have been combined with real-time wind variability in our NuWind model. The variability in wind fields between sites was accommodated by assuming an average wind speed that produced an average electricity

  4. Unit Commitment for Systems With Significant Wind Penetration

    DEFF Research Database (Denmark)

    Tuohy, Aidan; Meibom, Peter; Denny, E.

    2009-01-01

    The stochastic nature of wind alters the unit commitment and dispatch problem. By accounting for this uncertainty when scheduling the system, more robust schedules are produced, which should, on average, reduce expected costs. In this paper, the effects of stochastic wind and load on the unit...... commitment and dispatch of power systems with high levels of wind power are examined. By comparing the costs, planned operation and performance of the schedules produced, it is shown that stochastic optimization results in less costly, of the order of 0.25%, and better performing schedules than deterministic...... optimization. The impact of planning the system more frequently to account for updated wind and load forecasts is then examined. More frequent planning means more up to date forecasts are used, which reduces the need for reserve and increases performance of the schedules. It is shown that mid-merit and peaking...

  5. Benefit Evaluation of Wind Turbine Generators in Wind Farms Using Capacity-Factor Analysis and Economic-Cost Methods

    DEFF Research Database (Denmark)

    Chen, Zhe; Wang, L.; Yeh, T-H.

    2009-01-01

    Due to the recent price spike of the international oil and the concern of global warming, the development and deployment of renewable energy become one of the most important energy policies around the globe. Currently, there are different capacities and hub heights for commercial wind turbine gen...... height for WTGs that have been installed in Taiwan. Important outcomes affecting wind cost of energy in comparison with economic results using the proposed economic-analysis methods for different WFs are also presented.......Due to the recent price spike of the international oil and the concern of global warming, the development and deployment of renewable energy become one of the most important energy policies around the globe. Currently, there are different capacities and hub heights for commercial wind turbine...... generators (WTGs). To fully capture wind energy, different wind farms (WFs) should select adequate capacity of WTGs to effectively harvest wind energy and maximize their economic benefit. To establish selection criterion, this paper first derives the equations for capacity factor (CF) and pairing performance...

  6. Impact of Flexibility Options on Grid Economic Carrying Capacity of Solar and Wind: Three Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Novacheck, Joshua [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jorgenson, Jennie [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Connell, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    In this study, we attempt to quantify the benefits of various options of grid flexibility by measuring their impact on two measures: economic carrying capacity and system costs. Flexibility can increase ECC and reduce overall system costs. In some cases, options that provide a limited increase in ECC can provide significant operational savings, thus demonstrating the need to evaluate flexibility options using multiple metrics. The value of flexibility options varies regionally due to different generation mixes and types of renewables. The more rapid decline in PV value compared to wind makes PV more dependent on adding flexibility options, including transmission and energy storage.

  7. The value of holding scarce wind resource—A cause of overinvestment in wind power capacity in China

    International Nuclear Information System (INIS)

    Liu, Xuemei

    2013-01-01

    China's wind power capacity has increased dramatically in recent years, but about 30% of the installed capacity sits idle, so overinvestment in wind power capacity seems to be a serious problem. This paper explores reasons for the overinvestment. The economic analysis shows that, given uncertain future policy on wind power, it is optimal for power companies to invest more than the amount in a certain world. A part of the “overinvestment” has a real value, which can be interpreted as the value of holding scarce wind resource. This value exists because the wind-rich sites with convenient locations to connect to the grids are scarce resource, and also because the specific government policies that are essential for promoting wind power are uncertain in the future. This value should be taken into account in the investment decision, but it results in the phenomenon of “overinvestment”. The concept of the value of holding scarce resource can be generally applied to the resources that are scarce and for which the future policy is uncertain

  8. Practical methodologies for the calculation of capacity in electricity markets for wind energy

    International Nuclear Information System (INIS)

    Botero B, Sergio; Giraldo V, Luis Alfonso; Isaza C, Felipe

    2008-01-01

    Determining the real capacity of the generators in a power market is an essential task in order to estimate the actual system reliability, and to estimate the reward for generators due to their capacity in the firm energy market. In the wind power case, which is an intermittent resource, several methodologies have been proposed to estimate the capacity of a wind power emplacement, not only for planning but also for firm energy remuneration purposes. This paper presents some methodologies that have been proposed or implemented around the world in order to calculate the capacity of this energy resource.

  9. Optimal Capacity Allocation of Large-Scale Wind-PV-Battery Units

    Directory of Open Access Journals (Sweden)

    Kehe Wu

    2014-01-01

    Full Text Available An optimal capacity allocation of large-scale wind-photovoltaic- (PV- battery units was proposed. First, an output power model was established according to meteorological conditions. Then, a wind-PV-battery unit was connected to the power grid as a power-generation unit with a rated capacity under a fixed coordinated operation strategy. Second, the utilization rate of renewable energy sources and maximum wind-PV complementation was considered and the objective function of full life cycle-net present cost (NPC was calculated through hybrid iteration/adaptive hybrid genetic algorithm (HIAGA. The optimal capacity ratio among wind generator, PV array, and battery device also was calculated simultaneously. A simulation was conducted based on the wind-PV-battery unit in Zhangbei, China. Results showed that a wind-PV-battery unit could effectively minimize the NPC of power-generation units under a stable grid-connected operation. Finally, the sensitivity analysis of the wind-PV-battery unit demonstrated that the optimization result was closely related to potential wind-solar resources and government support. Regions with rich wind resources and a reasonable government energy policy could improve the economic efficiency of their power-generation units.

  10. Wind Power Grid Connected Capacity Prediction Using LSSVM Optimized by the Bat Algorithm

    Directory of Open Access Journals (Sweden)

    Qunli Wu

    2015-12-01

    Full Text Available Given the stochastic nature of wind, wind power grid-connected capacity prediction plays an essential role in coping with the challenge of balancing supply and demand. Accurate forecasting methods make enormous contribution to mapping wind power strategy, power dispatching and sustainable development of wind power industry. This study proposes a bat algorithm (BA–least squares support vector machine (LSSVM hybrid model to improve prediction performance. In order to select input of LSSVM effectively, Stationarity, Cointegration and Granger causality tests are conducted to examine the influence of installed capacity with different lags, and partial autocorrelation analysis is employed to investigate the inner relationship of grid-connected capacity. The parameters in LSSVM are optimized by BA to validate the learning ability and generalization of LSSVM. Multiple model sufficiency evaluation methods are utilized. The research results reveal that the accuracy improvement of the present approach can reach about 20% compared to other single or hybrid models.

  11. Influence of wind farm capacity, turbine size and wind speed on production cost: analysis of the actual market trend

    International Nuclear Information System (INIS)

    Laali, A.-R.; Meyer, J.-L.

    1996-01-01

    Several studies are undertaken in R and D Division of EDF in collaboration with ERASME association in order to have a good knowledge of the wind energy production costs. These studies are performed in the framework of a wind energy monitoring project and concern the influence of a few parameters like wind farm capacity, turbine size and wind speed on production costs, through an analysis of the actual market trend. Some 50 manufacturers and 140 different kind of wind turbines are considered for this study. The minimum production cost is situated at 800/900 kW wind turbine rated power. This point will probably move to more important powers in the future. This study is valid only for average conditions and some special parameters like particular climate conditions or lack of infrastructure for a special site that could modify the results shown on the curves. The variety of wind turbines (rated power as a function of rotor diameter, height and specific rated power) in the actual market is analysed. A brief analysis of the market trend is also performed. (author)

  12. Evaluating the capacity value of wind power considering transmission and operational constraints

    International Nuclear Information System (INIS)

    Gil, Esteban; Aravena, Ignacio

    2014-01-01

    Highlights: • Discussion of power system adequacy and the capacity value of wind power. • Method for estimating capacity value of wind power is proposed. • Monte Carlo simulation used to consider transmission and operational constraints. • Application of the method to the Chilean Northern Interconnected System (SING). - Abstract: This paper presents a method for estimating the capacity value of wind considering transmission and operational constraints. The method starts by calculating a metric for system adequacy by repeatedly simulating market operations in a Monte Carlo scheme that accounts for forced generator outages, wind resource variability, and operational conditions. Then, a capacity value calculation that uses the simulation results is proposed, and its application to the Chilean Northern Interconnected System (SING) is discussed. A comparison of the capacity value for two different types of wind farms is performed using the proposed method, and the results are compared with the method currently used in Chile and the method recommended by the IEEE. The method proposed in the paper captures the contribution of the variable generation resources to power system adequacy more accurately than the method currently employed in the SING, and showed capable of taking into account transmission and operational constraints

  13. Wind power and capacity of transmission in northern Norway; Vindkraft og overfoeringskapasitet i Nord Norge

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Northern Norway, and especially the county of Finnmark, has the largest potential for cheap wind power, but at the same time it has the largest transmission costs. Ambitious goals for renewable energy can be reached in a cheaper way if small-scale hydro electrical power plants are developed, wind power in southern Norway, and wind power in northern Norway within the capacity of the network (about 1.000 MW). Central challenges include creating a well-functioning distribution of new wind power within northern Norway's current network, and efficient bottle-neck handling. Price regions are important in order to take advantage of the flexibility in hydroelectric power and prevent excessive investments. Concession refusal may be necessary. Increased ambitions for wind power can later strengthen the northern Norway network and make it profitable. Ideally, the power developers will pay for this strengthening. Practical difficulties may still give priority to the traditional financing provided by Statnett.

  14. Capacity factor prediction and planning in the wind power generation industry

    Energy Technology Data Exchange (ETDEWEB)

    Gurgur, Cigdem Z. [Department of Management and Marketing, Richard T. Doermer School of Business and Management Sciences, Indiana - Purdue University, 2101 Coliseum Blvd. East, Fort Wayne, IN 46805 (United States); Jones, Michael [Xcel Energy, Denver, CO 80223 (United States)

    2010-12-15

    The common practice to calculate wind generation capacity values relies more on heuristic approximations than true system estimations. In this paper we proposed a more accurate method. In the first part of our analysis, a Monte Carlo simulation was created based on Markov chains to provide an independent estimate of the true behavior of wind farm capacity value as a function of system penetration. With this curve as a baseline, a technique for using beta distributions to model the input variables was adopted. A final step to increase accuracy involved the use of numerical convolution within the program to eliminate summation estimates. (author)

  15. Wind farm production cost: Optimum turbine size and farm capacity in the actual market

    Energy Technology Data Exchange (ETDEWEB)

    Laali, A.R.; Meyer, J.L.; Bellot, C. [Electricite de France, Chatou (France); Louche, A. [Espace de Recherche, Ajaccio (France)

    1996-12-31

    Several studies are undertaken in R&D Division of EDF in collaboration with ERASME association in order to have a good knowledge of the wind energy production costs. These studies are performed in the framework of a wind energy monitoring project and concern the influence of a few parameters like wind farm capacity, turbine size and wind speed on production costs, through an analysis of the actual market trend. Some 50 manufacturers and 140 different kind of wind turbines are considered for this study. The minimum production cost is situated at 800/900 kW wind turbine rated power. This point will probably move to more important powers in the future. This study is valid only for average conditions and some special parameters like particular climate conditions or lack of infrastructure for a special site the could modify the results shown on the curves. The variety of wind turbines (rated power as a function of rotor diameter, height and specific rated power) in the actual market is analyzed. A brief analysis of the market trend is also performed. 7 refs., 7 figs.

  16. Wind energy as a significant source of electricity for the United States

    International Nuclear Information System (INIS)

    Nix, R.G.

    1996-06-01

    This paper discusses wind energy and its potential to significantly impact the generation of electricity within the US. The principles and the equipment used to convert wind energy to electricity are described, as is the status of current technology. Markets and production projections are given. There is discussion of the advances required to reduce the selling cost of electricity generated from the wind from today's price of about $0.05 per kilowatt-hour to full cost-competitiveness with gas- and coal-based electricity

  17. How to correct for long-term externalities of large-scale wind power development by a capacity mechanism?

    International Nuclear Information System (INIS)

    Cepeda, Mauricio; Finon, Dominique

    2013-01-01

    This paper deals with the practical problems related to long-term security of supply in electricity markets in the presence of large-scale wind power development. The success of recent renewable promotion schemes adds a new dimension to ensuring long-term security of supply: it necessitates designing second-best policies to prevent large-scale wind power development from distorting long-run equilibrium prices and investments in conventional generation and in particular in peaking units. We rely upon a long-term simulation model which simulates electricity market players' investment decisions in a market regime and incorporates large-scale wind power development in the presence of either subsidized or market driven development scenarios. We test the use of capacity mechanisms to compensate for long-term effects of large-scale wind power development on prices and reliability of supply. The first finding is that capacity mechanisms can help to reduce the social cost of large scale wind power development in terms of decrease of loss of load probability. The second finding is that, in a market-based wind power deployment without subsidy, wind generators are penalised for insufficient contribution to the long term system's reliability. - Highlights: • We model power market players’ investment decisions incorporating wind power. • We examine two market designs: an energy-only market and a capacity mechanism. • We test two types of wind power development paths: subsidised and market-driven. • Capacity mechanisms compensate for the externalities of wind power developments

  18. Constrained parameterisation of photosynthetic capacity causes significant increase of modelled tropical vegetation surface temperature

    Science.gov (United States)

    Kattge, J.; Knorr, W.; Raddatz, T.; Wirth, C.

    2009-04-01

    Photosynthetic capacity is one of the most sensitive parameters of terrestrial biosphere models whose representation in global scale simulations has been severely hampered by a lack of systematic analyses using a sufficiently broad database. Due to its coupling to stomatal conductance changes in the parameterisation of photosynthetic capacity may potentially influence transpiration rates and vegetation surface temperature. Here, we provide a constrained parameterisation of photosynthetic capacity for different plant functional types in the context of the photosynthesis model proposed by Farquhar et al. (1980), based on a comprehensive compilation of leaf photosynthesis rates and leaf nitrogen content. Mean values of photosynthetic capacity were implemented into the coupled climate-vegetation model ECHAM5/JSBACH and modelled gross primary production (GPP) is compared to a compilation of independent observations on stand scale. Compared to the current standard parameterisation the root-mean-squared difference between modelled and observed GPP is substantially reduced for almost all PFTs by the new parameterisation of photosynthetic capacity. We find a systematic depression of NUE (photosynthetic capacity divided by leaf nitrogen content) on certain tropical soils that are known to be deficient in phosphorus. Photosynthetic capacity of tropical trees derived by this study is substantially lower than standard estimates currently used in terrestrial biosphere models. This causes a decrease of modelled GPP while it significantly increases modelled tropical vegetation surface temperatures, up to 0.8°C. These results emphasise the importance of a constrained parameterisation of photosynthetic capacity not only for the carbon cycle, but also for the climate system.

  19. Low-capacity wind power systems. Technology, legal aspects, economic efficiency; Kleine Windenergieanlagen. Technik - Recht - Wirtschaftlichkeit

    Energy Technology Data Exchange (ETDEWEB)

    Eggersgluess, Walter [Landwirtschaftskammer Schleswig-Holstein, Rendsburg (Germany); Eckel, Henning; Hartmann, Stefan [Kuratorium fuer Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt (Germany)

    2012-07-01

    In what conditions will investments in a low-capacity wind power plant be profitable? This leaflet intends to provide a decision aid for farmers and other land owners interested in thes subject. It outlines the technology of low-capacity wind power systems, goes into site selection, expected yields and legal boundary conditions. The most important economic data are defined, and the economic efficiency of wind power plants of 7.5 to 25 kW is discussed. The text is supplemented by useful internet links. [German] Unter welchen Bedingungen rechnet sich die Investition in eine kleine Windenergieanlage? Das Heft hilft Landwirten sowie allen anderen investitionswilligen Grundstueckseigentuemern fuer sich Antworten auf diese Fragen zu finden und die richtigen Entscheidungen zu treffen. Es gibt einen Ueberblick ueber die Technik kleiner Windenergieanlagen, beschreibt was den richtigen Standort auszeichnet, mit welchen Energieertraegen gerechnet werden kann und welchen rechtlichen Rahmenbedingungen Bau und Betrieb der Anlagen unterliegen. Die wichtigsten wirtschaftlichen Kenngroessen werden definiert und die Wirtschaftlichkeit kleiner Windenergieanlagen anhand von Beispielanlagen im Leistungsbereich von 7,5 bis 25 kW diskutiert. Nuetzliche Internetadressen zum Thema Windenergie runden das Informationsangebot ab.

  20. 75 FR 27583 - Job Corps: Final Finding of No Significant Impact (FONSI) for Small Vertical Wind Turbine and...

    Science.gov (United States)

    2010-05-17

    ... CFR 11.11(d), gives final notice of the proposed construction of a small vertical axis wind turbine... (FONSI) for Small Vertical Wind Turbine and Solar Installation at the Paul Simon Job Corps Center Located... impact. This notice serves as the Final Finding of No Significant Impact (FONSI) for Small Vertical Wind...

  1. 75 FR 29365 - Job Corps: Final Finding of No Significant Impact (FONSI) for Small Wind Turbine Installation at...

    Science.gov (United States)

    2010-05-25

    ... (FONSI) for Small Wind Turbine Installation at the Pine Ridge Job Corps Center Located at 15710 Highway... Finding of No Significant Impact (FONSI) for Small Wind Turbine Installation at the Pine Ridge Job Corps....11(d), gives final notice of the proposed construction of a small wind turbine at the Pine Ridge Job...

  2. On the exergetic capacity factor of a wind – Solar power generation system

    DEFF Research Database (Denmark)

    Xydis, George

    2013-01-01

    production. In this paper, a detailed exergetic analysis aiming to identify the overall Exergetic Capacity Factor (ExCF) for a wind – solar power generation system was done. ExCF, as a new parameter, can be used for better classification and evaluation of renewable energy sources (RES). All the energy...... and exergy characteristics of wind and solar energy were examined in order to identify the variables that affect the power output of the hybrid system. A validated open source PV optimization tool was also included in the analysis, It was shown that parameters as e.g. air density or tracking losses, low......In the recent years, exergy analysis has become a very important tool in the evaluation of systems’ efficiency. It aims on minimizing the energy related-system losses and therefore maximizing energy savings and helps society substantially to move towards sustainable development and cleaner...

  3. Turning the wind into hydrogen: The long-run impact on electricity prices and generating capacity

    International Nuclear Information System (INIS)

    Green, Richard; Hu, Helen; Vasilakos, Nicholas

    2011-01-01

    Hydrogen production via electrolysis has been proposed as a way of absorbing the fluctuating electricity generated by wind power, potentially allowing the use of cheap electricity at times when it would otherwise be in surplus. We show that large-scale adoption of electrolysers would change the shape of the load-duration curve for electricity, affecting the optimal capacity mix. Nuclear power stations will replace gas-fired power stations, as they are able to run for longer periods of time. Changes in the electricity capacity mix will be much greater than changes to the pattern of prices. The long-run supply price of hydrogen will thus tend to be insensitive to the amount produced. - Research Highlights: → Hydrogen production from electrolysis may offset intermittent wind generation. → The generation capacity mix will change in response to changed demand patterns. → The long-run equilibrium supply curve for hydrogen will be quite flat. → The production cost will be very sensitive to fuel prices paid by generators.

  4. How to correct long-term system externality of large scale wind power development by a capacity mechanism?

    International Nuclear Information System (INIS)

    Cepeda, Mauricio; Finon, Dominique

    2013-04-01

    This paper deals with the practical problems related to long-term security of supply in electricity markets in the presence of large-scale wind power development. The success of renewable promotion schemes adds a new dimension to ensuring long-term security of supply. It necessitates designing second-best policies to prevent large-scale wind power development from distorting long-run equilibrium prices and investments in conventional generation and in particular in peaking units. We rely upon a long-term simulation model which simulates electricity market players' investment decisions in a market regime and incorporates large-scale wind power development either in the presence of either subsidised wind production or in market-driven development. We test the use of capacity mechanisms to compensate for the long-term effects of large-scale wind power development on the system reliability. The first finding is that capacity mechanisms can help to reduce the social cost of large scale wind power development in terms of decrease of loss of load probability. The second finding is that, in a market-based wind power deployment without subsidy, wind generators are penalized for insufficient contribution to the long term system's reliability. (authors)

  5. Investigating wind power`s effective capacity: A case study in the Caribbean Island of La Martinique

    Energy Technology Data Exchange (ETDEWEB)

    Perez, R.; Germa, J.M.; Bailey, B. [AWS Scientific, Inc., Paris (France)

    1996-12-31

    In this paper, we report on the experimental determination of the effective capacity of wind and photovoltaic (PV) power generation with respect to the utility load requirements of the Island of La Martinique. La Martinique is a French Overseas Department in the Caribbean Sea. The case study spans two years, 1990 and 1991. We consider wind generation at three locations in different wind regimes, and PV generation for fixed and tracking flat plate systems. The results presented include: (1) An overview of typical solar and wind power output at each considered site, presented in contrast to the Island`s electric load requirements; and (2) Effective capacities quantified for each resource as a function of penetration in the utility generation mix. 7 refs., 6 figs.

  6. Maximum capacity model of grid-connected multi-wind farms considering static security constraints in electrical grids

    International Nuclear Information System (INIS)

    Zhou, W; Oodo, S O; He, H; Qiu, G Y

    2013-01-01

    An increasing interest in wind energy and the advance of related technologies have increased the connection of wind power generation into electrical grids. This paper proposes an optimization model for determining the maximum capacity of wind farms in a power system. In this model, generator power output limits, voltage limits and thermal limits of branches in the grid system were considered in order to limit the steady-state security influence of wind generators on the power system. The optimization model was solved by a nonlinear primal-dual interior-point method. An IEEE-30 bus system with two wind farms was tested through simulation studies, plus an analysis conducted to verify the effectiveness of the proposed model. The results indicated that the model is efficient and reasonable.

  7. Maximum capacity model of grid-connected multi-wind farms considering static security constraints in electrical grids

    Science.gov (United States)

    Zhou, W.; Qiu, G. Y.; Oodo, S. O.; He, H.

    2013-03-01

    An increasing interest in wind energy and the advance of related technologies have increased the connection of wind power generation into electrical grids. This paper proposes an optimization model for determining the maximum capacity of wind farms in a power system. In this model, generator power output limits, voltage limits and thermal limits of branches in the grid system were considered in order to limit the steady-state security influence of wind generators on the power system. The optimization model was solved by a nonlinear primal-dual interior-point method. An IEEE-30 bus system with two wind farms was tested through simulation studies, plus an analysis conducted to verify the effectiveness of the proposed model. The results indicated that the model is efficient and reasonable.

  8. Short-Term Forecasting of Loads and Wind Power for Latvian Power System: Accuracy and Capacity of the Developed Tools

    Science.gov (United States)

    Radziukynas, V.; Klementavičius, A.

    2016-04-01

    The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011) and planned wind power capacities (the year 2023).

  9. Short-Term Forecasting of Loads and Wind Power for Latvian Power System: Accuracy and Capacity of the Developed Tools

    Directory of Open Access Journals (Sweden)

    Radziukynas V.

    2016-04-01

    Full Text Available The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011 and planned wind power capacities (the year 2023.

  10. A Novel Method for Fast Configuration of Energy Storage Capacity in Stand-Alone and Grid-Connected Wind Energy Systems

    Directory of Open Access Journals (Sweden)

    Haixiang Zang

    2016-12-01

    Full Text Available In this paper, a novel method is proposed and applied to quickly calculate the capacity of energy storage for stand-alone and grid-connected wind energy systems, according to the discrete Fourier transform theory. Based on practical wind resource data and power data, which are derived from the American Wind Energy Technology Center and HOMER software separately, the energy storage capacity of a stand-alone wind energy system is investigated and calculated. Moreover, by applying the practical wind power data from a wind farm in Fujian Province, the energy storage capacity for a grid-connected wind system is discussed in this paper. This method can also be applied to determine the storage capacity of a stand-alone solar energy system with practical photovoltaic power data.

  11. Comparative Education and Research Capacity Building: Reflections on International Transfer and the Significance of Context

    Directory of Open Access Journals (Sweden)

    Michael Crossley

    2012-04-01

    Full Text Available Recent years have seen a resurgence of interest in comparative and international education, along with a fundamental reconceptualisation of this distinctive multidisciplinary field of study. The nature and significance of these developments are explored with particular reference to their implications for broader research capacity building initiatives worldwide. In doing so, a critique of the international transfer of globally dominant research modalities and strategies is presented--along with arguments for increased attention to context sensitivity in both international development cooperation and educational research in general. Illustrative examples that support these arguments are drawn from the author's own research, from an analysis of emergent educational policy debates in the UK, and from related studies being carried out in Malaysia. In concluding, the strategic role of comparative research traditions and perspectives in a rapidly globalizing world is highlighted, while supporting the promotion of new initiative and research centres for comparative and international education.

  12. Significance of the Capacity Recovery Effect in Pouch Lithium-Sulfur Battery Cells

    DEFF Research Database (Denmark)

    Knap, Vaclav; Zhang, Teng; Stroe, Daniel Loan

    2016-01-01

    Lithium-Sulfur (Li-S) batteries are an emerging energy storage technology, which is technically-attractive due to its high theoretical limits; practically, it is expected that Li-S batteries will result into lighter energy storage devices with higher capacities than traditional Lithium-ion...... batteries. One of the actual disadvantages for this technology is the highly pronounced rate capacity effect, which reduces the available capacity to be discharged when high currents are used. This drawback might be addressed by the use of the capacity recovery effect, which by introducing relaxation...... periods between consecutive pulse discharges of the battery, increases the available discharge capacity of the cell. The capacity recovery effect of the Li-S cell is studied in this paper using the pulse discharge technique, considering its dependence on the applied current, discharge step length...

  13. Multibrid technology - a significant step to multi-megawatt wind turbines

    Science.gov (United States)

    Siegfriedsen, S.; Böhmeke, G.

    1998-12-01

    To fulfil the significant economic potential for offshore wind energy, it is essential that the largest possible installations must be allowed to come into use. Infrastructure investments for foundations and energy transport are only slightly dependent on the size of the installation, so these costs become proportionally smaller as the installed power output increases. This article puts forward a technologically novel type of development for a drive train design, specifically introduced for a 5 MW installation. The concept is especially suited for offshore application and the components are designed for this purpose. The usual way of modifying onshore plants partially and using them in the sea has been left with the present proposals. The design comprises a single-stage planetary gear, into which the rotor bearing is integrated, and a generator rotating at slow speed. Both components are assembled into a compact unit and are characterized by low wear and complete enclosure. New solutions are also proposed for the cooling of the machinery and the yaw system, offering particular advantages in offshore application. The advantages of the new technology are brought out from system comparisons with both a conventional plant configuration with a multi-stage gear and a high-speed generator, and also a combination with a direct drive generator in the 1·5 MW class. A particular design solution, worked through for a 5 MW installation, is presented and described in detail. At 31 kg kW-1, the specific tower head mass achieves a value that has not previously been realized in this power output class. As a result of the advantages that are brought together by this technology, both investment and operating costs are lowered, particularly for offshore applications. Implementation of this technology can thus provide a further stimulus for progress in wind energy utilization. Copyright

  14. Profitability of locations for wind energy utilization. Investigation of the significant influence parameters

    International Nuclear Information System (INIS)

    Wallasch, Anna-Kathrin; Rehfeldt, Knud

    2012-04-01

    The jurisdiction for the designation of sites for wind energy requires that sufficient space was procured within the created sites for wind energy to achieve an exclusionary effect in the rest of the plan area of wind energy. This means that the designated areas must allow the economic operation of wind turbines. It is often not easy to adequately determine and assess the suitability of an area. The project economics of wind energy projects is dependent on the individual case, and there is no general guideline for estimating the decision of municipalities. In the case of allegations of so-called ''prevention plan'' against communities in which seemingly unsuitable areas have been identified the dispute is usually settled by court. This represents a considerable effort. At this point, the present investigation shall begin to prepare and carry out more detailed studies on the economics of wind energy sites, which can be used for orientation in the evaluation of possible identified areas for wind energy. For this purpose, the results of the power generation costs of wind energy projects from the Scientific accompanying report wind energy for EEG Progress Report will first used and collectively evaluated, what conclusions can be obtained based on these results for the profitability of locations. Based on the database, which was developed as part of the scientific opinion accompanying wind energy for EEG Progress Report, then a sensitivity analysis is carried out with regard to individual parameters of the economics of wind energy projects. This means individual factors within the sample locations are varied and analyzes the impact on the project economics. Thus, statements about can be taken, how limits for individual factors can be defined in terms of project economics. [de

  15. Regenerative capacity of old muscle stem cells declines without significant accumulation of DNA damage.

    Directory of Open Access Journals (Sweden)

    Wendy Cousin

    Full Text Available The performance of adult stem cells is crucial for tissue homeostasis but their regenerative capacity declines with age, leading to failure of multiple organs. In skeletal muscle this failure is manifested by the loss of functional tissue, the accumulation of fibrosis, and reduced satellite cell-mediated myogenesis in response to injury. While recent studies have shown that changes in the composition of the satellite cell niche are at least in part responsible for the impaired function observed with aging, little is known about the effects of aging on the intrinsic properties of satellite cells. For instance, their ability to repair DNA damage and the effects of a potential accumulation of DNA double strand breaks (DSBs on their regenerative performance remain unclear. This work demonstrates that old muscle stem cells display no significant accumulation of DNA DSBs when compared to those of young, as assayed after cell isolation and in tissue sections, either in uninjured muscle or at multiple time points after injury. Additionally, there is no significant difference in the expression of DNA DSB repair proteins or globally assayed DNA damage response genes, suggesting that not only DNA DSBs, but also other types of DNA damage, do not significantly mark aged muscle stem cells. Satellite cells from DNA DSB-repair-deficient SCID mice do have an unsurprisingly higher level of innate DNA DSBs and a weakened recovery from gamma-radiation-induced DNA damage. Interestingly, they are as myogenic in vitro and in vivo as satellite cells from young wild type mice, suggesting that the inefficiency in DNA DSB repair does not directly correlate with the ability to regenerate muscle after injury. Overall, our findings suggest that a DNA DSB-repair deficiency is unlikely to be a key factor in the decline in muscle regeneration observed upon aging.

  16. Environmental sustainability control by water resources carrying capacity concept: application significance in Indonesia

    Science.gov (United States)

    Djuwansyah, M. R.

    2018-02-01

    This paper reviews the use of Water Resources carrying capacity concept to control environmental sustainability with the particular note for the case in Indonesia. Carrying capacity is a capability measure of an environment or an area to support human and the other lives as well as their activities in a sustainable manner. Recurrently water-related hazards and environmental problems indicate that the environments are exploited over its carrying capacity. Environmental carrying capacity (ECC) assessment includes Land and Water Carrying Capacity analysis of an area, suggested to always refer to the dimension of the related watershed as an incorporated hydrologic unit on the basis of resources availability estimation. Many countries use this measure to forecast the future sustainability of regional development based on water availability. Direct water Resource Carrying Capacity (WRCC) assessment involves population number determination together with their activities could be supported by available water, whereas indirect WRCC assessment comprises the analysis of supply-demand balance status of water. Water resource limits primarily environmental carrying capacity rather than the land resource since land capability constraints are easier. WRCC is a crucial factor known to control land and water resource utilization, particularly in a growing densely populated area. Even though capability of water resources is relatively perpetual, the utilization pattern of these resources may change by socio-economic and cultural technology level of the users, because of which WRCC should be evaluated periodically to maintain usage sustainability of water resource and environment.

  17. Rocky Mountain Regional CO{sub 2} Storage Capacity and Significance

    Energy Technology Data Exchange (ETDEWEB)

    Laes, Denise; Eisinger, Chris; Esser, Richard; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Matthews, Vince; McPherson, Brian

    2013-08-30

    The purpose of this study includes extensive characterization of the most promising geologic CO{sub 2} storage formations on the Colorado Plateau, including estimates of maximum possible storage capacity. The primary targets of characterization and capacity analysis include the Cretaceous Dakota Formation, the Jurassic Entrada Formation and the Permian Weber Formation and their equivalents in the Colorado Plateau region. The total CO{sub 2} capacity estimates for the deep saline formations of the Colorado Plateau region range between 9.8 metric GT and 143 metric GT, depending on assumed storage efficiency, formations included, and other factors.

  18. Global trends in significant wave height and marine wind speed from the ERA-20CM

    Science.gov (United States)

    Aarnes, Ole Johan; Breivik, Øyvind

    2016-04-01

    The ERA-20CM is one of the latest additions to the ERA-series produced at the European Center for Medium-Range Weather Forecasts (ECMWF). This 10 member ensemble is generated with a version of the Integrated Forecast System (IFS), a coupled atmosphere-wave model. The model integration is run as a AMIP (Atmospheric Model Intercomparison Project) constrained by CMIP5 recommended radiative forcing and different realizations of sea-surface temperature (SST) and sea-ice cover (SIC) prescribed by the HadISST2 (Met Office Hadley Center). While the ERA-20CM is unable to reproduce the actual synoptic conditions, it is designed to offer a realistic statistical representation of the past climate, spanning the period 1899-2010. In this study we investigate global trends in significant wave height and marine wind speed based on ERA-20CM, using monthly mean data, upper percentiles and monthly/annual maxima. The aim of the study is to assess the quality of the trends and how these estimates are affected by different SST and SIC. Global trends are compared against corresponding estimates obtained with ERA-Interim (1979-2009), but also crosschecked against ERA-20C - an ECMWF pilot reanalysis of the 20th-century, known to most trustworthy in the Northern Hemisphere extratropics. Over the period 1900-2009, the 10 member ensemble yields trends mainly within +/- 5% per century. However, significant trends of opposite signs are found locally. Certain areas, like the eastern equatorial Pacific, highly affected by the El Niño Southern Oscillation, show stronger trends. In general, trends based on statistical quantities further into the tail of the distribution are found less reliable.

  19. Wind Erosion Caused by Land Use Changes Significantly Reduces Ecosystem Carbon Storage and Carbon Sequestration Potentials in Grassland

    Science.gov (United States)

    Li, P.; Chi, Y. G.; Wang, J.; Liu, L.

    2017-12-01

    Wind erosion exerts a fundamental influence on the biotic and abiotic processes associated with ecosystem carbon (C) cycle. However, how wind erosion under different land use scenarios will affect ecosystem C balance and its capacity for future C sequestration are poorly quantified. Here, we established an experiment in a temperate steppe in Inner Mongolia, and simulated different intensity of land uses: control, 50% of aboveground vegetation removal (50R), 100% vegetation removal (100R) and tillage (TI). We monitored lateral and vertical carbon flux components and soil characteristics from 2013 to 2016. Our study reveals three key findings relating to the driving factors, the magnitude and consequence of wind erosion on ecosystem C balance: (1) Frequency of heavy wind exerts a fundamental control over the severity of soil erosion, and its interaction with precipitation and vegetation characteristics explained 69% variation in erosion intensity. (2) With increases in land use intensity, the lateral C flux induced by wind erosion increased rapidly, equivalent to 33%, 86%, 111% and 183% of the net ecosystem exchange of the control site under control, 50R, 100R and TI sites, respectively. (3) After three years' treatment, erosion induced decrease in fine fractions led to 31%, 43%, 85% of permanent loss of C sequestration potential in the surface 5cm soil for 50R, 100R and TI sites. Overall, our study demonstrates that lateral C flux associated with wind erosion is too large to be ignored. The loss of C-enriched fine particles not only reduces current ecosystem C content, but also results in irreversible loss of future soil C sequestration potential. The dynamic soil characteristics need be considered when projecting future ecosystem C balance in aeolian landscape. We also propose that to maintain the sustainability of grassland ecosystems, land managers should focus on implementing appropriate land use rather than rely on subsequent managements on degraded soils.

  20. Line Capacity Expansion and Transmission Switching in Power Systems With Large-Scale Wind Power

    DEFF Research Database (Denmark)

    Villumsen, Jonas Christoffer; Bronmo, Geir; Philpott, Andy B.

    2013-01-01

    In 2020 electricity production from wind power should constitute nearly 50% of electricity demand in Denmark. In this paper we look at optimal expansion of the transmission network in order to integrate 50% wind power in the system, while minimizing total fixed investment cost and expected cost...... of power generation. We allow for active switching of transmission elements to reduce congestion effects caused by Kirchhoff's voltage law. Results show that actively switching transmission lines may yield a better utilization of transmission networks with large-scale wind power and increase wind power...

  1. Wind farm project economics : value of wind

    Energy Technology Data Exchange (ETDEWEB)

    Bills-Everett, T. [Mainstream Renewable Power, Toronto, ON (Canada)

    2010-07-01

    This PowerPoint presentation discussed methods of increasing the value of wind power projects. Appropriate turbine selection and layout is needed to ensure that wind resources are fully developed. Construction costs have a significant impact on project costs. The world turbine price index has not significantly fluctuated since 2006. Operating costs, and the value of wind power projects, are linked with OPEX fluctuations. Wind power projects can significantly reduce greenhouse gas (GHG) emissions. An increase in wind power capacity will reduce the overall cost of energy produced from wind power. Countries can use wind power as part of a renewable energy portfolio designed to reduce risks related to diminishing petroleum supplies. Wind power will help to ensure a global transition to renewable energy use. tabs., figs.

  2. I support renewable energy but : significant planning issues for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Pausner, J [County of Grey, ON (Canada)

    2004-07-01

    This PowerPoint presentation examined the wind power project of Blue Highlands, located in Eastern Grey County, Ontario. The project, for which no approval has yet been obtained, involves 67 turbines (120-130 MW). The staff of the Niagara Escarpment Commission (NEC) has made the following recommendations concerning wind energy development projects: (1) the Niagara Escarpment Plan should not be the focus of large-scale industrial type wind power development, (2) wind power developments should be allowed only in certain portions of the Plan area, (3) permission may be granted for household or farm generators throughout the Plan, on a case-by-case basis, (4) the NEC should review proposals adjacent to Plan boundaries which may have a visual impact, and (5) conduct further reviews after major parks are constructed elsewhere. The author identified important planning issues such as environmental impacts, visual impacts, and noise. Policy implementation through zoning is dependent on defining terms and establishing requirements for setbacks, signage, accessory structures and facilities, height maximums, decommissioning provisions, and site planning. The author discussed data collection and dissemination, as well as mapping. The presentation concluded with proposals for policy development, where the author argued that everyone should play their part. Areas with high potential should be examined and development constrained in order to ensure the protection of existing incompatible uses. The public must be involved in locally based projects. Wind theft issue must be addressed. figs.

  3. Trends in significant wave height and surface wind speed in the China Seas between 1988 and 2011

    Science.gov (United States)

    Zheng, Chongwei; Zhang, Ren; Shi, Weilai; Li, Xin; Chen, Xuan

    2017-10-01

    Wind and waves are key components of the climate system as they drive air-sea interactions and influence weather systems and atmospheric circulation. In marine environments, understanding surface wind and wave fields and their evolution over time is important for conducting safe and efficient human activities, such as navigation and engineering. This study considers long-term trends in the sea surface wind speed (WS) and significant wave height (SWH) in the China Seas over the period 1988-2011 using the Cross-Calibrated Multi-Platform (CCMP) ocean surface wind product and a 24-year hindcast wave dataset obtained from the WAVEWATCH-III (WW3) wave model forced with CCMP winds. The long-term trends in WS and SWH in the China Seas are analyzed over the past 24 years to provide a reference point from which to assess future climate change and offshore wind and wave energy resource development in the region. Results demonstrate that over the period 1988-2011 in the China Seas: 1) WS and SWH showed a significant increasing trend of 3.38 cm s-1 yr-1 and 1.52 cm yr-1, respectively; 2) there were notable regional differences in the long-term trends of WS and SWH; 3) areas with strong increasing trends were located mainly in the middle of the Tsushima Strait, the northern and southern areas of the Taiwan Strait, and in nearshore regions of the northern South China Sea; and 4) the long-term trend in WS was closely associated with El Niño and a significant increase in the occurrence of gale force winds in the region.

  4. The impact of North Atlantic wind and cyclone trends on European precipitation and significant wave height in the Atlantic.

    Science.gov (United States)

    Trigo, Ricardo M; Valente, Maria A; Trigo, Isabel F; Miranda, Pedro M A; Ramos, Alexandre M; Paredes, Daniel; García-Herrera, Ricardo

    2008-12-01

    An analysis of the frequency of cyclones and surface wind velocity for the Euro-Atlantic sector is performed by means of an objective methodology. Monthly and seasonal trends of cyclones and wind speed magnitude are computed and trends between 1960 and 2000 evaluated. Results reveal a significant frequency decrease (increase) in the western Mediterranean (Greenland and Scandinavia), particularly in December, February, and March. Seasonal and monthly analysis of wind magnitude trends shows similar spatial patterns. We show that these changes in the frequency of low-pressure centers and the associated wind patterns are partially responsible for trends in the significant height of waves. Throughout the extended winter months (October-March), regions with positive (negative) wind magnitude trends, of up to 5 cm/s/year, often correspond to regions of positive (negative) significant wave height trends. The cyclone and wind speed trends computed for January-March are well matched by the corresponding trends in significant wave height, with February being the month with the highest trends (negative south of lat 50 degrees N up to -3 cm/year, and positive up to 5 cm/year just north of Scotland). Trends in European precipitation are assessed using the Climatic Research Unit data set. The results of the assessment emphasize the link with the corresponding tendencies of cyclone frequencies. Finally, it is shown that these changes are associated, to a large extent, with the preferred phases of major large-scale atmospheric circulation modes, particularly with the North Atlantic Oscillation, the eastern Atlantic pattern, and the Scandinavian pattern.

  5. Geosat altimeter derived sea surface wind speeds and significant wave heights for the north Indian Ocean and their comparison with in situ data

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; Vaithiyanathan, R.; Almeida, A.M.; Santanam, K.; Rao, L.V.G.; Sarkar, A.; Kumar, R.; Gairola, R.M.; Gohil, B.S.

    Geosat altimeter data for the period November 1986-October 1987 over the north Indian Ocean have been processed to retrieve wind speeds and significant wave heights. Smoothed Brown algorithm is used to retrieve wind speeds from back...

  6. Mismatch of wind power capacity and generation: causing factors, GHG emissions and potential policy responses

    NARCIS (Netherlands)

    Subtil Lacerda, J.; van den Bergh, J.C.J.M.

    2016-01-01

    Policies to assure combatting climate change and realising energy security have stimulated a rapid growth in global installed capacity of renewable energy generation. The expansion of power generation from renewables, though, has so far lagged behind the growth in generation capacity. This indicates

  7. Scientists Find X Rays from Stellar Winds That May Play Significant Role in Galactic Evolution

    Science.gov (United States)

    2001-09-01

    Colorful star-forming regions that have captivated stargazers since the advent of the telescope 400 years ago contain gas thousands of times more energetic than previously recognized, powered by colliding stellar winds. This multimillion-degree gas radiated as X rays is one of the long-sought sources of energy and elements in the Milky Way galaxy's interstellar medium. A team led by Leisa Townsley, a senior research associate in astronomy and astrophysics at Penn State University, uncovered this wind phenomenon in the Rosette Nebula, a stellar nursery. With the Chandra X-ray Observatory, the team found that the most massive stars in the nebula produce winds that slam into each other, create violent shocks, and infuse the region with 6-million-degree gas. The findings are presented in Washington, D.C., today at a conference entitled "Two Years of Science with Chandra." "A ghostly glow of diffuse X-ray emission pervades the Rosette Nebula and perhaps many other similar star-forming regions throughout the Galaxy," said Townsley. "We now have a new view of the engine lighting the beautiful Rosette Nebula and new evidence for how the interstellar medium may be energized." Townsley and her colleagues created a striking X-ray panorama of the Rosette Molecular Cloud from four images with Chandra's Advanced CCD Imaging Spectrometer. This is a swath of the sky nearly 100 light years across sprayed with hundreds of X-ray-emitting young stars. In one corner of the Rosette Molecular Cloud lies the Rosette Nebula, called an "H II region" because the hydrogen gas there has been stripped of its electrons due to the strong ultraviolet radiation from its young stars. This region, about 5,000 light years away in the constellation Monoceros, the Unicorn, has long been a favorite among amateur astronomers. The wispy, colorful display is visible with small telescopes. The Chandra survey reveals, for the first time, 6-million-degree gas at the center of the Rosette Nebula, occupying a

  8. Econometric analysis of the changing effects in wind strength and significant wave height on the probability of casualty in shipping.

    Science.gov (United States)

    Knapp, Sabine; Kumar, Shashi; Sakurada, Yuri; Shen, Jiajun

    2011-05-01

    This study uses econometric models to measure the effect of significant wave height and wind strength on the probability of casualty and tests whether these effects changed. While both effects are in particular relevant for stability and strength calculations of vessels, it is also helpful for the development of ship construction standards in general to counteract increased risk resulting from changing oceanographic conditions. The authors analyzed a unique dataset of 3.2 million observations from 20,729 individual vessels in the North Atlantic and Arctic regions gathered during the period 1979-2007. The results show that although there is a seasonal pattern in the probability of casualty especially during the winter months, the effect of wind strength and significant wave height do not follow the same seasonal pattern. Additionally, over time, significant wave height shows an increasing effect in January, March, May and October while wind strength shows a decreasing effect, especially in January, March and May. The models can be used to simulate relationships and help understand the relationships. This is of particular interest to naval architects and ship designers as well as multilateral agencies such as the International Maritime Organization (IMO) that establish global standards in ship design and construction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. A Method for Increasing the Operating Limit Capacity of Wind Farms Using Battery Energy Storage Systems with Rate of Change of Frequency

    Directory of Open Access Journals (Sweden)

    Dae-Hee Son

    2018-03-01

    Full Text Available In this paper, the appropriate rated power of battery energy storage system (BESS and the operating limit capacity of wind farms are determined considering power system stability, and novel output control methods of BESS and wind turbines are proposed. The rated power of BESS is determined by correlation with the kinetic energy that can be released from wind turbines and synchronous generators when a disturbance occurs in the power system. After the appropriate rated power of BESS is determined, a novel control scheme for quickly responding to disturbances should be applied to BESS. It is important to compensate the insufficient power difference between demand and supply more quickly after a disturbance, and for this purpose, BESS output is controlled using the rate of change of frequency (ROCOF. Generally, BESS output is controlled by the frequency droop control (FDC, however if ROCOF falls below the threshold, BESS output increases sharply. Under this control for BESS, the power system’s stability can be improved and the operating limit capacity of wind farms can be increased. The operating limit capacity is determined as the smaller of technical limit and dynamic limit capacity. The technical limit capacity is calculated by the difference between the maximum power of the generators connected to the power system and the magnitude of loads, and the dynamic limit capacity is determined by considering dynamic stability of a power system frequency when the wind turbines drop out from a power system. Output of the dynamic model developed for wind turbine is based on the operating limit capacity and is controlled by blade pitch angle. To validate the effectiveness of the proposed control method, different case studies are conducted, with simulations for BESS and wind turbine using Power System Simulation for Engineering (PSS/E.

  10. For the definition of capacity effects of electricity generation from wind power and solar radiation

    International Nuclear Information System (INIS)

    Kaltschmitt, M.

    1996-01-01

    It is the objective of this contribution to define the calculable really available output of a fluctuating electricity generation from wind energy and solar radiation. Apart from that, the methods for determining the really available output are explained, as far as they are necessary for understanding the definitions. Exemplified on a simulated large-scale regenerative electricity generation in Germany, in addition, some defined values are calculated and discussed. (orig.) [de

  11. Effect of unbalanced voltage on windings temperature, operational life and load carrying capacity of induction machine

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska Street 83, 81-225 Gdynia (Poland)

    2008-04-15

    This paper investigates the influence of the CVUF angle on the windings temperature rise and the derating factor of an induction machine supplied with unbalanced voltage. The effect of simultaneous voltage unbalance and harmonics on its operational life is analyzed as well. The results of calculations and experimental investigations are presented for two induction cage machines of rated power 3 and 5.5 kW. (author)

  12. The Vital Capacity Is Vital: Epidemiology and Clinical Significance of the Restrictive Spirometry Pattern.

    Science.gov (United States)

    Godfrey, Mark S; Jankowich, Matthew D

    2016-01-01

    Epidemiologic research has revealed a substantial portion of the general population with abnormal spirometry results that are characterized by decreased FEV1 and FVC but a preserved FEV1/FVC ratio. This restrictive spirometry pattern (RSP) is inconsistently defined in the literature and not well addressed by current guidelines; there is an accumulating body of evidence, however, that RSP is prevalent to a similar degree as airflow obstruction. Genetic and other risk factors for RSP, such as inhalational injuries and early life exposures, continue to be actively described. Although it seems that RSP is closely associated with the metabolic syndrome, diabetes, and systemic inflammation, it is not a simple marker of obesity. RSP is associated with adverse cardiovascular outcomes, as well as mortality, and it may be an underappreciated cause of functional impairments and respiratory symptoms. Improvement in outcomes in this population will require that clinicians have an appreciation for the significance of this spirometry pattern; additional research into the clinical and radiologic phenotype of these subjects is also needed. This article provides an overview of the recent developments in our understanding of this prevalent and highly morbid spirometry pattern. Published by Elsevier Inc.

  13. Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels.

    Science.gov (United States)

    Kucharski, Timothy J; Ferralis, Nicola; Kolpak, Alexie M; Zheng, Jennie O; Nocera, Daniel G; Grossman, Jeffrey C

    2014-05-01

    Large-scale utilization of solar-energy resources will require considerable advances in energy-storage technologies to meet ever-increasing global energy demands. Other than liquid fuels, existing energy-storage materials do not provide the requisite combination of high energy density, high stability, easy handling, transportability and low cost. New hybrid solar thermal fuels, composed of photoswitchable molecules on rigid, low-mass nanostructures, transcend the physical limitations of molecular solar thermal fuels by introducing local sterically constrained environments in which interactions between chromophores can be tuned. We demonstrate this principle of a hybrid solar thermal fuel using azobenzene-functionalized carbon nanotubes. We show that, on composite bundling, the amount of energy stored per azobenzene more than doubles from 58 to 120 kJ mol(-1), and the material also maintains robust cyclability and stability. Our results demonstrate that solar thermal fuels composed of molecule-nanostructure hybrids can exhibit significantly enhanced energy-storage capabilities through the generation of template-enforced steric strain.

  14. Bioactive Compound Synthetic Capacity and Ecological Significance of Marine Bacterial Genus Pseudoalteromonas

    Directory of Open Access Journals (Sweden)

    John P. Bowman

    2007-12-01

    Full Text Available The genus Pseudoalteromonas is a marine group of bacteria belonging to theclass Gammaproteobacteria that has come to attention in the natural product andmicrobial ecology science fields in the last decade. Pigmented species of the genus havebeen shown to produce an array of low and high molecular weight compounds withantimicrobial, anti-fouling, algicidal and various pharmaceutically-relevant activities.Compounds formed include toxic proteins, polyanionic exopolymers, substitutedphenolic and pyrolle-containing alkaloids, cyclic peptides and a range of bromine-substituted compounds. Ecologically, Pseudoalteromonas appears significant and to datehas been shown to influence biofilm formation in various marine econiches; involved inpredator-like interactions within the microbial loop; influence settlement, germinationand metamorphosis of various invertebrate and algal species; and may also be adopted bymarine flora and fauna as defensive agents. Studies have been so far limited to arelatively small subset of strains compared to the known diversity of the genussuggesting that many more discoveries of novel natural products as well as ecologicalconnections these may have in the marine ecosystem remain to be made.

  15. Marrying Step Feed with Secondary Clarifier Improvements to Significantly Increase Peak Wet Weather Treatment Capacity: An Integrated Methodology.

    Science.gov (United States)

    Daigger, Glen T; Siczka, John S; Smith, Thomas F; Frank, David A; McCorquodale, J A

    2017-08-01

      The need to increase the peak wet weather secondary treatment capacity of the City of Akron, Ohio, Water Reclamation Facility (WRF) provided the opportunity to test an integrated methodology for maximizing the peak wet weather secondary treatment capacity of activated sludge systems. An initial investigation, consisting of process modeling of the secondary treatment system and computational fluid dynamics (CFD) analysis of the existing relatively shallow secondary clarifiers (3.3 and 3.7 m sidewater depth in 30.5 m diameter units), indicated that a significant increase in capacity from 416 000 to 684 000 m3/d or more was possible by adding step feed capabilities to the existing bioreactors and upgrading the existing secondary clarifiers. One of the six treatment units at the WRF was modified, and an extensive 2-year testing program was conducted to determine the total peak wet weather secondary treatment capacity achievable. The results demonstrated that a peak wet weather secondary treatment capacity approaching 974 000 m3/d is possible as long as secondary clarifier solids and hydraulic loadings could be separately controlled using the step feed capability provided. Excellent sludge settling characteristics are routinely experienced at the City of Akron WRF, raising concerns that the identified peak wet weather secondary treatment capacity could not be maintained should sludge settling characteristics deteriorate for some reason. Computational fluid dynamics analysis indicated that the impact of the deterioration of sludge settling characteristics could be mitigated and the identified peak wet weather secondary treatment capacity maintained by further use of the step feed capability provided to further reduce secondary clarifier solids loading rates at the identified high surface overflow rates. The results also demonstrated that effluent limits not only for total suspended solids (TSS) and five-day carbonaceous biochemical oxygen demand (cBOD5) could be

  16. Clinical significance of MCM-2 and MCM-5 expression in colon cancer: association with clinicopathological parameters and tumor proliferative capacity.

    Science.gov (United States)

    Giaginis, Constantinos; Georgiadou, Maria; Dimakopoulou, Konstantina; Tsourouflis, Gerasimos; Gatzidou, Elisavet; Kouraklis, Gregorios; Theocharis, Stamatios

    2009-02-01

    Minichromosome maintenance (MCM) proteins are essential components of DNA replication, being related to cell proliferation, and serve as useful markers for cancer screening, surveillance, and prognosis. Our aim was to examine the clinical significance of MCM-2 and MCM-5 protein expression in colon cancer and to evaluate the association with various clinicopathological characteristics and tumor proliferative capacity. Immunohistochemical expression of MCM-2 and MCM-5 was performed on paraffin-embedded malignant tissue sections obtained from 96 patients with colon cancer. MCM-2 and MCM-5 expression was correlated with different clinicopathological characteristics, proliferative capacity (Ki-67 labeling index), and p53 cell-cycle regulator expression. MCM-2 and Ki-67 expression was significantly associated with the tumors' histological grade (P = 0.003), existence of nodular metastases (N) (P = 0.003 and P = 0.030, respectively), malignancy on adenoma (P = 0.029 and P = 0.024, respectively), and vascular invasion (P = 0.010 and P = 0.011, respectively). MCM-2 expression was additionally associated with Dukes' stage (P = 0.005). Significant positive relationships were found between the expression of MCM-2 or MCM-5 proteins and that of Ki-67 protein (r = 0.963, P-value characteristics examined. The current data suggest that MCM-2 protein expression is significantly associated with important clinicopathological characteristics for patients' management, being correlated with the cell proliferation state in colon cancer.

  17. The potential of wind farms

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Summaries of papers presented at the European wind energy conference on the potential of wind farms are presented. It is stated that in Denmark today, wind energy provides about 3% to the Danish electricity consumption and the wind power capacity is, according to Danish wind energy policy, expected to increase substantially in the years to come. A number of countries in Europe and elsewhere are making significant progress in this repect. Descriptions of performance are given in relation to some individual wind farms. The subjects covered concern surveys of national planning and policies regarding wind utilization and national and global development of wind turbine arrays. Papers also deal with utility and project planning, wind prediction and certification, wind loads and fatigue, wakes, noise and control. (AB).

  18. Study of Flexible Load Dispatch to Improve the Capacity of Wind Power Absorption

    Science.gov (United States)

    Yunlei, Yang; Shifeng, Zhang; Xiao, Chang; Da, Lei; Min, Zhang; Jinhao, Wang; Shengwen, Li; Huipeng, Li

    2017-05-01

    The dispatch method which track the trend of load demand by arranging the generation scheme of controllable hydro or thermal units faces great difficulties and challenges. With the increase of renewable energy sources such as wind power and photovoltaic power introduced to grid, system has to arrange much more spinning reserve units to compensate the unbalanced power. How to exploit the peak-shaving potential of flexible load which can be shifted with time or storage energy has become many scholars’ research direction. However, the modelling of different kinds of load and control strategy is considerably difficult, this paper choose the Air Conditioner with compressor which can storage energy in fact to study. The equivalent thermal parameters of Air Conditioner has been established. And with the use of “loop control” strategies, we can predict the regulated power of Air Conditioner. Then we established the Gen-Load optimal scheduling model including flexible load based on traditional optimal scheduling model. At last, an improved IEEE-30 case is used to verify. The result of simulation shows that flexible load can fast-track renewable power changes. More than that, with flexible load and reasonable incentive method to consumers, the operating cost of the system can be greatly cut down.

  19. Ecological restoration and recovery in the wind-blown sand hazard areas of northern China: relationship between soil water and carrying capacity for vegetation in the Tengger Desert.

    Science.gov (United States)

    Li, XingRong; Zhang, ZhiShan; Tan, HuiJuan; Gao, YanHong; Liu, LiChao; Wang, XingPing

    2014-05-01

    The main prevention and control area for wind-blown sand hazards in northern China is about 320000 km(2) in size and includes sandlands to the east of the Helan Mountain and sandy deserts and desert-steppe transitional regions to the west of the Helan Mountain. Vegetation recovery and restoration is an important and effective approach for constraining wind-blown sand hazards in these areas. After more than 50 years of long-term ecological studies in the Shapotou region of the Tengger Desert, we found that revegetation changed the hydrological processes of the original sand dune system through the utilization and space-time redistribution of soil water. The spatiotemporal dynamics of soil water was significantly related to the dynamics of the replanted vegetation for a given regional precipitation condition. The long-term changes in hydrological processes in desert areas also drive replanted vegetation succession. The soil water carrying capacity of vegetation and the model for sand fixation by revegetation in aeolian desert areas where precipitation levels are less than 200 mm are also discussed.

  20. When is enough, enough? Identifying predictors of capacity estimates for onshore wind-power development in a region of the UK

    International Nuclear Information System (INIS)

    Jones, Christopher R.; Orr, Barry J.; Eiser, J. Richard

    2011-01-01

    The level of 'wind-prospecting' presently occurring in the UK is increasing the likelihood that new wind-power developments will conflict with other existing and/or proposed schemes. This study reports multiple-regression analyses performed on survey data obtained in a region of the UK (i.e. Humberhead Levels, near Doncaster) simultaneously subject to nine wind-farm proposals (September 2008). The aim of the analysis was to identify which survey-items were predictors of respondents' estimates of the number of wind turbines they believed the region could reasonably support (i.e. capacity estimates). The results revealed that the majority of respondents would endorse some local development; however, there was substantial variability in the upper level that was considered acceptable. Prominent predictors included general attitude, perceived knowledge of wind power, community attachment, environmental values, visual attractiveness of wind turbines, and issues relating to perceived fairness and equity. The results have implications for Cumulative Effects Assessment (CEA) - and in particular the assessment of Cumulative Landscape and Visual Impacts (CLVI) - and support calls for greater community involvement in decisions regarding proposed schemes. - Highlights: → Research seeks to identify predictors of the scale of local wind development people will tolerate. → Research conducted in region of the UK subject to nine wind-farm applications (2008). → Predictors found to include issues of perceived fairness and equity. → Results hold implications for cumulative effects assessment and development practices.

  1. When is enough, enough? Identifying predictors of capacity estimates for onshore wind-power development in a region of the UK

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Christopher R., E-mail: c.r.jones@shef.ac.uk [Department of Psychology, University of Sheffield, Western Bank, Sheffield, S10 2TP (United Kingdom); Orr, Barry J.; Eiser, J. Richard [Department of Psychology, University of Sheffield, Western Bank, Sheffield, S10 2TP (United Kingdom)

    2011-08-15

    The level of 'wind-prospecting' presently occurring in the UK is increasing the likelihood that new wind-power developments will conflict with other existing and/or proposed schemes. This study reports multiple-regression analyses performed on survey data obtained in a region of the UK (i.e. Humberhead Levels, near Doncaster) simultaneously subject to nine wind-farm proposals (September 2008). The aim of the analysis was to identify which survey-items were predictors of respondents' estimates of the number of wind turbines they believed the region could reasonably support (i.e. capacity estimates). The results revealed that the majority of respondents would endorse some local development; however, there was substantial variability in the upper level that was considered acceptable. Prominent predictors included general attitude, perceived knowledge of wind power, community attachment, environmental values, visual attractiveness of wind turbines, and issues relating to perceived fairness and equity. The results have implications for Cumulative Effects Assessment (CEA) - and in particular the assessment of Cumulative Landscape and Visual Impacts (CLVI) - and support calls for greater community involvement in decisions regarding proposed schemes. - Highlights: > Research seeks to identify predictors of the scale of local wind development people will tolerate. > Research conducted in region of the UK subject to nine wind-farm applications (2008). > Predictors found to include issues of perceived fairness and equity. > Results hold implications for cumulative effects assessment and development practices.

  2. 基于韦伯模型的风场储能容量计算%Storage Capacity Calculation of Wind Power Based on Weibull Model

    Institute of Scientific and Technical Information of China (English)

    王树超

    2013-01-01

    Wind speed model and wind generator output model are analyzed by applying Weibull function to set up wind speed distribution model and the concept of probability theory to calculate the power capacity of energy storage system . The ratio of wind energy and storage capacity is reasonable and meets requirement of energy system by means of stimula -tion experiment .Under the condition of satisfying China ’ s wind power grid standard , the energy storage scale should be minimized and be verified by actual wind farm data .%分析了风电场风速的模型、风力发电机输出模型,运用韦伯函数建立风速分布模型,采用概率论期望的思想,计算储能系统功率容量。通过模拟仿真实验,得出满足电力系统要求的合理风储比。在满足我国风电并网标准的条件下,尽可能地减小储能系统规模,并利用实际风电场数据加以分析验证。

  3. The clinical significance of detection to heart rate deceleration capacity and heart rate variability in patients with chronic heart failure

    Directory of Open Access Journals (Sweden)

    Jiang-rong Zhou

    2015-01-01

    Full Text Available Objective: To study the change of heart rate deceleration capacity ( DC and heart rate variability in patients with chronic heart failure (CHF and its relationship with left ventricular ejection fraction (LVEF. Methods: DC, LVEF, time and frequency domain parameters of HRV were measured in 66 patients with CHF and 34 healthy adults (control group by using 24h Holter recordings and Echocardiography. The standard deviation of normal R-R intervals( SDNN, squares of differences between adjacent NN intervals ( RMSSD,low frequency power( LFn and high frequency power( HFn and the changes of LVEF were compared between  the two groups,the relationship between DC,LVEF and HRV were studied in patients with CHF. Results: The median value of DC in the patients with CHF was significantly lower than that in control group( 3.1 ± 2.4 ms vs 7.2 ± 1.3 ms,P <0.01.Incidence of abnormal DC in the CHF group was 57.5%,which was significantly higher than that in the control group (P <0.01.The HRV index, including SDNN、RMSSD、LFn、HFn, in the CHF group was significantly lower than that in normal control group (P < 0.01. Significant positive correlation between HRV index and LVEF were confirmed (P < 0.01. Conclusions: DC and HRV index are lower in patients with CHF and have a good correlation with the left ventricular ejection fraction.

  4. Summary of Time Period-Based and Other Approximation Methods for Determining the Capacity Value of Wind and Solar in the United States: September 2010 - February 2012

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.; Porter, K.

    2012-03-01

    This paper updates previous work that describes time period-based and other approximation methods for estimating the capacity value of wind power and extends it to include solar power. The paper summarizes various methods presented in utility integrated resource plans, regional transmission organization methodologies, regional stakeholder initiatives, regulatory proceedings, and academic and industry studies. Time period-based approximation methods typically measure the contribution of a wind or solar plant at the time of system peak - sometimes over a period of months or the average of multiple years.

  5. A comparative calculation of the wind turbines capacities on the basis of the L-{sigma} criterion

    Energy Technology Data Exchange (ETDEWEB)

    Menet, Jean-Luc; Valdes, Laurent-Charles; Menart, Bruno [Universite de Valenciennes et du Hainaut-Cambresis, Groupe de Recherche Energies et Environnement, Valenciennes, 59 (France)

    2001-04-01

    Usually, wind sites are equipped with fast-running Horizontal Axis Wind Turbines of the airscrew type, which has a high efficiency. In this article, the argument is put forward that the choice of a wind turbine must not be based only on high efficiency. We propose a comparative criterion adapted to the comparison of a horizontal axis wind turbine with a vertical axis wind turbine: the L-{sigma} criterion. This criterion consists in comparing wind turbines which intercept the same front width of wind, by allocating them a same reference value of the maximal mechanical stress on the blades or the paddles. On the basis of this criterion, a quantitative comparison points to a clear advantage of the Savonius rotors, because of their lower angular velocity, and provides some elements for the improvement of their rotor. (Author)

  6. Generation of electricity from wind

    International Nuclear Information System (INIS)

    Debroy, S.K.; Behera, S.; Murty, J.S.

    1997-01-01

    Bulk power can be generated by using a chain of wind mills with the current level of technology. Wind turbine technology has improved considerably resulting in better efficiency, availability and capacity factor including a significant reduction in the cost of manufacture and installation

  7. Wind Energy Systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Ma, Ke

    2017-01-01

    transmission networks at the scale of hundreds of megawatts. As its level of grid penetration has begun to increase dramatically, wind power is starting to have a significant impact on the operation of the modern grid system. Advanced power electronics technologies are being introduced to improve......Wind power now represents a major and growing source of renewable energy. Large wind turbines (with capacities of up to 6-8 MW) are widely installed in power distribution networks. Increasing numbers of onshore and offshore wind farms, acting as power plants, are connected directly to power...... the characteristics of the wind turbines, and make them more suitable for integration into the power grid. Meanwhile, there are some emerging challenges that still need to be addressed. This paper provides an overview and discusses some trends in the power electronics technologies used for wind power generation...

  8. Trends in surface wind speed and significant wave height as revealed by ERA-Interim wind wave hindcast in the Central Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Shanas, P.R.; SanilKumar, V.

    height. The area average analysis is carried out to investigate the sensitivity of the identified trend results for the point location and found similar trends for extreme wind speed and SWH. The high (>5 m) annual maximum SWH in the study area...

  9. Great Historical Events That Were Significantly Affected by the Weather: 7, "Protestant Wind"-"Popish Wind": The Revolusion of 1688 in England.

    Science.gov (United States)

    Lindgrén, S.; Neumann, J.

    1985-06-01

    James II, King of England from 1685 to 1688, increasingly antagonized his people by his forced attempts to restore the Catholic faith to a position of eminence in England; many of his actions were contrary to acts passed by earlier Parliaments (he ruled without Parliament most of his reign). Leading dignitaries of the Church of England, of the Protestant nobility, and some of the high officers of the Army and Navy came to the conclusion that the only remedy to the country's ills was to call in William, the Prince of Orange and Chief Magistrate ("Stadholder") of the Netherlands, whose spouse Mary, James' daughter, was, until July 1688, the heir-presumptive to the English crown; the prince himself had a position in the list of succession, bring a nephew of James.Over and above the prince's personal ambitions, it was his conviction and that of several other leading personalities in the Dutch Republic that it was in the vital interest of the Netherlands to influence England's policies, and, in particular, to prevent a line-up of England with the France of Louis XIV, who had hostile designs on the Republic. As long as the danger of a French assault on the Netherlands was imminent, the States-General of the Republic would not authorize the "descent" on England, but when late in September 1688 Louis decided to attack the German States on the Middle-Rhine first, the "descent" gained approval.The peak of the crisis about James' policies in England was reached in summer-early fall of 1688. In the meantime, William assembled a large fleet and force in the Netherlands to "descend" on England, but his sailing was hindered by winds that in September and October blew with nearly total persistence from the westerly quarter. People in England and in the Netherlands were daily watching for weeks the direction of wind. They called the easterly winds "Protestant winds" and the westerly winds "Popish winds." In addition to making possible the invasion, the "Protestant winds" made it

  10. Offshore wind energy prospects

    International Nuclear Information System (INIS)

    Gaudiosi, Gaetano

    1999-01-01

    In last two years offshore wind energy is becoming a focal point of national and non national organisations particularly after the limitations of fossil fuel consumption, adopted by many developed countries after Kyoto conference at the end of 1997 on global climate change. North Europe is particularly interested in offshore for the limited land areas still available, due to the intensive use of its territory and its today high wind capacity. Really the total wind capacity in Europe could increase from the 1997 value of 4450 MW up to 40 000 MW within 2010, according the White Paper 1997 of the European Commission; a significant percentage (25%) could be sited offshore up to 10 000 MW, because of close saturation of the land sites at that time. World wind capacity could increase from the 1997 value of 7200 MW up to 60 000 MW within 2010 with a good percentage (20%) offshore 12 000 MW. In last seven years wind capacity in shallow water of coastal areas has reached 34 MW. Five wind farms are functioning in the internal seas of Netherlands, Denmark, Sweden; however such siting is mostly to be considered as semi-offshore condition. Wind farms in real offshore sites, open seas with waves and water depth over 10 m, are now proposed in North Sea at 10-20 km off the coasts of Netherlands, Denmark using large size wind turbine (1-2 MW). In 1997 an offshore proposal was supported in Netherlands by Greenpeace after the OWEMES '97 seminar, held in Italy on offshore wind in the spring 1997. A review is presented in the paper of European offshore wind programs with trends in technology, economics and siting effects. (Author)

  11. Model Development for Power System Analysis with a Substantial Wind Energy Capacity Installed in the Nordic grid

    DEFF Research Database (Denmark)

    Carlson, Ola; Perdana, Abram; Chen, Peiyuan

    2011-01-01

    The worldwide development of wind power installations now includes planning and construction of large-scale wind farms ranging in magnitudes of 1000 MW and more. As part of the planning and design of such systems, it is well established that the transient and dynamic stability of the electrical...... power system needs to be studied. Modelling work of the electrical behaviour of wind turbines and wind farms as well as model validation by measurements have been important parts of this project work. The models have been used to study dynamic phenomena during normal operation and fault occasions...... in the electric system. Fault Ride Through (FRT) measurements have been carried out on new wind parks connected to Estonian power grid and in all of them FRT tests were made. In several wind parks the tests were not successful and the tests will be repeated. In Finland measurements have carried out in 6 MW...

  12. The effects of wind and temperature on cuticular transpiration of Picea abies and Pinus cembra and their significance in dessication damage at the alpine treeline.

    Science.gov (United States)

    Baig, M N; Tranquillini, W

    1980-01-01

    The importance of high winter winds and plant temperatures as causes of winter desiccation damage at the alpine treeline were studied in the Austrian Alps. Samples of 1- and 2-year twigs of Picea abies and Pinus cembra were collected from the valley bottom (1,000 m a.s.l.), forestline (1,940 m a.s.l.), kampfzone (2.090 m a.s.l.), wind-protected treeline (2,140 m a.s.l.), and wind-exposed treeline (2,140 m a.s.l.). Cuticular transpiration was measured at three different levels of wind speed (4, 10, and 15 ms -1 ) and temperature (15°, 20°, and 25° C). At elevated wind speeds slight increases in water loss were observed, whereas at higher temperatures much greater increases occurred. Studies on winter water relations show a significant decline in the actual moisture content and osmotic potentials of twigs, especially in the kampfzone and at treeline. The roles of high winds and temperatures in depleting the winter water economy and causing desiccation damage in the alpine treeline environment are discussed.

  13. Significance of ACTH4-10 in the control of hippocampal corticosterone receptor capacity of hypophysectomized rats

    NARCIS (Netherlands)

    Veldhuis, H D; De Kloet, E R

    1982-01-01

    The effect of hypophysectomy on the number of corticosterone receptor sites was investigated in three rat brain regions and was compared with the effect of long-term adrenalectomy. Subsequently, the effect on receptor capacity was measured after the hypophysectomized rats had received as

  14. Harnessing wind power with sustained policy support

    Energy Technology Data Exchange (ETDEWEB)

    Meera, L. [BITS-Pilani. Dept. of Economics, Hyderabad (India)

    2012-07-01

    The development of wind power in India began in the 1990s, and has significantly increased in the last few years. The ''Indian Wind Turbine Manufacturers Association (IWTMA)'' has played a leading role in promoting wind energy in India. Although a relative newcomer to the wind industry compared with Denmark or the US, a combination of domestic policy support for wind power and the rise of Suzlon (a leading global wind turbine manufacturer) have led India to become the country with the fifth largest installed wind power capacity in the world. Wind power accounts for 6% of India's total installed power capacity, and it generates 1.6% of the country's power. (Author)

  15. Endurance Wind Power : practical insights into small wind

    International Nuclear Information System (INIS)

    Hicks, D.

    2008-01-01

    This presentation discussed practical issues related to purchasing and installing small wind turbines in Canada. Wind power capacity can be estimated by looking at provincial wind maps as well as by seeking wind data at local airports. Wind resources are typically measured at heights of between 20 meters and 50 m. The height of a wind turbine tower can significantly increase the turbine's wind generating capacity. Turbine rotors should always be placed 30 feet higher than obstacles within 500 feet. Many provinces have now mandated utilities to accept renewable energy resources from grid-connected wind energy plants. Net billing systems are used to determine the billing relationship between power-producing consumers and the utilities who will buy the excess power and sell it to other consumers. Utilities are not yet mandated to purchase excess power, and it is likely that federal and provincial legislation will be needed to ensure that net billing systems continue to grow. Many Canadian municipalities have no ordinances related to wind turbine placements. Consumers interested in purchasing small wind turbines should ensure that the turbine has been certified by an accredited test facility and has an adequate safety system. The noise of the turbine as well as its power performance in relation to the purchaser's needs must also be considered. It was concluded that small wind turbines can provide a means for electricity consumers to reduce their carbon footprint and hedge against the inflationary costs of fossil-fuelled energy resources. tabs., figs

  16. Firm Type, Feed-in Tariff, and Wind Energy Investment in Germany : An Investigation of Decision Making Factors of Energy Producers Regarding Investing in Wind Energy Capacity

    NARCIS (Netherlands)

    Werner, Lone; Scholtens, Lambertus

    2017-01-01

    The development of renewable and sustainable energy is advanced by public financial support. This is particularly so in the German Energiewende, which seeks to replace nuclear and fossil electricity generation with wind, sun, and biomass. We study the impact of the (changes in the) feed-in tariff

  17. European offshore wind power in 2015: record €13bn investment, 3 GW new capacity; La eólica marina europea en 2015: record de inversión 13.000 M€, 3 GW de nueva potencia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-07-01

    Offshore wind investments in Europe doubled in 2015 to €13.3bn in a record year for financing and gridconnected installations. A total of 3,019 MW in new offshore wind capacity came online in European waters in 2015, more than double the capacity connected to the grid in 2014. Europe’s total offshore wind capacity now stands at 11,027 MW. A further 3,034 MW of capacity, spread across ten projects, reached final investment decision last year, a twofold increase on 2014. These are some of the main figures contained in “The European offshore wind industry - key trends and statistics 2015”, a report published by EWEA. (Author)

  18. Wind energy - an overview

    International Nuclear Information System (INIS)

    Rangi, R.; Oprisan, M.

    1998-01-01

    The current status of wind technology developments in Canada and around the world was reviewed. Information regarding the level of wind turbine deployment was presented. It was shown that significant effort has been made on the national and international level to increase the capacity of this clean, non-polluting form of energy. Wind energy has become competitive with conventional sources of electricity due to lower cost, higher efficiency and improved reliability of generating equipment. The advantages and disadvantages of wind electricity generating systems and the economics and atmospheric emissions of the systems were described. At present, there is about 23 MW of wind energy generating capacity installed in Canada, but the potential is very large. It was suggested that wind energy could supply as much as 60 per cent of Canada's electricity needs if only one per cent of the land with 'good winds' were covered by wind turbines. Recently, the Canadian government has provided an accelerated capital cost allowance for certain types of renewable energies under the Income Tax Act, and the flow-through share financing legislation to include intangible expenses in certain renewable energy projects has been extended. Besides the support provided to the private sector through tax advantages, the Government also supports renewable energy development by purchasing 'green' energy for its own buildings across the country, and by funding a research and development program to identify and promote application of wind energy technologies, improve its cost effectiveness, and support Canadian wind energy industries with technology development to enhance their competitiveness at home and abroad. Details of the Wind Energy Program, operated by Natural Resources Canada, are described. 3 tabs., 5 figs

  19. Wind Power in Georgia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    Georgia has good wind power potential. Preliminary analyses show that the technical wind power potential in Georgia is good. Meteorological data shows that Georgia has four main areas in Georgia with annual average wind speeds of over 6 m/s and two main areas with 5-6 m/s at 80m. The most promising areas are the high mountain zone of the Great Caucasus, The Kura river valley, The South-Georgian highland and the Southern part of the Georgian Black Sea coast. Czech company Wind Energy Invest has recently signed a Memorandum of Understanding with Georgian authorities for development of the first wind farm in Georgia, a 50MW wind park in Paravani, Southern Georgia, to be completed in 2014. Annual generation is estimated to 170.00 GWh and the investment estimated to 101 million US$. Wind power is suited to balance hydropower in the Georgian electricity sector Electricity generation in Georgia is dominated by hydro power, constituting 88% of total generation in 2009. Limited storage capacity and significant spring and summer peaks in river flows result in an uneven annual generation profile and winter time shortages that are covered by three gas power plants. Wind power is a carbon-free energy source well suited to balance hydropower, as it is available (often strongest) in the winter and can be exported when there is a surplus. Another advantage with wind power is the lead time for the projects; the time from site selection to operation for a wind power park (approximately 2.5 years) is much shorter than for hydro power (often 6-8 years). There is no support system or scheme for renewable sources in Georgia, so wind power has to compete directly with other energy sources and is in most cases more expensive to build than hydro power. In a country and region with rapidly increasing energy demands, the factors described above nevertheless indicate that there is a commercial niche and a role to play for Georgian wind power. Skra: An example of a wind power development

  20. Reduced-Capacity Inrush Current Suppressor Using a Matrix Converter in a Wind Power Generation System with Squirrel-Cage Induction Machines

    Directory of Open Access Journals (Sweden)

    Sho Shibata

    2016-03-01

    Full Text Available This paper describes the reduced capacity of the inrush current suppressor using a matrix converter (MC in a large-capacity wind power generation system (WPGS with two squirrel-cage induction machines (SCIMs. These SCIMs are switched over depending on the wind speed. The input side of the MC is connected to the source in parallel. The output side of the MC is connected in series with the SCIM through matching transformers. The modulation method of the MC used is direct duty ratio pulse width modulation. The reference output voltage of the MC is decided by multiplying the SCIM current with the variable control gain. Therefore, the MC performs as resistors for the inrush current. Digital computer simulation is implemented to confirm the validity and practicability of the proposed inrush current suppressor using PSCAD/EMTDC (power system computer-aided design/electromagnetic transients including DC. Furthermore, the equivalent resistance of the MC is decided by the relationship between the equivalent resistance and the capacity of the MC. Simulation results demonstrate that the proposed inrush current suppressor can suppress the inrush current perfectly.

  1. Postmortem aging can significantly enhance water-holding capacity of broiler pectoralis major muscle measured by the salt-induced swelling/centrifuge method

    Science.gov (United States)

    Water-holding capacity (WHC) is one of the most important functional properties of fresh meat and can be significantly affected by postmortem muscle changes. Two experiments were carried out to evaluate the effects of postmortem aging on WHC of broiler pectoralis (p.) major muscle indicated with % s...

  2. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    DEFF Research Database (Denmark)

    Yang, Bo; Makarov, Yuri; Desteese, John

    2008-01-01

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results...... and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries...... of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service...

  3. Impact of Climate Change on Natural Snow Reliability, Snowmaking Capacities, and Wind Conditions of Ski Resorts in Northeast Turkey: A Dynamical Downscaling Approach

    Directory of Open Access Journals (Sweden)

    Osman Cenk Demiroglu

    2016-04-01

    Full Text Available Many ski resorts worldwide are going through deteriorating snow cover conditions due to anthropogenic warming trends. As the natural and the artificially supported, i.e., technical, snow reliability of ski resorts diminish, the industry approaches a deadlock. For this reason, impact assessment studies have become vital for understanding vulnerability of ski tourism. This study considers three resorts at one of the rapidly emerging ski destinations, Northeast Turkey, for snow reliability analyses. Initially one global circulation model is dynamically downscaled by using the regional climate model RegCM4.4 for 1971–2000 and 2021–2050 periods along the RCP4.5 greenhouse gas concentration pathway. Next, the projected climate outputs are converted into indicators of natural snow reliability, snowmaking capacity, and wind conditions. The results show an overall decline in the frequencies of naturally snow reliable days and snowmaking capacities between the two periods. Despite the decrease, only the lower altitudes of one ski resort would face the risk of losing natural snow reliability and snowmaking could still compensate for forming the base layer before the critical New Year’s week. On the other hand, adverse high wind conditions improve as to reduce the number of lift closure days at all resorts. Overall, this particular region seems to be relatively resilient against climate change.

  4. Temperature induces significant changes in both glycolytic reserve and mitochondrial spare respiratory capacity in colorectal cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Mitov, Mihail I., E-mail: m.mitov@uky.edu [Markey Cancer Center, University of Kentucky, Lexington, KY 40536 (United States); Harris, Jennifer W. [Department of Surgery, University of Kentucky, Lexington, KY 40506 (United States); Alstott, Michael C.; Zaytseva, Yekaterina Y. [Markey Cancer Center, University of Kentucky, Lexington, KY 40536 (United States); Evers, B. Mark [Markey Cancer Center, University of Kentucky, Lexington, KY 40536 (United States); Department of Surgery, University of Kentucky, Lexington, KY 40506 (United States); Butterfield, D. Allan [Markey Cancer Center, University of Kentucky, Lexington, KY 40536 (United States); Department of Chemistry, University of Kentucky, Lexington, KY 40506 (United States)

    2017-05-15

    Thermotherapy, as a method of treating cancer, has recently attracted considerable attention from basic and clinical investigators. A number of studies and clinical trials have shown that thermotherapy can be successfully used as a therapeutic approach for various cancers. However, the effects of temperature on cancer bioenergetics have not been studied in detail with a real time, microplate based, label-free detection approach. This study investigates how changes in temperature affect the bioenergetics characteristics (mitochondrial function and glycolysis) of three colorectal cancer (CRC) cell lines utilizing the Seahorse XF96 technology. Experiments were performed at 32 °C, 37 °C and 42 °C using assay medium conditions and equipment settings adjusted to produce equal oxygen and pH levels ubiquitously at the beginning of all experiments. The results suggest that temperature significantly changes multiple components of glycolytic and mitochondrial function of all cell lines tested. Under hypothermia conditions (32 °C), the extracellular acidification rates (ECAR) of CRC cells were significantly lower compared to the same basal ECAR levels measured at 37 °C. Mitochondrial stress test for SW480 cells at 37 °C vs 42 °C demonstrated increased proton leak while all other OCR components remained unchanged (similar results were detected also for the patient-derived xenograft cells Pt.93). Interestingly, the FCCP dose response at 37 °C vs 42 °C show significant shifts in profiles, suggesting that single dose FCCP experiments might not be sufficient to characterize the mitochondrial metabolic potential when comparing groups, conditions or treatments. These findings provide valuable insights for the metabolic and bioenergetic changes of CRC cells under hypo- and hyperthermia conditions that could potentially lead to development of better targeted and personalized strategies for patients undergoing combined thermotherapy with chemotherapy.

  5. Temperature induces significant changes in both glycolytic reserve and mitochondrial spare respiratory capacity in colorectal cancer cell lines

    International Nuclear Information System (INIS)

    Mitov, Mihail I.; Harris, Jennifer W.; Alstott, Michael C.; Zaytseva, Yekaterina Y.; Evers, B. Mark; Butterfield, D. Allan

    2017-01-01

    Thermotherapy, as a method of treating cancer, has recently attracted considerable attention from basic and clinical investigators. A number of studies and clinical trials have shown that thermotherapy can be successfully used as a therapeutic approach for various cancers. However, the effects of temperature on cancer bioenergetics have not been studied in detail with a real time, microplate based, label-free detection approach. This study investigates how changes in temperature affect the bioenergetics characteristics (mitochondrial function and glycolysis) of three colorectal cancer (CRC) cell lines utilizing the Seahorse XF96 technology. Experiments were performed at 32 °C, 37 °C and 42 °C using assay medium conditions and equipment settings adjusted to produce equal oxygen and pH levels ubiquitously at the beginning of all experiments. The results suggest that temperature significantly changes multiple components of glycolytic and mitochondrial function of all cell lines tested. Under hypothermia conditions (32 °C), the extracellular acidification rates (ECAR) of CRC cells were significantly lower compared to the same basal ECAR levels measured at 37 °C. Mitochondrial stress test for SW480 cells at 37 °C vs 42 °C demonstrated increased proton leak while all other OCR components remained unchanged (similar results were detected also for the patient-derived xenograft cells Pt.93). Interestingly, the FCCP dose response at 37 °C vs 42 °C show significant shifts in profiles, suggesting that single dose FCCP experiments might not be sufficient to characterize the mitochondrial metabolic potential when comparing groups, conditions or treatments. These findings provide valuable insights for the metabolic and bioenergetic changes of CRC cells under hypo- and hyperthermia conditions that could potentially lead to development of better targeted and personalized strategies for patients undergoing combined thermotherapy with chemotherapy.

  6. Wind power

    International Nuclear Information System (INIS)

    2009-01-01

    At the end of 2008,the European wind power capacity had risen to 65,247 MW which is a 15,1% increase on 2007. The financial crisis does not appear to have any real consequences of the wind power sector's activity in 2008. At the end of 2008 the European Union accommodated 53,9% of the world's wind power capacity. The top ten countries in terms of installed wind capacities are: 1) Usa with 25,388 MW, 2) Germany with 23,903 MW, 3) Spain with 16,740 MW, 4) China with 12,200 MW, 5) India with 9,645 MW, 6) Italy with 3,736 MW, 7) France with 3,542 MW, 8) U.K. with 3,406 MW, 9) Denmark with 3,166 MW and 10) Portugal with 2,862 MW. (A.C.)

  7. Assessment of wind resources and annual energy production of wind farms

    DEFF Research Database (Denmark)

    the last 17 years. In Denmark the plan is to increase to 50% share of total electricity consumption in 2020 compared to 26% in 2011. In EU this was 6.3% in 2011. In EU new installed wind power was 9 GW and 0.8 GW, onshore and offshore, respectively, in 2011. The total capacity in Europe is 96 GW......Wind energy provides a significant share of EU’s renewable energy source. It is anticipated in the European Commission (EC), the International Energy Agency (IEA), and the European Wind Energy Association (EWEA) that wind energy expands further. Wind energy has had an annual growth of 15.6% during...

  8. Global wind power development: Economics and policies

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Cornelis van Kooten, G.; Narbel, Patrick A.

    2013-01-01

    Existing literature indicates that theoretically, the earth's wind energy supply potential significantly exceeds global energy demand. Yet, only 2–3% of global electricity demand is currently derived from wind power despite 27% annual growth in wind generating capacity over the last 17 years. More than 95% of total current wind power capacity is installed in the developed countries plus China and India. Our analysis shows that the economic competitiveness of wind power varies at wider range across countries or locations. A climate change damage cost of US$20/tCO 2 imposed to fossil fuels would make onshore wind competitive to all fossil fuels for power generation; however, the same would not happen to offshore wind, with few exceptions, even if the damage cost is increased to US$100/tCO 2 . To overcome a large number of technical, financial, institutional, market and other barriers to wind power, many countries have employed various policy instruments, including capital subsidies, tax incentives, tradable energy certificates, feed-in tariffs, grid access guarantees and mandatory standards. Besides, climate change mitigation policies, such as the Clean Development Mechanism, have played a pivotal role in promoting wind power. Despite these policies, intermittency, the main technical constraint, could remain as the major challenge to the future growth of wind power. - Highlights: • Global wind energy potential is enormous, yet the wind energy contribution is very small. • Existing policies are boosting development of wind power. • Costs of wind energy are higher than cost of fossil-based energies. • Reasonable premiums for climate change mitigation substantially promote wind power. • Intermittency is the key challenge to future development of wind power

  9. Repowering of wind farms - A case study

    Energy Technology Data Exchange (ETDEWEB)

    Nivedh, B.S. [Quality Engineering and Software Technologies, Bangalore (India); Devi, R.P.K. [College of Engineering. Power Systems Engineering, Guindy (India); Sreevalsan, E. [Gamesa Wind Turbines India Private Limited, Chennai (India)

    2012-07-01

    The main objective of the study is to devise a method for assessing the repowering potential and to improve the energy output from the wind farms and also to understand the impact on the power quality due to repowering. With repowering, the first-generation wind turbines can be replaced with modern multi-megawatt wind turbines. To carry-out the study an old wind farm located at Kayathar, Tamilnadu is selected. The wind farm was commissioned in 1990's with a capacity of 7.35MW, which consists of 36 Wind Turbines each with the capacity of 200kW and 225kW. The present annual energy generation of the wind farm is 7350MWhr with the plant load factor of 11.41%. The intent of this study is to predict the annual energy output of the wind farm after the repowering using WAsP (Wind Atlas Analysis Application Program). Further this study analyses the power quality issues of the various Wind Turbines. In addition, the main feeder, in which the wind farm which is taken for the study also modeled and the impact on power quality due to repowering also studied. Simulations were carried out using MATLAB. The results are analyzed to understand the significance of repowering to overcome the energy crisis of the nation since the best locations for wind in India are occupied by old wind turbines. The following are the observations and conclusions from the above study. Plant load factor (PLF) increased to 24 %, Energy yield increased to more than 4 times and the capacity of the wind farm became double. And in the view of power quality, comparing to the existing Feeder, Repowered Feeder having less reactive power consumption, voltage variations and flickers except the harmonic distortion. (Author)

  10. [Playing of wind instruments is associated with an obstructive pattern in the spirometry of adolescents with a good aerobic resistance capacity].

    Science.gov (United States)

    Granell, Javier; Granell, Jose; Ruiz, Diana; Tapias, Jose A

    2011-03-01

    There is controversy in the medical literature regarding the beneficial or detrimental effects of playing wind musical instruments on the respiratory system. The aim of this study is to analyse this relationship, taking the physical condition of the subjects into consideration. Cross-sectional observational study. Public institution with coordinated medium grade musical instruction and primary and secondary education. Young performers (between 13 and 17 years). We collected basic epidemiological parameters (gender, age, weight, size, heath status), and each subject underwent a fitness test ("course navette" cardiorespiratory fitness test) and a forced spirometry. We included 90 students, 53 females and 37 males. Thirty two were wind instrument players and 58 studied other instruments. The two groups were homogeneous with respect to gender, age and body mass index. The maximum oxygen uptake showed no significant difference (P=0.255), further demonstrating an adequate level of fitness compared to the general population. FVC was normal and similar in both groups (P=0.197). The FEV(1) percentage and the FEV(1)/FVC ratio were significantly lower (Pstudy of wind instruments was associated with an obstructive spirometric pattern in young musicians with a normal level of physical fitness. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  11. Review of wind power tariff policies in China

    International Nuclear Information System (INIS)

    Hu, Zheng; Wang, Jianhui; Byrne, John; Kurdgelashvili, Lado

    2013-01-01

    In the past 20 years, China has paid significant attention to wind power. Onshore wind power in China has experienced tremendous growth since 2005, and offshore wind power development has been on-going since 2009. In 2010, with a total installed wind power capacity of 41.8 GW, China surpassed the U.S. as the country with the biggest wind power capacity in the world. By comparing the wind power situations of three typical countries, Germany, Spain, and Denmark, this paper provides a comprehensive evaluation and insights into the prospects of China’s wind power development. The analysis is carried out in four aspects including technology, wind resources, administration and time/space frame. We conclude that both German and Spanish have been growing rapidly in onshore capacity since policy improvements were made. In Denmark, large financial subsidies flow to foreign markets with power exports, creating inverse cost-benefit ratios. Incentives are in place for German and Danish offshore wind power, while China will have to remove institutional barriers to enable a leap in wind power development. In China, cross-subsidies are provided from thermal power (coal-fired power generation) in order to limit thermal power while encouraging wind power. However, the mass installation of wind power capacity completely relies on power subsidies. Furthermore, our study illustrates that capacity growth should not be the only consideration for wind power development. It is more important to do a comprehensive evaluation of multi-sectorial efforts in order to achieve long-term development. - Highlights: ► Key components to exam China’s wind power. ► Evaluation of Europe could be helpful. ► China has to remove institutional barrier.

  12. Wind power integration : From individual wind turbine to wind park as a power plant

    NARCIS (Netherlands)

    Zhou, Y.

    2009-01-01

    As power capacities of single wind turbine, single wind park and total wind power installation are continuously increasing, the wind power begins to challenge the safety operation of the power system. This thesis focuses on the grid integration aspects such as the dynamic behaviours of wind power

  13. 2010 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Exeter Associates; National Renewable Energy Laboratory; Energetics Incorporated; Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Darghouth, Naim; Hoen, Ben; Mills, Andrew; Seel, Joachim; Porter, Kevin; Buckley, Michael; Fink, Sari; Oteri, Frank; Raymond, Russell

    2011-06-27

    The U.S. wind power industry experienced a trying year in 2010, with a significant reduction in new builds compared to both 2008 and 2009. The delayed impact of the global financial crisis, relatively low natural gas and wholesale electricity prices, and slumping overall demand for energy countered the ongoing availability of existing federal and state incentives for wind energy deployment. The fact that these same drivers did not impact capacity additions in 2009 can be explained, in part, by the 'inertia' in capital-intensive infrastructure investments: 2009 capacity additions were largely determined by decisions made prior to the economy-wide financial crisis that was at its peak in late 2008 and early 2009, whereas decisions on 2010 capacity additions were often made at the height of the financial crisis. Cumulative wind power capacity still grew by a healthy 15% in 2010, however, and most expectations are for moderately higher wind power capacity additions in 2011 than witnessed in 2010, though those additions are also expected to remain below the 2009 high.

  14. Wind energy. Market prospects to 2006

    International Nuclear Information System (INIS)

    Huckle, R.

    2002-01-01

    Renewable energy is becoming an increasingly significant source in the energy portfolio of most countries. Several sources of renewable energy are now being pursued commercially and wind energy is the most advanced in terms of installed electricity generation capacity. Of all types of renewable energy wind energy is the one with which there is the greatest experience - wind wheels and windmills have been used in various forms for hundreds of years. Chapter 1 is an introduction to the market study. Chapter 2 begins with a review of the wind energy industry. Topics included here are the case for wind energy (sustainability, security, non-polluting etc), market structure (the relationship between developers, operators, manufacturers, consortia etc) and environmental issues. This is followed by a discussion of the wind energy market for major countries in terms of installed wind power capacity. Within each country market there is an account of government policy, major wind energy programmes, major projects with information on developers and wind turbine manufacturers. A market analysis is given which includes an economic review, wind energy targets (where they exist) and forecasts to 2006. Chapter 3 is a review of wind turbine applications covering electricity generation for public supply networks, stand alone/community applications, water pumping and water desalination. Chapter 4 provides the basic principles of wind turbine operation and associated technologies. A brief account is given of the development of wind turbines and the main components such as the tower, rotor blades, gearbox, generator and electrical controls. Electricity generation and control are outlined and the challenge of electricity storage is also discussed. Meteorological factors (wind speed etc) and the move towards off-shore wind farms are also covered. Chapter 5 contains profiles of leading wind project developers and wind turbine manufacturers. A selection of existing and proposed wind farms

  15. What Factors Influence Wind Perceptions

    Science.gov (United States)

    Stein, Tatiana

    Over the last decade, wind power has emerged as a possible source of energy and has attracted the attention of homeowners and policy makers worldwide. Many technological hurdles have been overcome in the last few years that make this technology feasible and economical. The United States has added more wind power than any other type of electric generation in 2012. Depending on the location, wind resources have shown to have the potential to offer 20% of the nation's electricity; a single, large wind turbine has the capacity to produce enough electricity to power 350 homes. Throughout the development of wind turbines, however, energy companies have seen significant public opposition towards the tall white structures. The purpose of this research was to measure peoples' perceptions on wind turbine development throughout their growth, from proposal to existing phase. Three hypotheses were developed based on the participant's political affiliation, proximity and knowledge of wind turbines. To validate these hypotheses, participants were asked an array of questions regarding their perception on economic, environmental, and social impacts of wind turbines with an online service called Amazon Mechanical Turk. The responses were from residents living in the United States and required them to provide their zip code for subsequent analysis. The analysis from the data obtained suggests that participants are favorable towards wind turbine development and would be supportive of using the technology in their community. Political affiliation and proximity to the nearest wind turbine in any phase of development (proposal, construction, existing) were also analyzed to determine if they had an effect on a person's overall perception on wind turbines and their technology. From the analysis, political affiliation was seen to be an indirect factor to understanding favorability towards wind turbines; the more liberal you are, the more supportive you will be towards renewable energy use

  16. Wind energy development: Danish experiences and international options

    International Nuclear Information System (INIS)

    Frandsen, S.; Hasted, F.; Josephsen, L.; Nielson, J.H.

    1989-01-01

    In Denmark, wind energy makes a visible contribution to energy planning. Since 1976, over 1,800 wind turbine units have been installed in Denmark, representing a capacity of ca 140 MW out of a grid capacity of 8,000 MW. These units are all grid-connected and the unit sizes range from 55 kW to 400 kW. The installed wind energy capacity represents a substantial development of technologies for wind energy utilization during the last 15 years, involving participation from research institutes, electric utilities, private industry, and the national energy administration. A considerable improvement of the technical and economic performance of wind turbines, along with increased reliability and durability, has been strongly supported by comprehensive government programs. In 1985, another large construction program was initiated which will add 100 MW wind power capacity by the end of 1990. Parallel with commercial development, Danish utilities have developed and constructed a number of megawatt-size wind turbines on a pilot basis. In general terms the wind energy resources in Denmark are rather good, and many suitable sites exist, but installed wind energy capacity is limited by the high population density. Consequently, research is being conducted on the feasibility of offshore wind turbines. In other countries, wind energy developments similar to those in Denmark are taking place. In communities with no connection to the national grid, special attention should be paid to hybrid systems such as wind-diesel and hydro-wind systems. A substantial transfer of technology is required for facilitating significant development of hybrid systems in developing countries. 11 refs., 7 figs., 2 tabs

  17. Offshore Wind Energy Resource Assessment for Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Doubrawa Moreira, Paula [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George N. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Musial, Walter D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kilcher, Levi F. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lantz, Eric J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-02

    This report quantifies Alaska's offshore wind resource capacity while focusing on its unique nature. It is a supplement to the existing U.S. Offshore Wind Resource Assessment, which evaluated the offshore wind resource for all other U.S. states. Together, these reports provide the foundation for the nation's offshore wind value proposition. Both studies were developed by the National Renewable Energy Laboratory. The analysis presented herein represents the first quantitative evidence of the offshore wind energy potential of Alaska. The technical offshore wind resource area in Alaska is larger than the technical offshore resource area of all other coastal U.S. states combined. Despite the abundant wind resource available, significant challenges inhibit large-scale offshore wind deployment in Alaska, such as the remoteness of the resource, its distance from load centers, and the wealth of land available for onshore wind development. Throughout this report, the energy landscape of Alaska is reviewed and a resource assessment analysis is performed in terms of gross and technical offshore capacity and energy potential.

  18. Wind power soars

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C. [Worldwatch Inst., Washington, DC (United States)

    1996-12-31

    Opinions on the world market for wind power are presented in this paper. Some data for global wind power generating capacity are provided. European and other markets are discussed individually. Estimated potential for wind power is given for a number of countries. 3 figs.

  19. Grid Integration of Wind Farms

    Science.gov (United States)

    Giæver Tande, John Olav

    2003-07-01

    This article gives an overview of grid integration of wind farms with respect to impact on voltage quality and power system stability. The recommended procedure for assessing the impact of wind turbines on voltage quality in distribution grids is presented. The procedure uses the power quality characteristic data of wind turbines to determine the impact on slow voltage variations, flicker, voltage dips and harmonics. The detailed assessment allows for substantially more wind power in distribution grids compared with previously used rule-of-thumb guidelines. Power system stability is a concern in conjunction with large wind farms or very weak grids. Assessment requires the use of power system simulation tools, and wind farm models for inclusion in such tools are presently being developed. A fixed-speed wind turbine model is described. The model may be considered a good starting point for development of more advanced models, hereunder the concept of variable-speed wind turbines with a doubly fed induction generator is briefly explained. The use of dynamic wind farm models as part of power system simulation tools allows for detailed studies and development of innovative grid integration techniques. It is demonstrated that the use of reactive compensation may relax the short-term voltage stability limit and allow integration of significantly more wind power, and that application of automatic generation control technology may be an efficient means to circumvent thermal transmission capacity constraints. The continuous development of analysis tools and technology for cost-effective and secure grid integration is an important aid to ensure the increasing use of wind energy. A key factor for success, however, is the communication of results and gained experience, and in this regard it is hoped that this article may contribute.

  20. The clinical significance of 5% change in vital capacity in patients with idiopathic pulmonary fibrosis: extended analysis of the pirfenidone trial

    Directory of Open Access Journals (Sweden)

    Nakata Koichiro

    2011-07-01

    Full Text Available Abstract Background Our phase III clinical trial of pirfenidone for patients with idiopathic pulmonary fibrosis (IPF revealed the efficacy in reducing the decline of vital capacity (VC and increasing the progression-free survival (PFS time by pirfenidone. Recently, marginal decline in forced VC (FVC has been reported to be associated with poor outcome in IPF. We sought to evaluate the efficacy of pirfenidone from the aspects of 5% change in VC. Methods Improvement ratings based on 5% change in absolute VC, i.e., "improved (VC ≥ 5% increase", "stable (VC Results In the comparison of the improvement ratings, the statistically significant differences were clearly revealed at months 3, 6, 9, and 12 between pirfenidone and placebo groups. Risk reductions by pirfenidone to placebo were approximately 35% over the study period. In the comparison of the PFS times, statistically significant difference was also observed between pirfenidone and placebo groups. The positive/negative predictive values in placebo and pirfenidone groups were 86.1%/50.8% and 87.1%/71.7%, respectively. Further, the baseline characteristics of patients worsened at month 3 had generally severe impairment, and their clinical outcomes including mortality were also significantly worsened after 1 year. Conclusions The efficacy of pirfenidone in Japanese phase III trial was supported by the rating of 5% decline in VC, and the VC changes at month 3 may be used as a prognostic factor of IPF. Trial Registration This clinical trial was registered with the Japan Pharmaceutical Information Center (JAPIC on September 13th, 2005 (Registration Number: JAPICCTI-050121.

  1. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

    2008-05-01

    Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

  2. Impact of wind generation on the operation and development of the UK electricity systems

    International Nuclear Information System (INIS)

    Strbac, Goran; Shakoor, Anser; Pudjianto, Danny; Black, Mary; Bopp, Thomas

    2007-01-01

    Although penetration of wind generation may displace a significant amount of energy produced by large conventional plant, there are issues associated with the extent to which wind generation will be able to replace the capacity and flexibility of conventional generating plant. This is important since wind power is variable, so it will be necessary to retain a significant proportion of conventional plant to ensure security of supply especially under conditions of high demand and low wind. Hence, the capacity value of wind generation will be limited as it will not be possible to displace conventional generation capacity on a ''megawatt for megawatt'' basis. Wind power is variable and not easy to predict, hence various forms of additional reserves will be needed to maintain the balance between supply and demand at all times. Additionally, if the majority of wind generation plant is located in Scotland and the North of England, reinforcement of the transmission network will be needed to accommodate the increases in the north-south flow of electricity. In this paper an assessment of the costs and benefits of wind generation on the UK electricity system is carried out, assuming different levels of wind power capacity. Overall, it is concluded that the system will be able to accommodate significant increases in wind power generation with relatively small increases in overall costs of supply, about 5% of the current domestic electricity price in case of 20% energy produced by wind power. (author)

  3. Wind energy. Energy technologies in national, European and global perspective

    International Nuclear Information System (INIS)

    Hauge Madsen, P.; Bjerregaard, E.T.D.

    2002-01-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind international co

  4. Wind energy. Energy technologies in national, European and global perspective

    Energy Technology Data Exchange (ETDEWEB)

    Hauge Madsen, P.; Bjerregaard, E.T.D. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark)

    2002-10-01

    According to a recent study, global wind generating capacity increased by some 6800 MW in 2001, an annual growth of just over half the corresponding figure for 2000. 2001 was the third consecutive year in which new wind power capacity exceeded new nuclear power capacity, showing the maturity of wind power technology. Total installed wind power worldwide by the end of 2001 was close to 25.000 MW. Germany, Spain and Denmark are the main players, accounting for 56% of the world's capacity increase in 2001 and a total cumulative installed capacity of 14.750 MW, or 59% of the global total. The USA and India are also significant users of wind power; in 2001 the USA added 1700 MW of new installed capacity to become the world's second-largest market for wind power. The report Wind Force 10 outlines a scenario in which wind power provides 10% of the world's electricity by 2020, corresponding to a total installed capacity of 1200 GW. Risoe's System Analysis Department has looked at the possible future costs of electricity produced by wind turbines compared to conventional power. A learning curve analysis of historical data results in a progress ratio of 0,85. This means that for every doubling of the installed capacity, the cost of wind-generated electricity is reduced by 15%. Until recently the main driver for wind power has been a concern for greenhouse gases. Security of energy supply has now become an important issue, however, especially in Europe and the USA. Wind power plants can be erected at short notice and in a modular fashion that allows capacity to be added as required. The European Commission has supported wind power by sponsoring international research co-operation between institutes, universities and equipment manufacturers. The IEA supports worldwide co-operation, and has recently issued a report on the longterm R and D needs of wind energy. Denmark has, mainly financed by the Danish Energy Agency, taken part in the IEA's R and D Wind

  5. EDITORIAL: Wind energy

    Science.gov (United States)

    Mann, Jakob; Nørkær Sørensen, Jens; Morthorst, Poul-Erik

    2008-01-01

    Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33 GW up from 2 GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1 GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also

  6. Wind: French revolutions

    International Nuclear Information System (INIS)

    Jones, C.

    2006-01-01

    Despite having the second best wind resources in Europe after the UK, the wind industry in France lags behind its European counterparts with just 6 W of installed wind capacity per person. The electricity market in France is dominated by the state-owned Electricite de France (EdF) and its nuclear power stations. However, smaller renewable generators are now in theory allowed access to the market and France has transposed the EU renewables directive into national law. The French governement has set a target of generating 10,000 MW of renewable capacity by 2010. The announcement of an increased feed-in tariff and the introduction of 'development zones' (ZDEs) which could allow fast-tracking of planning for wind projects are also expected to boost wind projects. But grid access and adminstrative burdens remain major barriers. In addition, French politicians and local authorities remain committed to nuclear, though encouraged by the European Commission, wind is beginning to gain acceptance; some 325 wind farms (representing 1557 MW of capacity) were approved between February 2004 and January 2005. France is now regarded by the international wind energy sector as a target market. One of France's leading independent wind developers and its only listed wind company, Theolia, is expected to be one of the major beneficiaries of the acceleration of activity in France, though other companies are keen to maximise the opportunities for wind. France currently has only one indigenous manufacturer of wind turbines, but foreign suppliers are winning orders

  7. 2010 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Ryan Wiser, Mark Bolinger

    2011-06-01

    This report provides a comprehensive overview of trends in the U.S. wind power market in 2010. The report analyzes trends in wind power capacity, industry, manufacturing, turbines, installed project costs, project performance, and wind power prices. It also describes trends among wind power developers, project owners, and power purchasers, and discusses financing issues.

  8. Wind power in areas with limited export capability

    Energy Technology Data Exchange (ETDEWEB)

    Matevosyan, Julija

    2004-03-01

    During the last two decades, increase in electricity demand and environmental concern resulted in fast growth of power production from renewable sources. Wind power is one of the most efficient alternatives. Due to rapid development of wind turbine technology and increasing size of wind farms, wind power plays a significant part in the power production mix of Germany, Spain, Denmark and some other countries. Wind power has to be build in areas with good wind potential. The best conditions for installation of wind power are, thus, in remote areas free of obstacles, and consequently with low population density. The transmission system in such areas might not be dimensioned to accommodate additional large-scale power plants. Insufficient transmission capacity problem, however, would emerge for any type of new generation, planned in similar conditions, although wind power has some special features that should be considered solving this problem. In this thesis the four possibilities are considered. One possibility is to revise the methods for calculation of available transmission capacity. Another solution for large-scale integration of wind power in such areas is to reinforce the network. This alternative however may be expensive and time consuming. Since wind power production depends on the wind speed, the wind farm utilization time is only 2,000-4,000 hours a year, and power production peaks not necessarily occur during periods with insufficient transmission capacity. Therefore wind energy curtailment may be considered as an alternative for large-scale wind power integration. It is also possible to store excess wind energy during the periods with insufficient transmission capacity. Conventional power plants with possibilities of fast production control (e.g. hydropower plants or gas power plants) may also be employed for this purpose. There is a lot of research regarding first two measures, therefore, this thesis provides a review and summarized conclusions from the

  9. Wind energy potential in Bulgaria

    International Nuclear Information System (INIS)

    Shtrakov, Stanko Vl.

    2009-01-01

    In this study, wind characteristic and wind energy potential in Bulgaria were analyzed using the wind speed data. The wind energy potential at different sites in Bulgaria has been investigated by compiling data from different sources and analyzing it using a software tool. The wind speed distribution curves were obtained by using the Weibull and Rayleigh probability density functions. The results relating to wind energy potential are given in terms of the monthly average wind speed, wind speed probability density function (PDF), wind speed cumulative density function (CDF), and wind speed duration curve. A technical and economic assessment has been made of electricity generation from three wind turbines having capacity of (60, 200, and 500 kW). The yearly energy output capacity factor and the electrical energy cost of kWh produced by the three different turbines were calculated

  10. Resting venous plasma adrenalin in 70-year-old men correlated positively to survival in a population study: the significance of the physical working capacity

    DEFF Research Database (Denmark)

    Christensen, Niels Juel; Schultz-Larsen, K

    1994-01-01

    in a comprehensive medical examination. INTERVENTIONS. Plasma NA and A were measured in blood samples collected after the subjects had rested in the supine position for 15 min. The subjects have now been followed for 7 years. MAIN OUTCOME MEASURES. Seven years later, 115 men and 63 women had died. RESULTS. Cox...... of physical working capacity was included in the Cox regression analysis, both plasma NA and plasma A became insignificant, whereas a strong positive correlation appeared between physical working capacity and survival (P

  11. Opportunities in Canada's growing wind energy industry

    International Nuclear Information System (INIS)

    Lovshin Moss, S.; Bailey, M.

    2006-01-01

    Investment in Canada's wind sector is projected to reach $8 billion by 2012, and growth of the sector is expected to create over 16,000 jobs. Canada's wind energy capacity grew by 54 per cent in 2005 alone, aided in part by supportive national policies and programs such as the Wind Power Production Incentive (WPPI); the Canadian Renewable Conservation Expense (CRCE) and Class 43.1 Capital Cost Allowance; and support for research and development. Major long-term commitments for clean power purchases, standard offer contracts and renewable portfolio standards in several provinces are encouraging further development of the wind energy sector. This paper argued that the development of a robust Canadian wind turbine manufacturing industry will enhance economic development, create opportunities for export; and mitigate the effects of international wind turbine supply shortages. However, it is not known whether Canadian wind turbine firms are positioned to capitalize on the sector's recent growth. While Canada imports nearly all its large wind turbine generators and components, the country has technology and manufacturing strengths in advanced power electronics and small wind systems, as well as in wind resource mapping. Wind-diesel and wind-hydrogen systems are being developed in Canada, and many of the hybrid systems will offer significant opportunities for remote communities and off-grid applications. Company partnerships for technology transfer, licensing and joint ventures will accelerate Canada's progress. A recent survey conducted by Industry Canada and the Canadian Wind Energy Association (CanWEA) indicated that the total impact of wind energy related expenditures on economic output is nearly $1.38 billion for the entire sector. Annual payroll for jobs in Canada was estimated at $50 million, and substantial employment growth in the next 5 years is expected. Canada offers a strong industrial supply base capable of manufacturing wind turbine generators and

  12. Mean and peak wind load reduction on heliostats

    Energy Technology Data Exchange (ETDEWEB)

    Peterka, J.A.; Tan, L.; Bienkiewcz, B.; Cermak, J.E.

    1987-09-01

    This report presents the results of wind-tunnel tests supported through the Solar Energy Research Institute (SERI) by the Office of Solar Thermal Technology of the US Department of Energy as part of the SERI research effort on innovative concentrators. As gravity loads on drive mechanisms are reduced through stretched-membrane technology, the wind-load contribution of the required drive capacity increases in percentage. Reduction of wind loads can provide economy in support structure and heliostat drive. Wind-tunnel tests have been directed at finding methods to reduce wind loads on heliostats. The tests investigated both mean and peak forces, and moments. A significant increase in ability to predict heliostat wind loads and their reduction within a heliostat field was achieved. In addition, a preliminary review of wind loads on parabolic dish collectors was conducted, resulting in a recommended research program for these type collectors. 42 refs., 38 figs., 1 tab.

  13. Impact of active and break wind spells on the demand-supply balance in wind energy in India

    Science.gov (United States)

    Kulkarni, Sumeet; Deo, M. C.; Ghosh, Subimal

    2018-02-01

    With an installed capacity of over 19,000 MW, the wind power currently accounts for almost 70% of the total installed capacity among the renewable energy sector in India. The extraction of wind power mainly depends on prevailing meteorology which is strongly influenced by monsoon variability. The monsoon season is characterized by significant fluctuations in between periods of wet and dry spells. During the dry spells, the demand for power from agriculture and cooling equipment increases, whereas during the wet periods, such demand reduces, although, at the same time, the power supply increases because of strong westerly winds contributing to an enhanced production of wind energy. At this backdrop, we aim to assess the impact of intra-seasonal wind variability on the balance of energy supply and demand during monsoon seasons in India. Further, we explore the probable cause of wind variability by relating it to El Nino events. It is observed that the active and break phases in wind significantly impact the overall wind potential output. Although the dry spells are generally found to reduce the overall wind potential, their impact on the potential seems to have declined after the year 2000. The impact of meteorological changes on variations in wind power studied in this work should find applications typically in taking investment decisions on conventional generation facilities, like thermal, which are currently used to maintain the balance of power supply and demand.

  14. Improving wind power quality with energy storage

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard

    2009-01-01

    The results of simulation of the influence of energy storage on wind power quality are presented. Simulations are done using a mathematical model of energy storage. Results show the relation between storage power and energy, and the obtained increase in minimum available power from the combination...... of wind and storage. The introduction of storage enables smoothening of wind power on a timescale proportional to the storage energy. Storage does not provide availability of wind power at all times, but allows for a certain fraction of average power in a given timeframe to be available with high...... probability. The amount of storage capacity necessary for significant wind power quality improvement in a given period is found to be 20 to 40% of the energy produced in that period. The necessary power is found to be 80 to 100% of the average power of the period....

  15. Impact of integrating wind power in the Norwegian power system

    International Nuclear Information System (INIS)

    Tande, John Olav

    2006-04-01

    Wind power may in the future constitute a significant part of the Norwegian electricity supply. 20 TWh annual wind generation is a realistic goal for 2020 assuming wind farms on-land and offshore. The development of grid codes for wind farms is sound. It is recognising that large wind farms are basically power plants and may participate in securing efficient and stable power system operation. Modern wind farms may control the reactive power or voltage as any other power plant, and may also control active power or frequency as long as wind conditions permits. Grid code requirements must however be carefully assessed and possibly adjusted over time aiming for overall least cost solutions. Development of wind farms are today to some degree hindered by conservative assumptions being made on operation of wind farms in areas with limited power transfer capacity. By accepting temporary grid congestions, however, a large increase installed wind power is viable. For grid congestion that appears a few hours per year only, the cost of lost generation will be modest and may be economic over the alternatives of limiting wind farm capacities or increasing the grid transfer capacity. Wind generation impact on power system operation and adequacy will be overall positive. Combining wind and hydro provides for a more stable annual energy supply than hydro alone, and wind generation will generally be higher in the winter period than in the summer. Wind will replace the generation with the highest operating cost, and reduce the average Nord Pool spot market price. 20 TWh wind will reduce price with about 3 oere/kWh and CO 2 emissions by 12-14 million tons for the case of replacing coal, and about 6 million tons for replacing natural gas. Wind impact on need for balancing power is small, i.e. the extra balancing cost is about 0,8 oere per kWh wind, and about half if investment in new reserve capacity is not needed. In summary this report demonstrates options for large scale integration

  16. Potentials of wind power

    International Nuclear Information System (INIS)

    Bezrukikh, P.P.; Bezrukikh, P.P.

    2000-01-01

    The ecological advantages of the wind power facilities (WPF) are considered. The possibilities of small WPF, generating the capacity from 40 W up to 10 kW, are discussed. The basic technical data on the national and foreign small WPF are presented. The combined wind power systems are considered. Special attention is paid to the most perspective wind-diesel systems, which provide for all possible versions of the electro-power supply. Useful recommendations and information on the wind power engineering are given for those, who decided to build up a wind facility [ru

  17. Reliability benefits of dispersed wind resource development

    International Nuclear Information System (INIS)

    Milligan, M.; Artig, R.

    1998-05-01

    Generating capacity that is available during the utility peak period is worth more than off-peak capacity. Wind power from a single location might not be available during enough of the peak period to provide sufficient value. However, if the wind power plant is developed over geographically disperse locations, the timing and availability of wind power from these multiple sources could provide a better match with the utility's peak load than a single site. There are other issues that arise when considering disperse wind plant development. Singular development can result in economies of scale and might reduce the costs of obtaining multiple permits and multiple interconnections. However, disperse development can result in cost efficiencies if interconnection can be accomplished at lower voltages or at locations closer to load centers. Several wind plants are in various stages of planning or development in the US. Although some of these are small-scale demonstration projects, significant wind capacity has been developed in Minnesota, with additional developments planned in Wyoming, Iowa and Texas. As these and other projects are planned and developed, there is a need to perform analysis of the value of geographically disperse sites on the reliability of the overall wind plant.This paper uses a production-cost/reliability model to analyze the reliability of several wind sites in the state of Minnesota. The analysis finds that the use of a model with traditional reliability measures does not produce consistent, robust results. An approach based on fuzzy set theory is applied in this paper, with improved results. Using such a model, the authors find that system reliability can be optimized with a mix of disperse wind sites

  18. How does market power affect the impact of large scale wind investment in 'energy only' wholesale electricity markets?

    International Nuclear Information System (INIS)

    Browne, Oliver; Poletti, Stephen; Young, David

    2015-01-01

    In the short run, it is well known that increasing wind penetration is likely to reduce spot market electricity prices due to the merit order effect. The long run effect is less clear because there will be a change in new capacity investment in response to the wind penetration. In this paper we examine the interaction between capacity investment, wind penetration and market power by first using a least-cost generation expansion model to simulate capacity investment with increasing amounts of wind generation, and then using a computer agent-based model to predict electricity prices in the presence of market power. We find the degree to which firms are able to exercise market power depends critically on the ratio of capacity to peak demand. For our preferred long run generation scenario we show market power increases for some periods as wind penetration increases however the merit order counteracts this with the results that prices overall remain flat. Returns to peakers increase significantly as wind penetration increases. The market power in turn leads to inefficient dispatch which is exacerbated with large amounts of wind generation. - Highlights: • Increasing investment in wind generation is analyzed using an agent based model. • In an energy only market, increased total capacity reduces market power. • Increasing wind penetration results in more market power in some periods. • Market power causes dispatch inefficiencies, which grow as wind capacity increases.

  19. Wind power generation and dispatch in competitive power markets

    Science.gov (United States)

    Abreu, Lisias

    Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.

  20. Wind energy's role in a deregulated environment

    International Nuclear Information System (INIS)

    Gallagher, F.M.

    1998-01-01

    The current status of wind energy in Canada was the focus of this presentation. Wind energy is the fastest growing source of new electrical power in the world. In 1997 the world-wide capacity was 1495 MW, with Germany (535 MW), Spain (263 MW) and Denmark (259 MW) leading the way. It is clear that Canadian markets lag behind the world in recognizing the value of wind energy. The rationale for this is economic downturn, cheap hydrocarbon energy, a closed electricity market, minimal commitment to greenhouse gas reduction, and a significant oversupply of installed capacity. Nevertheless, there are many potential benefits for Canadian grids by wind generated electricity, not the least of which are tangible reductions in carbon emissions per kWh. It was noted that significant risk reductions have resulted from size and technological improvements. Besides being environmentally benign, wind energy also provides unequaled opportunities for load matching, distributed generation, and low operating and ongoing fuel costs. Aggressive marketers such as Enron and Vision Quest have predicted that because of these advantages, and the willingness of many potential customers to pay more for 'green' energy, renewable energy sources such as wind and solar, will capture a significant share of the world energy market over the next 20 years. tabs., figs

  1. Carbohydrate gel ingestion significantly improves the intermittent endurance capacity, but not sprint performance, of adolescent team games players during a simulated team games protocol.

    Science.gov (United States)

    Phillips, Shaun M; Turner, Anthony P; Sanderson, Mark F; Sproule, John

    2012-03-01

    The aim of this study was to investigate the influence of ingesting a carbohydrate (CHO) gel on the intermittent endurance capacity and sprint performance of adolescent team games players. Eleven participants [mean age 13.5 ± 0.7 years, height 1.72 ± 0.08 m, body mass (BM) 62.1 ± 9.4 kg] performed two trials separated by 3-7 days. In each trial, they completed four 15 min periods of part A of the Loughborough Intermittent Shuttle Test (LIST), followed by an intermittent run to exhaustion (part B). In the 5 min pre-exercise, participants consumed 0.818 mL kg(-1) BM of a CHO or a non-CHO placebo gel, and a further 0.327 mL kg(-1) BM every 15 min during part A of the LIST (38.0 ± 5.5 g CHO h(-1) in the CHO trial). Intermittent endurance capacity was increased by 21.1% during part B when the CHO gel was ingested (4.6 ± 2.0 vs. 3.8 ± 2.4 min, P games players during a simulated team games protocol.

  2. Wind integration in Alberta

    International Nuclear Information System (INIS)

    Frost, W.

    2007-01-01

    This presentation described the role of the Alberta Electric System Operator (AESO) for Alberta's interconnected electric system with particular reference to wind integration in Alberta. The challenges of wind integration were discussed along with the requirements for implementing the market and operational framework. The AESO is an independent system operator that directs the reliable operation of Alberta's power grid; develops and operates Alberta's real-time wholesale energy market to promote open competition; plans and develops the province's transmission system to ensure reliability; and provides transmission system access for both generation and load customers. Alberta has over 280 power generating station, with a total generating capacity of 11,742 MW, of which 443 is wind generated. Since 2004, the AESO has been working with industry on wind integration issues, such as operating limits, need for mitigation measures and market rules. In April 2006, the AESO implemented a temporary 900 MW reliability threshold to ensure reliability. In 2006, a Wind Forecasting Working Group was created in collaboration with industry and the Canadian Wind Energy Association in an effort to integrate as much wind as is feasible without compromising the system reliability or the competitive operation of the market. The challenges facing wind integration include reliability issues; predictability of wind power; the need for dispatchable generation; transmission upgrades; and, defining a market and operational framework for the large wind potential in Alberta. It was noted that 1400 MW of installed wind energy capacity can be accommodated in Alberta with approved transmission upgrades. figs

  3. The resilience of Australian wind energy to climate change

    Science.gov (United States)

    Evans, Jason P.; Kay, Merlinde; Prasad, Abhnil; Pitman, Andy

    2018-02-01

    The Paris Agreement limits global average temperature rise to 2 °C and commits to pursuing efforts in limiting warming to 1.5 °C above pre-industrial levels. This will require rapid reductions in the emissions of greenhouse gases and the eventual decarbonisation of the global economy. Wind energy is an established technology to help achieve emissions reductions, with a cumulative global installed capacity of ~486 GW (2016). Focusing on Australia, we assess the future economic viability of wind energy using a 12-member ensemble of high-resolution regional climate simulations forced by Coupled Model Intercomparison Project (CMIP) output. We examine both near future (around 2030) and far future (around 2070) changes. Extractable wind power changes vary across the continent, though the most spatially coherent change is a small but significant decrease across southern regions. The cost of future wind energy generation, measured via the Levelised Cost of Energy (LCOE), increases negligibly in the future in regions with significant existing installed capacity. Technological developments in wind energy generation more than compensate for projected small reductions in wind, decreasing the LCOE by around 30%. These developments ensure viability for existing wind farms, and enhance the economic viability of proposed wind farms in Western Australian and Tasmania. Wind energy is therefore a resilient source of electricity over most of Australia and technological innovation entering the market will open new regions for energy production in the future.

  4. Equilibrium pricing in electricity markets with wind power

    Science.gov (United States)

    Rubin, Ofir David

    Estimates from the World Wind Energy Association assert that world total wind power installed capacity climbed from 18 Gigawatt (GW) to 152 GW from 2000 to 2009. Moreover, according to their predictions, by the end of 2010 global wind power capacity will reach 190 GW. Since electricity is a unique commodity, this remarkable expansion brings forward several key economic questions regarding the integration of significant amount of wind power capacity into deregulated electricity markets. The overall dissertation objective is to develop a comprehensive theoretical framework that enables the modeling of the performance and outcome of wind-integrated electricity markets. This is relevant because the state of knowledge of modeling electricity markets is insufficient for the purpose of wind power considerations. First, there is a need to decide about a consistent representation of deregulated electricity markets. Surprisingly, the related body of literature does not agree on the very economic basics of modeling electricity markets. That is important since we need to capture the fundamentals of electricity markets before we introduce wind power to our study. For example, the structure of the electric industry is a key. If market power is present, the integration of wind power has large consequences on welfare distribution. Since wind power uncertainty changes the dynamics of information it also impacts the ability to manipulate market prices. This is because the quantity supplied by wind energy is not a decision variable. Second, the intermittent spatial nature of wind over a geographical region is important because the market value of wind power capacity is derived from its statistical properties. Once integrated into the market, the distribution of wind will impact the price of electricity produced from conventional sources of energy. Third, although wind power forecasting has improved in recent years, at the time of trading short-term electricity forwards, forecasting

  5. 基于有效容量分布的含风电场电力系统随机生产模拟%Power System Probabilistic Production Simulation With Wind Generation Based on Available Capacity Distribution

    Institute of Scientific and Technical Information of China (English)

    邹斌; 李冬

    2012-01-01

    The power system operation simulation including large wind turbine generations, which is based on the Monte Carlo method, is of good accuracy and extensive adaptability. However, the computation time of the simulation is long and this limits its application. The other theoretical methodologies have some disadvantages, for example, the wind turbine generations could not be described precisely, or it is difficult to deal with the multi wind farms and the correlations among them. In order to overcome these disadvantages, a probabilistic production simulation algorithm for power systems including wind farms was proposed based on available capacity distribution. The time-varying characteristics of the load and wind turbines were considered in the algorithm. The auto-regressive moving average (ARMA) time series model was applied to simulate the wind speed, and the cumulants method was used to calculate the available capacity distribution. The proposed algorithm could better describe the characteristics of the wind turbine generations, and is of high computing efficiency. Multi wind farms and their correlations are taken into consideration in the algorithm, and the probability and the energy of the abandoned wind power caused by the limitation of the minimum output can be calculated. The effectiveness of the method was verified based on the data of IEEE-RTS system.%基于蒙特卡罗(MonteCarlo)方法的含大规模风力发电的电力系统模拟虽然具有较好的精度和广泛的适应性,但其过大的时间开销限制了其应用。而现有的理论计算方法则存在风力发电描述不够准确、难以处理多风电场及其相关性等问题。针对此现状,提出了一种基于发电机组有效容量分布的含风电场的电力系统随机生产模拟算法。该算法保留了负荷和风电机组的时变特性,采用时间序列白回归移动平均(auto-regressive movingaverage,ARMA)模型模拟风速,使用半不变量

  6. Efficiency assessment of wind farms in China using two-stage data envelopment analysis

    International Nuclear Information System (INIS)

    Wu, Yunna; Hu, Yong; Xiao, Xinli; Mao, Chunyu

    2016-01-01

    Highlights: • The efficiency of China’s wind farms is assessed by data envelopment analysis. • Tobit model is used to analyze the impact of uncontrollable factors on efficiency. • Sensitivity analysis is conducted to verify the stability of evaluation results. • Efficiency levels of Chinese wind farms are relatively high in general. • Age and wind curtailment rate negatively affect the productive efficiency. - Abstract: China has been the world’s leader in wind power capacity due to the promotion of favorable policies. Given the rare research on the efficiency of China’s wind farms, this study analyzes the productive efficiency of 42 large-scale wind farms in China using a two-stage analysis. In the first stage, efficiency scores of wind farms are determined with data envelopment analysis and the sensitivity analysis is conducted to verify the robustness of efficiency calculation results. In the second stage, the Tobit regression is employed to explore the relationship between the efficiency scores and the environment variables that are beyond the control of wind farms. According to the results, all wind farms studied operate at an acceptable level. However, 50% of them overinvest in the installed capacity and about 48% have the electricity-saving potential. The most important factors affecting the efficiency of wind farms are the installed capacity and the wind power density. In addition, the age of the wind farm and the wind curtailment rate have a negative effect on productive efficiency, whereas the ownership of the wind farm has no significant effect. Findings from this study may be helpful for stakeholders in the wind industry to select wind power projects, optimize operational strategies and make related policies.

  7. Kansas Wind Energy Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Gruenbacher, Don [Kansas State Univ., Manhattan, KS (United States)

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  8. Wind power

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This publication describes some of the technical, economic, safety and institutional considerations involved in the selection, installation and evaluation of a wind generation system. This information is presented, where possible, in practical, non-technical terms. The first four sections provide background information, theory, and general knowledge, while the remaining six sections are of a more specific nature to assist the prospective owner of a wind generator in his calculations and selections. Meteorological information is provided relating to the wind regime in Nova Scotia. The section on cost analysis discusses some of the factors and considerations which must be examined in order to provide a logical comparison between the alternatives of electricity produced from other sources. The final two sections are brief summaries of the regulations and hazards pertaining to the use of wind generators. The cost of wind-generated electricity is high compared to present Nova Scotia Power Corporation rates, even on Sable Island, Nova Scotia's highest wind area. However, it may be observed that Sable Island is one of the areas of Nova Scotia which is not presently supplied through the power grid and, particularly if there was a significant increase in the price of diesel oil, wind-generated electricity may well be the most economical alternative in that area. Generally speaking, however, where a consumer can purchase electricity at the normal domestic rate, wind generators are not economical, and they will not become economical unless there is a great reduction in their cost, an great increase in electricity rates, or both. Includes glossary. 23 figs., 11 tabs.

  9. Observability of wind power

    International Nuclear Information System (INIS)

    Gonot, J.P.; Fraisse, J.L.

    2009-01-01

    The total installed capacity of wind power grows from a few hundred MW at the beginning of 2005 to 3400 MW at the end of 2008. With such a trend, a total capacity of 7000 MW could be reached by 2010. The natural variability of wind power and the difficulty of its predictability require a change in the traditional way of managing supply/demand balance, day-ahead margins and the control of electrical flows. As a consequence, RTE operators should be informed quickly and reliably of the real time output power of wind farms and of its evolvement some hours or days ahead to ensure the reliability of the French electrical power system. French specificities are that wind farms are largely spread over the territory, that 95 % of wind farms have an output power below 10 MW and that they are connected to the distribution network. In this context, new tools were necessary to acquire as soon as possible data concerning wind power. In two years long, RTE set up an observatory of wind production 'IPES system' enable to get an access to the technical characteristics of the whole wind farms, to observe in real time 75 % of the wind generation and to implement a forecast model related to wind generation. (authors)

  10. Design Optimization and Evaluation of Different Wind Generator Systems

    DEFF Research Database (Denmark)

    Chen, Zhe; Li, Hui

    2008-01-01

    . In this paper, seven variable speed constant frequency (VSCF) wind generator systems are investigated, namely permanent magnet synchronous generators with the direct-driven (PMSG_DD), the single-stage gearbox (PMSG_1G) and three-stage gearbox (PMSG_3G) concepts, doubly fed induction generators with the three......With rapid development of wind power technologies and significant growth of wind power capacity installed worldwide, various wind generator systems have been developed and built. The objective of this paper is to evaluate various wind generator systems by optimization designs and comparisons......-stage gearbox (DFIG_3G) and with the single-stage gearbox (DFIG_1G), the electricity excited synchronous generator with the direct-driven (EESG_DD), and the VSCF squirrel cage induction generator with the three-stage gearbox (SCIG_3G). Firstly, the design models of wind turbines, three/single stage gearbox...

  11. New developments in the Danish Wind Energy Policy

    Energy Technology Data Exchange (ETDEWEB)

    Lemming, J. [Danish Energy Agency, Copenhagen (Denmark)

    1996-12-31

    Wind energy resources in Denmark are among the best in Europe. In recent years there has been a rapid growth in number of wind turbines connected to the grid in Denmark. By the end of 1995 more than 3800 wind turbines were installed on-shore with a capacity of over 600 MW. The total production of electricity from these turbines in 1995 was more than 1200 GWh, corresponding to approximately 3.6 % of the Danish electricity consumption. For several years Denmark has pursued an energy policy with an increasing weight on environmental aspects and new and renewable energy sources like wind energy. Therefore wind energy already plays an important part as supplement to the traditional sources of fuel in the electricity production, and the share of wind energy and other renewables is expected to increase significantly in the years to come. 1 ref., 9 figs.

  12. Rule - based Fault Diagnosis Expert System for Wind Turbine

    Directory of Open Access Journals (Sweden)

    Deng Xiao-Wen

    2017-01-01

    Full Text Available Under the trend of increasing installed capacity of wind power, the intelligent fault diagnosis of wind turbine is of great significance to the safe and efficient operation of wind farms. Based on the knowledge of fault diagnosis of wind turbines, this paper builds expert system diagnostic knowledge base by using confidence production rules and expert system self-learning method. In Visual Studio 2013 platform, C # language is selected and ADO.NET technology is used to access the database. Development of Fault Diagnosis Expert System for Wind Turbine. The purpose of this paper is to realize on-line diagnosis of wind turbine fault through human-computer interaction, and to improve the diagnostic capability of the system through the continuous improvement of the knowledge base.

  13. Wind power planning: assessing long-term costs and benefits

    International Nuclear Information System (INIS)

    Kennedy, Scott

    2005-01-01

    In the following paper, a new and straightforward technique for estimating the social benefit of large-scale wind power production is presented. The social benefit is based upon wind power's energy and capacity services and the avoidance of environmental damages. The approach uses probabilistic load duration curves to account for the stochastic interaction between wind power availability, electricity demand, and conventional generator dispatch. The model is applied to potential offshore wind power development to the south of Long Island, NY. If natural gas combined cycle and integrated gasifier combined cycle (IGCC) are the alternative generation sources, wind power exhibits a negative social benefit due to its high capacity cost and the relatively low emissions of these advanced fossil-fuel technologies. Environmental benefits increase significantly if charges for CO 2 emissions are included. Results also reveal a diminishing social benefit as wind power penetration increases. The dependence of wind power benefits on CO 2 charges, and capital costs for wind turbines and IGCC plant is also discussed. The methodology is intended for use by energy planners in assessing the social benefit of future investments in wind power

  14. Wind energy development policy and prospects in Lithuania

    International Nuclear Information System (INIS)

    Markevicius, Antanas; Katinas, Vladislovas; Marciukaitis, Mantas

    2007-01-01

    According to the EU Directive 2001/77/EC 7% of all electricity production is to be generated from renewable energy sources (RES) in Lithuania in 2010. Electricity production from RES is determined by hydro, biomass and wind energy resources in Lithuania. Further development of hydro power plants is limited by environmental restrictions, therefore priority is given to wind energy development. The aim of this paper is to show estimation of the maximum wind power penetration in the Lithuanian electricity system using such criteria as wind potential, possibilities of the existing electricity network, possible environmental impact, and social and economical aspects. Generalization of data from the meteorological stations and special measurements shows that the highest average wind speed in Lithuanian territory is in the coastal region and at 50 m above ground level reaches 6.4 m/s. In regard to wind resource distribution in this region, arrangement of electricity grid and environment protection requirements, six zones have been determined for wind power plant construction. Calculations have shown that the largest total installed capacity of wind farms, which could cause no significant increase in power transmission expenses, is 170 MW. The threshold, which cannot be passed without capital reconstruction of electricity network, is 500 MW of total capacity of wind farms

  15. The significance of the golden eagles domestic areas, the habitat and movements for wind power establishment; Betydelsen av kungsoernars hemomraaden, biotopval och roerelser foer vindkraftsetablering

    Energy Technology Data Exchange (ETDEWEB)

    Hipkiss, Tim; Dettki, Holger; Moss, Edward; Hoernfeldt, Birger [Inst. foer vilt, fisk och miljoe, Sveriges lantbruksuniv., Uppsala (Sweden); Ecke, Frauke [Inst. foer vilt, fisk och miljoe, Sveriges Lantbruksuniv., Uppsala (Sweden); Inst. foer vatten och miljoe, Sveriges Lantbruksuniv., Uppsala (Sweden); Sandgren, Carolin [Inst. foer vilt, fisk och miljoe, Sveriges Lantbruksuniv., Uppsala (Sweden); Naturvaardsenheten, Laensstyrelsen i Jaemtlands laen, Oestersund (Sweden)

    2013-10-15

    There is a need for developing methods for reliable environmental impact assessment of wind farms in Sweden, and to facilitate the establishment of 'eagle friendly' wind farms. During 2010 and 2011 a total of 43 adult and juvenile golden eagles in northern Sweden were marked with GPS transmitters, to provide information on the species home range, habitat selection and ranging behaviour. These transmitters have so far provided more than 100 000 valid GPS positions. Individual eagles fitted with the most effective type of transmitter provided on average more than 2,000 positions during the 2012 breeding season. The home ranges of adult golden eagles covered an average area of over 200 km{sup 2} during the breeding season, although there was considerable variation among eagles. Fledged juvenile eagles used a smaller area within their parents home range, until they left their natal area and their parents in October. Within their home ranges juvenile and adult eagles showed a particular preference for clear cuts, but also for coniferous forest on lichen-dominated bedrock, while dense, young forest and mires were avoided. Steep slopes were preferred over flatter areas. Adult golden eagles occasionally undertook long-distance movements during both summer and winter. Juveniles migrated south and spent their first winter in southern and central Sweden, and migrated north the following spring to the Scandinavian mountain region. The results in this report are largely based on one breeding season, and should thus be treated with some degree of caution. However, this also highlights the need for the project to continue, so that incoming transmitter data can continue to be processed and analysed, and that annual variation can be assessed. Nevertheless, we do not suspect that the results for e.g. habitat selection are in any way unusual, since they generally agree with what is known from other parts of the world, that golden eagles require open habitats for hunting and

  16. Identification of wind energy systems

    NARCIS (Netherlands)

    Van der Veen, G.J.

    2013-01-01

    In the next decades wind energy is expected to secure a firm share of the total energy production capacity in many countries. To increase competitiveness of wind power with other power sources it is essential to lower the cost of wind energy. Given the design of a turbine, this objective can be

  17. Comments on ‘Temporal significant wave height estimation from wind speed by perceptron Kalman filtering’ by A. Altunkaynak and M. Ozger, Ocean Engineering, Vol. 31(10); 2004,1245-1255

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.

    wind speed. Interestingly the PKF model is a two layered network (input and output) without hidden layer. Also it is a fact that numerical or physical models have restrictions by certain assumptions and conditions, whereas artificial neural network... is shown by Tsai et al (2002). They have carried out forecasting of significant wave heights and periods at a desired location directly from the observed wave records using a supervised artificial neural network with error back-propagation procedures...

  18. Trend in China's Wind Power

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Attractive prospects for wind power development Sha Yiqiang:In recent years,the development and utilization of wind energy has achieved remarkable results.To the end of 2007,the installed capacity of the wind power had reached 94 000 MW all over the world,which is distributed over 60 countries.Over the past 20 years,the wind power generation installation cost has been reduced by 50% and is closing to that of the conventional energy resources.Meanwhile,the single unit capacity,efficiency and reliability of wind power have been greatly improved.

  19. 2013 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Oteri, F.; Tegen, S.

    2014-08-01

    This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.

  20. Wind energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role wind energy may have in the energy future of the US. The topics discussed in the chapter include historical aspects of wind energy use, the wind energy resource, wind energy technology including intermediate-size and small wind turbines and intermittency of wind power, public attitudes toward wind power, and environmental, siting and land use issues

  1. Wind Turbine Converter Control Interaction with Complex Wind Farm Systems

    DEFF Research Database (Denmark)

    Kocewiak, Lukasz Hubert; Hjerrild, Jesper; Bak, Claus Leth

    2013-01-01

    . The same wind turbine converter control strategy is evaluated in two different wind farms. It is emphasised that the grid-side converter controller should be characterised by sufficient harmonic/noise rejection and adjusted depending on wind farms to which it is connected. Various stability indices......This study presents wind turbine converter stability analysis of wind farms in frequency domain. The interaction between the wind turbine control system and the wind farm structure in wind farms is deeply investigated. Two wind farms (i.e. Horns Rev II and Karnice) are taken into consideration...... in this study. It is shown that wind farm components, such as long high-voltage alternating current cables and park transformers, can introduce significant low-frequency series resonances seen from the wind turbine terminals that can affect wind turbine control system operation and overall wind farm stability...

  2. Breezing ahead: the Spanish wind energy market

    International Nuclear Information System (INIS)

    Avia Aranda, Felix; Cruz, I.C.

    2000-01-01

    This article traces the rapid increase in Spain's wind generating capacity, and examines Spain's wind strategy, the assessment of wind power potential at regional level, and the guaranteeing of the market price for power generators using wind energy with yearly reviews of the price of electricity from wind power. Prices payable for electricity generated from renewable sources are listed, and the regional distribution of wind energy production is illustrated. Recent wind power installations in Spain, target levels for wind energy installations, wind farms larger than 1MW installed in 1999, and the impact of the growth of the wind energy market on the manufacturing industry and the manufacturers are discussed. Details of the wind energy capacity in the provinces of Navarra and Galicia are given, and plans for wind energy projects in the New National Plan for Scientific research, Development and Technological innovation (2000-2003) are considered

  3. Three essays on the effect of wind generation on power system planning and operations

    Science.gov (United States)

    Davis, Clay Duane

    modified methodology achieves expected costs for the UC-ED problem that are as low as the full stochastic model and markedly lower than the deterministic model. The final essay focuses on valuing energy storage located at a wind site through multiple revenue streams, where energy storage is valued from the perspective of a profit maximizing investor. Given the current state of battery storage technology, a battery capacity of zero is optimal in the setting considered in this essay. The results presented in this essay are dependent on a technological breakthrough that substantially reduces battery cost and conclude that allowing battery storage to simultaneously participate in multiple wholesale markets is optimal relative to participating in any one market alone. Also, co-locating battery storage and wind provides value by altering the optimal transmission line capacity to the battery and wind site. This dissertation considers problems of wind integration from an economic perspective and builds on existing work in this area. The economics of wind integration and utilization are important because wind generation levels are already significant and will likely become more so in the future. While this dissertation adds to the existing literature, additional work is needed in this area to ensure wind generation adds as much value to the overall system as possible.

  4. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  5. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  6. Wind Atlas for Egypt

    DEFF Research Database (Denmark)

    Mortensen, Niels Gylling; Said Said, Usama; Badger, Jake

    2006-01-01

    The results of a comprehensive, 8-year wind resource assessment programme in Egypt are presented. The objective has been to provide reliable and accurate wind atlas data sets for evaluating the potential wind power output from large electricityproducing wind turbine installations. The regional wind...... climates of Egypt have been determined by two independent methods: a traditional wind atlas based on observations from more than 30 stations all over Egypt, and a numerical wind atlas based on long-term reanalysis data and a mesoscale model (KAMM). The mean absolute error comparing the two methods is about...... 10% for two large-scale KAMM domains covering all of Egypt, and typically about 5% for several smaller-scale regional domains. The numerical wind atlas covers all of Egypt, whereas the meteorological stations are concentrated in six regions. The Wind Atlas for Egypt represents a significant step...

  7. Wind energy in Europe

    International Nuclear Information System (INIS)

    Evans, L.C.

    1992-01-01

    Wind energy should be an important part of the energy supply mix, both at home and abroad, to provide cleaner air and a more stable fuel supply. Not only can wind energy contribute to solving complex global issues, it also can provide a large market for American technological leadership. Even though utilities are paying more attention to wind in a number of states, there are no plans for major installations of wind power plants in the United States. At the same time, European nations have developed aggressive wind energy development programs, including both ambitious research and development efforts and market incentives. Many countries recognize the importance of the clean energy provided by wind technology and are taking steps to promote their fledgling domestic industries. The emphasis on market incentives is starting to pay off. In 1991, European utilities and developers installed nearly twice as much wind capacity as Americans did. In 1992 the gap will be even greater. This article reviews aggressive incentives offered by European governments to boost their domestic wind industries at home and abroad in this almost $1 billion per year market. By offering substantial incentives - considerably more than the American Wind Energy Association (AWEA) is proposing - European nations are ensuring dramatic near-term wind energy development and are taking a major step toward dominating the international wind industry of the 21st century

  8. Forecasting and decision-making in electricity markets with focus on wind energy

    DEFF Research Database (Denmark)

    Jónsson, Tryggvi

    This thesis deals with analysis, forecasting and decision making in liberalised electricity markets. Particular focus is on wind power, its interaction with the market and the daily decision making of wind power generators. Among recently emerged renewable energy generation technologies, wind power...... derivation of practically applicable tools for decision making highly relevant. The main characteristics of wind power differ fundamentally from those of conventional thermal power. Its effective generation capacity varies over time and is directly dependent on the weather. This dependency makes future...... has become the global leader in terms of installed capacity and advancement. This makes wind power an ideal candidate to analyse the impact of growing renewable energy generation capacity on the electricity markets. Furthermore, its present status of a significant supplier of electricity makes...

  9. Equivalent models of wind farms by using aggregated wind turbines and equivalent winds

    International Nuclear Information System (INIS)

    Fernandez, L.M.; Garcia, C.A.; Saenz, J.R.; Jurado, F.

    2009-01-01

    As a result of the increasing wind farms penetration on power systems, the wind farms begin to influence power system, and therefore the modeling of wind farms has become an interesting research topic. In this paper, new equivalent models of wind farms equipped with wind turbines based on squirrel-cage induction generators and doubly-fed induction generators are proposed to represent the collective behavior on large power systems simulations, instead of using a complete model of wind farms where all the wind turbines are modeled. The models proposed here are based on aggregating wind turbines into an equivalent wind turbine which receives an equivalent wind of the ones incident on the aggregated wind turbines. The equivalent wind turbine presents re-scaled power capacity and the same complete model as the individual wind turbines, which supposes the main feature of the present equivalent models. Two equivalent winds are evaluated in this work: (1) the average wind from the ones incident on the aggregated wind turbines with similar winds, and (2) an equivalent incoming wind derived from the power curve and the wind incident on each wind turbine. The effectiveness of the equivalent models to represent the collective response of the wind farm at the point of common coupling to grid is demonstrated by comparison with the wind farm response obtained from the detailed model during power system dynamic simulations, such as wind fluctuations and a grid disturbance. The present models can be used for grid integration studies of large power system with an important reduction of the model order and the computation time

  10. Wind energy potential in India

    International Nuclear Information System (INIS)

    Rangarajan, S.

    1995-01-01

    Though located in the tropics, India is endowed with substantial wind resources because of its unique geographical location which gets fully exposed to both the south-west and north-east monsoon winds. The westerly winds of the south-west monsoons provide bulk of the wind potential. Areas with mean annual wind speed exceeding 18 k mph and areas with mean annual power density greater than 140 W/m 2 have been identified using the wind data collected by the wind monitoring project funded by the Ministry of Non-conventional Energy Sources (MNES). Seasonal variations in wind speed at selected locations are discussed as also the frequency distribution of hourly wind speed. Annual capacity factors for 250 kW wind electric generators have been calculated for several typical locations. A good linear correlation has been found between mean annual wind speed and mean annual capacity factor. A method is described for assessing wind potential over an extended region where adequate data is available. It is shown that the combined wind energy potential over five selected areas of limited extent in Gujarat, Andhra Pradesh and Tamil Nadu alone amounts to 22,000 MW under the assumption of 20 per cent land availability for installing wind farms. For a higher percentage of land availability, the potential will be correspondingly higher. (author). 12 refs., 6 figs., 3 tabs

  11. Quadrennial Technology Review 2015: Technology Assessments--Wind Power

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2015-10-07

    Wind power has become a mainstream power source in the U.S. electricity portfolio, supplying 4.9% of the nation’s electricity demand in 2014. With more than 65 GW installed across 39 states at the end of 2014, utility-scale wind power is a cost-effective source of low-emissions power generation throughout much of the nation. The United States has significant sustainable land-based and offshore wind resource potential, greater than 10 times current total U.S. electricity consumption. A technical wind resource assessment conducted by the Department of Energy (DOE) in 2009 estimated that the land-based wind energy potential for the contiguous United States is equivalent to 10,500 GW capacity at 80 meters (m) hub and 12,000 GW capacity at 100 meters (m) hub heights, assuming a capacity factor of at least 30%. A subsequent 2010 DOE report estimated the technical offshore wind energy potential to be 4,150 GW. The estimate was calculated from the total offshore area within 50 nautical miles of shore in areas where average annual wind speeds are at least 7 m per second at a hub height of 90 m.

  12. Efficiency of lung ventilation for people performing wind instruments.

    Science.gov (United States)

    Brzęk, Anna; Famuła, Anna; Kowalczyk, Anna; Plinta, Ryszard

    Wind instruments musicians are particularly prone to excessive respiratory efforts. Prolonged wind instruments performing may lead to changes in respiratory tracts and thus to respiratory muscles overload. It may result in decreasing lung tissue pliability and, as a consequence, in emphysema. Aim of the research has been to describe basic spirometric parameters for wind players and causes of potential changes. Slow and forced spirometry with the use of Micro Lab Viasys (Micro Medical, Great Britain) was conducted on 31 wind musicians (group A). A survey concerning playing time and frequency, weight of instruments, and education on diaphragmatic breathing was conducted. The control group included 34 healthy persons at similar age (group B). The results were statistically described using Excel and Statistica programmes. The respiratory parameters were within the range of physiological norms and forced expiratory volume in 1 s to forced vital capacity (FEV1/FVC) exceeded in both groups the values of 100%. Forced vital capacity and expiratory vital capacity (EVC) values were significantly lower in the group of musicians than in the control group (p wind instrument. Spirometric parameters relative to standards may prove a good respiratory capacity. Peak expiratory flow (PEF) and FEV1 may indicate that a proper technique of respiration during performance was acquired. The length of time when performing wind instrument may influence parameters of dynamic spirometry. Med Pr 2016;67(4):427-433. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  13. Potential for increased wind-generated electricity utilization using heat pumps in urban areas

    International Nuclear Information System (INIS)

    Waite, Michael; Modi, Vijay

    2014-01-01

    Highlights: • Large-scale wind power and increased electric heat pumps were evaluated. • A deterministic model of wind power and electricity demand was developed. • Sub-models for space heating and domestic hot water demand were developed. • Increased use of heat pumps can improve the viability of large-scale wind power. • Larger wind power capacity can meet a target utilization rate with more heat pumps. - Abstract: The U.S. has substantial wind power potential, but given wind’s intermittent availability and misalignment with electricity demand profiles, large-scale deployment of wind turbines could result in high electricity costs due to energy storage requirements or low utilization rates. While fuel switching and heat pumps have been proposed as greenhouse gas (GHG) emissions and energy reduction strategies at the building scale, this paper shows that heat pump adoption could have additional system-wide benefits by increasing the utilization of wind-generated electricity. A model was developed to evaluate the effects of coupling large-scale wind power installations in New York State with increased use of electric heat pumps to meet a portion of space heating and domestic hot water (DHW) demands in New York City. The analysis showed significant increases in wind-generated electricity utilization with increased use of heat pumps, allowing for higher installed capacity of wind power. One scenario indicates that 78.5% annual wind-generated electricity utilization can be achieved with 3 GW of installed wind power capacity generated electricity equal to 20% of existing NYC annual electricity demand; if 20% of space heating and DHW demands are provided by heat pumps, the 78.5% utilization rate can be achieved with an increase of total wind power capacity to 5 GW. Therefore, this integrated supply–demand approach could provide additional system-wide emissions reductions

  14. Wind energy economics

    International Nuclear Information System (INIS)

    Milborrow, D.J.

    1995-01-01

    The economics of wind energy have improved rapidly in the past few years, with improvements in machine performance and increases in size both contributing to reduce costs. These trends are examined and future costs assessed. As bank loan periods for wind projects are shorter than for thermal plant, the effect on the price of wind energy is discussed. It is argued that wind energy has a higher value than that of centralised plant, since it is fed into the low voltage distribution network and it follows that the price of wind energy is converging with its value. The paper also includes a brief review of the capacity credit of wind plant and an assessment of the cost penalties which are incurred due to the need to hold extra plant on part load. These penalties are shown to be small. (author)

  15. The Current State of Additive Manufacturing in Wind Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Palmer, Sierra [Worcester Polytechnic Institute (WPI), , Worcester, MA (United States); Lee, Dominic [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Remo, Timothy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenne, Dale Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States); Richardson, Bradley S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Post, Brian K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-12-01

    Wind power is an inexhaustible form of energy that is being captured throughout the U.S. to power the engine of our economy. A robust, domestic wind industry promises to increase U.S. industry growth and competitiveness, strengthen U.S. energy security independence, and promote domestic manufacturing nationwide. As of 2016, ~82GW of wind capacity had been installed, and wind power now provides more than 5.5% of the nation’s electricity and supports more than 100,000 domestic jobs, including 500 manufacturing facilities in 43 States. To reach the U.S. Department of Energy’s (DOE’s) 2015 Wind Vision study scenario of wind power serving 35% of the nation's end-use demand by 2050, significant advances are necessary in all areas of wind technologies and market. An area that can greatly impact the cost and rate of innovation in wind technologies is the use of advanced manufacturing, with one of the most promising areas being additive manufacturing (AM). Considering the tremendous promise offered by advanced manufacturing, it is the purpose of this report to identify the use of AM in the production and operation of wind energy systems. The report has been produced as a collaborative effort for the DOE Wind Energy Technology Office (WETO), between Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL).

  16. [Research progress on wind erosion control with polyacrylamide (PAM).

    Science.gov (United States)

    Li, Yuan Yuan; Wang, Zhan Li

    2016-03-01

    Soil wind erosion is one of the main reasons for soil degradation in the northwest region of China. Polyacrylamide (PAM), as an efficient soil amendment, has gained extensive attention in recent years since it is effective in improving the structure of surface soil due to its special physical and chemical properties. This paper introduced the physical and chemical properties of PAM, reviewed the effects of PAM on soil wind erosion amount and threshold wind velocity, as well as the effect differences of PAM in soil wind erosion control under conditions of various methods and doses. Its effect was proved by comparing with other materials in detail. Furthermore, we analyzed the mecha-nism of wind erosion control with PAM according to its influence on soil physical characteristics. Comprehensive analysis showed that, although some problems existed in wind erosion control with (PAM), PAM as a sand fixation agent, can not only enhance the capacity of the soil resis-tance to wind erosion, but also improve soil physical properties to form better soil conditions. Besides, we proposed that combination of PAM and plant growth would increase the survival rate of plants greatly, control soil wind erosion in wind-erosive areas, and improve the quality of the ecological environment construction. Thus, PAM has practically important significance and wide application prospect in controlling soil wind erosion.

  17. Comparative Proteomic Characterization of 4 Human Liver-Derived Single Cell Culture Models Reveals Significant Variation in the Capacity for Drug Disposition, Bioactivation, and Detoxication.

    Science.gov (United States)

    Sison-Young, Rowena L C; Mitsa, Dimitra; Jenkins, Rosalind E; Mottram, David; Alexandre, Eliane; Richert, Lysiane; Aerts, Hélène; Weaver, Richard J; Jones, Robert P; Johann, Esther; Hewitt, Philip G; Ingelman-Sundberg, Magnus; Goldring, Christopher E P; Kitteringham, Neil R; Park, B Kevin

    2015-10-01

    In vitro preclinical models for the assessment of drug-induced liver injury (DILI) are usually based on cryopreserved primary human hepatocytes (cPHH) or human hepatic tumor-derived cell lines; however, it is unclear how well such cell models reflect the normal function of liver cells. The physiological, pharmacological, and toxicological phenotyping of available cell-based systems is necessary in order to decide the testing purpose for which they are fit. We have therefore undertaken a global proteomic analysis of 3 human-derived hepatic cell lines (HepG2, Upcyte, and HepaRG) in comparison with cPHH with a focus on drug metabolizing enzymes and transport proteins (DMETs), as well as Nrf2-regulated proteins. In total, 4946 proteins were identified, of which 2722 proteins were common across all cell models, including 128 DMETs. Approximately 90% reduction in expression of cytochromes P450 was observed in HepG2 and Upcyte cells, and approximately 60% in HepaRG cells relative to cPHH. Drug transporter expression was also lower compared with cPHH with the exception of MRP3 and P-gp (MDR1) which appeared to be significantly expressed in HepaRG cells. In contrast, a high proportion of Nrf2-regulated proteins were more highly expressed in the cell lines compared with cPHH. The proteomic database derived here will provide a rational basis for the context-specific selection of the most appropriate 'hepatocyte-like' cell for the evaluation of particular cellular functions associated with DILI and, at the same time, assist in the construction of a testing paradigm which takes into account the in vivo disposition of a new drug. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology.

  18. Use of wind power forecasting in operational decisions.

    Energy Technology Data Exchange (ETDEWEB)

    Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V. (Decision and Information Sciences); (INESC Porto)

    2011-11-29

    The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help

  19. The role of hydrogen in high wind energy penetration electricity systems: the Irish case

    International Nuclear Information System (INIS)

    Gonzalez, A.; McKeogh, E.; Gallachoir, B.O.

    2004-01-01

    The deployment of wind energy is constrained by wind uncontrollability, which poses operational problems on the electricity supply system at high penetration levels, lessening the value of wind-generated electricity to a significant extent. This paper studies the viability of hydrogen production via electrolysis using wind power that cannot be easily accommodated on the system. The potential benefits of hydrogen and its role in enabling a large penetration of wind energy are assessed, within the context of the enormous wind energy resource in Ireland. The exploitation of this wind resource may in the future give rise to significant amounts of surplus wind electricity, which could be used to produce hydrogen, the zero-emissions fuel that many experts believe will eventually replace fossil fuels in the transport sector. In this paper the operation of a wind powered hydrogen production system is simulated and optimised. The results reveal that, even allowing for significant cost-reductions in electrolyser and associated balance-of-plant equipment, low average surplus wind electricity cost and a high hydrogen market price are also necessary to achieve the economic viability of the technology. These conditions would facilitate the installation of electrolysis units of sufficient capacity to allow an appreciable increase in installed wind power in Ireland. The simulation model was also used to determine the CO 2 abatement potential associated with the wind energy/hydrogen production. (author)

  20. Technology Performance Report: Duke Energy Notrees Wind Storage Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, Jeff [Duke Energy Renewables, Charlotte, NC (United States); Mohler, David [Duke Energy Renewables, Charlotte, NC (United States); Gibson, Stuart [Duke Energy Renewables, Charlotte, NC (United States); Clanin, Jason [Duke Energy Renewables, Charlotte, NC (United States); Faris, Don [Duke Energy Renewables, Charlotte, NC (United States); Hooker, Kevin [Duke Energy Renewables, Charlotte, NC (United States); Rowand, Michael [Duke Energy Renewables, Charlotte, NC (United States)

    2015-11-01

    Duke Energy Renewables owns and operates the Notrees Wind Farm in west Texas’s Ector and Winkler counties. The wind farm, which was commissioned in April 2009, has a total capacity of 152.6 MW generated by 55 Vestas V82 turbines, one Vestas 1-V90 experimental turbine, and 40 GE 1.5-MW turbines. The Vestas V82 turbines have a generating capacity of 1.65 MW each, the Vestas V90 turbine has a generating capacity of 1.86 MW, and the GE turbines have a generating capacity of 1.5 MW each. The objective of the Notrees Wind Storage Demonstration Project is to validate that energy storage increases the value and practical application of intermittent wind generation and is commercially viable at utility scale. The project incorporates both new and existing technologies and techniques to evaluate the performance and potential of wind energy storage. In addition, it could serve as a model for others to adopt and replicate. Wind power resources are expected to play a significant part in reducing greenhouse gas emissions from electric power generation by 2030. However, the large variability and intermittent nature of wind presents a barrier to integrating it within electric markets, particularly when competing against conventional generation that is more reliable. In addition, wind power production often peaks at night or other times when demand and electricity prices are lowest. Energy storage systems can overcome those barriers and enable wind to become a valuable asset and equal competitor to conventional fossil fuel generation.

  1. Wind energy development in the light of Danish experiences

    International Nuclear Information System (INIS)

    Frandsen, S.

    1991-01-01

    Wind energy will undoubtedly play a significant role in the future energy supply being a nonpolluting energy source, which on a technical basis has proved to be an economically feasible and thus a realistic alternative to traditional power production. This conclusion may be drawn from Danish experiences where energy planning comprises a visible contribution from wind energy. Since 1976 more than 3200 wind turbine units have been installed in Denmark, representing a capacity of roughly 340 MW out of a grid capacity of 8,000 MW. These units are all grid-connected and the unit sizes range from 55 kW to 450 kW. The installed wind energy capacity represents a substantial development of technologies for wind energy utilization during the last 15 years, involving participation from many sides: research institutes, electric utilities, the national energy administration, and private industry. The development has implied a considerable improvement of the technical and economic performance of wind turbines along with increased reliability and durability. The successful development has been strongly supported by comprehensive government programmes, i.e. establishment of a national wind energy research programme, establishment of the Riso Test Station for Windmills and a subsidy scheme for private turbine owners. The improved economic performance is partly the result of a development in rotor size of commercially available wind turbines. In 1981 the largest commercial wind turbine size in Denmark was 55 kW, while today it is close to 500 kW. In the same period the average energy production per installed unit capacity almost doubled, due to enhanced aerodynamic rotor design, increased tower height and improved overall design and production methods. (author) 7 figs., 3 tabs., 13 refs

  2. Improvement of small-signal stability of power system by controlling doubly fed induction generators of a large-capacity wind farm

    Directory of Open Access Journals (Sweden)

    Tomohiro Adachi

    2016-01-01

    Full Text Available Many wind turbine generations have been installed into power systems around the world, where in recent years doubly fed induction generator (DFIG attracts a lot of attentions because of its efficiency and controllability. However, the DFIG is connected to the power system through inverters and originally does not have an ability to release the kinetic energy of the rotor or resorb the surplus power of the power system as the kinetic energy. Therefore, it has not been made clear how the DFIGs have an influence on small-signal stability in power systems. In this paper, we propose a control scheme of the DFIG and analyse its effect on the small-signal stability of the power system by eigenvalue calculations and time-domain simulations.

  3. The economic value of accurate wind power forecasting to utilities

    Energy Technology Data Exchange (ETDEWEB)

    Watson, S J [Rutherford Appleton Lab., Oxfordshire (United Kingdom); Giebel, G; Joensen, A [Risoe National Lab., Dept. of Wind Energy and Atmospheric Physics, Roskilde (Denmark)

    1999-03-01

    With increasing penetrations of wind power, the need for accurate forecasting is becoming ever more important. Wind power is by its very nature intermittent. For utility schedulers this presents its own problems particularly when the penetration of wind power capacity in a grid reaches a significant level (>20%). However, using accurate forecasts of wind power at wind farm sites, schedulers are able to plan the operation of conventional power capacity to accommodate the fluctuating demands of consumers and wind farm output. The results of a study to assess the value of forecasting at several potential wind farm sites in the UK and in the US state of Iowa using the Reading University/Rutherford Appleton Laboratory National Grid Model (NGM) are presented. The results are assessed for different types of wind power forecasting, namely: persistence, optimised numerical weather prediction or perfect forecasting. In particular, it will shown how the NGM has been used to assess the value of numerical weather prediction forecasts from the Danish Meteorological Institute model, HIRLAM, and the US Nested Grid Model, which have been `site tailored` by the use of the linearized flow model WA{sup s}P and by various Model output Statistics (MOS) and autoregressive techniques. (au)

  4. Wind Resource Assessment of Gujarat (India)

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    2014-07-01

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

  5. Environmental impact of wind energy

    DEFF Research Database (Denmark)

    Mann, Jakob; Teilmann, Jonas

    2013-01-01

    One purpose of wind turbines is to provide pollution-free electric power at a reasonable price in an environmentally sound way. In this focus issue the latest research on the environmental impact of wind farms is presented. Offshore wind farms affect the marine fauna in both positive and negative...... ways. For example, some farms are safe havens for porpoises while other farms show fewer harbor porpoises even after ten years. Atmospheric computer experiments are carried out to investigate the possible impact and resource of future massive installations of wind turbines. The following questions...... are treated. What is the global capacity for energy production by the wind? Will the added turbulence and reduced wind speeds generated by massive wind farms cool or heat the surface? Can wind farms affect precipitation? It is also shown through life-cycle analysis how wind energy can reduce the atmospheric...

  6. Evaluation of Optimal Distribution of Wind Power Facilities in Iowa for 2015

    Energy Technology Data Exchange (ETDEWEB)

    Factor, T. (Iowa Wind Energy Institute); Milligan, M. (National Renewable Energy Laboratory)

    1999-08-05

    By the end of June 1999, about 250 megawatts of wind generation will have been dedicated in the state of Iowa. This represents the beginning of what is likely to be significant wind capacity development during the next 20 years in the state, as a result of possible public and governmental mandates and consumers' desire for sustainable sources of energy. As the utility industry in the United States moves towards a new structure, renewable energy sources continue to be an important part of new resource development. In this paper, we consider the predicted trends in load growth in Iowa. After accounting for the retirement of nuclear and older fossil fuel facilities over the next 15 years, we estimate Iowa's potential renewable generating capacity through the year 2015 and anticipate the contribution of wind energy to Iowa's portfolio. The Iowa Wind Energy Institute (IWEI) has been monitoring the wind resource in Iowa since June 1994 to obtain wind speed averages at 10, 33 and 50 meters above ground at fourteen geographically dispersed potential wind farm sites. Winds in the Midwest are primarily generated by fronts moving through the region. The Northwest Buffalo Ridge area of Iowa typically has wind speed averages of 7-8 m/s. Central Iowa may have typical winds slightly below this mean value. However, as a front passes through the state, there will be times when a wind farm in Central Iowa will produce more energy than one on Buffalo Ridge.

  7. Wind: new wind markets

    International Nuclear Information System (INIS)

    Cameron, A.

    2005-01-01

    The June 2005 edition of 'Wind Force 12' suggests that wind could generate 12% of global electricity requirements by 2020. But what moves a potential market into an emerging one? Geographical factors include a good wind resource, plenty of open space and the ability to get the generated electricity to end-users. A country's political framework is equally important, with fixed price systems, renewable quota systems and political will all playing a part. Some potential wind markets around the world are thought to have the conditions necessary to become key players in the wind industry. The emerging markets in countries such as Australia, Brazil, Canada, France, Japan and the Philippines are highlighted as examples

  8. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  9. Assessing high wind energy penetration

    DEFF Research Database (Denmark)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers...... expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project...... with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h....

  10. 2014 Distributed Wind Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Orell, A; Foster, N.

    2015-08-01

    The cover of the 2014 Distributed Wind Market Report.According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment across 24 states. In 2014, America's distributed wind energy industry supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted for nearly 80% of United States-based manufacturers' sales.

  11. Canadian small wind market

    International Nuclear Information System (INIS)

    Moorhouse, E.

    2010-01-01

    This PowerPoint presentation discussed initiatives and strategies adopted by the Canadian Wind Energy Association (CanWEA) to support the development of Canada's small wind market. The general public has shown a significant interest in small wind projects of 300 kW. Studies have demonstrated that familiarity and comfort with small wind projects can help to ensure the successful implementation of larger wind projects. Small wind markets include residential, farming and commercial, and remote community applications. The results of CanWEA market survey show that the small wind market grew by 78 percent in 2008 over 2007, and again in 2009 by 32 percent over 2008. The average turbine size is 1 kW. A total of 11,000 turbines were purchased in 2007 and 2008. Global small wind market growth increased by 110 percent in 2008, and the average turbine size was 2.4 kW. Eighty-seven percent of the turbines made by Canadian mid-size wind turbine manufacturers are exported, and there is now a significant risk that Canada will lose its competitive advantage in small wind manufacturing as financial incentives have not been implemented. American and Canadian-based small wind manufacturers were listed, and small wind policies were reviewed. The presentation concluded with a set of recommendations for future incentives, educational programs and legislation. tabs., figs.

  12. Economic Development Impact of 1,000 MW of Wind Energy in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Reategui, S.; Hendrickson, S.

    2011-08-01

    Texas has approximately 9,727 MW of wind energy capacity installed, making it a global leader in installed wind energy. As a result of the significant investment the wind industry has brought to Texas, it is important to better understand the economic development impacts of wind energy in Texas. This report analyzes the jobs and economic impacts of 1,000 MW of wind power generation in the state. The impacts highlighted in this report can be used in policy and planning decisions and can be scaled to get a sense of the economic development opportunities associated with other wind scenarios. This report can also inform stakeholders in other states about the potential economic impacts associated with the development of 1,000 MW of new wind power generation and the relationships of different elements in the state economy.

  13. Wind power production: from the characterisation of the wind resource to wind turbine technologies

    International Nuclear Information System (INIS)

    Beslin, Guy; Multon, Bernard

    2016-01-01

    Illustrated by graphs and tables, this article first describes the various factors and means related to the assessment of wind resource in the World, in Europe, and the factors which characterize a local wind resource. In this last respect, the authors indicate how local topography is taken into account to calculate wind speed, how time variations are taken into account (at the yearly, seasonal or daily level), the different methods used to model a local wind resource, how to assess the power recoverable by a wind turbine with horizontal axis (notion of Betz limit). In the second part, the authors present the different wind turbines, their benefits and drawbacks: vertical axis, horizontal axis (examples of a Danish-type wind turbine, of wind turbines designed for extreme conditions). Then, they address the technology of big wind turbines: evolution of technology and of commercial offer, aerodynamic characteristics of wind turbine and benefit of a varying speed (technological solutions, importance of the electric generator). They describe how to choose a wind turbine, how product lines are organised, how the power curve and energy capacity are determined. The issue of integration of wind energy into the power system is then addressed. The next part addressed the economy of wind energy production (annualized production cost, order of magnitude of wind electric power production cost). Future trends are discussed and offshore wind energy production is briefly addressed

  14. Financing wind projects

    International Nuclear Information System (INIS)

    Manson, J.

    2006-01-01

    This presentation reviewed some of the partnership opportunities available from GE Energy. GE Energy's ecomagination commitment has promised to double research investment, make customers true partners and reduce greenhouse gases (GHGs). GE Energy's renewable energy team provides a broad range of financial products, and has recently funded 30 wind farms and 2 large solar projects. The company has a diverse portfolio of technology providers and wind regimes, and is increasing their investment in technology. GE Energy recognizes that the wind industry is growing rapidly and has received increased regulatory support that is backed by strong policy and public support. It is expected that Canada will have 3006 wind projects either planned or under construction by 2007. According to GE Energy, successful wind financing is dependent on the location of the site and its wind resources, as well as on the wind developer's power sales agreement. The success of a wind project is also determined by clear financing goals. Site-specific data is needed to determine the quality of wind resource, and off-site data can also be used to provide validation. Proximity to load centres will help to minimize capital costs. Power sales agreements should be based on the project's realistic net capacity factor as well as on the cost of the turbines. The economics of many wind farms is driven by the size of the turbines used. Public consultations are also needed to ensure the success of wind power projects. It was concluded that a good partner will have staying power in the wind power industry, and will understand the time-lines and needs that are peculiar to wind energy developers. refs., tabs., figs

  15. Noise from wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fegeant, Olivier [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Building Sciences

    2002-02-01

    A rapid growth of installed wind power capacity is expected in the next few years. However, the siting of wind turbines on a large scale raises concerns about their environmental impact, notably with respect to noise. To this end, variable speed wind turbines offer a promising solution for applications in densely populated areas like the European countries, as this design would enable an efficient utilisation of the masking effect due to ambient noise. In rural and recreational areas where wind turbines are sited, the ambient noise originates from the action of wind on the vegetation and about the listener's ear (pseudo-noise). It shows a wind speed dependence similar to that of the noise from a variable speed wind turbine and can therefore mask the latter for a wide range of conditions. However, a problem inherent to the design of these machines is their proclivity to pure tone generation, because of the enhanced difficulty of avoiding structural resonances in the mechanical parts. Pure tones are deemed highly annoying and are severely regulated by most noise policies. In relation to this problem, the vibration transmission of structure-borne sound to the tower of the turbine is investigated, in particular when the tower is stiffened at its upper end. Furthermore, since noise annoyance due to wind turbine is mostly a masking issue, the wind-related sources of ambient noise are studied and their masking potentials assessed. With this aim, prediction models for wind-induced vegetation noise and pseudo-noise have been developed. Finally, closely related to the effect of masking, is the difficulty, regularly encountered by local authorities and wind farm developers, to measure noise immission from wind turbines. A new measurement technique has thus been developed in the course of this work. Through improving the signal-to-noise ratio between wind turbine noise and ambient noise, the new technique yields more accurate measurement results.

  16. Power Electronics for the Next Generation Wind Turbine System

    DEFF Research Database (Denmark)

    Ma, Ke

    generation unit, are becoming crucial in the wind turbine system. The objective of this project is to study the power electronics technology used for the next generation wind turbines. Some emerging challenges as well as potentials like the cost of energy and reliability are going to be addressed. First...... conversion is pushed to multi-MW level with high power density requirement. It has also been revealed that thermal stress in the power semiconductors is closely related to many determining factors in the wind power application like the reliability, cost, power density, etc. therefore it is an important......The wind power generation has been steadily growing both for the total installed capacity and for the individual turbine size. Due to much more significant impacts to the power grid, the power electronics, which can change the behavior of wind turbines from an unregulated power source to an active...

  17. Wind power barometer

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    Despite the economic crisis affecting most of the globe's major economies, wind energy continues to gain supporters around the world. Global wind power capacity increased by 40.5 GW between 2010 and 2011 compared to a 39 GW rise between 2009 and 2010, after deduction of decommissioned capacity. By the end of 2011 global installed wind turbine capacity should stand at around 238.5 GW, and much of the world's growth is being driven by capacity build-up in the emerging markets (China, India...). In 2011 Asia was the world's biggest market (52%) ahead of Europe (24.5%) and North-America (19.7%). Europe has still the largest wind power capacity in the world with 40.6% of total in 2011. 2011 was another tough year for Vestas company while Gamesa company has managed to maintain positive profit growth by gaining market shares abroad. Siemens keeps its lead in the offshore market. The Chinese market is now suffering form excess capacity and Chinese companies fell prey to domestic competition

  18. Wind farm investment risks under uncertain CDM benefit in China

    International Nuclear Information System (INIS)

    Yang, Ming; Nguyen, Francois; T'Serclaes, Philippine de; Buchner, Barbara

    2010-01-01

    China has set an ambitious target to increase its wind power capacity by 35 GW from 2007 to 2020. The country's hunger for clean power provides great opportunities for wind energy investors. However, risks from China's uncertain electricity market regulation and an uncertain energy policy framework, mainly due to uncertain Clean Development Mechanism (CDM) benefits, prevent foreign investors from investing in China's wind energy. The objectives of this paper are to: (1) quantify wind energy investment risk premiums in an uncertain international energy policy context and (2) evaluate the impact of uncertain CDM benefits on the net present values of wind power projects. With four scenarios, this study simulates possible prices of certified emissions reductions (CERs) from wind power projects. Project net present values (NPVs) have been calculated. The project risk premiums are drawn from different and uncertain CER prices. Our key findings show that uncertain CDM benefits will significantly affect the project NPVs. This paper concludes that the Chinese government needs revising its tariff incentives, most likely by introducing fixed feed-in tariffs (FITs), and re-examining its CDM-granting policy and its wind project tax rates, to facilitate wind power development and enable China to achieve its wind energy target. (author)

  19. Modelling the economics of combined wind/hydro/diesel power systems

    International Nuclear Information System (INIS)

    Sinha, A.

    1993-01-01

    A model that stimulates the performance and economics of a combined wind/hydro/diesel plant with pumped storage has been developed. It is applied to a hypothetical site to demonstrate how a subset of the cheapest configuration of plant sizes may be identified, illustrating in particular the trade-off between the hydro storage capacity and the wind turbine penetration. It seems that, with the wind and water regimes employed, pumped storage is unlikely to have significant benefits, but may be beneficial in areas without natural inflow, in which case the reservoir is used as a store for excess wind output. (author)

  20. Illinois Wind Workers Group

    Energy Technology Data Exchange (ETDEWEB)

    David G. Loomis

    2012-05-28

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  1. Wind energy research activities of the Dutch Electricity Generating Board

    International Nuclear Information System (INIS)

    Halberg, N.

    1990-01-01

    The varying degrees of penetration of wind energy conversion systems (WECs) into the Dutch electricity generating system has been examined. A simulation has been carried out using wind data recorded at 6 sites spread across the area of interest in the Netherlands. The recorded wind data has been used in conjunction with a production costing model normally used by Sep (the Dutch Electricity Generating Board) for planning purposes. This model was modified to give a correct assessment of the quantity and value of fuel savings made by WECs. System studies were carried out for the year 2000 for zero wind penetration and for three distinctive penetration degrees of WECs, namely 5%, 10% and 15%. After incorporation of the WECS capacity, adjustments were made to the basic plant mix to allow the capacity credit WECs. Separate production cost simulations were executed for each distinct WECS capacity factor. Economic assessments were carried out using standard procedures. Except for the unpredictable development of fuel prices, the capital costs of the WECs proved to be the determinant for the economic viability of wind power. Significant improvements in costs and performance, as may be achieved through additional technological advances, are needed to made wind power competitive in widespread utility applications. (Author)

  2. Towards mass-market development of wind energy

    International Nuclear Information System (INIS)

    Palz, W.

    1996-01-01

    The wind turbine technologies employed in today's markets for wind energy are innovative, efficient and in many cases cost competitive. A world market of more than 1000 MW/year and with a turnover of 1 billion ECU has developed and 30,000 new jobs have been created, most of them in small and medium size enterprises. 80% of today's world production is European. The preferred turbine capacity of today is 500 kW. In the next few years a three-fold increase in the rated power of most commercial machines to 1.5 MW is expected. The new large machines have been achieved through the ''WEGA''-programme of the European Commission. Significant market penetration of wind power in the European Union is very recent. The 2500 MW installed wind capacity in Europe today accounts only for 1/2% of the total capacity available for electricity production. Markets of the future will depend on a better development of the economic integration issues of wind energy into large networks. A key is the cost of electric grids which conditions the opportunity cost for feeding wind power at any particular point into the grids. Also, better predictability of the wind resource will give higher value to wind power in the grid and improve its economics further. Various financing schemes have been set up throughout Europe. Financial support and incentives are vital for some more years to come to expand current markets and improve economics through economy of scale. The utilisation of wind turbines in off-grid situations is an important new field for technological innovations and deployment. (author)

  3. Willingness to pay for reduced visual disamenities from off-shore wind farms in Denmark

    DEFF Research Database (Denmark)

    Ladenburg, Jacob; Dubgaard, Alex

    Expansion of the off-shore wind power capacity plays a significant role in the wind power strategy in many EU countries. However, off-shore wind farms are associated with visual disamenities. The disamenities can be reduced by locating the wind farms at larger distances from the coast. But......, the costs per kWh produced increase as the distance is augmented. In this paper, peoples’ willingness to pay for a reduction in the visual disamenity of off-shore wind farms is elicited using the economic valuation method Choice Experiments. The economic valuation scenario comprises the locations of 3600 MW...... and 50 km from the coast opposed to 8 km. The results also reveal that the WTP deviate strongly with regards to the age of the respondent and the experiences with off-shore wind farms. These properties of the WTP are believed to have significant policy related consequences. Keywords: Visual Disamenities...

  4. Wind Energy

    International Nuclear Information System (INIS)

    Rodriguez D, J.M.

    1998-01-01

    The general theory of the wind energy conversion systems is presented. The availability of the wind resource in Colombia and the ranges of the speed of the wind in those which is possible economically to use the wind turbines are described. It is continued with a description of the principal technological characteristics of the wind turbines and are split into wind power and wind-powered pumps; and its use in large quantities grouped in wind farms or in autonomous systems. Finally, its costs and its environmental impact are presented

  5. A CASE STUDY OF CHINA ́S WIND POWER RESOURCES

    Directory of Open Access Journals (Sweden)

    Xue Yanping

    2013-11-01

    Full Text Available At present, China is the largest energy producer and the second largest energy consumer in the world. With the increasing pressure to cut GHS emissions and to improve energy efficiency, China is now changing its traditional energy mix, mainly through consuming more renewable energy instead of fossil energy. This change has resulted in a policy adjustment which in turn boosts the utilization of the wind power resources. However, the development of the wind power resources in China is confronted with some significant challenges, such as greater installed electricity capacity than the electricity generation, greater electricity generation than the electricity transmission capacity and greater inland wind power generation than the offshore wind power generation. Therefore, the further development of China’s wind power electricity in the coming years depends largely on the ways these challenges will be addressed.

  6. Wind energy planning in Denmark

    International Nuclear Information System (INIS)

    Godtfredsen, F.; Lemming, J.; Nielsen, S.R.; Jessien, S.

    1992-01-01

    The total capacity of the about 3300 Danish wind turbines is approximately 450 MW. Most of the wind turbines have been erected detached or in small clusters by private citizens - especially by joint ownership. 100 MW of the capacity have been installed by the power companies, mainly in wind farms. Up till now the privately owned wind turbines have been erected without a previous planning process. Increased expansion of wind energy makes demands on physical planning, since access to suitable locations in Denmark is limited. Hence more coordination is called for between the interested parties to ensure optimal utilization of the sites allocated by the physical planning authorities. A siting committee appointed by the Government has recommended locations for additional 100 MW power company wind farms as well as a more detailed planning in each local community. The detailed planning in the municipality of Thisted is described. (au)

  7. Wind energy in the agricultural sector. Tailwind or head wind?

    International Nuclear Information System (INIS)

    Van der Knijff, A.

    1999-06-01

    The state of the art in the use of wind energy in the agricultural sector in the Netherlands is given in order to map opportunities. Obstacles to expansion of wind capacity in that sector in the short term are described, as well as the most important developments with respect to wind energy. An estimated 275 wind turbines with a capacity of 50 MW are in use in the Netherlands. This means that the agricultural sector accounts for approximately 14% of the total wind capacity in the Netherlands (363 MW in 1998). Most of the agricultural businesses supply all the electricity generated to the public networks. Only a small number of farmers use some of the generated electricity themselves. The most important obstacles for the agrarian sector are the proposed policies of provinces and municipalities, the limited capacity of the public electricity network, and the lack of clarity regarding the liberalisation of the electricity market. In particular, provincial and municipal policies (solitary wind turbines versus wind farms) will determine the prospects for the future of wind energy in the agrarian sector. Despite possible adversities, there are good prospects for the future for the sector because farmers own land in windy locations. 33 refs

  8. Stellar winds

    International Nuclear Information System (INIS)

    Weymann, R.J.

    1978-01-01

    It is known that a steady outflow of material at comparable rates of mass loss but vastly different speeds is now known to be ubiquitous phenomenon among both the luminous hot stars and the luminous but cool red giants. The flows are probably massive enough in both cases to give rise to significant effects on stellar evolution and the mass balance between stars and the interstellar medium. The possible mechanisms for these phenomena as well as the methods of observation used are described. In particular, the mass-loss processes in stars other than the sun that also involve a steady flow of matter are considered. The evidence for their existence is described, and then the question of whether the process thought to produce the solar wind is also responsible for producing these stellar winds is explored

  9. Wind energy in Bavaria; Windenergie in Bayern

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    For centuries we use the wind for our purposes. Previously, the wind was almost exclusively important for the economy, and propels windmills and merchant ships. During the 20th century, wind was used especially in leisure such as sailing, surfing and flying. Now we remind ourselves to use the wind energy to our livelihoods - in the power generation by means of wind turbines. Thanks to the financial support from the Renewable Energy Law, wind energy is utilized more and more for ten years. Meanwhile, Germany is internationally ranked third in terms of installed capacity in wind energy.

  10. 2016 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-08

    Wind power capacity in the United States experienced strong growth in 2016. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—as well as a myriad of state-level policies. Wind additions have also been driven by improvements in the cost and performance of wind power technologies, yielding low power sales prices for utility, corporate, and other purchasers.

  11. Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, I.

    2009-04-01

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

  12. Wind turbine blade waste in 2050.

    Science.gov (United States)

    Liu, Pu; Barlow, Claire Y

    2017-04-01

    Wind energy has developed rapidly over the last two decades to become one of the most promising and economically viable sources of renewable energy. Although wind energy is claimed to provide clean renewable energy without any emissions during operation, but it is only one side of the coin. The blades, one of the most important components in the wind turbines, made with composite, are currently regarded as unrecyclable. With the first wave of early commercial wind turbine installations now approaching their end of life, the problem of blade disposal is just beginning to emerge as a significant factor for the future. This paper is aimed at discovering the magnitude of the wind turbine blade waste problem, looking not only at disposal but at all stages of a blade's lifecycle. The first stage of the research, the subject of this paper, is to accurately estimate present and future wind turbine blade waste inventory using the most recent and most accurate data available. The result will provide a solid reference point to help the industry and policy makers to understand the size of potential environmental problem and to help to manage it better. This study starts by estimating the annual blade material usage with wind energy installed capacity and average blade weight. The effect of other waste contributing factors in the full lifecycle of wind turbine blades is then included, using industrial data from the manufacturing, testing and in-service stages. The research indicates that there will be 43 million tonnes of blade waste worldwide by 2050 with China possessing 40% of the waste, Europe 25%, the United States 16% and the rest of the world 19%. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  13. Wind power barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The global wind power market not only repelled the strictures of the financial crisis, but saw the installation of 37 GW in 2009, which is almost 10 GW up on 2008. China and the United States registered particularly steady growth and the European Union also picked up momentum to break its installation record. A total capacity of 158 GW of wind power are now installed across the world from which 74.8 GW in the European Union. Among the European countries Denmark has the highest wind capacity per inhabitant in 2009: 627.5 kW/1000 inhabitants. Spain seeks to limit its market's growth in order to better manage the development of wind energy across the country. German growth is back, Italy chalks up a new record for installation and the French market is becoming increasingly regulated. United-Kingdom is developing offshore wind farms: the offshore capacity could reasonably rise to 20000 MW by 2020. The last part of the article reports some economical news from the leading players: Vestas, GE-Energy, Gamesa, Enercon, Sinovel and Siemens. (A.C.)

  14. Capacity Building

    International Nuclear Information System (INIS)

    Molloy, Brian; Mallick, Shahid

    2014-01-01

    Outcomes & Recommendations: • Significant increase needed in the nuclear workforce both to replace soon-to-retire current generation and to staff large numbers of new units planned • Key message, was the importance of an integrated approach to workforce development. • IAEA and other International Organisations were asked to continue to work on Knowledge Management, Networks and E&T activities • IAEA requested to conduct Global Survey of HR needs – survey initiated but only 50% of operating countries (30% of capacity) took part, so results inconclusive

  15. Decommissioning wind energy projects: An economic and political analysis

    International Nuclear Information System (INIS)

    Ferrell, Shannon L.; DeVuyst, Eric A.

    2013-01-01

    Wind energy is the fastest-growing segment of new electrical power capacity in the United States, with the potential for significant growth in the future. To facilitate such growth, a number of concerns between developers and landowners must be resolved, including assurance of wind turbine decommissioning at the end of their useful lives. Oklahoma legislators enlisted the authors to develop an economically-sound proposal to ensure developers complete their decommissioning obligations. Economic analysis of turbine decommissioning is complicated by a lack of operational experience, as few U.S. projects have been decommissioned. This leads to a lack of data regarding decommissioning costs. Politically, the negotiation leading to the finally-enacted solution juxtaposed economic theory against political pragmatism, leading to a different but hopefully sound solution. This article will provide background for the decommissioning issue, chronicle the development of the decommissioning component of the Oklahoma Wind Energy Act, and frame issues that remain for policymakers in regulating wind power development. - Highlights: ► Wind energy is the fastest-growing component of U.S. power generation. ► Decommissioning wind projects is policy concern for wind development. ► Little public information on wind turbine decommissioning costs exists. ► Oklahoma’s solution attempts to account for both costs and risks. ► Additional research is needed to create a more precise policy solution.

  16. Advances in wind energy conversion technology

    CERN Document Server

    Sathyajith, Mathew

    2011-01-01

    The technology of generating energy from wind has significantly changed during the past five years. The book brings together all the latest aspects of wind energy conversion technology - from wind resource analysis to grid integration of generated electricity.

  17. Spatial Distribution of Estimated Wind-Power Royalties in West Texas

    Directory of Open Access Journals (Sweden)

    Christian Brannstrom

    2015-12-01

    Full Text Available Wind-power development in the U.S. occurs primarily on private land, producing royalties for landowners through private contracts with wind-farm operators. Texas, the U.S. leader in wind-power production with well-documented support for wind power, has virtually all of its ~12 GW of wind capacity sited on private lands. Determining the spatial distribution of royalty payments from wind energy is a crucial first step to understanding how renewable power may alter land-based livelihoods of some landowners, and, as a result, possibly encourage land-use changes. We located ~1700 wind turbines (~2.7 GW on 241 landholdings in Nolan and Taylor counties, Texas, a major wind-development region. We estimated total royalties to be ~$11.5 million per year, with mean annual royalty received per landowner per year of $47,879 but with significant differences among quintiles and between two sub-regions. Unequal distribution of royalties results from land-tenure patterns established before wind-power development because of a “property advantage,” defined as the pre-existing land-tenure patterns that benefit the fraction of rural landowners who receive wind turbines. A “royalty paradox” describes the observation that royalties flow to a small fraction of landowners even though support for wind power exceeds 70 percent.

  18. CAT LIDAR wind shear studies

    Science.gov (United States)

    Goff, R. W.

    1978-01-01

    The studies considered the major meteorological factors producing wind shear, methods to define and classify wind shear in terms significant from an aircraft perturbation standpoint, the significance of sensor location and scan geometry on the detection and measurement of wind shear, and the tradeoffs involved in sensor performance such as range/velocity resolution, update frequency and data averaging interval.

  19. Security region-based small signal stability analysis of power systems with FSIG based wind farm

    Science.gov (United States)

    Qin, Chao; Zeng, Yuan; Yang, Yang; Cui, Xiaodan; Xu, Xialing; Li, Yong

    2018-02-01

    Based on the Security Region approach, the impact of fixed-speed induction generator based wind farm on the small signal stability of power systems is analyzed. Firstly, the key factors of wind farm on the small signal stability of power systems are analyzed and the parameter space for small signal stability region is formed. Secondly, the small signal stability region of power systems with wind power is established. Thirdly, the corresponding relation between the boundary of SSSR and the dominant oscillation mode is further studied. Results show that the integration of fixed-speed induction generator based wind farm will cause the low frequency oscillation stability of the power system deteriorate. When the output of wind power is high, the oscillation stability of the power system is mainly concerned with the inter-area oscillation mode caused by the integration of the wind farm. Both the active power output and the capacity of reactive power compensation of the wind farm have a significant influence on the SSSR. To improve the oscillation stability of power systems with wind power, it is suggested to reasonably set the reactive power compensation capacity for the wind farm through SSSR.

  20. Co-generation of hydrogen from nuclear and wind: the effect on costs of realistic variations in wind generation. Paper no. IGEC-1-094

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.B.

    2005-01-01

    Can electricity from high-capacity nuclear reactors be blended with the variable output of wind turbines to produce electrolytic hydrogen competitively? To be competitive with alternative sources, hydrogen produced by conventional electrolysis requires low-cost electricity (likely <2.5 cents US/kW.h). One approach is to operate interruptibly, allowing an installation to sell electricity when the grid price is high and to make hydrogen when it is low. Our previous studies show that this could be cost-competitive using nuclear power generator producing electricity around 3 cents US/kW.h. Although similar unit costs are projected for wind-generated electricity, idleness of the electrolysis facility due to the variability of wind-generated electricity imposes a significant cost penalty. This paper reports on ongoing work on the economics of blending electricity from nuclear and wind sources by using wind-generated power, when available, to augment the current through electrolysis equipment that is primarily nuclear-powered - a concept we call NuWind. A voltage penalty accompanies the higher current. A 10% increase in capital cost for electrolysis equipment to enable it to accommodate the higher rate of hydrogen generation is still substantially cheaper than the capital cost of wind-dedicated electrolysis. Real-time data for electricity costs have been combined with real-time wind variability. The variability in wind fields between sites was accommodated by assigning average wind speeds that produced an average electricity generation from wind of between 32 and 42% of peak capacity, which is typical of the expectations for superior wind-generation sites. (author)

  1. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Larsen, P.

    1993-01-01

    Denmark has 3200 wind turbines with an installed maximum capacity of 418MW. The most important Danish research projects into wind turbine noise and the main results are listed. These date from 1983. Two comprehensive studies are currently in progress. The first is an analytical and empirical investigation of aerodynamic noise from wind turbine rotors and has so far dealt mainly with tip noise. The measurement method, using a hard board mounted microphone on the ground near the turbine, is described. Four different tip designs have been tested. Some examples of reference sound power level spectra for three of the designs are presented. During the past two years a computerbased data acquisition system has been used for real-time determination of sound power levels. The second study, which has just commenced, is on annoyance from wind turbine noise. It will include noise measurements, masking calculations and a social survey on the perceived nuisance. (UK)

  2. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simões, Marcelo Godoy; Farret, Felix Alberto; Blaabjerg, Frede

    2017-01-01

    considered when selecting a generator for a wind power plant, including capacity of the AC system, types of loads, availability of spare parts, voltage regulation, technical personal and cost. If several loads are likely inductive, such asphase-controlled converters, motors and fluorescent lights......This chapter intends to serve as a brief guide when someone is considering the use of wind energy for small power applications. It is discussed that small wind energy systems act as the major energy source for residential or commercial applications, or how to make it part of a microgrid...... as a distributed generator. In this way, sources and loads are connected in such a way to behave as a renewable dispatch center. With this regard, non-critical loads might be curtailed or shed during times of energy shortfall or periods of high costs of energy production. If such a wind energy system is connected...

  3. Wind power development and policies in China

    International Nuclear Information System (INIS)

    Liao, Cuiping; Farid, Nida R.; Jochem, Eberhard; Zhang, Yi

    2010-01-01

    The People's Republic of China foresees a target of 30 GW for installed wind power capacity by 2010 (2008: 12 GW). This paper reports on the technical and economic potentials of wind power, the recent development, existing obstacles, and related policies in China. The barriers to further commercialization of the wind power market are important and may deter the 100 GW capacity target of the Chinese government by 2020. The paper concludes that the diffusion of wind power in China is an important element for not only reducing global greenhouse gas emissions, but also for worldwide progress of wind power technology and needed economies of scale. (author)

  4. Trends in Wind Energy Technology Development

    DEFF Research Database (Denmark)

    Rasmussen, Flemming; Madsen, Peter Hauge; Tande, John O.

    2011-01-01

    . The huge potential of wind, the rapid development of the technology and the impressive growth of the industry justify the perception that wind energy is changing its role to become the future backbone of a secure global energy supply. Between the mid-1980s, when the wind industry took off, and 2005 wind......Text Over the past 25 years global wind energy capacity has doubled every three years, corresponding to a tenfold expansion every decade. By the end of 2010 global installed wind capacity was approximately 200 GW and in 2011 is expected to produce about 2% of global electricity consumption...... turbine technology has seen rapid development, leading to impressive increases in the size of turbines, with corresponding cost reductions. From 2005 to 2009 the industry’s focus seems to have been on increasing manufacturing capacity, meeting market demand and making wind turbines more reliable...

  5. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Jakobsen, J.

    1992-11-01

    Based on a previous project concerning the calculation of the amount of noise emanating from wind turbine arrays, this one examines the subject further by investigating whether there could be significant differences in the amount of noise made by individual wind turbines in an array, and whether the noise is transmitted in varying directions - so that when it is carried in the same direction as the wind blows it would appear to be louder. The aim was also to determine whether the previously used method of calculation lacked precision. It was found that differences in noise niveaux related to individual wind turbines were insignificant and that noise was not so loud when it was not borne in the direction of the wind. It was necessary to change the method of calculation as reckoning should include the influence of the terrain, wind velocity and distance. The measuring and calculation methods are exemplified and the resulting measurements are presented in detail. (AB)

  6. Wind Power Today: 1998 Wind Energy Program Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Tromly, K.

    1999-06-17

    The US Department of Energy's Office of Energy Efficiency and Renewable Energy manages the Federal Wind Energy Program. The mission of the program is to help the US wind industry to complete the research, testing, and field verification needed to fully develop advanced wind technologies that will lead the world in cost-effectiveness and reliability. This publication, printed annually, provides a summary of significant achievements in wind energy made during the previous calendar year. Articles include wind energy in the Midwest, an Alaskan wind energy project, the US certification program, structural testing, and the federal program in review.

  7. Wind energy: Overcoming inadequate wind and modeling uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Vivek

    2010-09-15

    'Green Energy' is the call of the day, and significance of Wind Energy can never be overemphasized. But the key question here is - What if the wind resources are inadequate? Studies reveal that the probability of finding favorable wind at a given place on land is only 15%. Moreover, there are inherent uncertainties associated with wind business. Can we overcome inadequate wind resources? Can we scientifically quantify uncertainty and model it to make business sense? This paper proposes a solution, by way of break-through Wind Technologies, combined with advanced tools for Financial Modeling, enabling vital business decisions.

  8. Does wind power amount to a luxury in France?

    International Nuclear Information System (INIS)

    Brassard, G.

    2010-01-01

    The avoided costs to the French electrical system thanks to wind power generation should be calculated by estimating avoided domestic generation costs rather than by using the cost of contracts traded on international exchanges, as is currently done by regulatory authorities. Up to now, wind power has basically displaced thermal power. The French Energy Regulatory Commission has feared that, in the future nuclear energy and thermal power could be equally substituted by wind power. Excess power capacity might induce authorities to postpone development of additional nuclear and renewable facilities. However, barring a collapse of electricity requirements in Europe, it is expected that electricity surpluses will be exported to neighboring networks. In the eventuality of increasing world energy prices, wind power would generate significant savings or the French electrical system, as the cost of wind power will be stable over the 15 year mandatory contracts. After taking account of external costs, wind-power on the French mainland is competitive with all other sources of electricity. With this conditions wind power is likely to play a significant and long term role in the French power generation mix. (author)

  9. Wind energy: Science or fiction?

    International Nuclear Information System (INIS)

    Sisouw de Zilwa, L.G.

    1993-01-01

    The energy policy of the Dutch government is aimed at the use of different energy sources (diversification). Therefore the Dutch government supports the implementation of wind turbines and stimulates product improvement and research by means of the TWIN-program (a program to support the application of wind energy in the Netherlands). The purpose of the program is to commercialize efficient wind turbines. Without subsidies it is not yet possible to exploit wind turbines in an efficient way. Around the year 2000 a capacity of 1000 MW must be realized. 1 fig., 1 ill., 5 tabs., 1 ref

  10. Operation of a wind turbine-flywheel energy storage system under conditions of stochastic change of wind energy.

    Science.gov (United States)

    Tomczewski, Andrzej

    2014-01-01

    The paper presents the issues of a wind turbine-flywheel energy storage system (WT-FESS) operation under real conditions. Stochastic changes of wind energy in time cause significant fluctuations of the system output power and as a result have a negative impact on the quality of the generated electrical energy. In the author's opinion it is possible to reduce the aforementioned effects by using an energy storage of an appropriate type and capacity. It was assumed that based on the technical parameters of a wind turbine-energy storage system and its geographical location one can determine the boundary capacity of the storage, which helps prevent power cuts to the grid at the assumed probability. Flywheel energy storage was selected due to its characteristics and technical parameters. The storage capacity was determined based on an empirical relationship using the results of the proposed statistical and energetic analysis of the measured wind velocity courses. A detailed algorithm of the WT-FESS with the power grid system was developed, eliminating short-term breaks in the turbine operation and periods when the wind turbine power was below the assumed level.

  11. 2014 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R; Bolinger, M.

    2015-08-01

    According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW of new wind energy capacity were installed in the United States in 2014. The 2014 Wind Technologies Market Report also finds that wind energy prices are at an all-time low and are competitive with wholesale power prices and traditional power sources across many areas of the United States. Additionally, a new trend identified by the 2014 Wind Technologies Market Report shows utility-scale turbines with larger rotors designed for lower wind speeds have been increasingly deployed across the country in 2014. The findings also suggest that the success of the U.S. wind industry has had a ripple effect on the American economy, supporting 73,000 jobs related to development, siting, manufacturing, transportation, and other industries.

  12. Wind shear coefficients and their effect on energy production

    International Nuclear Information System (INIS)

    Rehman, Shafiqur; Al-Abbadi, Naif M.

    2005-01-01

    This paper provides realistic values of wind shear coefficients calculated using measured values of wind speed at 20, 30 and 40 m above the ground for the first time in Saudi Arabia in particular and, to the best of the authors' knowledge, in the Gulf region in general. The paper also presents air density values calculated using the measured air temperature and surface pressure and the effects of wind shear factor on energy production from wind machines of different sizes. The measured data used in the study covered a period of almost three years between June 17, 1995 and December 1998. An overall mean value of wind shear coefficient of 0.194 can be used with confidence to calculate the wind speed at different heights if measured values are known at one height. The study showed that the wind shear coefficient is significantly influenced by seasonal and diurnal changes. Hence, for precise estimations of wind speed at a height, both monthly or seasonal and hourly or night time and day time average values of wind shear coefficient must be used. It is suggested that the wind shear coefficients must be calculated either (i) using long term average values of wind speed at different heights or (ii) using those half hourly mean values of wind speed for which the wind shear coefficient lies in the range 0 and 0.51. The air density, calculated using measured temperature and pressure was found to be 1.18 kg/m 3 . The air density values were also found to vary with the season of the year and hour of the day, and hence, care must be taken when precise calculations are to be made. The air density values, as shown in this paper, have no significant variation with height. The energy production analysis showed that the actual wind shear coefficient presented in this paper produced 6% more energy compared to that obtained using the 1/7 power law. Similarly, higher plant capacity factors were obtained with the wind shear factor of 0.194 compared to that with 0.143

  13. China Wind Power Outlook 2010

    International Nuclear Information System (INIS)

    Junfeng, Li; Pengfei, Shi; Hu, Gao

    2010-10-01

    China's wind power can reach 230 GW of installed capacity by 2020, which is equal to 13 times the current capacity of the Three Gorges Dam; its annual electricity output of 464.9 TWh could replace 200 coal fire power plants. In 2009, China led the world in newly installed wind-energy devices, reaching a capacity of 13.8 GW (10,129 turbines) - a rate of one new turbine every hour. In terms of overall capacity, China ranks second, at 25.8 GW. The report projects that by 2020, China's total wind power capacity will reach at least 150GW, possibly up to 230GW, which, if realized, could cut 410 million tons of CO2 emission, or 150 million tons of coal consumption. Compared to multinationals, many Chinese companies are young and lack a strong basis for research and development. Despite a renewable energy policy requiring grid companies to purchase all electricity from wind farms, access to wind power for the grid is frequently lagging behind an unstable, out-dated grid infrastructure. There is also the problem of a lack of incentives and penalties for grid companies, and slow progress in more wind energy technologies.

  14. China Wind Power Outlook 2010

    Energy Technology Data Exchange (ETDEWEB)

    Junfeng, Li; Pengfei, Shi; Hu, Gao [Chinese Renewable Energy Industries Association CREIA, Beijing (China)

    2010-10-15

    China's wind power can reach 230 GW of installed capacity by 2020, which is equal to 13 times the current capacity of the Three Gorges Dam; its annual electricity output of 464.9 TWh could replace 200 coal fire power plants. In 2009, China led the world in newly installed wind-energy devices, reaching a capacity of 13.8 GW (10,129 turbines) - a rate of one new turbine every hour. In terms of overall capacity, China ranks second, at 25.8 GW. The report projects that by 2020, China's total wind power capacity will reach at least 150GW, possibly up to 230GW, which, if realized, could cut 410 million tons of CO2 emission, or 150 million tons of coal consumption. Compared to multinationals, many Chinese companies are young and lack a strong basis for research and development. Despite a renewable energy policy requiring grid companies to purchase all electricity from wind farms, access to wind power for the grid is frequently lagging behind an unstable, out-dated grid infrastructure. There is also the problem of a lack of incentives and penalties for grid companies, and slow progress in more wind energy technologies.

  15. Flow interaction of diffuser augmented wind turbines

    Science.gov (United States)

    Göltenbott, U.; Ohya, Y.; Yoshida, S.; Jamieson, P.

    2016-09-01

    Up-scaling of wind turbines has been a major trend in order to reduce the cost of energy generation from the wind. Recent studies however show that for a given technology, the cost always rises with upscaling, notably due to the increased mass of the system. To reach capacities beyond 10 MW, multi-rotor systems (MRS) have promising advantages. On the other hand, diffuser augmented wind turbines (DAWTs) can significantly increase the performance of the rotor. Up to now, diffuser augmentation has only been applied to single small wind turbines. In the present research, DAWTs are used in a multi-rotor system. In wind tunnel experiments, the aerodynamics of two and three DAWTs, spaced in close vicinity in the same plane normal to a uniform flow, have been analysed. Power increases of up to 5% and 9% for the two and three rotor configurations are respectively achieved in comparison to a stand-alone turbine. The physical dynamics of the flows are analysed on the basis of the results obtained with a stand-alone turbine.

  16. Wind energy - The facts. Vol. 3: Industry and employment

    International Nuclear Information System (INIS)

    Jacobsen, Henrik

    2004-01-01

    Since the last Wind Energy - The Facts report published in 1999, the European wind energy industry has made significant progress. There are several ways of monitoring this progress, such as measuring electricity output in MW or kW hours. However, the usual method is to use a measurement of installed capacity, so this chapter demonstrates national markets and their growth in terms of MW capacity installed. Wind experienced a surge of growth in California in the 1980s thanks to a combination of state and federal energy and investment tax credits. From 1980 to 1995, around 1,700 MW of wind capacity was installed and, although there were some turbines of poorer quality, the boom period provided a major export market for European manufacturers, and did much to establish the credibility of the industry. Since then, Europe has turned the tables and consolidated its position as the global market leader. Within Europe, certain countries are particularly strong: the top five in terms of installed capacity being Germany, Spain, Denmark, The Netherlands and Italy. (au)

  17. Wind Generator & Biomass No-draft Gasification Hybrid

    Science.gov (United States)

    Hein, Matthew R.

    or an anticipated 1,766 tonnes of biomass. The levelized cost of electricity (COE) ranged from 65.6/GJ (236/MWh) to 208.9/GJ (752/MWh) with the price of generated electricity being most sensitive to the biomass feedstock cost and the levelized COE being significantly impacted by the high cost of compressed storage. The resulting electrical energy available to the grid has an approximate wholesale value of 13.5/GJ (48.6/MWh) based on year 2007 Midwest Reliability Organization (MRO) regional averages [1]. Therefore, the annual average wholesale value of the generated electricity is lower than the cost to produce the electricity. A significant deficiency of this simple comparison is that it does not consider the fact that the proposed wind and biomass gasification hybrid is now a dispatchable source of electricity with a near net-zero lifetime carbon footprint and storage capability. Dispatchable power can profit from market fluctuations that dramatically increase the value of available electricity so that in addition to providing base power the hybrid facility can store energy during low price points in the market and generate at full capacity during points of high prices. Any financial incentive for energy generated from reduced carbon technologies will also increase the value of electricity produced. Also, alternative operational parameters that do not require the costly storage of synthetic natural gas (SNG) will likely result in a more competitive levelized COE. Additional benefits of the system are in the flexibility of transporting wind and biomass energy produced as well as the end use of the energy. Instead of high-voltage electrical transmission a gas line can now be used to transport energy produced by the wind. Syngas can also be further processed into higher energy density liquefied syngas. Liquid fuels can then be transported via commercial freight on existing road infrastructure.

  18. Wind Farms: Modeling and Control

    DEFF Research Database (Denmark)

    Soleimanzadeh, Maryam

    2012-01-01

    is minimized. The controller is practically feasible. Yet, the results on load reduction in this approach are not very significant. In the second strategy, the wind farm control problem has been divided into below rated and above rated wind speed conditions. In the above rated wind speed pitch angle and power....... Distributed controller design commences with formulating the problem, where a structured matrix approach has been put in to practice. Afterwards, an H2 control problem is implemented to obtain the controller dynamics for a wind farm such that the structural loads on wind turbines are minimized.......The primary purpose of this work is to develop control algorithms for wind farms to optimize the power production and augment the lifetime of wind turbines in wind farms. In this regard, a dynamical model for wind farms was required to be the basis of the controller design. In the first stage...

  19. Applications of wind turbines in Canada

    Energy Technology Data Exchange (ETDEWEB)

    South, P; Rangi, R S; Templin, R J

    1977-01-01

    There are differing views as to the role of wind energy in the overall requirements. While some people tend to ignore it there are others who think that wind could be a major source of energy. In this paper an effort has been made to determine the wind power potential and also the amount that is economically usable. From the existing wind data a map showing the distribution of wind power density has been prepared. This map shows that the maritime provinces and the west coast of Hudson Bay have high wind power potential. These figures show that the wind power potential is of the same order as the installed electrical generating capacity in Canada (58 x 10/sup 6/kW in 1974). However, in order to determine how much of this power is usable the economics of adding wind energy to an existing system must be considered. A computer program has been developed at NRC to analyze the coupling of wind turbines with mixed power systems. Using this program and making certain assumptions about the cost of WECS and fuel the maximum amount of usable wind energy has been calculated. It is shown that if an installed capacity of 420 megawatts of wind power was added to the existing diesel capacity it would result in a savings of 60,000,000 gallons of fuel oil per year. On the other hand it is shown that if the existing installed hydro electric capacity of 37,000 megawatts (1976) was increased to 60,000 megawatts without increasing the average water flow rate, an installed capacity of 60,000 megawatts of wind power could be added to the system. This would result in an average of 14,000 megawatts from the wind. Using projected manufacturing costs for vertical axis wind turbines, the average cost of wind energy could be in the range of 1.4 cents/kwh to 3.6 cents/kwh.

  20. Cost of wind energy: comparing distant wind resources to local resources in the midwestern United States.

    Science.gov (United States)

    Hoppock, David C; Patiño-Echeverri, Dalia

    2010-11-15

    The best wind sites in the United States are often located far from electricity demand centers and lack transmission access. Local sites that have lower quality wind resources but do not require as much power transmission capacity are an alternative to distant wind resources. In this paper, we explore the trade-offs between developing new wind generation at local sites and installing wind farms at remote sites. We first examine the general relationship between the high capital costs required for local wind development and the relatively lower capital costs required to install a wind farm capable of generating the same electrical output at a remote site,with the results representing the maximum amount an investor should be willing to pay for transmission access. We suggest that this analysis can be used as a first step in comparing potential wind resources to meet a state renewable portfolio standard (RPS). To illustrate, we compare the cost of local wind (∼50 km from the load) to the cost of distant wind requiring new transmission (∼550-750 km from the load) to meet the Illinois RPS. We find that local, lower capacity factor wind sites are the lowest cost option for meeting the Illinois RPS if new long distance transmission is required to access distant, higher capacity factor wind resources. If higher capacity wind sites can be connected to the existing grid at minimal cost, in many cases they will have lower costs.

  1. Cooperative wind turbine control for maximizing wind farm power using sequential convex programming

    International Nuclear Information System (INIS)

    Park, Jinkyoo; Law, Kincho H.

    2015-01-01

    Highlights: • The continuous wake model describes well the wake profile behind a wind turbine. • The wind farm power function describes well the power production of a wind farm. • Cooperative control increases the wind farm power efficiency by 7.3% in average. • SCP can be employed to efficiently optimize the control actions of wind turbines. - Abstract: This paper describes the use of a cooperative wind farm control approach to improve the power production of a wind farm. The power production by a downstream wind turbine can decrease significantly due to reduced wind speed caused by the upstream wind turbines, thereby lowering the overall wind farm power production efficiency. In spite of the interactions among the wind turbines, the conventional (greedy) wind turbine control strategy tries to maximize the power of each individual wind turbine by controlling its yaw angle, its blade pitch angle and its generator torque. To maximize the overall wind farm power production while taking the wake interference into account, this study employs a cooperative control strategy. We first derive the wind farm power as a differentiable function of the control actions for the wind turbines in a wind farm. The wind farm power function is then maximized using sequential convex programming (SCP) to determine the optimum coordinated control actions for the wind turbines. Using an example wind farm site and available wind data, we show how the cooperative control strategy improves the power production of the wind farm

  2. Wind energy power plants (wind farms) review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, K B; McKeary, M [McMaster Univ., Hamilton, ON (Canada). McMaster Inst. of Environment and Health

    2010-07-01

    Global wind power capacity has increased by an average cumulative rate of over 30 percent over the past 10 years. Although wind energy emits no air pollutants and facilities can often share spaces with other activities, public opposition to wind power development is an ongoing cause of concern. Development at the local level in Ontario has been met with fierce opposition on the basis of health concerns, aesthetic values, potential environmental impacts, and economic risks. This report was prepared for the Town of Wasaga Beach, and examined some of the controversy surrounding wind power developments through a review of evidence found in the scientific literature. The impacts of wind power developments related to noise, shadow flicker, avian mortality, bats, and real estate values were evaluated. The study included details of interviews conducted with individuals from Ontario localities where wind farms were located. 77 refs., 1 tab., 1 fig., 2 appendices.

  3. Optimizing transmission from distant wind farms

    International Nuclear Information System (INIS)

    Pattanariyankool, Sompop; Lave, Lester B.

    2010-01-01

    We explore the optimal size of the transmission line from distant wind farms, modeling the tradeoff between transmission cost and benefit from delivered wind power. We also examine the benefit of connecting a second wind farm, requiring additional transmission, in order to increase output smoothness. Since a wind farm has a low capacity factor, the transmission line would not be heavily loaded, on average; depending on the time profile of generation, for wind farms with capacity factor of 29-34%, profit is maximized for a line that is about 3/4 of the nameplate capacity of the wind farm. Although wind generation is inexpensive at a good site, transmitting wind power over 1600 km (about the distance from Wyoming to Los Angeles) doubles the delivered cost of power. As the price for power rises, the optimal capacity of transmission increases. Connecting wind farms lowers delivered cost when the wind farms are close, despite the high correlation of output over time. Imposing a penalty for failing to deliver minimum contracted supply leads to connecting more distant wind farms.

  4. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  5. Wind energy

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2003-01-01

    Wind is not only free, it is inexhaustible. Wind energy has come a very long way since the prototypes of just 20 years ago. today's wind turbines are state-of-the-art technology - modular and quick to install anywhere where there is sufficient wind potential to provide secure, centralised or distributed generation. It is a global phenomenon, the world's fastest growing energy sector, a clean and effective modern technology that completely avoids pollution and thus reducing the 'green house' effect. (Original)

  6. Wind power forecast

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Rui [Rede Electrica Nacional (REN), S.A., Lisboa (Portugal). Dept. Systems and Development System Operator; Trancoso, Ana Rosa; Delgado Domingos, Jose [Univ. Tecnica de Lisboa (Portugal). Seccao de Ambiente e Energia

    2012-07-01

    Accurate wind power forecast are needed to reduce integration costs in the electric grid caused by wind inherent variability. Currently, Portugal has a significant wind power penetration level and consequently the need to have reliable wind power forecasts at different temporal scales, including localized events such as ramps. This paper provides an overview of the methodologies used by REN to forecast wind power at national level, based on statistical and probabilistic combinations of NWP and measured data with the aim of improving accuracy of pure NWP. Results show that significant improvement can be achieved with statistical combination with persistence in the short-term and with probabilistic combination in the medium-term. NWP are also able to detect ramp events with 3 day notice to the operational planning. (orig.)

  7. Intraday Trading of Wind Energy

    DEFF Research Database (Denmark)

    Skajaa, Anders; Edlund, Kristian; Morales González, Juan Miguel

    2015-01-01

    In this paper, we tackle the problem of a wind power producer participating in a short-term electricity market that allows for the continuous, but potentially illiquid, intraday trading of energy. Considering the realistic case of a wind farm operating in the western Danish price area of Nord Pool......, we build a simple but effective algorithm for the wind power producer to fully benefit from the Elbas intraday market. We then investigate the sensitivity of the obtained benefits to the maximum volume of energy the wind power producer is willing to trade in the intraday market, the ultimate aim...... of the trade (either to decrease energy imbalances or to increase profits) and to the installed capacity of the wind farm. Our numerical results reveal that the wind power producer can substantially increase his revenues by partaking in the intraday market but with diminishing returns to scale—a result that we...

  8. Large-scale wind power in New Brunswick : a regional scenario study towards 2025

    International Nuclear Information System (INIS)

    2008-08-01

    This paper discussed the large-scale development of wind power in New Brunswick and evaluated Danish experiences with wind development as a template for developing wind resources in the Maritimes region. The study showed that New Brunswick and the Maritimes region have good wind resources, and that the province will gain significant economic benefits from deploying between 5500 and 7500 MW of wind power capacity by 2025. Wind power development will contribute to the security of supply in the region and reduce air pollution. Carbon regulation and renewable portfolio standards will improve the competitiveness of wind power. Electricity generated by wind power plants in the Maritimes can be sold to other provinces in Canada, as well as to the heavily populated New England region of the United States. A high level of cooperation between markets in the Maritimes area and neighbouring New England and Quebec systems will be required in addition to load flow analyses of electricity systems. Denmark's experiences with developing wind power indicate that existing market designs must be restructured to allow for higher levels of competition. A strong system operator is required to integrate wind power into the system. It was concluded that strong political leadership is required to ensure the sustainable development of the region. 5 refs., 4 tabs., 9 figs

  9. Power Loss Analysis for Wind Power Grid Integration Based on Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Ahmed Al Ameri

    2017-04-01

    Full Text Available The growth of electrical demand increases the need of renewable energy sources, such as wind energy, to meet that need. Electrical power losses are an important factor when wind farm location and size are selected. The capitalized cost of constant power losses during the life of a wind farm will continue to high levels. During the operation period, a method to determine if the losses meet the requirements of the design is significantly needed. This article presents a Simulink simulation of wind farm integration into the grid; the aim is to achieve a better understanding of wind variation impact on grid losses. The real power losses are set as a function of the annual variation, considering a Weibull distribution. An analytical method has been used to select the size and placement of a wind farm, taking into account active power loss reduction. It proposes a fast linear model estimation to find the optimal capacity of a wind farm based on DC power flow and graph theory. The results show that the analytical approach is capable of predicting the optimal size and location of wind turbines. Furthermore, it revealed that the annual variation of wind speed could have a strong effect on real power loss calculations. In addition to helping to improve utility efficiency, the proposed method can develop specific designs to speeding up integration of wind farms into grids.

  10. Technology Roadmaps: Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Wind energy is perhaps the most advanced of the 'new' renewable energy technologies, but there is still much work to be done. This roadmap identifies the key tasks that must be undertaken in order to achieve a vision of over 2 000 GW of wind energy capacity by 2050. Governments, industry, research institutions and the wider energy sector will need to work together to achieve this goal. Best technology and policy practice must be identified and exchanged with emerging economy partners, to enable the most cost-effective and beneficial development.

  11. Advanced Performance Hydraulic Wind Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  12. Valorization of potentials of wind energy in Montenegro

    Directory of Open Access Journals (Sweden)

    Vujadinović Radoje V.

    2017-01-01

    Full Text Available Investments in energy sector are usually long term processes both in construction and exploitation phase, and therefore require many conditions to be satisfied, mostly from legislative and technical sector. While the legislative can change in accordance with economy activities in the country, technical data (on-site measurements which are the main base for energy facility design, need to be reliable as much as possible. Wind energy has a significant global potential which exceeds the world’s electrical energy consumptions. This paper presents the estimation of wind energy potentials in Montenegro, based on all previous available studies in this field. The wind energy potential in Montenegro is based on a combination of 3-D numerical simulations of wind fields on the entire territory, and comprehensive on-site measurements. The preliminary studies show that there is a potential of areas with high and mean values of a capacity factor about 400 MW, and annual production of 900 GWh of electric energy. The share of wind parks in the total installed power in Montenegro is planned to be about 8%, while an adequate ratio of wind parks in an annual production from renewable sources (large hydro power plants are included here is estimated to be 11.4%. The paper presents the current state of art in the field of building of wind parks in Montenegro. A particular attention was paid to the legislation framework and strategic documents in the energy area in Montenegro.

  13. Effects of distributing wind energy generation over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Giebel, G [Risoe National Lab., Wind Energy and Atmospheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    Using data from 60 meteorological stations distributed all over Europe in conjunction with the National Grid Model (NGM) from the Rutherford Appleton Laboratory, the effects of the large-scale distribution of wind energy generation are studied. In some regions of Europe, wind energy already covers a significant proportion of the electricity demand. But the intermittence of the wind resource is always a limiting factor when penetration levels are high. Studies for single countries have shown that distributing the generation over a large area reduces the variability of the output and hence makes wind energy more appealing to utilities, since the stability requirement of the network are easier to fulfil. The data are analysed in terms of absolute highs and lows, temporal and spatial correlations. To assess the financial benefits, the NGM is used to evaluate the match of electricity demand and generation as well as the possibel savings of fossil fuel in an electricity grid incorporating various capacities of wind energy generation. To assess the value of wind energy on a trans-national scale, the European plant mix is modelled, and the NGM is used to simulate the scheduling of these plants in the presence of different penetrations of wind energy. (au) EU-JOULE-3. 11 refs.

  14. Wind energy R and D at PG and E

    International Nuclear Information System (INIS)

    Steeley, W.J.

    1992-01-01

    PG and E's Department of Research and Development (R and D) is involved in several wind energy projects. The performance of the wind turbines in Altamont Pass, Solano County, and Pacheco Pass has been monitored since 1981. As of December 1991, there is a total of about 825 MW of wind power in PG and E's service territory. The wind turbines in these areas produced about 1,160,000,000 kWh in 1990, which corresponds to an overall capacity factor of 16%. This is about 1.5% of PG and E's system load. PG and E is planning to begin an advanced wind power plant demonstration in 1992. This paper reports that the project objectives are to evaluate the technical and economic characteristics of advanced wind energy plant designs; to establish construction, operation, and maintenance requirements and practices; and to evaluate emerging machines that show potential for significant advances over present technology. U.S. Windpower, the Electric Power Research Institute, Niagara Mohawk Power, and PG and E are involved in a joint program to develop a variable speed advanced wind turbine. PG and E is providing development funding and reviewing the design from an operation and maintenance perspective

  15. A Fast Calculation Method for Analyzing the Effect of Wind Generation on ATC

    Directory of Open Access Journals (Sweden)

    M.A Armin

    2015-12-01

    Full Text Available Wind energy penetration in power system has been increased very fast and large amount of capitals invested for wind farms all around the world. Meanwhile, in power systems with wind turbine generators (WTGs, the value of Available transfer capability (ATC is influenced by the probabilistic nature of the wind power. The Mont Carlo Simulation (MCS is the most common method to model the uncertainty of WTG. However, the MCS method suffers from low convergence rate. To overcome this shortcoming, the proposed technique in this paper uses a new formulation for solving ATC problem analytically. This lowers the computational burden of the ATC computation and hence results in increased convergence rate of the MCS. Using this fast technique to evaluate the ATC, wind generation and load correlation is required to get into modeling. A numerical method is presented to consider load and wind correlation. The proposed method is tested on the modified IEEE 118 bus to analyze the impacts of the WTGs on the ATC. The obtained results show that wind generation capacity and its correlation with system load has significant impacts on the network transfer capability. In other words, ATC probability distribution is sensitive to the wind generation capacity.

  16. A quantitative correlational investigation of the definition of key decision variables used for the determination of wind energy systems' feasibility

    Science.gov (United States)

    Kelly, Kathleen M.

    Several factors are critical in determining if a wind farm has a high probability of success. These factors include wind energy potential or wind class, sales price, cost of the wind energy generated, market for selling the wind, capacity factor or efficiency of the turbines, capital investment cost, debt and financing, and governmental factors such as taxes and incentives. This research studied the critical factors of thirty-three land based wind farms in the United States with over 20 mega-watts (MW) of capacity that have become operational since 1999. The goal was to develop a simple yet effective decision model using the critical factors to predict an internal rate of return (IRR) and the impact of having a tax credit to supplement the revenue stream. The study found that there are five critical factors that are significantly correlated with the internal rate of return (IRR) of a wind farm project. The critical factors are wind potential or wind class, cost of the wind energy generated, capacity factor or efficiency of the wind turbines, cost of capital investment, and the existence of a federal production tax credit (PTC). The decision model was built using actual wind farm data and industry standards whereby a score from zero to one hundred was coded for each of values except for the production tax credit. Since all the projects qualified for the production tax credit prior to their start up, it was no longer a variable. However, without the presence of this tax credit, the data imply that the projects would not be profitable within the first ten to fifteen years of operation. The scores for each of the categories were totaled and regressed against a calculated internal rate of return. There was ninety-seven percent correlation which was supported by simulation analysis. While this model is not intended to supplant rigorous accounting and financial study, it will help quickly determine if a site has potential and save many hours of analytical work.

  17. The future of wind energy

    International Nuclear Information System (INIS)

    Koughnett, K. Van

    2003-01-01

    This presentation provided a brief history of wind power through the ages, and culminated with a look at installed capacity in 2002. Vision Quest has been in the wind power business since 1980, and the first turbines were installed in 1997. The company operates 40 per cent of Canada's wind capacity. Vision Quest became part of TransAlta in December 2002, the largest non-regulated electric generation and marketing company in Canada. The reasons for investing in wind power were briefly reviewed. The author then examined the physics of wind power and wind energy resources. The key resource issues were identified as being resource availability and constancy, which is similar to oil and gas exploration. Utility scale turbines were described. The pros and cons of larger turbines were compared, and it was shown that larger turbines offer better economics, a higher capacity factor and fewer turbines to permit. Manufacturers are focused on larger machines for offshore. The various permitting authorities and their areas of responsibility were listed, from municipal, provincial and federal levels. The key drivers are: wind speed, installed cost of equipment, revenue, operating expense, and financial expense. Project risks include: power purchase agreements, technology risk, financial risk, construction risk, regulation, operating risks, dependence on third parties, and reliance on advisors. Some of the challenges facing Vision Quest are being early, permitting, electric grid interconnection, openness of markets, market supply, demand forces, and getting capital costs down. tabs., figs

  18. Wind Structure and Wind Loading

    DEFF Research Database (Denmark)

    Brorsen, Michael

    The purpose of this note is to provide a short description of wind, i.e. of the flow in the atmosphere of the Earth and the loading caused by wind on structures. The description comprises: causes to the generation of windhe interaction between wind and the surface of the Earthhe stochastic nature...

  19. Wind power

    International Nuclear Information System (INIS)

    Gipe, P.

    2007-01-01

    This book is a translation of the edition published in the USA under the title of ''wind power: renewable energy for home, farm and business''. In the wake of mass blackouts and energy crises, wind power remains a largely untapped resource of renewable energy. It is a booming worldwide industry whose technology, under the collective wing of aficionados like author Paul Gipe, is coming of age. Wind Power guides us through the emergent, sometimes daunting discourse on wind technology, giving frank explanations of how to use wind technology wisely and sound advice on how to avoid common mistakes. Since the mid-1970's, Paul Gipe has played a part in nearly every aspect of wind energy development from installing small turbines to promoting wind energy worldwide. As an American proponent of renewable energy, Gipe has earned the acclaim and respect of European energy specialists for years, but his arguments have often fallen on deaf ears at home. Today, the topic of wind power is cropping up everywhere from the beaches of Cape Cod to the Oregon-Washington border, and one wind turbine is capable of producing enough electricity per year to run 200 average American households. Now, Paul Gipe is back to shed light on this increasingly important energy source with a revised edition of Wind Power. Over the course of his career, Paul Gipe has been a proponent, participant, observer, and critic of the wind industry. His experience with wind has given rise to two previous books on the subject, Wind Energy Basics and Wind Power for Home and Business, which have sold over 50,000 copies. Wind Power for Home and Business has become a staple for both homeowners and professionals interested in the subject, and now, with energy prices soaring, interest in wind power is hitting an all-time high. With chapters on output and economics, Wind Power discloses how much you can expect from each method of wind technology, both in terms of energy and financial savings. The book updated models

  20. SimWIND: A geospatial infrastructure model for optimizing wind power generation and transmission

    International Nuclear Information System (INIS)

    Phillips, Benjamin R.; Middleton, Richard S.

    2012-01-01

    Wind is a clean, enduring energy resource with the capacity to satisfy 20% or more of U.S. electricity demand. Presently, wind potential is limited by a paucity of electrical transmission lines and/or capacity between promising wind resources and primary load centers. We present the model SimWIND to address this shortfall. SimWIND is an integrated optimization model for the geospatial arrangement and cost minimization of wind-power generation–transmission–delivery infrastructure. Given a set of possible wind-farm sites, the model simultaneously determines (1) where and how much power to generate and (2) where to build new transmission infrastructure and with what capacity in order to minimize the cost for delivering a targeted amount of power to load. Costs and routing of transmission lines consider geographic and social constraints as well as electricity losses. We apply our model to the Electric Reliability Council of Texas (ERCOT) Interconnection, considering scenarios that deliver up to 20 GW of new wind power. We show that SimWIND could potentially reduce ERCOT's projected ∼$5B transmission network upgrade line length and associated costs by 50%. These results suggest that SimWIND's coupled generation–transmission–delivery modeling approach could play a critical role in enhancing planning efforts and reducing costs for wind energy integration. - Highlights: ► Wind power is limited by transmission capacity between resources and demands. ► SimWIND is a coupled generation-transmission-delivery model for wind infrastructure. ► The model minimizes costs considering realistic transmission routing and networking. ► We show that SimWIND could save 50% of $5B costs for expanding the Texas grid. ► Results suggest SimWIND may play a critical role in enhancings wind planning efforts.

  1. An Appropriate Wind Model for Wind Integrated Power Systems Reliability Evaluation Considering Wind Speed Correlations

    Directory of Open Access Journals (Sweden)

    Rajesh Karki

    2013-02-01

    Full Text Available Adverse environmental impacts of carbon emissions are causing increasing concerns to the general public throughout the world. Electric energy generation from conventional energy sources is considered to be a major contributor to these harmful emissions. High emphasis is therefore being given to green alternatives of energy, such as wind and solar. Wind energy is being perceived as a promising alternative. This source of energy technology and its applications have undergone significant research and development over the past decade. As a result, many modern power systems include a significant portion of power generation from wind energy sources. The impact of wind generation on the overall system performance increases substantially as wind penetration in power systems continues to increase to relatively high levels. It becomes increasingly important to accurately model the wind behavior, the interaction with other wind sources and conventional sources, and incorporate the characteristics of the energy demand in order to carry out a realistic evaluation of system reliability. Power systems with high wind penetrations are often connected to multiple wind farms at different geographic locations. Wind speed correlations between the different wind farms largely affect the total wind power generation characteristics of such systems, and therefore should be an important parameter in the wind modeling process. This paper evaluates the effect of the correlation between multiple wind farms on the adequacy indices of wind-integrated systems. The paper also proposes a simple and appropriate probabilistic analytical model that incorporates wind correlations, and can be used for adequacy evaluation of multiple wind-integrated systems.

  2. Offshore Wind Power

    DEFF Research Database (Denmark)

    Negra, Nicola Barberis

    reliability models, and a new model that accounts for all relevant factors that influence the evaluations is developed. According to this representation, some simulations are performed and both the points of view of the wind farm owner and the system operator are evaluated and compared. A sequential Monte...... Carlo simulation is used for these calculations: this method, in spite of an extended computation time, has shown flexibility in performing reliability studies, especially in case of wind generation, and a broad range of results which can be evaluated. The modelling is then extended to the entire power......The aim of the project is to investigate the influence of wind farms on the reliability of power systems. This task is particularly important for large offshore wind farms, because failure of a large wind farm might have significant influence on the balance of the power system, and because offshore...

  3. Cumulative effects of wind turbines. Volume 3: Report on results of consultations on cumulative effects of wind turbines on birds

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This report gives details of the consultations held in developing the consensus approach taken in assessing the cumulative effects of wind turbines. Contributions on bird issues, and views of stakeholders, the Countryside Council for Wales, electric utilities, Scottish Natural Heritage, and the National Wind Power Association are reported. The scoping of key species groups, where cumulative effects might be expected, consideration of other developments, the significance of any adverse effects, mitigation, regional capacity assessments, and predictive models are discussed. Topics considered at two stakeholder workshops are outlined in the appendices.

  4. Why Are We Talking About Capacity Markets?

    Energy Technology Data Exchange (ETDEWEB)

    Frew, Bethany

    2017-06-28

    Revenue sufficiency or 'missing money' concerns in wholesale electricity markets are important because they could lead to resource (or capacity) adequacy shortfalls. Capacity markets or other capacity-based payments are among the proposed solutions to remedy these challenges. This presentation provides a high-level overview of the importance of and process for ensuring resource adequacy, and then discusses considerations for capacity markets under futures with high penetrations of variable resources such as wind and solar.

  5. Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy

    Science.gov (United States)

    Magee, T. M.; Clement, M. A.; Zagona, E. A.

    2012-12-01

    Previous studies have evaluated the benefits of utilizing the flexibility of hydropower systems to balance the variability and uncertainty of wind generation. However, previous hydropower and wind coordination studies have simplified non-power constraints on reservoir systems. For example, some studies have only included hydropower constraints on minimum and maximum storage volumes and minimum and maximum plant discharges. The methodology presented here utilizes the pre-emptive linear goal programming optimization solver in RiverWare to model hydropower operations with a set of prioritized policy constraints and objectives based on realistic policies that govern the operation of actual hydropower systems, including licensing constraints, environmental constraints, water management and power objectives. This approach accounts for the fact that not all policy constraints are of equal importance. For example target environmental flow levels may not be satisfied if it would require violating license minimum or maximum storages (pool elevations), but environmental flow constraints will be satisfied before optimizing power generation. Additionally, this work not only models the economic value of energy from the combined hydropower and wind system, it also captures the economic value of ancillary services provided by the hydropower resources. It is recognized that the increased variability and uncertainty inherent with increased wind penetration levels requires an increase in ancillary services. In regions with liberalized markets for ancillary services, a significant portion of hydropower revenue can result from providing ancillary services. Thus, ancillary services should be accounted for when determining the total value of a hydropower system integrated with wind generation. This research shows that the end value of integrated hydropower and wind generation is dependent on a number of factors that can vary by location. Wind factors include wind penetration level

  6. Wind turbines and infrasound

    International Nuclear Information System (INIS)

    Howe, B.

    2006-01-01

    This paper provided the results of a study conducted to assess the impacts of wind farm-induced infrasound on nearby residences and human populations. Infrasound occurs at frequencies below those considered as detectable by human hearing. Infrasonic levels caused by wind turbines are often similar to ambient levels of 85 dBG or lower that are caused by wind in the natural environment. This study examined the levels at which infrasound poses a threat to human health or can be considered as an annoyance. The study examined levels of infrasound caused by various types of wind turbines, and evaluated acoustic phenomena and characteristics associated with wind turbines. Results of the study suggested that infrasound near modern wind turbines is typically not perceptible to humans through either auditory or non-auditory mechanisms. However, wind turbines often create an audible broadband noise whose amplitude can be modulated at low frequencies. A review of both Canadian and international studies concluded that infrasound generated by wind turbines should not significantly impact nearby residences or human populations. 17 refs., 2 tabs., 4 figs

  7. Wind energy integration in the Spanish electrical system

    Energy Technology Data Exchange (ETDEWEB)

    Alonso Garcia, Olivia; Torre Rodriguez, Miguel de la; Prieto Garcia, Eduardo; Martinez Villanueva, Sergio; Rodriguez Garcia, Juan Manuel [Red Electrica de Espana s.a. (Spain)

    2009-07-01

    Integration of significant amounts of wind power in electrical systems represents a challenge for TSOs, due to the technological and distributed particularities of wind generators and to the variability of its primary resource. The proposed paper describes the implications of massive wind power integration in the Spanish system in terms of technical requirements and operation measures. Concerning technical specifications for wind producers, the former criteria are nowadays being reviewed and the new requirements under discussion right now (grid code) are here introduced. Stability studies for the horizon 2016 (about 29 GW of wind power installed) and beyond have been performed and the obtrained results for the considered scenarios have led to a series of necessary criteria which relate to the next topics: - increased fault ride-though capabilities, - voltage maintenance and support in static and dynamic, - restoration of primary regulation reserves to the system, - active power and ramp controlling. Innovative solutions for wind power control, already operative in Spain, such as the dedicated control centre for renewable energies and other special producers (CECRE) will still provide the necessary tools and infrastructure to optimise integration limits in real time, maximizing renewable energy production and assuring security, as well as the communication with the renewable control centres. Regarding system balancing, while currently being able to appropriately deliver demand coverage, the main concern is the dispacement by wind power of conventional generation that will be required shortly afterwards to cover peak demand. Further concerns are the need to keep appropriate sizing of downward reserves during off-peak hours. This is normally dealt with market mechanisms leading combined cycle units to daily shut-down and start-up. When wind forecast errors occur and wind production is higher than expected, the system may run out of downward reserve and combined cycle

  8. Wind energy integration in the Spanish electrical system

    International Nuclear Information System (INIS)

    Alonso Garcia, Olivia; Torre Rodriguez, Miguel de la; Prieto Garcia, Eduardo; Martinez Villanueva, Sergio; Rodriguez Garcia, Juan Manuel

    2009-01-01

    Integration of significant amounts of wind power in electrical systems represents a challenge for TSOs, due to the technological and distributed particularities of wind generators and to the variability of its primary resource. The proposed paper describes the implications of massive wind power integration in the Spanish system in terms of technical requirements and operation measures. Concerning technical specifications for wind producers, the former criteria are nowadays being reviewed and the new requirements under discussion right now (grid code) are here introduced. Stability studies for the horizon 2016 (about 29 GW of wind power installed) and beyond have been performed and the obtrained results for the considered scenarios have led to a series of necessary criteria which relate to the next topics: - increased fault ride-though capabilities, - voltage maintenance and support in static and dynamic, - restoration of primary regulation reserves to the system, - active power and ramp controlling. Innovative solutions for wind power control, already operative in Spain, such as the dedicated control centre for renewable energies and other special producers (CECRE) will still provide the necessary tools and infrastructure to optimise integration limits in real time, maximizing renewable energy production and assuring security, as well as the communication with the renewable control centres. Regarding system balancing, while currently being able to appropriately deliver demand coverage, the main concern is the dispacement by wind power of conventional generation that will be required shortly afterwards to cover peak demand. Further concerns are the need to keep appropriate sizing of downward reserves during off-peak hours. This is normally dealt with market mechanisms leading combined cycle units to daily shut-down and start-up. When wind forecast errors occur and wind production is higher than expected, the system may run out of downward reserve and combined cycle

  9. Optimal wind energy penetration in power systems: An approach based on spatial distribution of wind speed

    International Nuclear Information System (INIS)

    Zolfaghari, Saeed; Riahy, Gholam H.; Abedi, Mehrdad; Golshannavaz, Sajjad

    2016-01-01

    Highlights: • Chronological wind speeds at distinct locations of the wind farm are not the same. • Spatial distribution of wind speed affects wind farm’s output power expectation. • Neglecting wind speed’s spatial doubt leads to mistake in wind energy penetration. • Scenario-based method can be used for effective wind capacity penetration level. - Abstract: Contributing in power system expansions, the present study establishes an efficient scheme for optimal integration of wind energy resources. The proposed approach highly concerns the spatial distribution of wind speed at different points of a wind farm. In mathematical statements, a suitable probability distribution function (PDF) is well-designed for representing such uncertainties. In such conditions, it is likely to have dissimilar output powers for individual and identical wind turbines. Thus, the overall aggregated PDF of a wind farm remarkably influences the critical parameters including the expected power and energy, capacity factor, and the reliability metrics such as loss of load expectation (LOLE) and expected energy not supplied (EENS). Furthermore, the proposed approach is deployed for optimal allocation of wind energy in bulk power systems. Hence, two typical test systems are numerically analyzed to interrogate the performance of the proposed approach. The conducted survey discloses an over/underestimation of harvestable wind energy in the case of overlooking spatial distributions. Thus, inaccurate amounts of wind farm’s capacity factor, output power, energy and reliability indices might be estimated. Meanwhile, the number of wind turbines may be misjudged to be installed. However, the proposed approach yields in a fair judgment regarding the overall performance of the wind farm. Consequently, a reliable penetration level of wind energy to the power system is assured. Extra discussions are provided to deeply assess the promising merits of the founded approach.

  10. Assessing high wind energy penetration

    International Nuclear Information System (INIS)

    Tande, J.O.

    1995-01-01

    In order to convincingly promote installing wind power capacity as a substantial part of the energy supply system, a set of careful analyses must be undertaken. This paper applies a case study concentrated on assessing the cost/benefit of high wind energy penetration. The case study considers expanding the grid connected wind power capacity in Praia, the capital of Cape Verde. The currently installed 1 MW of wind power is estimated to supply close to 10% of the electric energy consumption in 1996. Increasing the wind energy penetration to a higher level is considered viable as the project settings are close to ideal, including a very capable national utility company, Electra, a conventional power supply system based on imported heavy fuel and gas oil, and favourable wind conditions with an estimated annual average of 9.3 m/s at the hub height of the wind turbines. With the applied case study assumptions, simulations with WINSYS over the lifetime of the assessed wind power investment show that investments up to 4.2 MW are economically viable. The economic optimum is found at 2.4 MW reaching an internal rate of return of almost 8% p.a. This 2.4 MW of wind power would, together with the existing wind power, supply over 30% of the electric consumption in 1996. Applying the recommended practices for estimating the cost of wind energy, the life-cycle cost of this 2.4 MW investment is estimated at a 7% discount rate and a 20 year lifetime to 0.26 DKK/kW h. (Author)

  11. Life cycle cost analysis of wind power considering stochastic uncertainties

    International Nuclear Information System (INIS)

    Li, Chiao-Ting; Peng, Huei; Sun, Jing

    2014-01-01

    This paper presents a long-term cost analysis of wind power and compares its competitiveness to non-renewable generating technologies. The analysis considers several important attributes related to wind intermittency that are sometimes ignored in traditional generation planning or LCOE (levelized cost of energy) studies, including the need for more nameplate capacity due to intermittency, hourly fluctuations in wind outputs and cost for reserves. The competitiveness of wind power is assessed by evaluating four scenarios: 1) adding natural gas generating capacity to the power grid; 2) adding coal generating capacity to the power grid; 3) adding wind capacity to the power grid; and, 4) adding wind capacity and energy storage to the power grid where an energy storage device is used to cover wind intermittency. A case study in the state of Michigan is presented to demonstrate the use of the proposed methodology, in which a time horizon from 2010 to 2040 is considered. The results show that wind energy will still be more expensive than natural gas power plants in the next three decades, but will be cheaper than coal capacities if wind intermittency is mitigated. Furthermore, if the costs of carbon emissions and environmental externalities are considered, wind generation will be a competitive option for grid capacity expansion. - Highlights: • The competitiveness of wind power is analyzed via life cycle cost analysis. • Wind intermittency and reserve costs are explicitly considered in the analysis. • Results show that wind is still more expensive than natural gas power plants. • Wind can be cheaper than coal capacities if wind intermittency is mitigated. • Wind will be competitive if costs of carbon emissions are considered

  12. Wind around the world

    International Nuclear Information System (INIS)

    Rackstraw, K.

    1998-01-01

    A combination of cost reductions and progressive policies in key markets kept the world wind market percolating in 1997 with a record 1510 MW of new wind capacity installed, representing annual sales of more than $1.5 billion. This new record surpasses last year''s total by 24 percent, about the average annual rate of growth for the last three years. Worldwide utility-scale wind installations at the end of 1997 totaled 7763 MW. Most activity occurred in Europe, which accounted for over 75 percent of 1997 installations. Germany was again the world''s leading single market, this time by quite a large margin, accounting for more than one-third of the annual total by itself at 532 MW in 1997. The end of 1997 also marked the time at which Germany officially passed the US as the largest total single market with over 2079 MW in total installations versus about 1805 MW for the US, although the US had actually lost the lead by mid-year. Spain is the new addition to the top echelon of world wind markets, installing 215 MW in 1997 that more than doubles their total installed capacity over the previous year and ranks them number three in the world for the year. Denmark''s 1997 total of 300 MW is also a record, although this estimate could go up as the official count is finalized. India, the second largest wind market in 1995 and 1996, slipped several notches because of a variety of factors, including a change in government and a slowdown in the economy. The US wind market continues to stagnate as it has for the last several years, largely because of the uncertainty surrounding restructuring of US electric utilities. The US market is poised for a big comeback in 1998, however

  13. Combined Active and Reactive Power Control of Wind Farms based on Model Predictive Control

    DEFF Research Database (Denmark)

    Zhao, Haoran; Wu, Qiuwei; Wang, Jianhui

    2017-01-01

    This paper proposes a combined wind farm controller based on Model Predictive Control (MPC). Compared with the conventional decoupled active and reactive power control, the proposed control scheme considers the significant impact of active power on voltage variations due to the low X=R ratio...... of wind farm collector systems. The voltage control is improved. Besides, by coordination of active and reactive power, the Var capacity is optimized to prevent potential failures due to Var shortage, especially when the wind farm operates close to its full load. An analytical method is used to calculate...... the sensitivity coefficients to improve the computation efficiency and overcome the convergence problem. Two control modes are designed for both normal and emergency conditions. A wind farm with 20 wind turbines was used to verify the proposed combined control scheme....

  14. 2008 WIND TECHNOLOGIES MARKET REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the

  15. Station Capacity

    DEFF Research Database (Denmark)

    Landex, Alex

    2011-01-01

    the probability of conflicts and the minimum headway times into account. The last method analyzes how optimal platform tracks are used by examining the arrival and departure pattern of the trains. The developed methods can either be used separately to analyze specific characteristics of the capacity of a station......Stations are often limiting the capacity of railway networks. This is due to extra need of tracks when trains stand still, trains turning around, and conflicting train routes. Although stations are often the capacity bottlenecks, most capacity analysis methods focus on open line capacity. Therefore...... for platform tracks and the probability that arriving trains will not get a platform track immediately at arrival. The third method is a scalable method that analyzes the conflicts in the switch zone(s). In its simplest stage, the method just analyzes the track layout while the more advanced stages also take...

  16. Wind Turbines Adaptation to the Variability of the Wind Field

    Science.gov (United States)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar

  17. Pullout capacity of batter pile in sand.

    Science.gov (United States)

    Nazir, Ashraf; Nasr, Ahmed

    2013-03-01

    Many offshore structures are subjected to overturning moments due to wind load, wave pressure, and ship impacts. Also most of retaining walls are subjected to horizontal forces and bending moments, these forces are due to earth pressure. For foundations in such structures, usually a combination of vertical and batter piles is used. Little information is available in the literature about estimating the capacity of piles under uplift. In cases where these supporting piles are not vertical, the behavior under axial pullout is not well established. In order to delineate the significant variables affecting the ultimate uplift shaft resistance of batter pile in dry sand, a testing program comprising 62 pullout tests was conducted. The tests are conducted on model steel pile installed in loose, medium, and dense sand to an embedded depth ratio, L/d, vary from 7.5 to 30 and with various batter angles of 0°, 10°, 20°, and 30°. Results indicate that the pullout capacity of a batter pile constructed in dense and/or medium density sand increases with the increase of batter angle attains maximum value and then decreases, the maximum value of Pα occurs at batter angle approximately equal to 20°, and it is about 21-31% more than the vertical pile capacity, while the pullout capacity for batter pile that constructed in loose sand decreases with the increase of pile inclination. The results also indicated that the circular pile is more resistant to pullout forces than the square and rectangular pile shape. The rough model piles tested is experienced 18-75% increase in capacity compared with the smooth model piles. The suggested relations for the pullout capacity of batter pile regarding the vertical pile capacity are well predicted.

  18. Pullout capacity of batter pile in sand

    Directory of Open Access Journals (Sweden)

    Ashraf Nazir

    2013-03-01

    Full Text Available Many offshore structures are subjected to overturning moments due to wind load, wave pressure, and ship impacts. Also most of retaining walls are subjected to horizontal forces and bending moments, these forces are due to earth pressure. For foundations in such structures, usually a combination of vertical and batter piles is used. Little information is available in the literature about estimating the capacity of piles under uplift. In cases where these supporting piles are not vertical, the behavior under axial pullout is not well established. In order to delineate the significant variables affecting the ultimate uplift shaft resistance of batter pile in dry sand, a testing program comprising 62 pullout tests was conducted. The tests are conducted on model steel pile installed in loose, medium, and dense sand to an embedded depth ratio, L/d, vary from 7.5 to 30 and with various batter angles of 0°, 10°, 20°, and 30°. Results indicate that the pullout capacity of a batter pile constructed in dense and/or medium density sand increases with the increase of batter angle attains maximum value and then decreases, the maximum value of Pα occurs at batter angle approximately equal to 20°, and it is about 21–31% more than the vertical pile capacity, while the pullout capacity for batter pile that constructed in loose sand decreases with the increase of pile inclination. The results also indicated that the circular pile is more resistant to pullout forces than the square and rectangular pile shape. The rough model piles tested is experienced 18–75% increase in capacity compared with the smooth model piles. The suggested relations for the pullout capacity of batter pile regarding the vertical pile capacity are well predicted.

  19. Wind Observatory 2017. Analysis of the wind power market, wind jobs and future of the wind industry in France

    International Nuclear Information System (INIS)

    2017-09-01

    Two years after the enactment of the Energy Transition for Green Growth Act, wind power capacity continues to grow in France, exceeding 12 GWatt the end of 2016 and soon to account for 5% of France's electric power consumption. This vitality, which is set to continue in 2017, will help France achieve its objectives of an installed capacity of 15,000 MW in onshore wind by 2018 and 21,800 to 26,000 MW by 2023. The current pace will nevertheless have to be accelerated in order to reach the realistic objective of 26 GW by 2023 mentioned in the multi-annual energy plan (PPE). With 1,400 jobs created in one year and more than 3,300 over the last two years, the relevance of wind power as a driving force of sustainable job creation throughout the country is unequivocally confirmed: the increase in wind power capacity continues to contribute to the growth in employment in the country. Prepared in collaboration with the consulting firm BearingPoint, the 2017 edition of the Observatory aims to give the reader an overview of employment in the wind industry and the wind power market over the period under consideration. Any changes from the three previous editions are highlighted. It is based on a comprehensive census of all market participants on three themes: employment, the market and the future of wind power. The Observatory gives an accurate picture of how the wind energy industry is structured, thereby presenting a precise overview of the wind energy industry and all its components

  20. The viability of balancing wind generation with large scale energy storage

    International Nuclear Information System (INIS)

    Nyamdash, Batsaikhan; Denny, Eleanor; O'Malley, Mark

    2010-01-01

    This paper studies the impact of combining wind generation and dedicated large scale energy storage on the conventional thermal plant mix and the CO 2 emissions of a power system. Different strategies are proposed here in order to explore the best operational strategy for the wind and storage system in terms of its effect on the net load. Furthermore, the economic viability of combining wind and large scale storage is studied. The empirical application, using data for the Irish power system, shows that combined wind and storage reduces the participation of mid-merit plants and increases the participation of base-load plants. Moreover, storage negates some of the CO 2 emissions reduction of the wind generation. It was also found that the wind and storage output can significantly reduce the variability of the net load under certain operational strategies and the optimal strategy depends on the installed wind capacity. However, in the absence of any supporting mechanism none of the storage devices were economically viable when they were combined with the wind generation on the Irish power system. - Research Highlights: → Energy storage would displace the peaking and mid-merit plants generations by the base-load plants generations. Energy storage may negate the CO 2 emissions reduction that is due to the increased wind generations. →Energy storage reduces the variation of the net load. →Under certain market conditions, merchant type energy storage is not viable.

  1. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.

  2. Wind Powering America

    Energy Technology Data Exchange (ETDEWEB)

    Flowers, L. (NREL); Dougherty, P. J. (DOE)

    2001-07-07

    At the June 1999 Windpower Conference, the Secretary of Energy launched the Office of Energy Efficiency and Renewable Energy's Wind Powering America (WPA) initiative. The goals of the initiative are to meet 5% of the nation's energy needs with wind energy by 2020 (i.e., 80,000 megawatts installed), to double the number of states that have more than 20 megawatts (MW) of wind capacity to 16 by 2005 and triple it to 24 by 2010, and to increase wind's contribution to Federal electricity use to 5% by 2010. To achieve the Federal government's goal, DOE would take the leadership position and work with its Federal partners. Subsequently, the Secretary accelerated the DOE 5% commitment to 2005. Achieving the 80,000 MW goal would result in approximately $60 billion investment and $1.5 billion of economic development in our rural areas (where the wind resources are the greatest). The purpose of this paper is to provide an update on DOE's strategy for achieving its goals and the activities it has undertaken since the initiative was announced.

  3. Wind Powering America

    International Nuclear Information System (INIS)

    Flowers, L.; Dougherty, P. J.

    2001-01-01

    At the June 1999 Windpower Conference, the Secretary of Energy launched the Office of Energy Efficiency and Renewable Energy's Wind Powering America (WPA) initiative. The goals of the initiative are to meet 5% of the nation's energy needs with wind energy by 2020 (i.e., 80,000 megawatts installed), to double the number of states that have more than 20 megawatts (MW) of wind capacity to 16 by 2005 and triple it to 24 by 2010, and to increase wind's contribution to Federal electricity use to 5% by 2010. To achieve the Federal government's goal, DOE would take the leadership position and work with its Federal partners. Subsequently, the Secretary accelerated the DOE 5% commitment to 2005. Achieving the 80,000 MW goal would result in approximately$60 billion investment and$1.5 billion of economic development in our rural areas (where the wind resources are the greatest). The purpose of this paper is to provide an update on DOE's strategy for achieving its goals and the activities it has undertaken since the initiative was announced

  4. Wind resource analysis. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, D. M.

    1978-12-01

    FY78 results of the Wind Resource Analyses task of the ERAB are described. Initial steps were taken to acquire modern atmosphere models of near-surface wind flow and primary data sets used in previous studies of national and regional wind resources. Because numerous assumptions are necessary to interpret available data in terms of wind energy potential, conclusions of previous studies differ considerably. These data analyses may be improved by future SERI research. State-of-the-art atmosphere models are a necessary component of the SERI wind resource analyses capacity. However, these methods also need to be tested and verified in diverse applications. The primary data sets and principal features of the models are discussed.

  5. Wind energy in a global world

    DEFF Research Database (Denmark)

    Hjuler Jensen, Peter

    2007-01-01

    For the past 25 years there has been a dramatic development in the wind energy sector, with regard to the increase in overall utilisation of wind energy as well as technological development, the development of markets and expectations to the role of wind energy in the global electricity supply...... system. The purpose of this paper is to outline developments in the global capacity of wind energy this past quarter of a century, including technology, market aspects, scientific developments, testing and certification, formulation of standards and scenarios for the future development of wind energy...

  6. Tariff based value of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Raekkoelaeinen, J; Vilkko, M; Antila, H; Lautala, P [Tampere Univ. of Technology (Finland)

    1996-12-31

    In this article an approach for determining a value of wind energy is presented. Calculation is based on wholesale tariffs, i.e. the value of wind energy is defined in comparison with other purchase. This approach can be utilised as an aid in the investment planning in defining the benefits of new wind generation capacity. Linear programming optimization method is used. A case study is presented for different wind scenarios. The value of wind energy can vary remarkably depending on timing of power output. (author)

  7. Tariff based value of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Raekkoelaeinen, J.; Vilkko, M.; Antila, H.; Lautala, P. [Tampere Univ. of Technology (Finland)

    1995-12-31

    In this article an approach for determining a value of wind energy is presented. Calculation is based on wholesale tariffs, i.e. the value of wind energy is defined in comparison with other purchase. This approach can be utilised as an aid in the investment planning in defining the benefits of new wind generation capacity. Linear programming optimization method is used. A case study is presented for different wind scenarios. The value of wind energy can vary remarkably depending on timing of power output. (author)

  8. Wind energy barometer - EurObserv'ER - February 2012

    International Nuclear Information System (INIS)

    2012-02-01

    Notwithstanding the economic crisis affecting most of the globe's major economies, wind energy continues to gain supporters around the world. Global wind power capacity increased by 40.5 GW between 2010 and 2011 compared to a 39 GW rise between 2009 and 2010, after deduction of decommissioned capacity. By the end of 2011 global installed wind turbine capacity should stand at around 238.5 GW, and much of the world's growth is being driven by capacity build-up in the emerging markets. In contrast some of the key wind energy markets may be showing fault lines

  9. Wind energy handbook

    CERN Document Server

    Burton, Tony; Sharpe, David; Bossanyi, Ervin

    2011-01-01

    Named as one of Choice's Outstanding Academic Titles of 2012Every year, Choice subject editors recognise the most significant print and electronic works reviewed in Choice during the previous calendar year. Appearing annually inChoice's January issue, this prestigious list of publications reflects the best in scholarly titles and attracts extraordinary attention from the academic library community. The authoritative reference on wind energy, now fully revised and updated to include offshore wind power<

  10. Design, Numerical Modelling and Analysis of a Semi-submersible Floater Supporting the DTU 10MW Wind Turbine.

    OpenAIRE

    Islam, Md Touhidul

    2016-01-01

    In recent years, the demand for renewable energy has increased significantly because of its lower environmental impact than conventional energy technologies. Wind power is one of the most important sources of renewable energy produced nowadays. As land based turbines have reached their maximum potential, recent market trends are moving into deeper waters with higher capacity turbines. The design of a floating offshore wind turbine (FOWT) foundation poses few technical challenges....

  11. Wind farm progress in Denmark

    DEFF Research Database (Denmark)

    Frandsen, Sten Tronæs; Andersen, Per Dannemand

    1996-01-01

    The paper presents a status of wind power in Denmark and on the technical and industrial achievements. The present total installed capacity is be the end of 1995 approx. 630 MW, and the contribution to the electric energy generation in Denmark is approx. 4%.......The paper presents a status of wind power in Denmark and on the technical and industrial achievements. The present total installed capacity is be the end of 1995 approx. 630 MW, and the contribution to the electric energy generation in Denmark is approx. 4%....

  12. Determining the impact of wind on system costs via the temporal patterns of load and wind generation

    International Nuclear Information System (INIS)

    Davis, Clay D.; Gotham, Douglas J.; Preckel, Paul V.; Liu, Andrew L.

    2013-01-01

    Ambitious targets have been set for expanding electricity generation from renewable sources, including wind. Expanding wind power impacts needs for other electricity generating resources. As states plan for increasing levels of wind generation in their portfolio of generation resources it is important to consider how this intermittent resource impacts the need for other generation resources. A case study for Indiana estimates the value of wind capacity and demonstrates how to optimize its level and the levels of other generation resources. Changes are driven by temporal patterns of wind power output and load. System wide impacts are calculated for energy, capacity, and costs under multiple wind expansion scenarios which highlight the geographic characteristics of a systems portfolio of wind generation. The impacts of carbon prices, as proposed in the Bingaman Bill, are considered. Finally, calculations showing the effect increasing levels of wind generation will have on end use Indiana retail rates are included. - Highlights: • We estimate the value of wind capacity. • We determine wind generation's impact on the optimal mix of non-wind generation. • Optimal levels of wind and non-wind generation are determined. • We consider the impact of a carbon price on the optimal mix of resources. • The impact of additional wind capacity on Indiana residential rates is calculated

  13. Wind energy in Europe

    International Nuclear Information System (INIS)

    Sesto, E.

    1992-02-01

    Interest in wind energy as a supplementary source for the production of electricity has recently gained renewed momentum due to widespread concern about environmental impacts from the large scale use of fossil fuels and nuclear energy. In addition, political unrest in the Middle East has drawn attention to the importance of national energy self-sufficiency. European government administrations, however, have not yet fully appreciated the real worth of the 'clean energy' afforded by wind energy. In this regard, the European Wind Energy Association (EWEA) is acting as a strong voice to inform the public and energy planners by stimulating international wind energy R ampersand D cooperation, and organizing conferences to explain the advantages of wind energy. In October 1991, EWEA published a strategy document giving a picture of the real possibilities offered by wind energy within the geographical, social, and European economic context. This paper provides an overview of the more significant features to emerge from this document which represents a useful guideline for wind power plant technical/economic feasibility studies in that it contains brief notes on resource availability, land requirements, visual and acoustic impacts, turbine sizing, performance, interconnection to utility grids, maintenance and operating costs, safety, as well as, on marketing aspects

  14. Database on wind characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, K.S. [The Technical Univ. of Denmark (Denmark); Courtney, M.S. [Risoe National Lab., (Denmark)

    1999-08-01

    The organisations that participated in the project consists of five research organisations: MIUU (Sweden), ECN (The Netherlands), CRES (Greece), DTU (Denmark), Risoe (Denmark) and one wind turbine manufacturer: Vestas Wind System A/S (Denmark). The overall goal was to build a database consisting of a large number of wind speed time series and create tools for efficiently searching through the data to select interesting data. The project resulted in a database located at DTU, Denmark with online access through the Internet. The database contains more than 50.000 hours of measured wind speed measurements. A wide range of wind climates and terrain types are represented with significant amounts of time series. Data have been chosen selectively with a deliberate over-representation of high wind and complex terrain cases. This makes the database ideal for wind turbine design needs but completely unsuitable for resource studies. Diversity has also been an important aim and this is realised with data from a large range of terrain types; everything from offshore to mountain, from Norway to Greece. (EHS)

  15. Wind energy.

    Science.gov (United States)

    Leithead, W E

    2007-04-15

    From its rebirth in the early 1980s, the rate of development of wind energy has been dramatic. Today, other than hydropower, it is the most important of the renewable sources of power. The UK Government and the EU Commission have adopted targets for renewable energy generation of 10 and 12% of consumption, respectively. Much of this, by necessity, must be met by wind energy. The US Department of Energy has set a goal of 6% of electricity supply from wind energy by 2020. For this potential to be fully realized, several aspects, related to public acceptance, and technical issues, related to the expected increase in penetration on the electricity network and the current drive towards larger wind turbines, need to be resolved. Nevertheless, these challenges will be met and wind energy will, very likely, become increasingly important over the next two decades. An overview of the technology is presented.

  16. Grid Integration of Offshore Wind | Wind | NREL

    Science.gov (United States)

    Grid Integration of Offshore Wind Grid Integration of Offshore Wind Much can be learned from the existing land-based integration research for handling the variability and uncertainty of the wind resource Arklow Bank offshore wind park consists of seven GE Wind 3.6-MW wind turbines. Integration and

  17. The significance of interconnector counter-trading in a security constrained electricity market

    International Nuclear Information System (INIS)

    Higgins, P.; Li, K.; Devlin, J.; Foley, A.M.

    2015-01-01

    Throughout the European Union there is an increasing amount of wind generation being dispatched-down due to the binding of power system operating constraints from high levels of wind generation. This paper examines the impact a system non-synchronous penetration limit has on the dispatch-down of wind and quantifies the significance of interconnector counter-trading to the priority dispatching of wind power. A fully coupled economic dispatch and security constrained unit commitment model of the Single Electricity Market of the Republic of Ireland and Northern Ireland and the British Electricity Trading and Transmission Arrangement was used in this study. The key finding was interconnector counter-trading reduces the impact the system non-synchronous penetration limit has on the dispatch-down of wind. The capability to counter-trade on the interconnectors and an increase in system non-synchronous penetration limit from 50% to 55% reduces the dispatch-down of wind by 311 GW h and decreases total electricity payments to the consumer by €1.72/MW h. In terms of the European Union electricity market integration, the results show the importance of developing individual electricity markets that allow system operators to counter-trade on interconnectors to ensure the priority dispatch of the increasing levels of wind generation. - Highlights: • Interconnector counter-trading reduces the system marginal price in the SEM. • Dispatch-down of wind power is reduced due to interconnector counter-trading. • A 5% increase in the SNSP limit can reduce wind power dispatched-down by 50%. • An increase in the SNSP limit and installed wind capacity reduces the SMP.

  18. Wind Energy

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, H.J.M. [SET Analysis, Kievitlaan 26, 1742 AD Schagen (Netherlands); Brand, A.J. [Energy research Centre of the Netherlands ECN, Unit Wind Energy, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2013-02-15

    Over the years, wind energy has become a major source of renewable energy worldwide. The present chapter addresses the wind resource, which is available for exploitation for large-scale electricity production, and its specific physical properties. Furthermore, the technical options available to convert the energy of the air flow into mechanical energy and electricity are described. Specific problems of large-scale integration of wind energy into the grid as well as the present and future market developments are described in this chapter. Finally, environmental aspects are discussed briefly.

  19. Wind power takes off. A structural revolution; Vindkraften tar fart. En strukturell revolution

    Energy Technology Data Exchange (ETDEWEB)

    Staahl, Benjamin; Lilliecreutz, Johan

    2009-03-15

    Wind power is today a large worldwide market that is growing very rapidly. It is already a significant source of energy and will dominate the electricity market within a few decades. The market today has been estimated at Euro 36.5 billion. Looking at wind power share of investment in new plants it has already about 40% in Europe and USA. The growth rate is high and rising, and the market potential for wind power is therefore great. In 2007, 20 GW of wind power was installed and in 2008 about 27 GW, and in total the global capacity in 2008 amounted to 120 GW. More than half of all existing wind power plants have been installed in the last three years. Wind power accounts for about 1.5% of global electricity consumption, but in individual countries for much higher share. Market forecast of the future is uncertain, but there is consensus that it is a rapid growth. IEA estimates in its most positive scenario that wind power capacity in 2015 will amount to 296 GW, while specialized market analysts estimate that wind power capacity globally will increase to 691 GW already in 2017, representing an annual growth rate at almost 20%. In Sweden, a total of 236 MW of new wind power capacity was built in 2008, and Swedish wind power produced around 1.5 TWh, equivalent to 1% of the country's energy consumption and 77% more than in 2006. The goal is to increase production to 10 TWh already in 2015. The Swedish Energy Agency has proposed that it should be possible to produce 30 TWh of wind power in 2020, which represents an annual growth rate of nearly 24%. There is currently no large Swedish producers of wind power plants. However there are plenty of Swedish companies that benefit from the emerging market - ABB, SKF and DIAB are major suppliers to the wind turbine manufacturers. There are also technological development related to wind, both product development and more basic innovation. The conclusions of this study is that even if wind power industry begins to ripen, there

  20. Carrying Capacity

    DEFF Research Database (Denmark)

    Schroll, Henning; Andersen, Jan; Kjærgård, Bente

    2012-01-01

    A spatial planning act was introduced inIndonesia 1992 and renewed in 2008. It emphasised the planning role of decentralised authorities. The spatial planning act covers both spatial and environmental issues. It defines the concept of carrying capacity and includes definitions of supportive....../cities. Four different sectors (water, food production, waste, and forests) were selected as core areas for decentralised spatial planning. Indicators for SCC and ACC were identified and assessed with regard to relevance and quantifiability. For each of the indicators selected, a legal threshold or guiding...... was introduced inIndonesia 1992 and renewed in 2008. It emphasised the planning role of decentralised authorities. The spatial planning act covers both spatial and environmental issues. It defines the concept of carrying capacity and includes definitions of supportive carrying capacity (SCC) and assimilative...

  1. Next Generation Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghi, S. Hossein [Western New England Univ., Springfield, MA (United States); Madden, Frank [FloDesign Wind Turbine Corp., Waltham, MA (United States)

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  2. Innovation and the price of wind energy in the US

    International Nuclear Information System (INIS)

    Berry, David

    2009-01-01

    In the last ten years, the wind energy industry has experienced many innovations resulting in wider deployment of wind energy, larger wind energy projects, larger wind turbines, and greater capacity factors. Using regression analysis, this paper examines the effects of technological improvements and other factors on the price of wind energy charged under long-term contracts in the United States. For wind energy projects completed during the period 1999-2006, higher capacity factors and larger wind farms contributed to reductions in wind energy contract prices paid by regulated investor owned utilities in 2007. However, this effect was offset by rising construction costs. Turbine size (in MW) shows no clear relationship to contract prices, possibly because there may be opposing factors tending to decrease costs as turbine size increases and tending to increase costs as turbine size increases. Wind energy is generally a low-cost resource that is competitive with natural gas-fired power generation.

  3. Power electronics converters for wind turbine systems

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Liserre, Marco; Ma, Ke

    2011-01-01

    The steady growth of installed wind power which reached 200 GW capacity in 2010, together with the up-scaling of the single wind turbine power capability - 7 MW’s has been announced by manufacturers - has pushed the research and development of power converters towards full scale power conversion,...

  4. Wind energy: the present and the future

    International Nuclear Information System (INIS)

    Catto, Gavin

    1996-01-01

    Wind energy has become a billion-pounds-a-year industry. Its installed capacity worldwide exceeds 4.5 gigawatts. Technical advances coupled with the buying power and mass-production techniques of the main turbine manufacturers are pushing the cost of wind energy down to attractive levels. (author)

  5. Reliability of offshore wind power production under extreme wind conditions. Deliverable D 9.5. Work Package 9: Electrical grid

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Zeni, Lorenzo

    years, with each year simulated with five random seeds, leading to a total of 25 annual wind power time series for six large offshore wind farms, summing up to a little over 330 wind turbines. Two storm control strategies were used. The analysis involved several aspects inspired from reliability studies....... The aspects investigated are storm events occurrences and durations, storm control strategy impact on the capacity factor (lost production), the loss of production (power produced from wind drops below a certain threshold due to high wind speeds and storm controller) and finally, the wind power production......Reliability of offshore wind production under extreme wind conditions was investigated in this report. The wind power variability from existing and future large offshore wind farms in Western Denmark were simulated using the Correlated Wind model developed at Risø. The analysis was done for five...

  6. Windonomics. Empirical essays on the economics of wind power in the Nordic electricity market

    Energy Technology Data Exchange (ETDEWEB)

    Mauritzen, Johannes

    2012-07-01

    From the introduction: The following chapters in this dissertation take up three topics surrounding the interaction of wind power investment in Denmark and the functioning of the deregulated Nordic electricity market. The first two chapters take up the issue of how wind power a affects prices in the deregulated market. I find that electricity price variation in the spot market is lower in days with more wind power. In the following chapter I extend this analysis to see how wind power in Denmark affects prices in neighbouring hydro power dominated Norway. I find that wind power affects the magnitude of trade between the countries asymmetrically - dependent on the net direction of trade. I also find that wind power has a slight but statistically significant negative effect on prices in Norway, likely due to a slackening of hydro power producers supply constraints. The last chapter starts with the observation that most turbines are scrapped in order to make room for a newer turbine. An opportunity cost that comes from the interaction of scarce land resources, technological change and government policy is then a dominant reason for the scrapping of wind turbines. This leads to the implication that turbines located on windier, better situated land have a higher risk of being scrapped. Policy is also shown to have a strong and in some respects unexpected effect on scrappings. Over the last two decades two major trends have taken place in power markets around the world. The first has been a movement towards market based power systems. Vertically integrated power companies have been split into component generation, transmission and retailing companies. Generation and retailing have been opened to competition. Increasingly, regulated prices and bilateral trade are being replaced by regulated markets that establish prices through auction mechanisms. The second trend has been investment in renewable and intermittent energy sources - notably wind power. What started as

  7. Wind Generators and Market Power

    DEFF Research Database (Denmark)

    Misir, Nihat

    price thresholds are significantly higher when the monopolist at the peakload level owns both types of generators. Furthermore, when producing electricity with the peakload generator, the monopolist can avoid facing prices below marginal cost by owning a certain share of the wind generators.......Electricity production from wind generators holds significant importance in European Union’s 20% renewable energy target by 2020. In this paper, I show that ownership of wind generators affects market outcomes by using both a Cournot oligopoly model and a real options model. In the Cournot...... oligopoly model, ownership of the wind generators by owners of fossil-fueled (peakload) generators decreases total peakload production and increases the market price. These effects increase with total wind generation and aggregate wind generator ownership. In the real options model, start up and shut down...

  8. Development of wind power generation in China

    International Nuclear Information System (INIS)

    Zhiquan, Y.; Yan, C.; Lijun, X.

    1995-01-01

    Present status and development of wind power generation in China is described in this paper. China is vast in territory with abundant wind resources. The exploitable wind energy in China is estimated up to 253,000 MW. At present, more than 150 thousand small WTGs of a total capacity of 17 MW are used to provide residential electricity uses in non-grid connected areas and 13 wind farms, with above 160 medium and large scale grid connected WTGs (50-500 kW) of a total capacity of 30 MW, have been constructed. At the same time, some progress has been made in the fields of nation-wide wind resource assessment, measurement technology of wind turbine performance, the assimilation of foreign wind turbine technology, grid connected WTG technology and the operation of wind farm etc. It is planned that the total installed capacity of WTGs will reach 1000 MW by the end of 2000. Wind power generation could be a part of electric power industry in China. (Author)

  9. WEP. A wind energy planning system

    International Nuclear Information System (INIS)

    Larsen, H.V.

    1991-11-01

    The report describes the Wind Energy Planning system (WEP). It is intended as a decision support system to be used in the economic evaluation of wind energy projects. Such projects could be minor projects with only a single wind turbine or large wind farm projects consisting of several wind turbine plants. In the WEP system, a wind turbine is described by data on initial investment, possible later reinvestments, O and M costs, expected yearly production, life time, and capacity factor. The raising of loans are modelled, too. Depending on which output report is created, the value of the wind generated electricity is calculated in two different ways: either the electricity is assumed to be sold at a price (time series) given by the user, or the alternative conventional power production is modelled by its specific investment, O and M costs, life time, effectivity, fuel mix, and time series for fuel prices. Using these data, capacity credit and saved fuel and O and M costs are calculated. Due to the flexible data structure of the model, the user can easily create a scenario that models a large scale introduction of wind power. In such a scenario the gradual build up through several years of the wind power capacity can be modelled. The report describes in detail the menu structure, the input facilities, the output reports, and the organization of data. Also included is an example with full input documentation and output reports. (au)

  10. Carbon price and wind power support in Denmark

    International Nuclear Information System (INIS)

    Gavard, Claire

    2016-01-01

    This paper aims at characterizing the conditions of wind power deployment in order to infer a carbon price level that would provide wind power with comparable advantage over fossil fuel technologies as effective wind support policies. The analysis is conducted on Denmark after the electricity market liberalization. Probit and tobit techniques are employed to take account of a potential threshold effect. I find that the level and type of the support policy are the dominant drivers of deployment. A feed-in tariff significantly brings more wind power in than a premium policy. The additional capacity installed monthly increases by more than 1 MW for each additional €/MWh of support. This is compared to the effect of the electricity price, investment cost, interest rate and general economic activity. If the policy is a premium, I find that 23€/MWh of support in addition to electricity price is needed to observe the connection of new turbines to the grid with a 0.5 probability. I convert this support level into a carbon price of 27€/ton if wind power competes with coal, and 48€/t if it competes with gas. - Highlights: •I analyze wind power development in Denmark between 2000 and 2010. •I use probit and tobit techniques to assess the determinants of this deployment. •The level and policy type of wind power support are the main drivers. •I deduct the critical level of premium needed to trigger wind power. •I convert this into an equivalent carbon price and I find that it is below 50€/ton.

  11. Renewable energy in pakistan part 1: wind energy

    International Nuclear Information System (INIS)

    Maher, M.J.

    2005-01-01

    Energy plays a very enhanced role in mans struggle with the capricious act of nature than merely sustaining life. And according to Cipolla the more successfully man can use his own energy-output to control and put to use other forms of energy, t he more he acquires control over his environment and achieves goals other than those strictly related to animal existence . He then adds what is certainly obvious -but does not suffer from repetition -that fundamental to the utilization of nonmuscular energy is the problem of transforming it into the needed form at a selected time; place and at convenient cost. In the present article an attempt is being made to encompass different sources of renewable energy, with special reference to wind energy and its role in sustaining the development process Wind-data generated through measurements by the meteorological department have their limitations. Therefore, for accurate analysis, a dedicated wind-monitoring system will have to be used for properly exploiting this form of energy. In practice, a mean annual wind speed (at 20 m above ground) of 12 mph is considered as the minimum requirement for economic power-generation. With this criterion, only a bare minimum area of the country, comprising the coastal areas of Sind and Baluchistan, desert parts of Cholistan and Thar regions are considered to possess adequate resource. Bulk of this wind potential is derived from the wind energy, which blows from southwest system during the major parts of the year. Daily and monthly variations of wind speed at potential locations need to be determined in order to bring out the highly seasonal behaviour of the wind resources. The significance of wind-power density is another important parameter to assess the wind potential. The capacity-factor, which is the ratio of the actual power-output to the rated output of typical wind machine to be used, has to be worked out using the frequency-distribution of hourly wind-speeds at the potential site. The

  12. Influence of wind conditions on wind turbine loads and measurement of turbulence using lidars

    NARCIS (Netherlands)

    Sathe, A.R.

    2012-01-01

    Variations in wind conditions influence the loads on wind turbines significantly. In order to determine these loads it is important that the external conditions are well understood. Wind lidars are well developed nowadays to measure wind profiles upwards from the surface. But how turbulence can be

  13. World Wind

    Data.gov (United States)

    National Aeronautics and Space Administration — World Wind allows any user to zoom from satellite altitude into any place on Earth, leveraging high resolution LandSat imagery and SRTM elevation data to experience...

  14. 2016 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-10

    The U.S. Department of Energy (DOE)’s Wind Technologies Market Report provides an annual overview of trends in the U.S. wind power market. You can find the report, a presentation, and a data file on the Files tab, below. Additionally, several data visualizations are available in the Data Visualizations tab. Highlights of this year’s report include: -Wind power additions continued at a rapid clip in 2016: $13 billion was invested in new wind power plants in 2016. In 2016, wind energy contributed 5.6% of the nation’s electricity supply, more than 10% of total electricity generation in fourteen states, and 29% to 37% in three of those states—Iowa, South Dakota, and Kansas. -Bigger turbines are enhancing wind project performance: Increased blade lengths, in particular, have dramatically increased wind project capacity factors, one measure of project performance. For example, the average 2016 capacity factor among projects built in 2014 and 2015 was 42.6%, compared to an average of 32.1% among projects built from 2004 to 2011 and 25.4% among projects built from 1998 to 2001. -Low wind turbine pricing continues to push down installed project costs: Wind turbine prices have fallen from their highs in 2008, to $800–$1,100/kW. Overall, the average installed cost of wind projects in 2016 was $1,590/kW, down $780/kW from the peak in 2009 and 2010. -Wind energy prices remain low: After topping out at nearly 7¢/kWh for power purchase agreements (PPAs) executed in 2009, the national average price of wind PPAs has dropped to around 2¢/kWh—though this nationwide average is dominated by projects that hail from the lowest-priced Interior region of the country (such as Texas, Iowa, Oklahoma). These prices, which are possible in part due to federal tax support, compare favorably to the projected future fuel costs of gas-fired generation. -The supply chain continued to adjust to swings in domestic demand for wind equipment: Wind sector employment reached a new high of

  15. Nova Scotia wind integration study : final report

    International Nuclear Information System (INIS)

    2008-01-01

    An independent study was commissioned by the Nova Scotia Department of Energy to identify and assess the impacts of integrating large scale wind power generation into Nova Scotia's electric power system. The purpose of the study was to help Nova Scotia's efforts towards building its renewable energy supply, in order to secure a local energy resource and to protect the environment. This report provided an overview of Nova Scotia's electric power sector, including organizations involved; existing generation system; existing transmission system; renewable energy standards; Nova Scotia Power integrated resource plan; and 2007 renewable energy request for proposals. The major assumptions for the study that were discussed included system parameters; system capacity reserve requirements; expansion plans to 2020; and allocation of new wind generation by zone. Wind resource data and system dispatch modeling were also presented and transmission system modeling was outlined. This included a discussion of steady state reliability requirements; inputs to the load flow model; load flow study and contingency analysis; intra-province transmission congestion; and potential impacts on system security. The report also presented an approach to impact analysis and mitigation such as the impact on greenhouse gas and other air emissions and the impact of wind energy prices on system costs. It was concluded that one of the most important factors in evaluation of the economic impact of wind power integration is the forecasted fuel prices for the thermal units. If the fuel prices had varied significantly from the forecasted values, the study economic impact results could have been quite different. 55 tabs., 64 figs., 1 appendix

  16. The economics and environmental impacts of large-scale wind power in a carbon constrained world

    Science.gov (United States)

    Decarolis, Joseph Frank

    Serious climate change mitigation aimed at stabilizing atmospheric concentrations of CO2 will require a radical shift to a decarbonized energy supply. The electric power sector will be a primary target for deep reductions in CO2 emissions because electric power plants are among the largest and most manageable point sources of emissions. With respect to new capacity, wind power is currently one of the most inexpensive ways to produce electricity without CO2 emissions and it may have a significant role to play in a carbon constrained world. Yet most research in the wind industry remains focused on near term issues, while energy system models that focus on century-long time horizons undervalue wind by imposing exogenous limits on growth. This thesis fills a critical gap in the literature by taking a closer look at the cost and environmental impacts of large-scale wind. Estimates of the average cost of wind generation---now roughly 4¢/kWh---do not address the cons arising from the spatial distribution and intermittency of wind. This thesis develops a theoretical framework for assessing the intermittency cost of wind. In addition, an economic characterization of a wind system is provided in which long-distance electricity transmission, storage, and gas turbines are used to supplement variable wind power output to meet a time-varying load. With somewhat optimistic assumptions about the cost of wind turbines, the use of wind to serve 50% of demand adds ˜1--2¢/kWh to the cost of electricity, a cost comparable to that of other large-scale low carbon technologies. This thesis also explores the environmental impacts posed by large-scale wind. Though avian mortality and noise caused controversy in the early years of wind development, improved technology and exhaustive siting assessments have minimized their impact. The aesthetic valuation of wind farms can be improved significantly with better design, siting, construction, and maintenance procedures, but opposition may

  17. Wind Data Analysis and Wind Flow Simulation Over Large Areas

    Directory of Open Access Journals (Sweden)

    Terziev Angel

    2014-03-01

    Full Text Available Increasing the share of renewable energy sources is one of the core policies of the European Union. This is because of the fact that this energy is essential in reducing the greenhouse gas emissions and securing energy supplies. Currently, the share of wind energy from all renewable energy sources is relatively low. The choice of location for a certain wind farm installation strongly depends on the wind potential. Therefore the accurate assessment of wind potential is extremely important. In the present paper an analysis is made on the impact of significant possible parameters on the determination of wind energy potential for relatively large areas. In the analysis the type of measurements (short- and long-term on-site measurements, the type of instrumentation and the terrain roughness factor are considered. The study on the impact of turbulence on the wind flow distribution over complex terrain is presented, and it is based on the real on-site data collected by the meteorological tall towers installed in the northern part of Bulgaria. By means of CFD based software a wind map is developed for relatively large areas. Different turbulent models in numerical calculations were tested and recommendations for the usage of the specific models in flows modeling over complex terrains are presented. The role of each parameter in wind map development is made. Different approaches for determination of wind energy potential based on the preliminary developed wind map are presented.

  18. Effects of increased wind power generation on Mid-Norway's energy balance under climate change: A market based approach

    Science.gov (United States)

    Francois, Baptiste; Martino, Sara; Tofte, Lena; Hingray, Benoit; Mo, Birger; Creutin, Jean-Dominique

    2017-04-01

    Thanks to its huge water storage capacity, Norway has an excess of energy generation at annual scale, although significant regional disparity exists. On average, the Mid-Norway region has an energy deficit and needs to import more electricity than it exports. We show that this energy deficit can be reduced with an increase in wind generation and transmission line capacity, even in future climate scenarios where both mean annual temperature and precipitation are changed. For the considered scenarios, the deficit observed in winter disappears, i.e. when electricity consumption and prices are high. At the annual scale, the deficit behavior depends more on future changes in precipitation. Another consequence of changes in wind production and transmission capacity is the modification of electricity exchanges with neighboring regions which are also modified both in terms of average, variability and seasonality. Keywords: Variable renewable energy, Wind, Hydro, Energy balance, Energy market

  19. Alberta wind integration. Status and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Kehler, John; Aksomitis, Kris; Duchesne, Jacques [Alberta Electric System Operator (AESO), Calgary, AB (Canada)

    2010-07-01

    Alberta has excellent wind resources with over 600 MW of wind generation currently operating on the Alberta Interconnected Electric System (AIES) and there continues to be strong interest in wind development. Integration of large-scale wind power, however, is still relatively new and presents new operational opportunities and challenges. The AESO currently has over 7,700 MW in potential wind power development in Alberta in our interconnection queue. The Alberta system peak load is 10, 236 MW with 12,763 MW installed generation capacity and limited interconnection capability to neighboring jurisdictions. The AESO recognizes that it is important, both to system reliability and to the successful development of renewable resources in Alberta, that the impact on power system operations and the obligations of market participants are understood as Alberta reaches higher levels of wind penetration. The paper discusses the current status and future outlook on wind integration in Alberta. (orig.)

  20. Linear wind generator

    International Nuclear Information System (INIS)

    Kozarov, A.; Petrov, O.; Antonov, J.; Sotirova, S.; Petrova, B.

    2006-01-01

    The purpose of the linear wind-power generator described in this article is to decrease the following disadvantages of the common wind-powered turbine: 1) large bending and twisting moments to the blades and the shaft, especially when strong winds and turbulence exist; 2) significant values of the natural oscillation period of the construction result in the possibility of occurrence of destroying resonance oscillations; 3) high velocity of the peripheral parts of the rotor creating a danger for birds; 4) difficulties, connected with the installation and the operation on the mountain ridges and passages where the wind energy potential is the largest. The working surfaces of the generator in questions driven by the wind are not connected with a joint shaft but each moves along a railway track with few oscillations. So the sizes of each component are small and their number can be rather large. The mechanical trajectory is not a circle but a closed outline in a vertical plain, which consists of two rectilinear sectors, one above the other, connected in their ends by semi-circumferences. The mechanical energy of each component turns into electrical on the principle of the linear electrical generator. A regulation is provided when the direction of the wind is perpendicular to the route. A possibility of effectiveness is shown through aiming of additional quantities of air to the movable components by static barriers

  1. Wind turbines and health

    International Nuclear Information System (INIS)

    Rideout, K.; Copes, R.; Bos, C.

    2010-01-01

    This document summarized the potential health hazards associated with wind turbines, such as noise and low frequency sound, vibration and infrasound; electromagnetic fields (EMF); shadow flicker; and ice throw and structural failure. Various symptoms can be attributed to wind turbines, including dizziness, sleep disruption, and headaches. A review of available research regarding potential health affects to residents living in close proximity to wind turbines showed that the sound level associated with wind turbines at common residential setbacks is not sufficient to damage hearing, but may lead to annoyance and sleep disturbance. Research has shown that wind turbines are not a significant source of EMF exposure, and although shadows caused by the blades may be annoying, they are not likely to cause epileptic seizures at normal operational speeds. The risk of injury from ice throw can be minimized with setbacks of 200 to 400 m. Examples of Canadian wind turbine setback guidelines and regulations were also offered. It was concluded that setbacks and operational guidelines can be utilized in combination to address safety hazards, sound levels, land use issues, and impacts on people. 46 refs., 2 tabs., 2 figs.

  2. Data book on new energy technology in FY 1997. Wind power generation; Shin energy gijutsu kaihatsu kankei data shu sakusei chosa. Furyoku hatsuden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    It is an urgent necessity for Japan to promote the technological development and accelerate the introduction and diffusion of new energy. In order to diffuse and enlighten the introduction of new energy technology efficiently, it is necessary to compile various information regarding new energy in a comprehensive and systematic way, and formulate a database. Aiming at the systematic formulation of data on new energy, this survey focuses on the field of wind power generation system (WPS) and provides a collection of the latest published data on WPS, particularly regarding the worldwide installed wind power capacity, support plan and government policies, current situations of WPS market, and major technical characteristics of typical wind turbines. This report consists of the significance of wind energy, world market of wind turbines, government policies, international wind energy development, subsidies for wind energy, procedures of wind turbine system installation, governmental measures for wind energy development, subsidiary companies and organizations, basis of wind energy, and Japan`s wind energy development in 1997

  3. Lessons from wind policy in Portugal

    International Nuclear Information System (INIS)

    Peña, Ivonne; Azevedo, Inês L.; Marcelino Ferreira, Luís António Fialho

    2017-01-01

    Wind capacity and generation grew rapidly in several European countries, such as Portugal. Wind power adoption in Portugal began in the early 2000s, incentivized by a continuous feed-in tariff policy mechanism, coupled with public tenders for connection licenses in 2001, 2002, and 2005. These policies led to an enormous success in terms of having a large share of renewables providing electricity services: wind alone accounts today for ~23.5% of electricity demand in Portugal. We explain the reasons wind power became a key part of Portugal’s strategy to comply with European Commission climate and energy goals, and provide a detailed review of the wind feed-in tariff mechanism. We describe the actors involved in wind power production growth. We estimate the environmental and energy dependency gains achieved through wind power generation, and highlight the correlation between wind electricity generation and electricity exports. Finally, we compare the Portuguese wind policies with others countries’ policy designs and discuss the relevance of a feed-in tariff reform for subsequent wind power additions. - Highlights: • Portugal relies on feed-in tariffs as the key mechanism for wind diffusion. • Wind generation accounts for a quarter of total electricity generation. • The current feed-in tariffs system is not economically efficiency. • A feed-in tariff reform should be considered.

  4. An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristics

    International Nuclear Information System (INIS)

    Akpinar, E. Kavak; Akpinar, S.

    2005-01-01

    This paper presents seasonal variations of the wind characteristics and wind turbine characteristics in the regions around Elazig, namely Maden, Agin and Keban. Mean wind speed data in measured hourly time series format is statistically analyzed for the six year period 1998-2003. The probability density distributions are derived from the time series data and their distributional parameters are identified. Two probability density functions are fitted to the measured probability distributions on a seasonal basis. The wind energy characteristics of all the regions is studied based on the Weibull and Rayleigh distributions. Energy calculations and capacity factors for the wind turbine characteristics were determined for wind machines of different sizes between 300 and 2300 kW. It was found that Maden is the best region, among the regions analyzed, for wind characteristics and wind turbine characteristics

  5. Wind turbines in your environment? Wind turbines and economic aspects

    International Nuclear Information System (INIS)

    2002-02-01

    The wind energy industry has demonstrated its maturity and technical reliability. Because it will play an increasing role on the power generation market, the question of the cost and profitability of the wind energy has become of prime importance. Two main traps must be avoided: the first should be to deny the present and future economical interest of wind energy because of its supplementary cost with respect to conventional power generation techniques. The second trap should be to underestimate the economical progresses that wind energy must carry on to ensure its large scale development. Therefore, some advantageous pricing and regulatory conditions are necessary to allow the development of this emerging energy source. This document presents: the cost of a wind power project (initial investment, financial incentives); the profitability of a project (cost of a kWh of wind power origin, retail price, warranty of power supply capacity, indirect environmental costs, value of decentralized production); economical interest of wind power (energy efficiency, employment, financial advantages for the local economy); and who are the investors. (J.S.)

  6. Guide to commercially available wind machines

    Energy Technology Data Exchange (ETDEWEB)

    1978-04-03

    Wind Energy Conversion Systems (WECS) commercially available in the United States are described. The terms used to describe these wind systems are defined and their significance discussed. Lists of manufacturers and distributors, subsystem components and suppliers, and references are provided.

  7. Wind resource characterization in the Arabian Peninsula

    KAUST Repository

    Yip, Chak Man Andrew; Gunturu, Udaya; Stenchikov, Georgiy L.

    2015-01-01

    Wind energy is expected to contribute to alleviating the rise in energy demand in the Middle East that is driven by population growth and industrial development. However, variability and intermittency in the wind resource present significant

  8. Wind energy in Spain. 2000 MW in 2000

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    Spain ranks third in terms of wind energy in Europe. Its wind power capacity has been soaring for the past five years and development of renewable energies is seen as a way to stimulate economy and employment. Two regions are at the forefront in this: Galicia and Navarra. Each autonomous region has its own way to develop wind energy. (A.L.B.)

  9. Wind Power in Australia: Overcoming Technological and Institutional Barriers

    Science.gov (United States)

    Healey, Gerard; Bunting, Andrea

    2008-01-01

    Until recently, Australia had little installed wind capacity, although there had been many investigations into its potential during the preceding decades. Formerly, state-owned monopoly utilities showed only token interest in wind power and could dictate the terms of energy debates. This situation changed in the late 1990s: Installed wind capacity…

  10. 2009 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R.; Bolinger, M.

    2010-08-01

    The U.S. wind power industry experienced yet another record year in 2009, once again surpassing even optimistic growth projections from years past. At the same time, 2009 was a year of upheaval, with the global financial crisis impacting the wind power industry and with federal policy changes enacted to push the industry toward continued aggressive expansion. The year 2010, meanwhile, is anticipated to be one of some retrenchment, with expectations for fewer wind power capacity additions than seen in 2009. The rapid pace of development and change within the industry has made it difficult to keep up with trends in the marketplace, yet the need for timely, objective information on the industry and its progress has never been greater. This report - the fourth in an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the United States wind power market, with a particular focus on 2009.

  11. Wind - Prototypes on the landscape

    Science.gov (United States)

    Smith, M. L.

    1981-12-01

    Large wind turbines are shown to be attractive to utilities because of the potential for decreasing gas and oil consumption, the relatively low costs for entry into the field, and the wide distribution of wind energy. The total generating capacity can be increased in incremental steps, experience in construction and operation of large turbines have been gained from the NASA Mod O, OA, 1, and 2 models, and advances in manufacturing processes will make the large turbines competitive as replacement power for oil and gas burning utility generators. The 300 ft rotor Mod 2 machines are described, along with designs for the Mod 5A and Mod 5B wind turbines, with 400 and 422 ft, 6.2 and 7.2 MW rotors and outputs, respectively. Current plans for multi-MW windfarms are reviewed, and the option of using the land around large wind turbines for other purposes is stressed.

  12. 2011 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Buckley, Michael [Exeter Associates, Columbia, MD (United States); Fink, Sari [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-08-01

    The U.S. wind power industry is facing uncertain times. With 2011 capacity additions having risen from 2010 levels and with a further sizable increase expected in 2012, there are – on the surface – grounds for optimism. Key factors driving growth in 2011 included continued state and federal incentives for wind energy, recent improvements in the cost and performance of wind power technology, and the need to meet an end-of-year construction start deadline in order to qualify for the Section 1603 Treasury grant program. At the same time, the currently-slated expiration of key federal tax incentives for wind energy at the end of 2012 – in concert with continued low natural gas prices and modest electricity demand growth – threatens to dramatically slow new builds in 2013.

  13. A probabilistic assessment of large scale wind power development for long-term energy resource planning

    Science.gov (United States)

    Kennedy, Scott Warren

    A steady decline in the cost of wind turbines and increased experience in their successful operation have brought this technology to the forefront of viable alternatives for large-scale power generation. Methodologies for understanding the costs and benefits of large-scale wind power development, however, are currently limited. In this thesis, a new and widely applicable technique for estimating the social benefit of large-scale wind power production is presented. The social benefit is based upon wind power's energy and capacity services and the avoidance of environmental damages. The approach uses probabilistic modeling techniques to account for the stochastic interaction between wind power availability, electricity demand, and conventional generator dispatch. A method for including the spatial smoothing effect of geographically dispersed wind farms is also introduced. The model has been used to analyze potential offshore wind power development to the south of Long Island, NY. If natural gas combined cycle (NGCC) and integrated gasifier combined cycle (IGCC) are the alternative generation sources, wind power exhibits a negative social benefit due to its high capacity cost and the relatively low emissions of these advanced fossil-fuel technologies. Environmental benefits increase significantly if charges for CO2 emissions are included. Results also reveal a diminishing social benefit as wind power penetration increases. The dependence of wind power benefits on natural gas and coal prices is also discussed. In power systems with a high penetration of wind generated electricity, the intermittent availability of wind power may influence hourly spot prices. A price responsive electricity demand model is introduced that shows a small increase in wind power value when consumers react to hourly spot prices. The effectiveness of this mechanism depends heavily on estimates of the own- and cross-price elasticities of aggregate electricity demand. This work makes a valuable

  14. Exerting Capacity.

    Science.gov (United States)

    Leger, J Michael; Phillips, Carolyn A

    2017-05-01

    Patient safety has been at the forefront of nursing research since the release of the Institute of Medicine's report estimating the number of preventable adverse events in hospital settings; yet no research to date has incorporated the perspectives of bedside nurses using classical grounded theory (CGT) methodology. This CGT study explored the perceptions of bedside registered nurses regarding patient safety in adult acute care hospitals. Data analysis used three techniques unique to CGT-the constant comparative method, coding, and memoing-to explore the values, realities, and beliefs of bedside nurses about patient safety. The analysis resulted in a substantive theory, Exerting Capacity, which explained how bedside nurses balance the demands of keeping their patients safe. Exerting Capacity has implications for health care organization leaders, nursing leaders, and bedside nurses; it also has indications for future research into the concept of patient safety.

  15. Finance and banking for wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Rave, Klaus [Investitionsbank Schleswig-Holstein (Germany)

    1999-01-01

    Installed wind power capacity in Schleswig-Holstein has grown from 2 MW in 1988 to about 600 MW in 1997; about 10% of the total power demand. The target of 20 to 25% by 2010 should easily be exceeded. Cost per kW of installed capacity has fallen from DM 3,350 in 1990 to DM 1,700 in 1997. Estimates for the world market for wind power are given. Criteria for evaluating the financing of a build, operate, transfer wind energy project are set out. (uk)

  16. Finance and banking for wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Rave, Klaus [Investitionsbank Schleswig-Holstein (Germany)

    1999-04-01

    Installed wind power capacity in Schleswig-Holstein has grown from 2 MW in 1988 to about 600 MW in 1997; about 10% of the total power demand. The target of 20 to 25% by 2010 should easily be exceeded. Cost per kW of installed capacity has fallen from DM 3,350 in 1990 to DM 1,700 in 1997. Estimates for the world market for wind power are given. Criteria for evaluating the financing of a build, operate, transfer wind energy project are set out. (uk)

  17. Why is China’s wind power generation not living up to its potential?

    Science.gov (United States)

    Huenteler, Joern; Tang, Tian; Chan, Gabriel; Diaz Anadon, Laura

    2018-04-01

    Following a decade of unprecedented investment, China now has the world’s largest installed base of wind power capacity. Yet, despite siting most wind farms in the wind-rich Northern and Western provinces, electricity generation from Chinese wind farms has not reached the performance benchmarks of the United States and many other advanced economies. This has resulted in lower environmental, economic, and health benefits than anticipated. We develop a framework to explain the performance of the Chinese and US wind sectors, accounting for a comprehensive set of driving factors. We apply this framework to a novel dataset of virtually all wind farms installed in China and the United States through the end of 2013. We first estimate the wind sector’s technical potential using a methodology that produces consistent estimates for both countries. We compare this potential to actual performance and find that Chinese wind farms generated electricity at 37%–45% of their annual technical potential during 2006–2013 compared to 54%–61% in the United States. Our findings underscore that the larger gap between actual performance and technical potential in China compared to the United States is significantly driven by delays in grid connection (14% of the gap) and curtailment due to constraints in grid management (10% of the gap), two challenges of China’s wind power expansion covered extensively in the literature. However, our findings show that China’s underperformance is also driven by suboptimal turbine model selection (31% of the gap), wind farm siting (23% of the gap), and turbine hub heights (6% of the gap)—factors that have received less attention in the literature and, crucially, are locked-in for the lifetime of wind farms. This suggests that besides addressing grid connection delays and curtailment, China will also need policy measures to address turbine siting and technology choices to achieve its national goals and increase utilization up to US levels.

  18. Wind energy barometer - EurObserv'ER - February 2015

    International Nuclear Information System (INIS)

    2015-02-01

    The 2014 global wind energy market surged and set a new record after the previous year's slowdown. More than 52 GW of capacity was installed across the world compared to a little less than 37 GW in 2013. Global wind energy took a 41.4% leap in 2014 to culminate in more than 371 GW of installed capacity

  19. Model based active power control of a wind turbine

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Soltani, Mohsen; Poulsen, Niels Kjølstad

    2014-01-01

    in the electricity market that selling the reserve power is more profitable than producing with the full capacity. Therefore wind turbines can be down-regulated and sell the differential capacity as the reserve power. In this paper we suggest a model based approach to control wind turbines for active power reference...

  20. Indirect solar wind geothermal: Alternative energy sources 4, volume 4

    Science.gov (United States)

    Veziroglu, T. N.

    The utilities are obliged to provide electricity in a reliable and cost effective manner. Some unique problems posed by large scale wind turbines as an electricity source have to be considered. A value model is presented which is based upon the fuel displacement capability and the capacity displacement capability of wind turbines. The amount of fossil fuels which is saved by wind turbines depends on the forecasted wind power output, the actual power output fluctuations of the wind turbines and on system operation. The highly controversial capacity credit of wind turbines is discussed under the aspect of system reliability. It is shown that calculations of the capacity credit should be based upon detailed investigations with regard to the time dependence of the hourly wind power output.

  1. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  2. Wind energy - the right approach

    International Nuclear Information System (INIS)

    Wade-Smith, R.; Pitcher, K.; British Wind Energy Association, London; European Wind Energy Association)

    1992-01-01

    The improved climate afforded by the Electricity Act 1989 and in particular the so-called non-fossil fuel obligation (NFFO) has brought about a significant number of renewable energy proposals and in particular wind power projects. The 1990 Order included nine wind projects - five windfarms ranging from four to twenty four wind turbines and four single turbine proposals. The purpose of this article is to help the reader have a greater understanding of some of the planning issues concerned with a wind power project (in the UK), and the basis upon which obstacles can be overcome on the road to achieving planning approval. (author)

  3. Intelligent control on wind farm

    DEFF Research Database (Denmark)

    Wei, Mu; Chen, Zhe

    2010-01-01

    with the wind farm makes the grid more vulnerable. The communication technologies have been considered as a solution to solve the problems according to the IEC 61400-25 series protocols. This paper presents the significance of communication technologies in wind farm system by the simulations on some practical......Since the renewable energy is popularly applied in power industry, especially the smart grid is fast developing all over the world during these years, the reliable connection between a wind farm and the main grid has been focused on. Due to the difficult control on the wind energy, the connection...... scenarios. By delivering the signals among WTs (wind turbines) and control centers, they both are able to recognize another side’s operation situation and to adjust its own state to realize the optimization. A scenario is designed in this paper, in which a fault occurs in wind farm; then the protection...

  4. 2014 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Daghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hamachi LaCommare, Kristina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hansen, Dana [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States); Buckley, Michael [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Smith, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-06

    Wind power capacity additions in the United States rebounded in 2014, and continued growth through 2016 is anticipated. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—which is available for projects that began construction by the end of 2014. Wind additions are also being driven by recent improvements in the cost and performance of wind power technologies, which have resulted in the lowest power sales prices ever seen in the U.S. wind sector. Growing corporate demand for wind energy and state-level policies play important roles as well. Expectations for continued technological advancements and cost reductions may further boost future growth. At the same time, the prospects for growth beyond 2016 are uncertain. The PTC has expired, and its renewal remains in question. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on growth expectations. These trends, in combination with increasingly global supply chains, have limited the growth of domestic manufacturing of wind equipment. What they mean for wind power additions through the end of the decade and beyond will be dictated in part by future natural gas prices, fossil plant retirements, and policy decisions.

  5. 2015 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Electricity Markets and Policy Group; Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Electricity Markets and Policy Group; Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rand, Joe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Associates, Columbia, MD (United States); Widiss, Rebecca [Exeter Associates, Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tian, Tian [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-03

    Annual wind power capacity additions in the United States surged in 2015 and are projected to continue at a rapid clip in the coming five years. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—having been extended for several years (though with a phase-down schedule, described further on pages 68-69), as well as a myriad of state-level policies. Wind additions are also being driven by improvements in the cost and performance of wind power technologies, yielding low power sales prices for utility, corporate, and other purchasers. At the same time, the prospects for growth beyond the current PTC cycle remain uncertain: growth could be blunted by declining federal tax support, expectations for low natural gas prices, and modest electricity demand growth. This annual report—now in its tenth year—provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2015. The report begins with an overview of key installation-related trends: trends in U.S. wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development; and the quantity of proposed wind power capacity in various interconnection queues in the United States. Next, the report covers an array of wind power industry trends: developments in turbine manufacturer market share; manufacturing and supply-chain developments; wind turbine and component imports into and exports from the United States; project financing developments; and trends among wind power project owners and power purchasers. The report then turns to a summary of wind turbine technology trends: turbine size, hub height, rotor diameter, specific power, and IEC Class. After that, the report discusses wind power performance, cost, and pricing trends. In so doing, it describes

  6. Simulation for Grid Connected Wind Turbines with Fluctuating

    Science.gov (United States)

    Ye, Ying; Fu, Yang; Wei, Shurong

    This paper establishes the whole dynamic model of wind turbine generator system which contains the wind speed model and DFIG wind turbines model .A simulation sample based on the mathematical models is built by using MATLAB in this paper. Research are did on the performance characteristics of doubly-fed wind generators (DFIG) which connected to power grid with three-phase ground fault and the disturbance by gust and mixed wind. The capacity of the wind farm is 9MW which consists of doubly-fed wind generators (DFIG). Simulation results demonstrate that the three-phase ground fault occurs on grid side runs less affected on the stability of doubly-fed wind generators. However, as a power source, fluctuations of the wind speed will run a large impact on stability of double-fed wind generators. The results also show that if the two disturbances occur in the meantime, the situation will be very serious.

  7. Challenges and options for large scale integration of wind power

    International Nuclear Information System (INIS)

    Tande, John Olav Giaever

    2006-01-01

    Challenges and options for large scale integration of wind power are examined. Immediate challenges are related to weak grids. Assessment of system stability requires numerical simulation. Models are being developed - validation is essential. Coordination of wind and hydro generation is a key for allowing more wind power capacity in areas with limited transmission corridors. For the case study grid depending on technology and control the allowed wind farm size is increased from 50 to 200 MW. The real life example from 8 January 2005 demonstrates that existing marked based mechanisms can handle large amounts of wind power. In wind integration studies it is essential to take account of the controllability of modern wind farms, the power system flexibility and the smoothing effect of geographically dispersed wind farms. Modern wind farms contribute to system adequacy - combining wind and hydro constitutes a win-win system (ml)

  8. 2016 State of Wind Development in the United States by Region

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, Ruth [National Renewable Energy Lab. (NREL), Golden, CO (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Baring-Gould, Ian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-19

    Significant expansion of wind energy development will be required to achieve the scenarios outlined in the U.S. Department of Energy's (DOE)'s Wind Vision: 20% wind energy by 2030 and 35% wind energy by 2050. Wind energy currently provides nearly 5% of the nation's electricity but has the potential to provide much more. The wind industry and the DOE's Wind Energy Technologies Office are addressing technical wind energy challenges, such as reducing turbine costs and increasing energy production and reliability. The Office recognizes that public acceptance of wind energy can be challenging, depending on the proximity of proposed wind farms to local populations. Informed decision makers and communities equipped with unbiased information about the benefits and impacts of wind energy development are better prepared to navigate the sometimes contentious development process. In 2014, DOE established six Regional Resource Centers (RRCs) across the United States to communicate unbiased, credible information about wind energy to stakeholders through regional networks. The RRCs provide ready access to this information to familiarize the public with wind energy; raise awareness about potential benefits and issues; and disseminate data on siting considerations such as turbine sound and wildlife habitat protection. This document summarizes the status and drivers for U.S. wind energy development during 2016. RRC leaders provided a report of wind energy development in their regions, which was combined with findings from National Renewable Energy Laboratory (NREL) researchers to provide an account of the state of the regions, as well as updates on developments in individual states. NREL researchers and state partners added updates for all states that are not directly supported by an RRC. Accounts for each region include updates on renewable portfolio standards, the Clean Power Plan, workforce development, manufacturing and economic development, and individual

  9. Transformer sound level caused by core magnetostriction and winding stress displacement variation

    Directory of Open Access Journals (Sweden)

    Chang-Hung Hsu

    2017-05-01

    Full Text Available Magnetostriction caused by the exciting variation of the magnetic core and the current conducted by the winding wired to the core has a significant result impact on a power transformer. This paper presents the sound of a factory transformer before on-site delivery for no-load tests. This paper also discusses the winding characteristics from the transformer full-load tests. The simulation and the measurement for several transformers with capacities ranging from 15 to 60 MVA and high voltage 132kV to low voltage 33 kV are performed. This study compares the sound levels for transformers by no-load test (core/magnetostriction and full-load test (winding/displacement ε. The difference between the simulated and the measured sound levels is about 3dB. The results show that the sound level depends on several parameters, including winding displacement, capacity, mass of the core and windings. Comparative results of magnetic induction of cores and the electromagnetic force of windings for no-load and full-load conditions are examined.

  10. An extensive evaluation of wind resource using new methods and strategies for development and utilizing wind power in Mah-shahr station in Iran

    International Nuclear Information System (INIS)

    Nedaei, Mojtaba; Assareh, Ehsanolah; Biglari, Mojtaba

    2014-01-01

    that the “Nordex N100/2500” with a rated power of 2500 kW has the lowest price of electricity and has a high level of capacity factor. Thus in the second phase of the study an extensive economic evaluation of installing 10 MW wind park using 4 Nordex N100/2500 wind turbines was performed on the RETScreen® international simulation software. For this purpose, four main scenarios have been taken into consideration. It was revealed that in the second scenario by assumption of the new proposed feed-in-tariff rate (4400 rials), the return period of investment was significantly reduced. It has been demonstrated that the government’s new policy for increasing the feed-in-tariff rate has been very effective for improving the financial viability of the proposed wind farm. In the final steps, effects of the clean development strategies have been taken into account

  11. On the market of wind with hydro-pumped storage systems in autonomous Greek islands

    International Nuclear Information System (INIS)

    Caralis, G.; Zervos, A.; Rados, K.

    2010-01-01

    In autonomous islands, the wind penetration is restricted due to technical reasons related with the safe operation of the electrical systems. The combined use of wind energy with pumped storage (WPS) is considered as a mean to exploit the abundant wind potential, increase the wind installed capacity and substitute conventional peak supply. In this paper, the experience gained from the analysis of WPS in three specific islands is used towards the estimation of the WPS market in autonomous Greek islands. Parameterized diagrams and a methodology towards the pre-dimensioning and initial design of the WPS are proposed and used towards the estimation of the market in autonomous Greek islands. The objective is to make an initial general prefeasibility study of WPS prospects in the autonomous Greek islands. Results show that there is a significant market for WPS in Greece and the development cost of WPS is competitive to the fuel cost of local power stations in autonomous islands. (author)

  12. Potential market of wind farm in China

    Energy Technology Data Exchange (ETDEWEB)

    Pengfei Shi [Hydropower Planning General Inst., Beijing (China)

    1996-12-31

    Wind energy resources are abundant in China, in southeast coast area along with the rapid economic growth, electricity demand has been sharply increased, due to complex terrain detailed assessments are in urgent need. Advanced methodology and computer model should be developed. In this paper the existing wind farms, installed capacity, manufacturers share and projects in the near future are presented. For further development of wind farm in large scale, different ways of local manufacturing wind turbine generators (WTG) are going on. Current policy and barriers are analyzed. 4 refs., 2 figs., 4 tabs.

  13. Wind cannot be Directed but Sails can be Adjusted for Malaysian Renewable Energy Progress

    Science.gov (United States)

    Palanichamy, C.; Nasir, Meseret; Veeramani, S.

    2015-04-01

    Wind energy has been the promising energy technology since 1980s in terms of percentage of yearly growth of installed capacity. However the progress of wind energy has not been evenly distributed around the world. Particularly, in South East Asian countries like Malaysia and Singapore, though the Governments are keen on promoting wind energy technology, it is not well practiced due to the low wind speeds. Owing to the recent advancements in wind turbine designs, even Malaysia is well suited for wind energy by proper choice of wind turbines. As evidence, this paper presents successful wind turbines with simulated study outcomes to encourage wind power developments in Malaysia.

  14. Wind cannot be Directed but Sails can be Adjusted for Malaysian Renewable Energy Progress

    International Nuclear Information System (INIS)

    Palanichamy, C; Veeramani, S; Nasir, Meseret

    2015-01-01

    Wind energy has been the promising energy technology since 1980s in terms of percentage of yearly growth of installed capacity. However the progress of wind energy has not been evenly distributed around the world. Particularly, in South East Asian countries like Malaysia and Singapore, though the Governments are keen on promoting wind energy technology, it is not well practiced due to the low wind speeds. Owing to the recent advancements in wind turbine designs, even Malaysia is well suited for wind energy by proper choice of wind turbines. As evidence, this paper presents successful wind turbines with simulated study outcomes to encourage wind power developments in Malaysia. (paper)

  15. PREFACE: The Science of Making Torque from Wind

    Science.gov (United States)

    Sørensen, Jens N.; Hansen, Martin O. L.; Hansen, Kurt S.

    2007-06-01

    Wind energy has for many years been the fastest developing energy source. This is most easily demonstrated by some numbers. In 2006 a total of about 7.6 GW of new wind energy capacity was installed in Europe, an increase of more than 20% over the year before. Europe's cumulative wind power capacity has now reached more than 50 GW. At the beginning of 2007, the European Commission published its new energy strategy, which recommends a 20% target for the share of renewable energy in the EU by 2020. New initiatives have also been launched in the U.S. and Asia to comply with the need for a reduction in the emissions of CO2 and to create a cleaner environment based on renewable energy. Since 1980 the average size of wind turbines has grown by a factor of 100 from 50 kW to today's 5 MW machines. This enormous increase in size would not have been possible without the involvement of well-educated engineers and scientists. Research institutions and universities have contributed significantly to this development by providing basic knowledge as well as sophisticated software and measuring campaigns. In order to comply with the fast development in wind turbine technology there is a growing need for both well-educated scientists and for a further development of sophisticated predictive tools. For many years progress in technology development was presented at the European Wind Energy Conference (EWEC) conference organized by the European Wind Energy Association (EWEA). Because of the maturity of the industry and the many important topics involved in the continued development of wind power, the relative share of the technical and scientific sessions at EWEC has decreased dramatically. Hence it was desirable to find an alternative forum for the exchange of ideas and techniques within more specialized topics. As a consequence the European Academy of Wind Energy (EAWE) was created in 2003 in order to support education and research. It is the intention of this special topics

  16. Wind Generators

    Science.gov (United States)

    1989-01-01

    When Enerpro, Inc. president, Frank J. Bourbeau, attempted to file a patent on a system for synchronizing a wind generator to the electric utility grid, he discovered Marshall Space Flight Center's Frank Nola's power factor controller. Bourbeau advanced the technology and received a NASA license and a patent for his Auto Synchronous Controller (ASC). The ASC reduces generator "inrush current," which occurs when large generators are abruptly brought on line. It controls voltage so the generator is smoothly connected to the utility grid when it reaches its synchronous speed, protecting the components from inrush current damage. Generator efficiency is also increased in light winds by applying lower than rated voltage. Wind energy is utilized to drive turbines to generate electricity for utility companies.

  17. Wind turbine

    Science.gov (United States)

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  18. Direct employment in the wind energy sector: An EU study

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Maria Isabel [Department of Economic Analysis, University of Alcala de Henares, 28802 Alcala de Henares (Spain)], E-mail: isabel.blanco@ewea.org; Rodrigues, Gloria [Department of Economic Analysis, University of Alcala de Henares, 28802 Alcala de Henares (Spain)

    2009-08-15

    Wind energy is often said to have positive effects on employment, but few studies have systematically dealt with this matter. This article presents estimates of direct wind energy employment in all EU countries, gathered for the first time. By using a thematic survey, the authors have been able to analyse aspects such as gender distribution, company profiles and the shortage of skilled workers reported by wind energy companies. The outcomes show that wind energy deployment creates a significant number of jobs (over 104,000 in 2008), and does so at a time when other energy sectors are shrinking. There is a clear relationship between MW installed and number of jobs, but the use of a single EU job/MW ratio is not feasible, due to differences in the export/import capacity. Wind turbine manufacturers-including major sub-components-are responsible for the lion's share of the jobs, and there is a marked prevalence of males in the workforce. The scarcity of specialist roles-project managers, engineers and O and M technicians-is not likely to be solved unless a series of educational, mobility and dissemination measures are put into practice.

  19. Direct employment in the wind energy sector. An EU study

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Maria Isabel; Rodrigues, Gloria [Department of Economic Analysis, University of Alcala de Henares, 28802 Alcala de Henares (Spain)

    2009-08-15

    Wind energy is often said to have positive effects on employment, but few studies have systematically dealt with this matter. This article presents estimates of direct wind energy employment in all EU countries, gathered for the first time. By using a thematic survey, the authors have been able to analyse aspects such as gender distribution, company profiles and the shortage of skilled workers reported by wind energy companies. The outcomes show that wind energy deployment creates a significant number of jobs (over 104,000 in 2008), and does so at a time when other energy sectors are shrinking. There is a clear relationship between MW installed and number of jobs, but the use of a single EU job/MW ratio is not feasible, due to differences in the export/import capacity. Wind turbine manufacturers - including major sub-components - are responsible for the lion's share of the jobs, and there is a marked prevalence of males in the workforce. The scarcity of specialist roles - project managers, engineers and O and M technicians - is not likely to be solved unless a series of educational, mobility and dissemination measures are put into practice. (author)

  20. Direct employment in the wind energy sector: An EU study

    International Nuclear Information System (INIS)

    Blanco, Maria Isabel; Rodrigues, Gloria

    2009-01-01

    Wind energy is often said to have positive effects on employment, but few studies have systematically dealt with this matter. This article presents estimates of direct wind energy employment in all EU countries, gathered for the first time. By using a thematic survey, the authors have been able to analyse aspects such as gender distribution, company profiles and the shortage of skilled workers reported by wind energy companies. The outcomes show that wind energy deployment creates a significant number of jobs (over 104,000 in 2008), and does so at a time when other energy sectors are shrinking. There is a clear relationship between MW installed and number of jobs, but the use of a single EU job/MW ratio is not feasible, due to differences in the export/import capacity. Wind turbine manufacturers-including major sub-components-are responsible for the lion's share of the jobs, and there is a marked prevalence of males in the workforce. The scarcity of specialist roles-project managers, engineers and O and M technicians-is not likely to be solved unless a series of educational, mobility and dissemination measures are put into practice.

  1. A thermal storage capacity market for non dispatchable renewable energies

    Science.gov (United States)

    Bennouna, El Ghali; Mouaky, Ammar; Arrad, Mouad; Ghennioui, Abdellatif; Mimet, Abdelaziz

    2017-06-01

    Due to the increasingly high capacity of wind power and solar PV in Germany and some other European countries and the high share of variable renewable energy resources in comparison to fossil and nuclear capacity, a power reserve market structured by auction systems was created to facilitate the exchange of balance power capacities between systems and even grid operators. Morocco has a large potential for both wind and solar energy and is engaged in a program to deploy 2000MW of wind capacity by 2020 and 3000 MW of solar capacity by 2030. Although the competitiveness of wind energy is very strong, it appears clearly that the wind program could be even more ambitious than what it is, especially when compared to the large exploitable potential. On the other hand, heavy investments on concentrated solar power plants equipped with thermal energy storage have triggered a few years ago including the launching of the first part of the Nour Ouarzazate complex, the goal being to reach stable, dispatchable and affordable electricity especially during evening peak hours. This paper aims to demonstrate the potential of shared thermal storage capacity between dispatchable and non dispatchable renewable energies and particularly CSP and wind power. Thus highlighting the importance of a storage capacity market in parallel to the power reserve market and the and how it could enhance the development of both wind and CSP market penetration.

  2. Investigation on wind energy-compressed air power system.

    Science.gov (United States)

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  3. Spectral decomposition of regulatory thresholds for climate-driven fluctuations in hydro- and wind power availability

    Science.gov (United States)

    Wörman, A.; Bottacin-Busolin, A.; Zmijewski, N.; Riml, J.

    2017-08-01

    Climate-driven fluctuations in the runoff and potential energy of surface water are generally large in comparison to the capacity of hydropower regulation, particularly when hydropower is used to balance the electricity production from covarying renewable energy sources such as wind power. To define the bounds of reservoir storage capacity, we introduce a dedicated reservoir volume that aggregates the storage capacity of several reservoirs to handle runoff from specific watersheds. We show how the storage bounds can be related to a spectrum of the climate-driven modes of variability in water availability and to the covariation between water and wind availability. A regional case study of the entire hydropower system in Sweden indicates that the longest regulation period possible to consider spans from a few days of individual subwatersheds up to several years, with an average limit of a couple of months. Watershed damping of the runoff substantially increases the longest considered regulation period and capacity. The high covariance found between the potential energy of the surface water and wind energy significantly reduces the longest considered regulation period when hydropower is used to balance the fluctuating wind power.

  4. Wind Power Prediction Considering Nonlinear Atmospheric Disturbances

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2015-01-01

    Full Text Available This paper considers the effect of nonlinear atmospheric disturbances on wind power prediction. A Lorenz system is introduced as an atmospheric disturbance model. Three new improved wind forecasting models combined with a Lorenz comprehensive disturbance are put forward in this study. Firstly, we define the form of the Lorenz disturbance variable and the wind speed perturbation formula. Then, different artificial neural network models are used to verify the new idea and obtain better wind speed predictions. Finally we separately use the original and improved wind speed series to predict the related wind power. This proves that the corrected wind speed provides higher precision wind power predictions. This research presents a totally new direction in the wind prediction field and has profound theoretical research value and practical guiding significance.

  5. Wind energy sector in British Columbia

    International Nuclear Information System (INIS)

    2010-01-01

    British Columbia (BC) possesses significant wind energy resources, and many wind energy projects are currently in the planning phase or are already under construction. Wind power policies in the province have been designed to ensure the secure and orderly development of the wind power industry. Policies in the province include a 10-year exemption from participation rents for new projects as well as a policy that has established the maximum permissible noise levels for wind farms located near residential properties. BC's wind power development plan forms part of the province's aim to become electricity self-sufficient by 2016 while ensuring that clean or renewable energy generation accounts for at least 90 per cent of total generation. This guide provided an outline of the province's wind energy sector, and provided a listing of selected wind power operators. Details of new wind power projects were also presented. 11 fig.

  6. 78 FR 29364 - Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4...

    Science.gov (United States)

    2013-05-20

    ...-005, QF07-55-005, QF07-56-005, QF07-257-004] Exelon Corporation, Exelon Wind 1, LLC, Exelon Wind 2, LLC, Exelon Wind 3, LLC, Exelon Wind 4, LLC, Exelon Wind 5, LLC, Exelon Wind 6, LLC, Exelon Wind 7, LLC, Exelon Wind 8, LLC, Exelon Wind 9, LLC, Exelon Wind 10, LLC, Exelon Wind 11, LLC, High Plains...

  7. Modeling wind speed and wind power distributions in Rwanda

    Energy Technology Data Exchange (ETDEWEB)

    Safari, Bonfils [Department of Physics, National University of Rwanda, P.O. Box 117, Huye District, South Province (Rwanda)

    2011-02-15

    Utilization of wind energy as an alternative energy source may offer many environmental and economical advantages compared to fossil fuels based energy sources polluting the lower layer atmosphere. Wind energy as other forms of alternative energy may offer the promise of meeting energy demand in the direct, grid connected modes as well as stand alone and remote applications. Wind speed is the most significant parameter of the wind energy. Hence, an accurate determination of probability distribution of wind speed values is very important in estimating wind speed energy potential over a region. In the present study, parameters of five probability density distribution functions such as Weibull, Rayleigh, lognormal, normal and gamma were calculated in the light of long term hourly observed data at four meteorological stations in Rwanda for the period of the year with fairly useful wind energy potential (monthly hourly mean wind speed anti v{>=}2 m s{sup -1}). In order to select good fitting probability density distribution functions, graphical comparisons to the empirical distributions were made. In addition, RMSE and MBE have been computed for each distribution and magnitudes of errors were compared. Residuals of theoretical distributions were visually analyzed graphically. Finally, a selection of three good fitting distributions to the empirical distribution of wind speed measured data was performed with the aid of a {chi}{sup 2} goodness-of-fit test for each station. (author)

  8. Wind-To-Hydrogen Energy Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

    2009-04-24

    WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the

  9. Attitude and acceptance of offshore wind farms

    DEFF Research Database (Denmark)

    Ladenburg, Jacob; Möller, B.

    2011-01-01

    farms attributes on attitude towards offshore wind farms. The results point towards that the travel time and the attributes of the nearest offshore wind farm influence the attitude significantly. Travel time has mixed effects on the attitude, whilst offshore wind farms with many turbines generate more...... a novel contribution to this field. First of all, we give a thorough review of the studies that have analysed the relation between experience with wind turbines and attitude. In addition, we supplement the review by analysing the effect of travel distance to the nearest offshore wind farm and the wind...

  10. Drivers of imbalance cost of wind power

    DEFF Research Database (Denmark)

    Obersteiner, C.; Siewierski, T.; Andersen, Anders

    2010-01-01

    In Europe an increasing share of wind power is sold on the power market. Therefore more and more wind power generators become balancing responsible and face imbalance cost that reduce revenues from selling wind power. A comparison of literature illustrates that the imbalance cost of wind power...... varies in a wide range. To explain differences we indentify parameters influencing imbalance cost and compare them for case studies in Austria, Denmark and Poland. Besides the wind power forecast error also the correlation between imbalance and imbalance price influences imbalance cost significantly...... of imperfect forecast is better suited to reflect real cost incurred due to inaccurate wind power forecasts....

  11. Are Wind Power and Hydropower Complements or Competitors? An Analysis of Ecosystem Service Constraints in the Roanoke Basin

    Science.gov (United States)

    Reed, P. M.; Fernandez, A. R.; Blumsack, S.

    2011-12-01

    Hydropower can provide inexpensive, flexible fill-in power to compensate for intermittent renewable generation. Policies for hydropower dams maintain multiple services beyond electric generation, including environmental protection, flood control and recreation. We model the decision of a hydroelectric generator to shift some of its power production capacity away from the day-ahead energy market into a "wind-following" service that smoothes the intermittent production of wind turbines. Offering such a service imposes both private and social opportunity costs. Since fluctuations in wind energy output are not perfectly correlated with day-ahead energy prices, a wind-following service will necessarily affect generator revenues. Seasonal wind patterns produce conflicts with the goal of managing rivers for "ecosystem services" - the maintenance or enhancement of downstream ecosystems. We illustrate our decision model using the Kerr Dam in PJM's territory in North Carolina. We simulate the operation of Kerr Dam over a three-year period that features hydrologic variability from normal water years to extreme drought conditions. We use an optimization framework to estimate reservation prices for Kerr Dam offering wind-following services in the PJM market. Wind-following may be profitable for Kerr Dam at low capacity levels during some time periods if ecosystems services are neglected and if side payments, or reserves-type payments, are provided. Wind-following with ecosystem services yields revenue losses that typically cannot be recovered with reserves market payments. Water release patterns are inconsistent with ecosystem-services goals when Kerr Dam dedicates significant capacity to wind-following, particularly in drought years.

  12. Hydroeconomic Analysis of the Balance between Renewable Wind Energy, Hydropower, and Ecosystems Services in the Roanoke River Basin

    Science.gov (United States)

    Fernandez, A.; Blumsack, S.; Reed, P.

    2012-04-01

    Hydropower can provide inexpensive, flexible fill-in power to compensate for intermittent renewable generation. Policies for hydropower dams maintain multiple services beyond electric generation, including environmental protection, flood control and recreation. We model the decision of a hydroelectric generator to shift some of its power production capacity away from the day-ahead energy market into a "wind-following" service that smoothes the intermittent production of wind turbines. Offering such a service imposes both private and social opportunity costs. Since fluctuations in wind energy output are not perfectly correlated with day-ahead energy prices, a wind-following service will necessarily affect generator revenues. Seasonal wind patterns produce conflicts with the goal of managing rivers for "ecosystem services" - the maintenance or enhancement of downstream ecosystems. We illustrate our decision model using the Kerr Dam in PJM's territory in North Carolina. We simulate the operation of Kerr Dam over a three-year period that features hydrologic variability from normal water years to extreme drought conditions. We use an optimization framework to estimate reservation prices for Kerr Dam offering wind-following services in the PJM market. Wind-following may be profitable for Kerr Dam at low capacity levels during some time periods if ecosystems services are neglected and if side payments, or reserves-type payments, are provided. Wind-following with ecosystem services yields revenue losses that typically cannot be recovered with reserves market payments. Water release patterns are inconsistent with ecosystem-services goals when Kerr Dam dedicates significant capacity to wind-following, particularly in drought years.

  13. Wind energy - The facts. An analysis of wind energy in the EU-25

    International Nuclear Information System (INIS)

    2004-02-01

    Since the previous edition of Wind Enera - The Facts was published five years ago, the wind energy sector has undergone rapid change and transformation. There has been an explosion in demand for and Interest in a cleaner energy world from politicians, institutions, policy makers and regulators, the media, commentators and the general public. Such interest necessitates a greater depth of understanding of the wind power sector if informed choices and policy decisions are to be made. The European Wind Energy Association (EWEA), and the European Commission's Directorate General for Transport' and Energy have collaborated on this report to provide a detailed overview of the wind power sector. Wind Enera - The Facts provides a comprehenslve overview of the essential issues concerning wind power today: technology, cost, prices, environment, industry and employment, market, and research and development. Wind energy is a relatively young but rapidly expanding industry. Over the past decade, global installed capacity has increased from 2,500 megawatts (MW) in 1992 to just over 40,000 MW at the end of 2003, at an annual growth rate of near 30%. Almost three quarters of this capacity has been installed in Europe. Penetration levels in the electricity sector have reached 20% in Denmark and about 5% in both Germany and Spain. The north German state of Schleswig-Holstein has 1,800 MW of installed wind capacity, enough to meet 30% of the region's total electricity demand, while in Navarra, in Spain, 50% of consumption is met by wind power. If positive policy support continues to develop, EWEA has projected that wind power will achieve an installed capacity of 75,000 MW in the EU-15 by 2010. This would represent an overall contribution to electricity supply of 5.5%. By 2020, this figure is expected to increase to more than 12%, with wind power providing energy equal to the demand of 195 million European household consumers. (au)

  14. Marketing Strategic Choices for Wind Technology in China : case: Chinese Domestic Wind Technology Companies

    OpenAIRE

    Shi, Yi

    2011-01-01

    There are almost 80 wind turbine manufacturers in China. However, the supportive government policies are the fact behind the rapid growth of those case companies. In reality, there are less than 10 Chinese wind turbine manufacturers with actual production capacity. Most of them lack core technology and depend in many ways on state patronage. The current situation is worrisome. Therefore, the correct comprehension of wind power market conditions and the consequent adoption of right marketing s...

  15. Marketing strategic choice for wind power technology in China : case: Chinese domestic wind technology companies

    OpenAIRE

    Shi, Yi

    2011-01-01

    There are almost 80 wind turbine manufacturers in China. However, the supportive government policies are the fact behind the rapid growth of those case companies. In reality, there are less than 10 Chinese wind turbine manufacturers with actual production capacity. Most of them lack core technology and depend in many ways on state patronage. The current situation is worrisome. Therefore, the correct comprehension of wind power market conditions and the consequent adoption of right marketing s...

  16. Coastal Ohio Wind Project

    Energy Technology Data Exchange (ETDEWEB)

    Gorsevski, Peter [Bowling Green State Univ., OH (United States); Afjeh, Abdollah [Univ. of Toledo, OH (United States); Jamali, Mohsin [Univ. of Toledo, OH (United States); Bingman, Verner [Bowling Green State Univ., OH (United States)

    2014-04-04

    using different evaluation criteria, and an Android application for collection of field data using mobile and tablet devices . In summary, the simulations of two- and three-blade wind turbines suggested that two-bladed machines could produce comparable annual energy as the three-blade wind turbines but have a lighter tower top weight, which leads to lower cost of energy. In addition, the two-blade rotor configuration potentially costs 20% less than a three blade configuration that produces the same power at the same site. The cost model analysis predicted a potential cost savings of approximately 15% for offshore two-blade wind turbines. The foundation design for a wind turbine in Lake Erie is likely to be driven by ice loads based on the currently available ice data and ice mechanics models. Hence, for Lake Eire, the cost savings will be somewhat smaller than the other lakes in the Great Lakes. Considering the size of cranes and vessels currently available in the Great Lakes, the cost optimal wind turbine size should be 3 MW, not larger. The surveillance data from different monitoring systems suggested that bird and bat passage rates per hour were comparable during heavy migrations in both spring and fall seasons while passage rates were significantly correlated to wind directions and wind speeds. The altitude of migration was higher during heavy migrations and higher over water relative to over land. Notable portions of migration on some spring nights occurred parallel the shoreline, often moving perpendicular to southern winds. The birds approaching the Western basin have a higher propensity to cross than birds approaching the Central basin of Lake Erie and as such offshore turbine development might be a better option further east towards Cleveland than in the Western basin. The high stopover density was more strongly associated with migration volume the following night rather than the preceding night. The processed mean scalar wind speeds with temporal resolutions

  17. Remote Sensing Wind and Wind Shear System.

    Science.gov (United States)

    Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.

  18. An improved market penetration model for wind energy technology forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P D [Helsinki Univ. of Technology, Espoo (Finland). Advanced Energy Systems

    1996-12-31

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  19. An improved market penetration model for wind energy technology forecasting

    International Nuclear Information System (INIS)

    Lund, P.D.

    1995-01-01

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  20. In-operation learning of optimal wind farm operation strategy

    OpenAIRE

    Oliva Gratacós, Joan

    2017-01-01

    In a wind farm, power losses due to wind turbine wake effects can be up to 30-40% under certain conditions. As the global installed wind power capacity increases, the mitigation of wake effects in wind farms is gaining more importance. Following a conventional control strategy, each individual turbine maximizes its own power production without taking into consideration its effects on the performance of downstream turbines. Therefore, this control scheme results in operation con...

  1. An improved market penetration model for wind energy technology forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Lund, P.D. [Helsinki Univ. of Technology, Espoo (Finland). Advanced Energy Systems

    1995-12-31

    An improved market penetration model with application to wind energy forecasting is presented. In the model, a technology diffusion model and manufacturing learning curve are combined. Based on a 85% progress ratio that was found for European wind manufactures and on wind market statistics, an additional wind power capacity of ca 4 GW is needed in Europe to reach a 30 % price reduction. A full breakthrough to low-cost utility bulk power markets could be achieved at a 24 GW level. (author)

  2. Short-Term Optimal Operation of a Wind-PV-Hydro Complementary Installation: Yalong River, Sichuan Province, China

    Directory of Open Access Journals (Sweden)

    Xinshuo Zhang

    2018-04-01

    Full Text Available How to effectively use clean renewable energy to improve the capacity of the power grid to absorb new energy and optimize the power grid structure has become one of China’s current issues. The Yalong River Wind-PV-Hydro complementary clean energy base was chosen as the research object from which to analyze the output complementarity principle and characteristics of wind farms, photovoltaic power plants, and hydropower stations. Then, an optimization scheduling model was established with the objective of minimizing the amount of abandoned wind and photovoltaic power and maximizing the stored energy in cascade hydropower stations. A Progress Optimality Algorithm (POA was used for the short-term optimal operation of Wind-PV-Hydro combinations. The results show that use of cascaded hydropower storage capacity can compensate for large-scale wind power and photovoltaic power, provide a relatively sustained and stable power supply for the grid. Wind-PV-Hydro complementary operation not only promotes wind power and photovoltaic power consumption but also improves the efficiency of using the original transmission channel of hydropower. This is of great significance to many developing countries in formatting a new green approach, realizing low-carbon power dispatch and trade and promoting regional economic development.

  3. An Optimization Model for Large–Scale Wind Power Grid Connection Considering Demand Response and Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2014-11-01

    Full Text Available To reduce the influence of wind power output uncertainty on power system stability, demand response (DRPs and energy storage systems (ESSs are introduced while solving scheduling optimization problems. To simulate wind power scenarios, this paper uses Latin Hypercube Sampling (LHS to generate the initial scenario set and constructs a scenario reduction strategy based on Kantorovich distance. Since DRPs and ESSs can influence the distribution of demand load, this paper constructs a joint scheduling optimization model for wind power, ESSs and DRPs under the objective of minimizing total coal cost, and constraints of power demand and supply balance, users’ demand elasticity, thermal units’ startup-shutdown, thermal units’ output power climbing and wind power backup service. To analyze the influences of ESSs and DRPs on system wind power consumption capacity, example simulation is made in a 10 thermal units system with a 1000 MW wind farm and 400 MW energy storage systems under four simulation scenarios. The simulation results show that the introduction of DRPs and ESSs could promote system wind power consumption capacity with significantly economic and environment benefits, which include less coal consumption and less pollutant emission; and the optimization effect reaches the optimum when DRPs and ESSs are both introduced.

  4. Wind energy resources assessment for Yanbo, Saudi Arabia

    International Nuclear Information System (INIS)

    Rehman, Shafiqur

    2004-01-01

    The paper presents long term wind data analysis in terms of annual, seasonal and diurnal variations at Yanbo, which is located on the west coast of Saudi Arabia. The wind speed and wind direction hourly data for a period of 14 years between 1970 and 1983 is used in the analysis. The analysis showed that the seasonal and diurnal pattern of wind speed matches the electricity load pattern of the location. Higher winds of the order of 5.0 m/s and more were observed during the summer months of the year and noon hours (09:00 to 16:00 h) of the day. The wind duration availability is discussed as the percent of hours during which the wind remained in certain wind speed intervals or bins. Wind energy calculations were performed using wind machines of sizes 150, 250, 600, 800, 1000, 1300, 1500, 2300 and 2500 kW rated power. Wind speed is found to remain above 3.5 m/s for 69% of the time during the year at 40, 50, 60, and 80 m above ground level. The energy production analysis showed higher production from wind machines of smaller sizes than the bigger ones for a wind farm of 30 MW installed capacity. Similarly, higher capacity factors were obtained for smaller wind machines compared to larger ones

  5. Energy management and grid stability aspects of wind energy integration

    International Nuclear Information System (INIS)

    Saulnier, B.; Krau, S.; Gagnon, R.

    2002-01-01

    Wind energy management on power grids was discussed with reference to a wind integration study in Vermont and new projects at Hydro-Quebec's electricity research institute (IREQ (Recherche en Electricite du Quebec)). Modeling concepts for wind integration were presented for hydro/wind systems and for thermal/wind systems. A large scale wind power integration study for the Quebec/Labrador area has shown that large wind power capacity can be integrated in the existing power system without special investment. The Canadian Wind Energy Association's goal of integrating 10,000 MW of wind in Canadian grids appears realistic from a technical point of view. The Vermont thermal system type project involves the integration of wind and biomass. The project objective is to evaluate the impacts, by 2010, of high penetration levels of renewable energy on the Vermont grid. The study showed that wind power can represent a large portion of Vermont's total generation because transmission capacities to get to other regions are large, plus Vermont has ties with other power systems. The Hydro-Quebec load and Vermont wind are well correlated, meaning that Hydro-Quebec's peak is driven by winter electric space heating demand, and Vermont's best wind resource period is also in the winter. Model results show an economic benefit of adding wind power in the Vermont Power system when it is managed with Quebec's generation assets. The impact that this would have on the transmission system was also discussed. 1 tab., 13 figs

  6. How much can wind reduce the French CO2 emissions?

    International Nuclear Information System (INIS)

    Flocard, H.

    2010-03-01

    This report analyses the information recently made available by the French electricity transport network RTE (Reseau de Transport d'Electricite). It consists in a detailed data set which gives the time evolution of the power either consumed by the country or generated with the diverse production modes exploited by utilities within France. For the first time the French public is also provided some analytical information on a major renewable energy: wind. Our analysis shows that the French wind-turbine-fleet efficiency over last fall-winter semester is 24.3%. The wind production displays the strong fluctuations expected for this intermittent non-controllable energy. It is observed that the time and energy distributions of the power delivered by the French wind turbines are not related to the increased electricity needs which occurred during a semester where a few cold waves hit the country. As a consequence, the controllable productions which already ensure the balance of consumption versus production had also to carry the extra load associated with the handling of wind fluctuations. In a second part of this report, based on the actual data provided by RTE, the report determines the maximal reduction of the CO 2 emissions which can be expected from the completion of the national wind energy program endorsed by the government. We conclude that in the absence of a significant strengthening of the electric network and an increase of the national energy storage capacity, the wind energy policy decided by the French government will only yield limited results on the reduction of both the GHG emissions and the country reliance on fossil fuel burning plants. (author)

  7. Model of wind shear conditional on turbulence and its impact on wind turbine loads

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.

    2015-01-01

    proposed for flat terrain and that can significantly decrease the uncertainty associated with fatigue load predictions for wind turbines with large rotors. An essential contribution is the conditioning of wind shear on the 90% quantile of wind turbulence, such that the appropriate magnitude of the design...... fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over...... is most pronounced on the blade flap loads. It is further shown that under moderate wind turbulence, the wind shear exponents may be over-specified in the design standards, and a reduction of wind shear exponent based on the present measurements can contribute to reduced fatigue damage equivalent loads...

  8. Global wind energy outlook 2006

    International Nuclear Information System (INIS)

    2006-09-01

    The global market for wind power has been expanding faster than any other source of renewable energy. From just 4,800 MW in 1995 the world total has multiplied more than twelve-fold to reach over 59,000 MW at the end of 2005. The international market is expected to have an annual turnover in 2006 of more than euro 13 billion, with an estimated 150,000 people employed around the world. The success of the industry has attracted investors from the mainstream finance and traditional energy sectors. In a number of countries the proportion of electricity generated by wind power is now challenging conventional fuels. The Global Wind Energy Outlook 2006 reports that over a third of the world's electricity - crucially including that required by industry - can realistically be supplied by wind energy by the middle of the century. The report provides an industry blueprint that explains how wind power could supply 34% of the world's electricity by 2050. Most importantly, it concludes that if wind turbine capacity implemented on this scale it would save 113 billion tonnes of CO2 from entering the atmosphere by 2050. This places wind power as one of the world's most important energy sources for the 21st century. The 'Global Wind Energy Outlook 2006' runs three different scenarios for wind power - a Reference scenario based on figures from the International Energy Agency (IEA); a Moderate version which assumes that current targets for renewable energy are successful; and an advanced version assuming that all policy options in favour of renewables have been adopted. These are then set against two scenarios for global energy demand. Under the Reference scenario, growth in demand is again based on IEA projections; under the High Energy Efficiency version, a range of energy efficiency measures result in a substantial reduction in demand

  9. Wind energy

    International Nuclear Information System (INIS)

    Portilla S, L.A.

    1995-01-01

    The wind energy or eolic energy is a consequence of solar energy, the one which is absorbed by the atmosphere and is transformed into energy of movement of large bulks of air. In this process the atmosphere acts as the filter to the solar radiation and demotes the ultraviolet beams that result fatal to life in the Earth. The ionosphere is the most external cap and this is ionized by means of absorption process of ultraviolet radiation arising to the Sun. The atmosphere also acts as a trap to the infrared radiation, it that results from the continual process of energetic degradation. In this way, the interaction between Earth - Atmospheres, is behaved as a great greenhouse, maintaining the constant temperatures, including in the dark nights. Processes as the natural convection (that occur by the thermodynamic phenomenon), equatorial calmness, trade winds and against trade winds and global distribution of the air currents are described. The other hand, techniques as the transformation of the wind into energy and its parameters also are shown

  10. Wind power

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the wind power. It presents the principles, the technology takes off, its applications and technology focus, the global market trends and the outlooks and Total commitments in the domain. (A.L.B.)

  11. Wind Energy Japan

    Energy Technology Data Exchange (ETDEWEB)

    Komatsubara, Kazuyo [Embassy of the Kingdom of the Netherlands, Tokyo (Japan)

    2012-06-15

    An overview is given of wind energy in Japan: Background; Wind Energy in Japan; Japanese Wind Energy Industry; Government Supports; Useful Links; Major Japanese Companies; Profiles of Major Japanese Companies; Major Wind Energy Projects in Japan.

  12. Wind energy systems

    Science.gov (United States)

    Stewart, H. J.

    1978-01-01

    A discussion on wind energy systems involved with the DOE wind energy program is presented. Some of the problems associated with wind energy systems are discussed. The cost, efficiency, and structural design of wind energy systems are analyzed.

  13. Using wind tunnels to predict bird mortality in wind farms: the case of griffon vultures.

    Science.gov (United States)

    de Lucas, Manuela; Ferrer, Miguel; Janss, Guyonne F E

    2012-01-01

    Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed). We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality.

  14. Using wind tunnels to predict bird mortality in wind farms: the case of griffon vultures.

    Directory of Open Access Journals (Sweden)

    Manuela de Lucas

    Full Text Available BACKGROUND: Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. METHODOLOGY/PRINCIPAL FINDINGS: As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. CONCLUSIONS: Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed. We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality.

  15. Power fluctuation and power loss of wind turbines due to wind shear and tower shadow

    Institute of Scientific and Technical Information of China (English)

    Binrong WEN; Sha WEI; Kexiang WEI; Wenxian YANG; Zhike PENG; Fulei CHU

    2017-01-01

    The magnitude and stability of power output are two key indices of wind turbines.This study investigates the effects of wind shear and tower shadow on power output in terms of power fluctuation and power loss to estimate the capacity and quality of the power generated by a wind turbine.First,wind speed models,particularly the wind shear model and the tower shadow model,are described in detail.The widely accepted tower shadow model is modified in view of the cone-shaped towers of modem large-scale wind turbines.Power fluctuation and power loss due to wind shear and tower shadow are analyzed by performing theoretical calculations and case analysis within the framework of a modified version of blade element momentum theory.Results indicate that power fluctuation is mainly caused by tower shadow,whereas power loss is primarily induced by wind shear.Under steady wind conditions,power loss can be divided into wind farm loss and rotor loss.Wind farm loss is constant at 3α(3α-1)R2/(8H2).By contrast,rotor loss is strongly influenced by the wind turbine control strategies and wind speed.That is,when the wind speed is measured in a region where a variable-speed controller works,the rotor loss stabilizes around zero,but when the wind speed is measured in a region where the blade pitch controller works,the rotor loss increases as the wind speed intensifies.The results of this study can serve as a reference for accurate power estimation and strategy development to mitigate the fluctuations in aerodynamic loads and power output due to wind shear and tower shadow.

  16. SUSTAINABLE CONCRETE FOR WIND TURBINE FOUNDATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    BERNDT,M.L.

    2004-06-01

    The use of wind power to generate electricity continues to grow, especially given commitments by various countries throughout the world to ensure that a significant percentage of energy comes from renewable sources. In order to meet such objectives, increasingly larger turbines with higher capacity are being developed. The engineering aspects of larger turbine development tend to focus on design and materials for blades and towers. However, foundations are also a critical component of large wind turbines and represent a significant cost of wind energy projects. Ongoing wind research at BNL is examining two areas: (a) structural response analysis of wind turbine-tower-foundation systems and (b) materials engineering of foundations. This work is investigating the dynamic interactions in wind turbine systems, which in turn assists the wind industry in achieving improved reliability and more cost efficient foundation designs. The results reported herein cover initial studies of concrete mix designs for large wind turbine foundations and how these may be tailored to reduce cost and incorporate sustainability and life cycle concepts. The approach taken was to investigate material substitutions so that the environmental, energy and CO{sub 2}-impact of concrete could be reduced. The use of high volumes of ''waste'' materials in concrete was examined. These materials included fly ash, blast furnace slag and recycled concrete aggregate. In addition, the use of steel fiber reinforcement as a means to improve mechanical properties and potentially reduce the amount of bar reinforcement in concrete foundations was studied. Four basic mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag and (4) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Variations on these mixes included the addition of 1

  17. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Mijatovic, Nenad

    cryostat design, where a concept with 20 W of heat transfer is achieved. Following the setup description, the focus turns to the electromagnetic design of the HTS machine. Particularly, an approach to increase the performance of HTS coils and the influence of the armature reaction to the HTS field winding...... magnetic characteristic with respect to the critical current. I have showed that the potential for the reduction of HTS conductor can be significant, if the coils are placed strategically, whereby the coils wound with BSCCO performed 40% better depending on the placement in the field winding. The 2G coils...... were less sensitive to the placement which made them particularly useful for high magnetic field regions in the eld winding. The second design approach proposed and tested was to use multiple current supplies which allowed each coil to operate close to its critical current. I have demonstrated...

  18. Lightning protection for wind turbines in Vietnam

    Directory of Open Access Journals (Sweden)

    Thuan Nguyen

    2017-01-01

    Full Text Available Wind energy has become increasingly important in the total electrical energy supply mix in Vietnam over the last few years. Small, kW turbines were installed in isolated areas a decade ago, while wind farms of several MW to few hundred MW are now being connected directly to national grid, with many additional projects in planning or under construction to fulfill an objective of 6% of the total installed capacity by 2030 (approximately 6200 MW of wind energy component. The increase in wind farm generation results in increased damage from lightning. In this paper, the annual frequency of lightning strikes to wind turbines in Vietnam is calculated using electrogeometric model. Reported lightning incidents to three major wind farms in Vietnam are summarized. Possible causes of failure are discussed, and an EMTP simulation for each incident was performed accordingly. The simulations suggest the failure mechanisms as well the potential of improved grounding to reduce lightning induced damage in future windfarms.

  19. Pole-mounted horizontal axis micro-wind turbines: UK field trial findings and market size assessment

    International Nuclear Information System (INIS)

    Sissons, M.F.; James, P.A.B.; Bradford, J.; Myers, L.E.; Bahaj, A.S.; Anwar, A.; Green, S.

    2011-01-01

    This paper discusses the key findings of the pole-mounted turbine (2.5-6 kWp) component of the UK micro-wind trial. The real world performance of horizontal axis turbines is compared with yield estimates based on site wind speed prediction. The distribution of UK agricultural farms is overlaid with wind resource mapping to estimate the number of potential agricultural farm sites for micro-wind. The yield performance of turbines during the monitoring period was observed to be very close to that predicted by NOABL-MCS wind speed estimates. Based on an installation criterion of a maximum 12 year payback time, with a 6% discount rate and micro-generation feed in tariffs available, there are ∼87,000 farm sites for micro-wind in the UK. If 10% of these farms were to install micro-wind turbines (to a capacity of 48 kWp per farm) this would correspond to a capacity of 418 MWp, with an annual generation yield of 1025 GWh, comparable to that of a large, on shore wind farm in the UK. It should be noted that the feed in tariff considered in this paper is that available in the UK in 2011, which, at 26.7 p/kWh (∼30 Euro cents/kWh) represents a significant subsidy. - Highlights: → Estimated 87,000 agricultural farm sites which are economic for pole mounted micro-wind in the UK. → Good agreement between NOABL-MCS yield prediction and site measurements for UK pole mounted turbines. → Pole mounted micro-wind has favourable economics under current UK feed in tariffs.

  20. Wind power report Germany 2014

    International Nuclear Information System (INIS)

    Rohrig, Kurt

    2015-01-01

    Record year 2014. In Germany, the expansion figures attained were so high on land and at sea that the overall new installation figure of 5,188 MW surpassed the previous maximum (from 2002) by more than 60%. With an overall capacity of 39,259 MW, for the first time, wind energy in Germany covers 9.7% of gross power consumption. On the global scale a capacity of more than 51,000 MW has been added - another record high for wind energy installations. Power mix. At 161 TWh, renewable energies in Germany covered 27.8% of gross power consumption and provided for the first time more energy than any other energy source. Coming into force of the new REA in August 2014, modified support schemes caused the expansion of biogas plants and large-scale PV installations to falter. The record expansion seen for wind energy can be interpreted as a pull-forward effect due to the tender procedures coming into force in 2017. Grid integration. Loss of production caused by feed-in management measures rose by 44% to 555 GWh as compared to 2012. Wind turbines were affected in 87% of cases but the impact on PV installations is increasing. Power generation must be more flexible and grids expanded to limit loss of production. Of the 23 expansion projects (1,887 km) in the Electricity Grid Expansion Act, just a quarter of them had been realized by the end of 2014 (463 km). In the preliminary analysis results for the 2014 grid development plan, the extent of grid upgrading and conversion was 3050 km. Offshore, the HelWin 1 grid link with a capacity of 580 MW went online. SylWin 1 and BorWin 2, with a total capacity of 1660 MW, are currently being tested in a trial. In the preliminary analysis results for the 2014 offshore grid development plan, grid connections having an overall capacity of 10.3 GW are planned. Onshore. 2014 saw a total of 44 different turbine types installed in Germany. For the first time, virtually the same number of turbines were added in the 3-4 MW class, as in the 2-3 MW

  1. Analysis of the reduced wake effect for available wind power calculation during curtailment

    NARCIS (Netherlands)

    Sanchez Perez Moreno, S.; Ummels, B. C.; Zaayer, M B

    2017-01-01

    With the increase of installed wind power capacity, the contribution of wind power curtailment to power balancing becomes more relevant. Determining the available power during curtailment at the wind farm level is not trivial, as curtailment changes the wake effects in a wind farm. Current best

  2. Fixed-speed active-stall wind turbines in offshore applications

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Nielsen, Arne Hejde

    2005-01-01

    A large offshore wind farm in the East Danish power system was commissioned in 2003 at Rodsand. The power capacity of the wind farm is 165 MW divided between 72 wind turbines. For this large offshore application, robust and well-known wind technology has been chosen in the form of fixed-speed, ac...

  3. Advanced tools for modeling, design and optimization of wind turbine systems

    DEFF Research Database (Denmark)

    Iov, F.; Hansen, A.D.; Jauch, C.

    2005-01-01

    As wind turbine technology and control has advanced over the last decade, this has led to a high penetration of wind turbines into the power system. Whether it be for a large wind turbine or an offshore wind farm with hundreds of MW power capacity, the electrical system has become more and more i...

  4. Dynamic Federalism and Wind Farm Siting

    Science.gov (United States)

    2014-05-18

    shining through the rotating blades. The turbines can interfere with 19 television and radio reception. Wind farms are known to kill birds and bats...Id. at 332.20 NAT’L WIND COORDINATING COLLABORATIVE, WIND TURBINE INTERACTIONS WITH 21 BIRDS , BATS, AND THEIR HABITATS: A SUMMARY OF RESEARCH...drawbacks, however. Among these, the mechanical and electromagnetic properties of wind turbines pose significant hazards and complications to U.S

  5. Numerical investigation of the optimum wind turbine sitting for domestic flat roofs

    Science.gov (United States)

    Ishfaq, Salman Muhammad; Chaudhry, Hassam Nasarullah

    2018-05-01

    The power capacity of roof mounted wind turbines is dependent on several factors which influence its energy yield. In this paper, an investigation has been carried out using Computational Fluid Dynamics (CFD) to determine flow distribution and establish an optimum mounting location for a small wind turbine on a domestic flat roof. The realisable k-ɛ and SST k-ω turbulence models were compared to establish their consistency with one another with respect to the physical domain. Nine mounting locations were considered for a pole mounted wind turbine. Three windward positions on the upwind side of the flat surfaced building were considered as viable locations for mounting the small wind turbine. Out of the three windward locations, the central upwind (1,0) mounting position was seen to be producing the highest velocity of 5.3 m/s from the available ambient velocity which was 4 m/s. Therefore, this mounting location provided the highest extractable power for the wind turbine. Conclusively, wind properties along with the mounting locations can play a significant role in either enhancing or diminishing the small wind turbine's performance on a domestic flat roof.

  6. On the optimal mix of wind and solar generation in the future Chinese power system

    International Nuclear Information System (INIS)

    Huber, Matthias; Weissbart, Christoph

    2015-01-01

    China is one of the largest and fastest growing economies in the world. Until now, the corresponding growth of electricity consumption has been mainly provided by coal. However, as national reserves are limited and since burning coal leads to severe environmental problems, the employment of alternative sources of energy supply has become an important part of the Chinese energy policy. Recent studies show that wind energy alone could meet all of China's electricity demand. While our results validate these findings with regard to annual production, we look at the hour-by-hour resolution and uncover a major limitation: wind generation will not match the demand at every given point in time. This results in significant periods with over- and undersupply. Our study shows that combining wind and solar generation in the power system reduces overproduction significantly and increases the capacity credit of the combined VRE (variable renewable energy sources). The article demonstrates that up to 70% of VRE comprising 20–30% solar generation in the form of photovoltaics (PV) can be integrated into China's electricity system with moderate storage requirements. We encourage planners to consider those findings in their long-term planning in order to set up a sustainable power system for China at low costs. - Highlights: • Analyzing the potentials for wind and solar generation in China. • Capacity credit of variable renewable energy sources. • Future storage demand for a renewable based Chinese power system. • Defining the optimal mix of wind and solar generation.

  7. Wind power in political whirlwind

    International Nuclear Information System (INIS)

    Morch, Stein

    2002-01-01

    In Norway, according to this article, shifting fair wind and head wind for wind power have changed to unpredictable political whirlwinds. That is, there is great uncertainty with respect to further development of wind power in Norway as well as in nearby markets such as Sweden, Denmark and the Netherlands. The government, represented by Enova, has announced reduced investment grants, and so the realization of a ''green'' market, at home or across the frontiers, becomes very important. The political goal of producing 3 TWh of wind power per year by 2010 apparently is still valid, but it is difficult to see any robust and convincing clarity when it comes to policy instruments and economical frames that will make it possible to reach that goal. In its directive on renewable energy sources in the energy generation, the EU has quoted a total increase in capacity from 14 percent in 1997 to 22 percent in 2010. This has been shared among the member countries as indicative targets and there is great freedom in the selection of policy instruments. At the end of 2002, the wind power production in Norway is 0.3 TWh/year

  8. Bigger and better wind tech

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    This article briefly describes two new wind energy projects. One is the Portland Wind Commercialisation Project in the Portland district of south west Victoria, for which Pacific Hydro Limited was granted Major Project Facilitation Status. The Project consists of a staged development during 2001-2002 of four wind farms in the Portland district on the southwest coast of Victoria with total investment being between $230 million and $250 million. Generation capacity will be between 140 and 150 MW using over 100 wind driven turbines. It is estimated that the annual production of electricity from this Project will be in excess of 500 G Wh which represents an abatement of more than 500,000 tonnes of CO 2 per annum. This is around 5% of Australia's 9,500 G Wh target for renewables. If developed, the project will generate approximately 15 permanent new jobs as well as employment for some 80 during the construction phase and will be subject to normal environmental controls. The Australian industry participation for the Project is envisaged to be in excess of 90% potentially creating up to 500 indirect manufacturing jobs, which may result in substantial economic growth in the region and the emerging renewable energy market. Another company, Western Power, has launched a new renewable energy storage system at Denham, Western Australia, with wind turbine-flywheel hybrid generating system. It is estimated that this project could greatly improve the effectiveness of wind energy for power generation in remote location all over the world

  9. Wind Loads on Structures

    DEFF Research Database (Denmark)

    Dyrbye, Claes; Hansen, Svend Ole

    Wind loads have to be taken into account when designing civil engineering structures. The wind load on structures can be systematised by means of the wind load chain: wind climate (global), terrain (wind at low height), aerodynamic response (wind load to pressure), mechanical response (wind...... pressure to structural response) and design criteria. Starting with an introduction of the wind load chain, the book moves on to meteorological considerations, atmospheric boundary layer, static wind load, dynamic wind load and scaling laws used in wind-tunnel tests. The dynamic wind load covers vibrations...... induced by wind turbulence, vortex shedding, flutter and galloping. The book gives a comprehensive treatment of wind effects on structures and it will be useful for consulting engineers designing wind-sensitive structures. It will also be valuable for students of civil engineering as textbook...

  10. History and development of wind technology

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The demand for energy has been increasing day by day in India due to various reasons such as increasing population, the aspiration for improved living standards, and general economic and industrial growth. But due to the environmental constraints and risks associated with high dependence on fossil fuel-based energy generation, further capacity additions to the conventional centralized methods of power generation would be questionable. However, as a result of the increased attention directed towards alternative forms of energy and methods of conversion, the significance of renewable energy devices operating in the dispersed and decentralized mode as serious components of modern energy supply has been growing. Wind energy is one of the clean and renewable energy sources which hold out the promise of meeting a significant portion of energy demand in the direct grid-connected-modes-stand-alone and remote niche applications (e.g. water pumping, desalination, and telecommunications), in developing countries like India. 2 figs., 4 tabs

  11. Wind power forecasting accuracy and uncertainty in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H.; Miettinen, J.; Sillanpaeae, S.

    2013-04-15

    Wind power cannot be dispatched so the production levels need to be forecasted for electricity market trading. Lower prediction errors mean lower regulation balancing costs, since relatively less energy needs to go through balance settlement. From the power system operator point of view, wind power forecast errors will impact the system net imbalances when the share of wind power increases, and more accurate forecasts mean less regulating capacity will be activated from the real time Regulating Power Market. In this publication short term forecasting of wind power is studied mainly from a wind power producer point of view. The forecast errors and imbalance costs from the day-ahead Nordic electricity markets are calculated based on real data from distributed wind power plants. Improvements to forecasting accuracy are presented using several wind forecast providers, and measures for uncertainty of the forecast are presented. Aggregation of sites lowers relative share of prediction errors considerably, up to 60%. The balancing costs were also reduced up to 60%, from 3 euro/MWh for one site to 1-1.4 euro/MWh to aggregate 24 sites. Pooling wind power production for balance settlement will be very beneficial, and larger producers who can have sites from larger geographical area will benefit in lower imbalance costs. The aggregation benefits were already significant for smaller areas, resulting in 30-40% decrease in forecast errors and 13-36% decrease in unit balancing costs, depending on the year. The resulting costs are strongly dependent on Regulating Market prices that determine the prices for the imbalances. Similar level of forecast errors resulted in 40% higher imbalance costs for 2012 compared with 2011. Combining wind forecasts from different Numerical Weather Prediction providers was studied with different combination methods for 6 sites. Averaging different providers' forecasts will lower the forecast errors by 6% for day-ahead purposes. When combining

  12. Wind Spires as an Alternative Energy Source

    Energy Technology Data Exchange (ETDEWEB)

    Majid Rashidi, Ph.D., P.E.

    2012-10-30

    This report discloses the design and development of an innovative wind tower system having an axisymmetric wind deflecting structure with a plurality of symmetrically mounted rooftop size wind turbines near the axisymmetric structure. The purpose of the wind deflecting structure is to increase the ambient wind speed that in turn results in an overall increase in the power capacity of the wind turbines. Two working prototypes were constructed and installed in the summer of 2009 and 2012 respectively. The system installed in the Summer of 2009 has a cylindrical wind deflecting structure, while the tower installed in 2012 has a spiral-shape wind deflecting structure. Each tower has 4 turbines, each rated at 1.65 KW Name-Plate-Rating. Before fabricating the full-size prototypes, computational fluid dynamic (CFD) analyses and scaled-down table-top models were used to predict the performance of the full-scale models. The performance results obtained from the full-size prototypes validated the results obtained from the computational models and those of the scaled-down models. The second prototype (spiral configuration) showed at a wind speed of 11 miles per hour (4.9 m/s) the power output of the system could reach 1,288 watt, when a typical turbine installation, with no wind deflecting structure, could produce only 200 watt by the same turbines at the same wind speed. At a wind speed of 18 miles per hour (8 m/sec), the spiral prototype produces 6,143 watt, while the power generated by the same turbines would be 1,412 watt in the absence of a wind deflecting structure under the same wind speed. Four US patents were allowed, and are in print, as the results of this project (US 7,540,706, US 7,679,209, US 7,845,904, and US 8,002,516).

  13. Local ownership, smart energy systems and better wind power economy

    DEFF Research Database (Denmark)

    Hvelplund, Frede; Möller, Bernd; Sperling, Karl

    2013-01-01

    is never sold at a lower price than the most expensive heat alternative. The other is to lower the average costs of wind power by building more onshore wind power capacity, and proportionally less offshore wind power. This is facilitated by local and regional majority ownership models that increase...... the acceptance rate of onshore wind. The economy of wind power is thus improved by both increasing its value and reducing its costs.......Increasing wind power shares enhances the need to integrate wind power into the energy system and to improve its economy. In this study we propose two ways of achieving this end. One is to increase the value of wind power by integrating the heat and power markets, and thus ensures that wind power...

  14. Power control for wind turbines in weak grids: Concepts development

    DEFF Research Database (Denmark)

    Bindner, H.

    1999-01-01

    will make wind power more firm and possible to connect to weaker grids. So, when the concept is matured, theexpectation is that for certain wind power installations, the cost of the power control is paid back as added wind power capacity value and saved grid reinforcement costs. Different systems...... and analyze methods and technologies for making it viable to utilize more of the wind potential in remote areas. The suggestion is to develop a power control concept for wind turbines which will even out thepower fluctuations and make it possible to increase the wind energy penetration. The main options...... are to combine wind power with a pumped hydro power storage or with an AC/DC converter and battery storage. The AC/DC converter can either be an "add-on" typeor it can be designed as an integrated part of a variable speed wind turbine. The idea is that combining wind power with the power control concept...

  15. Current Capacity of Ag/Bi-2223 Wires for Rotating Electric Machinery

    International Nuclear Information System (INIS)

    Hussennether, Volker; Leghissa, Martino; Neumueller, Heinz-Werner

    2006-01-01

    With focus on the application in rotating electric machines we measured the dependence of current capacity of Ag/Bi-2223 wires on temperature and magnetic field. Even for wires stemming from a single manufacturer we observe a significant spread of wire properties. We study different temperature and magnetic field dependence by a parallel path model which allows for a quantitative analysis. The implications of experiments and modelling are discussed with regard to the further wire development and for application within windings

  16. Factors of Renewable Energy Deployment and Empirical Studies of United States Wind Energy

    Science.gov (United States)

    Can Sener, Serife Elif

    Considered essential for countries' development, energy demand is growing worldwide. Unlike conventional sources, the use of renewable energy sources has multiple benefits, including increased energy security, sustainable economic growth, and pollution reduction, in particular greenhouse gas emissions. Nevertheless, there is a considerable difference in the share of renewable energy sources in national energy portfolios. This dissertation contains a series of studies to provide an outlook on the existing renewable energy deployment literature and empirically identify the factors of wind energy generation capacity and wind energy policy diffusion in the U.S. The dissertation begins with a systematic literature review to identify drivers and barriers which could help in understanding the diverging paths of renewable energy deployment for countries. In the analysis, economic, environmental, and social factors are found to be drivers, whereas political, regulatory, technical potential and technological factors are not classified as either a driver or a barrier (i.e., undetermined). Each main category contains several subcategories, among which only national income is found to have a positive impact, whereas all other subcategories are considered undetermined. No significant barriers to the deployment of renewable energy sources are found over the analyzed period. Wind energy deployment within the states related to environmental and economic factors was seldom discussed in the literature. The second study of the dissertation is thus focused on the wind energy deployment in the United States. Wind energy is among the most promising clean energy sources and the United States has led the world in per capita newly installed generation capacity since 2000. In the second study, using a fixed-effects panel data regression analysis, the significance of a number of economic and environmental factors are investigated for 39 states from 2000 to 2015. The results suggested that the

  17. Conference on wind energy and grid integration

    International Nuclear Information System (INIS)

    Laffaille, Didier; Boemer, Jens; Fraisse, Jean-Luc; Mignon, Herve; Gonot, Jean-Pierre; Rohrig, Kurt; Lange, Matthias; Bagusche, Daniel; Wagner, Stefan; Schiel, Johannes

    2008-01-01

    The French-German office for Renewable energies (OFAEnR) organised a conference on the grid integration of wind farms. In the framework of this French-German exchange of experience, more than 80 participants exchanged views on the evolutions of tariffs and licensing procedures, and on grid capacity improvements and production forecasts. This document brings together the available presentations (slides) made during this event: 1 - The necessary evolution of billing and procedures for wind turbines connection to the grid in France (Didier Laffaille); 2 - Improvement of wind turbines integration to the grid in the framework of the EEG 2009 law (Jens Boemer); 3 - Decentralized power generation on the French power grids - 15, 20 kV and low voltage (Jean-Luc Fraisse); 4 - GOTTESWIND? Solution for the future: towards a grid evolution (Herve Mignon); 5 - Production forecasts in Germany - State-of-the-art and challenges for the grid exploitation (Kurt Rohrig); 6 - High-voltage lines capacity evaluation in meteorological situations with high wind energy production (Matthias Lange); 7 - The IPES project for the integration of wind energy production in the exploitation of the French power system (Jean-Pierre Gonot); 8 - Experience feedback from a wind turbine manufacturer in France and in Germany (Daniel Bagusche); 9 - Solutions for grid security improvement and capacity enhancement: cooperation between grid and power plant operators (Stefan Wagner); 10 - Open questions on wind energy integration to French and German grids (Johannes Schiel)

  18. Inverse load calculation procedure for offshore wind turbines and application to a 5-MW wind turbine support structure: Inverse load calculation procedure for offshore wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Pahn, T. [Pahn Ingenieure, Am Seegraben 17b 03051 Cottbus Germany; Rolfes, R. [Institut f?r Statik und Dynamik, Leibniz Universit?t Hannover, Appelstra?e 9A 30167 Hannover Germany; Jonkman, J. [National Renewable Energy Laboratory, 15013 Denver West Parkway Golden Colorado 80401 USA

    2017-02-20

    A significant number of wind turbines installed today have reached their designed service life of 20 years, and the number will rise continuously. Most of these turbines promise a more economical performance if they operate for more than 20 years. To assess a continued operation, we have to analyze the load-bearing capacity of the support structure with respect to site-specific conditions. Such an analysis requires the comparison of the loads used for the design of the support structure with the actual loads experienced. This publication presents the application of a so-called inverse load calculation to a 5-MW wind turbine support structure. The inverse load calculation determines external loads derived from a mechanical description of the support structure and from measured structural responses. Using numerical simulations with the software fast, we investigated the influence of wind-turbine-specific effects such as the wind turbine control or the dynamic interaction between the loads and the support structure to the presented inverse load calculation procedure. fast is used to study the inverse calculation of simultaneously acting wind and wave loads, which has not been carried out until now. Furthermore, the application of the inverse load calculation procedure to a real 5-MW wind turbine support structure is demonstrated. In terms of this practical application, setting up the mechanical system for the support structure using measurement data is discussed. The paper presents results for defined load cases and assesses the accuracy of the inversely derived dynamic loads for both the simulations and the practical application.

  19. Wind power integration connection and system operational aspects

    CERN Document Server

    Fox, Brendan

    2014-01-01

    Wind Power Integration provides a wide-ranging discussion on all major aspects of wind power integration into electricity supply systems. This second edition has been fully revised and updated to take account of the significant growth in wind power deployment in the past few years. New discussions have been added to describe developments in wind turbine generator technology and control, the network integration of wind power, innovative ways to integrate wind power when its generation potential exceeds 50% of demand, case studies on how forecasting errors have affected system operation, and an update on how the wind energy sector has fared in the marketplace. Topics covered include: the development of wind power technology and its world-wide deployment; wind power technology and the interaction of various wind turbine generator types with the utility network; and wind power forecasting and the challenges faced by wind energy in modern electricity markets.

  20. Integrative modeling and novel particle swarm-based optimal design of wind farms

    Science.gov (United States)

    Chowdhury, Souma

    To meet the energy needs of the future, while seeking to decrease our carbon footprint, a greater penetration of sustainable energy resources such as wind energy is necessary. However, a consistent growth of wind energy (especially in the wake of unfortunate policy changes and reported under-performance of existing projects) calls for a paradigm shift in wind power generation technologies. This dissertation develops a comprehensive methodology to explore, analyze and define the interactions between the key elements of wind farm development, and establish the foundation for designing high-performing wind farms. The primary contribution of this research is the effective quantification of the complex combined influence of wind turbine features, turbine placement, farm-land configuration, nameplate capacity, and wind resource variations on the energy output of the wind farm. A new Particle Swarm Optimization (PSO) algorithm, uniquely capable of preserving population diversity while addressing discrete variables, is also developed to provide powerful solutions towards optimizing wind farm configurations. In conventional wind farm design, the major elements that influence the farm performance are often addressed individually. The failure to fully capture the critical interactions among these factors introduces important inaccuracies in the projected farm performance and leads to suboptimal wind farm planning. In this dissertation, we develop the Unrestricted Wind Farm Layout Optimization (UWFLO) methodology to model and optimize the performance of wind farms. The UWFLO method obviates traditional assumptions regarding (i) turbine placement, (ii) turbine-wind flow interactions, (iii) variation of wind conditions, and (iv) types of turbines (single/multiple) to be installed. The allowance of multiple turbines, which demands complex modeling, is rare in the existing literature. The UWFLO method also significantly advances the state of the art in wind farm optimization by

  1. Lessons from wind policy in Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Peña, Ivonne; L. Azevedo, Inês; Marcelino Ferreira, Luís António Fialho

    2017-04-01

    Wind capacity and generation grew rapidly in several European countries, such as Portugal. Wind power adoption in Portugal began in the early 2000s, incentivized by a continuous feed-in tariff policy mechanism, coupled with public tenders for connection licenses in 2001, 2002, and 2005. These policies led to an enormous success in terms of having a large share of renewables providing electricity services: wind alone accounts today for ~23.5% of electricity demand in Portugal. We explain the reasons wind power became a key part of Portugal's strategy to comply with European Commission climate and energy goals, and provide a detailed review of the wind feed-in tariff mechanism. We describe the actors involved in wind power production growth. We estimate the environmental and energy dependency gains achieved through wind power generation, and highlight the correlation between wind electricity generation and electricity exports. Finally, we compare the Portuguese wind policies with others countries' policy designs and discuss the relevance of a feed-in tariff reform for subsequent wind power additions.

  2. Asynchrony of wind and hydropower resources in Australia

    KAUST Repository

    Gunturu, Udaya

    2017-08-14

    Wind and hydropower together constitute nearly 80% of the renewable capacity in Australia and their resources are collocated. We show that wind and hydro generation capacity factors covary negatively at the interannual time scales. Thus, the technology diversity mitigates the variability of renewable power generation at the interannual scales. The asynchrony of wind and hydropower resources is explained by the differential impact of the two modes of the El Ni˜no Southern Oscillation – canonical and Modoki – on the wind and hydro resources. Also, the Modoki El Ni˜no and the Modoki La Ni˜na phases have greater impact. The seasonal impact patterns corroborate these results. As the proportion of wind power increases in Australia’s energy mix, this negative covariation has implications for storage capacity of excess wind generation at short time scales and for generation system adequacy at the longer time scales.

  3. Asynchrony of wind and hydropower resources in Australia

    KAUST Repository

    Gunturu, Udaya; Hallgren, Willow

    2017-01-01

    Wind and hydropower together constitute nearly 80% of the renewable capacity in Australia and their resources are collocated. We show that wind and hydro generation capacity factors covary negatively at the interannual time scales. Thus, the technology diversity mitigates the variability of renewable power generation at the interannual scales. The asynchrony of wind and hydropower resources is explained by the differential impact of the two modes of the El Ni˜no Southern Oscillation – canonical and Modoki – on the wind and hydro resources. Also, the Modoki El Ni˜no and the Modoki La Ni˜na phases have greater impact. The seasonal impact patterns corroborate these results. As the proportion of wind power increases in Australia’s energy mix, this negative covariation has implications for storage capacity of excess wind generation at short time scales and for generation system adequacy at the longer time scales.

  4. Wind energy status in renewable electrical energy production in Turkey

    International Nuclear Information System (INIS)

    Kaygusuz, Kamil

    2010-01-01

    Main electrical energy sources of Turkey are thermal and hydraulic. Most of the thermal sources are derived from natural gas. Turkey imports natural gas; therefore, decreasing usage of natural gas is very important for both economical and environmental aspects. Because of disadvantages of fossil fuels, renewable energy sources are getting importance for sustainable energy development and environmental protection. Among the renewable sources, Turkey has very high wind energy potential. The estimated wind power capacity of Turkey is about 83,000 MW while only 10,000 MW of it seems to be economically feasible to use. Start 2009, the total installed wind power capacity of Turkey was only 4.3% of its total economical wind power potential (433 MW). However, the strong development of wind energy in Turkey is expected to continue in the coming years. In this study, Turkey's installed electric power capacity, electric energy production is investigated and also Turkey current wind energy status is examined. (author)

  5. Asynchrony of wind and hydropower resources in Australia.

    Science.gov (United States)

    Gunturu, Udaya Bhaskar; Hallgren, Willow

    2017-08-18

    Wind and hydropower together constitute nearly 80% of the renewable capacity in Australia and their resources are collocated. We show that wind and hydro generation capacity factors covary negatively at the interannual time scales. Thus, the technology diversity mitigates the variability of renewable power generation at the interannual scales. The asynchrony of wind and hydropower resources is explained by the differential impact of the two modes of the El Ni˜no Southern Oscillation - canonical and Modoki - on the wind and hydro resources. Also, the Modoki El Ni˜no and the Modoki La Ni˜na phases have greater impact. The seasonal impact patterns corroborate these results. As the proportion of wind power increases in Australia's energy mix, this negative covariation has implications for storage capacity of excess wind generation at short time scales and for generation system adequacy at the longer time scales.

  6. The Current Situation of Wind Energy in Turkey

    Directory of Open Access Journals (Sweden)

    Raşit Ata

    2013-01-01

    Full Text Available Wind energy applications and turbine installations at different scales have increased since the beginning of this century. As wind energy is an alternative clean energy source compared to the fossil fuels that pollute the atmosphere, systems that convert wind energy to electricity have developed rapidly. Turkey’s domestic fossil fuel resources are extremely limited. In addition, Turkey’s geographical location has several advantages for extensive use of wind power. In this context, renewable energy resources appear to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Among the renewable sources, Turkey has very high wind energy potential. According to the Organization for Economic Cooperation and Development (OECD Turkey theoretically has 166 TWh a year of wind potential. However the installed wind power capacity is approximately 14% of total economical wind potential. In this study, Turkey’s installed electric power capacity and electric energy production are investigated and also the current situation of wind energy in Turkey is examined. The wind data used in this study were taken from Turkish Wind Energy Association (TUREB for the year 2012. This paper reviews the assessment of wind energy in Turkey as of the end of July 2012 including wind energy applications.

  7. Electric vehicle charging to support renewable energy integration in a capacity constrained electricity grid

    International Nuclear Information System (INIS)

    Pearre, Nathaniel S.; Swan, Lukas G.

    2016-01-01

    Highlights: • Examination of EV charging in a wind rich area with transmission constraints. • Multiple survey instruments to determine transportation needs, when charging occurs. • Simple charging, time-of-day scheduled, and ideal smart charging investigated. • Export power peaks reduced by 2% with TOD, 10% with smart charging 10% of fleet. • Smart charging EVs enables enough added wind capacity to power the fleet. - Abstract: Digby, Nova Scotia, is a largely rural area with a wealth of renewable energy resources, principally wind and tidal. Digby’s electrical load is serviced by an aging 69 kV transmission line that often operates at the export capacity limit because of a local wind energy converter (WEC) field. This study examines the potential of smart charging of electric vehicles (EVs) to achieve two objectives: (1) add load so as to increase export capacity; (2) charge EVs using renewable energy. Multiple survey instruments were used to determine transportation energy needs and travel timing. These were used to create EV charging load timeseries based on “convenience”, “time-of-day”, and idealized “smart” charging. These charging scenarios were evaluated in combination with high resolution data of generation at the wind field, electrical flow through the transmission system, and electricity load. With a 10% adoption rate of EVs, time-of-day charging increased local renewable energy usage by 20% and enables marginal WEC upgrading. Smart charging increases charging by local renewable energy by 73%. More significantly, it adds 3 MW of load when power exports face constraints, allowing enough additional renewable electricity generation capacity to fully power those vehicles.

  8. What day-ahead reserves are needed in electric grids with high levels of wind power?

    International Nuclear Information System (INIS)

    Mauch, Brandon; Apt, Jay; Jaramillo, Paulina; Carvalho, Pedro M S

    2013-01-01

    Day-ahead load and wind power forecasts provide useful information for operational decision making, but they are imperfect and forecast errors must be offset with operational reserves and balancing of (real time) energy. Procurement of these reserves is of great operational and financial importance in integrating large-scale wind power. We present a probabilistic method to determine net load forecast uncertainty for day-ahead wind and load forecasts. Our analysis uses data from two different electric grids in the US with similar levels of installed wind capacity but with large differences in wind and load forecast accuracy, due to geographic characteristics. We demonstrate that the day-ahead capacity requirements can be computed based on forecasts of wind and load. For 95% day-ahead reliability, this required capacity ranges from 2100 to 5700 MW for ERCOT, and 1900 to 4500 MW for MISO (with 10 GW of installed wind capacity), depending on the wind and load forecast values. We also show that for each MW of additional wind power capacity for ERCOT, 0.16–0.30 MW of dispatchable capacity will be used to compensate for wind uncertainty based on day-ahead forecasts. For MISO (with its more accurate forecasts), the requirement is 0.07–0.13 MW of dispatchable capacity for each MW of additional wind capacity. (letter)

  9. Wind conditions for wind turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B.

    1999-04-01

    Delegates from Europe and USA attended the meeting and discussed general aspects of wind conditions for wind turbine design. The subjects and the presented papers covered a very broad range of aspects of wind conditions and related influence on the wind turbine. (EHS)

  10. Probabilistic Design of Wind Turbines

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard

    During the last decades, wind turbines have been continuously developed with the aim of maximizing the life cycle benefits (production of electricity) minus the costs of planning, materials, installation, operation & maintenance as well as possible failure. In order to continue this development...... turbines and the central topics considered are statistical load extrapolation of extreme loads during operation and reliability assessment of wind turbine blades. Wind turbines differ from most civil engineering structures by having a control system which highly influences the loading. In the literature......, methods for estimating the extreme load-effects on a wind turbine during operation, where the control system is active, have been proposed. But these methods and thereby the estimated loads are often subjected to a significant uncertainty which influences the reliability of the wind turbine...

  11. Wind Development on Tribal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Ken Haukaas; Dale Osborn; Belvin Pete

    2008-01-18

    Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

  12. European wind integration study (EWIS). Towards a successful integration of large scale wind power into European electricity grids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Winter, W.

    2010-03-15

    Large capacities of wind generators have already been installed and are operating in Germany (26GW) and Spain (16GW). Installations which are as significant in terms of proportion to system size are also established in Denmark (3.3GW), the All Island Power System of Ireland and Northern Ireland (1.5GW), and Portugal (3.4GW). Many other countries expect significant growth in wind generation such that the total currently installed capacity in Europe of 68GW is expected to at least double by 2015. Yet further increases can be expected in order to achieve Europe's 2020 targets for renewable energy. The scale of this development poses big challenges for wind generation developers in terms of obtaining suitable sites, delivering large construction projects, and financing the associated investments from their operations. Such developments also impact the networks and it was to address the immediate transmission related challenges that the European Wind Integration Study (EWIS) was initiated by Transmission System Operators (TSOs) with the objective of ensuring the most effective integration of large scale wind generation into Europe's transmission networks and electricity system. The challenges anticipated and addressed include: 1) How to efficiently accommodate wind generation when markets and transmission access arrangements have evolved for the needs of traditional controllable generation. 2) How to ensure supplies remain secure as wind varies (establishing the required backup/reserves for low wind days and wind forecast errors as well as managing network congestion in windy conditions). 3) How to maintain the quality and reliability of supplies given the new generation characteristics. 4) How to achieve efficient network costs by suitable design and operation of network connections, the deeper infrastructure including offshore connections, and crossborder interconnections. EWIS has focused on the immediate network related challenges by analysing detailed

  13. IEA Wind TCP Task 26: Impacts of Wind Turbine Technology on the System Value of Wind in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Riva, Alberto D [Ea Energy Analyses; Hethey, Janos [Ea Energy Analyses; Vitina, Aisma [Danish Energy Agency

    2018-05-01

    This report analyzes the impact of different land-based wind turbine designs on grid integration and related system value and cost. This topic has been studied in a number of previous publications, showing the potential benefits of wind turbine technologies that feature higher capacity factors. Building on the existing literature, this study aims to quantify the effects of different land-based wind turbine designs in the context of a projection of the European power system to 2030. This study contributes with insights on the quantitative effects in a likely European market setup, taking into account the effect of existing infrastructure on both existing conventional and renewable generation capacities. Furthermore, the market effects are put into perspective by comparing cost estimates for deploying different types of turbine design. Although the study focuses on Europe, similar considerations and results can be applied to other power systems with high wind penetration.

  14. Design and operation of power systems with large amounts of wind power. Final summary report, IEA WIND Task 25, Phase two 2009 - 2011

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H.; Kiviluoma, J. [VTT Technical Research Centre of Finland, Espoo (Finland); Robitaille, A. [Hydro Quebec, Montreal QC (Canada)] [and others

    2013-01-15

    This report provides a summary of the results from recent wind integration studies. The studies address concerns about the impact of wind power's variability and uncertainty on power system reliability and costs as well as grid reinforcement needs. Quantifiable results are presented as summary graphs: results as a MW-increase in reserve requirements, or euro/MWh increase in balancing costs, or results for capacity value of wind power. Other results are briefly summarised, together with existing experience on the issues. There is already significant experience in integrating wind power in power systems. The mitigation of wind power impacts include more flexible operational methods, incentivising flexibility in other generating plants, increasing interconnection to neighbouring regions, and application of demand-side flexibility. Electricity storage is still not as cost effective in larger power systems as other means of flexibility, but is already seeing initial applications in places with limited transmission. Electricity markets, with cross-border trade of intra-day and balancing resources and emerging ancillary services markets, are seen as promising for future large penetration levels for wind power. (orig.)

  15. 2016 Fee Wind energy directory

    International Nuclear Information System (INIS)

    2015-12-01

    France is currently engaged in the energy transition where ambitious goals are at stake to allow the country to be one of the leading European countries in renewable energies. The cost of onshore wind is getting more and more competitive and for this reason, wind energy professionals are committed in contributing actively to reach the 32 % objective of renewable energies in the final energy consumption and 40 % of renewable energies in the electricity mix for 2030. 2014 was marked by a swift growth of the installed onshore wind energy, the positive trend is confirmed in 2015 with more than 500 MW connected to the grid in the first half of the year, corresponding to the annual forecast of 1,200 MW for 2015. Thanks to the energy transition law, operational policies will be implemented through the multi-annual energy programming (PPE- programmation pluriannuelle de l'energie). France will therefore continue increasing its development of renewable energies. This law will also allow France to develop offshore wind energy and to strengthen its position regarding wind energy: with an objective of 15 GW of fixed offshore wind energy and 6 GW of floating wind energy to be built in the 2030 horizon, the sector will be able to guarantee its development, especially in the current context of strong worldwide competition. Some 10,000 direct and indirect jobs are awaited for offshore wind energy on the national territory and wind energy professionals underline that the development of the offshore wind sector will contribute to the economic dynamism of the country. This sector is thus a job creating sector as confirmed in the figures of the wind employment monitor (observatoire de l'emploi) in France, recording a significant growth in 2013 with 10,800 jobs. This upward trend was confirmed in 2014. This proves the continuous commitment of the wind industry in seeing the success of the energy transition in France in a context marked by numerous energy and climate events

  16. Climate information for the wind energy industry in the Mediterranean Region

    Science.gov (United States)

    Calmanti, Sandro; Davis, Melanie; Schmidt, Peter; Dell'Aquila, Alessandro

    2013-04-01

    According to the World Wind Energy Association the total wind generation capacity worldwide has come close to cover 3% of the world's electricity demand in 2011. Thanks to the enormous resource potential and the relatively low costs of construction and maintenance of wind power plants, the wind energy sector will remain one of the most attractive renewable energy investment options. Studies reveal that climate variability and change pose a new challenge to the entire renewable energy sector, and in particular for wind energy. Stakeholders in the wind energy sector mainly use, if available, site-specific historical climate information to assess wind resources at a given project site. So far, this is the only source of information that investors (e.g., banks) are keen to accept for decisions concerning the financing of wind energy projects. However, one possible wind energy risk at the seasonal scale is the volatility of earnings from year to year investment. The most significant risk is therefore that not enough units of energy (or megawatt hours) can be generated from the project to capture energy sales to pay down debt in any given quarter or year. On the longer time scale the risk is that a project's energy yields fall short of their estimated levels, resulting in revenues that consistently come in below their projection, over the life of the project. The nature of the risk exposure determines considerable interest in wind scenarios, as a potential component of both the planning and operational phase of a renewable energy project. Fundamentally, by using climate projections, the assumption of stationary wind regimes can be compared to other scenarios where large scale changes in atmospheric circulation patterns may affect local wind regimes. In the framework of CLIM-RUN EU FP7 project, climate experts are exploring the potential of seasonal to decadal climate forecast techniques (time-frame 2012-2040) and regional climate scenarios (time horizon 2040+) over the

  17. Influence of individual heat pumps on wind power integration – Energy system investments and operation

    International Nuclear Information System (INIS)

    Hedegaard, Karsten; Münster, Marie

    2013-01-01

    Highlights: • Individual heat pumps can significantly support the integration of wind power. • The heat pumps significantly reduce fuel consumption, CO 2 emissions, and costs. • Heat storages for the heat pumps can provide only moderate system benefits. • Main benefit of flexible heat pump operation is a lower peak/reserve capacity need. • Socio-economic feasibility only identified for some heat storages to some extent. - Abstract: Individual heat pumps are expected to constitute a significant electricity demand in future energy systems. This demand becomes flexible if investing in complementing heat storage capabilities. In this study, we analyse how the heat pumps can influence the integration of wind power by applying an energy system model that optimises both investments and operation, and covers various heat storage options. The Danish energy system by 2030 with around 50–60% wind power is used as a case study. Results show that the heat pumps, even without flexible operation, can contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO 2 emissions. Investments in heat storages can provide only moderate system benefits in these respects. The main benefit of the flexible heat pump operation is a reduced need for peak/reserve capacity, which is also crucial for the feasibility of the heat storages. Socio-economic feasibility is identified for control equipment enabling intelligent heat storage in the building structure and in existing hot water tanks. In contrast, investments in new heat accumulation tanks are not found competitive

  18. Field Tests of Wind Turbine Unit with Tandem Wind Rotors and Double Rotational Armatures

    Science.gov (United States)

    Galal, Ahmed Mohamed; Kanemoto, Toshiaki

    This paper discusses the field tests of the wind turbine unit, in which the front and the rear wind rotors drive the inner and the outer armatures of the synchronous generator. The wind rotors were designed conveniently by the traditional procedure for the single wind rotor, where the diameters of the front and the rear wind rotors are 2 m and 1.33 m. The tests were done on a pick-up type truck driven straightly at constant speed. The rotational torque of the unit is directly proportional to the induced electric current irrespective of the rotational speeds of the wind rotors, while the induced voltage is proportional to the relative rotational speed. The performance of the unit is significantly affected not only by the wind velocity, but also by the blade setting angles of both wind rotors and the applied load especially at lower wind velocity.

  19. Assessment of Wind Parameter Sensitivity on Extreme and Fatigue Wind Turbine Loads

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-12

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  20. Assessment of Wind Parameter Sensitivity on Ultimate and Fatigue Wind Turbine Loads: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Amy N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jonkman, Jason [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Quick, Julian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-13

    Wind turbines are designed using a set of simulations to ascertain the structural loads that the turbine could encounter. While mean hub-height wind speed is considered to vary, other wind parameters such as turbulence spectra, sheer, veer, spatial coherence, and component correlation are fixed or conditional values that, in reality, could have different characteristics at different sites and have a significant effect on the resulting loads. This paper therefore seeks to assess the sensitivity of different wind parameters on the resulting ultimate and fatigue loads on the turbine during normal operational conditions. Eighteen different wind parameters are screened using an Elementary Effects approach with radial points. As expected, the results show a high sensitivity of the loads to the turbulence standard deviation in the primary wind direction, but the sensitivity to wind shear is often much greater. To a lesser extent, other wind parameters that drive loads include the coherence in the primary wind direction and veer.

  1. Where, when and how much wind is available? A provincial-scale wind resource assessment for China

    International Nuclear Information System (INIS)

    He, Gang; Kammen, Daniel M.

    2014-01-01

    China's wind installed capacity has grown at a remarkable rate, over 80% annually average growth since 2005, reaching 91.5 GW of capacity by end of 2013, accounting for over 27% of global capacity. This rapid growth has been the result of a domestic manufacturing base and favorable national policies. Further evolution will be greatly aided with a detailed wind resource assessment that incorporates spatial and temporal variability across China. We utilized 200 representative locations for which 10 years of hourly wind speed data exist to develop provincial capacity factors from 2001 to 2010, and to build analytic wind speed profiles. From these data and analysis we find that China's annual wind generation could reach 2000 TWh to 3500 TWh. Nationally this would correspond to an average capacity factor of 0.18. The diurnal and seasonal variation shows spring and winter has better wind resources than in the summer and fall. A highly interconnected and coordinated power system is needed to effectively exploit this large but variable resource. A full economic assessment of exploitable wind resources demands a larger, systems-level analysis of China's energy options, for which this work is a core requirement. - Highlights: • We assessed China's wind resources by utilizing 10 years of hourly wind speed data of 200 sites. • We built provincial scale wind speed profiles and develop provincial capacity factors for China. • We found that China's wind generation could reach 2000 TWh to 3500 TWh annually. • We observed similar temporal variation pattern of wind availability across China

  2. Wind energy developments in the Americas

    International Nuclear Information System (INIS)

    Swisher, R.; Ancona, D.F.

    1990-01-01

    This paper will highlight the key wind energy activities and programs of American countries. In South and Central America, wind technology awareness and opportunity is spreading. Countries have projects in the beginning stages of development and many sites with excellent wind resources are believed to exist. Argentina, Costa Rica, Colombia, Mexico, and several Caribbean countries are among those active in wind energy development. In Canada, after a decade of research and systems development, the Department of Energy Mines and Resources is conducting a review of all renewable energy technologies, including wind, to develop a strategic plan for future activities. Canadian industry continues development of various vertical axis projects and the Province of Alberta has begun a program to assess wind potential in that region. In the United States, commercial application of wind energy is continuing to expand. During 1989, over 140 MW of new wind turbine capacity was installed in wind power plants, bringing the total operating in the U.S. to 14600 turbines and 1,400 MW. During 1989, these machines produced over 2.1 billion kWh, enough to supply the residential needs of Washington D.C. or San Francisco. This is an increase of 15% over the 1988 total, even though installed operating capacity dropped by about 10% as smaller, out-dated turbines were phased out or replaced. The U.S. government is in the process of formulating a new National Energy Strategy. It seems clear that renewable energy and energy efficiency will play an increasingly important role in this strategy. The U.S. wind program continues to emphasize broad-based technology development, but has also initiated conceptual design studies for an advanced wind turbine for power generation in the late 1990s. (Author)

  3. The complete list of wind farms in France

    International Nuclear Information System (INIS)

    Le jannic, N.

    2013-01-01

    This list takes into account all the wind farms present or being constructed in France at the end of may 2013. The installed capacity reached 7913.4 MW while the projected capacity represents 3925.1 MW. 982 wind farms are reported in this document. For each wind farm the following pieces of information are reported: the name of the operator, the power output, the number of wind turbines, the name of the turbine manufacturer, and the date of commissioning. (A.C.)

  4. Wind and load variability in the Nordic countries

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H.; Rissanen, S. [VTT Technical Research Centre of Finland, Espoo (Finland); Larsen, X. [Danmarks Tekniske Universitet, Lyngby (Denmark); Loevholm, A. L. [Kjeller Vindteknikk (Norway)

    2013-04-15

    This publication analysed the variability of wind production and load in Denmark, Finland, Sweden, and the Nordic region as a whole, based on real data measured from large-scale wind power during 2009-2011. The Nordic-wide wind power time series was scaled up such that Sweden had same amount of wind power production than Denmark, and Finland and Norway only 50% of the wind power production in Denmark. Wind power production in Denmark and Sweden is somewhat correlated (coefficient 0.7) but less correlation is found between the other countries. The variations from one hour to the next are only weakly correlated between all countries, even between Denmark and Sweden. Largest variations occur when the production is approximately 30-70% of installed capacity and variability is low during periods of light winds. The variability in shorter time scales was less than the hourly variations. During the three years analysed in this publication there were few storm incidents and they did not produce dramatic wind power ramps in the Nordic region. Wind and load variations are not correlated between the countries, which is beneficial from the viewpoint of wind integration. The smoothing effect is shown as reduction of variability from a single country to Nordic-wide wind power. The impact of wind power on the variability that the system experiences is evaluated by analysing the variability of net load with different wind power penetration levels. The Nordic-wide wind power production increases the highest hourly ramps by 2.4% (up) and -3.6% (down) of installed wind power capacity when there is 20% wind power penetration and by 2.7% (up) and -4.7% (down) for 30% wind penetration. These results assess the impacts of variability only. The next step will be assessing the uncertainty from forecast errors. The timing of ramp events, and occurrence of high-wind and low-load are studied. With current wind penetration, low production levels (2-5% of installed wind power) can occur in a

  5. Influence of individual heat pumps on wind power integration – Energy system investments and operation

    DEFF Research Database (Denmark)

    Hedegaard, Karsten; Münster, Marie

    2013-01-01

    Individual heat pumps are expected to constitute a significant electricity demand in future energy systems. This demand becomes flexible if investing in complementing heat storage capabilities. In this study, we analyse how the heat pumps can influence the integration of wind power by applying...... an energy system model that optimises both investments and operation, and covers various heat storage options. The Danish energy system by 2030 with around 50–60% wind power is used as a case study. Results show that the heat pumps, even without flexible operation, can contribute significantly...... to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. Investments in heat storages can provide only moderate system benefits in these respects. The main benefit of the flexible heat pump operation is a reduced need for peak/reserve capacity, which is also...

  6. Wind energy in the electric power system

    DEFF Research Database (Denmark)

    Polinder, H.; Peinke, J.; Kramer, O.

    2016-01-01

    have to behave when connected to the power system. In this way, they already incorporate basic ancillary services. However, frequency control is normally not provided as a regular reserve, because this would require reserving parts of the available wind capacity as stand-by capacity. Within R...... in order to guarantee a reliable stable power supply at any instant in time. Substituting these plants with renewable generation units requires the latter to be capable of providing these ancillary services. The state of the art is that grid codes are used to define the way wind turbines and wind farms......&D institutes, such control options were demonstrated and assessed for wind power plant clusters....

  7. 2012 wind technologies market report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bolinger, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hoen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Weaver, Samantha [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Porter, Kevin [Exeter Assoc., Columbia, MD (United States); Buckley, Michael [Exeter Assoc., Columbia, MD (United States); Fink, Sari [Exeter Assoc., Columbia, MD (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Annual wind power capacity additions in the United States achieved record levels in 2012, motivated by the then-planned expiration of federal tax incentives at the end of 2012 and recent improvements in the cost and performance of wind power technology. At the same time, even with a short-term extension of federal tax incentives now in place, the U.S. wind power industry is facing uncertain times. It will take time to rebuild the project pipeline, ensuring a slow year for new capacity additions in 2013. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on industry growth expectations. In combination with global competition within the sector, these trends continue to impact the manufacturing supply chain. What these trends mean for the medium to longer term remains to be seen, dictated in part by future natural gas prices, fossil plant retirements, and policy decisions, although recent declines in the price of wind energy have boost ed the prospects for future growth

  8. Wind power project at Pasni

    International Nuclear Information System (INIS)

    Masud, Jamil

    1998-01-01

    Major power generation capacity additions have recently been achieved in Pakistan as a result of policy initiatives taken in response to widespread power shortages in the eighties. These additions are based mainly on residual fuel oil and natural gas as fuel, resulting in a marked shift in favor of thermal generation and away from the traditionally dominant hydel sources. In recent decades, the supply of electricity to less developed areas has also been accorded high priority in Pakistan, although economic considerations in grid expansion have largely limited an otherwise aggressive rural electrification program to areas easily accessible from the national grid. These factors, coupled with relatively high system losses, have contributed to an unprecedented increase in emissions of greenhouse gases from the power generation industry in the country. An option which merits serious consideration in Pakistan is wind power. Wind power provides an opportunity to reduce dependence on imported fossil fuels and, at the same time, expand the power supply capacity to remote locations where grid expansion is not practical. Preliminary analysis of wind data in selected coastal locations in the Balochistan province indicates that a potential exists for harvesting wind energy using currently available technologies. (author)

  9. Why invest in wind energy? Career incentives and Chinese renewable energy politics

    International Nuclear Information System (INIS)

    Cao, Xun; Kleit, Andrew; Liu, Chuyu

    2016-01-01

    We study wind development at the provincial level in China, modelling installed wind capacities as a function of both economics and politics. We assume that the top provincial officials desire to maximize their chances of promotion under the Chinese cadre evaluation system. We expect that those with the strongest incentives to perform in order to achieve promotion would work harder to comply with the central government’s policy agenda to promote renewable energy. Collecting and testing data on provincial leaders’ characteristics, we find that provinces governed by party secretaries who were approaching the age of 65 are associated with significantly higher level of wind installed capacities. This result supports the political tournaments theory of Chinese politics. We also find that better educated party secretaries are likely to be more supportive of renewable energy, implying that education acts to encourage provincial leaders to support the central government’s policy. - Highlights: • No negative association between fossil fuel production and wind energy development. • Provinces with party secretaries approaching the age of 65 have more installed capacities. • Better educated party secretaries are likely to be more supportive of renewable energy.

  10. Wind Farms’ Spatial Distribution Effect on Power System Reserves Requirements

    DEFF Research Database (Denmark)

    Sørensen, Poul Ejnar; Cutululis, Nicolaos Antonio

    2010-01-01

    The wind power development during last millennium was typically based on small wind turbines dispersed over large areas, leading to a significant smoothing of the wind power fluctuations in a power system balancing area. The present development goes towards much larger wind farms, concentrated...

  11. Latin America wind market assessment. Forecast 2013-2022

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-10-15

    Wind Power Activities by Country: Developers/Owners, Wind Plant Sizes, Wind Turbines Deployed, Commissioning Dates, Market Share, and Capacity Forecasts Latin American markets are a subject of intense interest from the global wind industry. Wind plant construction across Latin America is modest compared to the more established markets like the United States, Europe, and China, but it is an emerging market that is taking off at a rapid pace. The region has become the hottest alternative growth market for the wind energy industry at a time when growth rates in other markets are flat due to a variety of policy and macroeconomic challenges. Globalization is driving sustainable economic growth in most Latin American countries, resulting in greater energy demand. Wind is increasingly viewed as a valuable and essential answer to increasing electricity generation across most markets in Latin America. Strong wind resources, coupled with today's sophisticated wind turbines, are providing cost-effective generation that is competitive with fossil fuel generation. Most Latin American countries also rely heavily on hydroelectricity, which balances well with variable wind generation. Navigant Research forecasts that if most wind plants under construction with planned commissioning go online as scheduled, annual wind power installations in Latin America will grow from nearly 2.2 GW in 2013 to 4.3 GW by 2022. This Navigant Research report provides a comprehensive view of the wind energy market dynamics at play in Latin America. It offers a country-by-country analysis, outlining the key energy policies and development opportunities and barriers and identifying which companies own operational wind plants and which wind turbine vendors supplied those projects. Market forecasts for wind power installations, capacity, and market share in Latin America, segmented by country and company, extend through 2022. The report also offers an especially close analysis of Brazil and Mexico

  12. Sustainable business models for wind and solar energy in Romania

    Directory of Open Access Journals (Sweden)

    Nichifor Maria Alexandra

    2015-06-01

    Full Text Available Renewable energy has become a crucial element for the business environment as the need for new energy resources and the degree of climate change are increasing. As developed economies strive towards greater progress, sustainable business models are of the essence in order to maintain a balance between the triple bottom line: people, planet and profit. In recent years, European Union countries have installed important capacities of renewable energy, especially wind and solar energy to achieve this purpose. The objective of this article is to make a comparative study between the current sustainable business models implemented in companies that are active in the wind and solar energy sector in Romania. Both sectors underwent tremendous changes in the last two years due to changing support schemes which have had a significant influence on the mechanism of the renewable energy market, as well as on its development. Using the classical Delphi method, based on questionnaires and interviews with experts in the fields of wind and solar energy, this paper offers an overview of the sustainable business models of wind and solar energy companies, both sectors opting for the alternative of selling electricity to trading companies as a main source of revenue until 2013 and as the main future trend until 2020. Furthermore, the participating wind energy companies noted a pessimistic outlook of future investments due to legal instability that made them to reduce their projects in comparison to PV investments, which are expected to continue. The subject of the article is of interest to scientific literature because sustainable business models in wind and photovoltaic energy have been scarcely researched in previous articles and are essential in understanding the activity of the companies in these two fields of renewable energy.

  13. Onshore wind energy potential over Iberia: present and future projections

    Science.gov (United States)

    Rochinha, Carlos A.; Santos, João A.; Liberato, Margarida L. R.; Pinto, Joaquim G.

    2014-05-01

    Onshore grid-connected wind power generation has been explored for more than three decades in the Iberian Peninsula. Further, increasing attention has been devoted to renewable energy sources in a climate change context. While advantages of wind energy are widely recognized, its distribution is not spatially homogeneous and not uniform throughout the year. Hence, understanding these spatial-temporal distributions is critical in power system planning. The present study aims at assessing the potential power output estimated from 10 m wind components simulated by a regional climate model (CCLM), driven by ERA40 reanalysis. Datasets are available on a grid with a high spatial resolution (approximately 20 km) and over a 40-yr period (1961-2000). Furthermore, several target sites, located in areas with high installed wind generation capacity, are selected for local-to-regional scale assessments. The results show that potential wind power is higher over northern Iberia, mostly in Cantabria and Galicia, while Andalucía and Cataluña record the lowest values. With respect to the intra-annual variability, summer is by far the season with the lowest potential energy outputs. Furthermore, the inter-annual variability reveals an overall downward long-term trend over the 40-yr period, particularly in the winter time series. A CCLM transient experiment, forced by the SRES A1B emission scenario, is also discussed for a future period (2041-2070), after a model validation/calibration process (bias corrections). Significant changes in the wind power potential are projected for the future throughout Iberia, but their magnitude largely depends on the locations. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010).

  14. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  15. Wind energy in China. Current scenario and future perspectives

    International Nuclear Information System (INIS)

    Changliang, Xia; Zhanfeng, Song

    2009-01-01

    Wind power in China registered a record level of expansion recently, and has doubled its total capacity every year since 2004. Many experts believe that China will be central to the future of the global wind energy market. Consequently, the growth pattern of wind power in China may be crucial to the further development of the global wind market. This paper firstly presented an overview of wind energy potential in China and reviewed the national wind power development course in detail. Based on the installed wind capacity in China over the past 18 years and the technical potential of wind energy resources, the growth pattern was modeled in this study for the purpose of prospect analysis, in order to obtain projections concerning the development potential. The future perspectives of wind energy development in China are predicted and analyzed. This study provides a comprehensive overview of the current status of wind power in China and some insights into the prospects of China's wind power market, which is emerging as a new superpower in the global wind industry. (author)

  16. Overplanting in offshore wind power plants in different regulatory regimes

    DEFF Research Database (Denmark)

    Wolter, Christoph; Klinge Jacobsen, Henrik; Rogdakis, Georgios

    2016-01-01

    framework results more favourable to overplanting. The results indicate that current conceivable offshore wind power plants in the UK can increase their economic value by around 30 mio AC when optimising their capacity setup. In Denmark, current regulations are not suitable for overplanting causing loss...... of value when optimising the capacity design of wind power plants.......Offshore wind power’s journey towards being competitive with other generation technologies relies on technical innovation and maturation, but also on further optimisation of proven and mature solutions. Capacity optimisation or so-called overplanting is one example of optimisation, which...

  17. The comprehensive atlas of wind farms in France

    International Nuclear Information System (INIS)

    Le Jannic, N.; Vincent, C.

    2014-01-01

    This article reports the 1075 wind farms installed or planned on the French territory. The figures were collected during the first semester of 2014. The total installed capacity is 8678.9 MW and the planned farms represent a future capacity of 4288.1 MW, the planned farms will enter into operation during the next 3 years. For each farm the following data has been reported: city, operator, capacity and number of wind turbines, manufacturer and date of entry into operation. The wind farms are classified according to the department in which they are located. (A.C.)

  18. Study of large-scale vertical axis wind turbine wake through numerical modelling and fullscale experiments

    DEFF Research Database (Denmark)

    Immas, Alexandre; Kluczewska-Bordier, Joanna; Beneditti, Pascal

    Offshore wind capacity is increasing exponentially over the years in Europe, taking advantage of the strong winds available over the ocean and of the political incentives to reduce greenhouse gases. The technology is however not yet competitive when compared to fossil fuels or onshore wind. One k...... horizontal axis wind turbine wind farm....... improvement that could make offshore wind more attractive is the reduction of the wake effect [1]. The latter corresponds to the velocity deficit generated by each wind turbine wake which affects the production of the others. This effect accounts for approximately 10% of the energy losses for a typical......Offshore wind capacity is increasing exponentially over the years in Europe, taking advantage of the strong winds available over the ocean and of the political incentives to reduce greenhouse gases. The technology is however not yet competitive when compared to fossil fuels or onshore wind. One key...

  19. Wind Energy Basics | NREL

    Science.gov (United States)

    Wind Energy Basics Wind Energy Basics We have been harnessing the wind's energy for hundreds of grinding grain. Today, the windmill's modern equivalent-a wind turbine can use the wind's energy to most energy. At 100 feet (30 meters) or more aboveground, they can take advantage of the faster and

  20. Prospecting for Wind

    Science.gov (United States)

    Swapp, Andy; Schreuders, Paul; Reeve, Edward

    2011-01-01

    Many people use wind to help meet their needs. Over the years, people have been able to harness or capture the wind in many different ways. More recently, people have seen the rebirth of electricity-generating wind turbines. Thus, the age-old argument about technology being either good or bad can also be applied to the wind. The wind can be a…

  1. Careers in Wind Energy

    Science.gov (United States)

    Liming, Drew; Hamilton, James

    2011-01-01

    As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…

  2. Wind - the fuel of the future

    International Nuclear Information System (INIS)

    Farooqui, S.Z.

    2001-01-01

    Wind energy is not only cheap and clean, it is also safe. It has been very low external and social costs, and it has no liabilities related to decommissioning of obsolete plants, such as nuclear power. Wind turbines do not pose any substantial threat to birds and other wildlife. Accidents with extremely rare, and there are no recorded cases of person hurt by parts of blades or ice loosened from a wind turbine. Wind turbines provide a good energy balance - the energy invested in the production, installation, operation and maintenance and decommissioning of a typical wind turbine has a 'pay-back' time of less than six months of operation, while its average productive life is about 20 years. Wind energy plants can be installed fast and the capacity can be increased as per demand, any time, without decommissioning the previous installations. Wind energy is a domestic source of energy, hence it can improve a nation's degree of self electrification of rapidly industrializing countries. However, it is realized that wind power alone cannot satisfy the world's increasing demand for electrical power. But wind energy represents a feasible supplement in a diversified energy supply portfolio. In order to develop a renewable energy culture in our society, the government must provide a variety of incentives, as have been provided in those countries where the renewable energies have grown to become important sources of power generation during the recent years. (AB)

  3. Wind potential assessment of Quebec Province

    International Nuclear Information System (INIS)

    Ilinca, A.; Chaumel, J.-L.; Retiveau, J.-L.

    2003-01-01

    The paper presents the development of a comprehensive wind atlas of the Province of Quebec. This study differs from previous studies by 1) use of a standard classification index to categorize the wind resource, 2) extensive review of surface and upper air data available for the Province to define the wind resource, and 3) integration of available wind data with the topography of the Province. The wind resource in the Province of Quebec is classified using the scheme proposed by Battelle-Pacific Northwest Laboratory (PNL). The Battelle-PNL classification is a numerical one which includes rankings from Wind Power Class 1 (lowest) to Wind Power Class 7 (highest). Associated with each numerical classification is a range of wind power and associated mean wind speed at 10 m and 50 m above ground level. For this study, a classification for 30 m above ground level was interpolated and used. A significant amount of wind data was gathered for the Province. These data were obtained from Atmospheric Environment Service (AES), Canada, from wind project developers, and from climatological summaries of surface and upper air data. A total of 35 primary data sites were selected in the Province. Although a number of wind data sites in the Province were identified and used in the analysis, large areas of the Province lacked any specific wind information. The Province was divided into grid blocks having dimensions of 1/4 o latitude by 1/3 o longitude. Each grid block is assigned a numerical Wind Power Class value ranging from 1 to 7. This value is based on the integration of the available wind data and the topography within the square. The majority of the Province was classified as 1 or 2. Coastal locations and topographic features in the interior of the Province typically have Wind Power Class 3 or higher. (author)

  4. Wind power integration with heat pumps, heat storages, and electric vehicles – Energy systems analysis and modelling

    DEFF Research Database (Denmark)

    Hedegaard, Karsten

    The fluctuating and only partly predictable nature of wind challenges an effective integration of large wind power penetrations. This PhD thesis investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing...... in an energy system context. Energy systems analyses reveal that the heat pumps can even without flexible operation contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. When equipping the heat pumps with heat storages, only...... moderate additional benefits are achieved. Hereof, the main benefit is that the need for investing in peak/reserve capacities can be reduced through peak load shaving. It is more important to ensure flexible operation of electric vehicles than of individual heat pumps, due to differences in the load...

  5. The variability of interconnected wind plants

    International Nuclear Information System (INIS)

    Katzenstein, Warren; Fertig, Emily; Apt, Jay

    2010-01-01

    We present the first frequency-dependent analyses of the geographic smoothing of wind power's variability, analyzing the interconnected measured output of 20 wind plants in Texas. Reductions in variability occur at frequencies corresponding to times shorter than ∼24 h and are quantified by measuring the departure from a Kolmogorov spectrum. At a frequency of 2.8x10 -4 Hz (corresponding to 1 h), an 87% reduction of the variability of a single wind plant is obtained by interconnecting 4 wind plants. Interconnecting the remaining 16 wind plants produces only an additional 8% reduction. We use step change analyses and correlation coefficients to compare our results with previous studies, finding that wind power ramps up faster than it ramps down for each of the step change intervals analyzed and that correlation between the power output of wind plants 200 km away is half that of co-located wind plants. To examine variability at very low frequencies, we estimate yearly wind energy production in the Great Plains region of the United States from automated wind observations at airports covering 36 years. The estimated wind power has significant inter-annual variability and the severity of wind drought years is estimated to be about half that observed nationally for hydroelectric power.

  6. Wind energy and power system operations: a review of wind integration studies to date

    Energy Technology Data Exchange (ETDEWEB)

    Cesaro, Jennifer de; Porter, Kevin; Milligan, Michael

    2009-12-15

    Wind integration will not be accomplished successfully by doing ''more of the same.'' It will require significant changes in grid planning and operations, continued technical evolution in the design and operation of wind turbines, further adoption and implementation of wind forecasting in the control room, and incorporation of market and policy initiatives to encourage more flexible generation. (author)

  7. Indian Wind Energy Outlook 2011

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Shruti; Kharul, Rajendra; Sawyer, Steve; Patel, Narendra; Pullen, Angelika; Gorate, Devanand; Raghu, V. (eds.)

    2011-12-15

    This report is a valuable tool for members of the wind industry and policy makers alike to learn about the market opportunities and the legal and regulatory framework in India. In addition, it gives us insights into the challenges going forward and offers suggestions for overcoming remaining hurdles for wind power development. According to the outlook 65.2 GW of wind power could be installed in Indian by 2020, up from 13.1 GW at the end of 2010. This would attract around USD 10.4bn of annual investment to the sector, and create 170,000 'green collar' jobs in manufacturing, project development, installation, operation, maintenance, consulting etc. At the same time, it would save 174 tons of CO2 every year. By 2030, the installed capacity could reach as much as 160.7 GW. In order to fully exploit the indigenous energy source at its doorstep, the Indian government needs to address several challenges and barriers that are holding back development. This includes a national renewable energy law, incentives for repowering, and rapid up-scaling of grid infrastructure to transport increasing amounts of wind power to the demand centres. It highlights the key role wind power could play in fueling India's growing energy demand, by delivering substantial amounts of clean energy.

  8. Indian Wind Energy Outlook 2011

    International Nuclear Information System (INIS)

    Shukla, Shruti; Kharul, Rajendra; Sawyer, Steve; Patel, Narendra; Pullen, Angelika; Gorate, Devanand; Raghu, V.

    2011-12-01

    This report is a valuable tool for members of the wind industry and policy makers alike to learn about the market opportunities and the legal and regulatory framework in India. In addition, it gives us insights into the challenges going forward and offers suggestions for overcoming remaining hurdles for wind power development. According to the outlook 65.2 GW of wind power could be installed in Indian by 2020, up from 13.1 GW at the end of 2010. This would attract around USD 10.4bn of annual investment to the sector, and create 170,000 'green collar' jobs in manufacturing, project development, installation, operation, maintenance, consulting etc. At the same time, it would save 174 tons of CO2 every year. By 2030, the installed capacity could reach as much as 160.7 GW. In order to fully exploit the indigenous energy source at its doorstep, the Indian government needs to address several challenges and barriers that are holding back development. This includes a national renewable energy law, incentives for repowering, and rapid up-scaling of grid infrastructure to transport increasing amounts of wind power to the demand centres. It highlights the key role wind power could play in fueling India's growing energy demand, by delivering substantial amounts of clean energy.

  9. World trends in wind energy

    International Nuclear Information System (INIS)

    Kane, Mamadou

    2016-01-01

    A set of articles proposes an overview of some recent, important and characteristic trends in the field of wind energy all over the world. China, with 30,8 GW of newly installed capacities in 2015 has just overtaken the European Union as far as the total installed power is concerned (145 GW against 142 GW). Job growth in the wind energy sector has reached 20 per cent in the USA in 2015. In this country, major companies held 52 per cent of the market in 2015 while a new American research plan has been approved for the development of offshore wind energy. In South Africa, a German company specialised in blade inspection and repair will provide the Obelisk group with its services on blades and towers for wind turbines. As far as the UK is concerned, the article outlines and comments the continuing decrease of production costs. In India, General Electric is about to launch a new technology of digital wind farm which is supposed to improve production by simulating availability and productivity over the farm lifetime while reducing costs. In Norway, a Norwegian company proposes a new battery-based storage solution, Batwind, for offshore wing energy

  10. Tribal Wind Assessment by the Eastern Shoshone Tribe of the Wind River Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Pete, Belvin; Perry, Jeremy W.; Stump, Raphaella Q.

    2009-08-28

    The Tribes, through its consultant and advisor, Distributed Generation Systems (Disgen) -Native American Program and Resources Division, of Lakewood CO, assessed and qualified, from a resource and economic perspective, a wind energy generation facility on tribal lands. The goal of this feasibility project is to provide wind monitoring and to engage in preproject planning activities designed to provide a preliminary evaluation of the technical, economic, social and environmental feasibility of developing a sustainable, integrated wind energy plan for the Eastern Shoshone and the Northern Arapahoe Tribes, who resides on the Wind River Indian Reservation. The specific deliverables of the feasibility study are: 1) Assessments of the wind resources on the Wind River Indian Reservation 2) Assessments of the potential environmental impacts of renewable development 3) Assessments of the transmission capacity and capability of a renewable energy project 4) Established an economic models for tribal considerations 5) Define economic, cultural and societal impacts on the Tribe

  11. The Impact of Variable Wind Shear Coefficients on Risk Reduction of Wind Energy Projects.

    Science.gov (United States)

    Corscadden, Kenneth W; Thomson, Allan; Yoonesi, Behrang; McNutt, Josiah

    2016-01-01

    Estimation of wind speed at proposed hub heights is typically achieved using a wind shear exponent or wind shear coefficient (WSC), variation in wind speed as a function of height. The WSC is subject to temporal variation at low and high frequencies, ranging from diurnal and seasonal variations to disturbance caused by weather patterns; however, in many cases, it is assumed that the WSC remains constant. This assumption creates significant error in resource assessment, increasing uncertainty in projects and potentially significantly impacting the ability to control gird connected wind generators. This paper contributes to the body of knowledge relating to the evaluation and assessment of wind speed, with particular emphasis on the development of techniques to improve the accuracy of estimated wind speed above measurement height. It presents an evaluation of the use of a variable wind shear coefficient methodology based on a distribution of wind shear coefficients which have been implemented in real time. The results indicate that a VWSC provides a more accurate estimate of wind at hub height, ranging from 41% to 4% reduction in root mean squared error (RMSE) between predicted and actual wind speeds when using a variable wind shear coefficient at heights ranging from 33% to 100% above the highest actual wind measurement.

  12. Does wind energy mitigate market power in deregulated electricity markets?

    International Nuclear Information System (INIS)

    Ben-Moshe, Ori; Rubin, Ofir D.

    2015-01-01

    A rich body of literature suggests that there is an inverse relationship between wind power penetration rate into the electricity market and electricity prices, but it is unclear whether these observations can be generalized. Therefore, in this paper we seek to analytically characterize market conditions that give rise to this inverse relationship. For this purpose, we expand a recently developed theoretical framework to facilitate flexibility in modeling the structure of the electric industry with respect to the degree of market concentration and diversification in the ownership of wind power capacity. The analytical results and their attendant numerical illustrations indicate that the introduction of wind energy into the market does not always depress electricity prices. Such a drop in electricity prices is likely to occur when the number of firms is large enough or the ownership of wind energy is sufficiently diversified, or most often a combination of the two. Importantly, our study defines the circumstances in which the question of which type of firm invests in wind power capacity is crucial for market prices. - Highlights: • Studies show that electricity prices decrease with increased wind power capacity. • We investigate market conditions that give rise to this inverse relationship. • Average prices for wind energy are systematically lower than average market prices. • Conventional generation firms may increase market power by investing in wind farms. • Energy policy should seek to diversify the ownership of wind power capacity

  13. Wind energy for a sustainable development

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Hasager, Charlotte Bay; Sempreviva, Anna Maria

    2014-01-01

    of both the wind energy related research activities and the wind energy industry, as installed capacity has been increasing in most of the developed and developing countries. The DTU Wind Energy department carries the heritage of the Risø National Laboratory for Sustainable Energy by leading the research......Wind energy is on the forefront of sustainable technologies related to the production of electricity from green sources that combine the efficiency of meeting the demand for growth and the ethical responsibility for environmental protection. The last decades have seen an unprecedented growth...... developments in all sectors related to planning, installing and operating modern wind farms at land and offshore. With as many as 8 sections the department combines specialists at different thematic categories, ranging from meteorology, aeroelastic design and composite materials to electrical grids and test...

  14. Offshore wind power plants with VSC-HVDC transmission : Grid code compliance optimization and the effect on high voltage ac transmission system

    NARCIS (Netherlands)

    Ndreko, M.

    2017-01-01

    The development of large offshore wind power generation in the North Sea has been significantly accelerated in the last years. The large distance from shore in combination with the need for large transmission capacity has raised the interest for the voltage source converter high voltage direct

  15. Maine coast winds

    Energy Technology Data Exchange (ETDEWEB)

    Avery, Richard

    2000-01-28

    The Maine Coast Winds Project was proposed for four possible turbine locations. Significant progress has been made at the prime location, with a lease-power purchase contract for ten years for the installation of turbine equipment having been obtained. Most of the site planning and permitting have been completed. It is expect that the turbine will be installed in early May. The other three locations are less suitable for the project, and new locations are being considered.

  16. WindFloat Pacific Project, Final Scientific and Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Banister, Kevin [Principle Power, Inc., Emeryville, CA (United States)

    2017-01-17

    PPI’s WindFloat Pacific project (WFP) was an up to 30 MW floating offshore wind demonstration project proposed off the Coast of Oregon. The project was to be sited approximately 18 miles due west of Coos Bay, in over 1000 ft. of water, and is the first floating offshore wind array proposed in the United States, and the first offshore wind project of any kind proposed off the West Coast. PPI’s WindFloat, a semi-submersible foundation designed for high-capacity (6MW+) offshore wind turbines, is at the heart of the proposed project, and enables access to the world class wind resource at the project site and, equally, to other deep water, high wind resource areas around the country.

  17. Wind power in Argentina: Policy instruments and economic feasibility

    International Nuclear Information System (INIS)

    Recalde, M.

    2010-01-01

    Despite its great wind endowment, Argentina has not still succeeded in increasing wind power share in its wholesale market. However, the energy supply problem that this country is facing from 2004 on seems to open an opportunity for wind energy projects. A wide range of legislation has recently emerged. In this context, this paper discusses whether policy instruments in the Argentinean regulatory frame contribute to economic feasibility for wind power projects or not. To this purpose, we study wind installed capacity, Argentinean wind potential, the different promotion tools used worldwide and those employed in Argentina. Finally, we realize a feasibility study for a typical project. We found, that in spite of its high wind potential, economic feature, related to policy instruments, have been a boundary to the development of wind energy into the energy mix. (author)

  18. Wind farms in the land of steel

    International Nuclear Information System (INIS)

    Crie-Wiesner, H.

    2012-01-01

    At the beginning of the 2000 years, the wind industry began a flourishing period in the Usa which rose hopes for replacing ailing steel and coal industry and failing car manufacturing. Some wind turbine manufacturers settled into the vacant huge halls of steelworks. Since then this industrial renaissance has known ups and downs because of the economic crisis and the changes in the energy policy of the government. In the 2005-2006 period only 52% of the component parts of wind turbines were manufactured in the Usa, now this rate has increased to reach 68%. Today the global situation is gloomy with turbine production over-capacity. (A.C.)

  19. Urban wind turbines. Guidelines for small wind turbines in the built environment

    International Nuclear Information System (INIS)

    Cace, J.; Ter Horst, E.; Syngellakis, K.; Niel, M.; Clement, P.; Heppener, R.; Peirano, E.

    2007-02-01

    The objective of the WINEUR project (Wind Energy Integration in the Urban Environment) is to determine the deployability of small wind turbines in built environments while identifying the current significant constraints and possible solutions. The purpose of this document is to Inform the stakeholders about the state of the development of small wind turbines for the built environment; Provide practical guidelines to actors dealing with installation of small wind turbines in urban areas; and Provide recommendations for future products and for market development

  20. Assessment of Wind Production Impacts to a Power System and Market Formation in Baltic

    OpenAIRE

    Turcik, M; Obuševs, A; Oļeiņikova, I; Junghāns, G

    2013-01-01

    This paper is related to the topical problem of expanding wind production integration to the power system and electricity markets. The model for simulation of wind production curves according to the development of wind capacities in Baltic is proposed. In order to evaluate the effect of the wind power integration to the price formation as well as level of system penetration by wind, methodology and algorithms taking into account the development scenarios in Baltic are pre...

  1. Operational and Strategic Implementation of Dynamic Line Rating for Optimized Wind Energy Generation Integration

    International Nuclear Information System (INIS)

    Gentle, Jake Paul

    2016-01-01

    One primary goal of rendering today's transmission grid 'smarter' is to optimize and better manage its power transfer capacity in real time. Power transfer capacity is affected by three main elements: stability, voltage limits, and thermal ratings. All three are critical, but thermal ratings represent the greatest opportunity to quickly, reliably and economically utilize the grid's true capacity. With the 'Smarter Grid', new solutions have been sought to give operators a better grasp on real time conditions, allowing them to manage and extend the usefulness of existing transmission infrastructure in a safe and reliable manner. The objective of the INL Wind Program is to provide industry a Dynamic Line Rating (DLR) solution that is state of the art as measured by cost, accuracy and dependability, to enable human operators to make informed decisions and take appropriate actions without human or system overloading and impacting the reliability of the grid. In addition to mitigating transmission line congestion to better integrate wind, DLR also offers the opportunity to improve the grid with optimized utilization of transmission lines to relieve congestion in general. As wind-generated energy has become a bigger part of the nation's energy portfolio, researchers have learned that wind not only turns turbine blades to generate electricity, but can cool transmission lines and increase transfer capabilities significantly, sometimes up to 60 percent. INL's DLR development supports EERE and The Wind Energy Technology Office's goals by informing system planners and grid operators of available transmission capacity, beyond typical Static Line Ratings (SLR). SLRs are based on a fixed set of conservative environmental conditions to establish a limit on the amount of current lines can safely carry without overheating. Using commercially available weather monitors mounted on industry informed custom brackets developed by INL in combination with Computational Fluid Dynamics (CFD

  2. Cost reductions for offshore wind power. Exploring the balance between scaling, learning and R and D

    International Nuclear Information System (INIS)

    Van der Zwaan, B.; Rivera-Tinoco, R.; Lensink, S.; Van den Oosterkamp, P.

    2012-01-01

    Offshore wind electricity generation is prospected to increase substantially in the near future at a number of locations, like in the Baltic, Irish and North Sea, and emerge at several others. The global growth of offshore wind technology is likely to be accompanied by reductions in wind park construction costs, both as a result of scaling and learning effects. Since 2005, however, significant cost increases have been observed. A recent surge in commodity prices proves to constitute one of the main drivers of these cost increases. This observation begs the question whether wind turbine manufacturers should return to the laboratory for undertaking R and D that explores the use of alternative materials and bring offshore wind energy closer to competitiveness. It is demonstrated that if one abstracts from material price fluctuations, in particular for metals such as copper and steel, turbine production plus installation cost data publicly available for a series of offshore wind park projects (realized in several European countries since the 1990's) show a cost reduction trend. Hence various other sources of cost increases, such as due to the progressively larger distances from the shore (and correspondingly greater depths at sea) at which wind parks have been (and will be) built, are outshadowed by cost reduction effects. When one expresses the overall cost development for offshore wind energy capacity as an experience curve, a learning rate is found of 3%, which reflects a mixture of economies-of-scale and learning-by-doing mechanisms. Also the impact is quantified on offshore wind power construction costs from the recent tightness in the market for turbine manufacturing and installation services: without the demand-supply response inertia at the origin of this tightness it is estimated that the learning rate would be 5%. Since these learning rates are relatively low - in comparison to those observed for other technologies, and in view of the high current capacity

  3. Wind energy generation and pollution control

    International Nuclear Information System (INIS)

    Mohibullah; Mohd Nishat Anwar

    2009-01-01

    Full text: In India, power generation from wind has emerged as one of the most successful programme. It is making meaningful contributions to the overall power requirements in some of the states. India is emerging as fifth nation in wind power generation. As per the projections made by Ministry of New and Renewable Energy, Govt. of India, 10 % of the total capacity of power generation will come from renewable energy sources by the year 2012. It is envisaged that 50 % of this capacity may come from wind power alone. The paper describes a WECS (Wind Energy Conversion Systems) structure implemented in the MATLAB-Simulink simulation environment by using the specialized PSB toolbox, designed for modeling and simulation of electrical equipment. A study is made to show effectiveness in pollution control. An analytical study is also made regarding the potential of wind energy in limiting the amount of green house gases added into the atmosphere per year in different states in India. The amount of green house gases which are saved in the process are calculated for nine wind potential sites in India. The amount of green house gases saved is considerable to reduce environmental pollution and saving in carbon credit. Approximately an amount of 70681 Euro per year may be saved if the scheme is implemented and use of wind energy known in India is fully utilized for power generation. (author)

  4. 2008 Wind Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, R.; Bolinger, M.

    2009-07-01

    The U.S. wind industry experienced a banner year in 2008, once again surpassing even optimistic growth projections from years past. At the same time, the past year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with significant federal policy changes enacted to push the industry toward continued aggressive expansion. This report examines key trends.

  5. Wind energy program overview

    International Nuclear Information System (INIS)

    1992-02-01

    This overview emphasizes the amount of electric power that could be provided by wind power rather than traditional fossil fuels. New wind power markets, advances in technology, technology transfer, and wind resources are some topics covered in this publication

  6. SMES for wind energy systems

    Science.gov (United States)

    Paul Antony, Anish

    Renewable energy sources are ubiquitous, wind energy in particular is one of the fastest growing forms of renewable energy, yet the stochastic nature of wind creates fluctuations that threaten the stability of the electrical grid. In addition to stability with increased wind energy, the need for additional load following capability is a major concern hindering increased wind energy penetration. Improvements in power electronics are required to increase wind energy penetration, but these improvements are hindered by a number of limitations. Changes in physical weather conditions, insufficient capacity of the transmission line and inaccurate wind forecasting greatly stymie their effect and ultimately lead to equipment damage. With this background, the overall goal of this research effort is to pitch a case for superconducting magnetic energy storage (SMES) by (1) optimally designing the SMES to be coupled with wind turbines thus reducing wind integration challenges and (2) to help influence decision makers in either increasing superconducting wire length/fill factor or improving superconducting splice technology thereby increasing the storage capacity of the SMES. Chapter 1 outlines the scope of this thesis by answering the following questions (1) why focus on wind energy? (2) What are the problems associated with increasing wind energy on the electric grid? (3) What are the current solutions related to wind integration challenges and (4) why SMES? Chapter 2, presents a detailed report on the study performed on categorizing the challenges associated with integrating wind energy into the electric grid. The conditions under which wind energy affected the electric grid are identified both in terms of voltage stability and excess wind generation. Chapter 3, details a comprehensive literature review on the different superconducting wires. A technology assessment of the five selected superconductors: [Niobium Titanium (NbTi), Niobium Tin (Nb3Sn), Bismuth strontium calcium

  7. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future.

    Science.gov (United States)

    Bailey, Helen; Brookes, Kate L; Thompson, Paul M

    2014-01-01

    Offshore wind power provides a valuable source of renewable energy that can help reduce carbon emissions. Technological advances are allowing higher capacity turbines to be installed and in deeper water, but there is still much that is unknown about the effects on the environment. Here we describe the lessons learned based on the recent literature and our experience with assessing impacts of offshore wind developments on marine mammals and seabirds, and make recommendations for future monitoring and assessment as interest in offshore wind energy grows around the world. The four key lessons learned that we discuss are: 1) Identifying the area over which biological effects may occur to inform baseline data collection and determining the connectivity between key populations and proposed wind energy sites, 2) The need to put impacts into a population level context to determine whether they are biologically significant, 3) Measuring responses to wind farm construction and operation to determine disturbance effects and avoidance responses, and 4) Learn from other industries to inform risk assessments and the effectiveness of mitigation measures. As the number and size of offshore wind developments increases, there will be a growing need to consider the population level consequences and cumulative impacts of these activities on marine species. Strategically t