WorldWideScience

Sample records for significant trench-parallel motion

  1. Clinical significance of perceptible fetal motion.

    Science.gov (United States)

    Rayburn, W F

    1980-09-15

    The monitoring of fetal activity during the last trimester of pregnancy has been proposed to be useful in assessing fetal welfare. The maternal perception of fetal activity was tested among 82 patients using real-time ultrasonography. All perceived fetal movements were visualized on the scanner and involved motion of the lower limbs. Conversely, 82% of all visualized motions of fetal limbs were perceived by the patients. All combined motions of fetal trunk with limbs were preceived by the patients and described as strong movements, whereas clusters of isolated, weak motions of the fetal limbs were less accurately perceived (56% accuracy). The number of fetal movements perceived during the 15-minute test period was significantly (p fetal motion was present (44 of 45 cases) than when it was absent (five of 10 cases). These findings reveal that perceived fetal motion is: (1) reliable; (2) related to the strength of lower limb motion; (3) increased with ruptured amniotic membranes; and (4) reassuring if considered to be active.

  2. Kinematics and age of Early Tertiary trench parallel volcano-tectonic lineaments in southern Mexico: Tectonic implications

    Science.gov (United States)

    Martini, M.; Ferrari, L.; Lopez Martinez, M.; Cerca Martinez, M.; Serrano Duran, L.

    2007-05-01

    We present new geological, structural, and geochronological data that constrain the timing and geometry of Early Tertiary strike slip deformation in southwestern Mexico and its relation with the concurrent magmatic activity. Geologic mapping in Guerrero and Michoacan States documented two regional WNW trending volcano-tectonic lineaments sub parallel to the present trench. The southernmost lineament runs for ~140 km from San Miguel Totolapan area (NW Guerrero) to Sanchiqueo (SE Michoacan), and passes through Ciudad Altamirano. Its southeastern part is marked by the alignment of at least eleven silicic to intermediate major domes as well as by the course of the Balsas River. The northwestern part of the lineament is characterized by ductile left lateral shear zones in Early Tertiary plutonic rocks observed in the Rio Chiquito valley. Domes near Ciudad Altamirano are unaffected by ductile shearing and yielded a ~42 Ma 40Ar/39Ar age, setting a minimum age for this deformation. The northern volcano-tectonic lineament runs for ~190 km between the areas of Huitzuco in northern Guerrero and the southern part of the Tzitzio fold in eastern Michoacan. The Huautla, Tilzapotla, Taxco, La Goleta and Nanchititla silicic centers (all in the range 37-34 Ma) are emplaced along this lineament, which continues to the WNW trough a mafic dike swarm exposed north of Tiquicheo (37-35 Ma) and the Purungueo subvolcanic body (~42 Ma). These rocks, unaffected by ductile shearing, give a minimum age of deformation similar to the southern Totolapan-Sanquicheo lineament. Post ~42 Ma deformation is essentially brittle and is characterized by several left lateral and right lateral transcurrent faults with typical Riedel patterns. Other trench-parallel left lateral shear zones active in pre-Oligocene times were recently reported in western Oaxaca. The recognizing of Early Tertiary trench-parallel and left-lateral ductile shearing in internal areas of southern Mexico suggest a field of widely

  3. Trench Parallel Bouguer Anomaly (TPBA): A robust measure for statically detecting asperities along the forearc of subduction zones

    Science.gov (United States)

    Raeesi, M.

    2009-05-01

    During 1970s some researchers noticed that large earthquakes occur repeatedly at the same locations. These observations led to the asperity hypothesis. At the same times some researchers noticed that there was a relationship between the location of great interplate earthquakes and the submarine structures, basins in particular, over the rupture area in the forearc regions. Despite these observations there was no comprehensive and reliable hypothesis explaining the relationship. There were numerous cons and pros to the various hypotheses given in this regard. In their pioneering study, Song and Simons (2003) approached the problem using gravity data. This was a turning point in seismology. Although their approach was correct, appropriate gravity anomaly had to be used in order to reveal the location and extent of the asperities. Following the method of Song and Simons (2003) but using the Bouguer gravity anomaly that we called "Trench Parallel Bouguer Anomaly", TPBA, we found strong, logical, and convincing relation between the TPBA-derived asperities and the slip distribution as well as earthquake distribution, foreshocks and aftershocks in particular. Various parameters with different levels of importance are known that affect the contact between the subducting and the overriding plates, We found that the TPBA can show which are the important factors. Because the TPBA-derived asperities are based on static physical properties (gravity and elevation), they do not suffer from instabilities due to the trade-offs, as it happens for asperities derived in dynamic studies such as waveform inversion. Comparison of the TPBA-derived asperities with rupture processes of the well-studied great earthquakes, reveals the high level of accuracy of the TPBA. This new measure opens a forensic viewpoint on the rupture process along the subduction zones. The TPBA reveals the reason behind 9+ earthquakes and it explains where and why they occur. The TPBA reveals the areas that can

  4. When Does Air Resistance Become Significant in Projectile Motion?

    Science.gov (United States)

    Mohazzabi, Pirooz

    2018-01-01

    In an article in this journal, it was shown that air resistance could never be a significant source of error in typical free-fall experiments in introductory physics laboratories. Since projectile motion is the two-dimensional version of the free-fall experiment and usually follows the former experiment in such laboratories, it seemed natural to…

  5. Trajectory of coronary motion and its significance in robotic motion cancellation.

    Science.gov (United States)

    Cattin, Philippe; Dave, Hitendu; Grünenfelder, Jürg; Szekely, Gabor; Turina, Marko; Zünd, Gregor

    2004-05-01

    To characterize remaining coronary artery motion of beating pig hearts after stabilization with an 'Octopus' using an optical remote analysis technique. Three pigs (40, 60 and 65 kg) underwent full sternotomy after receiving general anesthesia. An 8-bit high speed black and white video camera (50 frames/s) coupled with a laser sensor (60 microm resolution) were used to capture heart wall motion in all three dimensions. Dopamine infusion was used to deliberately modulate cardiac contractility. Synchronized ECG, blood pressure, airway pressure and video data of the region around the first branching point of the left anterior descending (LAD) coronary artery after Octopus stabilization were captured for stretches of 8 s each. Several sequences of the same region were captured over a period of several minutes. Computerized off-line analysis allowed us to perform minute characterization of the heart wall motion. The movement of the points of interest on the LAD ranged from 0.22 to 0.81 mm in the lateral plane (x/y-axis) and 0.5-2.6 mm out of the plane (z-axis). Fast excursions (>50 microm/s in the lateral plane) occurred corresponding to the QRS complex and the T wave; while slow excursion phases (movement of the coronary artery after stabilization appears to be still significant. Minute characterization of the trajectory of motion could provide the substrate for achieving motion cancellation for existing robotic systems. Velocity plots could also help improve gated cardiac imaging.

  6. Training directionally selective motion pathways can significantly improve reading efficiency

    Science.gov (United States)

    Lawton, Teri

    2004-06-01

    This study examined whether perceptual learning at early levels of visual processing would facilitate learning at higher levels of processing. This was examined by determining whether training the motion pathways by practicing leftright movement discrimination, as found previously, would improve the reading skills of inefficient readers significantly more than another computer game, a word discrimination game, or the reading program offered by the school. This controlled validation study found that practicing left-right movement discrimination 5-10 minutes twice a week (rapidly) for 15 weeks doubled reading fluency, and significantly improved all reading skills by more than one grade level, whereas inefficient readers in the control groups barely improved on these reading skills. In contrast to previous studies of perceptual learning, these experiments show that perceptual learning of direction discrimination significantly improved reading skills determined at higher levels of cognitive processing, thereby being generalized to a new task. The deficits in reading performance and attentional focus experienced by the person who struggles when reading are suggested to result from an information overload, resulting from timing deficits in the direction-selectivity network proposed by Russell De Valois et al. (2000), that following practice on direction discrimination goes away. This study found that practicing direction discrimination rapidly transitions the inefficient 7-year-old reader to an efficient reader.

  7. Significant Change Spotting for Periodic Human Motion Segmentation of Cleaning Tasks Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Kai-Chun Liu

    2017-01-01

    Full Text Available The proportion of the aging population is rapidly increasing around the world, which will cause stress on society and healthcare systems. In recent years, advances in technology have created new opportunities for automatic activities of daily living (ADL monitoring to improve the quality of life and provide adequate medical service for the elderly. Such automatic ADL monitoring requires reliable ADL information on a fine-grained level, especially for the status of interaction between body gestures and the environment in the real-world. In this work, we propose a significant change spotting mechanism for periodic human motion segmentation during cleaning task performance. A novel approach is proposed based on the search for a significant change of gestures, which can manage critical technical issues in activity recognition, such as continuous data segmentation, individual variance, and category ambiguity. Three typical machine learning classification algorithms are utilized for the identification of the significant change candidate, including a Support Vector Machine (SVM, k-Nearest Neighbors (kNN, and Naive Bayesian (NB algorithm. Overall, the proposed approach achieves 96.41% in the F1-score by using the SVM classifier. The results show that the proposed approach can fulfill the requirement of fine-grained human motion segmentation for automatic ADL monitoring.

  8. Significance of the impact of motion compensation on the variability of PET image features

    Science.gov (United States)

    Carles, M.; Bach, T.; Torres-Espallardo, I.; Baltas, D.; Nestle, U.; Martí-Bonmatí, L.

    2018-03-01

    In lung cancer, quantification by positron emission tomography/computed tomography (PET/CT) imaging presents challenges due to respiratory movement. Our primary aim was to study the impact of motion compensation implied by retrospectively gated (4D)-PET/CT on the variability of PET quantitative parameters. Its significance was evaluated by comparison with the variability due to (i) the voxel size in image reconstruction and (ii) the voxel size in image post-resampling. The method employed for feature extraction was chosen based on the analysis of (i) the effect of discretization of the standardized uptake value (SUV) on complementarity between texture features (TF) and conventional indices, (ii) the impact of the segmentation method on the variability of image features, and (iii) the variability of image features across the time-frame of 4D-PET. Thirty-one PET-features were involved. Three SUV discretization methods were applied: a constant width (SUV resolution) of the resampling bin (method RW), a constant number of bins (method RN) and RN on the image obtained after histogram equalization (method EqRN). The segmentation approaches evaluated were 40% of SUVmax and the contrast oriented algorithm (COA). Parameters derived from 4D-PET images were compared with values derived from the PET image obtained for (i) the static protocol used in our clinical routine (3D) and (ii) the 3D image post-resampled to the voxel size of the 4D image and PET image derived after modifying the reconstruction of the 3D image to comprise the voxel size of the 4D image. Results showed that TF complementarity with conventional indices was sensitive to the SUV discretization method. In the comparison of COA and 40% contours, despite the values not being interchangeable, all image features showed strong linear correlations (r  >  0.91, p\\ll 0.001 ). Across the time-frames of 4D-PET, all image features followed a normal distribution in most patients. For our patient cohort, the

  9. More than a cool illusion? Functional significance of self-motion illusion (circular vection) for perspective switches.

    Science.gov (United States)

    Riecke, Bernhard E; Feuereissen, Daniel; Rieser, John J; McNamara, Timothy P

    2015-01-01

    Self-motion can facilitate perspective switches and "automatic spatial updating" and help reduce disorientation in applications like virtual reality (VR). However, providing physical motion through moving-base motion simulators or free-space walking areas comes with high cost and technical complexity. This study provides first evidence that merely experiencing an embodied illusion of self-motion ("circular vection") can provide similar behavioral benefits as actual self-motion: Blindfolded participants were asked to imagine facing new perspectives in a well-learned room, and point to previously learned objects. Merely imagining perspective switches while stationary yielded worst performance. When perceiving illusory self-rotation to the novel perspective, however, performance improved significantly and yielded performance similar to actual rotation. Circular vection was induced by combining rotating sound fields ("auditory vection") and biomechanical vection from stepping along a carrousel-like rotating floor platter. In sum, illusory self-motion indeed facilitated perspective switches and thus spatial orientation, similar to actual self-motion, thus providing first compelling evidence of the functional significance and behavioral relevance of vection. This could ultimately enable us to complement the prevailing introspective vection measures with behavioral indicators, and guide the design for more affordable yet effective VR simulators that intelligently employ multi-modal self-motion illusions to reduce the need for costly physical observer motion.

  10. More than a Cool Illusion? Functional Significance of Self-Motion Illusion (Circular Vection for Perspective Switches

    Directory of Open Access Journals (Sweden)

    Bernhard E. Riecke

    2015-08-01

    Full Text Available Self-motion can facilitate perspective switches and automatic spatial updating and help reduce disorientation in applications like Virtual Reality. However, providing physical motion through moving-base motion simulators or free-space walking areas comes with high cost and technical complexity. This study provides first evidence that merely experiencing an embodied illusion of self-motion (circular vection can provide similar behavioral benefits as actual self-motion: Blindfolded participants were asked to imagine facing new perspectives in a well-learned room, and point to previously-learned objects. Merely imagining perspective switches while stationary yielded worst performance. When perceiving illusory self-rotation to the novel perspective, however, performance improved significantly and yielded performance similar to actual rotation. Circular vection was induced by combining rotating sound fields (auditory vection and biomechanical vection from stepping along a carrousel-like rotating floor platter. In sum, illusory self-motion indeed facilitated perspective switches and thus spatial orientation, similar to actual self-motion, thus providing first compelling evidence of the functional significance and behavioral relevance of vection. This could ultimately enable us to complement the prevailing introspective vection measures with behavioral indicators, and guide the design for more affordable yet effective Virtual Reality simulators that intelligently employ multi-modal self-motion illusions to reduce the need for costly physical observer motion.

  11. Interactive cervical motion kinematics: sensitivity, specificity and clinically significant values for identifying kinematic impairments in patients with chronic neck pain.

    Science.gov (United States)

    Sarig Bahat, Hilla; Chen, Xiaoqi; Reznik, David; Kodesh, Einat; Treleaven, Julia

    2015-04-01

    Chronic neck pain has been consistently shown to be associated with impaired kinematic control including reduced range, velocity and smoothness of cervical motion, that seem relevant to daily function as in quick neck motion in response to surrounding stimuli. The objectives of this study were: to compare interactive cervical kinematics in patients with neck pain and controls; to explore the new measures of cervical motion accuracy; and to find the sensitivity, specificity, and optimal cutoff values for defining impaired kinematics in those with neck pain. In this cross-section study, 33 patients with chronic neck pain and 22 asymptomatic controls were assessed for their cervical kinematic control using interactive virtual reality hardware and customized software utilizing a head mounted display with built-in head tracking. Outcome measures included peak and mean velocity, smoothness (represented by number of velocity peaks (NVP)), symmetry (represented by time to peak velocity percentage (TTPP)), and accuracy of cervical motion. Results demonstrated significant and strong effect-size differences in peak and mean velocities, NVP and TTPP in all directions excluding TTPP in left rotation, and good effect-size group differences in 5/8 accuracy measures. Regression results emphasized the high clinical value of neck motion velocity, with very high sensitivity and specificity (85%-100%), followed by motion smoothness, symmetry and accuracy. These finding suggest cervical kinematics should be evaluated clinically, and screened by the provided cut off values for identification of relevant impairments in those with neck pain. Such identification of presence or absence of kinematic impairments may direct treatment strategies and additional evaluation when needed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Hyoscine butylbromide significantly decreases motion artefacts and allows better delineation of anatomic structures in mp-MRI of the prostate

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, T.; Quentin, M.; Schmaltz, A.K.; Rubbert, C.; Blondin, D.; Antoch, G.; Schimmoeller, L. [University Dusseldorf, Medical Faculty, Department of Diagnostic and Interventional Radiology, Dusseldorf (Germany); Arsov, C.; Rabenalt, R.; Albers, P. [University Dusseldorf, Medical Faculty, Department of Urology, Dusseldorf (Germany)

    2018-01-15

    To prospectively evaluate the effect of hyoscine butylbromide (HBB) on visualisation of anatomical details and motion-related artefacts in mp-MRI of the prostate at 3.0 Tesla. One hundred and three consecutive patients (65 ± 10 years) were included in this trial, powered to demonstrate an improvement of image quality after HBB administration, assessed on a 5-point scale by two blinded readers. All patients received high-spatial resolution axial T2-weighted TSE sequences at 3.0 T without spasmolytic agent, repeated after application of 40 mg HBB and followed by routine mp-MRI. Secondary endpoints were (1) susceptibility to side effects, (2) dependence of spasmolytic effect on patients and acute; weight, and (3) prostate volume. In 68% of patients, HBB significantly improved the anatomic score (mean 3.4 ± 0.9 before and 4.4 ± 0.7 after HBB for both readers, p = <0.001). In 67%, HBB significantly enhanced the artefact score (mean 3.2 ± 1 before and 4.2 ± 0.8 after HBB for reader 1, p = <0.001; 3.2 ± 1 and 4.1 ± 0.8 for reader 2, p = <0.001). Subgroup analysis revealed no statistically significant difference between patients with different bodyweight or prostate volume. Inter-reader agreement was excellent (k = 0.95-0.98). Hyoscine butylbromide significantly improves image quality and reduces motion-related artefacts in mp-MRI of the prostate independent of bodyweight or prostate volume. No side effects were reported. (orig.)

  13. Hyoscine butylbromide significantly decreases motion artefacts and allows better delineation of anatomic structures in mp-MRI of the prostate

    International Nuclear Information System (INIS)

    Ullrich, T.; Quentin, M.; Schmaltz, A.K.; Rubbert, C.; Blondin, D.; Antoch, G.; Schimmoeller, L.; Arsov, C.; Rabenalt, R.; Albers, P.

    2018-01-01

    To prospectively evaluate the effect of hyoscine butylbromide (HBB) on visualisation of anatomical details and motion-related artefacts in mp-MRI of the prostate at 3.0 Tesla. One hundred and three consecutive patients (65 ± 10 years) were included in this trial, powered to demonstrate an improvement of image quality after HBB administration, assessed on a 5-point scale by two blinded readers. All patients received high-spatial resolution axial T2-weighted TSE sequences at 3.0 T without spasmolytic agent, repeated after application of 40 mg HBB and followed by routine mp-MRI. Secondary endpoints were (1) susceptibility to side effects, (2) dependence of spasmolytic effect on patients and acute; weight, and (3) prostate volume. In 68% of patients, HBB significantly improved the anatomic score (mean 3.4 ± 0.9 before and 4.4 ± 0.7 after HBB for both readers, p = <0.001). In 67%, HBB significantly enhanced the artefact score (mean 3.2 ± 1 before and 4.2 ± 0.8 after HBB for reader 1, p = <0.001; 3.2 ± 1 and 4.1 ± 0.8 for reader 2, p = <0.001). Subgroup analysis revealed no statistically significant difference between patients with different bodyweight or prostate volume. Inter-reader agreement was excellent (k = 0.95-0.98). Hyoscine butylbromide significantly improves image quality and reduces motion-related artefacts in mp-MRI of the prostate independent of bodyweight or prostate volume. No side effects were reported. (orig.)

  14. Clinical significance of exercise-induced left ventricular wall motion abnormality occurring at a low heart rate

    International Nuclear Information System (INIS)

    Kimchi, A.; Rozanski, A.; Fletcher, C.; Maddahi, J.; Swan, H.J.; Berman, D.S.

    1987-01-01

    We studied the relationship between the heart rate at the time of onset of exercise-induced wall motion abnormality and the severity of coronary artery disease in 89 patients who underwent exercise equilibrium radionuclide ventriculography as part of their evaluation for coronary artery disease. Segmental wall motion was scored with a five-point system (3 = normal; -1 = dyskinesis); a decrease of one score defined the onset of wall motion abnormality. The onset of wall motion abnormality at less than or equal to 70% of maximal predicted heart rate had 100% predictive accuracy for coronary artery disease and higher sensitivity than the onset of ischemic ST segment depression at similar heart rate during exercise: 36% (25 of 69 patients with coronary disease) vs 19% (13 of 69 patients), p = 0.01. Wall motion abnormality occurring at less than or equal to 70% of maximal predicted heart rate was present in 49% of patients (23 of 47) with critical stenosis (greater than or equal to 90% luminal diameter narrowing), and in only 5% of patients (2 of 42) without such severe stenosis, p less than 0.001. The sensitivity of exercise-induced wall motion abnormality occurring at a low heart rate for the presence of severe coronary artery disease was similar to that of a deterioration in wall motion by more than two scores during exercise (49% vs 53%) or an absolute decrease of greater than or equal to 5% in exercise left ventricular ejection fraction (49% vs 45%)

  15. Investigating the significance of zero-point motion in small molecular clusters of sulphuric acid and water

    International Nuclear Information System (INIS)

    Stinson, Jake L.; Ford, Ian J.; Kathmann, Shawn M.

    2014-01-01

    The nucleation of particles from trace gases in the atmosphere is an important source of cloud condensation nuclei, and these are vital for the formation of clouds in view of the high supersaturations required for homogeneous water droplet nucleation. The methods of quantum chemistry have increasingly been employed to model nucleation due to their high accuracy and efficiency in calculating configurational energies; and nucleation rates can be obtained from the associated free energies of particle formation. However, even in such advanced approaches, it is typically assumed that the nuclei have a classical nature, which is questionable for some systems. The importance of zero-point motion (also known as quantum nuclear dynamics) in modelling small clusters of sulphuric acid and water is tested here using the path integral molecular dynamics method at the density functional level of theory. The general effect of zero-point motion is to distort the mean structure slightly, and to promote the extent of proton transfer with respect to classical behaviour. In a particular configuration of one sulphuric acid molecule with three waters, the range of positions explored by a proton between a sulphuric acid and a water molecule at 300 K (a broad range in contrast to the confinement suggested by geometry optimisation at 0 K) is clearly affected by the inclusion of zero point motion, and similar effects are observed for other configurations

  16. Small amplitude transverse waves on taut strings: exploring the significant effects of longitudinal motion on wave energy location and propagation

    International Nuclear Information System (INIS)

    Rowland, David R

    2013-01-01

    Introductory discussions of energy transport due to transverse waves on taut strings universally assume that the effects of longitudinal motion can be neglected, but this assumption is not even approximately valid unless the string is idealized to have a zero relaxed length, a requirement approximately met by the slinky spring. While making this additional idealization is probably the best approach to take when discussing waves on strings at the introductory level, for intermediate to advanced undergraduate classes in continuum mechanics and general wave phenomena where somewhat more realistic models of strings can be investigated, this paper makes the following contributions. First, various approaches to deriving the general energy continuity equation are critiqued and it is argued that the standard continuum mechanics approach to deriving such equations is the best because it leads to a conceptually clear, relatively simple derivation which provides a unique answer of greatest generality. In addition, a straightforward algorithm for calculating the transverse and longitudinal waves generated when a string is driven at one end is presented and used to investigate a cos 2 transverse pulse. This example illustrates much important physics regarding energy transport in strings and allows the ‘attack waves’ observed when strings in musical instruments are struck or plucked to be approximately modelled and analysed algebraically. Regarding the ongoing debate as to whether the potential energy density in a string can be uniquely defined, it is shown by coupling an external energy source to a string that a suggested alternative formula for potential energy density requires an unphysical potential energy to be ascribed to the source for overall energy to be conserved and so cannot be considered to be physically valid. (paper)

  17. Arthroscopic Debridement for Primary Degenerative Osteoarthritis of the Elbow Leads to Significant Improvement in Range of Motion and Clinical Outcomes: A Systematic Review.

    Science.gov (United States)

    Sochacki, Kyle R; Jack, Robert A; Hirase, Takashi; McCulloch, Patrick C; Lintner, David M; Liberman, Shari R; Harris, Joshua D

    2017-12-01

    The purpose of this investigation was to determine whether arthroscopic debridement of primary elbow osteoarthritis results in statistically significant and clinically relevant improvement in (1) elbow range of motion and (2) clinical outcomes with (3) low complication and reoperation rates. A systematic review was registered with PROSPERO and performed using PRISMA guidelines. Databases were searched for studies that investigated the outcomes of arthroscopic debridement for the treatment of primary osteoarthritis of the elbow in adult human patients. Study methodological quality was analyzed. Studies that included post-traumatic arthritis were excluded. Elbow motion and all elbow-specific patient-reported outcome scores were eligible for analysis. Comparisons between preoperative and postoperative values from each study were made using 2-sample Z-tests (http://in-silico.net/tools/statistics/ztest) using a P value osteoarthritis results in statistically significant and clinically relevant improvement in elbow range of motion and clinical outcomes with low complication and reoperation rates. Systematic review of level IV studies. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  18. Natural convection in nano-fluids: Are the thermophoresis and Brownian motion effects significant in nano-fluid heat transfer enhancement?

    International Nuclear Information System (INIS)

    Haddad, Zoubida; Abu-Nada, Eiyad; Oztop, Hakan F.; Mataoui, Amina

    2012-01-01

    Natural convection heat transfer and fluid flow of CuO-Water nano-fluids is studied using the Rayleigh-Benard problem. A two component non-homogenous equilibrium model is used for the nano-fluid that incorporates the effects of Brownian motion and thermophoresis. Variable thermal conductivity and variable viscosity are taken into account in this work. Finite volume method is used to solve governing equations. Results are presented by streamlines, isotherms, nano-particle distribution, local and mean Nusselt numbers and nano-particle profiles at top and bottom side. Comparison of two cases as absence of Brownian and thermophoresis effects and presence of Brownian and thermophoresis effects showed that higher heat transfer is formed with the presence of Brownian and thermophoresis effect. In general, by considering the role of thermophoresis and Brownian motion, an enhancement in heat transfer is observed at any volume fraction of nano-particles. However, the enhancement is more pronounced at low volume fraction of nano-particles and the heat transfer decreases by increasing nano-particle volume fraction. On the other hand, by neglecting the role of thermophoresis and Brownian motion, deterioration in heat transfer is observed and this deterioration elevates by increasing the volume fraction of nano-particles. (authors)

  19. Auditory Motion Elicits a Visual Motion Aftereffect

    Directory of Open Access Journals (Sweden)

    Christopher C. Berger

    2016-12-01

    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  20. Auditory Motion Elicits a Visual Motion Aftereffect.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  1. Tomographic Imaging of the Lesser Antilles Subducted Slab and its Significance for Estimating the Age and Amount of Eastward Motion of the Overriding Caribbean Plate

    Science.gov (United States)

    Mann, P.; Chen, Y. W.; Wu, J.; Suppe, J.

    2017-12-01

    The idea of a Pacific-derived and eastward-transported Caribbean and Scotia plates was first proposed by J. Tuzo Wilson in 1966. Wilson proposed that the motion of these two, small plates was analogous to "ice rafting" observed on frozen lakes and oceans when a narrow ( 50 m) strip of ice is forced over a lower plate of ice. In the Caribbean the upper plate corresponds to the 750 km-long, north-south length of the Lesser Antilles volcanic arc ranging in thickness from 20-30 km while its subducting plate is Atlantic Cretaceous oceanic crust of 8-10 km thickness and subducting at an angle of 45º to a depth of 300 km into the mantle. We estimated the length of the Lesser Antilles slab from MIT P-wave global tomography (MITP08; Li et al., 2008) and compared to published transects from Utrecht UUP-07 global tomography (van Bentham et al., 2013). The measured slab lengths vary from 1550 km (Utrecht) to 1250 km (MIT). We then unfolded both slabs to the Earth's surface, and used GPlates to restore the leading edge of the Caribbean plate at the time of the Lesser Antilles slab's initial subduction. The Middle Eocene (49 Ma) reconstruction realigns the proto-Lesser Antilles arc and leading edge of the Caribbean plate in a continuous arc with older arc rocks in Cuba. During this Middle Eocene period of abrupt tectonic transition, the Cuban arc segment was terminated on its northeastward path by collision with the Bahama carbonate platform with subsequent reorientation onto its present, east-west path into the central Atlantic Ocean from 49-0 Ma. This collision/plate reorientation event is independently recorded by: 1) a poorly defined Greater Antilles slab seen on tomography that is aligned with the Cuban arc; 2) identical initiation ages of 49 Ma for the Cayman trough pull-apart and the Lesser Antilles slab; and 3) similarity in lengths for the length of the subducted, Lesser Antilles slab ( 1250-1550 km) and the length of the Cayman trough pull-apart basin ( 1100 km). East

  2. A new estimate for present-day Cocos-Caribbean Plate motion: Implications for slip along the Central American Volcanic Arc

    Science.gov (United States)

    DeMets, Charles

    Velocities from 153 continuously-operating GPS sites on the Caribbean, North American, and Pacific plates are combined with 61 newly estimated Pacific-Cocos seafloor spreading rates and additional marine geophysical data to derive a new estimate of present-day Cocos-Caribbean plate motion. A comparison of the predicted Cocos-Caribbean direction to slip directions of numerous shallow-thrust subduction earthquakes from the Middle America trench between Costa Rica and Guatemala shows the slip directions to be deflected 10° clockwise from the plate convergence direction, supporting the hypothesis that frequent dextral strike-slip earthquakes along the Central American volcanic arc result from partitioning of oblique Cocos-Caribbean plate convergence. Linear velocity analysis for forearc locations in Nicaragua and Guatemala predicts 14±2 mm yr-1 of northwestward trench-parallel slip of the forearc relative to the Caribbean plate, possibly decreasing in magnitude in El Salvador and Guatemala, where extension east of the volcanic arc complicates the tectonic setting.

  3. Deficient Biological Motion Perception in Schizophrenia: Results from a Motion Noise Paradigm

    Directory of Open Access Journals (Sweden)

    Jejoong eKim

    2013-07-01

    Full Text Available Background: Schizophrenia patients exhibit deficient processing of perceptual and cognitive information. However, it is not well understood how basic perceptual deficits contribute to higher level cognitive problems in this mental disorder. Perception of biological motion, a motion-based cognitive recognition task, relies on both basic visual motion processing and social cognitive processing, thus providing a useful paradigm to evaluate the potentially hierarchical relationship between these two levels of information processing. Methods: In this study, we designed a biological motion paradigm in which basic visual motion signals were manipulated systematically by incorporating different levels of motion noise. We measured the performances of schizophrenia patients (n=21 and healthy controls (n=22 in this biological motion perception task, as well as in coherent motion detection, theory of mind, and a widely used biological motion recognition task. Results: Schizophrenia patients performed the biological motion perception task with significantly lower accuracy than healthy controls when perceptual signals were moderately degraded by noise. A more substantial degradation of perceptual signals, through using additional noise, impaired biological motion perception in both groups. Performance levels on biological motion recognition, coherent motion detection and theory of mind tasks were also reduced in patients. Conclusion: The results from the motion-noise biological motion paradigm indicate that in the presence of visual motion noise, the processing of biological motion information in schizophrenia is deficient. Combined with the results of poor basic visual motion perception (coherent motion task and biological motion recognition, the association between basic motion signals and biological motion perception suggests a need to incorporate the improvement of visual motion perception in social cognitive remediation.

  4. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    Arjen eAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  5. Ion Motion in the Adiabatic Focuser

    International Nuclear Information System (INIS)

    Henestroza, E.; Sessler, A.M.; Yu, S.S.

    2006-01-01

    In this paper we numerically study the effect of ion motion in an adiabatic focuser, motivated by a recent suggestion that ion motion in an adiabatic focuser might be significant and even preclude operation of the focuser as previously envisioned. It is shown that despite ion motion the adiabatic focuser should work as well as originally envisioned

  6. Motion control report

    CERN Document Server

    2013-01-01

    Please note this is a short discount publication. In today's manufacturing environment, Motion Control plays a major role in virtually every project.The Motion Control Report provides a comprehensive overview of the technology of Motion Control:* Design Considerations* Technologies* Methods to Control Motion* Examples of Motion Control in Systems* A Detailed Vendors List

  7. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Science.gov (United States)

    Rosenblatt, Steven David; Crane, Benjamin Thomas

    2015-01-01

    A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (pperception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion

  8. Measurement of shoulder motion fraction and motion ratio

    International Nuclear Information System (INIS)

    Kang, Yeong Han

    2006-01-01

    This study was to understand about the measurement of shoulder motion fraction and motion ratio. We proposed the radiological criterior of glenohumeral and scapulothoracic movement ratio. We measured the motion fraction of the glenohumeral and scapulothoracic movement using CR (computed radiological system) of arm elevation at neutral, 90 degree, full elevation. Central ray was 15 .deg., 19 .deg., 22 .deg. to the cephald for the parallel scapular spine, and the tilting of torso was external oblique 40 .deg., 36 .deg., 22 .deg. for perpendicular to glenohumeral surface. Healthful donor of 100 was divided 5 groups by age (20, 30, 40, 50, 60). The angle of glenohumeral motion and scapulothoracic motion could be taken from gross arm angle and radiological arm angle. We acquired 3 images at neutral, 90 .deg. and full elevation position and measured radiographic angle of glenoheumeral, scapulothoracic movement respectively. While the arm elevation was 90 .deg., the shoulder motion fraction was 1.22 (M), 1.70 (W) in right arm and 1.31, 1.54 in left. In full elevation, Right arm fraction was 1.63, 1.84 and left was 1.57, 1.32. In right dominant arm (78%), 90 .deg. and Full motion fraction was 1.58, 1.43, in left (22%) 1.82, 1.94. In generation 20, 90 .deg. and Full motion fraction was 1.56, 1.52, 30' was 1.82, 1.43, 40' was 1.23, 1.16, 50' was 1.80, 1.28,60' was 1.24, 1.75. There was not significantly by gender, dominant arm and age. The criteria of motion fraction was useful reference for clinical diagnosis the shoulder instability

  9. Motion in radiotherapy

    DEFF Research Database (Denmark)

    Korreman, Stine Sofia

    2012-01-01

    This review considers the management of motion in photon radiation therapy. An overview is given of magnitudes and variability of motion of various structures and organs, and how the motion affects images by producing artifacts and blurring. Imaging of motion is described, including 4DCT and 4DPE...

  10. Ground motion input in seismic evaluation studies

    International Nuclear Information System (INIS)

    Sewell, R.T.; Wu, S.C.

    1996-07-01

    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants

  11. Motion Transplantation Techniques: A Survey

    NARCIS (Netherlands)

    van Basten, Ben; Egges, Arjan

    2012-01-01

    During the past decade, researchers have developed several techniques for transplanting motions. These techniques transplant a partial auxiliary motion, possibly defined for a small set of degrees of freedom, on a base motion. Motion transplantation improves motion databases' expressiveness and

  12. Patellofemoral joint motion

    International Nuclear Information System (INIS)

    Stanford, W.; Phelan, J.; Albright, J.; Kathol, M.; Rooholamini, S.A.; El-Khoury, G.Y.; Palutsis, G.R.

    1988-01-01

    This paper describes the use of ultrafast computed tomography (CT) to obtain dynamic images of the patellofemoral joint during active motion. Thirty-eight patients underwent measurements of tangent offset, bisect offset, congruence angle, patellar tilt angle, lateral patellofemoral angle, sulcus angle, and sulcus depth made during leg movement. Selected parameters were compared with Merchant views. Significant correlations were obtained between Merchant views and comparable ultrafast CT views for all parameters except sulcus angle. Correlations between the other parameters were poor. Cine strips showed two patterns of movement; the patella remained centered either throughout excursion or until the last 20 0 of full extension, when it would sublux laterally

  13. Significance of collective motions in biopolymers and neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Go, Nobuhiro [Kyoto Univ. (Japan)

    1996-05-01

    Importance of collective variable description of conformational dynamics of biopolymers and the vital role that neutron inelastic scattering phenomena would play in its experimental determination are discussed. (author)

  14. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Directory of Open Access Journals (Sweden)

    Steven David Rosenblatt

    Full Text Available A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37 participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001 and rotation (p0.1 for both. Thus, although a true moving visual field can induce self-motion, results of this

  15. Attention and apparent motion.

    Science.gov (United States)

    Horowitz, T; Treisman, A

    1994-01-01

    Two dissociations between short- and long-range motion in visual search are reported. Previous research has shown parallel processing for short-range motion and apparently serial processing for long-range motion. This finding has been replicated and it has also been found that search for short-range targets can be impaired both by using bicontrast stimuli, and by prior adaptation to the target direction of motion. Neither factor impaired search in long-range motion displays. Adaptation actually facilitated search with long-range displays, which is attributed to response-level effects. A feature-integration account of apparent motion is proposed. In this theory, short-range motion depends on specialized motion feature detectors operating in parallel across the display, but subject to selective adaptation, whereas attention is needed to link successive elements when they appear at greater separations, or across opposite contrasts.

  16. Objects in Motion

    Science.gov (United States)

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  17. Motion compensated digital tomosynthesis

    NARCIS (Netherlands)

    van der Reijden, Anneke; van Herk, Marcel; Sonke, Jan-Jakob

    2013-01-01

    Digital tomosynthesis (DTS) is a limited angle image reconstruction method for cone beam projections that offers patient surveillance capabilities during VMAT based SBRT delivery. Motion compensation (MC) has the potential to mitigate motion artifacts caused by respiratory motion, such as blur. The

  18. Perceptually Uniform Motion Space.

    Science.gov (United States)

    Birkeland, Asmund; Turkay, Cagatay; Viola, Ivan

    2014-11-01

    Flow data is often visualized by animated particles inserted into a flow field. The velocity of a particle on the screen is typically linearly scaled by the velocities in the data. However, the perception of velocity magnitude in animated particles is not necessarily linear. We present a study on how different parameters affect relative motion perception. We have investigated the impact of four parameters. The parameters consist of speed multiplier, direction, contrast type and the global velocity scale. In addition, we investigated if multiple motion cues, and point distribution, affect the speed estimation. Several studies were executed to investigate the impact of each parameter. In the initial results, we noticed trends in scale and multiplier. Using the trends for the significant parameters, we designed a compensation model, which adjusts the particle speed to compensate for the effect of the parameters. We then performed a second study to investigate the performance of the compensation model. From the second study we detected a constant estimation error, which we adjusted for in the last study. In addition, we connect our work to established theories in psychophysics by comparing our model to a model based on Stevens' Power Law.

  19. Blind retrospective motion correction of MR images.

    Science.gov (United States)

    Loktyushin, Alexander; Nickisch, Hannes; Pohmann, Rolf; Schölkopf, Bernhard

    2013-12-01

    Subject motion can severely degrade MR images. A retrospective motion correction algorithm, Gradient-based motion correction, which significantly reduces ghosting and blurring artifacts due to subject motion was proposed. The technique uses the raw data of standard imaging sequences; no sequence modifications or additional equipment such as tracking devices are required. Rigid motion is assumed. The approach iteratively searches for the motion trajectory yielding the sharpest image as measured by the entropy of spatial gradients. The vast space of motion parameters is efficiently explored by gradient-based optimization with a convergence guarantee. The method has been evaluated on both synthetic and real data in two and three dimensions using standard imaging techniques. MR images are consistently improved over different kinds of motion trajectories. Using a graphics processing unit implementation, computation times are in the order of a few minutes for a full three-dimensional volume. The presented technique can be an alternative or a complement to prospective motion correction methods and is able to improve images with strong motion artifacts from standard imaging sequences without requiring additional data. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.

  20. Rolling Shutter Motion Deblurring

    KAUST Repository

    Su, Shuochen

    2015-06-07

    Although motion blur and rolling shutter deformations are closely coupled artifacts in images taken with CMOS image sensors, the two phenomena have so far mostly been treated separately, with deblurring algorithms being unable to handle rolling shutter wobble, and rolling shutter algorithms being incapable of dealing with motion blur. We propose an approach that delivers sharp and undis torted output given a single rolling shutter motion blurred image. The key to achieving this is a global modeling of the camera motion trajectory, which enables each scanline of the image to be deblurred with the corresponding motion segment. We show the results of the proposed framework through experiments on synthetic and real data.

  1. Smoothing Motion Estimates for Radar Motion Compensation.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Simple motion models for complex motion environments are often not adequate for keeping radar data coherent. Eve n perfect motion samples appli ed to imperfect models may lead to interim calculations e xhibiting errors that lead to degraded processing results. Herein we discuss a specific i ssue involving calculating motion for groups of pulses, with measurements only available at pulse-group boundaries. - 4 - Acknowledgements This report was funded by General A tomics Aeronautical Systems, Inc. (GA-ASI) Mission Systems under Cooperative Re search and Development Agre ement (CRADA) SC08/01749 between Sandia National Laboratories and GA-ASI. General Atomics Aeronautical Systems, Inc. (GA-ASI), an affilia te of privately-held General Atomics, is a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and rel ated mission systems, includin g the Predator(r)/Gray Eagle(r)-series and Lynx(r) Multi-mode Radar.

  2. Molecular motion in restricted geometries

    Indian Academy of Sciences (India)

    Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time ...

  3. Curves from Motion, Motion from Curves

    Science.gov (United States)

    2000-01-01

    De linearum curvarum cum lineis rectis comparatione dissertatio geometrica - an appendix to a treatise by de Lalouv~re (this was the only publication... correct solution to the problem of motion in the gravity of a permeable rotating Earth, considered by Torricelli (see §3). If the Earth is a homogeneous...in 1686, which contains the correct solution as part of a remarkably comprehensive theory of orbital motions under centripetal forces. It is a

  4. Structural motion engineering

    CERN Document Server

    Connor, Jerome

    2014-01-01

    This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective is the satisfaction of motion-related design requirements, such as restrictions on displacement and acceleration. The book is ideal for practicing engineers and graduate students. This book also: ·         Broadens practitioners' understanding of structural motion control, the enabling technology for motion-based design ·         Provides readers the tools to satisfy requirements of modern, ultra-high strength materials that lack corresponding stiffness, where the motion re...

  5. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?

    Science.gov (United States)

    Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y

    2015-02-04

    Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems. © 2015 ARVO.

  6. Helicopter flight simulation motion platform requirements

    Science.gov (United States)

    Schroeder, Jeffery Allyn

    Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  7. The perception of object versus objectless motion.

    Science.gov (United States)

    Hock, Howard S; Nichols, David F

    2013-05-01

    Wertheimer, M. (Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 61:161-265, 1912) classical distinction between beta (object) and phi (objectless) motion is elaborated here in a series of experiments concerning competition between two qualitatively different motion percepts, induced by sequential changes in luminance for two-dimensional geometric objects composed of rectangular surfaces. One of these percepts is of spreading-luminance motion that continuously sweeps across the entire object; it exhibits shape invariance and is perceived most strongly for fast speeds. Significantly for the characterization of phi as objectless motion, the spreading luminance does not involve surface boundaries or any other feature; the percept is driven solely by spatiotemporal changes in luminance. Alternatively, and for relatively slow speeds, a discrete series of edge motions can be perceived in the direction opposite to spreading-luminance motion. Akin to beta motion, the edges appear to move through intermediate positions within the object's changing surfaces. Significantly for the characterization of beta as object motion, edge motion exhibits shape dependence and is based on the detection of oppositely signed changes in contrast (i.e., counterchange) for features essential to the determination of an object's shape, the boundaries separating its surfaces. These results are consistent with area MT neurons that differ with respect to speed preference Newsome et al (Journal of Neurophysiology, 55:1340-1351, 1986) and shape dependence Zeki (Journal of Physiology, 236:549-573, 1974).

  8. Passive containment system in high earthquake motion

    International Nuclear Information System (INIS)

    Kleimola, F.W.; Falls, O.B. Jr.

    1977-01-01

    High earthquake motion necessitates major design modifications in the complex of plant structures, systems and components in a nuclear power plant. Distinctive features imposed by seismic category, safety class and quality classification requirements for the high seismic ground acceleration loadings significantly reflect in plant costs. The design features in the Passive Containment System (PCS) responding to high earthquake ground motion are described

  9. Effects of auditory information on self-motion perception during simultaneous presentation of visual shearing motion

    Science.gov (United States)

    Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu

    2015-01-01

    Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information. PMID:26113828

  10. Motion and relativity

    CERN Document Server

    Infeld, Leopold

    1960-01-01

    Motion and Relativity focuses on the methodologies, solutions, and approaches involved in the study of motion and relativity, including the general relativity theory, gravitation, and approximation.The publication first offers information on notation and gravitational interaction and the general theory of motion. Discussions focus on the notation of the general relativity theory, field values on the world-lines, general statement of the physical problem, Newton's theory of gravitation, and forms for the equation of motion of the second kind. The text then takes a look at the approximation meth

  11. Brain Image Motion Correction

    DEFF Research Database (Denmark)

    Jensen, Rasmus Ramsbøl; Benjaminsen, Claus; Larsen, Rasmus

    2015-01-01

    The application of motion tracking is wide, including: industrial production lines, motion interaction in gaming, computer-aided surgery and motion correction in medical brain imaging. Several devices for motion tracking exist using a variety of different methodologies. In order to use such devices...... offset and tracking noise in medical brain imaging. The data are generated from a phantom mounted on a rotary stage and have been collected using a Siemens High Resolution Research Tomograph for positron emission tomography. During acquisition the phantom was tracked with our latest tracking prototype...

  12. Projectile Motion Hoop Challenge

    Science.gov (United States)

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-01-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in "The Physics Teacher" ("TPT"); however, the "Hoop Challenge" is a new setup not…

  13. Temporal logic motion planning

    CSIR Research Space (South Africa)

    Seotsanyana, M

    2010-01-01

    Full Text Available In this paper, a critical review on temporal logic motion planning is presented. The review paper aims to address the following problems: (a) In a realistic situation, the motion planning problem is carried out in real-time, in a dynamic, uncertain...

  14. Aristotle, Motion, and Rhetoric.

    Science.gov (United States)

    Sutton, Jane

    Aristotle rejects a world vision of changing reality as neither useful nor beneficial to human life, and instead he reaffirms both change and eternal reality, fuses motion and rest, and ends up with "well-behaved" changes. This concept of motion is foundational to his world view, and from it emerges his theory of knowledge, philosophy of…

  15. Stochastic ground motion simulation

    Science.gov (United States)

    Rezaeian, Sanaz; Xiaodan, Sun; Beer, Michael; Kougioumtzoglou, Ioannis A.; Patelli, Edoardo; Siu-Kui Au, Ivan

    2014-01-01

    Strong earthquake ground motion records are fundamental in engineering applications. Ground motion time series are used in response-history dynamic analysis of structural or geotechnical systems. In such analysis, the validity of predicted responses depends on the validity of the input excitations. Ground motion records are also used to develop ground motion prediction equations(GMPEs) for intensity measures such as spectral accelerations that are used in response-spectrum dynamic analysis. Despite the thousands of available strong ground motion records, there remains a shortage of records for large-magnitude earthquakes at short distances or in specific regions, as well as records that sample specific combinations of source, path, and site characteristics.

  16. Auditory capture of visual motion: effects on perception and discrimination.

    Science.gov (United States)

    McCourt, Mark E; Leone, Lynnette M

    2016-09-28

    We asked whether the perceived direction of visual motion and contrast thresholds for motion discrimination are influenced by the concurrent motion of an auditory sound source. Visual motion stimuli were counterphasing Gabor patches, whose net motion energy was manipulated by adjusting the contrast of the leftward-moving and rightward-moving components. The presentation of these visual stimuli was paired with the simultaneous presentation of auditory stimuli, whose apparent motion in 3D auditory space (rightward, leftward, static, no sound) was manipulated using interaural time and intensity differences, and Doppler cues. In experiment 1, observers judged whether the Gabor visual stimulus appeared to move rightward or leftward. In experiment 2, contrast discrimination thresholds for detecting the interval containing unequal (rightward or leftward) visual motion energy were obtained under the same auditory conditions. Experiment 1 showed that the perceived direction of ambiguous visual motion is powerfully influenced by concurrent auditory motion, such that auditory motion 'captured' ambiguous visual motion. Experiment 2 showed that this interaction occurs at a sensory stage of processing as visual contrast discrimination thresholds (a criterion-free measure of sensitivity) were significantly elevated when paired with congruent auditory motion. These results suggest that auditory and visual motion signals are integrated and combined into a supramodal (audiovisual) representation of motion.

  17. Capturing Motion and Depth Before Cinematography.

    Science.gov (United States)

    Wade, Nicholas J

    2016-01-01

    Visual representations of biological states have traditionally faced two problems: they lacked motion and depth. Attempts were made to supply these wants over many centuries, but the major advances were made in the early-nineteenth century. Motion was synthesized by sequences of slightly different images presented in rapid succession and depth was added by presenting slightly different images to each eye. Apparent motion and depth were combined some years later, but they tended to be applied separately. The major figures in this early period were Wheatstone, Plateau, Horner, Duboscq, Claudet, and Purkinje. Others later in the century, like Marey and Muybridge, were stimulated to extend the uses to which apparent motion and photography could be applied to examining body movements. These developments occurred before the birth of cinematography, and significant insights were derived from attempts to combine motion and depth.

  18. Artificial horizon effects on motion sickness and performance.

    Science.gov (United States)

    Tal, Dror; Gonen, Adi; Wiener, Guy; Bar, Ronen; Gil, Amnon; Nachum, Zohar; Shupak, Avi

    2012-07-01

    To investigate whether the projection of Earth-referenced scenes during provocative motion can alleviate motion sickness severity and prevent motion sickness-induced degradation of performance. Exposure to unfamiliar motion patterns commonly results in motion sickness and decreased performance. Thirty subjects with moderate-to-severe motion sickness susceptibility were exposed to the recorded motion profile of a missile boat under moderate sea conditions in a 3-degrees-of-freedom ship motion simulator. During a 120-minute simulated voyage, the study participants were repeatedly put through a performance test battery and completed a motion sickness susceptibility questionnaire, while self-referenced and Earth-referenced visual scenes were projected inside the closed simulator cabin. A significant decrease was found in the maximal motion sickness severity score, from 9.83 ± 9.77 (mean ± standard deviation) to 7.23 ± 7.14 (p pitch, and heave movements of the simulator. Although there was a significant decrease in sickness severity, substantial symptoms still persisted. Decision making, vision, concentration, memory, simple reasoning, and psychomotor skills all deteriorated under the motion conditions. However, no significant differences between the projection conditions could be found in the scores of any of the performance tests. Visual information regarding the vessel's movement provided by an artificial horizon device might decrease motion sickness symptoms. However, although this device might be suitable for passive transportation, the continued deterioration in performance measures indicates that it provides no significant advantage for personnel engaged in the active operation of modern vessels.

  19. Improved motion description for action classification

    Directory of Open Access Journals (Sweden)

    Mihir eJain

    2016-01-01

    Full Text Available Even though the importance of explicitly integrating motion characteristics in video descriptions has been demonstrated by several recent papers on action classification, our current work concludes that adequately decomposing visual motion into dominant and residual motions, i.e.: camera and scene motion, significantly improves action recognition algorithms. This holds true both for the extraction of the space-time trajectories and for computation of descriptors.We designed a new motion descriptor – the DCS descriptor – that captures additional information on local motion patterns enhancing results based on differential motion scalar quantities, divergence, curl and shear features. Finally, applying the recent VLAD coding technique proposed in image retrieval provides a substantial improvement for action recognition. These findings are complementary to each other and they outperformed all previously reported results by a significant margin on three challenging datasets: Hollywood 2, HMDB51 and Olympic Sports as reported in (Jain et al. (2013. These results were further improved by (Oneata et al. (2013; Wang and Schmid (2013; Zhu et al. (2013 through the use of the Fisher vector encoding. We therefore also employ Fisher vector in this paper and we further enhance our approach by combining trajectories from both optical flow and compensated flow. We as well provide additional details of DCS descriptors, including visualization. For extending the evaluation, a novel dataset with 101 action classes, UCF101, was added.

  20. Interactive inverse kinematics for human motion estimation

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten Pol; Hauberg, Søren; Lapuyade, Jerome

    2009-01-01

    We present an application of a fast interactive inverse kinematics method as a dimensionality reduction for monocular human motion estimation. The inverse kinematics solver deals efficiently and robustly with box constraints and does not suffer from shaking artifacts. The presented motion...... to significantly speed up the particle filtering. It should be stressed that the observation part of the system has not been our focus, and as such is described only from a sense of completeness. With our approach it is possible to construct a robust and computationally efficient system for human motion estimation....

  1. Toying with Motion.

    Science.gov (United States)

    Galus, Pamela J.

    2002-01-01

    Presents a variety of activities that support the development of an understanding of Newton's laws of motion. Activities use toy cars, mobile roads, and a seat-of-nails. Includes a scoring rubric. (DDR)

  2. Projectile Motion Hoop Challenge

    Science.gov (United States)

    Jordan, Connor; Dunn, Amy; Armstrong, Zachary; Adams, Wendy K.

    2018-04-01

    Projectile motion is a common phenomenon that is used in introductory physics courses to help students understand motion in two dimensions. Authors have shared a range of ideas for teaching this concept and the associated kinematics in The Physics Teacher; however, the "Hoop Challenge" is a new setup not before described in TPT. In this article an experiment is illustrated to explore projectile motion in a fun and challenging manner that has been used with both high school and university students. With a few simple materials, students have a vested interest in being able to calculate the height of the projectile at a given distance from its launch site. They also have an exciting visual demonstration of projectile motion when the lab is over.

  3. Travelers' Health: Motion Sickness

    Science.gov (United States)

    ... sickness, especially when pregnant, menstruating, or on hormones. Race/ethnicity—Asians may be more susceptible to motion ... it, sitting in the front seat of a car or bus, sitting over the wing of an ...

  4. Dizziness and Motion Sickness

    Science.gov (United States)

    ... that extends into the inner ear can completely destroy both the hearing and equilibrium function of that ... motion sickness: •Do not read while traveling •Avoid sitting in the rear seat •Do not sit in ...

  5. Motion Sickness: First Aid

    Science.gov (United States)

    ... com. Accessed July 29, 2017. Priesol AJ. Motion sickness. https://www.uptodate.com/content/search. Accessed July 29, 2017. Brunette GW, et al. CDC Health Information for International Travel 2018. New York, N. ...

  6. Visual Motion Perception

    Science.gov (United States)

    1991-08-15

    displace- ment limit for motion in random dots," Vision Res., 24, 293-300. Pantie , A. & K. Turano (1986) "Direct comparisons of apparent motions...Hicks & AJ, Pantie (1978) "Apparent movement of successively generated subjec. uve figures," Perception, 7, 371-383. Ramachandran. V.S. & S.M. Anstis...thanks think deaf girl until world uncle flag home talk finish short thee our screwdiver sonry flower wrCstlir~g plan week wait accident guilty tree

  7. Coupled transverse motion

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-01-01

    The magnetic field in an accelerator or a storage ring is usually so designed that the horizontal (x) and the vertical (y) motions of an ion are uncoupled. However, because of imperfections in construction and alignment, some small coupling is unavoidable. In this lecture, we discuss in a general way what is known about the behaviors of coupled motions in two degrees-of-freedom. 11 refs., 6 figs

  8. General Automatic Components of Motion Sickness

    Science.gov (United States)

    Suter, S.; Toscano, W. B.; Kamiya, J.; Naifeh, K.

    1985-01-01

    A body of investigations performed in support of experiments aboard the space shuttle, and designed to counteract the symptoms of Space Adaptation Syndrome, which resemble those of motion sickness on Earth is reviewed. For these supporting studies, the automatic manifestations of earth-based motion sickness was examined. Heart rate, respiration rate, finger pulse volume and basal skin resistance were measured on 127 men and women before, during and after exposure to nauseogenic rotating chair tests. Significant changes in all autonomic responses were observed across the tests. Significant differences in autonomic responses among groups divided according to motion sickness susceptibility were also observed. Results suggest that the examination of autonomic responses as an objective indicator of motion sickness malaise is warranted and may contribute to the overall understanding of the syndrome on Earth and in Space.

  9. Motion sickness, stress and the endocannabinoid system.

    Directory of Open Access Journals (Sweden)

    Alexander Choukèr

    Full Text Available BACKGROUND: A substantial number of individuals are at risk for the development of motion sickness induced nausea and vomiting (N&V during road, air or sea travel. Motion sickness can be extremely stressful but the neurobiologic mechanisms leading to motion sickness are not clear. The endocannabinoid system (ECS represents an important neuromodulator of stress and N&V. Inhibitory effects of the ECS on N&V are mediated by endocannabinoid-receptor activation. METHODOLOGY/PRINCIPAL FINDINGS: We studied the activity of the ECS in human volunteers (n = 21 during parabolic flight maneuvers (PFs. During PFs, microgravity conditions (<10(-2 g are generated for approximately 22 s which results in a profound kinetic stimulus. Blood endocannabinoids (anandamide and 2-arachidonoylglycerol, 2-AG were measured from blood samples taken in-flight before start of the parabolic maneuvers, after 10, 20, and 30 parabolas, in-flight after termination of PFs and 24 h later. Volunteers who developed acute motion sickness (n = 7 showed significantly higher stress scores but lower endocannabinoid levels during PFs. After 20 parabolas, blood anandamide levels had dropped significantly in volunteers with motion sickness (from 0.39+/-0.40 to 0.22+/-0.25 ng/ml but increased in participants without the condition (from 0.43+/-0.23 to 0.60+/-0.38 ng/ml resulting in significantly higher anandamide levels in participants without motion sickness (p = 0.02. 2-AG levels in individuals with motion sickness were low and almost unchanged throughout the experiment but showed a robust increase in participants without motion sickness. Cannabinoid-receptor 1 (CB1 but not cannabinoid-receptor 2 (CB2 mRNA expression in leucocytes 4 h after the experiment was significantly lower in volunteers with motion sickness than in participants without N&V. CONCLUSIONS/SIGNIFICANCE: These findings demonstrate that stress and motion sickness in humans are associated with impaired endocannabinoid

  10. Applications of Phase-Based Motion Processing

    Science.gov (United States)

    Branch, Nicholas A.; Stewart, Eric C.

    2018-01-01

    Image pyramids provide useful information in determining structural response at low cost using commercially available cameras. The current effort applies previous work on the complex steerable pyramid to analyze and identify imperceptible linear motions in video. Instead of implicitly computing motion spectra through phase analysis of the complex steerable pyramid and magnifying the associated motions, instead present a visual technique and the necessary software to display the phase changes of high frequency signals within video. The present technique quickly identifies regions of largest motion within a video with a single phase visualization and without the artifacts of motion magnification, but requires use of the computationally intensive Fourier transform. While Riesz pyramids present an alternative to the computationally intensive complex steerable pyramid for motion magnification, the Riesz formulation contains significant noise, and motion magnification still presents large amounts of data that cannot be quickly assessed by the human eye. Thus, user-friendly software is presented for quickly identifying structural response through optical flow and phase visualization in both Python and MATLAB.

  11. Simulated earthquake ground motions

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.; Gasparini, D.A.

    1977-01-01

    The paper reviews current methods for generating synthetic earthquake ground motions. Emphasis is on the special requirements demanded of procedures to generate motions for use in nuclear power plant seismic response analysis. Specifically, very close agreement is usually sought between the response spectra of the simulated motions and prescribed, smooth design response spectra. The features and capabilities of the computer program SIMQKE, which has been widely used in power plant seismic work are described. Problems and pitfalls associated with the use of synthetic ground motions in seismic safety assessment are also pointed out. The limitations and paucity of recorded accelerograms together with the widespread use of time-history dynamic analysis for obtaining structural and secondary systems' response have motivated the development of earthquake simulation capabilities. A common model for synthesizing earthquakes is that of superposing sinusoidal components with random phase angles. The input parameters for such a model are, then, the amplitudes and phase angles of the contributing sinusoids as well as the characteristics of the variation of motion intensity with time, especially the duration of the motion. The amplitudes are determined from estimates of the Fourier spectrum or the spectral density function of the ground motion. These amplitudes may be assumed to be varying in time or constant for the duration of the earthquake. In the nuclear industry, the common procedure is to specify a set of smooth response spectra for use in aseismic design. This development and the need for time histories have generated much practical interest in synthesizing earthquakes whose response spectra 'match', or are compatible with a set of specified smooth response spectra

  12. Ground motion predictions

    Energy Technology Data Exchange (ETDEWEB)

    Loux, P C [Environmental Research Corporation, Alexandria, VA (United States)

    1969-07-01

    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  13. Method through motion

    DEFF Research Database (Denmark)

    Steijn, Arthur

    2016-01-01

    Contemporary scenography often consists of video-projected motion graphics. The field is lacking in academic methods and rigour: descriptions and models relevant for the creation as well as in the analysis of existing works. In order to understand the phenomenon of motion graphics in a scenographic...... construction as a support to working systematically practice-led research project. The design model is being developed through design laboratories and workshops with students and professionals who provide feedback that lead to incremental improvements. Working with this model construction-as-method reveals...... context, I have been conducting a practice-led research project. Central to the project is construction of a design model describing sets of procedures, concepts and terminology relevant for design and studies of motion graphics in spatial contexts. The focus of this paper is the role of model...

  14. Ground motion predictions

    International Nuclear Information System (INIS)

    Loux, P.C.

    1969-01-01

    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  15. Management of respiratory motion in radiation oncology

    International Nuclear Information System (INIS)

    Vedam, Subrahmanya Sastry

    2003-01-01

    Respiration affects the instantaneous position of almost all thoracic and abdominal structures (lung, breast, liver, pancreas, etc.), posing significant problems in the radiotherapy of tumors located at these sites. The diaphragm, for example, has been shown to move approximately 1.5 cm in the superior-inferior direction during normal breathing. During radiotherapy, margin expansion around the tumor, based on an estimate of the expected range of tumor motion, is commonly employed to ensure adequate dose coverage. Such a margin estimate may or may not encompass the 'current' extent of motion exhibited by the tumor, resulting in either a higher dose to the surrounding normal tissue or a cold spot in the tumor volume, leading to poor prognosis. Accounting for respiratory motion by active management during radiotherapy can, however, potentiate a reduction in the amount of high dose to normal tissue. Active management of respiratory motion forms the primary theme of this dissertation. Among the various techniques available to manage respiratory motion, our research focused on respiratory gated and respiration synchronized radiotherapy, with an external marker to monitor respiratory motion. Multiple session recordings of diaphragm and external marker motion revealed a consistent linear relationship, validating the use of external marker motion as a 'surrogate' for diaphragm motion. The predictability of diaphragm motion based on such external marker motion both within and between treatment sessions was also determined to be of the order of 0.1 cm. Gating during exhalation was found to be more reproducible than gating during inhalation. Although, a reduction in the 'gate' width achieved a modest reduction in the margins added around the tumor further reduction was limited by setup error. A motion phantom study of the potential gains from respiratory gating indicated margin reduction of 0.2-1.1 cm while employing gating. In addition, gating also improved the quality of

  16. Leap Motion development essentials

    CERN Document Server

    Spiegelmock, Mischa

    2013-01-01

    This book is a fast-paced guide with practical examples that aims to help you understand and master the Leap Motion SDK.This book is for developers who are either involved in game development or who are looking to utilize Leap Motion technology in order to create brand new user interaction experiences to distinguish their products from the mass market. You should be comfortable with high-level languages and object-oriented development concepts in order to get the most out of this book.

  17. Wiimote Experiments: Circular Motion

    Science.gov (United States)

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary

    2013-01-01

    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a…

  18. Ship Roll Motion Control

    DEFF Research Database (Denmark)

    Perez, Tristan; Blanke, Mogens

    2010-01-01

    . This tutorial paper presents an account of the development of various ship roll motion control systems and the challenges associated with their design. The paper discusses how to assess performance, the applicability of dierent models, and control methods that have been applied in the past....

  19. Motion of magnetotactic microorganisms

    International Nuclear Information System (INIS)

    Esquivel, D.M.S.; Barros, H.G. de P.L. de.

    1985-01-01

    Magnetic moments for different magnetotactic microorganisms are obtained by electron microscopy analyses and studies of motion by optical microscopy. The results are analysed in terms of a model due to C.Bean. The considerations presented suggest that magnetotaxy is an efficient mechanism for orientation only if the time for reorientation is smaller than the cycles of environmental perturbations. (Author) [pt

  20. Stochastic Blind Motion Deblurring

    KAUST Repository

    Xiao, Lei; Gregson, James; Heide, Felix; Heidrich, Wolfgang

    2015-01-01

    Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can therefore only be obtained with the help of prior information in the form of (often non

  1. Markerless Motion Tracking

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis; Czarowicz, Alex

    2012-01-01

    This contribution focuses on the Associated Technologies aspect of the ICDVRAT event. Two industry leading markerless motion capture systems are examined that offer advancement in the field of rehabilitation. Residing at each end of the cost continuum, technical differences such as 3D versus 360 ...

  2. Motion sensing energy controller

    International Nuclear Information System (INIS)

    Saphir, M.E.; Reed, M.A.

    1984-01-01

    A moving object sensing processor responsive to slowly varying motions of a human being or other moving object in a zone of interest employs high frequency pulse modulated non-visible radiation generated by a radiation generating source, such as an LED, and detected by a detector sensitive to radiation of a preselected wavelength which generates electrical signals representative of the reflected radiation received from the zone of interest. The detectorsignals are processed to normalize the base level and remove variations due to background level changes, and slowly varying changes in the signals are detected by a bi-polar threshold detector. The control signals generated by the threshold detector in response to slowly varying motion are used to control the application of power to a utilization device, such as a set of fluoroescent lights in a room, the power being applied in response to detection of such motion and being automatically terminated in the absence of such motion after a predetermined time period established by a settable incrementable counter

  3. Algebraic Description of Motion

    Science.gov (United States)

    Davidon, William C.

    1974-01-01

    An algebraic definition of time differentiation is presented and used to relate independent measurements of position and velocity. With this, students can grasp certain essential physical, geometric, and algebraic properties of motion and differentiation before undertaking the study of limits. (Author)

  4. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1977-01-01

    History is surveyed of the development of the theory of rotational states in nuclei. The situation in the 40's when ideas formed of the collective states of a nucleus is evoked. The general rotation theory and the relation between the single-particle and rotational motion are briefly discussed. Future prospects of the rotation theory development are indicated. (I.W.)

  5. Motion Control with Vision

    NARCIS (Netherlands)

    Ir. Dick van Schenk Brill; Ir Peter Boots

    2001-01-01

    This paper describes the work that is done by a group of I3 students at Philips CFT in Eindhoven, Netherlands. I3 is an initiative of Fontys University of Professional Education also located in Eindhoven. The work focuses on the use of computer vision in motion control. Experiments are done with

  6. Superluminal motion (review)

    Science.gov (United States)

    Malykin, G. B.; Romanets, E. A.

    2012-06-01

    Prior to the development of Special Relativity, no restrictions were imposed on the velocity of the motion of particles and material bodies, as well as on energy transfer and signal propagation. At the end of the 19th century and the beginning of the 20th century, it was shown that a charge that moves at a velocity faster than the speed of light in an optical medium, in particular, in vacuum, gives rise to impact radiation, which later was termed the Vavilov-Cherenkov radiation. Shortly after the development of Special Relativity, some researchers considered the possibility of superluminal motion. In 1923, the Soviet physicist L.Ya. Strum suggested the existence of tachyons, which, however, have not been discovered yet. Superluminal motions can occur only for images, e.g., for so-called "light spots," which were considered in 1972 by V.L. Ginzburg and B.M. Bolotovskii. These spots can move with a superluminal phase velocity but are incapable of transferring energy and information. Nevertheless, these light spots may induce quite real generation of microwave radiation in closed waveguides and create the Vavilov-Cherenkov radiation in vacuum. In this work, we consider various paradoxes, illusions, and artifacts associated with superluminal motion.

  7. A Harmonic Motion Experiment

    Science.gov (United States)

    Gluck, P.; Krakower, Zeev

    2010-01-01

    We present a unit comprising theory, simulation and experiment for a body oscillating on a vertical spring, in which the simultaneous use of a force probe and an ultrasonic range finder enables one to explore quantitatively and understand many aspects of simple and damped harmonic motions. (Contains 14 figures.)

  8. Choosing a Motion Detector.

    Science.gov (United States)

    Ballard, David M.

    1990-01-01

    Examines the characteristics of three types of motion detectors: Doppler radar, infrared, and ultrasonic wave, and how they are used on school buses to prevent students from being killed by their own school bus. Other safety devices cited are bus crossing arms and a camera monitor system. (MLF)

  9. Live Speech Driven Head-and-Eye Motion Generators.

    Science.gov (United States)

    Le, Binh H; Ma, Xiaohan; Deng, Zhigang

    2012-11-01

    This paper describes a fully automated framework to generate realistic head motion, eye gaze, and eyelid motion simultaneously based on live (or recorded) speech input. Its central idea is to learn separate yet interrelated statistical models for each component (head motion, gaze, or eyelid motion) from a prerecorded facial motion data set: 1) Gaussian Mixture Models and gradient descent optimization algorithm are employed to generate head motion from speech features; 2) Nonlinear Dynamic Canonical Correlation Analysis model is used to synthesize eye gaze from head motion and speech features, and 3) nonnegative linear regression is used to model voluntary eye lid motion and log-normal distribution is used to describe involuntary eye blinks. Several user studies are conducted to evaluate the effectiveness of the proposed speech-driven head and eye motion generator using the well-established paired comparison methodology. Our evaluation results clearly show that this approach can significantly outperform the state-of-the-art head and eye motion generation algorithms. In addition, a novel mocap+video hybrid data acquisition technique is introduced to record high-fidelity head movement, eye gaze, and eyelid motion simultaneously.

  10. Spinal cord motion. Influence of respiration and cardiac cycle

    Energy Technology Data Exchange (ETDEWEB)

    Winklhofer, S. [RWTH Aachen University Hospital (Germany). Dept. of Neuroradiology; University Hospital Zurich (Switzerland). Inst. of Diagnostic and Interventional Radiology; Schoth, F. [RWTH Aachen University Hospital (Germany). Dept. of Diagnostic Radiology; Stolzmann, P. [University Hospital Zurich (Switzerland). Inst. of Diagnostic and Interventional Radiology; Krings, T. [Toronto Western Hospital, ON (Canada). Div. of Neuroradiology; Mull, M.; Wiesmann, M. [RWTH Aachen University Hospital (Germany). Dept. of Neuroradiology; Stracke, C.P. [RWTH Aachen University Hospital (Germany). Dept. of Neuroradiology; Alfried-Krupp-Hospital, Essen (Germany). Dept. of Neuroradiology

    2014-11-15

    To assess physiological spinal cord motion during the cardiac cycle compared with the influence of respiration based on magnetic resonance imaging (MRI) measurements. Anterior-posterior spinal cord motion within the spinal canal was assessed in 16 healthy volunteers (median age, 25 years) by cardiac-triggered and cardiac-gated gradient echo pulse sequence MRI. Image acquisition was performed during breath-holding, normal breathing, and forced breathing. Normal spinal cord motion values were computed using descriptive statistics. Breathing-dependent differences were assessed using the Wilcoxon signed-rank test and compared with the cardiac-based cord motion. A normal value table was set up for the spinal cord motion of each vertebral cervico-thoracic-lumbar segment. Significant differences in cord motion were found between cardiac-based motion while breath-holding and the two breathing modalities (P < 0.01 each). Spinal cord motion was found to be highest during forced breathing, with a maximum in the lower cervical spinal segments (C5; mean, 2.1 mm ± 1.17). Image acquisition during breath-holding revealed the lowest motion. MRI permits the demonstration and evaluation of cardiac and respiration-dependent spinal cord motion within the spinal canal from the cervical to lumbar segments. Breathing conditions have a considerably greater impact than cardiac activity on spinal cord motion.

  11. Spinal cord motion. Influence of respiration and cardiac cycle

    International Nuclear Information System (INIS)

    Winklhofer, S.; University Hospital Zurich; Schoth, F.; Stolzmann, P.; Krings, T.; Mull, M.; Wiesmann, M.; Stracke, C.P.; Alfried-Krupp-Hospital, Essen

    2014-01-01

    To assess physiological spinal cord motion during the cardiac cycle compared with the influence of respiration based on magnetic resonance imaging (MRI) measurements. Anterior-posterior spinal cord motion within the spinal canal was assessed in 16 healthy volunteers (median age, 25 years) by cardiac-triggered and cardiac-gated gradient echo pulse sequence MRI. Image acquisition was performed during breath-holding, normal breathing, and forced breathing. Normal spinal cord motion values were computed using descriptive statistics. Breathing-dependent differences were assessed using the Wilcoxon signed-rank test and compared with the cardiac-based cord motion. A normal value table was set up for the spinal cord motion of each vertebral cervico-thoracic-lumbar segment. Significant differences in cord motion were found between cardiac-based motion while breath-holding and the two breathing modalities (P < 0.01 each). Spinal cord motion was found to be highest during forced breathing, with a maximum in the lower cervical spinal segments (C5; mean, 2.1 mm ± 1.17). Image acquisition during breath-holding revealed the lowest motion. MRI permits the demonstration and evaluation of cardiac and respiration-dependent spinal cord motion within the spinal canal from the cervical to lumbar segments. Breathing conditions have a considerably greater impact than cardiac activity on spinal cord motion.

  12. Neural Mechanisms of Illusory Motion: Evidence from ERP Study

    Directory of Open Access Journals (Sweden)

    Xu Y. A. N. Yun

    2011-05-01

    Full Text Available ERPs were used to examine the neural correlates of illusory motion, by presenting the Rice Wave illusion (CI, its two variants (WI and NI and a real motion video (RM. Results showed that: Firstly, RM elicited a more negative deflection than CI, NI and WI between 200–350ms. Secondly, between 500–600ms, CI elicited a more positive deflection than NI and WI, and RM elicited a more positive deflection than CI, what's more interesting was the sequential enhancement of brain activity with the corresponding motion strength. We inferred that the former component might reflect the successful encoding of the local motion signals in detectors at the lower stage; while the latter one might be involved in the intensive representations of visual input in real/illusory motion perception, this was the whole motion-signal organization in the later stage of motion perception. Finally, between 1185–1450 ms, a significant positive component was found between illusory/real motion tasks than NI (no motion. Overall, we demonstrated that there was a stronger deflection under the corresponding lager motion strength. These results reflected not only the different temporal patterns between illusory and real motion but also extending to their distinguishing working memory representation and storage.

  13. PET motion correction using PRESTO with ITK motion estimation

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Melissa [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Caldeira, Liliana; Scheins, Juergen [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany); Matela, Nuno [Institute of Biophysics and Biomedical Engineering, Science Faculty of University of Lisbon (Portugal); Kops, Elena Rota; Shah, N Jon [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich (Germany)

    2014-07-29

    The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.

  14. PET motion correction using PRESTO with ITK motion estimation

    International Nuclear Information System (INIS)

    Botelho, Melissa; Caldeira, Liliana; Scheins, Juergen; Matela, Nuno; Kops, Elena Rota; Shah, N Jon

    2014-01-01

    The Siemens BrainPET scanner is a hybrid MRI/PET system. PET images are prone to motion artefacts which degrade the image quality. Therefore, motion correction is essential. The library PRESTO converts motion-corrected LORs into highly accurate generic projection data [1], providing high-resolution PET images. ITK is an open-source software used for registering multidimensional data []. ITK provides motion estimation necessary to PRESTO.

  15. Deficient motion-defined and texture-defined figure-ground segregation in amblyopic children.

    Science.gov (United States)

    Wang, Jane; Ho, Cindy S; Giaschi, Deborah E

    2007-01-01

    Motion-defined form deficits in the fellow eye and the amblyopic eye of children with amblyopia implicate possible direction-selective motion processing or static figure-ground segregation deficits. Deficient motion-defined form perception in the fellow eye of amblyopic children may not be fully accounted for by a general motion processing deficit. This study investigates the contribution of figure-ground segregation deficits to the motion-defined form perception deficits in amblyopia. Performances of 6 amblyopic children (5 anisometropic, 1 anisostrabismic) and 32 control children with normal vision were assessed on motion-defined form, texture-defined form, and global motion tasks. Performance on motion-defined and texture-defined form tasks was significantly worse in amblyopic children than in control children. Performance on global motion tasks was not significantly different between the 2 groups. Faulty figure-ground segregation mechanisms are likely responsible for the observed motion-defined form perception deficits in amblyopia.

  16. Ground motion effects

    Energy Technology Data Exchange (ETDEWEB)

    Blume, J A [John A. Blume and Associates, San Francisco, CA (United States)

    1969-07-01

    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)

  17. Ground motion effects

    International Nuclear Information System (INIS)

    Blume, J.A.

    1969-01-01

    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)

  18. Motion of the esophagus due to cardiac motion.

    Directory of Open Access Journals (Sweden)

    Jacob Palmer

    Full Text Available When imaging studies (e.g. CT are used to quantify morphological changes in an anatomical structure, it is necessary to understand the extent and source of motion which can give imaging artifacts (e.g. blurring or local distortion. The objective of this study was to assess the magnitude of esophageal motion due to cardiac motion. We used retrospective electrocardiogram-gated contrast-enhanced computed tomography angiography images for this study. The anatomic region from the carina to the bottom of the heart was taken at deep-inspiration breath hold with the patients' arms raised above their shoulders, in a position similar to that used for radiation therapy. The esophagus was delineated on the diastolic phase of cardiac motion, and deformable registration was used to sequentially deform the images in nearest-neighbor phases among the 10 cardiac phases, starting from the diastolic phase. Using the 10 deformation fields generated from the deformable registration, the magnitude of the extreme displacements was then calculated for each voxel, and the mean and maximum displacement was calculated for each computed tomography slice for each patient. The average maximum esophageal displacement due to cardiac motion for all patients was 5.8 mm (standard deviation: 1.6 mm, maximum: 10.0 mm in the transverse direction. For 21 of 26 patients, the largest esophageal motion was found in the inferior region of the heart; for the other patients, esophageal motion was approximately independent of superior-inferior position. The esophagus motion was larger at cardiac phases where the electrocardiogram R-wave occurs. In conclusion, the magnitude of esophageal motion near the heart due to cardiac motion is similar to that due to other sources of motion, including respiratory motion and intra-fraction motion. A larger cardiac motion will result into larger esophagus motion in a cardiac cycle.

  19. Force and motion

    CERN Document Server

    Robertson, William C

    2002-01-01

    Intimidated by inertia? Frightened by forces? Mystified by Newton s law of motion? You re not alone and help is at hand. The stop Faking It! Series is perfect for science teachers, home-schoolers, parents wanting to help with homework all of you who need a jargon-free way to learn the background for teaching middle school physical science with confidence. With Bill Roberton as your friendly, able but somewhat irreverent guide, you will discover you CAN come to grips with the basics of force and motion. Combining easy-to-understand explanations with activities using commonly found equipment, this book will lead you through Newton s laws to the physics of space travel. The book is as entertaining as it is informative. Best of all, the author understands the needs of adults who want concrete examples, hands-on activities, clear language, diagrams and yes, a certain amount of empathy. Ideas For Use Newton's laws, and all of the other motion principles presented in this book, do a good job of helping us to underst...

  20. The Effectiveness of Simulator Motion in the Transfer of Performance on a Tracking Task Is Influenced by Vision and Motion Disturbance Cues.

    Science.gov (United States)

    Grundy, John G; Nazar, Stefan; O'Malley, Shannon; Mohrenshildt, Martin V; Shedden, Judith M

    2016-06-01

    To examine the importance of platform motion to the transfer of performance in motion simulators. The importance of platform motion in simulators for pilot training is strongly debated. We hypothesized that the type of motion (e.g., disturbance) contributes significantly to performance differences. Participants used a joystick to perform a target tracking task in a pod on top of a MOOG Stewart motion platform. Five conditions compared training without motion, with correlated motion, with disturbance motion, with disturbance motion isolated to the visual display, and with both correlated and disturbance motion. The test condition involved the full motion model with both correlated and disturbance motion. We analyzed speed and accuracy across training and test as well as strategic differences in joystick control. Training with disturbance cues produced critical behavioral differences compared to training without disturbance; motion itself was less important. Incorporation of disturbance cues is a potentially important source of variance between studies that do or do not show a benefit of motion platforms in the transfer of performance in simulators. Potential applications of this research include the assessment of the importance of motion platforms in flight simulators, with a focus on the efficacy of incorporating disturbance cues during training. © 2016, Human Factors and Ergonomics Society.

  1. The Importance of Spatiotemporal Information in Biological Motion Perception: White Noise Presented with a Step-like Motion Activates the Biological Motion Area.

    Science.gov (United States)

    Callan, Akiko; Callan, Daniel; Ando, Hiroshi

    2017-02-01

    Humans can easily recognize the motion of living creatures using only a handful of point-lights that describe the motion of the main joints (biological motion perception). This special ability to perceive the motion of animate objects signifies the importance of the spatiotemporal information in perceiving biological motion. The posterior STS (pSTS) and posterior middle temporal gyrus (pMTG) region have been established by many functional neuroimaging studies as a locus for biological motion perception. Because listening to a walking human also activates the pSTS/pMTG region, the region has been proposed to be supramodal in nature. In this study, we investigated whether the spatiotemporal information from simple auditory stimuli is sufficient to activate this biological motion area. We compared spatially moving white noise, having a running-like tempo that was consistent with biological motion, with stationary white noise. The moving-minus-stationary contrast showed significant differences in activation of the pSTS/pMTG region. Our results suggest that the spatiotemporal information of the auditory stimuli is sufficient to activate the biological motion area.

  2. IGS polar motion measurement accuracy

    Directory of Open Access Journals (Sweden)

    Jim Ray

    2017-11-01

    Full Text Available We elaborate an error budget for the long-term accuracy of IGS (International Global Navigation Satellite System Service polar motion estimates, concluding that it is probably about 25–30 μas (1-sigma overall, although it is not possible to quantify possible contributions (mainly annual that might transfer directly from aliases of subdaily rotational tide errors. The leading sources are biases arising from the need to align daily, observed terrestrial frames, within which the pole coordinates are expressed and which are continuously deforming, to the secular, linear international reference frame. Such biases are largest over spans longer than about a year. Thanks to the very large number of IGS tracking stations, the formal covariance errors are much smaller, around 5 to 10 μas. Large networks also permit the systematic frame-related errors to be more effectively minimized but not eliminated. A number of periodic errors probably also influence polar motion results, mainly at annual, GPS (Global Positioning System draconitic, and fortnightly periods, but their impact on the overall error budget is unlikely to be significant except possibly for annual tidal aliases. Nevertheless, caution should be exercised in interpreting geophysical excitations near any of the suspect periods.

  3. Motion detection and correction for dynamic 15O-water myocardial perfusion PET studies

    International Nuclear Information System (INIS)

    Naum, Alexandru; Laaksonen, Marko S.; Oikonen, Vesa; Teraes, Mika; Jaervisalo, Mikko J.; Knuuti, Juhani; Tuunanen, Helena; Nuutila, Pirjo; Kemppainen, Jukka

    2005-01-01

    Patient motion during dynamic PET studies is a well-documented source of errors. The purpose of this study was to investigate the incidence of frame-to-frame motion in dynamic 15 O-water myocardial perfusion PET studies, to test the efficacy of motion correction methods and to study whether implementation of motion correction would have an impact on the perfusion results. We developed a motion detection procedure using external radioactive skin markers and frame-to-frame alignment. To evaluate motion, marker coordinates inside the field of view were determined in each frame for each study. The highest number of frames with identical spatial coordinates during the study were defined as ''non-moved''. Movement was considered present if even one marker changed position, by one pixel/frame compared with reference, in one axis, and such frames were defined as ''moved''. We tested manual, in-house-developed motion correction software and an automatic motion correction using a rigid body point model implemented in MIPAV (Medical Image Processing, Analysis and Visualisation) software. After motion correction, remaining motion was re-analysed. Myocardial blood flow (MBF) values were calculated for both non-corrected and motion-corrected datasets. At rest, patient motion was found in 18% of the frames, but during pharmacological stress the fraction increased to 45% and during physical exercise it rose to 80%. Both motion correction algorithms significantly decreased (p<0.006) the number of moved frames and the amplitude of motion (p<0.04). Motion correction significantly increased MBF results during bicycle exercise (p<0.02). At rest or during adenosine infusion, the motion correction had no significant effects on MBF values. Significant motion is a common phenomenon in dynamic cardiac studies during adenosine infusion but especially during exercise. Applying motion correction for the data acquired during exercise clearly changed the MBF results, indicating that motion

  4. EDITORIAL: Nanotechnology in motion Nanotechnology in motion

    Science.gov (United States)

    Demming, Anna

    2012-02-01

    , Toshio Ando from the University of Kanazawa provides an overview of developments that have allowed atomic force microscopy to move from rates of the order of one frame a minute to over a thousand frames per second in constant height mode, as reported by Mervyn Miles and colleagues at Bristol University and University College London [8]. Among the pioneers in the field, Ando's group demonstrated the ability to record the Brownian motion of myosin V molecules on mica with image capture rates of 100 x 100 pixels in 80 ms over a decade ago [9]. The developments unleash the potential of atomic force microscopy to observe the dynamics of biological and materials systems. If seeing is believing, the ability to present real motion pictures of the nanoworld cannot fail to capture the public imagination and stimulate burgeoning new avenues of scientific endeavour. Nearly 350 years on from the publication Micrographia, images in microscopy have moved from the page to the movies. References [1] Binnig G, Quate C F, and Gerber Ch 1986 Phys. Rev. Lett. 56 930-3 [2] Ando T 2012 Nanotechnology 23 062001 [3] J G 1934 Nature 134 635-6 [4] Bharadwaj P, Anger P and Novotny L 2007 Nanotechnology 18 044017 [5] The Nobel Prize in Physics 1986 Nobelprize.org [6] Kim K K, Reina A, Shi Y, Park H, Li L-J, Lee Y H and Kong J 2010 Nanotechnology 21 285205 [7] Phillips D B, Grieve J A, Olof S N, Kocher S J, Bowman R, Padgett M J, Miles M J and Carberry D M 2011 Nanotechnology 22 285503 [8] Picco L M, Bozec L, Ulcinas A, Engledew D J, Antognozzi M, Horton M A and Miles M J 2007 Nanotechnology 18 044030 [9] Ando T, Kodera N, Takai E, Maruyama D, Saito K and Toda A 2001 Proc. Natl. Acad. Sci. 98 12468

  5. Human motion simulation predictive dynamics

    CERN Document Server

    Abdel-Malek, Karim

    2013-01-01

    Simulate realistic human motion in a virtual world with an optimization-based approach to motion prediction. With this approach, motion is governed by human performance measures, such as speed and energy, which act as objective functions to be optimized. Constraints on joint torques and angles are imposed quite easily. Predicting motion in this way allows one to use avatars to study how and why humans move the way they do, given specific scenarios. It also enables avatars to react to infinitely many scenarios with substantial autonomy. With this approach it is possible to predict dynamic motion without having to integrate equations of motion -- rather than solving equations of motion, this approach solves for a continuous time-dependent curve characterizing joint variables (also called joint profiles) for every degree of freedom. Introduces rigorous mathematical methods for digital human modelling and simulation Focuses on understanding and representing spatial relationships (3D) of biomechanics Develops an i...

  6. Perceived health from biological motion predicts voting behaviour.

    Science.gov (United States)

    Kramer, Robin S S; Arend, Isabel; Ward, Robert

    2010-04-01

    Body motion signals socially relevant traits like the sex, age, and even the genetic quality of actors and may therefore facilitate various social judgements. By examining ratings and voting decisions based solely on body motion of political candidates, we considered how the candidates' motion affected people's judgements and voting behaviour. In two experiments, participants viewed stick figure motion displays made from videos of politicians in public debate. Participants rated the motion displays for a variety of social traits and then indicated their vote preference. In both experiments, perceived physical health was the single best predictor of vote choice, and no two-factor model produced significant improvement. Notably, although attractiveness and leadership correlated with voting behaviour, neither provided additional explanatory power to a single-factor model of health alone. Our results demonstrate for the first time that motion can produce systematic vote preferences.

  7. Measurement and Compensation of BPM Chamber Motion in HLS

    Science.gov (United States)

    Li, J. W.; Sun, B. G.; Cao, Y.; Xu, H. L.; Lu, P.; Li, C.; Xuan, K.; Wang, J. G.

    2010-06-01

    Significant horizontal drifts in the beam orbit in the storage ring of HLS (Hefei Light Source) have been seen for many years. What leads to the motion of Beam Position Monitor (BPM) chamber is thermal expansion mainly caused by the synchrotron light. To monitor the BPM chamber motions for all BPMs, a BPM chamber motion measurement system is built in real-time. The raster gauges are used to measure the displacements. The results distinctly show the relation between the BPM chamber motion and the beam current. To suppress the effect of BPM chamber motion, a compensation strategy is implemented at HLS. The horizontal drifts of beam orbit have been really suppressed within 20μm without the compensation of BPM chamber motion in the runtime.

  8. Measurement and Compensation of BPM Chamber Motion in HLS

    International Nuclear Information System (INIS)

    Li, J. W.; Sun, B. G.; Cao, Y.; Xu, H. L.; Lu, P.; Li, C.; Xuan, K.; Wang, J. G.

    2010-01-01

    Significant horizontal drifts in the beam orbit in the storage ring of HLS (Hefei Light Source) have been seen for many years. What leads to the motion of Beam Position Monitor (BPM) chamber is thermal expansion mainly caused by the synchrotron light. To monitor the BPM chamber motions for all BPMs, a BPM chamber motion measurement system is built in real-time. The raster gauges are used to measure the displacements. The results distinctly show the relation between the BPM chamber motion and the beam current. To suppress the effect of BPM chamber motion, a compensation strategy is implemented at HLS. The horizontal drifts of beam orbit have been really suppressed within 20μm without the compensation of BPM chamber motion in the runtime.

  9. On the absolute meaning of motion

    Directory of Open Access Journals (Sweden)

    H. Edwards

    Full Text Available The present manuscript aims to clarify why motion causes matter to age slower in a comparable sense, and how this relates to relativistic effects caused by motion. A fresh analysis of motion, build on first axiom, delivers proof with its result, from which significant new understanding and computational power is gained.A review of experimental results demonstrates, that unaccelerated motion causes matter to age slower in a comparable, observer independent sense. Whilst focusing on this absolute effect, the present manuscript clarifies its context to relativistic effects, detailing their relationship and incorporating both into one consistent picture. The presented theoretical results make new predictions and are testable through suggested experiment of a novel nature. The manuscript finally arrives at an experimental tool and methodology, which as far as motion in ungravitated space is concerned or gravity appreciated, enables us to find the absolute observer independent picture of reality, which is reflected in the comparable display of atomic clocks.The discussion of the theoretical results, derives a physical causal understanding of gravity, a mathematical formulation of which, will be presented. Keywords: Kinematics, Gravity, Atomic clocks, Cosmic microwave background

  10. Driven motion of vortices in superconductors

    International Nuclear Information System (INIS)

    Crabtree, G.W.; Leaf, G.K.; Kaper, H.G.; Vinokur, V.M.; Koshelev, A.E.; Braun, D.W.; Levine, D.M.

    1995-09-01

    The driven motion of vortices in the solid vortex state is analyzed with the time-dependent Ginzburg-Landau equations. In large-scale numerical simulations, carried out on the IBM Scalable POWERparallel (SP) system at Argonne National Laboratory, many hundreds of vortices are followed as they move under the influence of a Lorentz force induced by a transport current in the presence of a planar defect (similar to a twin boundary in YBa 2 CU 3 O 7 ). Correlations in the positions and velocities of the vortices in plastic and elastic motion are identified and compared. Two types of plastic motion are observed. Organized plastic motion displaying long-range orientational correlation and shorter-range velocity correlation occurs when the driving forces are small compared to the pinning forces in the twin boundary. Disorganized plastic motion displaying no significant correlation in either the velocities or orientation of the vortex system occurs when the driving and pinning forces axe of the same order

  11. WORKSHOP: Stable particle motion

    International Nuclear Information System (INIS)

    Ruggiero, Alessandro G.

    1993-01-01

    Full text: Particle beam stability is crucial to any accelerator or collider, particularly big ones, such as Brookhaven's RHIC heavy ion collider and the larger SSC and LHC proton collider schemes. A workshop on the Stability of Particle Motion in Storage Rings held at Brookhaven in October dealt with the important issue of determining the short- and long-term stability of single particle motion in hadron storage rings and colliders, and explored new methods for ensuring it. In the quest for realistic environments, the imperfections of superconducting magnets and the effects of field modulation and noise were taken into account. The workshop was divided into three study groups: Short-Term Stability in storage rings, including chromatic and geometric effects and correction strategies; Long-Term Stability, including modulation and random noise effects and slow varying effects; and Methods for determining the stability of particle motion. The first two were run in parallel, but the third was attended by everyone. Each group considered analytical, computational and experimental methods, reviewing work done so far, comparing results and approaches and underlining outstanding issues. By resolving conflicts, it was possible to identify problems of common interest. The workshop reaffirmed the validity of methods proposed several years ago. Major breakthroughs have been in the rapid improvement of computer capacity and speed, in the development of more sophisticated mathematical packages, and in the introduction of more powerful analytic approaches. In a typical storage ring, a particle may be required to circulate for about a billion revolutions. While ten years ago it was only possible to predict accurately stability over about a thousand revolutions, it is now possible to predict over as many as one million turns. If this trend continues, in ten years it could become feasible to predict particle stability over the entire storage period. About ninety participants

  12. Motion compensation via redundant-wavelet multihypothesis.

    Science.gov (United States)

    Fowler, James E; Cui, Suxia; Wang, Yonghui

    2006-10-01

    Multihypothesis motion compensation has been widely used in video coding with previous attention focused on techniques employing predictions that are diverse spatially or temporally. In this paper, the multihypothesis concept is extended into the transform domain by using a redundant wavelet transform to produce multiple predictions that are diverse in transform phase. The corresponding multiple-phase inverse transform implicitly combines the phase-diverse predictions into a single spatial-domain prediction for motion compensation. The performance advantage of this redundant-wavelet-multihypothesis approach is investigated analytically, invoking the fact that the multiple-phase inverse involves a projection that significantly reduces the power of a dense-motion residual modeled as additive noise. The analysis shows that redundant-wavelet multihypothesis is capable of up to a 7-dB reduction in prediction-residual variance over an equivalent single-phase, single-hypothesis approach. Experimental results substantiate the performance advantage for a block-based implementation.

  13. Temporomandibular joint motion

    International Nuclear Information System (INIS)

    Maeda, M.; Kawamura, Y.; Matsuda, T.; Itou, S.; Odori, T.; Ishii, Y.; Torizuka, K.

    1990-01-01

    This paper evaluates MR imaging with the therapeutic effect after splint therapy in internal derangement of the temporomandibular joint (TMJ). Fifteen patients (19 TMJs) with internal derangement of the TMJ and five normal volunteers (10 TMJs) were examined with sagittal T1-weighted spin-echo and gradient recalled acquisition in a steady state (GRASS) MR imaging. MR studies of the patients undergoing splint therapy were performed with an without splints. Pseudodynamic images of TMJ motion provide information that was not available from spin-echo T1-weighted images

  14. Motion Capturing Emotions

    OpenAIRE

    Wood Karen; Cisneros Rosemary E.; Whatley Sarah

    2017-01-01

    The paper explores the activities conducted as part of WhoLoDancE: Whole Body Interaction Learning for Dance Education which is an EU-funded Horizon 2020 project. In particular, we discuss the motion capture sessions that took place at Motek, Amsterdam as well as the dancers’ experience of being captured and watching themselves or others as varying visual representations through the HoloLens. HoloLens is Microsoft’s first holographic computer that you wear as you would a pair of glasses. The ...

  15. Electromechanical motion devices

    CERN Document Server

    Krause, Paul C; Pekarek, Steven D

    2012-01-01

    This text provides a basic treatment of modern electric machine analysis that gives readers the necessary background for comprehending the traditional applications and operating characteristics of electric machines-as well as their emerging applications in modern power systems and electric drives, such as those used in hybrid and electric vehicles. Through the appropriate use of reference frame theory, Electromagnetic Motion Devices, Second Edition introduces readers to field-oriented control of induction machines, constant-torque, and constant-power control of dc, permanent-magnet ac

  16. Infrasonic induced ground motions

    Science.gov (United States)

    Lin, Ting-Li

    On January 28, 2004, the CERI seismic network recorded seismic signals generated by an unknown source. Our conclusion is that the acoustic waves were initiated by an explosive source near the ground surface. The meteorological temperature and effective sound speed profiles suggested existence of an efficient near-surface waveguide that allowed the acoustic disturbance to propagate to large distances. An explosion occurring in an area of forest and farms would have limited the number of eyewitnesses. Resolution of the source might be possible by experiment or by detailed analysis of the ground motion data. A seismo-acoustic array was built to investigate thunder-induced ground motions. Two thunder events with similar N-wave waveforms but different horizontal slownesses are chosen to evaluate the credibility of using thunder as a seismic source. These impulsive acoustic waves excited P and S reverberations in the near surface that depend on both the incident wave horizontal slowness and the velocity structure in the upper 30 meters. Nineteen thunder events were chosen to further investigate the seismo-acoustic coupling. The consistent incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Acoustic and seismic signals were used to generate the time-domain transfer function through the deconvolution technique. Possible non-linear interaction for acoustic propagation into the soil at the surface was observed. The reverse radial initial motions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series of the Rayleigh wave type, which has a systematic dispersion relation to incident slownesses inferred from the seismic ground velocity. Air-coupled Rayleigh wave dispersion was used to quantitatively constrain the near-surface site structure with constraints afforded by near-surface body

  17. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1976-01-01

    Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra

  18. IQ Predicts Biological Motion Perception in Autism Spectrum Disorders

    Science.gov (United States)

    Rutherford, M. D.; Troje, Nikolaus F.

    2012-01-01

    Biological motion is easily perceived by neurotypical observers when encoded in point-light displays. Some but not all relevant research shows significant deficits in biological motion perception among those with ASD, especially with respect to emotional displays. We tested adults with and without ASD on the perception of masked biological motion…

  19. Onboard Risk-Aware Real-Time Motion Planning Algorithms for Spacecraft Maneuvering

    Data.gov (United States)

    National Aeronautics and Space Administration — Unlocking the next generation of complex missions for autonomous spacecraft will require significant advances in robust motion planning. The aim of motion planning...

  20. A synchronous surround increases the motion strength gain of motion.

    Science.gov (United States)

    Linares, Daniel; Nishida, Shin'ya

    2013-11-12

    Coherent motion detection is greatly enhanced by the synchronous presentation of a static surround (Linares, Motoyoshi, & Nishida, 2012). To further understand this contextual enhancement, here we measured the sensitivity to discriminate motion strength for several pedestal strengths with and without a surround. We found that the surround improved discrimination of low and medium motion strengths, but did not improve or even impaired discrimination of high motion strengths. We used motion strength discriminability to estimate the perceptual response function assuming additive noise and found that the surround increased the motion strength gain, rather than the response gain. Given that eye and body movements continuously introduce transients in the retinal image, it is possible that this strength gain occurs in natural vision.

  1. Simultaneous PET-MR acquisition and MR-derived motion fields for correction of non-rigid motion in PET

    International Nuclear Information System (INIS)

    Tsoumpas, C.; Mackewn, J.E.; Halsted, P.; King, A.P.; Buerger, C.; Totman, J.J.; Schaeffter, T.; Marsden, P.K.

    2010-01-01

    Positron emission tomography (PET) provides an accurate measurement of radiotracer concentration in vivo, but performance can be limited by subject motion which degrades spatial resolution and quantitative accuracy. This effect may become a limiting factor for PET studies in the body as PET scanner technology improves. In this work, we propose a new approach to address this problem by employing motion information from images measured simultaneously using a magnetic resonance (MR) scanner. The approach is demonstrated using an MR-compatible PET scanner and PET-MR acquisition with a purpose-designed phantom capable of non-rigid deformations. Measured, simultaneously acquired MR data were used to correct for motion in PET, and results were compared with those obtained using motion information from PET images alone. Motion artefacts were significantly reduced and the PET image quality and quantification was significantly improved by the use of MR motion fields, whilst the use of PET-only motion information was less successful. Combined PET-MR acquisitions potentially allow PET motion compensation in whole-body acquisitions without prolonging PET acquisition time or increasing radiation dose. This, to the best of our knowledge, is the first study to demonstrate that simultaneously acquired MR data can be used to estimate and correct for the effects of non-rigid motion in PET. (author)

  2. Stochastic Blind Motion Deblurring

    KAUST Repository

    Xiao, Lei

    2015-05-13

    Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can therefore only be obtained with the help of prior information in the form of (often non-convex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with PSNR values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms.

  3. Detecting Novelty and Significance

    Science.gov (United States)

    Ferrari, Vera; Bradley, Margaret M.; Codispoti, Maurizio; Lang, Peter J.

    2013-01-01

    Studies of cognition often use an “oddball” paradigm to study effects of stimulus novelty and significance on information processing. However, an oddball tends to be perceptually more novel than the standard, repeated stimulus as well as more relevant to the ongoing task, making it difficult to disentangle effects due to perceptual novelty and stimulus significance. In the current study, effects of perceptual novelty and significance on ERPs were assessed in a passive viewing context by presenting repeated and novel pictures (natural scenes) that either signaled significant information regarding the current context or not. A fronto-central N2 component was primarily affected by perceptual novelty, whereas a centro-parietal P3 component was modulated by both stimulus significance and novelty. The data support an interpretation that the N2 reflects perceptual fluency and is attenuated when a current stimulus matches an active memory representation and that the amplitude of the P3 reflects stimulus meaning and significance. PMID:19400680

  4. Significant NRC Enforcement Actions

    Data.gov (United States)

    Nuclear Regulatory Commission — This dataset provides a list of Nuclear Regulartory Commission (NRC) issued significant enforcement actions. These actions, referred to as "escalated", are issued by...

  5. Impaired Perception of Biological Motion in Parkinson’s Disease

    Science.gov (United States)

    Jaywant, Abhishek; Shiffrar, Maggie; Roy, Serge; Cronin-Golomb, Alice

    2016-01-01

    Objective We examined biological motion perception in Parkinson’s disease (PD). Biological motion perception is related to one’s own motor function and depends on the integrity of brain areas affected in PD, including posterior superior temporal sulcus. If deficits in biological motion perception exist, they may be specific to perceiving natural/fast walking patterns that individuals with PD can no longer perform, and may correlate with disease-related motor dysfunction. Method 26 non-demented individuals with PD and 24 control participants viewed videos of point-light walkers and scrambled versions that served as foils, and indicated whether each video depicted a human walking. Point-light walkers varied by gait type (natural, parkinsonian) and speed (0.5, 1.0, 1.5 m/s). Participants also completed control tasks (object motion, coherent motion perception), a contrast sensitivity assessment, and a walking assessment. Results The PD group demonstrated significantly less sensitivity to biological motion than the control group (pperception (p=.02, Cohen’s d=.68). There was no group difference in coherent motion perception. Although individuals with PD had slower walking speed and shorter stride length than control participants, gait parameters did not correlate with biological motion perception. Contrast sensitivity and coherent motion perception also did not correlate with biological motion perception. Conclusion PD leads to a deficit in perceiving biological motion, which is independent of gait dysfunction and low-level vision changes, and may therefore arise from difficulty perceptually integrating form and motion cues in posterior superior temporal sulcus. PMID:26949927

  6. S4-3: Spatial Processing of Visual Motion

    Directory of Open Access Journals (Sweden)

    Shin'ya Nishida

    2012-10-01

    Full Text Available Local motion signals are extracted in parallel by a bank of motion detectors, and their spatiotemporal interactions are processed in subsequent stages. In this talk, I will review our recent studies on spatial interactions in visual motion processing. First, we found two types of spatial pooling of local motion signals. Directionally ambiguous 1D local motion signals are pooled across orientation and space for solution of the aperture problem, while 2D local motion signals are pooled for estimation of global vector average (e.g., Amano et al., 2009 Journal of Vision 9(3:4 1–25. Second, when stimulus presentation is brief, coherent motion detection of dynamic random-dot kinematogram is not efficient. Nevertheless, it is significantly improved by transient and synchronous presentation of a stationary surround pattern. This suggests that centre-surround spatial interaction may help rapid perception of motion (Linares et al., submitted. Third, to know how the visual system encodes pairwise relationships between remote motion signals, we measured the temporal rate limit for perceiving the relationship of two motion directions presented at the same time at different spatial locations. Compared with similar tasks with luminance or orientation signals, motion comparison was more rapid and hence efficient. This high performance was affected little by inter-element separation even when it was increased up to 100 deg. These findings indicate the existence of specialized processes to encode long-range relationships between motion signals for quick appreciation of global dynamic scene structure (Maruya et al., in preparation.

  7. Motion camouflage in three dimensions

    OpenAIRE

    Reddy, P. V.; Justh, E. W.; Krishnaprasad, P. S.

    2006-01-01

    We formulate and analyze a three-dimensional model of motion camouflage, a stealth strategy observed in nature. A high-gain feedback law for motion camouflage is formulated in which the pursuer and evader trajectories are described using natural Frenet frames (or relatively parallel adapted frames), and the corresponding natural curvatures serve as controls. The biological plausibility of the feedback law is discussed, as is its connection to missile guidance. Simulations illustrating motion ...

  8. Cervical motion assessment using virtual reality.

    Science.gov (United States)

    Sarig-Bahat, Hilla; Weiss, Patrice L; Laufer, Yocheved

    2009-05-01

    Repeated measures of cervical motion in asymptomatic subjects. To introduce a virtual reality (VR)-based assessment of cervical range of motion (ROM); to establish inter and intratester reliability of the VR-based assessment in comparison with conventional assessment in asymptomatic individuals; and to evaluate the effect of a single VR session on cervical ROM. Cervical ROM and clinical issues related to neck pain is frequently studied. A wide variety of methods is available for evaluation of cervical motion. To date, most methods rely on voluntary responses to an assessor's instructions. However, in day-to-day life, head movement is generally an involuntary response to multiple stimuli. Therefore, there is a need for a more functional assessment method, using sensory stimuli to elicit spontaneous neck motion. VR attributes may provide a methodology for achieving this goal. A novel method was developed for cervical motion assessment utilizing an electromagnetic tracking system and a VR game scenario displayed via a head mounted device. Thirty asymptomatic participants were assessed by both conventional and VR-based methods. Inter and intratester repeatability analyses were performed. The effect of a single VR session on ROM was evaluated. Both assessments showed non-biased results between tests and between testers (P > 0.1). Full-cycle repeatability coefficients ranged between 15.0 degrees and 29.2 degrees with smaller values for rotation and for the VR assessment. A single VR session significantly increased ROM, with largest effect found in the rotation direction. Inter and intratester reliability was supported for both the VR-based and the conventional methods. Results suggest better repeatability for the VR method, with rotation being more precise than flexion/extension. A single VR session was found to be effective in increasing cervical motion, possibly due to its motivating effect.

  9. Respiratory lung motion analysis using a nonlinear motion correction technique for respiratory-gated lung perfusion SPECT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Haneishi, Hideaki; Iwanaga, Hideyuki; Suga, Kazuyoshi

    2007-01-01

    This study evaluated the respiratory motion of lungs using a nonlinear motion correction technique for respiratory-gated single photon emission computed tomography (SPECT) images. The motion correction technique corrects the respiratory motion of the lungs nonlinearly between two-phase images obtained by respiratory-gated SPECT. The displacement vectors resulting from respiration can be computed at every location of the lungs. Respiratory lung motion analysis is carried out by calculating the mean value of the body axis component of the displacement vector in each of the 12 small regions into which the lungs were divided. In order to enable inter-patient comparison, the 12 mean values were normalized by the length of the lung region along the direction of the body axis. This method was applied to 25 Technetium (Tc)-99m-macroaggregated albumin (MAA) perfusion SPECT images, and motion analysis results were compared with the diagnostic results. It was confirmed that the respiratory lung motion reflects the ventilation function. A statistically significant difference in the amount of the respiratory lung motion was observed between the obstructive pulmonary diseases and other conditions, based on an unpaired Student's t test (P<0.0001). A difference in the motion between normal lungs and lungs with a ventilation obstruction was detected by the proposed method. This method is effective for evaluating obstructive pulmonary diseases such as pulmonary emphysema and diffuse panbronchiolitis. (author)

  10. Orbit-attitude coupled motion around small bodies: Sun-synchronous orbits with Sun-tracking attitude motion

    Science.gov (United States)

    Kikuchi, Shota; Howell, Kathleen C.; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2017-11-01

    The motion of a spacecraft in proximity to a small body is significantly perturbed due to its irregular gravity field and solar radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motions exerts a large influence that cannot be neglected. However, natural orbit-attitude coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without requiring active control. Therefore, the proposed method can reduce the use of an orbit and attitude control system. This paper first presents analytical conditions to achieve Sun-synchronous orbits and Sun-tracking attitude motion. These analytical solutions are then numerically propagated based on non-linear coupled orbit-attitude equations of motion. Consequently, the possibility of implementing Sun-synchronous orbits with Sun-tracking attitude motion is demonstrated.

  11. Markerless motion estimation for motion-compensated clinical brain imaging

    Science.gov (United States)

    Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.

    2018-05-01

    Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (brain imaging and holds good promise for a practical implementation in clinical PET, SPECT and CT systems.

  12. Visual motion influences the contingent auditory motion aftereffect

    NARCIS (Netherlands)

    Vroomen, J.; de Gelder, B.

    2003-01-01

    In this study, we show that the contingent auditory motion aftereffect is strongly influenced by visual motion information. During an induction phase, participants listened to rightward-moving sounds with falling pitch alternated with leftward-moving sounds with rising pitch (or vice versa).

  13. Respiratory impact on motion sickness induced by linear motion

    NARCIS (Netherlands)

    Mert, A.; Klöpping-Ketelaars, I.; Bles, W.

    2009-01-01

    Motion sickness incidence (MSI) for vertical sinusoidal motion reaches a maximum at 0.167 Hz. Normal breathing frequency is close to this frequency. There is some evidence for synchronization of breathing with this stimulus frequency. If this enforced breathing takes place over a larger frequency

  14. 41 CFR 60-30.8 - Motions; disposition of motions.

    Science.gov (United States)

    2010-07-01

    ... a supporting memorandum. Within 10 days after a written motion is served, or such other time period... writing. If made at the hearing, motions may be stated orally; but the Administrative Law Judge may require that they be reduced to writing and filed and served on all parties in the same manner as a formal...

  15. Implied motion because of instability in Hokusai Manga activates the human motion-sensitive extrastriate visual cortex: an fMRI study of the impact of visual art.

    Science.gov (United States)

    Osaka, Naoyuki; Matsuyoshi, Daisuke; Ikeda, Takashi; Osaka, Mariko

    2010-03-10

    The recent development of cognitive neuroscience has invited inference about the neurosensory events underlying the experience of visual arts involving implied motion. We report functional magnetic resonance imaging study demonstrating activation of the human extrastriate motion-sensitive cortex by static images showing implied motion because of instability. We used static line-drawing cartoons of humans by Hokusai Katsushika (called 'Hokusai Manga'), an outstanding Japanese cartoonist as well as famous Ukiyoe artist. We found 'Hokusai Manga' with implied motion by depicting human bodies that are engaged in challenging tonic posture significantly activated the motion-sensitive visual cortex including MT+ in the human extrastriate cortex, while an illustration that does not imply motion, for either humans or objects, did not activate these areas under the same tasks. We conclude that motion-sensitive extrastriate cortex would be a critical region for perception of implied motion in instability.

  16. Do lower vertebrates suffer from motion sickness?

    Science.gov (United States)

    Lychakov, Dmitri

    The poster presents literature data and results of the author’s studies with the goal to find out whether the lower animals are susceptible to motion sickness (Lychakov, 2012). In our studies, fish and amphibians were tested for 2 h and more by using a rotating device (f = 0.24 Hz, a _{centrifugal} = 0.144 g) and a parallel swing (f = 0.2 Hz, a _{horizontal} = 0.059 g). The performed studies did not revealed in 4 fish species and in toads any characteristic reactions of the motion sickness (sopite syndrome, prodromal preparatory behavior, vomiting). At the same time, in toads there appeared characteristic stress reactions (escape response, an increase of the number of urinations, inhibition of appetite), as well as some other reactions not associated with motion sickness (regular head movements, eye retractions). In trout fry the used stimulation promoted division of the individuals into the groups differing by locomotor reaction to stress, as well as the individuals with the well-expressed compensatory reaction that we called the otolithotropic reaction. Analysis of results obtained by other authors confirms our conclusions. Thus, the lower vertebrates, unlike mammals, are immune to motion sickness either under the land conditions or under conditions of weightlessness. On the basis of available experimental data and theoretical concepts of mechanisms of development the motion sickness, formulated in several hypotheses (mismatch hypothesis, Traisman‘ s hypothesis, resonance hypothesis), there presented the synthetic hypothesis of motion sickness that has the conceptual significance. According to the hypothesis, the unusual stimulation producing sensor-motor or sensor-sensor conflict or an action of vestibular and visual stimuli of frequency of about 0.2 Hz is perceived by CNS as poisoning and causes the corresponding reactions. The motion sickness actually is a byproduct of technical evolution. It is suggested that in the lower vertebrates, unlike mammals

  17. Algorithmic Issues in Modeling Motion

    DEFF Research Database (Denmark)

    Agarwal, P. K; Guibas, L. J; Edelsbrunner, H.

    2003-01-01

    This article is a survey of research areas in which motion plays a pivotal role. The aim of the article is to review current approaches to modeling motion together with related data structures and algorithms, and to summarize the challenges that lie ahead in producing a more unified theory of mot...

  18. Rolling motion in moving droplets

    Indian Academy of Sciences (India)

    motions. The two limits of a thin sheet-like drop in sliding motion on a surface, and a spherical drop in roll, have been extensively .... rigid body rotation. The solid body rotation makes sense in the context of small Reynolds. (Re) number flows ...

  19. Commercially available video motion detectors

    International Nuclear Information System (INIS)

    1979-01-01

    A market survey of commercially available video motion detection systems was conducted by the Intrusion Detection Systems Technology Division of Sandia Laboratories. The information obtained from this survey is summarized in this report. The cutoff date for this information is May 1978. A list of commercially available video motion detection systems is appended

  20. Motion simulator with exchangeable unit

    NARCIS (Netherlands)

    Mulder, J.A.; Beukers, A.; Baarspul, M.; Van Tooren, M.J.; De Winter, S.E.E.

    2001-01-01

    A motion simulator provided with a movable housing, preferably carried by a number of length-adjustable legs, in which housing projection means are arranged for visual information supply, while in the housing a control environment of a motion apparatus to be simulated is situated, the control

  1. Nanoparticle mediated micromotor motion

    Science.gov (United States)

    Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2015-03-01

    In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric field. Both strategies lead to dramatically increased moving velocities, with the highest value reaching ~200 μm s-1. By decreasing the nanoparticles' surface wettability and increasing their catalytic activity, a maximum of a ~10-fold increase in the moving speed of the nanoparticle based micromotor can be achieved. Our results demonstrate the advantages of using nanoparticles in micromotor systems.In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric

  2. Anthropometry and Range of Motion of the Encumbered Soldier

    Science.gov (United States)

    2017-03-01

    claims of the encumbered dismounted Soldier. Soldiers are required to wear multiple layers of clothing and protective equipment in addition to mission...depth (i.e., bulk) measurements related to Soldier CIE that had a significant decrement on the Soldiers’ range of motion for many body movements...bulk) measurements related to Soldier CIE that had a significant decrement on the Soldiers’ range of motion for many body movements. The

  3. Semi-automatic detection and correction of body organ motion, particularly cardiac motion in SPECT studies

    International Nuclear Information System (INIS)

    Quintana, J.C.; Caceres, F.; Vargas, P.

    2002-01-01

    Aim: Detect patient motion during SPECT imaging. Material and Method: SPECT study is carried out on a patient's body organ, such as the heart, and frame of image data are thereby acquired. The image data in these frames are subjected to a series of mappings and computations, from which frame containing a significant quantity of organ motion can be identified. Quantification of motion occurs by shifting some of the mapped data within a predetermined range, and selecting that data shift which minimizes the magnitude of a motion sensitive mathematical function. The sensitive mathematical function is constructed from all set of image frames using the pixel data within a region covering the body organ. Using cine display of planar image data, the operator defines the working region by marking two points, which define two horizontal lines covering the area of the body organ. This is the only operator intervention. The mathematical function integrates pixel data from all set of image frames and therefore does not use derivatives which may cause distortion in noisy data. Moreover, as a global function, this method is superior than that using frame-to-frame cross-correlation function to identify motion between adjacent frames. Using standard image processing software, the method was implemented computationally. Ten SPECT studies with movement (Sestamibi cardiac studies and 99m-ECD brain SPECT studies) were selected plus two others with no movement. The acquisition SPECT protocol for the cardiac study was as follow: Step and shoot mode, non-circular orbit, 64 stops 20s each, 64x64x16 matrix and LEHR colimator. For the brain SPECT, 128 stops over 360 0 were used. Artificial vertical displacements (±1-2 pixels) over several frames were introduced in those studies with no movement to simulate patient motion. Results: The method was successfully tested in all cases and was capable to recognize SPECT studies with no body motion as well as those with body motion (both from the

  4. Strong motion duration and earthquake magnitude relationships

    International Nuclear Information System (INIS)

    Salmon, M.W.; Short, S.A.; Kennedy, R.P.

    1992-06-01

    Earthquake duration is the total time of ground shaking from the arrival of seismic waves until the return to ambient conditions. Much of this time is at relatively low shaking levels which have little effect on seismic structural response and on earthquake damage potential. As a result, a parameter termed ''strong motion duration'' has been defined by a number of investigators to be used for the purpose of evaluating seismic response and assessing the potential for structural damage due to earthquakes. This report presents methods for determining strong motion duration and a time history envelope function appropriate for various evaluation purposes, for earthquake magnitude and distance, and for site soil properties. There are numerous definitions of strong motion duration. For most of these definitions, empirical studies have been completed which relate duration to earthquake magnitude and distance and to site soil properties. Each of these definitions recognizes that only the portion of an earthquake record which has sufficiently high acceleration amplitude, energy content, or some other parameters significantly affects seismic response. Studies have been performed which indicate that the portion of an earthquake record in which the power (average rate of energy input) is maximum correlates most closely with potential damage to stiff nuclear power plant structures. Hence, this report will concentrate on energy based strong motion duration definitions

  5. Near-Field Ground Motion Modal versus Wave Propagation Analysis

    Directory of Open Access Journals (Sweden)

    Artur Cichowicz

    2010-01-01

    Full Text Available The response spectrum generally provides a good estimate of the global displacement and acceleration demand of far-field ground motion on a structure. However, it does not provide accurate information on the local shape or internal deformation of the response of the structure. Near-field pulse-like ground motion will propagate through the structure as waves, causing large, localized deformation. Therefore, the response spectrum alone is not a sufficient representation of near-field ground motion features. Results show that the drift-response technique based on a continuous shear-beam model has to be employed here to estimate structure-demand parameters when structure is exposed to the pulse like ground motion. Conduced modeling shows limited applicability of the drift spectrum based on the SDOF approximation. The SDOF drift spectrum approximation can only be applied to structures with smaller natural periods than the dominant period of the ground motion. For periods larger than the dominant period of ground motion the SDOF drift spectra model significantly underestimates maximum deformation. Strong pulse-type motions are observed in the near-source region of large earthquakes; however, there is a lack of waveforms collected from small earthquakes at very close distances that were recorded underground in mines. The results presented in this paper are relevant for structures with a height of a few meters, placed in an underground excavation. The strong ground motion sensors recorded mine-induced earthquakes in a deep gold mine, South Africa. The strongest monitored horizontal ground motion was caused by an event of magnitude 2 at a distance of 90 m with PGA 123 m/s2, causing drifts of 0.25%–0.35%. The weak underground motion has spectral characteristics similar to the strong ground motion observed on the earth's surface; the drift spectrum has a maximum value less than 0.02%.

  6. Why do adults with dyslexia have poor global motion sensitivity?

    Directory of Open Access Journals (Sweden)

    Elizabeth eConlon

    2013-12-01

    Full Text Available Two experiments aimed to determine why adults with dyslexia have higher global motion thresholds than typically reading controls. In Experiment 1, the dot density and number of animation frames presented in the dot stimulus were manipulated because of findings that use of a high dot density can normalise coherence thresholds in individuals with dyslexia. Dot densities were 14.15 dots/deg2 and 3.54 dots/deg2. These were presented for five (84ms or eight (134ms frames. The dyslexia group had higher coherence thresholds in all conditions than controls. However, in the high dot density, long duration condition, both reader groups had the lowest thresholds indicating normal temporal recruitment. These results indicated that the dyslexia group could sample the additional signals dots over space and then integrate these with the same efficiency as controls. In Experiment 2, we determined whether briefly presenting a fully coherent prime moving in either the same or opposite direction of motion to a partially coherent test stimulus would systematically increase and decrease global motion thresholds in the reader groups. When the direction of motion in the prime and test was the same, global motion thresholds increased for both reader groups. The increase in coherence thresholds was significantly greater for the dyslexia group. When the motion of the prime and test were presented in opposite directions, coherence thresholds were reduced in both groups. No group threshold differences were found. We concluded that the global motion processing deficit found in adults with dyslexia can be explained by undersampling of the target motion signals. This might occur because of difficulties directing attention to the relevant motion signals in the random dot pattern, and not a specific difficulty integrating global motion signals. These effects are most likely to occur in the group with dyslexia when more complex computational processes are required to process

  7. Why do adults with dyslexia have poor global motion sensitivity?

    Science.gov (United States)

    Conlon, Elizabeth G; Lilleskaret, Gry; Wright, Craig M; Stuksrud, Anne

    2013-01-01

    Two experiments aimed to determine why adults with dyslexia have higher global motion thresholds than typically reading controls. In Experiment 1, the dot density and number of animation frames presented in the dot stimulus were manipulated because of findings that use of a high dot density can normalize coherence thresholds in individuals with dyslexia. Dot densities were 14.15 and 3.54 dots/deg(2). These were presented for five (84 ms) or eight (134 ms) frames. The dyslexia group had higher coherence thresholds in all conditions than controls. However, in the high dot density, long duration condition, both reader groups had the lowest thresholds indicating normal temporal recruitment. These results indicated that the dyslexia group could sample the additional signals dots over space and then integrate these with the same efficiency as controls. In Experiment 2, we determined whether briefly presenting a fully coherent prime moving in either the same or opposite direction of motion to a partially coherent test stimulus would systematically increase and decrease global motion thresholds in the reader groups. When the direction of motion in the prime and test was the same, global motion thresholds increased for both reader groups. The increase in coherence thresholds was significantly greater for the dyslexia group. When the motion of the prime and test were presented in opposite directions, coherence thresholds were reduced in both groups. No group threshold differences were found. We concluded that the global motion processing deficit found in adults with dyslexia can be explained by undersampling of the target motion signals. This might occur because of difficulties directing attention to the relevant motion signals in the random dot pattern, and not a specific difficulty integrating global motion signals. These effects are most likely to occur in the group with dyslexia when more complex computational processes are required to process global motion.

  8. A rigid motion correction method for helical computed tomography (CT)

    International Nuclear Information System (INIS)

    Kim, J-H; Kyme, A; Fulton, R; Nuyts, J; Kuncic, Z

    2015-01-01

    We propose a method to compensate for six degree-of-freedom rigid motion in helical CT of the head. The method is demonstrated in simulations and in helical scans performed on a 16-slice CT scanner. Scans of a Hoffman brain phantom were acquired while an optical motion tracking system recorded the motion of the bed and the phantom. Motion correction was performed by restoring projection consistency using data from the motion tracking system, and reconstructing with an iterative fully 3D algorithm. Motion correction accuracy was evaluated by comparing reconstructed images with a stationary reference scan. We also investigated the effects on accuracy of tracker sampling rate, measurement jitter, interpolation of tracker measurements, and the synchronization of motion data and CT projections. After optimization of these aspects, motion corrected images corresponded remarkably closely to images of the stationary phantom with correlation and similarity coefficients both above 0.9. We performed a simulation study using volunteer head motion and found similarly that our method is capable of compensating effectively for realistic human head movements. To the best of our knowledge, this is the first practical demonstration of generalized rigid motion correction in helical CT. Its clinical value, which we have yet to explore, may be significant. For example it could reduce the necessity for repeat scans and resource-intensive anesthetic and sedation procedures in patient groups prone to motion, such as young children. It is not only applicable to dedicated CT imaging, but also to hybrid PET/CT and SPECT/CT, where it could also ensure an accurate CT image for lesion localization and attenuation correction of the functional image data. (paper)

  9. Determination of proper motions in the Pleiades cluster

    Science.gov (United States)

    Schilbach, E.

    1991-04-01

    For 458 stars in the Pleiades field from the catalog of Eichhorn et al. (1970) proper motions were derived on Tautenburg and CERGA Schmidt telescope plates measured with the automated measuring machine MAMA in Paris. The catalog positions were considered as first epoch coordinates with an epoch difference of ca. 33 years to the observations. The results show good coincidence of proper motions derived with both Schmidt telescopes within the error bars. Comparison with proper motions determined by Vasilevskis et al. (1979) displays some significant differences but no systematic effects depending on plate coordinates or magnitudes could be found. An accuracy of 0.3 arcsec/100a for one proper motion component was estimated. According to the criterion of common proper motion 34 new cluster members were identified.

  10. Revolution at SOLEIL: review and prospect for motion control

    International Nuclear Information System (INIS)

    Corruble, D.; Betinelli-Deck, P.; Blache, F.; Coquet, J.; Leclercq, N.; Millet, R.; Tournieux, A.

    2012-01-01

    At any synchrotron facility, motors are numerous: they are the significant actuators of accelerators and the main actuators of beamlines. Since 2003, the Electronic Control and data Acquisition group at SOLEIL has defined a modular and reliable motion architecture integrating industrial products (Galil controller, Midi-Engineering and Phytron power boards). Simultaneously, the software control group has developed a set of dedicated Tango devices. At present, more than 1000 motors and 200 motion controller crates are in operation at SOLEIL. Aware that motion control is important in improving performance, given that the positioning of optical systems and samples is a key element of any beamline, SOLEIL wants to upgrade its motion controller in order to maintain the facility at a high performance level and be able to respond to new requirements: better accuracy, complex trajectory and coupling multi-axis devices such as hexa-pods. This project is called REVOLUTION (Reconsider Various controllers for your motion). (authors)

  11. Wearable Sensor Networks for Motion Capture

    Directory of Open Access Journals (Sweden)

    Dennis Arsenault

    2015-08-01

    Full Text Available This work presents the development of a full body sensor-based motion tracking system that functions through wearable inertial sensors. The system is comprised of a total of ten wearable sensors and maps the player's motions to an on-screen character in real-time. A hierarchical skeletal model was implemented that allows players to navigate and interact with the virtual world without the need of a hand-held controller. To demonstrate the capabilities of the system, a simple virtual reality game was created. As a wearable system, the ability for the users to engage in activities while not being tied to a camera system, or being forced indoors presents a significant opportunity for mobile entertainment, augmented reality and interactive systems that use the body as a significant form of input. This paper outlines the key developments necessary to implement such a system.

  12. Motion Capturing Emotions

    Directory of Open Access Journals (Sweden)

    Wood Karen

    2017-12-01

    Full Text Available The paper explores the activities conducted as part of WhoLoDancE: Whole Body Interaction Learning for Dance Education which is an EU-funded Horizon 2020 project. In particular, we discuss the motion capture sessions that took place at Motek, Amsterdam as well as the dancers’ experience of being captured and watching themselves or others as varying visual representations through the HoloLens. HoloLens is Microsoft’s first holographic computer that you wear as you would a pair of glasses. The study embraced four dance genres: Ballet, Contemporary, Flamenco and Greek Folk dance. We are specifically interested in the kinesthetic and emotional engagement with the moving body and what new corporeal awareness may be experienced. Positioning the moving, dancing body as fundamental to technological advancements, we discuss the importance of considering the dancer’s experience in the real and virtual space. Some of the artists involved in the project have offered their experiences, which are included, and they form the basis of the discussion. In addition, we discuss the affect of immersive environments, how these environments expand reality and what effect (emotionally and otherwise that has on the body. The research reveals insights into relationships between emotion, movement and technology and what new sensorial knowledge this evokes for the dancer.

  13. Significant Tsunami Events

    Science.gov (United States)

    Dunbar, P. K.; Furtney, M.; McLean, S. J.; Sweeney, A. D.

    2014-12-01

    Tsunamis have inflicted death and destruction on the coastlines of the world throughout history. The occurrence of tsunamis and the resulting effects have been collected and studied as far back as the second millennium B.C. The knowledge gained from cataloging and examining these events has led to significant changes in our understanding of tsunamis, tsunami sources, and methods to mitigate the effects of tsunamis. The most significant, not surprisingly, are often the most devastating, such as the 2011 Tohoku, Japan earthquake and tsunami. The goal of this poster is to give a brief overview of the occurrence of tsunamis and then focus specifically on several significant tsunamis. There are various criteria to determine the most significant tsunamis: the number of deaths, amount of damage, maximum runup height, had a major impact on tsunami science or policy, etc. As a result, descriptions will include some of the most costly (2011 Tohoku, Japan), the most deadly (2004 Sumatra, 1883 Krakatau), and the highest runup ever observed (1958 Lituya Bay, Alaska). The discovery of the Cascadia subduction zone as the source of the 1700 Japanese "Orphan" tsunami and a future tsunami threat to the U.S. northwest coast, contributed to the decision to form the U.S. National Tsunami Hazard Mitigation Program. The great Lisbon earthquake of 1755 marked the beginning of the modern era of seismology. Knowledge gained from the 1964 Alaska earthquake and tsunami helped confirm the theory of plate tectonics. The 1946 Alaska, 1952 Kuril Islands, 1960 Chile, 1964 Alaska, and the 2004 Banda Aceh, tsunamis all resulted in warning centers or systems being established.The data descriptions on this poster were extracted from NOAA's National Geophysical Data Center (NGDC) global historical tsunami database. Additional information about these tsunamis, as well as water level data can be found by accessing the NGDC website www.ngdc.noaa.gov/hazard/

  14. Marker-Free Human Motion Capture

    DEFF Research Database (Denmark)

    Grest, Daniel

    Human Motion Capture is a widely used technique to obtain motion data for animation of virtual characters. Commercial optical motion capture systems are marker-based. This book is about marker-free motion capture and its possibilities to acquire motion from a single viewing direction. The focus...

  15. Motion perception in motion : how we perceive object motion during smooth pursuit eye movements

    NARCIS (Netherlands)

    Souman, J.L.

    2005-01-01

    Eye movements change the retinal image motion of objects in the visual field. When we make an eye movement, the image of a stationary object will move across the retinae, while the retinal image of an object that we follow with the eyes is approximately stationary. To enable us to perceive motion in

  16. Modeling a space-variant cortical representation for apparent motion.

    Science.gov (United States)

    Wurbs, Jeremy; Mingolla, Ennio; Yazdanbakhsh, Arash

    2013-08-06

    Receptive field sizes of neurons in early primate visual areas increase with eccentricity, as does temporal processing speed. The fovea is evidently specialized for slow, fine movements while the periphery is suited for fast, coarse movements. In either the fovea or periphery discrete flashes can produce motion percepts. Grossberg and Rudd (1989) used traveling Gaussian activity profiles to model long-range apparent motion percepts. We propose a neural model constrained by physiological data to explain how signals from retinal ganglion cells to V1 affect the perception of motion as a function of eccentricity. Our model incorporates cortical magnification, receptive field overlap and scatter, and spatial and temporal response characteristics of retinal ganglion cells for cortical processing of motion. Consistent with the finding of Baker and Braddick (1985), in our model the maximum flash distance that is perceived as an apparent motion (Dmax) increases linearly as a function of eccentricity. Baker and Braddick (1985) made qualitative predictions about the functional significance of both stimulus and visual system parameters that constrain motion perception, such as an increase in the range of detectable motions as a function of eccentricity and the likely role of higher visual processes in determining Dmax. We generate corresponding quantitative predictions for those functional dependencies for individual aspects of motion processing. Simulation results indicate that the early visual pathway can explain the qualitative linear increase of Dmax data without reliance on extrastriate areas, but that those higher visual areas may serve as a modulatory influence on the exact Dmax increase.

  17. Ground Motion Prediction Equations Empowered by Stress Drop Measurement

    Science.gov (United States)

    Miyake, H.; Oth, A.

    2015-12-01

    Significant variation of stress drop is a crucial issue for ground motion prediction equations and probabilistic seismic hazard assessment, since only a few ground motion prediction equations take into account stress drop. In addition to average and sigma studies of stress drop and ground motion prediction equations (e.g., Cotton et al., 2013; Baltay and Hanks, 2014), we explore 1-to-1 relationship for each earthquake between stress drop and between-event residual of a ground motion prediction equation. We used the stress drop dataset of Oth (2013) for Japanese crustal earthquakes ranging 0.1 to 100 MPa and K-NET/KiK-net ground motion dataset against for several ground motion prediction equations with volcanic front treatment. Between-event residuals for ground accelerations and velocities are generally coincident with stress drop, as investigated by seismic intensity measures of Oth et al. (2015). Moreover, we found faster attenuation of ground acceleration and velocities for large stress drop events for the similar fault distance range and focal depth. It may suggest an alternative parameterization of stress drop to control attenuation distance rate for ground motion prediction equations. We also investigate 1-to-1 relationship and sigma for regional/national-scale stress drop variation and current national-scale ground motion equations.

  18. Motion sickness and postural sway in console video games.

    Science.gov (United States)

    Stoffregen, Thomas A; Faugloire, Elise; Yoshida, Ken; Flanagan, Moira B; Merhi, Omar

    2008-04-01

    We tested the hypotheses that (a) participants might develop motion sickness while playing "off-the-shelf" console video games and (b) postural motion would differ between sick and well participants, prior to the onset of motion sickness. There have been many anecdotal reports of motion sickness among people who play console video games (e.g., Xbox, PlayStation). Participants (40 undergraduate students) played a game continuously for up to 50 min while standing or sitting. We varied the distance to the display screen (and, consequently, the visual angle of the display). Across conditions, the incidence of motion sickness ranged from 42% to 56%; incidence did not differ across conditions. During game play, head and torso motion differed between sick and well participants prior to the onset of subjective symptoms of motion sickness. The results indicate that console video games carry a significant risk of motion sickness. Potential applications of this research include changes in the design of console video games and recommendations for how such systems should be used.

  19. [Vestibular testing abnormalities in individuals with motion sickness].

    Science.gov (United States)

    Ma, Yan; Ou, Yongkang; Chen, Ling; Zheng, Yiqing

    2009-08-01

    To evaluate the vestibular function of motion sickness. VNG, which tests the vestibular function of horizontal semicircular canal, and CPT, which tests vestibulospinal reflex and judge proprioceptive, visual and vestibular status, were performed in 30 motion sickness patients and 20 healthy volunteers (control group). Graybiel score was recorded at the same time. Two groups' Graybiel score (12.67 +/- 11.78 vs 2.10 +/- 6.23; rank test P<0.05), caloric test labyrinth value [(19.02 +/- 8.59) degrees/s vs (13.58 +/- 5.25) degrees/s; t test P<0.05], caloric test labyrinth value of three patients in motion sickness group exceeded 75 degrees/s. In computerized posturography testing (CPT), motion sickness patients were central type (66.7%) and disperse type (23.3%); all of control group were central type. There was statistical significance in two groups' CTP area, and motion sickness group was obviously higher than control group. While stimulating vestibulum in CPT, there was abnormality (35%-50%) in motion sickness group and none in control group. Generally evaluating CPT, there was only 2 proprioceptive hypofunction, 3 visual hypofunction, and no vestibular hypofunction, but none hypofunction in control group. Motion sickness patients have high vestibular susceptible, some with vestibular hyperfunction. In posturography, a large number of motion sickness patients are central type but no vestibular hypofunction, but it is hard to keep balance when stimulating vestibulum.

  20. Utilize target motion to cover clinical target volume (ctv) - a novel and practical treatment planning approach to manage respiratory motion

    International Nuclear Information System (INIS)

    Jin Jianyue; Ajlouni, Munther; Kong Fengming; Ryu, Samuel; Chetty, Indrin J.; Movsas, Benjamin

    2008-01-01

    Purpose: To use probability density function (PDF) to model motion effects and incorporate this information into treatment planning for lung cancers. Material and methods: PDFs were calculated from the respiratory motion traces of 10 patients. Motion effects were evaluated by convolving static dose distributions with various PDFs. Based on a differential dose prescription with relatively lower dose to the clinical target volume (CTV) than to the gross tumor volume (GTV), two approaches were proposed to incorporate PDFs into treatment planning. The first approach uses the GTV-based internal target volume (ITV) as the planning target volume (PTV) to ensure full dose to the GTV, and utilizes the motion-induced dose gradient to cover the CTV. The second approach employs an inhomogeneous static dose distribution within a minimized PTV to best match the prescription dose gradient. Results: Motion effects on dose distributions were minimal in the anterior-posterior (AP) and lateral directions: a 10-mm motion only induced about 3% of dose reduction in the peripheral target region. The motion effect was remarkable in the cranial-caudal direction. It varied with the motion amplitude, but tended to be similar for various respiratory patterns. For the first approach, a 10-15 mm motion would adequately cover the CTV (presumed to be 60-70% of the GTV dose) without employing the CTV in planning. For motions 15-mm. An example of inhomogeneous static dose distribution in a reduced PTV was given, and it showed significant dose reduction in the normal tissue without compromising target coverage. Conclusions: Respiratory motion-induced dose gradient can be utilized to cover the CTV and minimize the lung dose without the need for more sophisticated technologies

  1. Analytical Analysis of Motion Separability

    Directory of Open Access Journals (Sweden)

    Marjan Hadian Jazi

    2013-01-01

    Full Text Available Motion segmentation is an important task in computer vision and several practical approaches have already been developed. A common approach to motion segmentation is to use the optical flow and formulate the segmentation problem using a linear approximation of the brightness constancy constraints. Although there are numerous solutions to solve this problem and their accuracies and reliabilities have been studied, the exact definition of the segmentation problem, its theoretical feasibility and the conditions for successful motion segmentation are yet to be derived. This paper presents a simplified theoretical framework for the prediction of feasibility, of segmentation of a two-dimensional linear equation system. A statistical definition of a separable motion (structure is presented and a relatively straightforward criterion for predicting the separability of two different motions in this framework is derived. The applicability of the proposed criterion for prediction of the existence of multiple motions in practice is examined using both synthetic and real image sequences. The prescribed separability criterion is useful in designing computer vision applications as it is solely based on the amount of relative motion and the scale of measurement noise.

  2. Cervical spine motion: radiographic study

    International Nuclear Information System (INIS)

    Morgan, J.P.; Miyabayashi, T.; Choy, S.

    1986-01-01

    Knowledge of the acceptable range of motion of the cervical spine of the dog is used in the radiographic diagnosis of both developmental and degenerative diseases. A series of radiographs of mature Beagle dogs was used to identify motion within sagittal and transverse planes. Positioning of the dog's head and neck was standardized, using a restraining board, and mimicked those thought to be of value in diagnostic radiology. The range of motion was greatest between C2 and C5. Reports of severe disk degeneration in the cervical spine of the Beagle describe the most severely involved disks to be C4 through C7. Thus, a high range of motion between vertebral segments does not seem to be the cause for the severe degenerative disk disease. Dorsoventral slippage between vertebral segments was seen, but was not accurately measured. Wedging of disks was clearly identified. At the atlantoaxio-occipital region, there was a high degree of motion within the sagittal plane at the atlantoaxial and atlanto-occipital joints; the measurement can be a guideline in the radiographic diagnosis of instability due to developmental anomalies in this region. Lateral motion within the transverse plane was detected at the 2 joints; however, motion was minimal, and the measurements seemed to be less accurate because of rotation of the cervical spine. Height of the vertebral canal was consistently noted to be greater at the caudal orifice, giving some warning to the possibility of overdiagnosis in suspected instances of cervical spondylopathy

  3. Fundamentals - longitudinal motion

    International Nuclear Information System (INIS)

    Weng, W.T.

    1989-01-01

    There are many ways to accelerate charged particles to high energy for physics research. Each has served its purpose but eventually has encountered fundamental limitations of one kind or another. Looking at the famous Livingston curve, the initial birth and final level-off of all types of accelerators is seen. In fact, in the mid-80s we personally witnessed the creation of a new type of collider - the Stanford Linear Collider. Also witnessed, was the resurgence of study into novel methods of acceleration. This paper will cover acceleration and longitudinal motion in a synchrotron. A synchrotron is a circular accelerator with the following three characteristics: (1) Magnetic guiding (dipole) and confinement (quadrupole) components are placed in a small neighborhood around the equilibrium orbit. (2) Particles are kept in resonance with the radio-frequency electric field indefinitely to achieve acceleration to higher energies. (3) Magnetic fields are varied adiabatically with the energy of the particle. D. Edwards described the transverse oscillations of particles in a synchrotron. Here the author talks about the longitudinal oscillations of particles. The phase stability principle was invented by V. Veksler and E. McMillan independently in 1945. The phase stability and strong focusing principle, invented by Courant and Livingston in 1952, enabled the steady energy gain of accelerators and storage rings witnessed during the past 30 years. This paper is a unified overview of the related rf subjects in an accelerator and a close coupling between accelerator physics and engineering practices, which is essential for the major progress in areas such as high intensity synchrotrons, a multistage accelerator complex, and anti-proton production and cooling, made possible in the past 20 years

  4. A Motion Planning Approach to Studying Molecular Motions

    KAUST Repository

    Amato, Nancy M.; Tapia, Lydia; Thomas, Shawna

    2010-01-01

    While structurally very different, protein and RNA molecules share an important attribute. The motions they undergo are strongly related to the function they perform. For example, many diseases such as Mad Cow disease or Alzheimer's disease

  5. What motion is: William Neile and the laws of motion.

    Science.gov (United States)

    Kemeny, Max

    2017-07-01

    In 1668-1669 William Neile and John Wallis engaged in a protracted correspondence regarding the nature of motion. Neile was unhappy with the laws of motion that had been established by the Royal Society in three papers published in 1668, deeming them not explanations of motion at all, but mere descriptions. Neile insisted that science could not be informative without a discussion of causes, meaning that Wallis's purely kinematic account of collision could not be complete. Wallis, however, did not consider Neile's objections to his work to be serious. Rather than engage in a discussion of the proper place of natural philosophy in science, Wallis decided to show how Neile's preferred treatment of motion lead to absurd conclusions. This dispute is offered as a case study of dispute resolution within the early Royal Society.

  6. Adaptive Motion Compensation in Radiotherapy

    CERN Document Server

    Murphy, Martin J

    2011-01-01

    External-beam radiotherapy has long been challenged by the simple fact that patients can (and do) move during the delivery of radiation. Recent advances in imaging and beam delivery technologies have made the solution--adapting delivery to natural movement--a practical reality. Adaptive Motion Compensation in Radiotherapy provides the first detailed treatment of online interventional techniques for motion compensation radiotherapy. This authoritative book discusses: Each of the contributing elements of a motion-adaptive system, including target detection and tracking, beam adaptation, and pati

  7. Testing Significance Testing

    Directory of Open Access Journals (Sweden)

    Joachim I. Krueger

    2018-04-01

    Full Text Available The practice of Significance Testing (ST remains widespread in psychological science despite continual criticism of its flaws and abuses. Using simulation experiments, we address four concerns about ST and for two of these we compare ST’s performance with prominent alternatives. We find the following: First, the 'p' values delivered by ST predict the posterior probability of the tested hypothesis well under many research conditions. Second, low 'p' values support inductive inferences because they are most likely to occur when the tested hypothesis is false. Third, 'p' values track likelihood ratios without raising the uncertainties of relative inference. Fourth, 'p' values predict the replicability of research findings better than confidence intervals do. Given these results, we conclude that 'p' values may be used judiciously as a heuristic tool for inductive inference. Yet, 'p' values cannot bear the full burden of inference. We encourage researchers to be flexible in their selection and use of statistical methods.

  8. Safety significance evaluation system

    International Nuclear Information System (INIS)

    Lew, B.S.; Yee, D.; Brewer, W.K.; Quattro, P.J.; Kirby, K.D.

    1991-01-01

    This paper reports that the Pacific Gas and Electric Company (PG and E), in cooperation with ABZ, Incorporated and Science Applications International Corporation (SAIC), investigated the use of artificial intelligence-based programming techniques to assist utility personnel in regulatory compliance problems. The result of this investigation is that artificial intelligence-based programming techniques can successfully be applied to this problem. To demonstrate this, a general methodology was developed and several prototype systems based on this methodology were developed. The prototypes address U.S. Nuclear Regulatory Commission (NRC) event reportability requirements, technical specification compliance based on plant equipment status, and quality assurance assistance. This collection of prototype modules is named the safety significance evaluation system

  9. Predicting significant torso trauma.

    Science.gov (United States)

    Nirula, Ram; Talmor, Daniel; Brasel, Karen

    2005-07-01

    Identification of motor vehicle crash (MVC) characteristics associated with thoracoabdominal injury would advance the development of automatic crash notification systems (ACNS) by improving triage and response times. Our objective was to determine the relationships between MVC characteristics and thoracoabdominal trauma to develop a torso injury probability model. Drivers involved in crashes from 1993 to 2001 within the National Automotive Sampling System were reviewed. Relationships between torso injury and MVC characteristics were assessed using multivariate logistic regression. Receiver operating characteristic curves were used to compare the model to current ACNS models. There were a total of 56,466 drivers. Age, ejection, braking, avoidance, velocity, restraints, passenger-side impact, rollover, and vehicle weight and type were associated with injury (p < 0.05). The area under the receiver operating characteristic curve (83.9) was significantly greater than current ACNS models. We have developed a thoracoabdominal injury probability model that may improve patient triage when used with ACNS.

  10. Gas revenue increasingly significant

    International Nuclear Information System (INIS)

    Megill, R.E.

    1991-01-01

    This paper briefly describes the wellhead prices of natural gas compared to crude oil over the past 70 years. Although natural gas prices have never reached price parity with crude oil, the relative value of a gas BTU has been increasing. It is one of the reasons that the total amount of money coming from natural gas wells is becoming more significant. From 1920 to 1955 the revenue at the wellhead for natural gas was only about 10% of the money received by producers. Most of the money needed for exploration, development, and production came from crude oil. At present, however, over 40% of the money from the upstream portion of the petroleum industry is from natural gas. As a result, in a few short years natural gas may become 50% of the money revenues generated from wellhead production facilities

  11. Analyzing locomotion synthesis with feature-based motion graphs.

    Science.gov (United States)

    Mahmudi, Mentar; Kallmann, Marcelo

    2013-05-01

    We propose feature-based motion graphs for realistic locomotion synthesis among obstacles. Among several advantages, feature-based motion graphs achieve improved results in search queries, eliminate the need of postprocessing for foot skating removal, and reduce the computational requirements in comparison to traditional motion graphs. Our contributions are threefold. First, we show that choosing transitions based on relevant features significantly reduces graph construction time and leads to improved search performances. Second, we employ a fast channel search method that confines the motion graph search to a free channel with guaranteed clearance among obstacles, achieving faster and improved results that avoid expensive collision checking. Lastly, we present a motion deformation model based on Inverse Kinematics applied over the transitions of a solution branch. Each transition is assigned a continuous deformation range that does not exceed the original transition cost threshold specified by the user for the graph construction. The obtained deformation improves the reachability of the feature-based motion graph and in turn also reduces the time spent during search. The results obtained by the proposed methods are evaluated and quantified, and they demonstrate significant improvements in comparison to traditional motion graph techniques.

  12. Relaxation processes in rotational motion

    International Nuclear Information System (INIS)

    Broglia, R.A.

    1986-01-01

    At few MeV above the yrast line the normally strong correlations among γ-ray energies in a rotational sequence become weaker. This observation can be interpreted as evidence for the damping of rotational motion in hot nuclei. It seems possible to relate the spreading width of the E2-rotational decay strength to the spread in frequency Δω 0 of rotational bands. The origin of these fluctuations is found in: (1) fluctuations in the occupation of special single-particle orbits which contribute a significant part of the total angular momentum; and (2) fluctuations in the moment of inertia induced by vibrations of the nuclear shape. Estimates of Δω 0 done making use of the hundred-odd known discrete rotational bands in the rare-earth region lead, for moderate spin and excitation energies (I ≅ 30 and U ≅ 3 to 4 MeV), to rotational spreading widths of the order of 60 to 160 keV in overall agreement with the data. 24 refs

  13. Tumor significant dose

    International Nuclear Information System (INIS)

    Supe, S.J.; Nagalaxmi, K.V.; Meenakshi, L.

    1983-01-01

    In the practice of radiotherapy, various concepts like NSD, CRE, TDF, and BIR are being used to evaluate the biological effectiveness of the treatment schedules on the normal tissues. This has been accepted as the tolerance of the normal tissue is the limiting factor in the treatment of cancers. At present when various schedules are tried, attention is therefore paid to the biological damage of the normal tissues only and it is expected that the damage to the cancerous tissues would be extensive enough to control the cancer. Attempt is made in the present work to evaluate the concent of tumor significant dose (TSD) which will represent the damage to the cancerous tissue. Strandquist in the analysis of a large number of cases of squamous cell carcinoma found that for the 5 fraction/week treatment, the total dose required to bring about the same damage for the cancerous tissue is proportional to T/sup -0.22/, where T is the overall time over which the dose is delivered. Using this finding the TSD was defined as DxN/sup -p/xT/sup -q/, where D is the total dose, N the number of fractions, T the overall time p and q are the exponents to be suitably chosen. The values of p and q are adjusted such that p+q< or =0.24, and p varies from 0.0 to 0.24 and q varies from 0.0 to 0.22. Cases of cancer of cervix uteri treated between 1978 and 1980 in the V. N. Cancer Centre, Kuppuswamy Naidu Memorial Hospital, Coimbatore, India were analyzed on the basis of these formulations. These data, coupled with the clinical experience, were used for choice of a formula for the TSD. Further, the dose schedules used in the British Institute of Radiology fraction- ation studies were also used to propose that the tumor significant dose is represented by DxN/sup -0.18/xT/sup -0.06/

  14. Robust motion estimation using connected operators

    OpenAIRE

    Salembier Clairon, Philippe Jean; Sanson, H

    1997-01-01

    This paper discusses the use of connected operators for robust motion estimation The proposed strategy involves a motion estimation step extracting the dominant motion and a ltering step relying on connected operators that remove objects that do not fol low the dominant motion. These two steps are iterated in order to obtain an accurate motion estimation and a precise de nition of the objects fol lowing this motion This strategy can be applied on the entire frame or on individual connected c...

  15. Uranium chemistry: significant advances

    International Nuclear Information System (INIS)

    Mazzanti, M.

    2011-01-01

    The author reviews recent progress in uranium chemistry achieved in CEA laboratories. Like its neighbors in the Mendeleev chart uranium undergoes hydrolysis, oxidation and disproportionation reactions which make the chemistry of these species in water highly complex. The study of the chemistry of uranium in an anhydrous medium has led to correlate the structural and electronic differences observed in the interaction of uranium(III) and the lanthanides(III) with nitrogen or sulfur molecules and the effectiveness of these molecules in An(III)/Ln(III) separation via liquid-liquid extraction. Recent work on the redox reactivity of trivalent uranium U(III) in an organic medium with molecules such as water or an azide ion (N 3 - ) in stoichiometric quantities, led to extremely interesting uranium aggregates particular those involved in actinide migration in the environment or in aggregation problems in the fuel processing cycle. Another significant advance was the discovery of a compound containing the uranyl ion with a degree of oxidation (V) UO 2 + , obtained by oxidation of uranium(III). Recently chemists have succeeded in blocking the disproportionation reaction of uranyl(V) and in stabilizing polymetallic complexes of uranyl(V), opening the way to to a systematic study of the reactivity and the electronic and magnetic properties of uranyl(V) compounds. (A.C.)

  16. Meaning and significance of

    Directory of Open Access Journals (Sweden)

    Ph D Student Roman Mihaela

    2011-05-01

    Full Text Available The concept of "public accountability" is a challenge for political science as a new concept in this area in full debate and developement ,both in theory and practice. This paper is a theoretical approach of displaying some definitions, relevant meanings and significance odf the concept in political science. The importance of this concept is that although originally it was used as a tool to improve effectiveness and eficiency of public governance, it has gradually become a purpose it itself. "Accountability" has become an image of good governance first in the United States of America then in the European Union.Nevertheless,the concept is vaguely defined and provides ambiguous images of good governance.This paper begins with the presentation of some general meanings of the concept as they emerge from specialized dictionaries and ancyclopaedies and continues with the meanings developed in political science. The concept of "public accontability" is rooted in economics and management literature,becoming increasingly relevant in today's political science both in theory and discourse as well as in practice in formulating and evaluating public policies. A first conclusin that emerges from, the analysis of the evolution of this term is that it requires a conceptual clarification in political science. A clear definition will then enable an appropriate model of proving the system of public accountability in formulating and assessing public policies, in order to implement a system of assessment and monitoring thereof.

  17. The allwise motion survey and the quest for cold subdwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, J. Davy; Fajardo-Acosta, Sergio; Gelino, Christopher R.; Fowler, John W.; Cutri, Roc M. [Infrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125 (United States); Schneider, Adam; Cushing, Michael C. [Department of Physics and Astronomy, MS 111, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606-3328 (United States); Mace, Gregory N.; Wright, Edward L.; Logsdon, Sarah E.; McLean, Ian S. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Skrutskie, Michael F. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Eisenhardt, Peter R.; Stern, Daniel [NASA Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Baloković, Mislav [California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Burgasser, Adam J. [Department of Physics, University of California, San Diego, CA 92093 (United States); Faherty, Jacqueline K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 (United States); Lansbury, George B. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Rich, J. A. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Skrzypek, Nathalie, E-mail: davy@ipac.caltech.edu [Astro Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); and others

    2014-03-10

    The AllWISE processing pipeline has measured motions for all objects detected on Wide-field Infrared Survey Explorer (WISE) images taken between 2010 January and 2011 February. In this paper, we discuss new capabilities made to the software pipeline in order to make motion measurements possible, and we characterize the resulting data products for use by future researchers. Using a stringent set of selection criteria, we find 22,445 objects that have significant AllWISE motions, of which 3525 have motions that can be independently confirmed from earlier Two Micron All Sky Survey (2MASS) images, yet lack any published motions in SIMBAD. Another 58 sources lack 2MASS counterparts and are presented as motion candidates only. Limited spectroscopic follow-up of this list has already revealed eight new L subdwarfs. These may provide the first hints of a 'subdwarf gap' at mid-L types that would indicate the break between the stellar and substellar populations at low metallicities (i.e., old ages). Another object in the motion list—WISEA J154045.67–510139.3—is a bright (J ≈ 9 mag) object of type M6; both the spectrophotometric distance and a crude preliminary parallax place it ∼6 pc from the Sun. We also compare our list of motion objects to the recently published list of 762 WISE motion objects from Luhman. While these first large motion studies with WISE data have been very successful in revealing previously overlooked nearby dwarfs, both studies missed objects that the other found, demonstrating that many other nearby objects likely await discovery in the AllWISE data products.

  18. Motion field estimation for a dynamic scene using a 3D LiDAR.

    Science.gov (United States)

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-09-09

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  19. Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR

    Directory of Open Access Journals (Sweden)

    Qingquan Li

    2014-09-01

    Full Text Available This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  20. Type of featural attention differentially modulates hMT+ responses to illusory motion aftereffects.

    Science.gov (United States)

    Castelo-Branco, Miguel; Kozak, Lajos R; Formisano, Elia; Teixeira, João; Xavier, João; Goebel, Rainer

    2009-11-01

    Activity in the human motion complex (hMT(+)/V5) is related to the perception of motion, be it either real surface motion or an illusion of motion such as apparent motion (AM) or motion aftereffect (MAE). It is a long-lasting debate whether illusory motion-related activations in hMT(+) represent the motion itself or attention to it. We have asked whether hMT(+) responses to MAEs are present when shifts in arousal are suppressed and attention is focused on concurrent motion versus nonmotion features. Significant enhancement of hMT(+) activity was observed during MAEs when attention was focused either on concurrent spatial angle or color features. This observation was confirmed by direct comparison of adapting (MAE inducing) versus nonadapting conditions. In contrast, this effect was diminished when subjects had to report on concomitant speed changes of superimposed AM. The same finding was observed for concomitant orthogonal real motion (RM), suggesting that selective attention to concurrent illusory or real motion was interfering with the saliency of MAE signals in hMT(+). We conclude that MAE-related changes in the global activity of hMT(+) are present provided selective attention is not focused on an interfering feature such as concurrent motion. Accordingly, there is a genuine MAE-related motion signal in hMT(+) that is neither explained by shifts in arousal nor by selective attention.

  1. Dance notations and robot motion

    CERN Document Server

    Abe, Naoko

    2016-01-01

    How and why to write a movement? Who is the writer? Who is the reader? They may be choreographers working with dancers. They may be roboticists programming robots. They may be artists designing cartoons in computer animation. In all such fields the purpose is to express an intention about a dance, a specific motion or an action to perform, in terms of intelligible sequences of elementary movements, as a music score that would be devoted to motion representation. Unfortunately there is no universal language to write a motion. Motion languages live together in a Babel tower populated by biomechanists, dance notators, neuroscientists, computer scientists, choreographers, roboticists. Each community handles its own concepts and speaks its own language. The book accounts for this diversity. Its origin is a unique workshop held at LAAS-CNRS in Toulouse in 2014. Worldwide representatives of various communities met there. Their challenge was to reach a mutual understanding allowing a choreographer to access robotics ...

  2. Generalized quantal equation of motion

    International Nuclear Information System (INIS)

    Morsy, M.W.; Embaby, M.

    1986-07-01

    In the present paper, an attempt is made for establishing a generalized equation of motion for quantal objects, in which intrinsic self adjointness is naturally built in, independently of any prescribed representation. This is accomplished by adopting Hamilton's principle of least action, after incorporating, properly, the quantal features and employing the generalized calculus of variations, without being restricted to fixed end points representation. It turns out that our proposed equation of motion is an intrinsically self-adjoint Euler-Lagrange's differential equation that ensures extremization of the quantal action as required by Hamilton's principle. Time dependence is introduced and the corresponding equation of motion is derived, in which intrinsic self adjointness is also achieved. Reducibility of the proposed equation of motion to the conventional Schroedinger equation is examined. The corresponding continuity equation is established, and both of the probability density and the probability current density are identified. (author)

  3. On the equations of motion

    International Nuclear Information System (INIS)

    Jannussis, A.; Streclas, A.; Sourlas, D.; Vlachos, K.

    1977-01-01

    Using the theorem of the derivative of a function of operators with respect to any parameter, we can find the equation of motion of a system in classical mechanics, in canonical as well as in non-canonical mechanics

  4. Weigh-in-Motion Stations

    Data.gov (United States)

    Department of Homeland Security — The data included in the GIS Traffic Stations Version database have been assimilated from station description files provided by FHWA for Weigh-in-Motion (WIM), and...

  5. Physical chemistry: Molecular motion watched

    Science.gov (United States)

    Siwick, Bradley; Collet, Eric

    2013-04-01

    A laser pulse can switch certain crystals from an insulating phase to a highly conducting phase. The ultrafast molecular motions that drive the transition have been directly observed using electron diffraction. See Letter p.343

  6. Is Diaphragm Motion a Good Surrogate for Liver Tumor Motion?

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Juan [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Cai, Jing [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Wang, Hongjun [School of Information Science and Engineering, Shandong University, Jinan, Shandong (China); Chang, Zheng; Czito, Brian G. [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Bashir, Mustafa R. [Department of Radiology, Duke University Medical Center, Durham, North Carolina (United States); Palta, Manisha [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Yin, Fang-Fang, E-mail: fangfang.yin@duke.edu [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States)

    2014-11-15

    Purpose: To evaluate the relationship between liver tumor motion and diaphragm motion. Methods and Materials: Fourteen patients with hepatocellular carcinoma (10 of 14) or liver metastases (4 of 14) undergoing radiation therapy were included in this study. All patients underwent single-slice cine–magnetic resonance imaging simulations across the center of the tumor in 3 orthogonal planes. Tumor and diaphragm motion trajectories in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions were obtained using an in-house-developed normalized cross-correlation–based tracking technique. Agreement between the tumor and diaphragm motion was assessed by calculating phase difference percentage, intraclass correlation coefficient, and Bland-Altman analysis (Diff). The distance between the tumor and tracked diaphragm area was analyzed to understand its impact on the correlation between the 2 motions. Results: Of all patients, the mean (±standard deviation) phase difference percentage values were 7.1% ± 1.1%, 4.5% ± 0.5%, and 17.5% ± 4.5% in the SI, AP, and ML directions, respectively. The mean intraclass correlation coefficient values were 0.98 ± 0.02, 0.97 ± 0.02, and 0.08 ± 0.06 in the SI, AP, and ML directions, respectively. The mean Diff values were 2.8 ± 1.4 mm, 2.4 ± 1.1 mm, and 2.2 ± 0.5 mm in the SI, AP, and ML directions, respectively. Tumor and diaphragm motions had high concordance when the distance between the tumor and tracked diaphragm area was small. Conclusions: This study showed that liver tumor motion had good correlation with diaphragm motion in the SI and AP directions, indicating diaphragm motion in the SI and AP directions could potentially be used as a reliable surrogate for liver tumor motion.

  7. Significant Radionuclides Determination

    Energy Technology Data Exchange (ETDEWEB)

    Jo A. Ziegler

    2001-07-31

    The purpose of this calculation is to identify radionuclides that are significant to offsite doses from potential preclosure events for spent nuclear fuel (SNF) and high-level radioactive waste expected to be received at the potential Monitored Geologic Repository (MGR). In this calculation, high-level radioactive waste is included in references to DOE SNF. A previous document, ''DOE SNF DBE Offsite Dose Calculations'' (CRWMS M&O 1999b), calculated the source terms and offsite doses for Department of Energy (DOE) and Naval SNF for use in design basis event analyses. This calculation reproduces only DOE SNF work (i.e., no naval SNF work is included in this calculation) created in ''DOE SNF DBE Offsite Dose Calculations'' and expands the calculation to include DOE SNF expected to produce a high dose consequence (even though the quantity of the SNF is expected to be small) and SNF owned by commercial nuclear power producers. The calculation does not address any specific off-normal/DBE event scenarios for receiving, handling, or packaging of SNF. The results of this calculation are developed for comparative analysis to establish the important radionuclides and do not represent the final source terms to be used for license application. This calculation will be used as input to preclosure safety analyses and is performed in accordance with procedure AP-3.12Q, ''Calculations'', and is subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (DOE 2000) as determined by the activity evaluation contained in ''Technical Work Plan for: Preclosure Safety Analysis, TWP-MGR-SE-000010'' (CRWMS M&O 2000b) in accordance with procedure AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''.

  8. Storyboard dalam Pembuatan Motion Graphic

    OpenAIRE

    Satrya Mahardhika; A.F. Choiril Anam Fathoni

    2013-01-01

    Motion graphics is one category in the animation that makes animation with lots of design elements in each component. Motion graphics needs long process including preproduction, production, and postproduction. Preproduction has an important role so that the next stage may provide guidance or instructions for the production process or the animation process. Preproduction includes research, making the story, script, screenplay, character, environment design and storyboards. The storyboard will ...

  9. q-deformed Brownian motion

    CERN Document Server

    Man'ko, V I

    1993-01-01

    Brownian motion may be embedded in the Fock space of bosonic free field in one dimension.Extending this correspondence to a family of creation and annihilation operators satisfying a q-deformed algebra, the notion of q-deformation is carried from the algebra to the domain of stochastic processes.The properties of q-deformed Brownian motion, in particular its non-Gaussian nature and cumulant structure,are established.

  10. Magnetosheath density fluctuations and magnetopause motion

    Energy Technology Data Exchange (ETDEWEB)

    Sibeck, D.G. [Johns Hopkins Univ. Applied Physics Lab., Laurel, MD (United States); Gosling, J.T. [Los Alamos National Lab., NM (United States)

    1996-01-01

    The interplanetary magnetic field (IMF) orientation controls foreshock densities and modulates the fraction of the solar wind dynamic pressure applied to the magnetosphere. Such pressure variations produce bow shock and magnetopause motion and cause the radial profiles for various magnetosheath parameters to sweep inward and outward past nearly stationary satellites. The authors report ISEE 2 observations of correlated density and speed fluctuations, and anticorrelated density and temperature fluctuations, on an outbound pass through the northern dawnside magnetosheath. Densities decreased when the magnetic field rotated southward and draped about the magnetopause. In the absence of any significant solar wind density or dynamic pressure variations, they interpret the magnetosheath fluctuations as evidence for radial magnetosheath motion induced by variations in the IMF orientation. 41 refs., 8 figs.

  11. Effects of aging on perception of motion

    Science.gov (United States)

    Kaur, Manpreet; Wilder, Joseph; Hung, George; Julesz, Bela

    1997-09-01

    Driving requires two basic visual components: 'visual sensory function' and 'higher order skills.' Among the elderly, it has been observed that when attention must be divided in the presence of multiple objects, their attentional skills and relational processes, along with impairment of basic visual sensory function, are markedly impaired. A high frame rate imaging system was developed to assess the elderly driver's ability to locate and distinguish computer generated images of vehicles and to determine their direction of motion in a simulated intersection. Preliminary experiments were performed at varying target speeds and angular displacements to study the effect of these parameters on motion perception. Results for subjects in four different age groups, ranging from mid- twenties to mid-sixties, show significantly better performance for the younger subjects as compared to the older ones.

  12. Statistical analysis of earthquake ground motion parameters

    International Nuclear Information System (INIS)

    1979-12-01

    Several earthquake ground response parameters that define the strength, duration, and frequency content of the motions are investigated using regression analyses techniques; these techniques incorporate statistical significance testing to establish the terms in the regression equations. The parameters investigated are the peak acceleration, velocity, and displacement; Arias intensity; spectrum intensity; bracketed duration; Trifunac-Brady duration; and response spectral amplitudes. The study provides insight into how these parameters are affected by magnitude, epicentral distance, local site conditions, direction of motion (i.e., whether horizontal or vertical), and earthquake event type. The results are presented in a form so as to facilitate their use in the development of seismic input criteria for nuclear plants and other major structures. They are also compared with results from prior investigations that have been used in the past in the criteria development for such facilities

  13. Spatial filtering precedes motion detection.

    Science.gov (United States)

    Morgan, M J

    1992-01-23

    When we perceive motion on a television or cinema screen, there must be some process that allows us to track moving objects over time: if not, the result would be a conflicting mass of motion signals in all directions. A possible mechanism, suggested by studies of motion displacement in spatially random patterns, is that low-level motion detectors have a limited spatial range, which ensures that they tend to be stimulated over time by the same object. This model predicts that the direction of displacement of random patterns cannot be detected reliably above a critical absolute displacement value (Dmax) that is independent of the size or density of elements in the display. It has been inferred that Dmax is a measure of the size of motion detectors in the visual pathway. Other studies, however, have shown that Dmax increases with element size, in which case the most likely interpretation is that Dmax depends on the probability of false matches between pattern elements following a displacement. These conflicting accounts are reconciled here by showing that Dmax is indeed determined by the spacing between the elements in the pattern, but only after fine detail has been removed by a physiological prefiltering stage: the filter required to explain the data has a similar size to the receptive field of neurons in the primate magnocellular pathway. The model explains why Dmax can be increased by removing high spatial frequencies from random patterns, and simplifies our view of early motion detection.

  14. Passive infrared motion sensing technology

    International Nuclear Information System (INIS)

    Doctor, A.P.

    1994-01-01

    In the last 10 years passive IR based (8--12 microns) motion sensing has matured to become the dominant method of volumetric space protection and surveillance. These systems currently cost less than $25 to produce and yet use traditionally expensive IR optics, filters, sensors and electronic circuitry. This IR application is quite interesting in that the volumes of systems produced and the costs and performance level required prove that there is potential for large scale commercial applications of IR technology. This paper will develop the basis and principles of operation of a staring motion sensor system using a technical approach. A model for the motion of the target is developed and compared to the background. The IR power difference between the target and the background as well as the optical requirements are determined from basic principles and used to determine the performance of the system. Low cost reflective and refractive IR optics and bandpass IR filters are discussed. The pyroelectric IR detector commonly used is fully discussed and characterized. Various schemes for ''false alarms'' have been developed and are also explained. This technology is also used in passive IR based motion sensors for other applications such as lighting control. These applications are also discussed. In addition the paper will discuss new developments in IR surveillance technology such as the use of linear motion sensing arrays. This presentation can be considered a ''primer'' on the art of Passive IR Motion Sensing as applied to Surveillance Technology

  15. The effect of mild motion sickness and sopite syndrome on multitasking cognitive performance.

    Science.gov (United States)

    Matsangas, Panagiotis; McCauley, Michael E; Becker, William

    2014-09-01

    In this study, we investigated the effects of mild motion sickness and sopite syndrome on multitasking cognitive performance. Despite knowledge on general motion sickness, little is known about the effect of motion sickness and sopite syndrome on multitasking cognitive performance. Specifically, there is a gap in existing knowledge in the gray area of mild motion sickness. Fifty-one healthy individuals performed a multitasking battery. Three independent groups of participants were exposed to two experimental sessions. Two groups received motion only in the first or the second session, whereas the control group did not receive motion. Measurements of motion sickness, sopite syndrome, alertness, and performance were collected during the experiment Only during the second session, motion sickness and sopite syndrome had a significant negative association with cognitive performance. Significant performance differences between symptomatic and asymptomatic participants in the second session were identified in composite (9.43%), memory (31.7%), and arithmetic (14.7%) task scores. The results suggest that performance retention between sessions was not affected by mild motion sickness. Multitasking cognitive performance declined even when motion sickness and soporific symptoms were mild. The results also show an order effect. We postulate that the differential effect of session on the association between symptomatology and multitasking performance may be related to the attentional resources allocated to performing the multiple tasks. Results suggest an inverse relationship between motion sickness effects on performance and the cognitive effort focused on performing a task. Even mild motion sickness has potential implications for multitasking operational performance.

  16. Relation of external surface to internal tumor motion studied with cine CT

    International Nuclear Information System (INIS)

    Chi, P.-C.M.; Balter, Peter; Luo Dershan; Mohan, Radhe; Pan Tinsu

    2006-01-01

    The accuracy of delivering gated-radiation therapy to lung tumors using an external respiratory surrogate relies on not only interfractional and intrafractional reproducibility, but also a strong correlation between external motion and internal tumor motion. The purpose of this work was to use the cine images acquired by four-dimensional computed tomography acquisition protocol to study the relation between external surface motion and internal tumor motion. The respiratory phase information of tumor motion and chest wall motion was measured on the cine images using a proposed region-of-interest (ROI) method and compared to measurement of an external respiratory monitoring device. On eight lung patient data sets, the phase shifts were measured between (1) the signal of a real-time positioning-management (RPM) respiratory monitoring device placed in the abdominal region and four surface locations on the chest wall (2) the RPM signal in the abdominal region and tumor motions, and (3) chest wall surface motions and tumor motions. Respiratory waveforms measured at different surface locations during the same respiratory cycle often varied and had significant phase shifts. Seven of the 8 patients showed the abdominal motion leading chest wall motion. The best correlation (smallest phase shift) was found between the abdominal motion and the superior-inferior (S-I) tumor motion. A wide range of phase shifts was observed between external surface motion and tumor anterior-posterior (A-P)/lateral motion. The result supported the placement of the RPM block in the abdominal region and suggested that during a gated therapy utilizing the RPM system, it is necessary to place the RPM block at the same location as it is during treatment simulation in order to reduce potential errors introduced by the position of the RPM block. Correlations between external motions and lateral/A-P tumor motions were inconclusive due to a combination of patient selection and the limitation of the ROI

  17. Evolution and diversity of subduction zones controlled by slab width

    NARCIS (Netherlands)

    Schellart, W. P.; Freeman, J.A.; Stegman, D. R.; Moresi, L.; May, D.

    2007-01-01

    Subducting slabs provide the main driving force for plate motion and flow in the Earth's mantle, and geodynamic, seismic and geochemical studies offer insight into slab dynamics and subduction-induced flow. Most previous geodynamic studies treat subduction zones as either infinite in trench-parallel

  18. Engineering characterization of ground motion. Task I. Effects of characteristics of free-field motion on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, R.P.; Short, S.A.; Merz, K.L.; Tokarz, F.J.; Idriss, I.M.; Power, M.S.; Sadigh, K.

    1984-05-01

    This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage.

  19. Engineering characterization of ground motion. Task I. Effects of characteristics of free-field motion on structural response

    International Nuclear Information System (INIS)

    Kennedy, R.P.; Short, S.A.; Merz, K.L.; Tokarz, F.J.; Idriss, I.M.; Power, M.S.; Sadigh, K.

    1984-05-01

    This report presents the results of the first task of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this study is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study develops a basis for selecting design response spectra, taking into account the characteristics of free-field ground motion found to be significant in causing structural damage

  20. Designing a compact MRI motion phantom

    Directory of Open Access Journals (Sweden)

    Schmiedel Max

    2016-09-01

    Full Text Available Even today, dealing with motion artifacts in magnetic resonance imaging (MRI is a challenging task. Image corruption due to spontaneous body motion complicates diagnosis. In this work, an MRI phantom for rigid motion is presented. It is used to generate motion-corrupted data, which can serve for evaluation of blind motion compensation algorithms. In contrast to commercially available MRI motion phantoms, the presented setup works on small animal MRI systems. Furthermore, retrospective gating is performed on the data, which can be used as a reference for novel motion compensation approaches. The motion of the signal source can be reconstructed using motor trigger signals and be utilized as the ground truth for motion estimation. The proposed setup results in motion corrected images. Moreover, the importance of preprocessing the MRI raw data, e.g. phase-drift correction, is demonstrated. The gained knowledge can be used to design an MRI phantom for elastic motion.

  1. Constrained motion estimation-based error resilient coding for HEVC

    Science.gov (United States)

    Guo, Weihan; Zhang, Yongfei; Li, Bo

    2018-04-01

    Unreliable communication channels might lead to packet losses and bit errors in the videos transmitted through it, which will cause severe video quality degradation. This is even worse for HEVC since more advanced and powerful motion estimation methods are introduced to further remove the inter-frame dependency and thus improve the coding efficiency. Once a Motion Vector (MV) is lost or corrupted, it will cause distortion in the decoded frame. More importantly, due to motion compensation, the error will propagate along the motion prediction path, accumulate over time, and significantly degrade the overall video presentation quality. To address this problem, we study the problem of encoder-sider error resilient coding for HEVC and propose a constrained motion estimation scheme to mitigate the problem of error propagation to subsequent frames. The approach is achieved by cutting off MV dependencies and limiting the block regions which are predicted by temporal motion vector. The experimental results show that the proposed method can effectively suppress the error propagation caused by bit errors of motion vector and can improve the robustness of the stream in the bit error channels. When the bit error probability is 10-5, an increase of the decoded video quality (PSNR) by up to1.310dB and on average 0.762 dB can be achieved, compared to the reference HEVC.

  2. Success and Failure of Parliamentary Motions: A Social Dilemma Approach.

    Science.gov (United States)

    Popping, Roel; Wittek, Rafael

    2015-01-01

    Parliamentary motions are a vital and frequently used element of political control in democratic regimes. Despite their high incidence and potential impact on the political fate of a government and its policies, we know relatively little about the conditions under which parliamentary motions are likely to be accepted or rejected. Current collective decision-making models use a voting power framework in which power and influence of the involved parties are the main predictors. We propose an alternative, social dilemma approach, according to which a motion's likelihood to be accepted depends on the severity of the social dilemma underlying the decision issue. Actor- and dilemma-centered hypotheses are developed and tested with data from a stratified random sample of 822 motions that have been voted upon in the Dutch Parliament between September 2009 and February 2011. The social dilemma structure of each motion is extracted through content coding, applying a cognitive mapping technique developed by Anthony, Heckathorn and Maser. Logistic regression analyses are in line with both, actor-centered and social-dilemma centered approaches, though the latter show stronger effect sizes. Motions have a lower chance to be accepted if voting potential is low, the proposer is not from the voting party, and if the problem underlying the motion reflects a prisoner's dilemma or a pure competition game as compared to a coordination game. The number of proposing parties or a battle of the sexes structure does not significantly affect the outcome.

  3. UROKIN: A Software to Enhance Our Understanding of Urogenital Motion.

    Science.gov (United States)

    Czyrnyj, Catriona S; Labrosse, Michel R; Graham, Ryan B; McLean, Linda

    2018-05-01

    Transperineal ultrasound (TPUS) allows for objective quantification of mid-sagittal urogenital mechanics, yet current practice omits dynamic motion information in favor of analyzing only a rest and a peak motion frame. This work details the development of UROKIN, a semi-automated software which calculates kinematic curves of urogenital landmark motion. A proof of concept analysis, performed using UROKIN on TPUS video recorded from 20 women with and 10 women without stress urinary incontinence (SUI) performing maximum voluntary contraction of the pelvic floor muscles. The anorectal angle and bladder neck were tracked while the motion of the pubic symphysis was used to compensate for the error incurred by TPUS probe motion during imaging. Kinematic curves of landmark motion were generated for each video and curves were smoothed, time normalized, and averaged within groups. Kinematic data yielded by the UROKIN software showed statistically significant differences between women with and without SUI in terms of magnitude and timing characteristics of the kinematic curves depicting landmark motion. Results provide insight into the ways in which UROKIN may be useful to study differences in pelvic floor muscle contraction mechanics between women with and without SUI and other pelvic floor disorders. The UROKIN software improves on methods described in the literature and provides unique capacity to further our understanding of urogenital biomechanics.

  4. Climate-driven seasonal geocenter motion during the GRACE period

    Science.gov (United States)

    Zhang, Hongyue; Sun, Yu

    2018-03-01

    Annual cycles in the geocenter motion time series are primarily driven by mass changes in the Earth's hydrologic system, which includes land hydrology, atmosphere, and oceans. Seasonal variations of the geocenter motion have been reliably determined according to Sun et al. (J Geophys Res Solid Earth 121(11):8352-8370, 2016) by combining the Gravity Recovery And Climate Experiment (GRACE) data with an ocean model output. In this study, we reconstructed the observed seasonal geocenter motion with geophysical model predictions of mass variations in the polar ice sheets, continental glaciers, terrestrial water storage (TWS), and atmosphere and dynamic ocean (AO). The reconstructed geocenter motion time series is shown to be in close agreement with the solution based on GRACE data supporting with an ocean bottom pressure model. Over 85% of the observed geocenter motion time series, variance can be explained by the reconstructed solution, which allows a further investigation of the driving mechanisms. We then demonstrated that AO component accounts for 54, 62, and 25% of the observed geocenter motion variances in the X, Y, and Z directions, respectively. The TWS component alone explains 42, 32, and 39% of the observed variances. The net mass changes over oceans together with self-attraction and loading effects also contribute significantly (about 30%) to the seasonal geocenter motion in the X and Z directions. Other contributing sources, on the other hand, have marginal (less than 10%) impact on the seasonal variations but introduce a linear trend in the time series.

  5. Prospective motion correction with volumetric navigators (vNavs) reduces the bias and variance in brain morphometry induced by subject motion.

    Science.gov (United States)

    Tisdall, M Dylan; Reuter, Martin; Qureshi, Abid; Buckner, Randy L; Fischl, Bruce; van der Kouwe, André J W

    2016-02-15

    Recent work has demonstrated that subject motion produces systematic biases in the metrics computed by widely used morphometry software packages, even when the motion is too small to produce noticeable image artifacts. In the common situation where the control population exhibits different behaviors in the scanner when compared to the experimental population, these systematic measurement biases may produce significant confounds for between-group analyses, leading to erroneous conclusions about group differences. While previous work has shown that prospective motion correction can improve perceived image quality, here we demonstrate that, in healthy subjects performing a variety of directed motions, the use of the volumetric navigator (vNav) prospective motion correction system significantly reduces the motion-induced bias and variance in morphometry. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Inertial Motion Capture Costume Design Study

    Directory of Open Access Journals (Sweden)

    Agnieszka Szczęsna

    2017-03-01

    Full Text Available The paper describes a scalable, wearable multi-sensor system for motion capture based on inertial measurement units (IMUs. Such a unit is composed of accelerometer, gyroscope and magnetometer. The final quality of an obtained motion arises from all the individual parts of the described system. The proposed system is a sequence of the following stages: sensor data acquisition, sensor orientation estimation, system calibration, pose estimation and data visualisation. The construction of the system’s architecture with the dataflow programming paradigm makes it easy to add, remove and replace the data processing steps. The modular architecture of the system allows an effortless introduction of a new sensor orientation estimation algorithms. The original contribution of the paper is the design study of the individual components used in the motion capture system. The two key steps of the system design are explored in this paper: the evaluation of sensors and algorithms for the orientation estimation. The three chosen algorithms have been implemented and investigated as part of the experiment. Due to the fact that the selection of the sensor has a significant impact on the final result, the sensor evaluation process is also explained and tested. The experimental results confirmed that the choice of sensor and orientation estimation algorithm affect the quality of the final results.

  7. Video motion detection for physical security applications

    International Nuclear Information System (INIS)

    Matter, J.C.

    1990-01-01

    Physical security specialists have been attracted to the concept of video motion detection for several years. Claimed potential advantages included additional benefit from existing video surveillance systems, automatic detection, improved performance compared to human observers, and cost-effectiveness. In recent years, significant advances in image-processing dedicated hardware and image analysis algorithms and software have accelerated the successful application of video motion detection systems to a variety of physical security applications. Early video motion detectors (VMDs) were useful for interior applications of volumetric sensing. Success depended on having a relatively well-controlled environment. Attempts to use these systems outdoors frequently resulted in an unacceptable number of nuisance alarms. Currently, Sandia National Laboratories (SNL) is developing several advanced systems that employ image-processing techniques for a broader set of safeguards and security applications. The Target Cueing and Tracking System (TCATS), the Video Imaging System for Detection, Tracking, and Assessment (VISDTA), the Linear Infrared Scanning Array (LISA); the Mobile Intrusion Detection and Assessment System (MIDAS), and the Visual Artificially Intelligent Surveillance (VAIS) systems are described briefly

  8. New physical concepts for cell amoeboid motion.

    Science.gov (United States)

    Evans, E

    1993-04-01

    Amoeboid motion of cells is an essential mechanism in the function of many biological organisms (e.g., the regiment of scavenger cells in the immune defense system of animals). This process involves rapid chemical polymerization (with numerous protein constituents) to create a musclelike contractile network that advances the cell over the surface. Significant progress has been made in the biology and biochemistry of motile cells, but the physical dynamics of cell spreading and contraction are not well understood. The reason is that general approaches are formulated from complex mass, momentum, and chemical reaction equations for multiphase-multicomponent flow with the nontrivial difficulty of moving boundaries. However, there are strong clues to the dynamics that allow bold steps to be taken in simplifying the physics of motion. First, amoeboid cells often exhibit exceptional kinematics, i.e., steady advance and retraction of local fixed-shape patterns. Second, recent evidence has shown that cell projections "grow" by polymerization along the advancing boundary of the cell. Together, these characteristics represent a local growth process pinned to the interfacial contour of a contractile network. As such, the moving boundary becomes tractable, but subtle features of the motion lead to specific requirements for the chemical nature of the boundary polymerization process. To demonstrate these features, simple examples for limiting conditions of substrate interaction (i.e., "strong" and "weak" adhesion) are compared with data from experimental studies of yeast particle engulfment by blood granulocytes and actin network dynamics in fishscale keratocytes.

  9. 19 CFR 210.26 - Other motions.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Other motions. 210.26 Section 210.26 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE ADJUDICATION AND ENFORCEMENT Motions § 210.26 Other motions. Motions pertaining to discovery shall be filed in...

  10. 6 CFR 13.28 - Motions.

    Science.gov (United States)

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Motions. 13.28 Section 13.28 Domestic Security DEPARTMENT OF HOMELAND SECURITY, OFFICE OF THE SECRETARY PROGRAM FRAUD CIVIL REMEDIES § 13.28 Motions. (a) Any application to the ALJ for an order or ruling will be by motion. Motions will state the relief...

  11. Motion-compensated processing of image signals

    NARCIS (Netherlands)

    2010-01-01

    In a motion-compensated processing of images, input images are down-scaled (scl) to obtain down-scaled images, the down-scaled images are subjected to motion- compensated processing (ME UPC) to obtain motion-compensated images, the motion- compensated images are up-scaled (sc2) to obtain up-scaled

  12. 12 CFR 747.23 - Motions.

    Science.gov (United States)

    2010-01-01

    ... written motions except as otherwise directed by the administrative law judge. Written memorandum, briefs... Procedure § 747.23 Motions. (a) In writing. (1) Except as otherwise provided herein, an application or request for an order or ruling must be made by written motion. (2) All written motions must state with...

  13. 7 CFR 1.327 - Motions.

    Science.gov (United States)

    2010-01-01

    ... be in writing. The ALJ may require that oral motions be reduced to writing. (c) The ALJ may require written motions to be accompanied by supporting memorandums. (d) Within 15 days after a written motion is...) The ALJ may not grant a written motion prior to expiration of the time for filing responses thereto...

  14. Multiscale sampling model for motion integration.

    Science.gov (United States)

    Sherbakov, Lena; Yazdanbakhsh, Arash

    2013-09-30

    Biologically plausible strategies for visual scene integration across spatial and temporal domains continues to be a challenging topic. The fundamental question we address is whether classical problems in motion integration, such as the aperture problem, can be solved in a model that samples the visual scene at multiple spatial and temporal scales in parallel. We hypothesize that fast interareal connections that allow feedback of information between cortical layers are the key processes that disambiguate motion direction. We developed a neural model showing how the aperture problem can be solved using different spatial sampling scales between LGN, V1 layer 4, V1 layer 6, and area MT. Our results suggest that multiscale sampling, rather than feedback explicitly, is the key process that gives rise to end-stopped cells in V1 and enables area MT to solve the aperture problem without the need for calculating intersecting constraints or crafting intricate patterns of spatiotemporal receptive fields. Furthermore, the model explains why end-stopped cells no longer emerge in the absence of V1 layer 6 activity (Bolz & Gilbert, 1986), why V1 layer 4 cells are significantly more end-stopped than V1 layer 6 cells (Pack, Livingstone, Duffy, & Born, 2003), and how it is possible to have a solution to the aperture problem in area MT with no solution in V1 in the presence of driving feedback. In summary, while much research in the field focuses on how a laminar architecture can give rise to complicated spatiotemporal receptive fields to solve problems in the motion domain, we show that one can reframe motion integration as an emergent property of multiscale sampling achieved concurrently within lamina and across multiple visual areas.

  15. Audiovisual biofeedback improves motion prediction accuracy.

    Science.gov (United States)

    Pollock, Sean; Lee, Danny; Keall, Paul; Kim, Taeho

    2013-04-01

    The accuracy of motion prediction, utilized to overcome the system latency of motion management radiotherapy systems, is hampered by irregularities present in the patients' respiratory pattern. Audiovisual (AV) biofeedback has been shown to reduce respiratory irregularities. The aim of this study was to test the hypothesis that AV biofeedback improves the accuracy of motion prediction. An AV biofeedback system combined with real-time respiratory data acquisition and MR images were implemented in this project. One-dimensional respiratory data from (1) the abdominal wall (30 Hz) and (2) the thoracic diaphragm (5 Hz) were obtained from 15 healthy human subjects across 30 studies. The subjects were required to breathe with and without the guidance of AV biofeedback during each study. The obtained respiratory signals were then implemented in a kernel density estimation prediction algorithm. For each of the 30 studies, five different prediction times ranging from 50 to 1400 ms were tested (150 predictions performed). Prediction error was quantified as the root mean square error (RMSE); the RMSE was calculated from the difference between the real and predicted respiratory data. The statistical significance of the prediction results was determined by the Student's t-test. Prediction accuracy was considerably improved by the implementation of AV biofeedback. Of the 150 respiratory predictions performed, prediction accuracy was improved 69% (103/150) of the time for abdominal wall data, and 78% (117/150) of the time for diaphragm data. The average reduction in RMSE due to AV biofeedback over unguided respiration was 26% (p biofeedback improves prediction accuracy. This would result in increased efficiency of motion management techniques affected by system latencies used in radiotherapy.

  16. Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction.

    Science.gov (United States)

    Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta

    2018-01-01

    The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research.

  17. Ground Motion Characteristics of Induced Earthquakes in Central North America

    Science.gov (United States)

    Atkinson, G. M.; Assatourians, K.; Novakovic, M.

    2017-12-01

    The ground motion characteristics of induced earthquakes in central North America are investigated based on empirical analysis of a compiled database of 4,000,000 digital ground-motion records from events in induced-seismicity regions (especially Oklahoma). Ground-motion amplitudes are characterized non-parametrically by computing median amplitudes and their variability in magnitude-distance bins. We also use inversion techniques to solve for regional source, attenuation and site response effects. Ground motion models are used to interpret the observations and compare the source and attenuation attributes of induced earthquakes to those of their natural counterparts. Significant conclusions are that the stress parameter that controls the strength of high-frequency radiation is similar for induced earthquakes (depth of h 5 km) and shallow (h 5 km) natural earthquakes. By contrast, deeper natural earthquakes (h 10 km) have stronger high-frequency ground motions. At distances close to the epicenter, a greater focal depth (which increases distance from the hypocenter) counterbalances the effects of a larger stress parameter, resulting in motions of similar strength close to the epicenter, regardless of event depth. The felt effects of induced versus natural earthquakes are also investigated using USGS "Did You Feel It?" reports; 400,000 reports from natural events and 100,000 reports from induced events are considered. The felt reports confirm the trends that we expect based on ground-motion modeling, considering the offsetting effects of the stress parameter versus focal depth in controlling the strength of motions near the epicenter. Specifically, felt intensity for a given magnitude is similar near the epicenter, on average, for all event types and depths. At distances more than 10 km from the epicenter, deeper events are felt more strongly than shallow events. These ground-motion attributes imply that the induced-seismicity hazard is most critical for facilities in

  18. Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction

    Directory of Open Access Journals (Sweden)

    Eiji Watanabe

    2018-03-01

    Full Text Available The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research.

  19. Motion-encoded dose calculation through fluence/sinogram modification

    International Nuclear Information System (INIS)

    Lu, Weiguo; Olivera, Gustavo H.; Mackie, Thomas R.

    2005-01-01

    Conventional radiotherapy treatment planning systems rely on a static computed tomography (CT) image for planning and evaluation. Intra/inter-fraction patient motions may result in significant differences between the planned and the delivered dose. In this paper, we develop a method to incorporate the knowledge of intra/inter-fraction patient motion directly into the dose calculation. By decomposing the motion into a parallel (to beam direction) component and perpendicular (to beam direction) component, we show that the motion effects can be accounted for by simply modifying the fluence distribution (sinogram). After such modification, dose calculation is the same as those based on a static planning image. This method is superior to the 'dose-convolution' method because it is not based on 'shift invariant' assumption. Therefore, it deals with material heterogeneity and surface curvature very well. We test our method using extensive simulations, which include four phantoms, four motion patterns, and three plan beams. We compare our method with the 'dose-convolution' and the 'stochastic simulation' methods (gold standard). As for the homogeneous flat surface phantom, our method has similar accuracy as the 'dose-convolution' method. As for all other phantoms, our method outperforms the 'dose-convolution'. The maximum motion encoded dose calculation error using our method is within 4% of the gold standard. It is shown that a treatment planning system that is based on 'motion-encoded dose calculation' can incorporate random and systematic motion errors in a very simple fashion. Under this approximation, in principle, a planning target volume definition is not required, since it already accounts for the intra/inter-fraction motion variations and it automatically optimizes the cumulative dose rather than the single fraction dose

  20. Example-Based Automatic Music-Driven Conventional Dance Motion Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Songhua [ORNL; Fan, Rukun [University of North Carolina, Chapel Hill; Geng, Weidong [Zhejiang University

    2011-04-21

    We introduce a novel method for synthesizing dance motions that follow the emotions and contents of a piece of music. Our method employs a learning-based approach to model the music to motion mapping relationship embodied in example dance motions along with those motions' accompanying background music. A key step in our method is to train a music to motion matching quality rating function through learning the music to motion mapping relationship exhibited in synchronized music and dance motion data, which were captured from professional human dance performance. To generate an optimal sequence of dance motion segments to match with a piece of music, we introduce a constraint-based dynamic programming procedure. This procedure considers both music to motion matching quality and visual smoothness of a resultant dance motion sequence. We also introduce a two-way evaluation strategy, coupled with a GPU-based implementation, through which we can execute the dynamic programming process in parallel, resulting in significant speedup. To evaluate the effectiveness of our method, we quantitatively compare the dance motions synthesized by our method with motion synthesis results by several peer methods using the motions captured from professional human dancers' performance as the gold standard. We also conducted several medium-scale user studies to explore how perceptually our dance motion synthesis method can outperform existing methods in synthesizing dance motions to match with a piece of music. These user studies produced very positive results on our music-driven dance motion synthesis experiments for several Asian dance genres, confirming the advantages of our method.

  1. Example-based automatic music-driven conventional dance motion synthesis.

    Science.gov (United States)

    Fan, Rukun; Xu, Songhua; Geng, Weidong

    2012-03-01

    We introduce a novel method for synthesizing dance motions that follow the emotions and contents of a piece of music. Our method employs a learning-based approach to model the music to motion mapping relationship embodied in example dance motions along with those motions' accompanying background music. A key step in our method is to train a music to motion matching quality rating function through learning the music to motion mapping relationship exhibited in synchronized music and dance motion data, which were captured from professional human dance performance. To generate an optimal sequence of dance motion segments to match with a piece of music, we introduce a constraint-based dynamic programming procedure. This procedure considers both music to motion matching quality and visual smoothness of a resultant dance motion sequence. We also introduce a two-way evaluation strategy, coupled with a GPU-based implementation, through which we can execute the dynamic programming process in parallel, resulting in significant speedup. To evaluate the effectiveness of our method, we quantitatively compare the dance motions synthesized by our method with motion synthesis results by several peer methods using the motions captured from professional human dancers' performance as the gold standard. We also conducted several medium-scale user studies to explore how perceptually our dance motion synthesis method can outperform existing methods in synthesizing dance motions to match with a piece of music. These user studies produced very positive results on our music-driven dance motion synthesis experiments for several Asian dance genres, confirming the advantages of our method.

  2. Motion Learning Based on Bayesian Program Learning

    Directory of Open Access Journals (Sweden)

    Cheng Meng-Zhen

    2017-01-01

    Full Text Available The concept of virtual human has been highly anticipated since the 1980s. By using computer technology, Human motion simulation could generate authentic visual effect, which could cheat human eyes visually. Bayesian Program Learning train one or few motion data, generate new motion data by decomposing and combining. And the generated motion will be more realistic and natural than the traditional one.In this paper, Motion learning based on Bayesian program learning allows us to quickly generate new motion data, reduce workload, improve work efficiency, reduce the cost of motion capture, and improve the reusability of data.

  3. Precision of working memory for visual motion sequences and transparent motion surfaces.

    Science.gov (United States)

    Zokaei, Nahid; Gorgoraptis, Nikos; Bahrami, Bahador; Bays, Paul M; Husain, Masud

    2011-12-01

    Recent studies investigating working memory for location, color, and orientation support a dynamic resource model. We examined whether this might also apply to motion, using random dot kinematograms (RDKs) presented sequentially or simultaneously. Mean precision for motion direction declined as sequence length increased, with precision being lower for earlier RDKs. Two alternative models of working memory were compared specifically to distinguish between the contributions of different sources of error that corrupt memory (W. Zhang & S. J. Luck, 2008 vs. P. M. Bays, R. F. G. Catalao, & M. Husain, 2009). The latter provided a significantly better fit for the data, revealing that decrease in memory precision for earlier items is explained by an increase in interference from other items in a sequence rather than random guessing or a temporal decay of information. Misbinding feature attributes is an important source of error in working memory. Precision of memory for motion direction decreased when two RDKs were presented simultaneously as transparent surfaces, compared to sequential RDKs. However, precision was enhanced when one motion surface was prioritized, demonstrating that selective attention can improve recall precision. These results are consistent with a resource model that can be used as a general conceptual framework for understanding working memory across a range of visual features.

  4. The Cardiac MR Images and Causes of Paradoxical Septal Motion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hun [Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of); Choi, Sang Il; Chun, Eun Ju [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Choi, Sung Hun [Ulsan University Hospital, Ulsan (Korea, Republic of); Park, Jae Hyung [Seoul National University Hospital, Seoul (Korea, Republic of)

    2010-10-15

    Real-time cine MRI studies using the steady-state free precession (SSFP) technique are very useful for evaluating cardiac and septal motion. During diastole, the septum acts as a compliant membrane between the two ventricles, and its position and geometry respond to even small alterations in the trans-septal pressure gradients. Abnormal septal motion can be caused by an overload of the right ventricle, delayed ventricular filling and abnormal conduction. In this study, we illustrate, based on our experiences, the causes of abnormal septal motion such as corrective surgery for tetralogy of Fallot, an atrial septal defect, pulmonary thromboembolism, mitral stenosis, constrictive pericarditis and left bundle branch block. In addition, we discuss the significance of paradoxical septal motion in the context of cardiac MR imaging.

  5. Development of motion image prediction method using principal component analysis

    International Nuclear Information System (INIS)

    Chhatkuli, Ritu Bhusal; Demachi, Kazuyuki; Kawai, Masaki; Sakakibara, Hiroshi; Kamiaka, Kazuma

    2012-01-01

    Respiratory motion can induce the limit in the accuracy of area irradiated during lung cancer radiation therapy. Many methods have been introduced to minimize the impact of healthy tissue irradiation due to the lung tumor motion. The purpose of this research is to develop an algorithm for the improvement of image guided radiation therapy by the prediction of motion images. We predict the motion images by using principal component analysis (PCA) and multi-channel singular spectral analysis (MSSA) method. The images/movies were successfully predicted and verified using the developed algorithm. With the proposed prediction method it is possible to forecast the tumor images over the next breathing period. The implementation of this method in real time is believed to be significant for higher level of tumor tracking including the detection of sudden abdominal changes during radiation therapy. (author)

  6. Digital ranges of motion: normal values in young adults.

    Science.gov (United States)

    Mallon, W J; Brown, H R; Nunley, J A

    1991-09-01

    Analysis of the range of motion of fingers was done in young (eighteen to thirty-five year old) adult volunteers with no history of previous injury to their hands. The data show that there are slight differences between the individual digits. Notably, metacarpophalangeal flexion and total active motion increase linearly in proceeding from the index to the small finger. There were also minor differences in comparing sexes. Women have greater extension at the metacarpophalangeal joint in both active and passive motion and have a greater total active motion at all digits as a result. A significant tenodesis effect was found at the distal interphalangeal joint in normal subjects. No differences were found that could be attributable to handedness.

  7. Proper Motion and Secular Variations of Keplerian Orbital Elements

    Directory of Open Access Journals (Sweden)

    Alexey G. Butkevich

    2018-05-01

    Full Text Available High-precision observations require accurate modeling of secular changes in the orbital elements in order to extrapolate measurements over long time intervals, and to detect deviation from pure Keplerian motion caused, for example, by other bodies or relativistic effects. We consider the evolution of the Keplerian elements resulting from the gradual change of the apparent orbit orientation due to proper motion. We present rigorous formulae for the transformation of the orbit inclination, longitude of the ascending node and argument of the pericenter from one epoch to another, assuming uniform stellar motion and taking radial velocity into account. An approximate treatment, accurate to the second-order terms in time, is also given. The proper motion effects may be significant for long-period transiting planets. These theoretical results are applicable to the modeling of planetary transits and precise Doppler measurements as well as analysis of pulsar and eclipsing binary timing observations.

  8. The Cardiac MR Images and Causes of Paradoxical Septal Motion

    International Nuclear Information System (INIS)

    Kim, Dong Hun; Choi, Sang Il; Chun, Eun Ju; Choi, Sung Hun; Park, Jae Hyung

    2010-01-01

    Real-time cine MRI studies using the steady-state free precession (SSFP) technique are very useful for evaluating cardiac and septal motion. During diastole, the septum acts as a compliant membrane between the two ventricles, and its position and geometry respond to even small alterations in the trans-septal pressure gradients. Abnormal septal motion can be caused by an overload of the right ventricle, delayed ventricular filling and abnormal conduction. In this study, we illustrate, based on our experiences, the causes of abnormal septal motion such as corrective surgery for tetralogy of Fallot, an atrial septal defect, pulmonary thromboembolism, mitral stenosis, constrictive pericarditis and left bundle branch block. In addition, we discuss the significance of paradoxical septal motion in the context of cardiac MR imaging

  9. Lumbar motion changes in chronic low back pain patients

    DEFF Research Database (Denmark)

    Mieritz, Rune M; Hartvigsen, Jan; Boyle, Eleanor

    2014-01-01

    BACKGROUND CONTEXT: Several therapies have been used in the treatment of chronic low back pain, including various exercise strategies and spinal manipulative therapy. A common belief is that spinal motion changes in particular ways in direct response to specific interventions, such as exercise...... or spinal manipulation. PURPOSE: The purpose of this study was to assess changes in lumbar region motion over 12 weeks by evaluating four motion parameters in the sagittal plane and two in the horizontal plane in LBP patients treated with either exercise therapy or spinal manipulation. STUDY DESIGN......, and the University of Southern Denmark. No conflicts of interest. RESULTS: For the cohort as a whole, lumbar region motion parameters were altered over the 12-week period, except for the jerk index parameter. The group receiving spinal manipulation changed significantly in all, and the exercise groups in half...

  10. Robot Motion and Control 2011

    CERN Document Server

    2012-01-01

    Robot Motion Control 2011 presents very recent results in robot motion and control. Forty short papers have been chosen from those presented at the sixth International Workshop on Robot Motion and Control held in Poland in June 2011. The authors of these papers have been carefully selected and represent leading institutions in this field. The following recent developments are discussed: • Design of trajectory planning schemes for holonomic and nonholonomic systems with optimization of energy, torque limitations and other factors. • New control algorithms for industrial robots, nonholonomic systems and legged robots. • Different applications of robotic systems in industry and everyday life, like medicine, education, entertainment and others. • Multiagent systems consisting of mobile and flying robots with their applications The book is suitable for graduate students of automation and robotics, informatics and management, mechatronics, electronics and production engineering systems as well as scientists...

  11. Compensation for incoherent ground motion

    International Nuclear Information System (INIS)

    Shigeru, Takeda; Hiroshi, Matsumoto; Masakazu, Yoshioka; Yasunori, Takeuchi; Kikuo, Kudo; Tsuneya, Tsubokawa; Mitsuaki, Nozaki; Kiyotomo, Kawagoe

    1999-01-01

    The power spectrum density and coherence function for ground motions are studied for the construction of the next generation electron-positron linear collider. It should provide a center of mass energy between 500 GeV-1 TeV with luminosity as high as 10 33 to 10 34 cm -2 sec -1 . Since the linear collider has a relatively slow repetition rate, large number of particles and small sizes of the beam should be generated and preserved in the machine to obtain the required high luminosity. One of the most critical parameters is the extremely small vertical beam size at the interaction point, thus a proper alignment system for the focusing and accelerating elements of the machine is necessary to achieve the luminosity. We describe recent observed incoherent ground motions and an alignment system to compensate the distortion by the ground motions. (authors)

  12. Motion sensor technologies in education

    Directory of Open Access Journals (Sweden)

    T. Bratitsis

    2014-05-01

    Full Text Available This paper attempts to raise a discussion regarding motion sensor technologies, mainly seen as peripherals of contemporary video game consoles, by examining their exploitation within educational context. An overview of the existing literature is presented, while attempting to categorize the educational approaches which involve motion sensor technologies, in two parts. The first one concerns the education of people with special needs. The utilization of motion sensor technologies, incorporated by game consoles, in the education of such people is examined. The second one refers to various educational approaches in regular education, under which not so many research approaches, but many teaching ideas can be found. The aim of the paper is to serve as a reference point for every individual/group, willing to explore the Sensor-Based Games Based Learning (SBGBL research area, by providing a complete and structured literature review.

  13. Restoration of motion blurred images

    Science.gov (United States)

    Gaxiola, Leopoldo N.; Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.

    2017-08-01

    Image restoration is a classic problem in image processing. Image degradations can occur due to several reasons, for instance, imperfections of imaging systems, quantization errors, atmospheric turbulence, relative motion between camera or objects, among others. Motion blur is a typical degradation in dynamic imaging systems. In this work, we present a method to estimate the parameters of linear motion blur degradation from a captured blurred image. The proposed method is based on analyzing the frequency spectrum of a captured image in order to firstly estimate the degradation parameters, and then, to restore the image with a linear filter. The performance of the proposed method is evaluated by processing synthetic and real-life images. The obtained results are characterized in terms of accuracy of image restoration given by an objective criterion.

  14. Visualization system of swirl motion

    International Nuclear Information System (INIS)

    Nakayama, K.; Umeda, K.; Ichikawa, T.; Nagano, T.; Sakata, H.

    2004-01-01

    The instrumentation of a system composed of an experimental device and numerical analysis is presented to visualize flow and identify swirling motion. Experiment is performed with transparent material and PIV (Particle Image Velocimetry) instrumentation, by which velocity vector field is obtained. This vector field is then analyzed numerically by 'swirling flow analysis', which estimates its velocity gradient tensor and the corresponding eigenvalue (swirling function). Since an instantaneous flow field in steady/unsteady states is captured by PIV, the flow field is analyzed, and existence of vortices or swirling motions and their locations are identified in spite of their size. In addition, intensity of swirling is evaluated. The analysis enables swirling motion to emerge, even though it is hidden in uniform flow and velocity filed does not indicate any swirling. This visualization system can be applied to investigate condition to control flow or design flow. (authors)

  15. The effects of breathing motion on DCE-MRI images: Phantom studies simulating respiratory motion to compare CAIPARINHA-VIBE, radial VIBE, and conventional VIBE

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Kyung; Seo, Nieun; Kim, Bohyun; Huh, Jimi; Kim, Jeong Kon; Lee, Seung Soo; KIm, Kyung Won [Dept. of Radiology, and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, In Seong [Siemens Healthcare Korea, Seoul (Korea, Republic of); Nickel, Dominik [MR Application Predevelopment, Siemens Healthcare, Erlangen (Germany)

    2017-04-15

    To compare the breathing effects on dynamic contrast-enhanced (DCE)-MRI between controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE), radial VIBE with k-space-weighted image contrast view-sharing (radial-VIBE), and conventional VIBE (c-VIBE) sequences using a dedicated phantom experiment. We developed a moving platform to simulate breathing motion. We conducted dynamic scanning on a 3T machine (MAGNETOM Skyra, Siemens Healthcare) using CAIPIRINHA-VIBE, radial-VIBE, and c-VIBE for six minutes per sequence. We acquired MRI images of the phantom in both static and moving modes, and we also obtained motion-corrected images for the motion mode. We compared the signal stability and signal-to-noise ratio (SNR) of each sequence according to motion state and used the coefficients of variation (CoV) to determine the degree of signal stability. With motion, CAIPIRINHA-VIBE showed the best image quality, and the motion correction aligned the images very well. The CoV (%) of CAIPIRINHA-VIBE in the moving mode (18.65) decreased significantly after the motion correction (2.56) (p < 0.001). In contrast, c-VIBE showed severe breathing motion artifacts that did not improve after motion correction. For radial-VIBE, the position of the phantom in the images did not change during motion, but streak artifacts significantly degraded image quality, also after motion correction. In addition, SNR increased in both CAIPIRINHA-VIBE (from 3.37 to 9.41, p < 0.001) and radial-VIBE (from 4.3 to 4.96, p < 0.001) after motion correction. CAIPIRINHA-VIBE performed best for free-breathing DCE-MRI after motion correction, with excellent image quality.

  16. CFD analysis of the effect of rolling motion on the flow distribution at the core inlet

    International Nuclear Information System (INIS)

    Yan, B.H.; Zhang, G.; Gu, H.Y.

    2012-01-01

    Highlights: ► The flow distribution at the core inlet in rolling motion is investigated. ► In rolling motion, the variation of flow distribution factor is not regular. ► The minimum flow distribution factor could be decreased by rolling motion. ► The effect of rolling motion diminishes with Reynolds number increasing. ► Effect of rolling motion in single loop operation is more significant. - Abstract: The flow distribution at the core inlet in rolling motion is investigated with software CFX12.0. The calculation results were in agreement with experimental data in steady state. As the increasing of rolling amplitude and the decreasing of rolling period, the effect of rolling motion on the flow distribution factor and the flowing behavior increases. In rolling motion, the variation of flow distribution factor is not regular. The rolling motion could decrease the minimum flow distribution factor. The effect of rolling motion on the coolant field and flow distribution diminishes with the Reynolds number increasing. The effect of rolling motion on the flow distribution in the case of single loop operation is more significant than that in the case of double loops operation.

  17. Alpha motion based on a motion detector, but not on the Müller-Lyer illusion

    Science.gov (United States)

    Suzuki, Masahiro

    2014-07-01

    This study examined the mechanism of alpha motion, the apparent motion of the Müller-Lyer figure's shaft that occurs when the arrowheads and arrow tails are alternately presented. The following facts were found: (a) reduced exposure duration decreased the amount of alpha motion, and this phenomenon was not explainable by the amount of the Müller-Lyer illusion; (b) the motion aftereffect occurred after adaptation to alpha motion; (c) occurrence of alpha motion became difficult when the temporal frequency increased, and this characteristic of alpha motion was similar to the characteristic of a motion detector that motion detection became difficult when the temporal frequency increased from the optimal frequency. These findings indicated that alpha motion occurs on the basis of a motion detector but not on the Müller-Lyer illusion, and that the mechanism of alpha motion is the same as that of general motion perception.

  18. Motion artifacts in computed tomography

    International Nuclear Information System (INIS)

    Yang, C.K.

    1979-01-01

    In the year 1972, the first Computed Tomography Scanner (or CT) was introduced and caused a revolution in the field of Diagnostic Radiology. A tomogram is a cross-sectional image of a three-dimensional object obtained through non-invasive measurements. The image that is presented is very similar to what would be seen if a thin cross-sectional slice of the patient was examined. In Computed Tomography, x-rays are passed through the body of a patient in many different directions and their attenuation is detected. By using some mathematical theorems, the attenuation information can be converted into the density of the patient along the x-ray path. Combined with modern sophisticated computer signal processing technology, a cross-sectional image can be generated and displayed on a TV monitor. Usually a good CT image relies on the patient not moving during the x-ray scanning. However, for some unconscious or severely ill patients, this is very difficult to achieve. Thus, the motion during the scan causes the so-called motion artifacts which distort the displayed image and sometimes these motion artifacts make diagnosis impossible. Today, to remove or avoid motion artifacts is one of the major efforts in developing new scanner systems. In this thesis, a better understanding of the motion artifacts problem in CT scaning is gained through computer simulations, real scanner experiments and theoretical analyses. The methods by which the distorted image can be improved are simulated also. In particular, it is assumed that perfect knowledge of the patient motion is known since this represents the theoretical limit on how well the distorted image can be improved

  19. Mental imagery of gravitational motion.

    Science.gov (United States)

    Gravano, Silvio; Zago, Myrka; Lacquaniti, Francesco

    2017-10-01

    There is considerable evidence that gravitational acceleration is taken into account in the interaction with falling targets through an internal model of Earth gravity. Here we asked whether this internal model is accessed also when target motion is imagined rather than real. In the main experiments, naïve participants grasped an imaginary ball, threw it against the ceiling, and caught it on rebound. In different blocks of trials, they had to imagine that the ball moved under terrestrial gravity (1g condition) or under microgravity (0g) as during a space flight. We measured the speed and timing of the throwing and catching actions, and plotted ball flight duration versus throwing speed. Best-fitting duration-speed curves estimate the laws of ball motion implicit in the participant's performance. Surprisingly, we found duration-speed curves compatible with 0g for both the imaginary 0g condition and the imaginary 1g condition, despite the familiarity with Earth gravity effects and the added realism of performing the throwing and catching actions. In a control experiment, naïve participants were asked to throw the imaginary ball vertically upwards at different heights, without hitting the ceiling, and to catch it on its way down. All participants overestimated ball flight durations relative to the durations predicted by the effects of Earth gravity. Overall, the results indicate that mental imagery of motion does not have access to the internal model of Earth gravity, but resorts to a simulation of visual motion. Because visual processing of accelerating/decelerating motion is poor, visual imagery of motion at constant speed or slowly varying speed appears to be the preferred mode to perform the tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data

    Science.gov (United States)

    Brigadoi, Sabrina; Ceccherini, Lisa; Cutini, Simone; Scarpa, Fabio; Scatturin, Pietro; Selb, Juliette; Gagnon, Louis; Boas, David A.; Cooper, Robert J.

    2013-01-01

    Motion artifacts are a significant source of noise in many functional near-infrared spectroscopy (fNIRS) experiments. Despite this, there is no well-established method for their removal. Instead, functional trials of fNIRS data containing a motion artifact are often rejected completely. However, in most experimental circumstances the number of trials is limited, and multiple motion artifacts are common, particularly in challenging populations. Many methods have been proposed recently to correct for motion artifacts, including principle component analysis, spline interpolation, Kalman filtering, wavelet filtering and correlation-based signal improvement. The performance of different techniques has been often compared in simulations, but only rarely has it been assessed on real functional data. Here, we compare the performance of these motion correction techniques on real functional data acquired during a cognitive task, which required the participant to speak aloud, leading to a low-frequency, low-amplitude motion artifact that is correlated with the hemodynamic response. To compare the efficacy of these methods, objective metrics related to the physiology of the hemodynamic response have been derived. Our results show that it is always better to correct for motion artifacts than reject trials, and that wavelet filtering is the most effective approach to correcting this type of artifact, reducing the area under the curve where the artifact is present in 93% of the cases. Our results therefore support previous studies that have shown wavelet filtering to be the most promising and powerful technique for the correction of motion artifacts in fNIRS data. The analyses performed here can serve as a guide for others to objectively test the impact of different motion correction algorithms and therefore select the most appropriate for the analysis of their own fNIRS experiment. PMID:23639260

  1. [Restricted motion after total knee arthroplasty].

    Science.gov (United States)

    Kucera, T; Urban, K; Karpas, K; Sponer, P

    2007-10-01

    The aim of the study was to ascertain what proportion of patients undergoing total knee arthroplasty (TKA) complain of restricted knee joint motion, and to investigate options for improvement of this situation. Our evaluation included a group of 796 patients treated with TKA at our department in the period from January 1, 1990, to December 31, 2004. In all cases, a condylar implant with preservation of the posterior cruciate ligaments was used. In addition to medical history, the range of motion, knee joint malalignment and radiological findings were assessed before surgery. After THA, the type of implant and complications, if any, were recorded, and improvement in joint motion was followed up. Based on the results of Kim et al., flexion contracture equal to or higher than 15 degrees and/or flexion less than 75 degrees were made the criteria of stiffness after THA. Patients with restricted THA motion who had aseptic or septic implant loosening were not included. Of the 796 evaluated patients, 32 (4.14 %) showed restricted motion after total knee arthroplasty, as assessed by the established criteria. In 16 patients, stiffness defined by these criteria had existed before surgery, and three patients showed an excessive production of adhesions and heterotopic ossifications. In three patients, the implantation procedure resulted in an elevated level of the original joint line and subsequent development of patella infera and increased tension of the posterior cruciate ligament. Four patients declined physical therapy and, in six, the main cause of stiffness could not be found. Seventeen patients did not require surgical therapy for restricted motion; TKA provided significant pain relief and they considered the range of motion achieved to be sufficient. One patient underwent redress 3 months after surgery, but with no success. Repeated releases of adhesions, replacement of a polyethylene liner and revision surgery of the extensor knee structures were performed in 15

  2. Roll motion stimuli : sensory conflict, perceptual weighting and motion sickness

    NARCIS (Netherlands)

    Graaf, B. de; Bles, W.; Bos, J.E.

    1998-01-01

    In an experiment with seventeen subjects interactions of visual roll motion stimuli and vestibular body tilt stimuli were examined in determining the subjective vertical. Interindi-vidual differences in weighting the visual information were observed, but in general visual and vestibular responses

  3. Motion Model Employment using interacting Motion Model Algorithm

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar

    2006-01-01

    The paper presents a simulation study to track a maneuvering target using a selective approach in choosing Interacting Multiple Models (IMM) algorithm to provide a wider coverage to track such targets.  Initially, there are two motion models in the system to track a target.  Probability of each m...

  4. Wave motion in elastic solids

    CERN Document Server

    Graff, Karl F

    1991-01-01

    This highly useful textbook presents comprehensive intermediate-level coverage of nearly all major topics of elastic wave propagation in solids. The subjects range from the elementary theory of waves and vibrations in strings to the three-dimensional theory of waves in thick plates. The book is designed not only for a wide audience of engineering students, but also as a general reference for workers in vibrations and acoustics. Chapters 1-4 cover wave motion in the simple structural shapes, namely strings, longitudinal rod motion, beams and membranes, plates and (cylindrical) shells. Chapter

  5. Motion of rectangular prismatic bodies

    International Nuclear Information System (INIS)

    Poreh, M.; Wray, R.N.

    1979-01-01

    Rectangular prismatic bodies can assume either a translatory or an auto-rotating mode of motion during free motion in the atmosphere. The translatory mode is stable only when the dimensionless moment of inertia of the bodies is large, however, large perturbations will always start auto-rotation. The characteristics of the auto-rotational mode are shown to depend primarily on the aspect ratio of the bodies which determines the dimensionless rotational speed and the lift coefficient. Both the average drag and lift-coefficients of auto-rotating bodies are estimated, but it is shown that secondary effects make it impossible to determine their exact trajectories in atmospheric flows

  6. Estimation of strong ground motion

    International Nuclear Information System (INIS)

    Watabe, Makoto

    1993-01-01

    Fault model has been developed to estimate a strong ground motion in consideration of characteristics of seismic source and propagation path of seismic waves. There are two different approaches in the model. The first one is a theoretical approach, while the second approach is a semi-empirical approach. Though the latter is more practical than the former to be applied to the estimation of input motions, it needs at least the small-event records, the value of the seismic moment of the small event and the fault model of the large event

  7. Biological Motion Perception in Autism

    Directory of Open Access Journals (Sweden)

    J Cusack

    2011-04-01

    Full Text Available Typically developing adults can readily recognize human actions, even when conveyed to them via point-like markers placed on the body of the actor (Johansson, 1973. Previous research has suggested that children affected by autism spectrum disorder (ASD are not equally sensitive to this type of visual information (Blake et al, 2003, but it remains unknown why ASD would impact the ability to perceive biological motion. We present evidence which looks at how adolescents and adults with autism are affected by specific factors which are important in biological motion perception, such as (eg, inter-agent synchronicity, upright/inverted, etc.

  8. Example-based human motion denoising.

    Science.gov (United States)

    Lou, Hui; Chai, Jinxiang

    2010-01-01

    With the proliferation of motion capture data, interest in removing noise and outliers from motion capture data has increased. In this paper, we introduce an efficient human motion denoising technique for the simultaneous removal of noise and outliers from input human motion data. The key idea of our approach is to learn a series of filter bases from precaptured motion data and use them along with robust statistics techniques to filter noisy motion data. Mathematically, we formulate the motion denoising process in a nonlinear optimization framework. The objective function measures the distance between the noisy input and the filtered motion in addition to how well the filtered motion preserves spatial-temporal patterns embedded in captured human motion data. Optimizing the objective function produces an optimal filtered motion that keeps spatial-temporal patterns in captured motion data. We also extend the algorithm to fill in the missing values in input motion data. We demonstrate the effectiveness of our system by experimenting with both real and simulated motion data. We also show the superior performance of our algorithm by comparing it with three baseline algorithms and to those in state-of-art motion capture data processing software such as Vicon Blade.

  9. Wearable Stretch Sensors for Motion Measurement of the Wrist Joint Based on Dielectric Elastomers.

    Science.gov (United States)

    Huang, Bo; Li, Mingyu; Mei, Tao; McCoul, David; Qin, Shihao; Zhao, Zhanfeng; Zhao, Jianwen

    2017-11-23

    Motion capture of the human body potentially holds great significance for exoskeleton robots, human-computer interaction, sports analysis, rehabilitation research, and many other areas. Dielectric elastomer sensors (DESs) are excellent candidates for wearable human motion capture systems because of their intrinsic characteristics of softness, light weight, and compliance. In this paper, DESs were applied to measure all component motions of the wrist joints. Five sensors were mounted to different positions on the wrist, and each one is for one component motion. To find the best position to mount the sensors, the distribution of the muscles is analyzed. Even so, the component motions and the deformation of the sensors are coupled; therefore, a decoupling method was developed. By the decoupling algorithm, all component motions can be measured with a precision of 5°, which meets the requirements of general motion capture systems.

  10. General rigid motion correction for computed tomography imaging based on locally linear embedding

    Science.gov (United States)

    Chen, Mianyi; He, Peng; Feng, Peng; Liu, Baodong; Yang, Qingsong; Wei, Biao; Wang, Ge

    2018-02-01

    The patient motion can damage the quality of computed tomography images, which are typically acquired in cone-beam geometry. The rigid patient motion is characterized by six geometric parameters and are more challenging to correct than in fan-beam geometry. We extend our previous rigid patient motion correction method based on the principle of locally linear embedding (LLE) from fan-beam to cone-beam geometry and accelerate the computational procedure with the graphics processing unit (GPU)-based all scale tomographic reconstruction Antwerp toolbox. The major merit of our method is that we need neither fiducial markers nor motion-tracking devices. The numerical and experimental studies show that the LLE-based patient motion correction is capable of calibrating the six parameters of the patient motion simultaneously, reducing patient motion artifacts significantly.

  11. Validation of the Leap Motion Controller using markered motion capture technology.

    Science.gov (United States)

    Smeragliuolo, Anna H; Hill, N Jeremy; Disla, Luis; Putrino, David

    2016-06-14

    The Leap Motion Controller (LMC) is a low-cost, markerless motion capture device that tracks hand, wrist and forearm position. Integration of this technology into healthcare applications has begun to occur rapidly, making validation of the LMC׳s data output an important research goal. Here, we perform a detailed evaluation of the kinematic data output from the LMC, and validate this output against gold-standard, markered motion capture technology. We instructed subjects to perform three clinically-relevant wrist (flexion/extension, radial/ulnar deviation) and forearm (pronation/supination) movements. The movements were simultaneously tracked using both the LMC and a marker-based motion capture system from Motion Analysis Corporation (MAC). Adjusting for known inconsistencies in the LMC sampling frequency, we compared simultaneously acquired LMC and MAC data by performing Pearson׳s correlation (r) and root mean square error (RMSE). Wrist flexion/extension and radial/ulnar deviation showed good overall agreement (r=0.95; RMSE=11.6°, and r=0.92; RMSE=12.4°, respectively) with the MAC system. However, when tracking forearm pronation/supination, there were serious inconsistencies in reported joint angles (r=0.79; RMSE=38.4°). Hand posture significantly influenced the quality of wrist deviation (P<0.005) and forearm supination/pronation (P<0.001), but not wrist flexion/extension (P=0.29). We conclude that the LMC is capable of providing data that are clinically meaningful for wrist flexion/extension, and perhaps wrist deviation. It cannot yet return clinically meaningful data for measuring forearm pronation/supination. Future studies should continue to validate the LMC as updated versions of their software are developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Investigating the Feasibility of Rapid MRI for Image-Guided Motion Management in Lung Cancer Radiotherapy

    Directory of Open Access Journals (Sweden)

    Amit Sawant

    2014-01-01

    Full Text Available Cycle-to-cycle variations in respiratory motion can cause significant geometric and dosimetric errors in the administration of lung cancer radiation therapy. A common limitation of the current strategies for motion management is that they assume a constant, reproducible respiratory cycle. In this work, we investigate the feasibility of using rapid MRI for providing long-term imaging of the thorax in order to better capture cycle-to-cycle variations. Two nonsmall-cell lung cancer patients were imaged (free-breathing, no extrinsic contrast, and 1.5 T scanner. A balanced steady-state-free-precession (b-SSFP sequence was used to acquire cine-2D and cine-3D (4D images. In the case of Patient 1 (right midlobe lesion, ~40 mm diameter, tumor motion was well correlated with diaphragmatic motion. In the case of Patient 2, (left upper-lobe lesion, ~60 mm diameter, tumor motion was poorly correlated with diaphragmatic motion. Furthermore, the motion of the tumor centroid was poorly correlated with the motion of individual points on the tumor boundary, indicating significant rotation and/or deformation. These studies indicate that image quality and acquisition speed of cine-2D MRI were adequate for motion monitoring. However, significant improvements are required to achieve comparable speeds for truly 4D MRI. Despite several challenges, rapid MRI offers a feasible and attractive tool for noninvasive, long-term motion monitoring.

  13. Investigating the feasibility of rapid MRI for image-guided motion management in lung cancer radiotherapy.

    Science.gov (United States)

    Sawant, Amit; Keall, Paul; Pauly, Kim Butts; Alley, Marcus; Vasanawala, Shreyas; Loo, Billy W; Hinkle, Jacob; Joshi, Sarang

    2014-01-01

    Cycle-to-cycle variations in respiratory motion can cause significant geometric and dosimetric errors in the administration of lung cancer radiation therapy. A common limitation of the current strategies for motion management is that they assume a constant, reproducible respiratory cycle. In this work, we investigate the feasibility of using rapid MRI for providing long-term imaging of the thorax in order to better capture cycle-to-cycle variations. Two nonsmall-cell lung cancer patients were imaged (free-breathing, no extrinsic contrast, and 1.5 T scanner). A balanced steady-state-free-precession (b-SSFP) sequence was used to acquire cine-2D and cine-3D (4D) images. In the case of Patient 1 (right midlobe lesion, ~40 mm diameter), tumor motion was well correlated with diaphragmatic motion. In the case of Patient 2, (left upper-lobe lesion, ~60 mm diameter), tumor motion was poorly correlated with diaphragmatic motion. Furthermore, the motion of the tumor centroid was poorly correlated with the motion of individual points on the tumor boundary, indicating significant rotation and/or deformation. These studies indicate that image quality and acquisition speed of cine-2D MRI were adequate for motion monitoring. However, significant improvements are required to achieve comparable speeds for truly 4D MRI. Despite several challenges, rapid MRI offers a feasible and attractive tool for noninvasive, long-term motion monitoring.

  14. Assessment of otolith function using cervical and ocular vestibular evoked myogenic potentials in individuals with motion sickness.

    Science.gov (United States)

    Singh, Niraj Kumar; Pandey, Preeti; Mahesh, Soumya

    2014-01-01

    The involvement of otolith organs in motion sickness has long been debated; however, equivocal findings exist in literature. The present study thus aimed at evaluating the otolith functioning in individuals with motion sickness. Cervical and ocular vestibular evoked myogenic potentials were recorded from 30 individuals with motion sickness, 30 professional drivers and 30 healthy individuals. The results revealed no significant difference in latencies and amplitudes between the groups (p>0.05). Nonetheless, thresholds were significantly elevated and inter-aural asymmetry ratio significantly higher in motion sickness susceptible group (p otolithic function seem the likely reasons behind motion sickness susceptibility.

  15. Evaluation of motion and its effect on brain magnetic resonance image quality in children

    Energy Technology Data Exchange (ETDEWEB)

    Afacan, Onur; Erem, Burak; Roby, Diona P.; Prabhu, Sanjay P.; Warfield, Simon K. [Boston Children' s Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Roth, Noam; Roth, Amir [Robin Medical Inc., Baltimore, MD (United States)

    2016-11-15

    Motion artifacts pose significant problems for the acquisition of MR images in pediatric populations. To evaluate temporal motion metrics in MRI scanners and their effect on image quality in pediatric populations in neuroimaging studies. We report results from a large pediatric brain imaging study that shows the effect of motion on MRI quality. We measured motion metrics in 82 pediatric patients, mean age 13.4 years, in a T1-weighted brain MRI scan. As a result of technical difficulties, 5 scans were not included in the subsequent analyses. A radiologist graded the images using a 4-point scale ranging from clinically non-diagnostic because of motion artifacts to no motion artifacts. We used these grades to correlate motion parameters such as maximum motion, mean displacement from a reference point, and motion-free time with image quality. Our results show that both motion-free time (as a ratio of total scan time) and average displacement from a position at a fixed time (when the center of k-space was acquired) were highly correlated with image quality, whereas maximum displacement was not as good a predictor. Among the 77 patients whose motion was measured successfully, 17 had average displacements of greater than 0.5 mm, and 11 of those (14.3%) resulted in non-diagnostic images. Similarly, 14 patients (18.2%) had less than 90% motion-free time, which also resulted in non-diagnostic images. We report results from a large pediatric study to show how children and young adults move in the MRI scanner and the effect that this motion has on image quality. The results will help the motion-correction community in better understanding motion patterns in pediatric populations and how these patterns affect MR image quality. (orig.)

  16. Image-based motion compensation for high-resolution extremities cone-beam CT

    Science.gov (United States)

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-03-01

    Purpose: Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods: Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1-4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results: Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10-15% improvement in SSIM was attained for 2-4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion: The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials.

  17. Novel Assessment of Renal Motion in Children as Measured via Four-Dimensional Computed Tomography

    International Nuclear Information System (INIS)

    Pai Panandiker, Atmaram S.; Sharma, Shelly; Naik, Mihir H.; Wu, Shengjie; Hua, Chiaho; Beltran, Chris; Krasin, Matthew J.; Merchant, Thomas E.

    2012-01-01

    Objectives: Abdominal intensity-modulated radiation therapy and proton therapy require quantification of target and organ motion to optimize localization and treatment. Although addressed in adults, there is no available literature on this issue in pediatric patients. We assessed physiologic renal motion in pediatric patients. Methods and Materials: Twenty free-breathing pediatric patients at a median age of 8 years (range, 2–18 years) with intra-abdominal tumors underwent computed tomography simulation and four-dimensional computed tomography acquisition (slice thickness, 3 mm). Kidneys and diaphragms were contoured during eight phases of respiration to estimate center-of-mass motion. We quantified center of kidney mass mobility vectors in three dimensions: anteroposterior (AP), mediolateral (ML), and superoinferior (SI). Results: Kidney motion decreases linearly with decreasing age and height. The 95% confidence interval for the averaged minima and maxima of renal motion in children younger than 9 years was 5–9 mm in the ML direction, 4–11 mm in the AP direction, and 12–25 mm in the SI dimension for both kidneys. In children older than 9 years, the same confidence interval reveals a widening range of motion that was 5–16 mm in the ML direction, 6–17 mm in the AP direction, and 21–52 mm in the SI direction. Although not statistically significant, renal motion correlated with diaphragm motion in older patients. The correlation between diaphragm motion and body mass index was borderline (r = 0.52, p = 0.0816) in younger patients. Conclusions: Renal motion is age and height dependent. Measuring diaphragmatic motion alone does not reliably quantify pediatric renal motion. Renal motion in young children ranges from 5 to 25 mm in orientation-specific directions. The vectors of motion range from 5 to 52 mm in older children. These preliminary data represent novel analyses of pediatric intra-abdominal organ motion.

  18. Novel Assessment of Renal Motion in Children as Measured via Four-Dimensional Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Pai Panandiker, Atmaram S., E-mail: atmaram.pai-panandiker@stjude.org [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); Sharma, Shelly; Naik, Mihir H. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States); Wu, Shengjie [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, TN (United States); Hua, Chiaho; Beltran, Chris; Krasin, Matthew J.; Merchant, Thomas E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, TN (United States)

    2012-04-01

    Objectives: Abdominal intensity-modulated radiation therapy and proton therapy require quantification of target and organ motion to optimize localization and treatment. Although addressed in adults, there is no available literature on this issue in pediatric patients. We assessed physiologic renal motion in pediatric patients. Methods and Materials: Twenty free-breathing pediatric patients at a median age of 8 years (range, 2-18 years) with intra-abdominal tumors underwent computed tomography simulation and four-dimensional computed tomography acquisition (slice thickness, 3 mm). Kidneys and diaphragms were contoured during eight phases of respiration to estimate center-of-mass motion. We quantified center of kidney mass mobility vectors in three dimensions: anteroposterior (AP), mediolateral (ML), and superoinferior (SI). Results: Kidney motion decreases linearly with decreasing age and height. The 95% confidence interval for the averaged minima and maxima of renal motion in children younger than 9 years was 5-9 mm in the ML direction, 4-11 mm in the AP direction, and 12-25 mm in the SI dimension for both kidneys. In children older than 9 years, the same confidence interval reveals a widening range of motion that was 5-16 mm in the ML direction, 6-17 mm in the AP direction, and 21-52 mm in the SI direction. Although not statistically significant, renal motion correlated with diaphragm motion in older patients. The correlation between diaphragm motion and body mass index was borderline (r = 0.52, p = 0.0816) in younger patients. Conclusions: Renal motion is age and height dependent. Measuring diaphragmatic motion alone does not reliably quantify pediatric renal motion. Renal motion in young children ranges from 5 to 25 mm in orientation-specific directions. The vectors of motion range from 5 to 52 mm in older children. These preliminary data represent novel analyses of pediatric intra-abdominal organ motion.

  19. Evaluation of motion and its effect on brain magnetic resonance image quality in children

    International Nuclear Information System (INIS)

    Afacan, Onur; Erem, Burak; Roby, Diona P.; Prabhu, Sanjay P.; Warfield, Simon K.; Roth, Noam; Roth, Amir

    2016-01-01

    Motion artifacts pose significant problems for the acquisition of MR images in pediatric populations. To evaluate temporal motion metrics in MRI scanners and their effect on image quality in pediatric populations in neuroimaging studies. We report results from a large pediatric brain imaging study that shows the effect of motion on MRI quality. We measured motion metrics in 82 pediatric patients, mean age 13.4 years, in a T1-weighted brain MRI scan. As a result of technical difficulties, 5 scans were not included in the subsequent analyses. A radiologist graded the images using a 4-point scale ranging from clinically non-diagnostic because of motion artifacts to no motion artifacts. We used these grades to correlate motion parameters such as maximum motion, mean displacement from a reference point, and motion-free time with image quality. Our results show that both motion-free time (as a ratio of total scan time) and average displacement from a position at a fixed time (when the center of k-space was acquired) were highly correlated with image quality, whereas maximum displacement was not as good a predictor. Among the 77 patients whose motion was measured successfully, 17 had average displacements of greater than 0.5 mm, and 11 of those (14.3%) resulted in non-diagnostic images. Similarly, 14 patients (18.2%) had less than 90% motion-free time, which also resulted in non-diagnostic images. We report results from a large pediatric study to show how children and young adults move in the MRI scanner and the effect that this motion has on image quality. The results will help the motion-correction community in better understanding motion patterns in pediatric populations and how these patterns affect MR image quality. (orig.)

  20. Storyboard dalam Pembuatan Motion Graphic

    Directory of Open Access Journals (Sweden)

    Satrya Mahardhika

    2013-10-01

    Full Text Available Motion graphics is one category in the animation that makes animation with lots of design elements in each component. Motion graphics needs long process including preproduction, production, and postproduction. Preproduction has an important role so that the next stage may provide guidance or instructions for the production process or the animation process. Preproduction includes research, making the story, script, screenplay, character, environment design and storyboards. The storyboard will be determined through camera angles, blocking, sets, and many supporting roles involved in a scene. Storyboard is also useful as a production reference in recording or taping each scene in sequence or as an efficient priority. The example used is an ad creation using motion graphic animation storyboard which has an important role as a blueprint for every scene and giving instructions to make the transition movement, layout, blocking, and defining camera movement that everything should be done periodically in animation production. Planning before making the animation or motion graphic will make the job more organized, presentable, and more efficient in the process.  

  1. Estimation of Motion Vector Fields

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1993-01-01

    This paper presents an approach to the estimation of 2-D motion vector fields from time varying image sequences. We use a piecewise smooth model based on coupled vector/binary Markov random fields. We find the maximum a posteriori solution by simulated annealing. The algorithm generate sample...... fields by means of stochastic relaxation implemented via the Gibbs sampler....

  2. Rotational damping motion in nuclei

    International Nuclear Information System (INIS)

    Egido, J.L.; Faessler, A.

    1991-01-01

    The recently proposed model to explain the mechanism of the rotational motion damping in nuclei is exactly solved. When compared with the earlier approximative solution, we find significative differences in the low excitation energy limit (i.e. Γ μ 0 ). For the strength functions we find distributions going from the Wigner semicircle through gaussians to Breit-Wigner shapes. (orig.)

  3. Procedure to describe clavicular motion.

    Science.gov (United States)

    Gutierrez Delgado, Guivey; De Beule, Matthieu; Ortega Cardentey, Dolgis R; Segers, Patrick; Iznaga Benítez, Arsenio M; Rodríguez Moliner, Tania; Verhegghe, Benedict; Palmans, Tanneke; Van Hoof, Tom; Van Tongel, Alexander

    2017-03-01

    For many years, researchers have attempted to describe shoulder motions by using different mathematical methods. The aim of this study was to describe a procedure to quantify clavicular motion. The procedure proposed for the kinematic analysis consists of 4 main processes: 3 transcortical pins in the clavicle, motion capture, obtaining 3-dimensional bone models, and data processing. Clavicular motion by abduction (30° to 150°) and flexion (55° to 165°) were characterized by an increment of retraction of 27° to 33°, elevation of 25° to 28°, and posterior rotation of 14° to 15°, respectively. In circumduction, clavicular movement described an ellipse, which was reflected by retraction and elevation. Kinematic analysis shows that the articular surfaces move by simultaneously rolling and sliding on the convex surface of the sternum for the 3 movements of abduction, flexion, and circumduction. The use of 3 body landmarks in the clavicle and the direct measurement of bone allowed description of the osteokinematic and arthrokinematic movement of the clavicle. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. Pendulum Motion and Differential Equations

    Science.gov (United States)

    Reid, Thomas F.; King, Stephen C.

    2009-01-01

    A common example of real-world motion that can be modeled by a differential equation, and one easily understood by the student, is the simple pendulum. Simplifying assumptions are necessary for closed-form solutions to exist, and frequently there is little discussion of the impact if those assumptions are not met. This article presents a…

  5. Motion planning for multiple robots

    NARCIS (Netherlands)

    Aronov, B.; Berg, de M.; van der Stappen, A.F.; Svestka, P.; Vleugels, J.M.

    1999-01-01

    We study the motion-planning problem for pairs and triples of robots operating in a shared workspace containing n obstacles. A standard way to solve such problems is to view the collection of robots as one composite robot, whose number of degrees of freedom is d , the sum of the numbers of degrees

  6. Quantum equations from Brownian motions

    International Nuclear Information System (INIS)

    Rajput, B.S.

    2011-01-01

    Classical Schrodinger and Dirac equations have been derived from Brownian motions of a particle, it has been shown that the classical Schrodinger equation can be transformed to usual Schrodinger Quantum equation on applying Heisenberg uncertainty principle between position and momentum while Dirac Quantum equation follows it's classical counter part on applying Heisenberg uncertainly principle between energy and time without applying any analytical continuation. (author)

  7. Anharmonicity in nuclear wobbling motion

    International Nuclear Information System (INIS)

    Oi, M.

    2007-01-01

    An unexpected strong anharmonicity was observed in the wobbling spectrum in 163 Lu. In an attempt to understand what causes the deviation from the original wobbling model by Bohr and Mottelson, an analysis is presented using several different approaches, such as exact diagonalization, a semiclassical model to deal with anharmonic wobbling motion, and a microscopic method based on the self-consistent cranking calculation

  8. Genetics Home Reference: motion sickness

    Science.gov (United States)

    ... motion, particularly traveling in a car, bus, train, airplane, or boat. Amusement park rides, skiing, and virtual ... Association ClinicalTrials.gov (1 link) ClinicalTrials.gov Scientific Articles on PubMed (1 link) PubMed OMIM (1 link) ...

  9. Faraday's Law and Seawater Motion

    Science.gov (United States)

    De Luca, R.

    2010-01-01

    Using Faraday's law, one can illustrate how an electromotive force generator, directly utilizing seawater motion, works. The conceptual device proposed is rather simple in its components and can be built in any high school or college laboratory. The description of the way in which the device generates an electromotive force can be instructive not…

  10. Annotated Bibliography on Relative Motion

    Science.gov (United States)

    1992-03-01

    displace the sheave, and motive means operating the power ram. Preferably, the power run is subjected to i constant upward pneumatic force to provide...NCIEI- Report N- 1187 (Oct 1971). The theory is de\\ eloped for the swinging rmotion induced in a wire suspended load due to the hori7zontal motion of a

  11. Edge dependent motion blur reduction

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a method and a circuit arrangement to reduce motion blur of images shown in non-stroboscopic display devices, in particular Liquid Crystal Display Panels (LCDs). Thin Film Transistor Displays (TFTs), Color Sequential Displays. Plasma Display Panels (PDPs), Digital Micro

  12. Smoothing of respiratory motion traces for motion-compensated radiotherapy.

    Science.gov (United States)

    Ernst, Floris; Schlaefer, Alexander; Schweikard, Achim

    2010-01-01

    The CyberKnife system has been used successfully for several years to radiosurgically treat tumors without the need for stereotactic fixation or sedation of the patient. It has been shown that tumor motion in the lung, liver, and pancreas can be tracked with acceptable accuracy and repeatability. However, highly precise targeting for tumors in the lower abdomen, especially for tumors which exhibit strong motion, remains problematic. Reasons for this are manifold, like the slow tracking system operating at 26.5 Hz, and using the signal from the tracking camera "as is." Since the motion recorded with the camera is used to compensate for system latency by prediction and the predicted signal is subsequently used to infer the tumor position from a correlation model based on x-ray imaging of gold fiducials around the tumor, camera noise directly influences the targeting accuracy. The goal of this work is to establish the suitability of a new smoothing method for respiratory motion traces used in motion-compensated radiotherapy. The authors endeavor to show that better prediction--With a lower rms error of the predicted signal--and/or smoother prediction is possible using this method. The authors evaluated six commercially available tracking systems (NDI Aurora, PolarisClassic, Polaris Vicra, MicronTracker2 H40, FP5000, and accuTrack compact). The authors first tracked markers both stationary and while in motion to establish the systems' noise characteristics. Then the authors applied a smoothing method based on the a trous wavelet decomposition to reduce the devices' noise level. Additionally, the smoothed signal of the moving target and a motion trace from actual human respiratory motion were subjected to prediction using the MULIN and the nLMS2 algorithms. The authors established that the noise distribution for a static target is Gaussian and that when the probe is moved such as to mimic human respiration, it remains Gaussian with the exception of the FP5000 and the

  13. Smoothing of respiratory motion traces for motion-compensated radiotherapy

    International Nuclear Information System (INIS)

    Ernst, Floris; Schlaefer, Alexander; Schweikard, Achim

    2010-01-01

    Purpose: The CyberKnife system has been used successfully for several years to radiosurgically treat tumors without the need for stereotactic fixation or sedation of the patient. It has been shown that tumor motion in the lung, liver, and pancreas can be tracked with acceptable accuracy and repeatability. However, highly precise targeting for tumors in the lower abdomen, especially for tumors which exhibit strong motion, remains problematic. Reasons for this are manifold, like the slow tracking system operating at 26.5 Hz, and using the signal from the tracking camera ''as is''. Since the motion recorded with the camera is used to compensate for system latency by prediction and the predicted signal is subsequently used to infer the tumor position from a correlation model based on x-ray imaging of gold fiducials around the tumor, camera noise directly influences the targeting accuracy. The goal of this work is to establish the suitability of a new smoothing method for respiratory motion traces used in motion-compensated radiotherapy. The authors endeavor to show that better prediction--With a lower rms error of the predicted signal--and/or smoother prediction is possible using this method. Methods: The authors evaluated six commercially available tracking systems (NDI Aurora, PolarisClassic, Polaris Vicra, MicronTracker2 H40, FP5000, and accuTrack compact). The authors first tracked markers both stationary and while in motion to establish the systems' noise characteristics. Then the authors applied a smoothing method based on the a trous wavelet decomposition to reduce the devices' noise level. Additionally, the smoothed signal of the moving target and a motion trace from actual human respiratory motion were subjected to prediction using the MULIN and the nLMS 2 algorithms. Results: The authors established that the noise distribution for a static target is Gaussian and that when the probe is moved such as to mimic human respiration, it remains Gaussian with the

  14. Significance of earthquake and weapons-test ground motion to structure response and NRC licensing

    International Nuclear Information System (INIS)

    Blume, J.A.

    1984-01-01

    The author feels that of all the problems to be resolved before a nuclear power plant can be licensed to operate, the earthquake problem is the most difficult from the emotional and public relations point of view, as well as technically. It is the one that intervenors and their lawyers thrive upon, as do the demonstrators. These earthquakes can be tectonic, reservoir induced, and/or imaginary. 9 references, 29 figures

  15. Rrsm: The European Rapid Raw Strong-Motion Database

    Science.gov (United States)

    Cauzzi, C.; Clinton, J. F.; Sleeman, R.; Domingo Ballesta, J.; Kaestli, P.; Galanis, O.

    2014-12-01

    We introduce the European Rapid Raw Strong-Motion database (RRSM), a Europe-wide system that provides parameterised strong motion information, as well as access to waveform data, within minutes of the occurrence of strong earthquakes. The RRSM significantly differs from traditional earthquake strong motion dissemination in Europe, which has focused on providing reviewed, processed strong motion parameters, typically with significant delays. As the RRSM provides rapid open access to raw waveform data and metadata and does not rely on external manual waveform processing, RRSM information is tailored to seismologists and strong-motion data analysts, earthquake and geotechnical engineers, international earthquake response agencies and the educated general public. Access to the RRSM database is via a portal at http://www.orfeus-eu.org/rrsm/ that allows users to query earthquake information, peak ground motion parameters and amplitudes of spectral response; and to select and download earthquake waveforms. All information is available within minutes of any earthquake with magnitude ≥ 3.5 occurring in the Euro-Mediterranean region. Waveform processing and database population are performed using the waveform processing module scwfparam, which is integrated in SeisComP3 (SC3; http://www.seiscomp3.org/). Earthquake information is provided by the EMSC (http://www.emsc-csem.org/) and all the seismic waveform data is accessed at the European Integrated waveform Data Archive (EIDA) at ORFEUS (http://www.orfeus-eu.org/index.html), where all on-scale data is used in the fully automated processing. As the EIDA community is continually growing, the already significant number of strong motion stations is also increasing and the importance of this product is expected to also increase. Real-time RRSM processing started in June 2014, while past events have been processed in order to provide a complete database back to 2005.

  16. Quantized motion of trapped ions

    International Nuclear Information System (INIS)

    Steinbach, J.

    1999-01-01

    This thesis is concerned with a theoretical and numerical study of the preparation and coherent manipulation of quantum states in the external and internal degrees of freedom of trapped ions. In its first part, this thesis proposes and investigates schemes for generating several nonclassical states for the quantized vibrational motion of a trapped ion. Based on dark state preparation specific laser excitation configurations are presented which, given appropriately chosen initial states, realize the desired motional states in the steady-state, indicated by the cessation of the fluorescence emitted by the ion. The focus is on the SU(1,1) intelligent states in both their single- and two-mode realization, corresponding to one- and two-dimensional motion of the ion. The presented schemes are also studied numerically using a Monte-Carlo state-vector method. The second part of the thesis describes how two vibrational degrees of freedom of a single trapped ion can be coupled through the action of suitably chosen laser excitation. Concentrating on a two-dimensional ion trap with dissimilar vibrational frequencies a variety of quantized two-mode couplings are derived. The focus is on a linear coupling that takes excitations from one mode to another. It is demonstrated how this can result in a state rotation, in which it is possible to coherently transfer the motional state of the ion between orthogonal directions without prior knowledge of that motional state. The third part of this thesis presents a new efficient method for generating maximally entangled internal states of a collection of trapped ions. The method is deterministic and independent of the number of ions in the trap. As the essential element of the scheme a mechanism for the realization of a controlled NOT operation that can operate on multiple ions is proposed. The potential application of the scheme for high-precision frequency standards is explored. (author)

  17. Motion Artifact Quantification and Sensor Fusion for Unobtrusive Health Monitoring

    Directory of Open Access Journals (Sweden)

    Christoph Hoog Antink

    2017-12-01

    Full Text Available Sensors integrated into objects of everyday life potentially allow unobtrusive health monitoring at home. However, since the coupling of sensors and subject is not as well-defined as compared to a clinical setting, the signal quality is much more variable and can be disturbed significantly by motion artifacts. One way of tackling this challenge is the combined evaluation of multiple channels via sensor fusion. For robust and accurate sensor fusion, analyzing the influence of motion on different modalities is crucial. In this work, a multimodal sensor setup integrated into an armchair is presented that combines capacitively coupled electrocardiography, reflective photoplethysmography, two high-frequency impedance sensors and two types of ballistocardiography sensors. To quantify motion artifacts, a motion protocol performed by healthy volunteers is recorded with a motion capture system, and reference sensors perform cardiorespiratory monitoring. The shape-based signal-to-noise ratio SNR S is introduced and used to quantify the effect on motion on different sensing modalities. Based on this analysis, an optimal combination of sensors and fusion methodology is developed and evaluated. Using the proposed approach, beat-to-beat heart-rate is estimated with a coverage of 99.5% and a mean absolute error of 7.9 ms on 425 min of data from seven volunteers in a proof-of-concept measurement scenario.

  18. Motion Artifact Quantification and Sensor Fusion for Unobtrusive Health Monitoring

    Science.gov (United States)

    Hoog Antink, Christoph; Schulz, Florian; Walter, Marian

    2017-01-01

    Sensors integrated into objects of everyday life potentially allow unobtrusive health monitoring at home. However, since the coupling of sensors and subject is not as well-defined as compared to a clinical setting, the signal quality is much more variable and can be disturbed significantly by motion artifacts. One way of tackling this challenge is the combined evaluation of multiple channels via sensor fusion. For robust and accurate sensor fusion, analyzing the influence of motion on different modalities is crucial. In this work, a multimodal sensor setup integrated into an armchair is presented that combines capacitively coupled electrocardiography, reflective photoplethysmography, two high-frequency impedance sensors and two types of ballistocardiography sensors. To quantify motion artifacts, a motion protocol performed by healthy volunteers is recorded with a motion capture system, and reference sensors perform cardiorespiratory monitoring. The shape-based signal-to-noise ratio SNRS is introduced and used to quantify the effect on motion on different sensing modalities. Based on this analysis, an optimal combination of sensors and fusion methodology is developed and evaluated. Using the proposed approach, beat-to-beat heart-rate is estimated with a coverage of 99.5% and a mean absolute error of 7.9 ms on 425 min of data from seven volunteers in a proof-of-concept measurement scenario. PMID:29295594

  19. Motion Artifact Quantification and Sensor Fusion for Unobtrusive Health Monitoring.

    Science.gov (United States)

    Hoog Antink, Christoph; Schulz, Florian; Leonhardt, Steffen; Walter, Marian

    2017-12-25

    Sensors integrated into objects of everyday life potentially allow unobtrusive health monitoring at home. However, since the coupling of sensors and subject is not as well-defined as compared to a clinical setting, the signal quality is much more variable and can be disturbed significantly by motion artifacts. One way of tackling this challenge is the combined evaluation of multiple channels via sensor fusion. For robust and accurate sensor fusion, analyzing the influence of motion on different modalities is crucial. In this work, a multimodal sensor setup integrated into an armchair is presented that combines capacitively coupled electrocardiography, reflective photoplethysmography, two high-frequency impedance sensors and two types of ballistocardiography sensors. To quantify motion artifacts, a motion protocol performed by healthy volunteers is recorded with a motion capture system, and reference sensors perform cardiorespiratory monitoring. The shape-based signal-to-noise ratio SNR S is introduced and used to quantify the effect on motion on different sensing modalities. Based on this analysis, an optimal combination of sensors and fusion methodology is developed and evaluated. Using the proposed approach, beat-to-beat heart-rate is estimated with a coverage of 99.5% and a mean absolute error of 7.9 ms on 425 min of data from seven volunteers in a proof-of-concept measurement scenario.

  20. Effects of Age and Gender on Hand Motion Tasks

    Directory of Open Access Journals (Sweden)

    Wing Lok Au

    2015-01-01

    Full Text Available Objective. Wearable and wireless motion sensor devices have facilitated the automated computation of speed, amplitude, and rhythm of hand motion tasks. The aim of this study is to determine if there are any biological influences on these kinematic parameters. Methods. 80 healthy subjects performed hand motion tasks twice for each hand, with movements measured using a wireless motion sensor device (Kinesia, Cleveland Medical Devices Inc., Cleveland, OH. Multivariate analyses were performed with age, gender, and height added into the model. Results. Older subjects performed poorer in finger tapping (FT speed (r=0.593, p<0.001, hand-grasp (HG speed (r=0.517, p<0.001, and pronation-supination (PS speed (r=0.485, p<0.001. Men performed better in FT rhythm p<0.02, HG speed p<0.02, HG amplitude p<0.02, and HG rhythm p<0.05. Taller subjects performed better in the speed and amplitude components of FT p<0.02 and HG tasks p<0.02. After multivariate analyses, only age and gender emerged as significant independent factors influencing the speed but not the amplitude and rhythm components of hand motion tasks. Gender exerted an independent influence only on HG speed, with better performance in men p<0.05. Conclusions. Age, gender, and height are not independent factors influencing the amplitude and rhythm components of hand motion tasks. The speed component is affected by age and gender differences.

  1. Evaluation of Paradoxical Septal Motion Following Cardiac Surgery with Gated Cardiac Blood Pool Scan

    International Nuclear Information System (INIS)

    Shin, Seong Hae; Chung, June Key; Lee, Myung Chul; Cho, Bo Youn; Koh, Chang Soon; Suh, Kyung Phil

    1985-01-01

    The development of paradoxical interventricular septal motion is a common consequence of cardiopulmonary bypass operation. The reason for this postoperative abnormal septal motion is not clear. 41 patients were studied preoperatively and postoperatively with radionuclide blood pool scan to evaluate the frequency of development of paradoxical septal motion with right ventricular volume overload before surgery and the frequency of development of paradoxical septal motion after cardiac surgery with cardiopulmonary bypass, and to evaluate the change of EF related to the development of paradoxical septal motion after cardiac surgery. The results were as follows; 1) 7 of 41 patients with right ventricular volume overload (that is 17%) showed paradoxical septal motion before surgery. But 13 of 34 patients (that is 42%) had paradoxical septal motion after cardiac surgery with cardiopulmonary bypass. So open heart surgery with cardiopulmonary bypass related the development of paradoxical septal motion after surgery. 2) EF significantly decreased in patients who developed paradoxical septal motion after surgery, whereas the EF did not change in the patients who retained normal interventricular septal motion after surgery. So paradoxical septal motion usually reflected some diminution of left ventricular function, immediately after cardiac surgery.

  2. Evaluation of Paradoxical Septal Motion Following Cardiac Surgery with Gated Cardiac Blood Pool Scan

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seong Hae; Chung, June Key; Lee, Myung Chul; Cho, Bo Youn; Koh, Chang Soon; Suh, Kyung Phil [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1985-03-15

    The development of paradoxical interventricular septal motion is a common consequence of cardiopulmonary bypass operation. The reason for this postoperative abnormal septal motion is not clear. 41 patients were studied preoperatively and postoperatively with radionuclide blood pool scan to evaluate the frequency of development of paradoxical septal motion with right ventricular volume overload before surgery and the frequency of development of paradoxical septal motion after cardiac surgery with cardiopulmonary bypass, and to evaluate the change of EF related to the development of paradoxical septal motion after cardiac surgery. The results were as follows; 1) 7 of 41 patients with right ventricular volume overload (that is 17%) showed paradoxical septal motion before surgery. But 13 of 34 patients (that is 42%) had paradoxical septal motion after cardiac surgery with cardiopulmonary bypass. So open heart surgery with cardiopulmonary bypass related the development of paradoxical septal motion after surgery. 2) EF significantly decreased in patients who developed paradoxical septal motion after surgery, whereas the EF did not change in the patients who retained normal interventricular septal motion after surgery. So paradoxical septal motion usually reflected some diminution of left ventricular function, immediately after cardiac surgery.

  3. Structural Motion Grammar for Universal Use of Leap Motion: Amusement and Functional Contents Focused

    Directory of Open Access Journals (Sweden)

    Byungseok Lee

    2018-01-01

    Full Text Available Motions using Leap Motion controller are not standardized while the use of it is spreading in media contents. Each content defines its own motions, thereby creating confusion for users. Therefore, to alleviate user inconvenience, this study categorized the commonly used motion by Amusement and Functional Contents and defined the Structural Motion Grammar that can be universally used based on the classification. To this end, the Motion Lexicon was defined, which is a fundamental motion vocabulary, and an algorithm that enables real-time recognition of Structural Motion Grammar was developed. Moreover, the proposed method was verified by user evaluation and quantitative comparison tests.

  4. Improved frame-based estimation of head motion in PET brain imaging

    International Nuclear Information System (INIS)

    Mukherjee, J. M.; Lindsay, C.; King, M. A.; Licho, R.; Mukherjee, A.; Olivier, P.; Shao, L.

    2016-01-01

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is

  5. Improved frame-based estimation of head motion in PET brain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, J. M., E-mail: joyeeta.mitra@umassmed.edu; Lindsay, C.; King, M. A.; Licho, R. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Mukherjee, A. [Aware, Inc., Bedford, Massachusetts 01730 (United States); Olivier, P. [Philips Medical Systems, Cleveland, Ohio 44143 (United States); Shao, L. [ViewRay, Oakwood Village, Ohio 44146 (United States)

    2016-05-15

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is

  6. A Motion Planning Approach to Studying Molecular Motions

    KAUST Repository

    Amato, Nancy M.

    2010-01-01

    While structurally very different, protein and RNA molecules share an important attribute. The motions they undergo are strongly related to the function they perform. For example, many diseases such as Mad Cow disease or Alzheimer\\'s disease are associated with protein misfolding and aggregation. Similarly, RNA folding velocity may regulate the plasmid copy number, and RNA folding kinetics can regulate gene expression at the translational level. Knowledge of the stability, folding, kinetics and detailed mechanics of the folding process may help provide insight into how proteins and RNAs fold. In this paper, we present an overview of our work with a computational method we have adapted from robotic motion planning to study molecular motions. We have validated against experimental data and have demonstrated that our method can capture biological results such as stochastic folding pathways, population kinetics of various conformations, and relative folding rates. Thus, our method provides both a detailed view (e.g., individual pathways) and a global view (e.g., population kinetics, relative folding rates, and reaction coordinates) of energy landscapes of both proteins and RNAs. We have validated these techniques by showing that we observe the same relative folding rates as shown in experiments for structurally similar protein molecules that exhibit different folding behaviors. Our analysis has also been able to predict the same relative gene expression rate for wild-type MS2 phage RNA and three of its mutants.

  7. Frequency filtering based analysis on the cardiac induced lung tumor motion and its impact on the radiotherapy management

    International Nuclear Information System (INIS)

    Chen, Ting; Qin, Songbing; Xu, Xiaoting; Jabbour, Salma K.; Haffty, Bruce G.; Yue, Ning J.

    2014-01-01

    Purpose/objectives: Lung tumor motion may be impacted by heartbeat in addition to respiration. This study seeks to quantitatively analyze heart-motion-induced tumor motion and to evaluate its impact on lung cancer radiotherapy. Methods/materials: Fluoroscopy images were acquired for 30 lung cancer patients. Tumor, diaphragm, and heart were delineated on selected fluoroscopy frames, and their motion was tracked and converted into temporal signals based on deformable registration propagation. The clinical relevance of heart impact was evaluated using the dose volumetric histogram of the redefined target volumes. Results: Correlation was found between tumor and cardiac motion for 23 patients. The heart-induced motion amplitude ranged from 0.2 to 2.6 mm. The ratio between heart-induced tumor motion and the tumor motion was inversely proportional to the amplitude of overall tumor motion. When the heart motion impact was integrated, there was an average 9% increase in internal target volumes for 17 patients. Dose coverage decrease was observed on redefined planning target volume in simulated SBRT plans. Conclusions: The tumor motion of thoracic cancer patients is influenced by both heart and respiratory motion. The cardiac impact is relatively more significant for tumor with less motion, which may lead to clinically significant uncertainty in radiotherapy for some patients

  8. Motion correction improves image quality of dGEMRIC in finger joints

    International Nuclear Information System (INIS)

    Miese, Falk; Kröpil, Patric; Ostendorf, Benedikt; Scherer, Axel; Buchbender, Christian; Quentin, Michael; Lanzman, Rotem S.; Blondin, Dirk; Schneider, Matthias; Bittersohl, Bernd; Zilkens, Christoph; Jellus, Vladimir; Mamisch, Tallal Ch.; Wittsack, Hans-Jörg

    2011-01-01

    Purpose: To assess motion artifacts in dGEMRIC of finger joints and to evaluate the effectiveness of motion correction. Materials and methods: In 40 subjects (26 patients with finger arthritis and 14 healthy volunteers) dGEMRIC of metacarpophalangeal joint II was performed. Imaging used a dual flip angle approach (TE 3.72 ms, TR 15 ms, flip angles 5° and 26°). Two sets of T1 maps were calculated for dGEMRIC analysis from the imaging data for each subject: one with and one without motion correction. To compare image quality, visual grading analysis and precision of dGEMRIC measurement of both dGEMRIC maps for each case were evaluated. Results: Motion artifacts were present in 82% (33/40) of uncorrected dGEMRIC maps. Motion artifacts were graded as severe or as rendering evaluation impossible in 43% (17/40) of uncorrected dGEMRIC maps. Motion corrected maps showed significantly less motion artifacts (P < 0.001) and were graded as evaluable in 97% (39/40) of cases. Precision was significantly higher in motion corrected images (coefficient of variation (CV = .176 ± .077), compared to uncorrected images (CV .445 ± .347) (P < .001). Motion corrected dGERMIC was different in volunteers and patients (P = .044), whereas uncorrected dGEMRIC was not (P = .234). Conclusion: Motion correction improves image quality, dGEMRIC measurement precision and diagnostic performance in dGEMRIC of finger joints.

  9. Motion correction in thoracic positron emission tomography

    CERN Document Server

    Gigengack, Fabian; Dawood, Mohammad; Schäfers, Klaus P

    2015-01-01

    Respiratory and cardiac motion leads to image degradation in Positron Emission Tomography (PET), which impairs quantification. In this book, the authors present approaches to motion estimation and motion correction in thoracic PET. The approaches for motion estimation are based on dual gating and mass-preserving image registration (VAMPIRE) and mass-preserving optical flow (MPOF). With mass-preservation, image intensity modulations caused by highly non-rigid cardiac motion are accounted for. Within the image registration framework different data terms, different variants of regularization and parametric and non-parametric motion models are examined. Within the optical flow framework, different data terms and further non-quadratic penalization are also discussed. The approaches for motion correction particularly focus on pipelines in dual gated PET. A quantitative evaluation of the proposed approaches is performed on software phantom data with accompanied ground-truth motion information. Further, clinical appl...

  10. Layered Safe Motion Planning for Autonomous Vehicles.

    Science.gov (United States)

    1995-09-01

    The major problem addressed by this research is how to plan a safe motion for autonomous vehicles in a two dimensional, rectilinear world. With given start and goal configurations, the planner performs motion planning which

  11. Hyperventilation in a motion sickness desensitization program

    NARCIS (Netherlands)

    Mert, A.; Bles, W.; Nooij, S.A.E.

    2007-01-01

    Introduction: In motion sickness desensitization programs, the motion sickness provocative stimulus is often a forward bending of the trunk on a rotating chair, inducing Coriolis effects. Since respiratory relaxation techniques are applied successfully in these courses, we investigated whether these

  12. Brownian motion using video capture

    International Nuclear Information System (INIS)

    Salmon, Reese; Robbins, Candace; Forinash, Kyle

    2002-01-01

    Although other researchers had previously observed the random motion of pollen grains suspended in water through a microscope, Robert Brown's name is associated with this behaviour based on observations he made in 1828. It was not until Einstein's work in the early 1900s however, that the origin of this irregular motion was established to be the result of collisions with molecules which were so small as to be invisible in a light microscope (Einstein A 1965 Investigations on the Theory of the Brownian Movement ed R Furth (New York: Dover) (transl. Cowper A D) (5 papers)). Jean Perrin in 1908 (Perrin J 1923 Atoms (New York: Van Nostrand-Reinhold) (transl. Hammick D)) was able, through a series of painstaking experiments, to establish the validity of Einstein's equation. We describe here the details of a junior level undergraduate physics laboratory experiment where students used a microscope, a video camera and video capture software to verify Einstein's famous calculation of 1905. (author)

  13. Observing electron motion in molecules

    International Nuclear Information System (INIS)

    Chelkowski, S; Yudin, G L; Bandrauk, A D

    2006-01-01

    We study analytically the possibility for monitoring electron motion in a molecule using two ultrashort laser pulses. The first prepares a coherent superposition of two electronic molecular states whereas the second (attosecond pulse) photoionizes the molecule. We show that interesting information about electron dynamics can be obtained from measurement of the photoelectron spectra as a function of the time delay between two pulses. In particular, asymmetries in photoelectron angular distribution provide a simple signature of the electron motion within the initial time-dependent coherently coupled two molecular states. Both asymmetries and electron spectra show very strong two-centre interference patterns. We illustrate these effects using as an example a dissociating hydrogen molecular ion probed by the attosecond pulses

  14. Dissipation and nuclear collective motion

    International Nuclear Information System (INIS)

    Hofmann, Helmut; Jensen, A.S.; Ngo, Christian; Siemens, P.J.; California Univ., Berkeley

    1979-01-01

    This contribution is intended to give a brief summary of a forthcoming paper which shall review extensively the linear response theory for dissipation and statistical fluctuations as well as its application to heavy-ion collisions. It shall contain new results on the following subjects: numerical computations of response functions and transport coefficients; dissipation in a self-consistent treatment of harmonic vibrations; introduction of collective variables within a quantum theory. The method used consists of an extended version of the Bohm and Pines treatment of the electron gas. It allows to deduce a quantum Hamiltonian for the collective and intrinsic motion including coupling terms; discussion and solution of a quantal Master equation for non-linear collective motion. Additionally, a somewhat elaborate discussion of the problems of irreversibility is given, especially in connection to a treatment within the moving basis

  15. Wheelchair control by head motion

    Directory of Open Access Journals (Sweden)

    Pajkanović Aleksandar

    2013-01-01

    Full Text Available Electric wheelchairs are designed to aid paraplegics. Unfortunately, these can not be used by persons with higher degree of impairment, such as quadriplegics, i.e. persons that, due to age or illness, can not move any of the body parts, except of the head. Medical devices designed to help them are very complicated, rare and expensive. In this paper a microcontroller system that enables standard electric wheelchair control by head motion is presented. The system comprises electronic and mechanic components. A novel head motion recognition technique based on accelerometer data processing is designed. The wheelchair joystick is controlled by the system’s mechanical actuator. The system can be used with several different types of standard electric wheelchairs. It is tested and verified through an experiment performed within this paper.

  16. Motions on a rotating planet

    Science.gov (United States)

    Schröer, H.

    In chapter 1 we want to describe the motion of a falling body on a rotating planet. The planet rotates with an arbitrary changable angular velocity and has a translational acceleration. We obtain 3 differential equations. For the general gravitational field an exact solution is possible, when the differential equation system is explicit solvable. Then we consider the case, if the angular velocity and the translational acceleration is constant. With a special transformation we get 3 partial differential equations of first order. Instead of a planet sphere we can choose a general body of rotation. Even general bodies are possible. Chapter 2 contains the motion in a local coordinate system on planet's surface. We have an inhomogeneous linear differential equation of first order. If the angular velocity is constant, we get a system with constant coefficients. There is an english and a german edition.

  17. Homothetic motions in general relativity

    International Nuclear Information System (INIS)

    McIntosh, C.B.G.

    1976-01-01

    Properties of homothetic or self-similar motions in general relativity are examined with particular reference to vacuum and perfect-fluid space-times. The role of the homothetic bivector with components Hsub((a;b)) formed from the homothetic vector H is discussed in some detail. It is proved that a vacuum space-time only admits a nontrivial homothetic motion if the homothetic vector field is non-null and is not hypersurface orthogonal. As a subcase of a more general result it is shown that a perfect-fluid space-time cannot admit a non-trivial homothetic vector which is orthogonal to the fluid velocity 4-vector. (author)

  18. Nuclear friction and chaotic motion

    International Nuclear Information System (INIS)

    Srokowski, T.; Szczurek, A.; Drozdz, S.

    1990-01-01

    The concept of nuclear friction is considered from the point of view of regular versus chaotic motion in an atomic nucleus. Using a realistic nuclear Hamiltonian it is explicitly shown that the frictional description of the gross features of nuclear collisions is adequate if the system behaves chaotically. Because of the core in the Hamiltonian, the three-body nuclear system already reveals a structure of the phase space rich enough for this concept to be applicable

  19. Dynamical Systems and Motion Vision.

    Science.gov (United States)

    1988-04-01

    TASK Artificial Inteligence Laboratory AREA I WORK UNIT NUMBERS 545 Technology Square . Cambridge, MA 02139 C\\ II. CONTROLLING OFFICE NAME ANO0 ADDRESS...INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY A.I.Memo No. 1037 April, 1988 Dynamical Systems and Motion Vision Joachim Heel Abstract: In this... Artificial Intelligence L3 Laboratory of the Massachusetts Institute of Technology. Support for the Laboratory’s [1 Artificial Intelligence Research is

  20. Capillary waves in slow motion

    International Nuclear Information System (INIS)

    Seydel, Tilo; Tolan, Metin; Press, Werner; Madsen, Anders; Gruebel, Gerhard

    2001-01-01

    Capillary wave dynamics on glycerol surfaces has been investigated by means of x-ray photon correlation spectroscopy performed at grazing angles. The measurements show that thermally activated capillary wave motion is slowed down exponentially when the sample is cooled below 273 K. This finding directly reflects the freezing of the surface waves. The wave-number dependence of the measured time constants is in quantitative agreement with theoretical predictions for overdamped capillary waves

  1. Clustering Of Left Ventricular Wall Motion Patterns

    Science.gov (United States)

    Bjelogrlic, Z.; Jakopin, J.; Gyergyek, L.

    1982-11-01

    A method for detection of wall regions with similar motion was presented. A model based on local direction information was used to measure the left ventricular wall motion from cineangiographic sequence. Three time functions were used to define segmental motion patterns: distance of a ventricular contour segment from the mean contour, the velocity of a segment and its acceleration. Motion patterns were clustered by the UPGMA algorithm and by an algorithm based on K-nearest neighboor classification rule.

  2. Motion Artifact in the MR imaging of temporomandibular disorders

    International Nuclear Information System (INIS)

    Tamamura, Kiyoharu; Miyajima, Hisashi; Nihei, Yoshinobu; Nemoto, Ryuichi; Ohno, Tomoya

    1997-01-01

    Recently, magnetic resonance imaging (MRI) is indispensable for the diagnosis of temporomandibular disorders (TMD). Motion Artifacts of MRI occur more frequently than in other conventional methods, because it takes a long time to obtain the images. This paper reported on Motion Artifacts on MRI. MRI studies of 232 temporomandibular joints were performed in 116 patients with TMD by using a 0.5-T magnetic resonance (MR) scanner, with spin echo sequence: protondensity-weighted. And we took MRI slices at opening phase and closing phase. So 232 slices were gathered and we evaluated clinically the incidence of Motion Artifacts, that is to say, double and multiple images and other factors. The 103 slices in 56 patients showed Motion Artifacts. There is no significant difference between sexes. By age group, those in their teens were most frequent, followed by those in their fifties, forties, thirties and twenties. Also the same results were obtained for double image and multiple image. Incidence of Motion Artifact was most frequent at the opening phase. There is no significant difference between double and multiple image. (author)

  3. Motion Analysis of Thumb in Cellular Phone Use

    Directory of Open Access Journals (Sweden)

    Naotaka Sakai

    2010-01-01

    Full Text Available The thumb motion of 10 normal subjects during cellular phone use was measured using a reflective marker detection system to compare the maximum, minimum and range of flexion angles of the interphalangeal (IP, metacarpophalangeal (MP and carpometacarpal (CM joints. Two micro-reflective markers 3 mm in diameter were each placed on the dorsal surface of the distal phalanx, basal phalanx and metacarpal bone of the thumb. Three markers were placed on the dorsal hand in order to define the dorsal hand plane. Each subject pushed the 12 keys of a folding cellular phone with an 85-mm-long and 40-mm-wide keypad, sequentially from ‘1’ to ‘#’, and the pushing motion was recorded by six infrared video cameras for 12 seconds, using the VICON 612 system. The mean maximum flexion angle of the MP joint was significantly (p < .05 larger than the CM joint, and the mean minimum flexion angle of the CM joint was significantly (p < .01 smaller than the IP and MP joints. The mean range of motion of the IP joint was significantly (p < .05 larger than the MP and the CM joints. In a comparison of different key-pushing motions, only the CM joint was significantly (p < .05 larger in its range of motion. In conclusion, thumb motion on pushing the keys of the cellular phone was produced mainly by the MP and the CM joints. In addition, the ability to reach keys in different areas of the cellular phone keypad is regulated by changing the flexion angle of the CM joint.

  4. Identification of resonant earthquake ground motion

    Indian Academy of Sciences (India)

    Resonant ground motion has been observed in earthquake records measured at several parts of the world. This class of ground motion is characterized by its energy being contained in a narrow frequency band. This paper develops measures to quantify the frequency content of the ground motion using the entropy ...

  5. Predicting articulated human motion from spatial processes

    DEFF Research Database (Denmark)

    Hauberg, Søren; Pedersen, Kim Steenstrup

    2011-01-01

    recent work where prior models are derived in terms of joint angles. This approach has several advantages. First of all, it allows us to construct motion models in low dimensional spaces, which makes motion estimation more robust. Secondly, as many types of motion are easily expressed in spatial...

  6. Teaching Motion with the Global Positioning System

    Science.gov (United States)

    Budisa, Marko; Planinsic, Gorazd

    2003-01-01

    We have used the GPS receiver and a PC interface to track different types of motion. Various hands-on experiments that enlighten the physics of motion at the secondary school level are suggested (visualization of 2D and 3D motion, measuring car drag coefficient and fuel consumption). (Contains 8 figures.)

  7. 19 CFR 210.15 - Motions.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Motions. 210.15 Section 210.15 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE ADJUDICATION AND ENFORCEMENT Motions § 210.15 Motions. (a) Presentation and disposition. (1) During the period...

  8. Visualization of Kepler's Laws of Planetary Motion

    Science.gov (United States)

    Lu, Meishu; Su, Jun; Wang, Weiguo; Lu, Jianlong

    2017-01-01

    For this article, we use a 3D printer to print a surface similar to universal gravitation for demonstrating and investigating Kepler's laws of planetary motion describing the motion of a small ball on the surface. This novel experimental method allows Kepler's laws of planetary motion to be visualized and will contribute to improving the…

  9. Symmetries and conserved quantities in geodesic motion

    International Nuclear Information System (INIS)

    Hojman, S.; Nunez, L.; Patino, A.; Rago, H.

    1986-01-01

    Recently obtained results linking several constants of motion to one (non-Noetherian) symmetry to the problem of geodesic motion in Riemannian space-times are applied. The construction of conserved quantities in geodesic motion as well as the deduction of geometrical statements about Riemannian space-times are achieved

  10. Motion sickness: a negative reinforcement model.

    Science.gov (United States)

    Bowins, Brad

    2010-01-15

    Theories pertaining to the "why" of motion sickness are in short supply relative to those detailing the "how." Considering the profoundly disturbing and dysfunctional symptoms of motion sickness, it is difficult to conceive of why this condition is so strongly biologically based in humans and most other mammalian and primate species. It is posited that motion sickness evolved as a potent negative reinforcement system designed to terminate motion involving sensory conflict or postural instability. During our evolution and that of many other species, motion of this type would have impaired evolutionary fitness via injury and/or signaling weakness and vulnerability to predators. The symptoms of motion sickness strongly motivate the individual to terminate the offending motion by early avoidance, cessation of movement, or removal of oneself from the source. The motion sickness negative reinforcement mechanism functions much like pain to strongly motivate evolutionary fitness preserving behavior. Alternative why theories focusing on the elimination of neurotoxins and the discouragement of motion programs yielding vestibular conflict suffer from several problems, foremost that neither can account for the rarity of motion sickness in infants and toddlers. The negative reinforcement model proposed here readily accounts for the absence of motion sickness in infants and toddlers, in that providing strong motivation to terminate aberrant motion does not make sense until a child is old enough to act on this motivation.

  11. Rotational Motion Control of a Spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2001-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control...

  12. Rotational motion control of a spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2003-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control. Udgivelsesdato: APR...

  13. Improved motion description for action classification

    NARCIS (Netherlands)

    Jain, M.; Jégou, H.; Bouthemy, P.

    2016-01-01

    Even though the importance of explicitly integrating motion characteristics in video descriptions has been demonstrated by several recent papers on action classification, our current work concludes that adequately decomposing visual motion into dominant and residual motions, i.e., camera and scene

  14. The significance of Newtonian cosmology

    International Nuclear Information System (INIS)

    Galletto, D.; Barberis, B.

    1984-01-01

    Starting from the hypotheses that the physical space is Euclidean, that the Universe is infinite and homogeneous and that with regard to our galaxy its behaviour is isotropic, without resorting to Newton's law of gravitation we deduce Hubble's law, the law of motion of a typical galaxy, the equation of evolution of the Universe, that the force at a distance exerted between any two galaxies is expressed by Newton's law of gravitation, etc. Adding the hypothesis that the velocity of light is independent of its source, we obtain that the metric of spacetime is necessarily given by the Einstein-de Sitter metric, that the tensorial form of the equations of Newtonian cosmology is given by Einstein's gravitational equations, etc. (Auth.)

  15. Audiovisual biofeedback improves diaphragm motion reproducibility in MRI

    Science.gov (United States)

    Kim, Taeho; Pollock, Sean; Lee, Danny; O’Brien, Ricky; Keall, Paul

    2012-01-01

    reproducibility of internal anatomy using MRI. The study demonstrated the significant improvement in diaphragm motion reproducibility using AV biofeedback combined with MRI. This system can potentially provide clinically beneficial motion management of internal anatomy in MRI and radiotherapy. PMID:23127085

  16. Motion in images is essential to cause motion sickness symptoms, but not to increase postural sway

    NARCIS (Netherlands)

    Lubeck, A.J.A.; Bos, J.E.; Stins, J.F.

    2015-01-01

    Abstract Objective It is generally assumed that motion in motion images is responsible for increased postural sway as well as for visually induced motion sickness (VIMS). However, this has not yet been tested. To that end, we studied postural sway and VIMS induced by motion and still images. Method

  17. An equation of motion for bubble growth

    Energy Technology Data Exchange (ETDEWEB)

    Lesage, F.J. [College d' Enseignement General et Professionnel de L' Outaouais, Gatineau, Quebec (Canada). Dept. of Mathematics; Cotton, J.S. [McMaster University, Hamilton, ON (Canada). Dept. of Mechanical Engineering; Robinson, A.J. [Trinity College Dublin (Ireland). Dept. of Mechanical and Manufacturing Engineering

    2009-07-01

    A mathematical model is developed which describes asymmetric bubble growth, either during boiling or bubble injection from submerged orifices. The model is developed using the integral form of the continuity and momentum equations, resulting in a general expression for the acceleration of the bubble's centre of gravity. The proposed model highlights the need to include acceleration due to an asymmetric gain or loss of mass in order to accurately predict bubble motion. Some scenarios are posed by which the growth of bubbles, particularly idealized bubbles that remain a section of a sphere, must include the fact that bubble growth can be asymmetric. In particular, for approximately hemispherical bubble growth the sum of the forces acting on the bubble is negligible compared with the asymmetric term. Further, for bubble injection from a submerged needle this component in the equation of motion is very significant during the initial rapid growth phase as the bubble issues from the nozzle changing from a near hemisphere to truncated sphere geometry. (author)

  18. A Motion Videogame for Opioid Relapse Prevention.

    Science.gov (United States)

    Abroms, Lorien C; Leavitt, Leah E; Van Alstyne, Judy M; Schindler-Ruwisch, Jennifer M; Fishman, Marc J; Greenberg, Daniel

    2015-12-01

    This study examined the feasibility and acceptability of a body motion-activated videogame, targeting the prevention of opioid relapse among youth in the context of outpatient treatment. Participants attended four weekly gameplay sessions. Surveys were conducted at baseline and following each week's gameplay and assessed satisfaction with gameplay, craving intensity, and self-efficacy to refuse opioids. Participants expressed a high level of satisfaction with the videogame throughout the 4 weeks and agreed with the statement that they would be more likely to attend treatment sessions if the game was present (mean=4.6; standard deviation [SD]=0.7) and would recommend the videogame to other people in treatment (mean=4.2; SD=0.8). All participants recommended playing the videogame as part of treatment at least weekly, with a third recommending playing daily. Self-reported cravings declined over the 4-week period from baseline (mean=12.7; SD=8.4) to Week 4 (mean=9.8; SD=8.3), although the decline was not significant. Although participants stated that they liked the game, one-third of participants had dropped out of the study by the fourth session of gameplay. Preliminary evidence indicates that a motion videogame for addiction recovery may be feasible and acceptable within the context of outpatient treatment, although additional efforts are needed to keep youth in treatment. Future studies are needed to assess the impact of the game on long-term abstinence, treatment adherence, and engagement.

  19. Velocity navigator for motion compensated thermometry.

    Science.gov (United States)

    Maier, Florian; Krafft, Axel J; Yung, Joshua P; Stafford, R Jason; Elliott, Andrew; Dillmann, Rüdiger; Semmler, Wolfhard; Bock, Michael

    2012-02-01

    Proton resonance frequency shift thermometry is sensitive to breathing motion that leads to incorrect phase differences. In this work, a novel velocity-sensitive navigator technique for triggering MR thermometry image acquisition is presented. A segmented echo planar imaging pulse sequence was modified for velocity-triggered temperature mapping. Trigger events were generated when the estimated velocity value was less than 0.2 cm/s during the slowdown phase in parallel to the velocity-encoding direction. To remove remaining high-frequency spikes from pulsation in real time, a Kalman filter was applied to the velocity navigator data. A phantom experiment with heating and an initial volunteer experiment without heating were performed to show the applicability of this technique. Additionally, a breath-hold experiment was conducted for comparison. A temperature rise of ΔT = +37.3°C was seen in the phantom experiment, and a root mean square error (RMSE) outside the heated region of 2.3°C could be obtained for periodic motion. In the volunteer experiment, a RMSE of 2.7°C/2.9°C (triggered vs. breath hold) was measured. A novel velocity navigator with Kalman filter postprocessing in real time significantly improves the temperature accuracy over non-triggered acquisitions and suggests being comparable to a breath-held acquisition. The proposed technique might be clinically applied for monitoring of thermal ablations in abdominal organs.

  20. An equation of motion for bubble growth

    International Nuclear Information System (INIS)

    Lesage, F.J.; Cotton, J.S.; Robinson, A.J.

    2009-01-01

    A mathematical model is developed which describes asymmetric bubble growth, either during boiling or bubble injection from submerged orifices. The model is developed using the integral form of the continuity and momentum equations, resulting in a general expression for the acceleration of the bubble's centre of gravity. The proposed model highlights the need to include acceleration due to an asymmetric gain or loss of mass in order to accurately predict bubble motion. Some scenarios are posed by which the growth of bubbles, particularly idealized bubbles that remain a section of a sphere, must include the fact that bubble growth can be asymmetric. In particular, for approximately hemispherical bubble growth the sum of the forces acting on the bubble is negligible compared with the asymmetric term. Further, for bubble injection from a submerged needle this component in the equation of motion is very significant during the initial rapid growth phase as the bubble issues from the nozzle changing from a near hemisphere to truncated sphere geometry. (author)

  1. Sarjakuvan uudet muodot : Motion Comic ja Motion Novel

    OpenAIRE

    Lassila, Ilkka

    2011-01-01

    Sarjakuva on kehittynyt sen ensimmäisestä julkaisusta 1800-luvun lopusta huimasti vuoteen 2011. Tutkielmassa haluan tuoda esille, miten sarjakuva on viimeisen kahdenkymmenen vuoden aikana muuttanut muotoaan printatusta taiteesta digitaaliseen muotoon sekä miten se on löytänyt viimevuosien aikana myös uuden muodon, Motion Comicin, joka on eräänlainen elävä sarjakuva. Pohdin myös tämän uuden tekniikan tulevaisuuden näkymiä sekä ongelmia joita tämä uusi tekniikka joutuu kohtaamaan. Vaikka s...

  2. Multimodal Pilot Behavior in Multi-Axis Tracking Tasks with Time-Varying Motion Cueing Gains

    Science.gov (United States)

    Zaal, P. M. T; Pool, D. M.

    2014-01-01

    In a large number of motion-base simulators, adaptive motion filters are utilized to maximize the use of the available motion envelope of the motion system. However, not much is known about how the time-varying characteristics of such adaptive filters affect pilots when performing manual aircraft control. This paper presents the results of a study investigating the effects of time-varying motion filter gains on pilot control behavior and performance. An experiment was performed in a motion-base simulator where participants performed a simultaneous roll and pitch tracking task, while the roll and/or pitch motion filter gains changed over time. Results indicate that performance increases over time with increasing motion gains. This increase is a result of a time-varying adaptation of pilots' equalization dynamics, characterized by increased visual and motion response gains and decreased visual lead time constants. Opposite trends are found for decreasing motion filter gains. Even though the trends in both controlled axes are found to be largely the same, effects are less significant in roll. In addition, results indicate minor cross-coupling effects between pitch and roll, where a cueing variation in one axis affects the behavior adopted in the other axis.

  3. Neural correlates of visually induced self-motion illusion in depth.

    Science.gov (United States)

    Kovács, Gyula; Raabe, Markus; Greenlee, Mark W

    2008-08-01

    Optic-flow fields can induce the conscious illusion of self-motion in a stationary observer. Here we used functional magnetic resonance imaging to reveal the differential processing of self- and object-motion in the human brain. Subjects were presented a constantly expanding optic-flow stimulus, composed of disparate red-blue dots, viewed through red-blue glasses to generate a vivid percept of three-dimensional motion. We compared the activity obtained during periods of illusory self-motion with periods of object-motion percept. We found that the right MT+, precuneus, as well as areas located bilaterally along the dorsal part of the intraparietal sulcus and along the left posterior intraparietal sulcus were more active during self-motion perception than during object-motion. Additional signal increases were located in the depth of the left superior frontal sulcus, over the ventral part of the left anterior cingulate, in the depth of the right central sulcus and in the caudate nucleus/putamen. We found no significant deactivations associated with self-motion perception. Our results suggest that the illusory percept of self-motion is correlated with the activation of a network of areas, ranging from motion-specific areas to regions involved in visuo-vestibular integration, visual imagery, decision making, and introspection.

  4. New inverse synthetic aperture radar algorithm for translational motion compensation

    Science.gov (United States)

    Bocker, Richard P.; Henderson, Thomas B.; Jones, Scott A.; Frieden, B. R.

    1991-10-01

    Inverse synthetic aperture radar (ISAR) is an imaging technique that shows real promise in classifying airborne targets in real time under all weather conditions. Over the past few years a large body of ISAR data has been collected and considerable effort has been expended to develop algorithms to form high-resolution images from this data. One important goal of workers in this field is to develop software that will do the best job of imaging under the widest range of conditions. The success of classifying targets using ISAR is predicated upon forming highly focused radar images of these targets. Efforts to develop highly focused imaging computer software have been challenging, mainly because the imaging depends on and is affected by the motion of the target, which in general is not precisely known. Specifically, the target generally has both rotational motion about some axis and translational motion as a whole with respect to the radar. The slant-range translational motion kinematic quantities must be first accurately estimated from the data and compensated before the image can be focused. Following slant-range motion compensation, the image is further focused by determining and correcting for target rotation. The use of the burst derivative measure is proposed as a means to improve the computational efficiency of currently used ISAR algorithms. The use of this measure in motion compensation ISAR algorithms for estimating the slant-range translational motion kinematic quantities of an uncooperative target is described. Preliminary tests have been performed on simulated as well as actual ISAR data using both a Sun 4 workstation and a parallel processing transputer array. Results indicate that the burst derivative measure gives significant improvement in processing speed over the traditional entropy measure now employed.

  5. Rapid sampling of molecular motions with prior information constraints.

    Science.gov (United States)

    Raveh, Barak; Enosh, Angela; Schueler-Furman, Ora; Halperin, Dan

    2009-02-01

    Proteins are active, flexible machines that perform a range of different functions. Innovative experimental approaches may now provide limited partial information about conformational changes along motion pathways of proteins. There is therefore a need for computational approaches that can efficiently incorporate prior information into motion prediction schemes. In this paper, we present PathRover, a general setup designed for the integration of prior information into the motion planning algorithm of rapidly exploring random trees (RRT). Each suggested motion pathway comprises a sequence of low-energy clash-free conformations that satisfy an arbitrary number of prior information constraints. These constraints can be derived from experimental data or from expert intuition about the motion. The incorporation of prior information is very straightforward and significantly narrows down the vast search in the typically high-dimensional conformational space, leading to dramatic reduction in running time. To allow the use of state-of-the-art energy functions and conformational sampling, we have integrated this framework into Rosetta, an accurate protocol for diverse types of structural modeling. The suggested framework can serve as an effective complementary tool for molecular dynamics, Normal Mode Analysis, and other prevalent techniques for predicting motion in proteins. We applied our framework to three different model systems. We show that a limited set of experimentally motivated constraints may effectively bias the simulations toward diverse predicates in an outright fashion, from distance constraints to enforcement of loop closure. In particular, our analysis sheds light on mechanisms of protein domain swapping and on the role of different residues in the motion.

  6. Coupled motions direct electrons along human microsomal P450 Chains.

    Directory of Open Access Journals (Sweden)

    Christopher R Pudney

    2011-12-01

    Full Text Available Protein domain motion is often implicated in biological electron transfer, but the general significance of motion is not clear. Motion has been implicated in the transfer of electrons from human cytochrome P450 reductase (CPR to all microsomal cytochrome P450s (CYPs. Our hypothesis is that tight coupling of motion with enzyme chemistry can signal "ready and waiting" states for electron transfer from CPR to downstream CYPs and support vectorial electron transfer across complex redox chains. We developed a novel approach to study the time-dependence of dynamical change during catalysis that reports on the changing conformational states of CPR. FRET was linked to stopped-flow studies of electron transfer in CPR that contains donor-acceptor fluorophores on the enzyme surface. Open and closed states of CPR were correlated with key steps in the catalytic cycle which demonstrated how redox chemistry and NADPH binding drive successive opening and closing of the enzyme. Specifically, we provide evidence that reduction of the flavin moieties in CPR induces CPR opening, whereas ligand binding induces CPR closing. A dynamic reaction cycle was created in which CPR optimizes internal electron transfer between flavin cofactors by adopting closed states and signals "ready and waiting" conformations to partner CYP enzymes by adopting more open states. This complex, temporal control of enzyme motion is used to catalyze directional electron transfer from NADPH→FAD→FMN→heme, thereby facilitating all microsomal P450-catalysed reactions. Motions critical to the broader biological functions of CPR are tightly coupled to enzyme chemistry in the human NADPH-CPR-CYP redox chain. That redox chemistry alone is sufficient to drive functionally necessary, large-scale conformational change is remarkable. Rather than relying on stochastic conformational sampling, our study highlights a need for tight coupling of motion to enzyme chemistry to give vectorial electron

  7. Rapid sampling of molecular motions with prior information constraints.

    Directory of Open Access Journals (Sweden)

    Barak Raveh

    2009-02-01

    Full Text Available Proteins are active, flexible machines that perform a range of different functions. Innovative experimental approaches may now provide limited partial information about conformational changes along motion pathways of proteins. There is therefore a need for computational approaches that can efficiently incorporate prior information into motion prediction schemes. In this paper, we present PathRover, a general setup designed for the integration of prior information into the motion planning algorithm of rapidly exploring random trees (RRT. Each suggested motion pathway comprises a sequence of low-energy clash-free conformations that satisfy an arbitrary number of prior information constraints. These constraints can be derived from experimental data or from expert intuition about the motion. The incorporation of prior information is very straightforward and significantly narrows down the vast search in the typically high-dimensional conformational space, leading to dramatic reduction in running time. To allow the use of state-of-the-art energy functions and conformational sampling, we have integrated this framework into Rosetta, an accurate protocol for diverse types of structural modeling. The suggested framework can serve as an effective complementary tool for molecular dynamics, Normal Mode Analysis, and other prevalent techniques for predicting motion in proteins. We applied our framework to three different model systems. We show that a limited set of experimentally motivated constraints may effectively bias the simulations toward diverse predicates in an outright fashion, from distance constraints to enforcement of loop closure. In particular, our analysis sheds light on mechanisms of protein domain swapping and on the role of different residues in the motion.

  8. Vision-based human motion analysis: An overview

    NARCIS (Netherlands)

    Poppe, Ronald Walter

    2007-01-01

    Markerless vision-based human motion analysis has the potential to provide an inexpensive, non-obtrusive solution for the estimation of body poses. The significant research effort in this domain has been motivated by the fact that many application areas, including surveillance, Human-Computer

  9. Design and Evaluation of Accelerometer based Motional Feedback

    DEFF Research Database (Denmark)

    Schneider, Henrik; Pranjic, Emilio; Agerkvist, Finn T.

    2015-01-01

    and enable radical design changes in the loudspeaker which can lead to efficiency improvements. In combination this has motivated a revisit of the accelerometer based motional feedback technique. Experimental results on a 8 inch subwoofer show that the total harmonic distortion can be significantly reduced...

  10. The effect of visual-motion time delays on pilot performance in a pursuit tracking task

    Science.gov (United States)

    Miller, G. K., Jr.; Riley, D. R.

    1976-01-01

    A study has been made to determine the effect of visual-motion time delays on pilot performance of a simulated pursuit tracking task. Three interrelated major effects have been identified: task difficulty, motion cues, and time delays. As task difficulty, as determined by airplane handling qualities or target frequency, increases, the amount of acceptable time delay decreases. However, when relatively complete motion cues are included in the simulation, the pilot can maintain his performance for considerably longer time delays. In addition, the number of degrees of freedom of motion employed is a significant factor.

  11. Absence of direction-specific cross-modal visual-auditory adaptation in motion-onset event-related potentials.

    Science.gov (United States)

    Grzeschik, Ramona; Lewald, Jörg; Verhey, Jesko L; Hoffmann, Michael B; Getzmann, Stephan

    2016-01-01

    Adaptation to visual or auditory motion affects within-modality motion processing as reflected by visual or auditory free-field motion-onset evoked potentials (VEPs, AEPs). Here, a visual-auditory motion adaptation paradigm was used to investigate the effect of visual motion adaptation on VEPs and AEPs to leftward motion-onset test stimuli. Effects of visual adaptation to (i) scattered light flashes, and motion in the (ii) same or in the (iii) opposite direction of the test stimulus were compared. For the motion-onset VEPs, i.e. the intra-modal adaptation conditions, direction-specific adaptation was observed--the change-N2 (cN2) and change-P2 (cP2) amplitudes were significantly smaller after motion adaptation in the same than in the opposite direction. For the motion-onset AEPs, i.e. the cross-modal adaptation condition, there was an effect of motion history only in the change-P1 (cP1), and this effect was not direction-specific--cP1 was smaller after scatter than after motion adaptation to either direction. No effects were found for later components of motion-onset AEPs. While the VEP results provided clear evidence for the existence of a direction-specific effect of motion adaptation within the visual modality, the AEP findings suggested merely a motion-related, but not a direction-specific effect. In conclusion, the adaptation of veridical auditory motion detectors by visual motion is not reflected by the AEPs of the present study. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Guide to Three Dimensional Structure and Motion Factorization

    CERN Document Server

    Wang, Guanghui

    2011-01-01

    The problem of structure and motion recovery from image sequences is an important theme in computer vision. Considerable progress has been made in this field during the past two decades, resulting in successful applications in robot navigation, augmented reality, industrial inspection, medical image analysis, and digital entertainment, among other areas. However, many of these methods work only for rigid objects and static scenes. The study of non-rigid structure from motion is not only of academic significance, but also has important practical applications in real-world, nonrigid or dynamic s

  13. Sensing Movement: Microsensors for Body Motion Measurement

    Directory of Open Access Journals (Sweden)

    Hansong Zeng

    2011-01-01

    Full Text Available Recognition of body posture and motion is an important physiological function that can keep the body in balance. Man-made motion sensors have also been widely applied for a broad array of biomedical applications including diagnosis of balance disorders and evaluation of energy expenditure. This paper reviews the state-of-the-art sensing components utilized for body motion measurement. The anatomy and working principles of a natural body motion sensor, the human vestibular system, are first described. Various man-made inertial sensors are then elaborated based on their distinctive sensing mechanisms. In particular, both the conventional solid-state motion sensors and the emerging non solid-state motion sensors are depicted. With their lower cost and increased intelligence, man-made motion sensors are expected to play an increasingly important role in biomedical systems for basic research as well as clinical diagnostics.

  14. Motion Analysis Based on Invertible Rapid Transform

    Directory of Open Access Journals (Sweden)

    J. Turan

    1999-06-01

    Full Text Available This paper presents the results of a study on the use of invertible rapid transform (IRT for the motion estimation in a sequence of images. Motion estimation algorithms based on the analysis of the matrix of states (produced in the IRT calculation are described. The new method was used experimentally to estimate crowd and traffic motion from the image data sequences captured at railway stations and at high ways in large cities. The motion vectors may be used to devise a polar plot (showing velocity magnitude and direction for moving objects where the dominant motion tendency can be seen. The experimental results of comparison of the new motion estimation methods with other well known block matching methods (full search, 2D-log, method based on conventional (cross correlation (CC function or phase correlation (PC function for application of crowd motion estimation are also presented.

  15. Effect of rolling motion on the expansion and contraction loss coefficients

    International Nuclear Information System (INIS)

    Yan, B.H.; Gu, H.Y.

    2013-01-01

    Highlights: ► The expansion and contraction loss coefficients in rolling motion are analyzed. ► Effects of rolling motion on the expansion and contraction loss coefficients are different. ► The spanwise and transverse additional forces contribute slightly to the local loss. ► The oscillations of loss coefficients increase as the strengthening of rolling motion. - Abstract: The sudden expansion and sudden contraction loss coefficients in rolling motion are investigated with CFD code FLUENT. The calculation results are validated with experimental and theoretical results in steady state. The effects of rolling motion on the expansion and contraction loss coefficients are different. The effects of spanwise and transverse additional forces on the expansion and contraction loss coefficients are weak. The effect of velocity oscillation on the contraction loss coefficient is more significant than that on the expansion loss coefficient. The oscillation of local loss coefficient also becomes more and more irregular as the strengthening of rolling motion

  16. A reduced-dimensionality approach to uncovering dyadic modes of body motion in conversations.

    Science.gov (United States)

    Gaziv, Guy; Noy, Lior; Liron, Yuvalal; Alon, Uri

    2017-01-01

    Face-to-face conversations are central to human communication and a fascinating example of joint action. Beyond verbal content, one of the primary ways in which information is conveyed in conversations is body language. Body motion in natural conversations has been difficult to study precisely due to the large number of coordinates at play. There is need for fresh approaches to analyze and understand the data, in order to ask whether dyads show basic building blocks of coupled motion. Here we present a method for analyzing body motion during joint action using depth-sensing cameras, and use it to analyze a sample of scientific conversations. Our method consists of three steps: defining modes of body motion of individual participants, defining dyadic modes made of combinations of these individual modes, and lastly defining motion motifs as dyadic modes that occur significantly more often than expected given the single-person motion statistics. As a proof-of-concept, we analyze the motion of 12 dyads of scientists measured using two Microsoft Kinect cameras. In our sample, we find that out of many possible modes, only two were motion motifs: synchronized parallel torso motion in which the participants swayed from side to side in sync, and still segments where neither person moved. We find evidence of dyad individuality in the use of motion modes. For a randomly selected subset of 5 dyads, this individuality was maintained for at least 6 months. The present approach to simplify complex motion data and to define motion motifs may be used to understand other joint tasks and interactions. The analysis tools developed here and the motion dataset are publicly available.

  17. Effects of Different Heave Motion Components on Pilot Pitch Control Behavior

    Science.gov (United States)

    Zaal, Petrus M. T.; Zavala, Melinda A.

    2016-01-01

    The study described in this paper had two objectives. The first objective was to investigate if a different weighting of heave motion components decomposed at the center of gravity, allowing for a higher fidelity of individual components, would result in pilot manual pitch control behavior and performance closer to that observed with full aircraft motion. The second objective was to investigate if decomposing the heave components at the aircraft's instantaneous center of rotation rather than at the center of gravity could result in additional improvements in heave motion fidelity. Twenty-one general aviation pilots performed a pitch attitude control task in an experiment conducted on the Vertical Motion Simulator at NASA Ames under different hexapod motion conditions. The large motion capability of the Vertical Motion Simulator also allowed for a full aircraft motion condition, which served as a baseline. The controlled dynamics were of a transport category aircraft trimmed close to the stall point. When the ratio of center of gravity pitch heave to center of gravity heave increased in the hexapod motion conditions, pilot manual control behavior and performance became increasingly more similar to what is observed with full aircraft motion. Pilot visual and motion gains significantly increased, while the visual lead time constant decreased. The pilot visual and motion time delays remained approximately constant and decreased, respectively. The neuromuscular damping and frequency both decreased, with their values more similar to what is observed with real aircraft motion when there was an equal weighting of the heave of the center of gravity and heave due to rotations about the center of gravity. In terms of open- loop performance, the disturbance and target crossover frequency increased and decreased, respectively, and their corresponding phase margins remained constant and increased, respectively. The decomposition point of the heave components only had limited

  18. Motion correction options in PET/MRI.

    Science.gov (United States)

    Catana, Ciprian

    2015-05-01

    Subject motion is unavoidable in clinical and research imaging studies. Breathing is the most important source of motion in whole-body PET and MRI studies, affecting not only thoracic organs but also those in the upper and even lower abdomen. The motion related to the pumping action of the heart is obviously relevant in high-resolution cardiac studies. These two sources of motion are periodic and predictable, at least to a first approximation, which means certain techniques can be used to control the motion (eg, by acquiring the data when the organ of interest is relatively at rest). Additionally, nonperiodic and unpredictable motion can also occur during the scan. One obvious limitation of methods relying on external devices (eg, respiratory bellows or the electrocardiogram signal to monitor the respiratory or cardiac cycle, respectively) to trigger or gate the data acquisition is that the complex motion of internal organs cannot be fully characterized. However, detailed information can be obtained using either the PET or MRI data (or both) allowing the more complete characterization of the motion field so that a motion model can be built. Such a model and the information derived from simple external devices can be used to minimize the effects of motion on the collected data. In the ideal case, all the events recorded during the PET scan would be used to generate a motion-free or corrected PET image. The detailed motion field can be used for this purpose by applying it to the PET data before, during, or after the image reconstruction. Integrating all these methods for motion control, characterization, and correction into a workflow that can be used for routine clinical studies is challenging but could potentially be extremely valuable given the improvement in image quality and reduction of motion-related image artifacts. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy.

    Science.gov (United States)

    Cooper, Robert J; Selb, Juliette; Gagnon, Louis; Phillip, Dorte; Schytz, Henrik W; Iversen, Helle K; Ashina, Messoud; Boas, David A

    2012-01-01

    Near-infrared spectroscopy (NIRS) is susceptible to signal artifacts caused by relative motion between NIRS optical fibers and the scalp. These artifacts can be very damaging to the utility of functional NIRS, particularly in challenging subject groups where motion can be unavoidable. A number of approaches to the removal of motion artifacts from NIRS data have been suggested. In this paper we systematically compare the utility of a variety of published NIRS motion correction techniques using a simulated functional activation signal added to 20 real NIRS datasets which contain motion artifacts. Principle component analysis, spline interpolation, wavelet analysis, and Kalman filtering approaches are compared to one another and to standard approaches using the accuracy of the recovered, simulated hemodynamic response function (HRF). Each of the four motion correction techniques we tested yields a significant reduction in the mean-squared error (MSE) and significant increase in the contrast-to-noise ratio (CNR) of the recovered HRF when compared to no correction and compared to a process of rejecting motion-contaminated trials. Spline interpolation produces the largest average reduction in MSE (55%) while wavelet analysis produces the highest average increase in CNR (39%). On the basis of this analysis, we recommend the routine application of motion correction techniques (particularly spline interpolation or wavelet analysis) to minimize the impact of motion artifacts on functional NIRS data.

  20. Tuning self-motion perception in virtual reality with visual illusions.

    Science.gov (United States)

    Bruder, Gerd; Steinicke, Frank; Wieland, Phil; Lappe, Markus

    2012-07-01

    Motion perception in immersive virtual environments significantly differs from the real world. For example, previous work has shown that users tend to underestimate travel distances in virtual environments (VEs). As a solution to this problem, researchers proposed to scale the mapped virtual camera motion relative to the tracked real-world movement of a user until real and virtual motion are perceived as equal, i.e., real-world movements could be mapped with a larger gain to the VE in order to compensate for the underestimation. However, introducing discrepancies between real and virtual motion can become a problem, in particular, due to misalignments of both worlds and distorted space cognition. In this paper, we describe a different approach that introduces apparent self-motion illusions by manipulating optic flow fields during movements in VEs. These manipulations can affect self-motion perception in VEs, but omit a quantitative discrepancy between real and virtual motions. In particular, we consider to which regions of the virtual view these apparent self-motion illusions can be applied, i.e., the ground plane or peripheral vision. Therefore, we introduce four illusions and show in experiments that optic flow manipulation can significantly affect users' self-motion judgments. Furthermore, we show that with such manipulations of optic flow fields the underestimation of travel distances can be compensated.

  1. The effects of tumor motion on planning and delivery of respiratory-gated IMRT

    International Nuclear Information System (INIS)

    Hugo, Geoffrey D.; Agazaryan, Nzhde; Solberg, Timothy D.

    2003-01-01

    The purpose of this study is to investigate the effects of object motion on the planning and delivery of IMRT. Two phantoms containing objects were imaged using CT under a variety of motion conditions. The effects of object motion on axial CT acquisition with and without gating were assessed qualitatively and quantitatively. Measurements of effective slice width and position for the CT scans were made. Mutual information image fusion was adapted for use as a quantitative measure of object deformation in CT images. IMRT plans were generated on the CT scans of the moving and gated object images. These plans were delivered with motion, with and without gating, and the delivery error between the moving deliveries and a nonmoving delivery was assessed using a scalable vector-based index. Motion during CT acquisition produces motion artifact, object deformation, and object mispositioning, which can be substantially reduced with gating. Objects that vary in cross section in the direction of motion exhibit the most deformation in CT images. Mutual information provides a useful quantitative estimate of object deformation. The delivery of IMRT in the presence of target motion significantly alters the delivered dose distribution in relation to the planned distribution. The utilization of gating for IMRT treatment, including imaging, planning, and delivery, significantly reduces the errors introduced by object motion

  2. Motion estimation by data assimilation in reduced dynamic models

    International Nuclear Information System (INIS)

    Drifi, Karim

    2013-01-01

    Motion estimation is a major challenge in the field of image sequence analysis. This thesis is a study of the dynamics of geophysical flows visualized by satellite imagery. Satellite image sequences are currently underused for the task of motion estimation. A good understanding of geophysical flows allows a better analysis and forecast of phenomena in domains such as oceanography and meteorology. Data assimilation provides an excellent framework for achieving a compromise between heterogeneous data, especially numerical models and observations. Hence, in this thesis we set out to apply variational data assimilation methods to estimate motion on image sequences. As one of the major drawbacks of applying these assimilation techniques is the considerable computation time and memory required, we therefore define and use a model reduction method in order to significantly decrease the necessary computation time and the memory. We then explore the possibilities that reduced models provide for motion estimation, particularly the possibility of strictly imposing some known constraints on the computed solutions. In particular, we show how to estimate a divergence free motion with boundary conditions on a complex spatial domain [fr

  3. Can earthquake source inversion benefit from rotational ground motion observations?

    Science.gov (United States)

    Igel, H.; Donner, S.; Reinwald, M.; Bernauer, M.; Wassermann, J. M.; Fichtner, A.

    2015-12-01

    With the prospects of instruments to observe rotational ground motions in a wide frequency and amplitude range in the near future we engage in the question how this type of ground motion observation can be used to solve seismic inverse problems. Here, we focus on the question, whether point or finite source inversions can benefit from additional observations of rotational motions. In an attempt to be fair we compare observations from a surface seismic network with N 3-component translational sensors (classic seismometers) with those obtained with N/2 6-component sensors (with additional colocated 3-component rotational motions). Thus we keep the overall number of traces constant. Synthetic seismograms are calculated for known point- or finite-source properties. The corresponding inverse problem is posed in a probabilistic way using the Shannon information content as a measure how the observations constrain the seismic source properties. The results show that with the 6-C subnetworks the source properties are not only equally well recovered (even that would be benefitial because of the substantially reduced logistics installing N/2 sensors) but statistically significant some source properties are almost always better resolved. We assume that this can be attributed to the fact the (in particular vertical) gradient information is contained in the additional rotational motion components. We compare these effects for strike-slip and normal-faulting type sources. Thus the answer to the question raised is a definite "yes". The challenge now is to demonstrate these effects on real data.

  4. Verification of the Rigidity of the Coulomb Field in Motion

    Science.gov (United States)

    Blinov, S. V.; Bulyzhenkov, I. É.

    2018-06-01

    Laplace, analyzing the stability of the Solar System, was the first to calculate that the velocity of the motion of force fields can significantly exceed the velocity of light waves. In electrodynamics, the Coulomb field should rigidly accompany its source for instantaneous force action in distant regions. Such rigid motion was recently inferred from experiments at the Frascati Beam Test Facility with short beams of relativistic electrons. The comments of the authors on their observations are at odds with the comments of theoreticians on retarded potentials, which motivates a detailed study of the positions of both sides. Predictions of measurements, based on the Lienard-Wiechert potentials, are used to propose an unambiguous scheme for testing the rigidity of the Coulomb field. Realization of the proposed experimental scheme could independently refute or support the assertions of the Italian physicists regarding the rigid motion of Coulomb fields and likewise the nondual field approach to macroscopic reality.

  5. Streaming and particle motion in acoustically-actuated leaky systems

    Science.gov (United States)

    Nama, Nitesh; Barnkob, Rune; Jun Huang, Tony; Kahler, Christian; Costanzo, Francesco

    2017-11-01

    The integration of acoustics with microfluidics has shown great promise for applications within biology, chemistry, and medicine. A commonly employed system to achieve this integration consists of a fluid-filled, polymer-walled microchannel that is acoustically actuated via standing surface acoustic waves. However, despite significant experimental advancements, the precise physical understanding of such systems remains a work in progress. In this work, we investigate the nature of acoustic fields that are setup inside the microchannel as well as the fundamental driving mechanism governing the fluid and particle motion in these systems. We provide an experimental benchmark using state-of-art 3D measurements of fluid and particle motion and present a Lagrangian velocity based temporal multiscale numerical framework to explain the experimental observations. Following verification and validation, we employ our numerical model to reveal the presence of a pseudo-standing acoustic wave that drives the acoustic streaming and particle motion in these systems.

  6. Contrast thresholds for component motion with full and poor attention.

    Science.gov (United States)

    Tsuchiya, Naotsugu; Braun, Jochen

    2007-02-12

    We compare luminance-contrast-masking thresholds for fully and poorly attended stimuli, controlling attention with a demanding concurrent task. We use dynamic displays composed of discrete spatiotemporal wavelets, comparing three conditions ("single," "parallel," and "random"). In contrast to static displays, we do not find that attention modulates the "dipper" regime for masks of low luminance contrast. Nor does attention alter direction-selective masking by multiple wavelets moving in random directions, a condition designed to isolate effects on component motion. However, direction-selective masking by multiple wavelets moving in parallel is significantly reduced by attention. As the latter condition is expected to excite both component and pattern motion mechanisms, this implies that attention may alter the visual representation of pattern motion. In addition, attention exhibits its well-known effect of reducing lateral masking between nearby spatiotemporal wavelets.

  7. Computing motion using resistive networks

    Science.gov (United States)

    Koch, Christof; Luo, Jin; Mead, Carver; Hutchinson, James

    1988-01-01

    Recent developments in the theory of early vision are described which lead from the formulation of the motion problem as an ill-posed one to its solution by minimizing certain 'cost' functions. These cost or energy functions can be mapped onto simple analog and digital resistive networks. It is shown how the optical flow can be computed by injecting currents into resistive networks and recording the resulting stationary voltage distribution at each node. These networks can be implemented in cMOS VLSI circuits and represent plausible candidates for biological vision systems.

  8. The effectiveness of moving masses in reducing the roll motion of floating vessels

    DEFF Research Database (Denmark)

    Montazeri, N.; Mousavizadegan, S.H.; Bakhtiarinejad, F.

    2010-01-01

    Dynamic motions of Ships in severe conditions of sea maybe undesired and should be controlled by some devices. The rollmotion is much more significant than the other oscillations which can affect comfort, safety and efficiency of navigation at sea. This motion is controlled by some common stabili...

  9. S3-3: Misbinding of Color and Motion in Human V2 Revealed by Color-Contingent Motion Adaptation

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2012-10-01

    Full Text Available Wu, Kanai, & Shimojo (2004 Nature 429 262 described a compelling illusion demonstrating a steady-state misbinding of color and motion. Here, we took advantage of the illusion and performed psychophysical and fMRI adaptation experiments to explore the neural mechanism of color-motion misbinding. The stimulus subtended 20 deg by 14 deg of visual angle and contained two sheets of random dots, one sheet moving up and the other moving down. On the upward-moving sheet, dots in the right-end area (4 deg by 14 deg were red, and the rest of the dots were green. On the downward-moving sheet, dots in the right-end area were green, and the rest of the dots were red. When subjects fixated at the center of the stimulus, they bound the color and motion of the dots in the right-end area erroneously–the red dots appeared to move downwards and the green dots appeared to move upwards. In the psychophysical experiment, we measured the color-contingent motion aftereffect in the right-end area after adaptation to the illusory stimulus. A significant aftereffect was observed as if subjects had adapted to the perceived binding of color and motion, rather than the physical binding. For example, after adaptation, stationary red dots appeared to move upwards, and stationary green dots appeared to move downwards. In the fMRI experiment, we measured direction-selective motion adaptation effects in V1, V2, V3, V4, V3A/B, and V5. Relative to other cortical areas, V2 showed a much stronger adaptation effect to the perceived motion direction (rather than the physical direction for both the red and green dots. Significantly, the fMRI adaptation effect in V2 correlated with the color-contingent motion aftereffect across twelve subjects. This study provides the first human evidence that color and motion could be misbound at a very early stage of visual processing.

  10. Enhancing ejection fraction measurement through 4D respiratory motion compensation in cardiac PET imaging

    Science.gov (United States)

    Tang, Jing; Wang, Xinhui; Gao, Xiangzhen; Segars, W. Paul; Lodge, Martin A.; Rahmim, Arman

    2017-06-01

    ECG gated cardiac PET imaging measures functional parameters such as left ventricle (LV) ejection fraction (EF), providing diagnostic and prognostic information for management of patients with coronary artery disease (CAD). Respiratory motion degrades spatial resolution and affects the accuracy in measuring the LV volumes for EF calculation. The goal of this study is to systematically investigate the effect of respiratory motion correction on the estimation of end-diastolic volume (EDV), end-systolic volume (ESV), and EF, especially on the separation of normal and abnormal EFs. We developed a respiratory motion incorporated 4D PET image reconstruction technique which uses all gated-frame data to acquire a motion-suppressed image. Using the standard XCAT phantom and two individual-specific volunteer XCAT phantoms, we simulated dual-gated myocardial perfusion imaging data for normally and abnormally beating hearts. With and without respiratory motion correction, we measured the EDV, ESV, and EF from the cardiac-gated reconstructed images. For all the phantoms, the estimated volumes increased and the biases significantly reduced with motion correction compared with those without. Furthermore, the improvement of ESV measurement in the abnormally beating heart led to better separation of normal and abnormal EFs. The simulation study demonstrated the significant effect of respiratory motion correction on cardiac imaging data with motion amplitude as small as 0.7 cm. The larger the motion amplitude the more improvement respiratory motion correction brought about on the EF measurement. Using data-driven respiratory gating, we also demonstrated the effect of respiratory motion correction on estimating the above functional parameters from list mode patient data. Respiratory motion correction has been shown to improve the accuracy of EF measurement in clinical cardiac PET imaging.

  11. The effect of autogenic training and biofeedback on motion sickness tolerance.

    Science.gov (United States)

    Jozsvai, E E; Pigeau, R A

    1996-10-01

    Motion sickness is characterized by symptoms of vomiting, drowsiness, fatigue and idiosyncratic changes in autonomic nervous system (ANS) responses such as heart rate (HR) and skin temperature (ST). Previous studies found that symptoms of motion sickness are controllable through self-regulation of ANS responses and the best method to teach such control is autogenic-feedback (biofeedback) training. Recent experiments indicated that biofeedback training is ineffective in reducing symptoms of motion sickness or in increasing tolerance to motion. If biofeedback facilitates learning of ANS self-regulation then autogenic training with true feedback (TFB) should lead to better control over ANS responses and better motion tolerance than autogenic training with false feedback (FFB). If there is a relationship between ANS self-regulation and coping with motion stress, a significant correlation should be found between amounts of control over ANS responses and measures of motion tolerance and/or symptoms of motion sickness. There were 3 groups of 6 subjects exposed for 6 weeks to weekly sessions of Coriolis stimulation to induce motion sickness. Between the first and second Coriolis sessions, subjects in the experimental groups received five episodes of autogenic training with either true (group TFB) or false (group FFB) feedback on their HR and ST. The control group (CTL) received no treatment. Subjects learned to control their HR and ST independent of whether they received true or false feedback. Learned control of ST and HR was not related to severity of motion sickness or subject's ability to withstand Coriolis stimulation following treatment. A lack of significant correlation between these variables suggested that subjects were not able to apply their skills of ANS self-regulation in the motion environment, and/ or such skills had little value in reducing symptoms of motion sickness or enhancing their ability to withstand rotations.

  12. Visual motion perception predicts driving hazard perception ability.

    Science.gov (United States)

    Lacherez, Philippe; Au, Sandra; Wood, Joanne M

    2014-02-01

    To examine the basis of previous findings of an association between indices of driving safety and visual motion sensitivity and to examine whether this association could be explained by low-level changes in visual function. A total of 36 visually normal participants (aged 19-80 years) completed a battery of standard vision tests including visual acuity, contrast sensitivity and automated visual fields and two tests of motion perception including sensitivity for movement of a drifting Gabor stimulus and sensitivity for displacement in a random dot kinematogram (Dmin ). Participants also completed a hazard perception test (HPT), which measured participants' response times to hazards embedded in video recordings of real-world driving, which has been shown to be linked to crash risk. Dmin for the random dot stimulus ranged from -0.88 to -0.12 log minutes of arc, and the minimum drift rate for the Gabor stimulus ranged from 0.01 to 0.35 cycles per second. Both measures of motion sensitivity significantly predicted response times on the HPT. In addition, while the relationship involving the HPT and motion sensitivity for the random dot kinematogram was partially explained by the other visual function measures, the relationship with sensitivity for detection of the drifting Gabor stimulus remained significant even after controlling for these variables. These findings suggest that motion perception plays an important role in the visual perception of driving-relevant hazards independent of other areas of visual function and should be further explored as a predictive test of driving safety. Future research should explore the causes of reduced motion perception to develop better interventions to improve road safety. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  13. Impact of patient motion on myocardial perfusion SPECT

    International Nuclear Information System (INIS)

    Huang Kemin; Feng Yanlin; He Xiaohong; Wen Guanghua; Yu Fengwen; Liu Shusheng; Liu Dejun; Yuan Jianwei; Yang Ming

    2008-01-01

    Objective: It is well known that patient motion may cause artifacts in myocardial SPECT images and affect clinical diagnosis. The aim of the study was to evaluate the effects of motion on quality and semi-quantitative results of myocardial perfusion images. Methods: Six healthy volunteers un- derwent myocardial perfusion SPECT. The raw data in each case was manually shifted 1-6 frames and 1 4 pixels, respectively by using the motion correction software. The shifted raw data were then reconstructed. A semi-quantitative software was used to assess the myocardial perfusion of left ventricle. The quality and semi-quantitative results of the tomographic images reconstructed from the raw data with and without motion were compared and analyzed. SPSS 12.0 was used for data analysis. Results: There was no visible artifact and semi-quantitative difference on the data with 1 frame and (or) 1 pixel shift when compared with the original data without shift. The image artifacts became significantly deteriorated when the number of flame and (or) pixel shift was increased. In general, the image artifact of inferior and posterior wall was related to the upward shift, and that of anterior and infero-posterior wall was related to the downward shift, that of septal, anterior, infero-postefior wall and apex was related to right-ward shift, and the septal and infero-posterior wall was related to the left-ward shift. The differences along the x-axis shift were more prominent than that of the y-axis (t=2.848, P<0.01), and the differences in the downward and rightward shift were more severe than the upward and leftward shift (t=2.941, 6.598; all P<0.01), respectively. Conclusions: Image artifacts became significant when there was motion induced by manual shift of more than one flame and (or) one pixel. Different motion directions were closely related to different segments of left ventricle. (authors)

  14. Parallel Molecular Distributed Detection With Brownian Motion.

    Science.gov (United States)

    Rogers, Uri; Koh, Min-Sung

    2016-12-01

    This paper explores the in vivo distributed detection of an undesired biological agent's (BAs) biomarkers by a group of biological sized nanomachines in an aqueous medium under drift. The term distributed, indicates that the system information relative to the BAs presence is dispersed across the collection of nanomachines, where each nanomachine possesses limited communication, computation, and movement capabilities. Using Brownian motion with drift, a probabilistic detection and optimal data fusion framework, coined molecular distributed detection, will be introduced that combines theory from both molecular communication and distributed detection. Using the optimal data fusion framework as a guide, simulation indicates that a sub-optimal fusion method exists, allowing for a significant reduction in implementation complexity while retaining BA detection accuracy.

  15. Motion of shocks through interplanetary streams

    International Nuclear Information System (INIS)

    Burlaga, L.F.; Scudder, J.D.

    1975-01-01

    A model for the motion of flare-generated shocks through interplanetary streams is presented, illustrating the effects of a stream-shock interaction on the shock strength and geometry. It is a gas dynamic calculation based on Whitham's method and on an empirical approximation for the relevant characteristics of streams. The results show that the Mach number of a shock can decrease appreciably to near unity in the interaction region ahead of streams and that the interaction of a spherically symmetric shock with a spiral-shaped corotating stream can cause significant distortions of the initial shock front geometry. The geometry of the February 15--16, 1967, shock discussed by Lepping and Chao (1972) is qualitatively explained by this model

  16. Random motion and Brownian rotation

    International Nuclear Information System (INIS)

    Wyllie, G.

    1980-01-01

    The course is centred on the Brownian motion - the random movement of molecules arising from thermal fluctuations of the surrounding medium - and starts with the classical theory of A. Einstein, M.v. Smoluchowski and P. Langevin. The first part of this article is quite elementary, and several of the questions raised in it have been instructively treated in a much more sophisticated way in recent reviews by Pomeau and Resibois and by Fox. This simple material may nevertheless be helpful to some readers whose main interest lies in approaching the work on Brownian rotation reviewed in the latter part of the present article. The simplest, and most brutally idealised, problem in our field of interest is that of the random walk in one dimension of space. Its solution leads on, through the diffusivity-mobility relation of Einstein, to Langevin's treatment of the Brownian motion. The application of these ideas to the movement of a molecule in a medium of similar molecules is clearly unrealistic, and much energy has been devoted to finding a suitable generalisation. We shall discuss in particular ideas due to Green, Zwanzig and Mori. (orig./WL)

  17. Quantization of Equations of Motion

    Directory of Open Access Journals (Sweden)

    D. Kochan

    2007-01-01

    Full Text Available The Classical Newton-Lagrange equations of motion represent the fundamental physical law of mechanics. Their traditional Lagrangian and/or Hamiltonian precursors when available are essential in the context of quantization. However, there are situations that lack Lagrangian and/or Hamiltonian settings. This paper discusses a description of classical dynamics and presents some irresponsible speculations about its quantization by introducing a certain canonical two-form ?. By its construction ? embodies kinetic energy and forces acting within the system (not their potential. A new type of variational principle employing differential two-form ? is introduced. Variation is performed over “umbilical surfaces“ instead of system histories. It provides correct Newton-Lagrange equations of motion. The quantization is inspired by the Feynman path integral approach. The quintessence is to rearrange it into an “umbilical world-sheet“ functional integral in accordance with the proposed variational principle. In the case of potential-generated forces, the new approach reduces to the standard quantum mechanics. As an example, Quantum Mechanics with friction is analyzed in detail. 

  18. Brownian motion of tethered nanowires.

    Science.gov (United States)

    Ota, Sadao; Li, Tongcang; Li, Yimin; Ye, Ziliang; Labno, Anna; Yin, Xiaobo; Alam, Mohammad-Reza; Zhang, Xiang

    2014-05-01

    Brownian motion of slender particles near a boundary is ubiquitous in biological systems and in nanomaterial assembly, but the complex hydrodynamic interaction in those systems is still poorly understood. Here, we report experimental and computational studies of the Brownian motion of silicon nanowires tethered on a substrate. An optical interference method enabled direct observation of microscopic rotations of the slender bodies in three dimensions with high angular and temporal resolutions. This quantitative observation revealed anisotropic and angle-dependent hydrodynamic wall effects: rotational diffusivity in inclined and azimuth directions follows different power laws as a function of the length, ∼ L(-2.5) and ∼ L(-3), respectively, and is more hindered for smaller inclined angles. In parallel, we developed an implicit simulation technique that takes the complex wire-wall hydrodynamic interactions into account efficiently, the result of which agreed well with the experimentally observed angle-dependent diffusion. The demonstrated techniques provide a platform for studying the microrheology of soft condensed matters, such as colloidal and biological systems near interfaces, and exploring the optimal self-assembly conditions of nanostructures.

  19. Wire Scanner Motion Control Card

    CERN Document Server

    Forde, S E

    2006-01-01

    Scientists require a certain beam quality produced by the accelerator rings at CERN. The discovery potential of LHC is given by the reachable luminosity at its interaction points. The luminosity is maximized by minimizing the beam size. Therefore an accurate beam size measurement is required for optimizing the luminosity. The wire scanner performs very accurate profile measurements, but as it can not be used at full intensity in the LHC ring, it is used for calibrating other profile monitors. As the current wire scanner system, which is used in the present CERN accelerators, has not been made for the required specification of the LHC, a new design of a wire scanner motion control card is part of the LHC wire scanner project. The main functions of this card are to control the wire scanner motion and to acquire the position of the wire. In case of further upgrades at a later stage, it is required to allow an easy update of the firmware, hence the programmable features of FPGAs will be used for this purpose. The...

  20. Attentional Networks and Biological Motion

    Directory of Open Access Journals (Sweden)

    Chandramouli Chandrasekaran

    2010-03-01

    Full Text Available Our ability to see meaningful actions when presented with pointlight traces of human movement is commonly referred to as the perception of biological motion. While traditionalexplanations have emphasized the spontaneous and automatic nature of this ability, morerecent findings suggest that attention may play a larger role than is typically assumed. Intwo studies we show that the speed and accuracy of responding to point-light stimuli is highly correlated with the ability to control selective attention. In our first experiment we measured thresholds for determining the walking direction of a masked point-light figure, and performance on a range of attention-related tasks in the same set of observers. Mask-density thresholds for the direction discrimination task varied quite considerably from observer to observer and this variation was highly correlated with performance on both Stroop and flanker interference tasks. Other components of attention, such as orienting, alerting and visual search efficiency, showed no such relationship. In a second experiment, we examined the relationship between the ability to determine the orientation of unmasked point-light actions and Stroop interference, again finding a strong correlation. Our results are consistent with previous research suggesting that biological motion processing may requite attention, and specifically implicate networks of attention related to executive control and selection.

  1. SU-E-J-115: Correlation of Displacement Vector Fields Calculated by Deformable Image Registration Algorithms with Motion Parameters of CT Images with Well-Defined Targets and Controlled-Motion

    Energy Technology Data Exchange (ETDEWEB)

    Jaskowiak, J; Ahmad, S; Ali, I [University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Alsbou, N [Ohio Northern University, Ada, OH (United States)

    2015-06-15

    significantly and that limited image quality and poor correlation between the motion amplitude and DVF was obtained.

  2. MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.

    Science.gov (United States)

    Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik

    2016-01-01

    Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.

  3. Correction of patient motion in cone-beam CT using 3D-2D registration

    Science.gov (United States)

    Ouadah, S.; Jacobson, M.; Stayman, J. W.; Ehtiati, T.; Weiss, C.; Siewerdsen, J. H.

    2017-12-01

    Cone-beam CT (CBCT) is increasingly common in guidance of interventional procedures, but can be subject to artifacts arising from patient motion during fairly long (~5-60 s) scan times. We present a fiducial-free method to mitigate motion artifacts using 3D-2D image registration that simultaneously corrects residual errors in the intrinsic and extrinsic parameters of geometric calibration. The 3D-2D registration process registers each projection to a prior 3D image by maximizing gradient orientation using the covariance matrix adaptation-evolution strategy optimizer. The resulting rigid transforms are applied to the system projection matrices, and a 3D image is reconstructed via model-based iterative reconstruction. Phantom experiments were conducted using a Zeego robotic C-arm to image a head phantom undergoing 5-15 cm translations and 5-15° rotations. To further test the algorithm, clinical images were acquired with a CBCT head scanner in which long scan times were susceptible to significant patient motion. CBCT images were reconstructed using a penalized likelihood objective function. For phantom studies the structural similarity (SSIM) between motion-free and motion-corrected images was  >0.995, with significant improvement (p  values of uncorrected images. Additionally, motion-corrected images exhibited a point-spread function with full-width at half maximum comparable to that of the motion-free reference image. Qualitative comparison of the motion-corrupted and motion-corrected clinical images demonstrated a significant improvement in image quality after motion correction. This indicates that the 3D-2D registration method could provide a useful approach to motion artifact correction under assumptions of local rigidity, as in the head, pelvis, and extremities. The method is highly parallelizable, and the automatic correction of residual geometric calibration errors provides added benefit that could be valuable in routine use.

  4. Motion compensation in extremity cone-beam CT using a penalized image sharpness criterion

    Science.gov (United States)

    Sisniega, A.; Stayman, J. W.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2017-05-01

    Cone-beam CT (CBCT) for musculoskeletal imaging would benefit from a method to reduce the effects of involuntary patient motion. In particular, the continuing improvement in spatial resolution of CBCT may enable tasks such as quantitative assessment of bone microarchitecture (0.1 mm-0.2 mm detail size), where even subtle, sub-mm motion blur might be detrimental. We propose a purely image based motion compensation method that requires no fiducials, tracking hardware or prior images. A statistical optimization algorithm (CMA-ES) is used to estimate a motion trajectory that optimizes an objective function consisting of an image sharpness criterion augmented by a regularization term that encourages smooth motion trajectories. The objective function is evaluated using a volume of interest (VOI, e.g. a single bone and surrounding area) where the motion can be assumed to be rigid. More complex motions can be addressed by using multiple VOIs. Gradient variance was found to be a suitable sharpness metric for this application. The performance of the compensation algorithm was evaluated in simulated and experimental CBCT data, and in a clinical dataset. Motion-induced artifacts and blurring were significantly reduced across a broad range of motion amplitudes, from 0.5 mm to 10 mm. Structure similarity index (SSIM) against a static volume was used in the simulation studies to quantify the performance of the motion compensation. In studies with translational motion, the SSIM improved from 0.86 before compensation to 0.97 after compensation for 0.5 mm motion, from 0.8 to 0.94 for 2 mm motion and from 0.52 to 0.87 for 10 mm motion (~70% increase). Similar reduction of artifacts was observed in a benchtop experiment with controlled translational motion of an anthropomorphic hand phantom, where SSIM (against a reconstruction of a static phantom) improved from 0.3 to 0.8 for 10 mm motion. Application to a clinical dataset of a lower extremity showed dramatic reduction

  5. Technical note: Correlation of respiratory motion between external patient surface and internal anatomical landmarks

    Science.gov (United States)

    Fayad, Hadi; Pan, Tinsu; Clément, Jean-François; Visvikis, Dimitris

    2011-01-01

    Purpose Current respiratory motion monitoring devices used for motion synchronization in medical imaging and radiotherapy provide either 1D respiratory signals over a specific region or 3D information based on few external or internal markers. On the other hand, newer technology may offer the potential to monitor the entire patient external surface in real time. The main objective of this study was to assess the motion correlation between such an external patient surface and internal anatomical landmarks motion. Methods Four dimensional Computed Tomography (4D CT) volumes for ten patients were used in this study. Anatomical landmarks were manually selected in the thoracic region across the 4D CT datasets by two experts. The landmarks included normal structures as well as the tumour location. In addition, a distance map representing the entire external patient surface, which corresponds to surfaces acquired by a Time of Flight (ToF) camera or similar devices, was created by segmenting the skin of all 4D CT volumes using a thresholding algorithm. Finally, the correlation between the internal landmarks and external surface motion was evaluated for different regions (placement and size) throughout a patient’s surface. Results Significant variability was observed in the motion of the different parts of the external patient surface. The larger motion magnitude was consistently measured in the central regions of the abdominal and the thoracic areas for the different patient datasets considered. The highest correlation coefficients were observed between the motion of these external surface areas and internal landmarks such as the diaphragm and mediastinum structures as well as the tumour location landmarks (0.8 ± 0.18 and 0.72 ± 0.12 for the abdominal and the thoracic regions respectively). Worse correlation was observed when one considered landmarks not significantly influenced by respiratory motion such as the apex and the sternum. Discussion and conclusions There

  6. Motion sickness and otolith sensitivity - A pilot study of habituation to linear acceleration

    Science.gov (United States)

    Potvin, A. R.; Sadoff, M.; Billingham, J.

    1977-01-01

    Astronauts, particularly in Skylab flights, experienced varying degrees of motion sickness lasting 3-5 days. One possible mechanism for this motion sickness adaptation is believed to be a reduction in otolith sensitivity with an attendant reduction in sensory conflict. In an attempt to determine if this hypothesis is valid, a ground-based pilot study was conducted on a vertical linear accelerator. The extent of habituation to accelerations which initially produced motion sickness was evaluated, along with the possible value of habituation training to minimize the space motion sickness problem. Results showed that habituation occurred for 6 of the 8 subjects tested. However, in tests designed to measure dynamic and static otolith function, no significant differences between pre- and post-habituation tests were observed. Cross habituation effects to a standard Coriolis acceleration test were not significant. It is unlikely that ground-based pre-habituation to linear accelerations of the type examined would alter susceptibility to space motion sickness.

  7. Repurposing the Microsoft Kinect for Windows v2 for external head motion tracking for brain PET

    International Nuclear Information System (INIS)

    Noonan, P J; Gunn, R N; Howard, J; Hallett, W A

    2015-01-01

    Medical imaging systems such as those used in positron emission tomography (PET) are capable of spatial resolutions that enable the imaging of small, functionally important brain structures. However, the quality of data from PET brain studies is often limited by subject motion during acquisition. This is particularly challenging for patients with neurological disorders or with dynamic research studies that can last 90 min or more. Restraining head movement during the scan does not eliminate motion entirely and can be unpleasant for the subject. Head motion can be detected and measured using a variety of techniques that either use the PET data itself or an external tracking system. Advances in computer vision arising from the video gaming industry could offer significant benefits when re-purposed for medical applications. A method for measuring rigid body type head motion using the Microsoft Kinect v2 is described with results presenting  ⩽0.5 mm spatial accuracy. Motion data is measured in real-time at 30 Hz using the KinectFusion algorithm. Non-rigid motion is detected using the residual alignment energy data of the KinectFusion algorithm allowing for unreliable motion to be discarded. Motion data is aligned to PET listmode data using injected pulse sequences into the PET/CT gantry allowing for correction of rigid body motion. Pilot data from a clinical dynamic PET/CT examination is shown. (paper)

  8. Multivariate Autoregressive Model Based Heart Motion Prediction Approach for Beating Heart Surgery

    Directory of Open Access Journals (Sweden)

    Fan Liang

    2013-02-01

    Full Text Available A robotic tool can enable a surgeon to conduct off-pump coronary artery graft bypass surgery on a beating heart. The robotic tool actively alleviates the relative motion between the point of interest (POI on the heart surface and the surgical tool and allows the surgeon to operate as if the heart were stationary. Since the beating heart's motion is relatively high-band, with nonlinear and nonstationary characteristics, it is difficult to follow. Thus, precise beating heart motion prediction is necessary for the tracking control procedure during the surgery. In the research presented here, we first observe that Electrocardiography (ECG signal contains the causal phase information on heart motion and non-stationary heart rate dynamic variations. Then, we investigate the relationship between ECG signal and beating heart motion using Granger Causality Analysis, which describes the feasibility of the improved prediction of heart motion. Next, we propose a nonlinear time-varying multivariate vector autoregressive (MVAR model based adaptive prediction method. In this model, the significant correlation between ECG and heart motion enables the improvement of the prediction of sharp changes in heart motion and the approximation of the motion with sufficient detail. Dual Kalman Filters (DKF estimate the states and parameters of the model, respectively. Last, we evaluate the proposed algorithm through comparative experiments using the two sets of collected vivo data.

  9. Repurposing the Microsoft Kinect for Windows v2 for external head motion tracking for brain PET

    Science.gov (United States)

    Noonan, P. J.; Howard, J.; Hallett, W. A.; Gunn, R. N.

    2015-11-01

    Medical imaging systems such as those used in positron emission tomography (PET) are capable of spatial resolutions that enable the imaging of small, functionally important brain structures. However, the quality of data from PET brain studies is often limited by subject motion during acquisition. This is particularly challenging for patients with neurological disorders or with dynamic research studies that can last 90 min or more. Restraining head movement during the scan does not eliminate motion entirely and can be unpleasant for the subject. Head motion can be detected and measured using a variety of techniques that either use the PET data itself or an external tracking system. Advances in computer vision arising from the video gaming industry could offer significant benefits when re-purposed for medical applications. A method for measuring rigid body type head motion using the Microsoft Kinect v2 is described with results presenting  ⩽0.5 mm spatial accuracy. Motion data is measured in real-time at 30 Hz using the KinectFusion algorithm. Non-rigid motion is detected using the residual alignment energy data of the KinectFusion algorithm allowing for unreliable motion to be discarded. Motion data is aligned to PET listmode data using injected pulse sequences into the PET/CT gantry allowing for correction of rigid body motion. Pilot data from a clinical dynamic PET/CT examination is shown.

  10. Event-based motion correction for PET transmission measurements with a rotating point source

    International Nuclear Information System (INIS)

    Zhou, Victor W; Kyme, Andre Z; Meikle, Steven R; Fulton, Roger

    2011-01-01

    Accurate attenuation correction is important for quantitative positron emission tomography (PET) studies. When performing transmission measurements using an external rotating radioactive source, object motion during the transmission scan can distort the attenuation correction factors computed as the ratio of the blank to transmission counts, and cause errors and artefacts in reconstructed PET images. In this paper we report a compensation method for rigid body motion during PET transmission measurements, in which list mode transmission data are motion corrected event-by-event, based on known motion, to ensure that all events which traverse the same path through the object are recorded on a common line of response (LOR). As a result, the motion-corrected transmission LOR may record a combination of events originally detected on different LORs. To ensure that the corresponding blank LOR records events from the same combination of contributing LORs, the list mode blank data are spatially transformed event-by-event based on the same motion information. The number of counts recorded on the resulting blank LOR is then equivalent to the number of counts that would have been recorded on the corresponding motion-corrected transmission LOR in the absence of any attenuating object. The proposed method has been verified in phantom studies with both stepwise movements and continuous motion. We found that attenuation maps derived from motion-corrected transmission and blank data agree well with those of the stationary phantom and are significantly better than uncorrected attenuation data.

  11. Global optimization for motion estimation with applications to ultrasound videos of carotid artery plaques

    Science.gov (United States)

    Murillo, Sergio; Pattichis, Marios; Soliz, Peter; Barriga, Simon; Loizou, C. P.; Pattichis, C. S.

    2010-03-01

    Motion estimation from digital video is an ill-posed problem that requires a regularization approach. Regularization introduces a smoothness constraint that can reduce the resolution of the velocity estimates. The problem is further complicated for ultrasound videos (US), where speckle noise levels can be significant. Motion estimation using optical flow models requires the modification of several parameters to satisfy the optical flow constraint as well as the level of imposed smoothness. Furthermore, except in simulations or mostly unrealistic cases, there is no ground truth to use for validating the velocity estimates. This problem is present in all real video sequences that are used as input to motion estimation algorithms. It is also an open problem in biomedical applications like motion analysis of US of carotid artery (CA) plaques. In this paper, we study the problem of obtaining reliable ultrasound video motion estimates for atherosclerotic plaques for use in clinical diagnosis. A global optimization framework for motion parameter optimization is presented. This framework uses actual carotid artery motions to provide optimal parameter values for a variety of motions and is tested on ten different US videos using two different motion estimation techniques.

  12. Social network size relates to developmental neural sensitivity to biological motion

    Directory of Open Access Journals (Sweden)

    L.A. Kirby

    2018-04-01

    Full Text Available The ability to perceive others’ actions and goals from human motion (i.e., biological motion perception is a critical component of social perception and may be linked to the development of real-world social relationships. Adult research demonstrates two key nodes of the brain’s biological motion perception system—amygdala and posterior superior temporal sulcus (pSTS—are linked to variability in social network properties. The relation between social perception and social network properties, however, has not yet been investigated in middle childhood—a time when individual differences in social experiences and social perception are growing. The aims of this study were to (1 replicate past work showing amygdala and pSTS sensitivity to biological motion in middle childhood; (2 examine age-related changes in the neural sensitivity for biological motion, and (3 determine whether neural sensitivity for biological motion relates to social network characteristics in children. Consistent with past work, we demonstrate a significant relation between social network size and neural sensitivity for biological motion in left pSTS, but do not find age-related change in biological motion perception. This finding offers evidence for the interplay between real-world social experiences and functional brain development and has important implications for understanding disorders of atypical social experience. Keywords: Biological motion, Social networks, Middle childhood, Neural specialization, Brain-behavior relations, pSTS

  13. High-level, but not low-level, motion perception is impaired in patients with schizophrenia.

    Science.gov (United States)

    Kandil, Farid I; Pedersen, Anya; Wehnes, Jana; Ohrmann, Patricia

    2013-01-01

    Smooth pursuit eye movements are compromised in patients with schizophrenia and their first-degree relatives. Although research has demonstrated that the motor components of smooth pursuit eye movements are intact, motion perception has been shown to be impaired. In particular, studies have consistently revealed deficits in performance on tasks specific to the high-order motion area V5 (middle temporal area, MT) in patients with schizophrenia. In contrast, data from low-level motion detectors in the primary visual cortex (V1) have been inconsistent. To differentiate between low-level and high-level visual motion processing, we applied a temporal-order judgment task for motion events and a motion-defined figure-ground segregation task using patients with schizophrenia and healthy controls. Successful judgments in both tasks rely on the same low-level motion detectors in the V1; however, the first task is further processed in the higher-order motion area MT in the magnocellular (dorsal) pathway, whereas the second task requires subsequent computations in the parvocellular (ventral) pathway in visual area V4 and the inferotemporal cortex (IT). These latter structures are supposed to be intact in schizophrenia. Patients with schizophrenia revealed a significantly impaired temporal resolution on the motion-based temporal-order judgment task but only mild impairment in the motion-based segregation task. These results imply that low-level motion detection in V1 is not, or is only slightly, compromised; furthermore, our data restrain the locus of the well-known deficit in motion detection to areas beyond the primary visual cortex.

  14. Operator Fractional Brownian Motion and Martingale Differences

    Directory of Open Access Journals (Sweden)

    Hongshuai Dai

    2014-01-01

    Full Text Available It is well known that martingale difference sequences are very useful in applications and theory. On the other hand, the operator fractional Brownian motion as an extension of the well-known fractional Brownian motion also plays an important role in both applications and theory. In this paper, we study the relation between them. We construct an approximation sequence of operator fractional Brownian motion based on a martingale difference sequence.

  15. Robot motion control in mobile environment

    Institute of Scientific and Technical Information of China (English)

    Iliya V Miroshnik; HUANG Xian-lin(黄显林); HE Jie(贺杰)

    2003-01-01

    With the problem of robot motion control in dynamic environment represented by mobile obstacles,working pieces and external mechanisms considered, a relevant control actions design procedure has been pro-posed to provide coordination of robot motions with respect to the moving external objects so that an extension ofrobot spatial motion techniques and active robotic strategies based on approaches of nonlinear control theory canbe achieved.

  16. Dynamic signatures of driven vortex motion.

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, G. W.; Kwok, W. K.; Lopez, D.; Olsson, R. J.; Paulius, L. M.; Petrean, A. M.; Safar, H.

    1999-09-16

    We probe the dynamic nature of driven vortex motion in superconductors with a new type of transport experiment. An inhomogeneous Lorentz driving force is applied to the sample, inducing vortex velocity gradients that distinguish the hydrodynamic motion of the vortex liquid from the elastic and-plastic motion of the vortex solid. We observe elastic depinning of the vortex lattice at the critical current, and shear induced plastic slip of the lattice at high Lorentz force gradients.

  17. Hand Gesture Recognition with Leap Motion

    OpenAIRE

    Du, Youchen; Liu, Shenglan; Feng, Lin; Chen, Menghui; Wu, Jie

    2017-01-01

    The recent introduction of depth cameras like Leap Motion Controller allows researchers to exploit the depth information to recognize hand gesture more robustly. This paper proposes a novel hand gesture recognition system with Leap Motion Controller. A series of features are extracted from Leap Motion tracking data, we feed these features along with HOG feature extracted from sensor images into a multi-class SVM classifier to recognize performed gesture, dimension reduction and feature weight...

  18. String-like cooperative motion in homogeneous melting.

    Science.gov (United States)

    Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F

    2013-03-28

    Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of "superheated" Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of "homogeneous" melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional "static

  19. Prediction of seismic motion from contained and excavation nuclear detonations

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, R A [Environmental Research Corp., Alexandria, VA (United States)

    1970-05-15

    Capability to predict ground motions from nuclear events is developed on empirical and theoretical bases. Analyses of the experimental data provide basic predictions of peak particle motions and spectra which follow a (yield){sup m} times (distance){sup -n} relationship. The exponents on yield and distance are frequency dependent and derived from experiment and theory. Theory provides a physical understanding of the phenomena which allows extrapolation to off-NTS and atypical events. For example, yield scaling theory predicts significantly higher frequency motions and consequently larger ground accelerations for overburied events such as Gasbuggy, Rulison, Wasp and Wagon Wheel. These conclusions are observed from Gasbuggy (26 kt) which generated ground accelerations comparable to a normal buried event of 200 kt. This result is important in avoiding personal injury and assessing the probability of property damage. Conversely, theory predicts lower ground accelerations and seismic efficiencies for excavation events; these effects are observed from the Cabriolet and Schooner events and consequently predicted for the Sturtevant and Yawl events. With regard to the distance exponent, scattering theory determines a distance exponent which predicts greater attenuation effects on higher frequency motions. This trend is verified experimentally by regression analyses on a large number of data points which determine the distance exponent to range from -1.1 at low frequencies to -1.6 at high frequencies. Results indicate that cube root similarity scaling is not appropriate in the far field except possibly for peak particle displacements at the low frequency end of the spectrum. In addition to the source and transmission factors, current ground motion prediction techniques, on and off-NTS, take into account local site characteristics. Experimental evidence and theoretical models--layered media elastic theory, finite element modeling, and building response modeling

  20. Latent stereopsis for motion in depth in strabismic amblyopia.

    Science.gov (United States)

    Hess, Robert F; Mansouri, Behzad; Thompson, Benjamin; Gheorghiu, Elena

    2009-10-01

    To investigate the residual stereo function of a group of 15 patients with strabismic amblyopia, by using motion-in-depth stimuli that allow discrimination of contributions from local disparity as opposed to those from local velocity mechanisms as a function of the rate of depth change. The stereo performance (percentage correct) was measured as a function of the rate of depth change for dynamic random dot stimuli that were either temporally correlated or uncorrelated. Residual stereoscopic function was demonstrated for motion in depth based on local disparity information in 2 of the 15 observers with strabismic amblyopia. The use of a neutral-density (ND) filter in front of the fixing eye enhanced motion-in-depth performance in four subjects randomly selected from the group that originally displayed only chance performance. This finding was true across temporal rate and for correlated and uncorrelated stimuli, suggesting that it was disparity based. The opposite occurred in a group of normal subjects. In a separate experiment, the hypothesis was that the beneficial effect of the ND filter is due to its contrast and/or mean luminance-reducing effects rather than any interocular time delay that it may introduce and that it is specific to motion-in-depth performance, as similar improvements were not found for static stereopsis. A small proportion of observers with strabismic amblyopia exhibit residual performance for motion in depth, and it is disparity based. Furthermore, some observers with strabismic amblyopia who do not display any significant stereo performance for motion in depth under normal binocular viewing may display above-chance stereo performance if the degree of interocular suppression is reduced. The authors term this phenomenon latent stereopsis.

  1. PRISM, Processing and Review Interface for Strong Motion Data Software

    Science.gov (United States)

    Kalkan, E.; Jones, J. M.; Stephens, C. D.; Ng, P.

    2016-12-01

    A continually increasing number of high-quality digital strong-motion records from stations of the National Strong Motion Project (NSMP) of the U.S. Geological Survey (USGS), as well as data from regional seismic networks within the U.S., calls for automated processing of strong-motion records with human review limited to selected significant or flagged records. The NSMP has developed the Processing and Review Interface for Strong Motion data (PRISM) software to meet this need. PRISM automates the processing of strong-motion records by providing batch-processing capabilities. The PRISM software is platform-independent (coded in Java), open-source, and does not depend on any closed-source or proprietary software. The software consists of two major components: a record processing engine composed of modules for each processing step, and a graphical user interface (GUI) for manual review and processing. To facilitate the use by non-NSMP earthquake engineers and scientists, PRISM (both its processing engine and GUI components) is easy to install and run as a stand-alone system on common operating systems such as Linux, OS X and Windows. PRISM was designed to be flexible and extensible in order to accommodate implementation of new processing techniques. Input to PRISM currently is limited to data files in the Consortium of Organizations for Strong-Motion Observation Systems (COSMOS) V0 format, so that all retrieved acceleration time series need to be converted to this format. Output products include COSMOS V1, V2 and V3 files as: (i) raw acceleration time series in physical units with mean removed (V1), (ii) baseline-corrected and filtered acceleration, velocity, and displacement time series (V2), and (iii) response spectra, Fourier amplitude spectra and common earthquake-engineering intensity measures (V3). A thorough description of the record processing features supported by PRISM is presented with examples and validation results. All computing features have been

  2. Motion dazzle and camouflage as distinct anti-predator defenses

    Directory of Open Access Journals (Sweden)

    Stevens Martin

    2011-11-01

    Full Text Available Abstract Background Camouflage patterns that hinder detection and/or recognition by antagonists are widely studied in both human and animal contexts. Patterns of contrasting stripes that purportedly degrade an observer's ability to judge the speed and direction of moving prey ('motion dazzle' are, however, rarely investigated. This is despite motion dazzle having been fundamental to the appearance of warships in both world wars and often postulated as the selective agent leading to repeated patterns on many animals (such as zebra and many fish, snake, and invertebrate species. Such patterns often appear conspicuous, suggesting that protection while moving by motion dazzle might impair camouflage when stationary. However, the relationship between motion dazzle and camouflage is unclear because disruptive camouflage relies on high-contrast markings. In this study, we used a computer game with human subjects detecting and capturing either moving or stationary targets with different patterns, in order to provide the first empirical exploration of the interaction of these two protective coloration mechanisms. Results Moving targets with stripes were caught significantly less often and missed more often than targets with camouflage patterns. However, when stationary, targets with camouflage markings were captured less often and caused more false detections than those with striped patterns, which were readily detected. Conclusions Our study provides the clearest evidence to date that some patterns inhibit the capture of moving targets, but that camouflage and motion dazzle are not complementary strategies. Therefore, the specific coloration that evolves in animals will depend on how the life history and ontogeny of each species influence the trade-off between the costs and benefits of motion dazzle and camouflage.

  3. Motion dazzle and camouflage as distinct anti-predator defenses.

    Science.gov (United States)

    Stevens, Martin; Searle, W Tom L; Seymour, Jenny E; Marshall, Kate L A; Ruxton, Graeme D

    2011-11-25

    Camouflage patterns that hinder detection and/or recognition by antagonists are widely studied in both human and animal contexts. Patterns of contrasting stripes that purportedly degrade an observer's ability to judge the speed and direction of moving prey ('motion dazzle') are, however, rarely investigated. This is despite motion dazzle having been fundamental to the appearance of warships in both world wars and often postulated as the selective agent leading to repeated patterns on many animals (such as zebra and many fish, snake, and invertebrate species). Such patterns often appear conspicuous, suggesting that protection while moving by motion dazzle might impair camouflage when stationary. However, the relationship between motion dazzle and camouflage is unclear because disruptive camouflage relies on high-contrast markings. In this study, we used a computer game with human subjects detecting and capturing either moving or stationary targets with different patterns, in order to provide the first empirical exploration of the interaction of these two protective coloration mechanisms. Moving targets with stripes were caught significantly less often and missed more often than targets with camouflage patterns. However, when stationary, targets with camouflage markings were captured less often and caused more false detections than those with striped patterns, which were readily detected. Our study provides the clearest evidence to date that some patterns inhibit the capture of moving targets, but that camouflage and motion dazzle are not complementary strategies. Therefore, the specific coloration that evolves in animals will depend on how the life history and ontogeny of each species influence the trade-off between the costs and benefits of motion dazzle and camouflage.

  4. MotionExplorer: exploratory search in human motion capture data based on hierarchical aggregation.

    Science.gov (United States)

    Bernard, Jürgen; Wilhelm, Nils; Krüger, Björn; May, Thorsten; Schreck, Tobias; Kohlhammer, Jörn

    2013-12-01

    We present MotionExplorer, an exploratory search and analysis system for sequences of human motion in large motion capture data collections. This special type of multivariate time series data is relevant in many research fields including medicine, sports and animation. Key tasks in working with motion data include analysis of motion states and transitions, and synthesis of motion vectors by interpolation and combination. In the practice of research and application of human motion data, challenges exist in providing visual summaries and drill-down functionality for handling large motion data collections. We find that this domain can benefit from appropriate visual retrieval and analysis support to handle these tasks in presence of large motion data. To address this need, we developed MotionExplorer together with domain experts as an exploratory search system based on interactive aggregation and visualization of motion states as a basis for data navigation, exploration, and search. Based on an overview-first type visualization, users are able to search for interesting sub-sequences of motion based on a query-by-example metaphor, and explore search results by details on demand. We developed MotionExplorer in close collaboration with the targeted users who are researchers working on human motion synthesis and analysis, including a summative field study. Additionally, we conducted a laboratory design study to substantially improve MotionExplorer towards an intuitive, usable and robust design. MotionExplorer enables the search in human motion capture data with only a few mouse clicks. The researchers unanimously confirm that the system can efficiently support their work.

  5. Brownian motion and stochastic calculus

    CERN Document Server

    Karatzas, Ioannis

    1998-01-01

    This book is designed as a text for graduate courses in stochastic processes. It is written for readers familiar with measure-theoretic probability and discrete-time processes who wish to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed. The power of this calculus is illustrated by results concerning representations of martingales and change of measure on Wiener space, and these in turn permit a presentation of recent advances in financial economics (option pricing and consumption/investment optimization). This book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The text is complemented by a large num...

  6. Material motion capabilities for SAREF

    International Nuclear Information System (INIS)

    DeVolpi, A.

    1976-01-01

    The SAREF program requires a panoply of diagnostic techniques in order to obtain needed experimental information. After surveying various fuel motion monitoring techniques, the hodoscope has been chosen as the reference device because of its proven record and because data extrapolations and calculations indicate adequate response for small and large test sections. A hodoscope system for STF would be designed to perform both fuel and clad monitoring during transients. It would also provide distinctive fuel and clad radiographic information before and after transients. Large-test resolution of less than 100 gm and time resolution down to 0.1 msec are projected. Two orthogonal collimators for three-dimensional viewing would each cover 180 x 31 cm viewing area with a combined total of 6000 detectors

  7. Motion Primitives for Action Recognition

    DEFF Research Database (Denmark)

    Fihl, Preben; Holte, Michael Boelstoft; Moeslund, Thomas B.

    2007-01-01

    the actions as a sequence of temporal isolated instances, denoted primitives. These primitives are each defined by four features extracted from motion images. The primitives are recognized in each frame based on a trained classifier resulting in a sequence of primitives. From this sequence we recognize......The number of potential applications has made automatic recognition of human actions a very active research area. Different approaches have been followed based on trajectories through some state space. In this paper we also model an action as a trajectory through a state space, but we represent...... different temporal actions using a probabilistic Edit Distance method. The method is tested on different actions with and without noise and the results show recognition rates of 88.7% and 85.5%, respectively....

  8. Action Recognition using Motion Primitives

    DEFF Research Database (Denmark)

    Moeslund, Thomas B.; Fihl, Preben; Holte, Michael Boelstoft

    the actions as a sequence of temporal isolated instances, denoted primitives. These primitives are each defined by four features extracted from motion images. The primitives are recognized in each frame based on a trained classifier resulting in a sequence of primitives. From this sequence we recognize......The number of potential applications has made automatic recognition of human actions a very active research area. Different approaches have been followed based on trajectories through some state space. In this paper we also model an action as a trajectory through a state space, but we represent...... different temporal actions using a probabilistic Edit Distance method. The method is tested on different actions with and without noise and the results show recognizing rates of 88.7% and 85.5%, respectively....

  9. Superluminal motion of extragalactic objects

    Energy Technology Data Exchange (ETDEWEB)

    Matveenko, L.I. (AN SSSR, Moscow. Inst. Kosmicheskikh Issledovanij)

    1983-07-01

    Extragalactic objects with active nuclei are reviewed. Experimental data are obtained with the method of superfar radiointerferometry. The main peculiarities of the complex structure of Seyfert galaxies, quasars and lacertae objects are considered: the distribution of radiobrightness, spectra, alteration of the density of radiation flux and the distance between the components of sources. The superluminal velocities of component divergence observed are explained by different reasons: fast motion of components considerable difference of the Hubble component or non-cosmologic nature of the red shift of objects, effect of echoreflection of radiation, gravitation lens, systematic alteration of the optical thickness of the object, synchronouys radiation of electrons in the dipole magnetic field, as well as different kinematic illusions connected with the final time of signal propagation.

  10. Superluminal motion of extragalactic objects

    International Nuclear Information System (INIS)

    Matveenko, L.I.

    1983-01-01

    Extragalactic objects with active nuclei are reviewed. Experimental data are obtained with the method of superfar radiointerferometry. The main peculiarities of the complex strUcture of Seyfert galaxies quasars and lacertae ob ects are considered: the distribution of radiobrightness, spectra, alteration of the density of radiation flux and the distance between the components of sources. The superluminal velocities of component divergence observed are explained by different reasons: fast motion of components considerable difference of the Hubble component or non-cosmologic nature of the red shift of objects, effect of echoreflection of radiation, gravitation lens, systematic alteration of the optical thickness of the object, synchronoUs radiation of electrons in the dipole magnetic field, as well as different kinematic illusions connected with the final time of signal propagation

  11. Unconscious Local Motion Alters Global Image Speed

    Science.gov (United States)

    Khuu, Sieu K.; Chung, Charles Y. L.; Lord, Stephanie; Pearson, Joel

    2014-01-01

    Accurate motion perception of self and object speed is crucial for successful interaction in the world. The context in which we make such speed judgments has a profound effect on their accuracy. Misperceptions of motion speed caused by the context can have drastic consequences in real world situations, but they also reveal much about the underlying mechanisms of motion perception. Here we show that motion signals suppressed from awareness can warp simultaneous conscious speed perception. In Experiment 1, we measured global speed discrimination thresholds using an annulus of 8 local Gabor elements. We show that physically removing local elements from the array attenuated global speed discrimination. However, removing awareness of the local elements only had a small effect on speed discrimination. That is, unconscious local motion elements contributed to global conscious speed perception. In Experiment 2 we measured the global speed of the moving Gabor patterns, when half the elements moved at different speeds. We show that global speed averaging occurred regardless of whether local elements were removed from awareness, such that the speed of invisible elements continued to be averaged together with the visible elements to determine the global speed. These data suggest that contextual motion signals outside of awareness can both boost and affect our experience of motion speed, and suggest that such pooling of motion signals occurs before the conscious extraction of the surround motion speed. PMID:25503603

  12. An Integrated Approach to Motion and Sound

    National Research Council Canada - National Science Library

    Hahn, James K; Geigel, Joe; Lee, Jong W; Gritz, Larry; Takala, Tapio; Mishra, Suneil

    1995-01-01

    Until recently, sound has been given little attention in computer graphics and related domains of computer animation and virtual environments, although sounds which are properly synchronized to motion...

  13. Exoskeleton Motion Control for Children Walking Rehabilitation

    Directory of Open Access Journals (Sweden)

    Cristina Ploscaru

    2016-06-01

    Full Text Available This paper introduces a quick method for motion control of an exoskeleton used on children walking rehabilitation with ages between four to seven years old. The exoskeleton used on this purpose has six servomotors which work independently and actuates each human lower limb joints (hips, knees and ankles. For obtaining the desired motion laws, a high-speed motion analysis equipment was used. The experimental rough data were mathematically modeled in order to obtain the proper motion equations for controlling the exoskeleton servomotors.

  14. Ground Motion Models for Future Linear Colliders

    International Nuclear Information System (INIS)

    Seryi, Andrei

    2000-01-01

    Optimization of the parameters of a future linear collider requires comprehensive models of ground motion. Both general models of ground motion and specific models of the particular site and local conditions are essential. Existing models are not completely adequate, either because they are too general, or because they omit important peculiarities of ground motion. The model considered in this paper is based on recent ground motion measurements performed at SLAC and at other accelerator laboratories, as well as on historical data. The issues to be studied for the models to become more predictive are also discussed

  15. Perception of biological motion in visual agnosia

    Directory of Open Access Journals (Sweden)

    Elisabeth eHuberle

    2012-08-01

    Full Text Available Over the past twenty-five years, visual processing has been discussed in the context of the dual stream hypothesis consisting of a ventral (‘what' and a dorsal ('where' visual information processing pathway. Patients with brain damage of the ventral pathway typically present with signs of visual agnosia, the inability to identify and discriminate objects by visual exploration, but show normal perception of motion perception. A dissociation between the perception of biological motion and non-biological motion has been suggested: Perception of biological motion might be impaired when 'non-biological' motion perception is intact and vice versa. The impact of object recognition on the perception of biological motion remains unclear. We thus investigated this question in a patient with severe visual agnosia, who showed normal perception of non-biological motion. The data suggested that the patient's perception of biological motion remained largely intact. However, when tested with objects constructed of coherently moving dots (‘Shape-from-Motion’, recognition was severely impaired. The results are discussed in the context of possible mechanisms of biological motion perception.

  16. Motion video analysis using planar parallax

    Science.gov (United States)

    Sawhney, Harpreet S.

    1994-04-01

    Motion and structure analysis in video sequences can lead to efficient descriptions of objects and their motions. Interesting events in videos can be detected using such an analysis--for instance independent object motion when the camera itself is moving, figure-ground segregation based on the saliency of a structure compared to its surroundings. In this paper we present a method for 3D motion and structure analysis that uses a planar surface in the environment as a reference coordinate system to describe a video sequence. The motion in the video sequence is described as the motion of the reference plane, and the parallax motion of all the non-planar components of the scene. It is shown how this method simplifies the otherwise hard general 3D motion analysis problem. In addition, a natural coordinate system in the environment is used to describe the scene which can simplify motion based segmentation. This work is a part of an ongoing effort in our group towards video annotation and analysis for indexing and retrieval. Results from a demonstration system being developed are presented.

  17. Figure-ground segregation modulates apparent motion.

    Science.gov (United States)

    Ramachandran, V S; Anstis, S

    1986-01-01

    We explored the relationship between figure-ground segmentation and apparent motion. Results suggest that: static elements in the surround can eliminate apparent motion of a cluster of dots in the centre, but only if the cluster and surround have similar "grain" or texture; outlines that define occluding surfaces are taken into account by the motion mechanism; the brain uses a hierarchy of precedence rules in attributing motion to different segments of the visual scene. Being designated as "figure" confers a high rank in this scheme of priorities.

  18. Modeling repetitive motions using structured light.

    Science.gov (United States)

    Xu, Yi; Aliaga, Daniel G

    2010-01-01

    Obtaining models of dynamic 3D objects is an important part of content generation for computer graphics. Numerous methods have been extended from static scenarios to model dynamic scenes. If the states or poses of the dynamic object repeat often during a sequence (but not necessarily periodically), we call such a repetitive motion. There are many objects, such as toys, machines, and humans, undergoing repetitive motions. Our key observation is that when a motion-state repeats, we can sample the scene under the same motion state again but using a different set of parameters; thus, providing more information of each motion state. This enables robustly acquiring dense 3D information difficult for objects with repetitive motions using only simple hardware. After the motion sequence, we group temporally disjoint observations of the same motion state together and produce a smooth space-time reconstruction of the scene. Effectively, the dynamic scene modeling problem is converted to a series of static scene reconstructions, which are easier to tackle. The varying sampling parameters can be, for example, structured-light patterns, illumination directions, and viewpoints resulting in different modeling techniques. Based on this observation, we present an image-based motion-state framework and demonstrate our paradigm using either a synchronized or an unsynchronized structured-light acquisition method.

  19. Model-Based Motion Tracking of Infants

    DEFF Research Database (Denmark)

    Olsen, Mikkel Damgaard; Herskind, Anna; Nielsen, Jens Bo

    2014-01-01

    Even though motion tracking is a widely used technique to analyze and measure human movements, only a few studies focus on motion tracking of infants. In recent years, a number of studies have emerged focusing on analyzing the motion pattern of infants, using computer vision. Most of these studies...... are based on 2D images, but few are based on 3D information. In this paper, we present a model-based approach for tracking infants in 3D. The study extends a novel study on graph-based motion tracking of infants and we show that the extension improves the tracking results. A 3D model is constructed...

  20. The open quantum Brownian motions

    International Nuclear Information System (INIS)

    Bauer, Michel; Bernard, Denis; Tilloy, Antoine

    2014-01-01

    Using quantum parallelism on random walks as the original seed, we introduce new quantum stochastic processes, the open quantum Brownian motions. They describe the behaviors of quantum walkers—with internal degrees of freedom which serve as random gyroscopes—interacting with a series of probes which serve as quantum coins. These processes may also be viewed as the scaling limit of open quantum random walks and we develop this approach along three different lines: the quantum trajectory, the quantum dynamical map and the quantum stochastic differential equation. We also present a study of the simplest case, with a two level system as an internal gyroscope, illustrating the interplay between the ballistic and diffusive behaviors at work in these processes. Notation H z : orbital (walker) Hilbert space, C Z in the discrete, L 2 (R) in the continuum H c : internal spin (or gyroscope) Hilbert space H sys =H z ⊗H c : system Hilbert space H p : probe (or quantum coin) Hilbert space, H p =C 2 ρ t tot : density matrix for the total system (walker + internal spin + quantum coins) ρ-bar t : reduced density matrix on H sys : ρ-bar t =∫dxdy ρ-bar t (x,y)⊗|x〉 z 〈y| ρ-hat t : system density matrix in a quantum trajectory: ρ-hat t =∫dxdy ρ-hat t (x,y)⊗|x〉 z 〈y|. If diagonal and localized in position: ρ-hat t =ρ t ⊗|X t 〉 z 〈X t | ρ t : internal density matrix in a simple quantum trajectory X t : walker position in a simple quantum trajectory B t : normalized Brownian motion ξ t , ξ t † : quantum noises (paper)

  1. Altered spinal motion in low back pain associated with lumbar strain and spondylosis.

    Science.gov (United States)

    Cheng, Joseph S; Carr, Christopher B; Wong, Cyrus; Sharma, Adrija; Mahfouz, Mohamed R; Komistek, Richard D

    2013-04-01

    Study Design We present a patient-specific computer model created to translate two-dimensional (2D) fluoroscopic motion data into three-dimensional (3D) in vivo biomechanical motion data. Objective The aim of this study is to determine the in vivo biomechanical differences in patients with and without acute low back pain. Current dynamic imaging of the lumbar spine consists of flexion-extension static radiographs, which lack sensitivity to out-of-plane motion and provide incomplete information on the overall spinal motion. Using a novel technique, in-plane and coupled out-of-plane rotational motions are quantified in the lumbar spine. Methods A total of 30 participants-10 healthy asymptomatic subjects, 10 patients with low back pain without spondylosis radiologically, and 10 patients with low back pain with radiological spondylosis-underwent dynamic fluoroscopy with a 3D-to-2D image registration technique to create a 3D, patient-specific bone model to analyze in vivo kinematics using the maximal absolute rotational magnitude and the path of rotation. Results Average overall in-plane rotations (L1-L5) in patients with low back pain were less than those asymptomatic, with the dominant loss of motion during extension. Those with low back pain also had significantly greater out-of-plane rotations, with 5.5 degrees (without spondylosis) and 7.1 degrees (with spondylosis) more out-of-plane rotational motion per level compared with asymptomatic subjects. Conclusions Subjects with low back pain exhibited greater out-of-plane intersegmental motion in their lumbar spine than healthy asymptomatic subjects. Conventional flexion-extension radiographs are inadequate for evaluating motion patterns of lumbar strain, and assessment of 3D in vivo spinal motion may elucidate the association of abnormal vertebral motions and clinically significant low back pain.

  2. A multistage motion vector processing method for motion-compensated frame interpolation.

    Science.gov (United States)

    Huang, Ai- Mei; Nguyen, Truong Q

    2008-05-01

    In this paper, a novel, low-complexity motion vector processing algorithm at the decoder is proposed for motion-compensated frame interpolation or frame rate up-conversion. We address the problems of having broken edges and deformed structures in an interpolated frame by hierarchically refining motion vectors on different block sizes. Our method explicitly considers the reliability of each received motion vector and has the capability of preserving the structure information. This is achieved by analyzing the distribution of residual energies and effectively merging blocks that have unreliable motion vectors. The motion vector reliability information is also used as a prior knowledge in motion vector refinement using a constrained vector median filter to avoid choosing identical unreliable one. We also propose using chrominance information in our method. Experimental results show that the proposed scheme has better visual quality and is also robust, even in video sequences with complex scenes and fast motion.

  3. Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms, 1933-1994

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Strong Motion Earthquake Data Values of Digitized Strong-Motion Accelerograms is a database of over 15,000 digitized and processed accelerograph records from...

  4. Behavioral methods of alleviating motion sickness: effectiveness of controlled breathing and a music audiotape.

    Science.gov (United States)

    Yen Pik Sang, Fleur D; Billar, Jessica P; Golding, John F; Gresty, Michael A

    2003-01-01

    Behavioral countermeasures for motion sickness would be advantageous because of the side effects of antiemetic drugs, but few alternative treatments are available. The objective of this study was to compare the effectiveness of controlling breathing and listening to a music audiotape designed to reduce motion sickness symptoms, on increasing tolerance to motion-induced nausea. Twenty-four healthy subjects were exposed to nauseogenic Coriolis stimulation on a rotating turntable under three conditions: whilst focusing on controlling breathing; listening to a music audiotape; or without intervention (control). The three conditions were performed by each subject according to a replicated factorial design at 1-week intervals at the same time of day. Ratings of motion sickness were obtained every 30 seconds. Once a level of mild nausea was reached subjects commenced controlling breathing or listened to the music audiotape. Motion was stopped after the onset of moderate nausea. Mean (+/- SD) motion exposure time in minutes tolerated before the onset of moderate nausea was significantly longer (p music (10.4 +/- 5.6 min) compared with control (9.2 +/- 5.9 min). Both controlling breathing and the music audiotape provided significant protection against motion sickness and with similar effectiveness. These nonpharmacologic countermeasures are only half as effective as standard doses of anti-motion sickness drugs, such as oral scopolamine; however, they are easy to implement and free of side effects.

  5. Three-dimensional analysis of relationship between relative orientation and motion modes

    Directory of Open Access Journals (Sweden)

    Fan Shijie

    2014-12-01

    Full Text Available Target motion modes have a close relationship with the relative orientation of missile-to-target in three-dimensional highly maneuvering target interception. From the perspective of relationship between the sensor coordinate system and the target body coordinate system, a basic model of sensor is stated and the definition of relative angular velocity between the two coordinate systems is introduced firstly. Then, the three-dimensional analytic expressions of relative angular velocity for different motion modes are derived and simplified by analyzing the influences of target centroid motion, rotation around centroid and relative motion. Finally, the relationships of the relative angular velocity directions and values with motion modes are discussed. Simulation results validate the rationality of the theoretical analysis. It is demonstrated that there are significant differences of the relative orientation in different motion modes which include luxuriant information about motion modes. The conclusions are significant for the research of motion mode identification, maneuver detection, maneuvering target tracking and interception using target signatures.

  6. An externally and internally deformable, programmable lung motion phantom

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Yam; Sawant, Amit, E-mail: amit.sawant@utsouthwestern.edu [UT Southwestern Medical Center, University of Texas, Dallas, Texas 75390 (United States)

    2015-05-15

    .25 mm RMS error. The motion trajectories of internal and external radio-opaque markers as measured by fluoroscopy were found to be highly correlated (R > 0.95). Using the phantom, it was demonstrated that the motion trajectories of regions-of-interest on the surface as measured by VisionRT are highly consistent with corresponding fluoroscopically acquired surface marker trajectories, with RMS errors within 0.26 mm. Furthermore, it was shown that the trajectories of external and internal marker trajectories derived from NiftyReg deformation vector fields were within 1 mm root mean square errors comparing to trajectories obtained by segmenting markers from individual fluoro frames. Finally, it was shown that while 4DCT can be used to localize internal markers for sinusoidal motion with reasonable accuracy, the localization error increases significantly (by a factor of ∼2) in the presence of cycle-to-cycle variations that are observed in patient-derived respiratory motion. Conclusions: The authors have developed a realistic externally and internally deformable, programmable lung phantom that will serve as a valuable tool for clinical and investigational motion management studies in thoracic and abdominal radiation therapies.

  7. Surrogate-driven deformable motion model for organ motion tracking in particle radiation therapy

    Science.gov (United States)

    Fassi, Aurora; Seregni, Matteo; Riboldi, Marco; Cerveri, Pietro; Sarrut, David; Battista Ivaldi, Giovanni; Tabarelli de Fatis, Paola; Liotta, Marco; Baroni, Guido

    2015-02-01

    The aim of this study is the development and experimental testing of a tumor tracking method for particle radiation therapy, providing the daily respiratory dynamics of the patient’s thoraco-abdominal anatomy as a function of an external surface surrogate combined with an a priori motion model. The proposed tracking approach is based on a patient-specific breathing motion model, estimated from the four-dimensional (4D) planning computed tomography (CT) through deformable image registration. The model is adapted to the interfraction baseline variations in the patient’s anatomical configuration. The driving amplitude and phase parameters are obtained intrafractionally from a respiratory surrogate signal derived from the external surface displacement. The developed technique was assessed on a dataset of seven lung cancer patients, who underwent two repeated 4D CT scans. The first 4D CT was used to build the respiratory motion model, which was tested on the second scan. The geometric accuracy in localizing lung lesions, mediated over all breathing phases, ranged between 0.6 and 1.7 mm across all patients. Errors in tracking the surrounding organs at risk, such as lungs, trachea and esophagus, were lower than 1.3 mm on average. The median absolute variation in water equivalent path length (WEL) within the target volume did not exceed 1.9 mm-WEL for simulated particle beams. A significant improvement was achieved compared with error compensation based on standard rigid alignment. The present work can be regarded as a feasibility study for the potential extension of tumor tracking techniques in particle treatments. Differently from current tracking methods applied in conventional radiotherapy, the proposed approach allows for the dynamic localization of all anatomical structures scanned in the planning CT, thus providing complete information on density and WEL variations required for particle beam range adaptation.

  8. A Novel Respiratory Motion Perturbation Model Adaptable to Patient Breathing Irregularities

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Amy [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Wei, Jie [Department of Computer Science, City College of New York, New York, New York (United States); Gaebler, Carl P.; Huang, Hailiang; Olek, Devin [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Li, Guang, E-mail: lig2@mskcc.org [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2016-12-01

    Purpose: To develop a physical, adaptive motion perturbation model to predict tumor motion using feedback from dynamic measurement of breathing conditions to compensate for breathing irregularities. Methods and Materials: A novel respiratory motion perturbation (RMP) model was developed to predict tumor motion variations caused by breathing irregularities. This model contained 2 terms: the initial tumor motion trajectory, measured from 4-dimensional computed tomography (4DCT) images, and motion perturbation, calculated from breathing variations in tidal volume (TV) and breathing pattern (BP). The motion perturbation was derived from the patient-specific anatomy, tumor-specific location, and time-dependent breathing variations. Ten patients were studied, and 2 amplitude-binned 4DCT images for each patient were acquired within 2 weeks. The motion trajectories of 40 corresponding bifurcation points in both 4DCT images of each patient were obtained using deformable image registration. An in-house 4D data processing toolbox was developed to calculate the TV and BP as functions of the breathing phase. The motion was predicted from the simulation 4DCT scan to the treatment 4DCT scan, and vice versa, resulting in 800 predictions. For comparison, noncorrected motion differences and the predictions from a published 5-dimensional model were used. Results: The average motion range in the superoinferior direction was 9.4 ± 4.4 mm, the average ΔTV ranged from 10 to 248 mm{sup 3} (−26% to 61%), and the ΔBP ranged from 0 to 0.2 (−71% to 333%) between the 2 4DCT scans. The mean noncorrected motion difference was 2.0 ± 2.8 mm between 2 4DCT motion trajectories. After applying the RMP model, the mean motion difference was reduced significantly to 1.2 ± 1.8 mm (P=.0018), a 40% improvement, similar to the 1.2 ± 1.8 mm (P=.72) predicted with the 5-dimensional model. Conclusions: A novel physical RMP model was developed with an average accuracy of 1.2 ± 1.8 mm for

  9. The effect of postoperative passive motion on rotator cuff healing in a rat model.

    Science.gov (United States)

    Peltz, Cathryn D; Dourte, Leann M; Kuntz, Andrew F; Sarver, Joseph J; Kim, Soung-Yon; Williams, Gerald R; Soslowsky, Louis J

    2009-10-01

    Surgical repairs of torn rotator cuff tendons frequently fail. Immobilization has been shown to improve tissue mechanical properties in an animal model of rotator cuff repair, and passive motion has been shown to improve joint mechanics in animal models of flexor tendon repair. Our objective was to determine if daily passive motion would improve joint mechanics in comparison with continuous immobilization in a rat rotator cuff repair model. We hypothesized that daily passive motion would result in improved passive shoulder joint mechanics in comparison with continuous immobilization initially and that there would be no differences in passive joint mechanics or insertion site mechanical properties after four weeks of remobilization. A supraspinatus injury was created and was surgically repaired in sixty-five Sprague-Dawley rats. Rats were separated into three postoperative groups (continuous immobilization, passive motion protocol 1, and passive motion protocol 2) for two weeks before all underwent a remobilization protocol for four weeks. Serial measurements of passive shoulder mechanics (internal and external range of motion and joint stiffness) were made before surgery and at two and six weeks after surgery. After the animals were killed, collagen organization and mechanical properties of the tendon-to-bone insertion site were determined. Total range of motion for both passive motion groups (49% and 45% of the pre-injury values) was less than that for the continuous immobilization group (59% of the pre-injury value) at two weeks and remained significantly less following four weeks of remobilization exercise. Joint stiffness at two weeks was increased for both passive motion groups in comparison with the continuous immobilization group. At both two and six weeks after repair, internal range of motion was significantly decreased whereas external range of motion was not. There were no differences between the groups in terms of collagen organization or mechanical

  10. Investigating the influence of respiratory motion on the radiation induced bystander effect in modulated radiotherapy

    Science.gov (United States)

    Cole, Aidan J.; McGarry, Conor K.; Butterworth, Karl T.; McMahon, Stephen J.; Hounsell, Alan R.; Prise, Kevin M.; O'Sullivan, Joe M.

    2013-12-01

    Respiratory motion introduces complex spatio-temporal variations in the dosimetry of radiotherapy and may contribute towards uncertainties in radiotherapy planning. This study investigates the potential radiobiological implications occurring due to tumour motion in areas of geometric miss in lung cancer radiotherapy. A bespoke phantom and motor-driven platform to replicate respiratory motion and study the consequences on tumour cell survival in vitro was constructed. Human non-small-cell lung cancer cell lines H460 and H1299 were irradiated in modulated radiotherapy configurations in the presence and absence of respiratory motion. Clonogenic survival was calculated for irradiated and shielded regions. Direction of motion, replication of dosimetry by multi-leaf collimator (MLC) manipulation and oscillating lead shielding were investigated to confirm differences in cell survival. Respiratory motion was shown to significantly increase survival for out-of-field regions for H460/H1299 cell lines when compared with static irradiation (p < 0.001). Significantly higher survival was found in the in-field region for the H460 cell line (p < 0.030). Oscillating lead shielding also produced these significant differences. Respiratory motion and oscillatory delivery of radiation dose to human tumour cells has a significant impact on in- and out-of-field survival in the presence of non-uniform irradiation in this in vitro set-up. This may have important radiobiological consequences for modulated radiotherapy in lung cancer.

  11. Historical Significant Volcanic Eruption Locations

    Data.gov (United States)

    Department of Homeland Security — A significant eruption is classified as one that meets at least one of the following criteriacaused fatalities, caused moderate damage (approximately $1 million or...

  12. Direct Contribution of Auditory Motion Information to Sound-Induced Visual Motion Perception

    Directory of Open Access Journals (Sweden)

    Souta Hidaka

    2011-10-01

    Full Text Available We have recently demonstrated that alternating left-right sound sources induce motion perception to static visual stimuli along the horizontal plane (SIVM: sound-induced visual motion perception, Hidaka et al., 2009. The aim of the current study was to elucidate whether auditory motion signals, rather than auditory positional signals, can directly contribute to the SIVM. We presented static visual flashes at retinal locations outside the fovea together with a lateral auditory motion provided by a virtual stereo noise source smoothly shifting in the horizontal plane. The flashes appeared to move in the situation where auditory positional information would have little influence on the perceived position of visual stimuli; the spatiotemporal position of the flashes was in the middle of the auditory motion trajectory. Furthermore, the auditory motion altered visual motion perception in a global motion display; in this display, different localized motion signals of multiple visual stimuli were combined to produce a coherent visual motion perception so that there was no clear one-to-one correspondence between the auditory stimuli and each visual stimulus. These findings suggest the existence of direct interactions between the auditory and visual modalities in motion processing and motion perception.

  13. Motion sickness symptoms in a ship motion simulator: effects of inside, outside, and no view

    NARCIS (Netherlands)

    Bos, J.E.; MacKinnon, S.N.; Patterson, A.

    2005-01-01

    Vehicle motion characteristics differ between air, road, and sea environments, both vestibularly and visually. Effects of vision on motion sickness have been studied before, though less systematically in a naval setting. It is hypothesized that appropriate visual information on self-motion is

  14. The Role of Motion Concepts in Understanding Non-Motion Concepts

    Directory of Open Access Journals (Sweden)

    Omid Khatin-Zadeh

    2017-12-01

    Full Text Available This article discusses a specific type of metaphor in which an abstract non-motion domain is described in terms of a motion event. Abstract non-motion domains are inherently different from concrete motion domains. However, motion domains are used to describe abstract non-motion domains in many metaphors. Three main reasons are suggested for the suitability of motion events in such metaphorical descriptions. Firstly, motion events usually have high degrees of concreteness. Secondly, motion events are highly imageable. Thirdly, components of any motion event can be imagined almost simultaneously within a three-dimensional space. These three characteristics make motion events suitable domains for describing abstract non-motion domains, and facilitate the process of online comprehension throughout language processing. Extending the main point into the field of mathematics, this article discusses the process of transforming abstract mathematical problems into imageable geometric representations within the three-dimensional space. This strategy is widely used by mathematicians to solve highly abstract and complex problems.

  15. Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system

    NARCIS (Netherlands)

    Heitwerth, J.; Kern, R.; Hateren, J.H. van; Egelhaaf, M.

    Neurons sensitive to visual motion change their response properties during prolonged motion stimulation. These changes have been interpreted as adaptive and were concluded, for instance, to adjust the sensitivity of the visual motion pathway to velocity changes or to increase the reliability of

  16. Motion in the unstable thoracolumbar spine when spine boarding a prone patient

    Science.gov (United States)

    Conrad, Bryan P.; Marchese, Diana L.; Rechtine, Glenn R.; Horodyski, MaryBeth

    2012-01-01

    Introduction Previous research has found that the log roll (LR) technique produces significant motion in the spinal column while transferring a supine patient onto a spine board. The purpose of this project was to determine whether log rolling a patient with an unstable spine from prone to supine with a pulling motion provides better thoracolumbar immobilization compared to log rolling with a push technique. Methods A global instability was surgically created at the L1 level in five cadavers. Two spine-boarding protocols were tested (LR Push and LR Pull). Both techniques entailed performing a 180° LR rotation of the prone patient from the ground to the supine position on the spine board. An electromagnetic tracking device registered motion between the T12 and L2 vertebral segments. Six motion parameters were tracked. Repeated-measures statistical analysis was performed to evaluate angular and translational motion. Results Less motion was produced during the LR Push compared to the LR Pull for all six motion parameters. The difference was statistically significant for three of the six parameters (flexion–extension, axial translation, and anterior–posterior (A–P) translation). Conclusions Both the LR Push and LR Pull generated significant motion in the thoracolumbar spine during the prone to supine LR. The LR Push technique produced statistically less motion than the LR Pull, and should be considered when a prone patient with a suspected thoracolumbar injury needs to be transferred to a long spine board. More research is needed to identify techniques to further reduce the motion in the unstable spine during prone to supine LR. PMID:22330191

  17. Motion perception and driving: predicting performance through testing and shortening braking reaction times through training.

    Science.gov (United States)

    Wilkins, Luke; Gray, Rob; Gaska, James; Winterbottom, Marc

    2013-12-30

    A driving simulator was used to examine the relationship between motion perception and driving performance. Although motion perception test scores have been shown to be related to driving safety, it is not clear which combination of tests are the best predictors and whether motion perception training can improve driving performance. In experiment 1, 60 younger drivers (22.4 ± 2.5 years) completed three motion perception tests (2-dimensional [2D] motion-defined letter [MDL] identification, 3D motion in depth sensitivity [MID], and dynamic visual acuity [DVA]) followed by two driving tests (emergency braking [EB] and hazard perception [HP]). In experiment 2, 20 drivers (21.6 ± 2.1 years) completed 6 weeks of motion perception training (using the MDL, MID, and DVA tests), while 20 control drivers (22.0 ± 2.7 years) completed an online driving safety course. The EB performance was measured before and after training. In experiment 1, MDL (r = 0.34) and MID (r = 0.46) significantly correlated with EB score. The change in DVA score as a function of target speed (i.e., "velocity susceptibility") was correlated most strongly with HP score (r = -0.61). In experiment 2, the motion perception training group had a significant decrease in brake reaction time on the EB test from pre- to posttreatment, while there was no significant change for the control group: t(38) = 2.24, P = 0.03. Tests of 3D motion perception are the best predictor of EB, while DVA velocity susceptibility is the best predictor of hazard perception. Motion perception training appears to result in faster braking responses.

  18. Circular relativistic motion of two identical bodies

    International Nuclear Information System (INIS)

    Shavokhina, N.S.

    1983-01-01

    Circular relativistic motion of two bodies as a solution of the earlier obtained equations with a deflecting argument where the self-deflection of the argument is an unknown function of time is considered. In case of circular motion the argument deflection is independent from time and it is the root of the transcendental equation obtained in the paper

  19. Three scales of motions associated with tornadoes

    International Nuclear Information System (INIS)

    Forbes, G.S.

    1978-03-01

    This dissertation explores three scales of motion commonly associated with tornadoes, and the interaction of these scales: the tornado cyclone, the tornado, and the suction vortex. The goal of the research is to specify in detail the character and interaction of these scales of motion to explain tornadic phenomena

  20. Project Physics Tests 1, Concepts of Motion.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 1 are presented in this booklet, consisting of 70 multiple-choice and 20 problem-and-essay questions. Concepts of motion are examined with respect to velocities, acceleration, forces, vectors, Newton's laws, and circular motion. Suggestions are made for time consumption in answering some items. Besides…

  1. Earthquake source model using strong motion displacement

    Indian Academy of Sciences (India)

    The strong motion displacement records available during an earthquake can be treated as the response of the earth as the a structural system to unknown forces acting at unknown locations. Thus, if the part of the earth participating in ground motion is modelled as a known finite elastic medium, one can attempt to model the ...

  2. Motion planning for gantry mounted manipulators

    DEFF Research Database (Denmark)

    Olsen, Anders Lau; Petersen, Henrik Gordon

    2007-01-01

    We present a roadmap based planner for finding robot motions for gantry mounted manipulators for a line welding application at Odense Steel Shipyard (OSS). The robot motions are planned subject to constraints on when the gantry may be moved. We show that random sampling of gantry configurations...

  3. Geodesic motion and confinement in Goedel's universe

    International Nuclear Information System (INIS)

    Novello, M.; Soares, I.D.; Tiomno, J.

    1982-01-01

    A complete study of geodesic motion in Goedel's universe, using the method of the Effective Potential is presented. It then emerges a clear physical picture of free motion and its stability in this universe. Geodesics of a large class have finite intervals in which the particle moves back in time (dt/ds [pt

  4. Unidirectional Motion of Vehicle on Sinusoidal Path

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 4. Unidirectional Motion of Vehicle on Sinusoidal Path: Can it Cause Illusory Forward and Backward Motion? Anuj Bhatnagar. Classroom Volume 17 Issue 4 April 2012 pp 387-392 ...

  5. Sound-contingent visual motion aftereffect

    Directory of Open Access Journals (Sweden)

    Kobayashi Maori

    2011-05-01

    Full Text Available Abstract Background After a prolonged exposure to a paired presentation of different types of signals (e.g., color and motion, one of the signals (color becomes a driver for the other signal (motion. This phenomenon, which is known as contingent motion aftereffect, indicates that the brain can establish new neural representations even in the adult's brain. However, contingent motion aftereffect has been reported only in visual or auditory domain. Here, we demonstrate that a visual motion aftereffect can be contingent on a specific sound. Results Dynamic random dots moving in an alternating right or left direction were presented to the participants. Each direction of motion was accompanied by an auditory tone of a unique and specific frequency. After a 3-minutes exposure, the tones began to exert marked influence on the visual motion perception, and the percentage of dots required to trigger motion perception systematically changed depending on the tones. Furthermore, this effect lasted for at least 2 days. Conclusions These results indicate that a new neural representation can be rapidly established between auditory and visual modalities.

  6. Adaptive motion of animals and machines

    National Research Council Canada - National Science Library

    Kimura, Hiroshi

    2006-01-01

    ... single function in a control system and mechanism. That is, adaptation in motion is induced at every level from the central nervous system to the musculoskeletal system. Thus, we organized the International Symposium on Adaptive Motion in Animals and Machines (AMAM) for scientists and engineers concerned with adaptation on various levels to be broug...

  7. Two-Dimensional Motions of Rockets

    Science.gov (United States)

    Kang, Yoonhwan; Bae, Saebyok

    2007-01-01

    We analyse the two-dimensional motions of the rockets for various types of rocket thrusts, the air friction and the gravitation by using a suitable representation of the rocket equation and the numerical calculation. The slope shapes of the rocket trajectories are discussed for the three types of rocket engines. Unlike the projectile motions, the…

  8. Large proper motions in the Orion nebula

    International Nuclear Information System (INIS)

    Cudworth, K.M.; Stone, R.C.

    1977-01-01

    Several nebular features, as well as one faint star, with large proper motions were identified within the Orion nebula. The measured proper motions correspond to tangential velocities of up to approximately 70 km sec -1 . One new probable variable star was also found

  9. Motion sensing using WLAN signal fluctuations

    NARCIS (Netherlands)

    Kavitha Muthukrishnan, K.; Lijding, M.E.M.; Meratnia, Nirvana; Havinga, Paul J.M.

    2006-01-01

    The ability to infer the motion of the user has previously been possible only with the usage of additional hardware. In this paper we show how motion sensing can be obtained just by observing the WLAN radio’s signal strength and its fluctuations. For the first time, we have analyzed the signal

  10. Using Phun to Study "Perpetual Motion" Machines

    Science.gov (United States)

    Kores, Jaroslav

    2012-01-01

    The concept of "perpetual motion" has a long history. The Indian astronomer and mathematician Bhaskara II (12th century) was the first person to describe a perpetual motion (PM) machine. An example of a 13th-century PM machine is shown in Fig. 1. Although the law of conservation of energy clearly implies the impossibility of PM construction, over…

  11. Conditional shape models for cardiac motion estimation

    DEFF Research Database (Denmark)

    Metz, Coert; Baka, Nora; Kirisli, Hortense

    2010-01-01

    We propose a conditional statistical shape model to predict patient specific cardiac motion from the 3D end-diastolic CTA scan. The model is built from 4D CTA sequences by combining atlas based segmentation and 4D registration. Cardiac motion estimation is, for example, relevant in the dynamic...

  12. CNA-motion in a PS - Fn

    International Nuclear Information System (INIS)

    Singh, M.P.; Mishra, C.K.

    1989-12-01

    A Finsler space Fn (n > 2), throughout with the projective curvature tensor possessing vanishing covariant derivative, has been called a ''projectively symmetric Finsler space'' and such a space is denoted PS-Fn. The conditions in which an infinitesimal transformation defines non-affine motion with a contra-field, briefly called CNA-motion, are discussed. 7 refs

  13. 14 CFR 406.141 - Motions.

    Science.gov (United States)

    2010-01-01

    ... cause shown, a party must file any prehearing motion with the Federal Docket Management System and serve... for more definite statement. A respondent may file a motion requesting a more definite statement of... pleading and must submit the details that the party believes would make the allegation or response definite...

  14. Linearized motion estimation for articulated planes.

    Science.gov (United States)

    Datta, Ankur; Sheikh, Yaser; Kanade, Takeo

    2011-04-01

    In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.

  15. Wobbling motion in high spin states

    International Nuclear Information System (INIS)

    Onishi, Naoki

    1982-01-01

    By generalizing the cranking model, interwoven motions of collective and non-collective rotation of nuclei are treated as three dimensional non-uniform rotations including precession and wobbling. Classical trajectories are obtained for the + j vector + = 30 h/2π sphere. A method of quantization for wobbling motions is discussed and is applied to estimate excitation energies. (author)

  16. Visual-vestibular interaction in motion perception

    NARCIS (Netherlands)

    Hosman, Ruud J A W; Cardullo, Frank M.; Bos, Jelte E.

    2011-01-01

    Correct perception of self motion is of vital importance for both the control of our position and posture when moving around in our environment. With the development of human controlled vehicles as bicycles, cars and aircraft motion perception became of interest for the understanding of vehicle

  17. Motion compensation for MRI-guided radiotherapy

    NARCIS (Netherlands)

    Glitzner, M.

    2017-01-01

    Radiotherapy aims to deliver a lethal radiation dose to cancer cells immersed in the body using a high energetic photon beam. Due to physiologic motion of the human anatomy (e.g. caused by filling of internal organs or breathing), the target volume is under permanent motion during irradiation,

  18. A system for learning statistical motion patterns.

    Science.gov (United States)

    Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve

    2006-09-01

    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.

  19. Branner-Hubbard Motions and attracting dynamics

    DEFF Research Database (Denmark)

    Petersen, Carsten Lunde; Tan, Lei

    2006-01-01

    We introduce a new notion of attracting dynamics, which is related to polynomial-like mappings. Also we review the Branner-Hubbard Motion and study its action on attracting dynamics.......We introduce a new notion of attracting dynamics, which is related to polynomial-like mappings. Also we review the Branner-Hubbard Motion and study its action on attracting dynamics....

  20. Branner-Hubbard motions and attracting dynamics

    DEFF Research Database (Denmark)

    Petersen, Carsten Lunde; Tan, Lei

    We introduce the new notion an aatracting dynamics, which is related to polynomial-likke mappings. Also we review the Branner-Hubbard motion and study its action on attracting dynamics.......We introduce the new notion an aatracting dynamics, which is related to polynomial-likke mappings. Also we review the Branner-Hubbard motion and study its action on attracting dynamics....

  1. Motion discrimination under uncertainty and ambiguity.

    NARCIS (Netherlands)

    Kalisvaart, J.P.; Klaver, I.; Goossens, J.

    2011-01-01

    Speed and accuracy of visual motion discrimination depend systematically on motion strength. This behavior is traditionally explained by diffusion models that assume accumulation of sensory evidence over time to a decision bound. However, how does the brain decide when sensory evidence is ambiguous,

  2. Rehabilitering og 'motion på recept'

    DEFF Research Database (Denmark)

    Larsen, Niels Sandholm; Larsen, Kristian

    2008-01-01

    af disse forskningsarbejder er etablering af fænomenet 'motion på recept'. Konceptet om 'motion på recept' stammer oprindelig fra Sverige, hvor praktiserende læger i en periode har haft mulighed for at henvise visse typer af patienter til fysisk træning hos praktiserende fysioterapeuter. Ribe Amt...... 2007)....

  3. Motion in an Asymmetric Double Well

    OpenAIRE

    Brizard, Alain J.; Westland, Melissa C.

    2016-01-01

    The problem of the motion of a particle in an asymmetric double well is solved explicitly in terms of the Weierstrass and Jacobi elliptic functions. While the solution of the orbital motion is expressed simply in terms of the Weierstrass elliptic function, the period of oscillation is more directly expressed in terms of periods of the Jacobi elliptic functions.

  4. Technique for producing cardiac radionuclide motion images

    International Nuclear Information System (INIS)

    Reese, I.C.; Mishkin, F.S.

    1975-01-01

    Sequential frames of different portions of the cardiac cycle are gated into a minicomputer by using an EKG signal recorded onto digital tape simultaneously with imaging information. Serial display of these frames on the computer oscilloscope or projection of 35-mm half frames of these images provides a cardiac motion image with information content adequate for qualitatively assessing cardiac motion. (U.S.)

  5. 45 CFR 672.9 - Motions.

    Science.gov (United States)

    2010-10-01

    ... memorandum relied upon. (b) Response to motions. A party must file a response to any written motion within..., shall (1) be in writing; (2) state the basis or grounds with particularity; (3) set forth the relief or... response shall be accompanied by any affidavit, certificate, other evidence, or legal memorandum relied...

  6. 10 CFR 820.39 - Motions.

    Science.gov (United States)

    2010-01-01

    ... an enforcement adjudication except those made orally, shall be in writing, state the grounds therefor..., certificate, other evidence, or legal memorandum relied upon. (b) Answer to motions. Except as otherwise... to file a written answer to the motion of another party within 10 days after the filing of such...

  7. 4-corner arthrodesis and proximal row carpectomy: a biomechanical comparison of wrist motion and tendon forces.

    Science.gov (United States)

    Debottis, Daniel P; Werner, Frederick W; Sutton, Levi G; Harley, Brian J

    2013-05-01

    Controversy exists as to whether a proximal row carpectomy (PRC) is a better procedure than scaphoid excision with 4-corner arthrodesis for preserving motion in the painful posttraumatic arthritic wrist. The purpose of this study was to determine how the kinematics and tendon forces of the wrist are altered after PRC and 4-corner arthrodesis. We tested 6 fresh cadaver forearms for the extremes of wrist motion and then used a wrist simulator to move them through 4 cyclic dynamic wrist motions, during which time we continuously recorded the tendon forces. We repeated the extremes of wrist motion measurements and the dynamic motions after scaphoid excision with 4-corner arthrodesis, and then again after PRC. We analyzed extremes of wrist motion and the peak tendon forces required for each dynamic motion using a repeated measures analysis of variance. Wrist extremes of motion significantly decreased after both the PRC and 4-corner arthrodesis compared with the intact wrist. Wrist flexion decreased on average 13° after 4-corner arthrodesis and 12° after PRC. Extension decreased 20° after 4-corner arthrodesis and 12° after PRC. Four-corner arthrodesis significantly decreased wrist ulnar deviation from the intact wrist. Four-corner arthrodesis allowed more radial deviation but less ulnar deviation than the PRC. The average peak tendon force was significantly greater after 4-corner arthrodesis than after PRC for the extensor carpi ulnaris during wrist flexion-extension, circumduction, and dart throw motions. The peak forces were significantly greater after 4-corner arthrodesis than in the intact wrist for the extensor carpi ulnaris during the dart throw motion and for the flexor carpi ulnaris during the circumduction motion. The peak extensor carpi radialis brevis force after PRC was significantly less than in the intact wrist. The measured wrist extremes of motion decreased after both 4-corner arthrodesis and PRC. Larger peak tendon forces were required to achieve

  8. MRI-Based Nonrigid Motion Correction in Simultaneous PET/MRI

    Science.gov (United States)

    Chun, Se Young; Reese, Timothy G.; Ouyang, Jinsong; Guerin, Bastien; Catana, Ciprian; Zhu, Xuping; Alpert, Nathaniel M.; El Fakhri, Georges

    2014-01-01

    Respiratory and cardiac motion is the most serious limitation to whole-body PET, resulting in spatial resolution close to 1 cm. Furthermore, motion-induced inconsistencies in the attenuation measurements often lead to significant artifacts in the reconstructed images. Gating can remove motion artifacts at the cost of increased noise. This paper presents an approach to respiratory motion correction using simultaneous PET/MRI to demonstrate initial results in phantoms, rabbits, and nonhuman primates and discusses the prospects for clinical application. Methods Studies with a deformable phantom, a free-breathing primate, and rabbits implanted with radioactive beads were performed with simultaneous PET/MRI. Motion fields were estimated from concurrently acquired tagged MR images using 2 B-spline nonrigid image registration methods and incorporated into a PET list-mode ordered-subsets expectation maximization algorithm. Using the measured motion fields to transform both the emission data and the attenuation data, we could use all the coincidence data to reconstruct any phase of the respiratory cycle. We compared the resulting SNR and the channelized Hotelling observer (CHO) detection signal-to-noise ratio (SNR) in the motion-corrected reconstruction with the results obtained from standard gating and uncorrected studies. Results Motion correction virtually eliminated motion blur without reducing SNR, yielding images with SNR comparable to those obtained by gating with 5–8 times longer acquisitions in all studies. The CHO study in dynamic phantoms demonstrated a significant improvement (166%–276%) in lesion detection SNR with MRI-based motion correction as compared with gating (P < 0.001). This improvement was 43%–92% for large motion compared with lesion detection without motion correction (P < 0.001). CHO SNR in the rabbit studies confirmed these results. Conclusion Tagged MRI motion correction in simultaneous PET/MRI significantly improves lesion detection

  9. Energy-harvesting shock absorber with a mechanical motion rectifier

    Science.gov (United States)

    Li, Zhongjie; Zuo, Lei; Kuang, Jian; Luhrs, George

    2013-02-01

    Energy-harvesting shock absorbers are able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppressing the vibration induced by road roughness. They can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving the energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called ‘mechanical motion rectifier (MMR)’, to convert the oscillatory vibration into unidirectional rotation of the generator. An implementation of a MMR-based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making an analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to demonstrate the feasibility of the MMR shock absorber, in which more than 15 Watts of electricity is harvested while driving at 15 mph on a smooth paved road. The MMR-based design can also be used for other applications of vibration energy harvesting, such as from tall buildings or long bridges.

  10. Reliability of psychophysiological responses across multiple motion sickness stimulation tests

    Science.gov (United States)

    Stout, C. S.; Toscano, W. B.; Cowings, P. S.

    1995-01-01

    Although there is general agreement that a high degree of variability exists between subjects in their autonomic nervous system responses to motion sickness stimulation, very little evidence exists that examines the reproducibility of autonomic responses within subjects during motion sickness stimulation. Our objectives were to examine the reliability of autonomic responses and symptom levels across five testing occasions using the (1) final minute of testing, (2) change in autonomic response and the change in symptom level, and (3) strength of the relationship between the change in symptom level and the change in autonomic responses across the entire motion sickness test. The results indicate that, based on the final minute of testing, the autonomic responses of heart rate, blood volume pulse, and respiration rate are moderately stable across multiple tests. Changes in heart rate, blood volume pulse, respiration rate, and symptoms throughout the test duration are less stable across the tests. Finally, autonomic responses and symptom levels are significantly related across the entire motion sickness test.

  11. Energy-harvesting shock absorber with a mechanical motion rectifier

    International Nuclear Information System (INIS)

    Li, Zhongjie; Zuo, Lei; Kuang, Jian; Luhrs, George

    2013-01-01

    Energy-harvesting shock absorbers are able to recover the energy otherwise dissipated in the suspension vibration while simultaneously suppressing the vibration induced by road roughness. They can work as a controllable damper as well as an energy generator. An innovative design of regenerative shock absorbers is proposed in this paper, with the advantage of significantly improving the energy harvesting efficiency and reducing the impact forces caused by oscillation. The key component is a unique motion mechanism, which we called ‘mechanical motion rectifier (MMR)’, to convert the oscillatory vibration into unidirectional rotation of the generator. An implementation of a MMR-based harvester with high compactness is introduced and prototyped. A dynamic model is created to analyze the general properties of the motion rectifier by making an analogy between mechanical systems and electrical circuits. The model is capable of analyzing electrical and mechanical components at the same time. Both simulation and experiments are carried out to verify the modeling and the advantages. The prototype achieved over 60% efficiency at high frequency, much better than conventional regenerative shock absorbers in oscillatory motion. Furthermore, road tests are done to demonstrate the feasibility of the MMR shock absorber, in which more than 15 Watts of electricity is harvested while driving at 15 mph on a smooth paved road. The MMR-based design can also be used for other applications of vibration energy harvesting, such as from tall buildings or long bridges. (paper)

  12. Modal-pushover-based ground-motion scaling procedure

    Science.gov (United States)

    Kalkan, Erol; Chopra, Anil K.

    2011-01-01

    Earthquake engineering is increasingly using nonlinear response history analysis (RHA) to demonstrate the performance of structures. This rigorous method of analysis requires selection and scaling of ground motions appropriate to design hazard levels. This paper presents a modal-pushover-based scaling (MPS) procedure to scale ground motions for use in a nonlinear RHA of buildings. In the MPS method, the ground motions are scaled to match to a specified tolerance, a target value of the inelastic deformation of the first-mode inelastic single-degree-of-freedom (SDF) system whose properties are determined by the first-mode pushover analysis. Appropriate for first-mode dominated structures, this approach is extended for structures with significant contributions of higher modes by considering elastic deformation of second-mode SDF systems in selecting a subset of the scaled ground motions. Based on results presented for three actual buildings-4, 6, and 13-story-the accuracy and efficiency of the MPS procedure are established and its superiority over the ASCE/SEI 7-05 scaling procedure is demonstrated.

  13. Regionalization of ground motion attenuation in the conterminous United States

    International Nuclear Information System (INIS)

    Chung, D.H.; Bernreuter, D.L.

    1979-01-01

    Attenuation results from geometric spreading and from absorption. The former is almost independent of crustal geology or physiographic region. The latter depends strongly on crustal geology and the state of the earth's upper mantle. Except for very high-frequency waves, absorption does not affect ground motion at distances less than 25 to 50 km. Thus, in the near-field zone, the attenuation in the eastern United States will be similar to that in the western United States. Most of the differences in ground motion can be accounted for by differences in attenuation caused by differences in absorption. The other important factor is that for some Western earthquakes the fault breaks the earth's surface, resulting in larger ground motion. No Eastern earthquakes are known to have broken the earth's surface by faulting. The stress drop of Eastern earthquakes may be higher than for Western earthquakes of the same seismic moment, which would affect the high-frequency spectral content. This factor is believed to be of much less significance than differences in absorption in explaining the differences in ground motion between the East and the West. 6 figures

  14. Kinesthetic information disambiguates visual motion signals.

    Science.gov (United States)

    Hu, Bo; Knill, David C

    2010-05-25

    Numerous studies have shown that extra-retinal signals can disambiguate motion information created by movements of the eye or head. We report a new form of cross-modal sensory integration in which the kinesthetic information generated by active hand movements essentially captures ambiguous visual motion information. Several previous studies have shown that active movement can bias observers' percepts of bi-stable stimuli; however, these effects seem to be best explained by attentional mechanisms. We show that kinesthetic information can change an otherwise stable perception of motion, providing evidence of genuine fusion between visual and kinesthetic information. The experiments take advantage of the aperture problem, in which the motion of a one-dimensional grating pattern behind an aperture, while geometrically ambiguous, appears to move stably in the grating normal direction. When actively moving the pattern, however, the observer sees the motion to be in the hand movement direction. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Centralized Networks to Generate Human Body Motions.

    Science.gov (United States)

    Vakulenko, Sergei; Radulescu, Ovidiu; Morozov, Ivan; Weber, Andres

    2017-12-14

    We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies. The center states define the satellite neurons' states by a radial basis function (RBF) network. To simulate different motions, we adjust the parameters of the RBF networks. Our network includes a switching module that allows for turning from one motion to another. Simulations show that this model allows us to simulate complicated motions consisting of many different dynamical primitives. We also use the model for learning human body motion from markers' trajectories. We find that center frequencies can be learned from a small number of markers and can be transferred to other markers, such that our technique seems to be capable of correcting for missing information resulting from sparse control marker settings.

  16. Contrast configuration influences grouping in apparent motion.

    Science.gov (United States)

    Ma-Wyatt, Anna; Clifford, Colin W G; Wenderoth, Peter

    2005-01-01

    We investigated whether the same principles that influence grouping in static displays also influence grouping in apparent motion. Using the Ternus display, we found that the proportion of group motion reports was influenced by changes in contrast configuration. Subjects made judgments of completion of these same configurations in a static display. Generally, contrast configurations that induced a high proportion of group motion responses were judged as more 'complete' in static displays. Using a stereo display, we then tested whether stereo information and T-junction information were critical for this increase in group motion. Perceived grouping was consistently higher for same contrast polarity configurations than for opposite contrast polarity configurations, regardless of the presence of stereo information or explicit T-junctions. Thus, while grouping in static and moving displays showed a similar dependence on contrast configuration, motion grouping showed little dependence on stereo or T-junction information.

  17. Proper motions and distances of quasars

    International Nuclear Information System (INIS)

    Varshni, Y.P.

    1982-01-01

    The author's theory that quasars are stars raises the question of their proper motions. From the evidence presented in a previous paper, it is hypothesised that planetary nuclei and quasars are related objects and that their distributions in the galaxy are not very different. Proper motions of 30 quasars, calculated from existing measurements, are discussed. It is shown that three of these, namely PHL 1033, LB 8956 and LB 8991, have proper motions comparable to the largest proper motion known amongst the planetary nuclei. From this it is estimated that these three quasars lie within a few hundred parsecs from the sun. The evidence presented in a previous paper and the present one clearly supports the theory that quasars are stars. The possibility of using the interstellar K and H lines as distance indicators of quasars is discussed and the available evidence summarised. The desirability of determining more accurate values of the proper motions of quasars is emphasised. (Auth.)

  18. Study on characteristics of vertical strong motions

    International Nuclear Information System (INIS)

    Akao, Y.; Katukura, H.; Fukushima, S.; Mizutani, M.

    1993-01-01

    Statistic properties of vertical strong ground motions from near-field earthquakes are discussed in comparison with that of horizontal motions. It is a feature of this analysis that time history of each observed record is divided into direct P- and S-wave segments from a seismological viewpoint. Following results are obtained. Vertical motion energy excited by direct S-waves is about 0.6 times of horizontal ones at deep underground, and it approaches to 1.0 at shallow place. Horizontal motion energy excited by direct P-waves becomes 0.2 times (at deep) or more (at shallow) of vertical one. These results can be available in modeling of input motions for aseismic design. (author)

  19. Seismic switch for strong motion measurement

    Science.gov (United States)

    Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

    1995-05-30

    A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

  20. Cervical motion testing: methodology and clinical implications.

    Science.gov (United States)

    Prushansky, Tamara; Dvir, Zeevi

    2008-09-01

    Measurement of cervical motion (CM) is probably the most commonly applied functional outcome measure in assessing the status of patients with cervical pathology. In general terms, CM refers to motion of the head relative to the trunk as well as conjunct motions within the cervical spine. Multiple techniques and instruments have been used for assessing CM. These were associated with a wide variety of parameters relating to accuracy, reproducibility, and validity. Modern measurement systems enable recording, processing, and documentation of CM with a high degree of precision. Cervical motion measures provide substantial information regarding the severity of motion limitation and level of effort in cervically involved patients. They may also be used for following up performance during and after conservative or invasive interventions.

  1. A programmable motion phantom for quality assurance of motion management in radiotherapy

    International Nuclear Information System (INIS)

    Dunn, L.; Franich, R.D.; Kron, T.; Taylor, M.L.; Johnston, P.N.; McDermott, L.N.; Callahan, J.

    2012-01-01

    A commercially available motion phantom (QUASAR, Modus Medical) was modified for programmable motion control with the aim of reproducing patient respiratory motion in one dimension in both the anterior–posterior and superior–inferior directions, as well as, providing controllable breath-hold and sinusoidal patterns for the testing of radiotherapy gating systems. In order to simulate realistic patient motion, the DC motor was replaced by a stepper motor. A separate 'chest-wall' motion platform was also designed to accommodate a variety of surrogate marker systems. The platform employs a second stepper motor that allows for the decoupling of the chest-wall and insert motion. The platform's accuracy was tested by replicating patient traces recorded with the Varian real-time position management (RPM) system and comparing the motion platform's recorded motion trace with the original patient data. Six lung cancer patient traces recorded with the RPM system were uploaded to the motion platform's in-house control software and subsequently replicated through the phantom motion platform. The phantom's motion profile was recorded with the RPM system and compared to the original patient data. Sinusoidal and breath-hold patterns were simulated with the motion platform and recorded with the RPM system to verify the systems potential for routine quality assurance of commercial radiotherapy gating systems. There was good correlation between replicated and actual patient data (P 0.003). Mean differences between the location of maxima in replicated and patient data-sets for six patients amounted to 0.034 cm with the corresponding minima mean equal to 0.010 cm. The upgraded motion phantom was found to replicate patient motion accurately as well as provide useful test patterns to aid in the quality assurance of motion management methods and technologies.

  2. TU-F-BRB-03: Clinical Implementation of MR-Based Motion Management

    International Nuclear Information System (INIS)

    Glide-Hurst, C.

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  3. TU-F-BRB-02: Motion Artifacts and Suppression in MRI

    International Nuclear Information System (INIS)

    Zhong, X.

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  4. TU-F-BRB-00: MRI-Based Motion Management for RT

    International Nuclear Information System (INIS)

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  5. Respiratory and cardiac motion correction in dual gated PET/MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fayad, Hadi; Monnier, Florian [LaTIM, INSERM, UMR 1101, Brest (France); Odille, Freedy; Felblinger, Jacques [INSERM U947, University of Nancy, Nancy (France); Lamare, Frederic [INCIA, UMR5287, CNRS, CHU Bordeaux, Bordeaux (France); Visvikis, Dimitris [LaTIM, INSERM, UMR 1101, Brest (France)

    2015-05-18

    Respiratory and cardiac motion in PET/MR imaging leads to reduced quantitative and qualitative image accuracy. Correction methodologies involve the use of double gated acquisitions which lead to low signal-to-noise ratio (SNR) and to issues concerning the combination of cardiac and respiratory frames. The objective of this work is to use a generalized reconstruction by inversion of coupled systems (GRICS) approach, previously used for PET/MR respiratory motion correction, combined with a cardiac phase signal and a reconstruction incorporated PET motion correction approach in order to reconstruct motion free images from dual gated PET acquisitions. The GRICS method consists of formulating parallel MRI in the presence of patient motion as a coupled inverse problem. Its resolution, using a fixed-point method, allows the reconstructed image to be improved using a motion model constructed from the raw MR data and two respiratory belts. GRICS obtained respiratory displacements are interpolated using the cardiac phase derived from an ECG to model simultaneous cardiac and respiratory motion. Three different volunteer datasets (4DMR acquisitions) were used for evaluation. GATE was used to simulate 4DPET datasets corresponding to the acquired 4DMR images. Simulated data were subsequently binned using 16 cardiac phases (M1) vs diastole only (M2), in combination with 8 respiratory amplitude gates. Respiratory and cardiac motion corrected PET images using either M1 or M2 were compared to respiratory only corrected images and evaluated in terms of SNR and contrast improvement. Significant visual improvements were obtained when correcting simultaneously for respiratory and cardiac motion (using 16 cardiac phase or diastole only) compared to respiratory motion only compensation. Results were confirmed by an associated increased SNR and contrast. Results indicate that using GRICS is an efficient tool for respiratory and cardiac motion correction in dual gated PET/MR imaging.

  6. The effect of patient anxiety and depression on motion during myocardial perfusion SPECT imaging

    International Nuclear Information System (INIS)

    Lyra, Vassiliki; Kallergi, Maria; Rizos, Emmanouil; Lamprakopoulos, Georgios; Chatziioannou, Sofia N.

    2016-01-01

    Patient motion during myocardial perfusion SPECT imaging (MPI) may be triggered by a patient’s physical and/or psychological discomfort. The aim of this study was to investigate the impact of state anxiety (patient’s reaction to exam-related stress), trait anxiety (patient’s personality characteristic) and depression on patient motion during MPI. All patients that underwent MPI in our department in a six-month period were prospectively enrolled. One hundred eighty-three patients (45 females; 138 males) filled in the State-Trait Anxiety Inventory (STAI) and the Beck Depression Inventory (BDI), along with a short questionnaire regarding their age, height and weight, level of education in years, occupation, and marital status. Cardiovascular and other co-morbidity factors were also evaluated. Through inspection of raw data on cinematic display, the presence or absence of patient motion was registered and classified into mild, moderate and severe, for both phases involved in image acquisition. The correlation of patient motion in the stress and delay phases of MPI and each of the other variables was investigated and the corresponding Pearson’s coefficients of association were calculated. The anxiety-motion (r = 0.43, P < 0.0001) and depression-motion (r = 0.32, P < 0.0001) correlation results were moderately strong and statistically significant for the female but not the male patients. All the other variables did not demonstrate any association with motion in MPI, except a weak correlation between age and motion in females (r = 0.23, P < 0.001). The relationship between anxiety-motion and depression-motion identified in female patients represents the first supporting evidence of psychological discomfort as predisposing factor for patient motion during MPI

  7. TU-F-BRB-03: Clinical Implementation of MR-Based Motion Management

    Energy Technology Data Exchange (ETDEWEB)

    Glide-Hurst, C. [Henry Ford Health System (United States)

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  8. TU-F-BRB-00: MRI-Based Motion Management for RT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  9. TU-F-BRB-01: Resolving and Characterizing Breathing Motion for Radiotherapy with MRI

    Energy Technology Data Exchange (ETDEWEB)

    Tryggestad, E. [Mayo Clinic (United States)

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  10. TU-F-BRB-02: Motion Artifacts and Suppression in MRI

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, X. [Siemens (Germany)

    2015-06-15

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant.

  11. TU-F-BRB-01: Resolving and Characterizing Breathing Motion for Radiotherapy with MRI

    International Nuclear Information System (INIS)

    Tryggestad, E.

    2015-01-01

    The current clinical standard of organ respiratory imaging, 4D-CT, is fundamentally limited by poor soft-tissue contrast and imaging dose. These limitations are potential barriers to beneficial “4D” radiotherapy methods which optimize the target and OAR dose-volume considering breathing motion but rely on a robust motion characterization. Conversely, MRI imparts no known radiation risk and has excellent soft-tissue contrast. MRI-based motion management is therefore highly desirable and holds great promise to improve radiotherapy of moving cancers, particularly in the abdomen. Over the past decade, MRI techniques have improved significantly, making MR-based motion management clinically feasible. For example, cine MRI has high temporal resolution up to 10 f/s and has been used to track and/or characterize tumor motion, study correlation between external and internal motions. New MR technologies, such as 4D-MRI and MRI hybrid treatment machines (i.e. MR-linac or MR-Co60), have been recently developed. These technologies can lead to more accurate target volume determination and more precise radiation dose delivery via direct tumor gating or tracking. Despite all these promises, great challenges exist and the achievable clinical benefit of MRI-based tumor motion management has yet to be fully explored, much less realized. In this proposal, we will review novel MR-based motion management methods and technologies, the state-of-the-art concerning MRI development and clinical application and the barriers to more widespread adoption. Learning Objectives: Discuss the need of MR-based motion management for improving patient care in radiotherapy. Understand MR techniques for motion imaging and tumor motion characterization. Understand the current state of the art and future steps for clinical integration. Henry Ford Health System holds research agreements with Philips Healthcare. Research sponsored in part by a Henry Ford Health System Internal Mentored Grant

  12. Significance evaluation in factor graphs

    DEFF Research Database (Denmark)

    Madsen, Tobias; Hobolth, Asger; Jensen, Jens Ledet

    2017-01-01

    in genomics and the multiple-testing issues accompanying them, accurate significance evaluation is of great importance. We here address the problem of evaluating statistical significance of observations from factor graph models. Results Two novel numerical approximations for evaluation of statistical...... significance are presented. First a method using importance sampling. Second a saddlepoint approximation based method. We develop algorithms to efficiently compute the approximations and compare them to naive sampling and the normal approximation. The individual merits of the methods are analysed both from....... Conclusions The applicability of saddlepoint approximation and importance sampling is demonstrated on known models in the factor graph framework. Using the two methods we can substantially improve computational cost without compromising accuracy. This contribution allows analyses of large datasets...

  13. Significant Lactic Acidosis from Albuterol

    Directory of Open Access Journals (Sweden)

    Deborah Diercks

    2018-03-01

    Full Text Available Lactic acidosis is a clinical entity that demands rapid assessment and treatment to prevent significant morbidity and mortality. With increased lactate use across many clinical scenarios, lactate values themselves cannot be interpreted apart from their appropriate clinical picture. The significance of Type B lactic acidosis is likely understated in the emergency department (ED. Given the mortality that sepsis confers, a serum lactate is an important screening study. That said, it is with extreme caution that we should interpret and react to the resultant elevated value. We report a patient with a significant lactic acidosis. Though he had a high lactate value, he did not require aggressive resuscitation. A different classification scheme for lactic acidosis that focuses on the bifurcation of the “dangerous” and “not dangerous” causes of lactic acidosis may be of benefit. In addition, this case is demonstrative of the potential overuse of lactates in the ED.

  14. Surface renewal as a significant mechanism for dust emission

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2016-12-01

    Full Text Available Wind tunnel experiments of dust emissions from different soil surfaces are carried out to better understand dust emission mechanisms. The effects of surface renewal on aerodynamic entrainment and saltation bombardment are analyzed in detail. It is found that flow conditions, surface particle motions (saltation and creep, soil dust content and ground obstacles all strongly affect dust emission, causing its rate to vary over orders of magnitude. Aerodynamic entrainment is highly effective, if dust supply is unlimited, as in the first 2–3 min of our wind tunnel runs. While aerodynamic entrainment is suppressed by dust supply limits, surface renewal through the motion of surface particles appears to be an effective pathway to remove the supply limit. Surface renewal is also found to be important to the efficiency of saltation bombardment. We demonstrate that surface renewal is a significant mechanism affecting dust emission and recommend that this mechanism be included in future dust models.

  15. Apollo 16 time and motion study

    Science.gov (United States)

    Kubis, J. F.; Elrod, J. T.; Rusnak, R.; Barnes, J. E.; Saxon, S. C.

    1972-01-01

    A time and motion study is presented of astronaut lunar surface activity on Apollo 16 which consists of five distinct analyses: an evaluation of lunar mobility, a comparison of task performance in 1-g training and lunar EVA, a study of metabolic costs and adaptation, a discussion of falls, and retrieval of fallen objects. Two basic mobility patterns, the hop or canter and the traditional walking gait, were consistently utilized in longer traverses. The metabolic rates associated with these two mobility types, each used by a different astronaut, were relatively equivalent. The time to perform tasks on the lunar surface was significantly longer (on the order of 70%) than the time to perform the same tasks during the last 1-g training session. These results corroborated the findings on Apollo 15 and were not significantly different from them. There was general improvement in lunar EVA performance upon repetition of tasks. Metabolic rate (BTU/hr.) and metabolic cost (BTU) decreased over successive EVAs. Specifically, the metabolic rate associated with riding the lunar roving vehicle (LRV) decreased by approximately 18% from EVA 1 to EVA 2 and by 15% from EVA 2 to EVA 3.

  16. Human Motion Capture Data Tailored Transform Coding.

    Science.gov (United States)

    Junhui Hou; Lap-Pui Chau; Magnenat-Thalmann, Nadia; Ying He

    2015-07-01

    Human motion capture (mocap) is a widely used technique for digitalizing human movements. With growing usage, compressing mocap data has received increasing attention, since compact data size enables efficient storage and transmission. Our analysis shows that mocap data have some unique characteristics that distinguish themselves from images and videos. Therefore, directly borrowing image or video compression techniques, such as discrete cosine transform, does not work well. In this paper, we propose a novel mocap-tailored transform coding algorithm that takes advantage of these features. Our algorithm segments the input mocap sequences into clips, which are represented in 2D matrices. Then it computes a set of data-dependent orthogonal bases to transform the matrices to frequency domain, in which the transform coefficients have significantly less dependency. Finally, the compression is obtained by entropy coding of the quantized coefficients and the bases. Our method has low computational cost and can be easily extended to compress mocap databases. It also requires neither training nor complicated parameter setting. Experimental results demonstrate that the proposed scheme significantly outperforms state-of-the-art algorithms in terms of compression performance and speed.

  17. List mode reconstructions for PET with motion compensation: A simulation study

    International Nuclear Information System (INIS)

    Qi, Jinyi; Huesman, Ronald H.

    2002-01-01

    Motion artifacts can be a significant factor that limits the image quality in high-resolution PET. Surveillance systems have been developed to track the movements of the subject during a scan. Development of reconstruction algorithms that are able to compensate for the subject motion will increase the potential of PET. In this paper we present a list mode likelihood reconstruction algorithm with the ability of motion compensation. The subject motion is explicitly modeled in the likelihood function. The detections of each detector pair are modeled as a Poisson process with time-varying rate function. The proposed method has several advantages over the existing methods. It uses all detected events and does not introduce any interpolation error. Computer simulations show that the proposed method can compensate simulated subject movements and that the reconstructed images have no visible motion artifacts

  18. Primary variables influencing generation of earthquake motions by a deconvolution process

    International Nuclear Information System (INIS)

    Idriss, I.M.; Akky, M.R.

    1979-01-01

    In many engineering problems, the analysis of potential earthquake response of a soil deposit, a soil structure or a soil-foundation-structure system requires the knowledge of earthquake ground motions at some depth below the level at which the motions are recorded, specified, or estimated. A process by which such motions are commonly calculated is termed a deconvolution process. This paper presents the results of a parametric study which was conducted to examine the accuracy, convergence, and stability of a frequency used deconvolution process and the significant parameters that may influence the output of this process. Parameters studied in included included: soil profile characteristics, input motion characteristics, level of input motion, and frequency cut-off. (orig.)

  19. Ground motion characteristics of 2007 Niigata-ken Chuetsu-oki earthquake

    International Nuclear Information System (INIS)

    Hijikata, Katsuichirou; Nishimura, Isao; Mizutani, Hiroyuki; Tokumitsu, Ryoichi; Mashimo, Mitsugu; Tanaka, Shinya

    2010-01-01

    Strong motion records of 2007 Niigata-ken Chuetsu-oki earthquake were examined in order to evaluate ground motion characteristics of the earthquake. Ground motions observed at Kashiwazaki Kariwa Nuclear Power Plant site were significantly larger than the response spectra evaluated on the basis of Noda et al. (2002), and the level of the ground motion observed at Arahama area (unit 1-4 side) was approximately twice as large as that at Ominato area (unit 5-7 side). Observation records of the offshore events other than the earthquake were also larger than the response spectra based on Noda et al. (2002), whereas records of the inland events were smaller than those. In addition, these characteristics were also observed in the vicinity of the site through the analysis of the ground motion records obtained by KiK-net. (author)

  20. Motion Vector Estimation Using Line-Square Search Block Matching Algorithm for Video Sequences

    Directory of Open Access Journals (Sweden)

    Guo Bao-long

    2004-09-01

    Full Text Available Motion estimation and compensation techniques are widely used for video coding applications but the real-time motion estimation is not easily achieved due to its enormous computations. In this paper, a new fast motion estimation algorithm based on line search is presented, in which computation complexity is greatly reduced by using the line search strategy and a parallel search pattern. Moreover, the accurate search is achieved because the small square search pattern is used. It has a best-case scenario of only 9 search points, which is 4 search points less than the diamond search algorithm. Simulation results show that, compared with the previous techniques, the LSPS algorithm significantly reduces the computational requirements for finding motion vectors, and also produces close performance in terms of motion compensation errors.

  1. Topography-Dependent Motion Compensation: Application to UAVSAR Data

    Science.gov (United States)

    Jones, Cathleen E.; Hensley, Scott; Michel, Thierry

    2009-01-01

    The UAVSAR L-band synthetic aperture radar system has been designed for repeat track interferometry in support of Earth science applications that require high-precision measurements of small surface deformations over timescales from hours to years. Conventional motion compensation algorithms, which are based upon assumptions of a narrow beam and flat terrain, yield unacceptably large errors in areas with even moderate topographic relief, i.e., in most areas of interest. This often limits the ability to achieve sub-centimeter surface change detection over significant portions of an acquired scene. To reduce this source of error in the interferometric phase, we have implemented an advanced motion compensation algorithm that corrects for the scene topography and radar beam width. Here we discuss the algorithm used, its implementation in the UAVSAR data processor, and the improvement in interferometric phase and correlation achieved in areas with significant topographic relief.

  2. Stability of fluid motions I

    CERN Document Server

    Joseph, Daniel D

    1976-01-01

    The study of stability aims at understanding the abrupt changes which are observed in fluid motions as the external parameters are varied. It is a demanding study, far from full grown"whose most interesting conclusions are recent. I have written a detailed account of those parts of the recent theory which I regard as established. Acknowledgements I started writing this book in 1967 at the invitation of Clifford Truesdell. It was to be a short work on the energy theory of stability and if I had stuck to that I would have finished the writing many years ago. The theory of stability has developed so rapidly since 1967 that the book I might then have written would now have a much too limited scope. I am grateful to Truesdell, not so much for the invitation to spend endless hours of writing and erasing, but for the generous way he has supported my efforts and encouraged me to higher standards of good work. I have tried to follow Truesdell's advice to write this work in a clear and uncomplicated style. This is not ...

  3. Collective motion of predictive swarms.

    Directory of Open Access Journals (Sweden)

    Nathaniel Rupprecht

    Full Text Available Theoretical models of populations and swarms typically start with the assumption that the motion of agents is governed by the local stimuli. However, an intelligent agent, with some understanding of the laws that govern its habitat, can anticipate the future, and make predictions to gather resources more efficiently. Here we study a specific model of this kind, where agents aim to maximize their consumption of a diffusing resource, by attempting to predict the future of a resource field and the actions of other agents. Once the agents make a prediction, they are attracted to move towards regions that have, and will have, denser resources. We find that the further the agents attempt to see into the future, the more their attempts at prediction fail, and the less resources they consume. We also study the case where predictive agents compete against non-predictive agents and find the predictors perform better than the non-predictors only when their relative numbers are very small. We conclude that predictivity pays off either when the predictors do not see too far into the future or the number of predictors is small.

  4. Strong seismic ground motion propagation

    International Nuclear Information System (INIS)

    Seale, S.; Archuleta, R.; Pecker, A.; Bouchon, M.; Mohammadioun, G.; Murphy, A.; Mohammadioun, B.

    1988-10-01

    At the McGee Creek, California, site, 3-component strong-motion accelerometers are located at depths of 166 m, 35 m and 0 m. The surface material is glacial moraine, to a depth of 30.5 m, overlying homfels. Accelerations were recorded from two California earthquakes: Round Valley, M L 5.8, November 23, 1984, 18:08 UTC and Chalfant Valley, M L 6.4, July 21, 1986, 14:42 UTC. By separating out the SH components of acceleration, we were able to determine the orientations of the downhole instruments. By separating out the SV component of acceleration, we were able to determine the approximate angle of incidence of the signal at 166 m. A constant phase velocity Haskell-Thomson model was applied to generate synthetic SH seismograms at the surface using the accelerations recorded at 166 m. In the frequency band 0.0 - 10.0 Hz, we compared the filtered synthetic records to the filtered surface data. The onset of the SH pulse is clearly seen, as are the reflections from the interface at 30.5 m. The synthetic record closely matches the data in amplitude and phase. The fit between the synthetic accelerogram and the data shows that the seismic amplification at the surface is a result of the contrast of the impedances (shear stiffnesses) of the near surface materials

  5. Climate-driven polar motion

    Science.gov (United States)

    Celaya, Michael A.; Wahr, John M.; Bryan, Frank O.

    1999-06-01

    The output of a coupled climate system model provides a synthetic climate record with temporal and spatial coverage not attainable with observational data, allowing evaluation of climatic excitation of polar motion on timescales of months to decades. Analysis of the geodetically inferred Chandler excitation power shows that it has fluctuated by up to 90% since 1900 and that it has characteristics representative of a stationary Gaussian process. Our model-predicted climate excitation of the Chandler wobble also exhibits variable power comparable to the observed. Ocean currents and bottom pressure shifts acting together can alone drive the 14-month wobble. The same is true of the excitation generated by the combined effects of barometric pressure and winds. The oceanic and atmospheric contributions are this large because of a relatively high degree of constructive interference between seafloor pressure and currents and between atmospheric pressure and winds. In contrast, excitation by the redistribution of water on land appears largely insignificant. Not surprisingly, the full climate effect is even more capable of driving the wobble than the effects of the oceans or atmosphere alone are. Our match to the observed annual excitation is also improved, by about 17%, over previous estimates made with historical climate data. Efforts to explain the 30-year Markowitz wobble meet with less success. Even so, at periods ranging from months to decades, excitation generated by a model of a coupled climate system makes a close approximation to the amplitude of what is geodetically observed.

  6. The historical significance of oak

    Science.gov (United States)

    J. V. Thirgood

    1971-01-01

    A brief history of the importance of oak in Europe, contrasting the methods used in France and Britain to propagate the species and manage the forests for continued productivity. The significance of oak as a strategic resource during the sailing-ship era is stressed, and mention is made of the early development of oak management in North America. The international...

  7. The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging

    International Nuclear Information System (INIS)

    Liu Chi; Pierce II, Larry A; Alessio, Adam M; Kinahan, Paul E

    2009-01-01

    Our aim is to investigate the impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging using a population of patient respiratory traces. A total of 1295 respiratory traces acquired during whole body PET/CT imaging were classified into three types according to the qualitative shape of their signal histograms. Each trace was scaled to three diaphragm motion amplitudes (6 mm, 11 mm and 16 mm) to drive a whole body PET/CT computer simulation that was validated with a physical phantom experiment. Three lung lesions and one liver lesion were simulated with diameters of 1 cm and 2 cm. PET data were reconstructed using the OS-EM algorithm with attenuation correction using CT images at the end-expiration phase and respiratory-averaged CT. The errors of the lesion maximum standardized uptake values (SUV max ) and lesion volumes between motion-free and motion-blurred PET/CT images were measured and analyzed. For respiration with 11 mm diaphragm motion and larger quiescent period fraction, respiratory motion can cause a mean lesion SUV max underestimation of 28% and a mean lesion volume overestimation of 130% in PET/CT images with 1 cm lesions. The errors of lesion SUV max and volume are larger for patient traces with larger motion amplitudes. Smaller lesions are more sensitive to respiratory motion than larger lesions for the same motion amplitude. Patient respiratory traces with relatively larger quiescent period fraction yield results less subject to respiratory motion than traces with long-term amplitude variability. Mismatched attenuation correction due to respiratory motion can cause SUV max overestimation for lesions in the lower lung region close to the liver dome. Using respiratory-averaged CT for attenuation correction yields smaller mismatch errors than those using end-expiration CT. Respiratory motion can have a significant impact on static oncological PET/CT imaging where SUV and/or volume measurements are important. The impact

  8. Correlation-based motion vector processing with adaptive interpolation scheme for motion-compensated frame interpolation.

    Science.gov (United States)

    Huang, Ai-Mei; Nguyen, Truong

    2009-04-01

    In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.

  9. Dynamics and control of Lorentz-augmented spacecraft relative motion

    CERN Document Server

    Yan, Ye; Yang, Yueneng

    2017-01-01

    This book develops a dynamical model of the orbital motion of Lorentz spacecraft in both unperturbed and J2-perturbed environments. It explicitly discusses three kinds of typical space missions involving relative orbital control: spacecraft hovering, rendezvous, and formation flying. Subsequently, it puts forward designs for both open-loop and closed-loop control schemes propelled or augmented by the geomagnetic Lorentz force. These control schemes are entirely novel and represent a significantly departure from previous approaches.

  10. Flash x-radiography for material motion detection

    International Nuclear Information System (INIS)

    Choate, L.M.; Buckalew, W.H.; Posey, L.D.

    1977-01-01

    A significant part of the experimental program dealing with the behavior of prototypic LMFBR fuel pin bundles under mild to severe power transients is that of the observation of fuel/cladding/coolant motion. The feasibility of using electron beam flash x-radiography as a diagnostic tool for safety test facilities is presently under evaluation. A summary of the objectives and approach of the flash x-radiography program is presented

  11. TARGETED PRINCIPLE COMPONENT ANALYSIS: A NEW MOTION ARTIFACT CORRECTION APPROACH FOR NEAR-INFRARED SPECTROSCOPY.

    Science.gov (United States)

    Yücel, Meryem A; Selb, Juliette; Cooper, Robert J; Boas, David A

    2014-03-01

    As near-infrared spectroscopy (NIRS) broadens its application area to different age and disease groups, motion artifacts in the NIRS signal due to subject movement is becoming an important challenge. Motion artifacts generally produce signal fluctuations that are larger than physiological NIRS signals, thus it is crucial to correct for them before obtaining an estimate of stimulus evoked hemodynamic responses. There are various methods for correction such as principle component analysis (PCA), wavelet-based filtering and spline interpolation. Here, we introduce a new approach to motion artifact correction, targeted principle component analysis (tPCA), which incorporates a PCA filter only on the segments of data identified as motion artifacts. It is expected that this will overcome the issues of filtering desired signals that plagues standard PCA filtering of entire data sets. We compared the new approach with the most effective motion artifact correction algorithms on a set of data acquired simultaneously with a collodion-fixed probe (low motion artifact content) and a standard Velcro probe (high motion artifact content). Our results show that tPCA gives statistically better results in recovering hemodynamic response function (HRF) as compared to wavelet-based filtering and spline interpolation for the Velcro probe. It results in a significant reduction in mean-squared error (MSE) and significant enhancement in Pearson's correlation coefficient to the true HRF. The collodion-fixed fiber probe with no motion correction performed better than the Velcro probe corrected for motion artifacts in terms of MSE and Pearson's correlation coefficient. Thus, if the experimental study permits, the use of a collodion-fixed fiber probe may be desirable. If the use of a collodion-fixed probe is not feasible, then we suggest the use of tPCA in the processing of motion artifact contaminated data.

  12. TARGETED PRINCIPLE COMPONENT ANALYSIS: A NEW MOTION ARTIFACT CORRECTION APPROACH FOR NEAR-INFRARED SPECTROSCOPY

    Science.gov (United States)

    YÜCEL, MERYEM A.; SELB, JULIETTE; COOPER, ROBERT J.; BOAS, DAVID A.

    2014-01-01

    As near-infrared spectroscopy (NIRS) broadens its application area to different age and disease groups, motion artifacts in the NIRS signal due to subject movement is becoming an important challenge. Motion artifacts generally produce signal fluctuations that are larger than physiological NIRS signals, thus it is crucial to correct for them before obtaining an estimate of stimulus evoked hemodynamic responses. There are various methods for correction such as principle component analysis (PCA), wavelet-based filtering and spline interpolation. Here, we introduce a new approach to motion artifact correction, targeted principle component analysis (tPCA), which incorporates a PCA filter only on the segments of data identified as motion artifacts. It is expected that this will overcome the issues of filtering desired signals that plagues standard PCA filtering of entire data sets. We compared the new approach with the most effective motion artifact correction algorithms on a set of data acquired simultaneously with a collodion-fixed probe (low motion artifact content) and a standard Velcro probe (high motion artifact content). Our results show that tPCA gives statistically better results in recovering hemodynamic response function (HRF) as compared to wavelet-based filtering and spline interpolation for the Velcro probe. It results in a significant reduction in mean-squared error (MSE) and significant enhancement in Pearson’s correlation coefficient to the true HRF. The collodion-fixed fiber probe with no motion correction performed better than the Velcro probe corrected for motion artifacts in terms of MSE and Pearson’s correlation coefficient. Thus, if the experimental study permits, the use of a collodion-fixed fiber probe may be desirable. If the use of a collodion-fixed probe is not feasible, then we suggest the use of tPCA in the processing of motion artifact contaminated data. PMID:25360181

  13. Motion Tree Delineates Hierarchical Structure of Protein Dynamics Observed in Molecular Dynamics Simulation.

    Directory of Open Access Journals (Sweden)

    Kei Moritsugu

    Full Text Available Molecular dynamics (MD simulations of proteins provide important information to understand their functional mechanisms, which are, however, likely to be hidden behind their complicated motions with a wide range of spatial and temporal scales. A straightforward and intuitive analysis of protein dynamics observed in MD simulation trajectories is therefore of growing significance with the large increase in both the simulation time and system size. In this study, we propose a novel description of protein motions based on the hierarchical clustering of fluctuations in the inter-atomic distances calculated from an MD trajectory, which constructs a single tree diagram, named a "Motion Tree", to determine a set of rigid-domain pairs hierarchically along with associated inter-domain fluctuations. The method was first applied to the MD trajectory of substrate-free adenylate kinase to clarify the usefulness of the Motion Tree, which illustrated a clear-cut dynamics picture of the inter-domain motions involving the ATP/AMP lid and the core domain together with the associated amplitudes and correlations. The comparison of two Motion Trees calculated from MD simulations of ligand-free and -bound glutamine binding proteins clarified changes in inherent dynamics upon ligand binding appeared in both large domains and a small loop that stabilized ligand molecule. Another application to a huge protein, a multidrug ATP binding cassette (ABC transporter, captured significant increases of fluctuations upon binding a drug molecule observed in both large scale inter-subunit motions and a motion localized at a transmembrane helix, which may be a trigger to the subsequent structural change from inward-open to outward-open states to transport the drug molecule. These applications demonstrated the capabilities of Motion Trees to provide an at-a-glance view of various sizes of functional motions inherent in the complicated MD trajectory.

  14. Hand motion modeling for psychology analysis in job interview using optical flow-history motion image: OF-HMI

    Science.gov (United States)

    Khalifa, Intissar; Ejbali, Ridha; Zaied, Mourad

    2018-04-01

    To survive the competition, companies always think about having the best employees. The selection is depended on the answers to the questions of the interviewer and the behavior of the candidate during the interview session. The study of this behavior is always based on a psychological analysis of the movements accompanying the answers and discussions. Few techniques are proposed until today to analyze automatically candidate's non verbal behavior. This paper is a part of a work psychology recognition system; it concentrates in spontaneous hand gesture which is very significant in interviews according to psychologists. We propose motion history representation of hand based on an hybrid approach that merges optical flow and history motion images. The optical flow technique is used firstly to detect hand motions in each frame of a video sequence. Secondly, we use the history motion images (HMI) to accumulate the output of the optical flow in order to have finally a good representation of the hand`s local movement in a global temporal template.

  15. Learning Motion Features for Example-Based Finger Motion Estimation for Virtual Characters

    Science.gov (United States)

    Mousas, Christos; Anagnostopoulos, Christos-Nikolaos

    2017-09-01

    This paper presents a methodology for estimating the motion of a character's fingers based on the use of motion features provided by a virtual character's hand. In the presented methodology, firstly, the motion data is segmented into discrete phases. Then, a number of motion features are computed for each motion segment of a character's hand. The motion features are pre-processed using restricted Boltzmann machines, and by using the different variations of semantically similar finger gestures in a support vector machine learning mechanism, the optimal weights for each feature assigned to a metric are computed. The advantages of the presented methodology in comparison to previous solutions are the following: First, we automate the computation of optimal weights that are assigned to each motion feature counted in our metric. Second, the presented methodology achieves an increase (about 17%) in correctly estimated finger gestures in comparison to a previous method.

  16. A new robotic needle insertion method to minimise attendant prostate motion

    International Nuclear Information System (INIS)

    Lagerburg, Vera; Moerland, Marinus A.; Vulpen, Marco van; Lagendijk, Jan J.W.

    2006-01-01

    Background and purpose: The purpose of this study is to investigate the efficacy of a new needle insertion method (tapping instead of pushing) in reducing attendant tissue motion. This can be useful in applications where tissue motion due to needle insertion is problematic such as e.g. MRI-guided prostate brachytherapy and breast biopsies. In this study we will focus on prostate motion due to needle insertion. Material and methods: Prostate motion due to needle insertion was measured in 30 patients, who were transperineally implanted with fiducial gold markers for position verification in prostate intensity modulated radiotherapy. In total 32 needles were manually pushed into the prostate and 29 were tapped with a prototype robotic system. The prostate motion in the cranio-caudal direction was measured on the video record of the ultrasound images. Differences in prostate motion between the two needle insertion methods were analysed making use of SPSS. Results: The mean prostate motion was 5.6 mm (range 0.3-21.6) when the needle was pushed and 0.9 mm (range 0-2.0) when the needle was tapped into the prostate (p < 0.001). Conclusion: Prostate motion was significantly less when the needle was tapped into the prostate compared to when the needle was pushed. This result is important for the development of a tapping, MRI-guided, prostate implant robotic system

  17. Motion correction of PET brain images through deconvolution: I. Theoretical development and analysis in software simulations

    Science.gov (United States)

    Faber, T. L.; Raghunath, N.; Tudorascu, D.; Votaw, J. R.

    2009-02-01

    Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. Existing correction methods that use known patient motion obtained from tracking devices either require multi-frame acquisitions, detailed knowledge of the scanner, or specialized reconstruction algorithms. A deconvolution algorithm has been developed that alleviates these drawbacks by using the reconstructed image to estimate the original non-blurred image using maximum likelihood estimation maximization (MLEM) techniques. A high-resolution digital phantom was created by shape-based interpolation of the digital Hoffman brain phantom. Three different sets of 20 movements were applied to the phantom. For each frame of the motion, sinograms with attenuation and three levels of noise were simulated and then reconstructed using filtered backprojection. The average of the 20 frames was considered the motion blurred image, which was restored with the deconvolution algorithm. After correction, contrast increased from a mean of 2.0, 1.8 and 1.4 in the motion blurred images, for the three increasing amounts of movement, to a mean of 2.5, 2.4 and 2.2. Mean error was reduced by an average of 55% with motion correction. In conclusion, deconvolution can be used for correction of motion blur when subject motion is known.

  18. Motion correction of PET brain images through deconvolution: I. Theoretical development and analysis in software simulations

    Energy Technology Data Exchange (ETDEWEB)

    Faber, T L; Raghunath, N; Tudorascu, D; Votaw, J R [Department of Radiology, Emory University Hospital, 1364 Clifton Road, N.E. Atlanta, GA 30322 (United States)], E-mail: tfaber@emory.edu

    2009-02-07

    Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. Existing correction methods that use known patient motion obtained from tracking devices either require multi-frame acquisitions, detailed knowledge of the scanner, or specialized reconstruction algorithms. A deconvolution algorithm has been developed that alleviates these drawbacks by using the reconstructed image to estimate the original non-blurred image using maximum likelihood estimation maximization (MLEM) techniques. A high-resolution digital phantom was created by shape-based interpolation of the digital Hoffman brain phantom. Three different sets of 20 movements were applied to the phantom. For each frame of the motion, sinograms with attenuation and three levels of noise were simulated and then reconstructed using filtered backprojection. The average of the 20 frames was considered the motion blurred image, which was restored with the deconvolution algorithm. After correction, contrast increased from a mean of 2.0, 1.8 and 1.4 in the motion blurred images, for the three increasing amounts of movement, to a mean of 2.5, 2.4 and 2.2. Mean error was reduced by an average of 55% with motion correction. In conclusion, deconvolution can be used for correction of motion blur when subject motion is known.

  19. Effects of Cable Sway, Electrode Surface Area, and Electrode Mass on Electroencephalography Signal Quality during Motion.

    Science.gov (United States)

    Symeonidou, Evangelia-Regkina; Nordin, Andrew D; Hairston, W David; Ferris, Daniel P

    2018-04-03

    More neuroscience researchers are using scalp electroencephalography (EEG) to measure electrocortical dynamics during human locomotion and other types of movement. Motion artifacts corrupt the EEG and mask underlying neural signals of interest. The cause of motion artifacts in EEG is often attributed to electrode motion relative to the skin, but few studies have examined EEG signals under head motion. In the current study, we tested how motion artifacts are affected by the overall mass and surface area of commercially available electrodes, as well as how cable sway contributes to motion artifacts. To provide a ground-truth signal, we used a gelatin head phantom with embedded antennas broadcasting electrical signals, and recorded EEG with a commercially available electrode system. A robotic platform moved the phantom head through sinusoidal displacements at different frequencies (0-2 Hz). Results showed that a larger electrode surface area can have a small but significant effect on improving EEG signal quality during motion and that cable sway is a major contributor to motion artifacts. These results have implications in the development of future hardware for mobile brain imaging with EEG.

  20. Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms

    Science.gov (United States)

    Cowings, P. S.; Toscano, W. B.

    2000-01-01

    Motion sickness symptoms affect approximately 50% of the crew during space travel and are commonly treated with intramuscular injections of promethazine. The purpose of this paper is to compare the effectiveness of three treatments for motion sickness: intramuscular injections (i.m.) of promethazine, a physiological training method (autogenic-feedback training exercise [AFTE]), and a no-treatment control. An earlier study tested the effects of promethazine on cognitive and psychomotor performance and motion sickness tolerance in a rotating chair. For the present paper, motion sickness tolerance, symptom reports, and physiological responses of these subjects were compared to matched subjects selected from an existing database who received either AFTE or no treatment. Three groups of 11 men, between the ages of 33 and 40 years, were matched on the number of rotations tolerated during their initial rotating-chair motion sickness test. The motion sickness test procedures and the 7-day interval between tests were the same for all subjects. The drug group was tested under four treatment conditions: baseline (no injections), a 25 mg dose of promethazine, a 50 mg dose of promethazine, and a placebo of sterile saline. AFTE subjects were given four 30-minute AFTE sessions before their second, third, and fourth motion sickness tests (6 hours total). The no-treatment control subjects were only given the four rotating-chair tests. Motion sickness tolerance was significantly increased after 4 hours of AFTE when compared to either 25 mg (p training.