WorldWideScience

Sample records for significant systematic errors

  1. Systematic Procedural Error

    National Research Council Canada - National Science Library

    Byrne, Michael D

    2006-01-01

    .... This problem has received surprisingly little attention from cognitive psychologists. The research summarized here examines such errors in some detail both empirically and through computational cognitive modeling...

  2. Statistical errors in Monte Carlo estimates of systematic errors

    Science.gov (United States)

    Roe, Byron P.

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k2. The specific terms unisim and multisim were coined by Peter Meyers and Steve Brice, respectively, for the MiniBooNE experiment. However, the concepts have been developed over time and have been in general use for some time.

  3. Statistical errors in Monte Carlo estimates of systematic errors

    Energy Technology Data Exchange (ETDEWEB)

    Roe, Byron P. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States)]. E-mail: byronroe@umich.edu

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k{sup 2}.

  4. Statistical errors in Monte Carlo estimates of systematic errors

    International Nuclear Information System (INIS)

    Roe, Byron P.

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k 2

  5. Random and Systematic Errors Share in Total Error of Probes for CNC Machine Tools

    Directory of Open Access Journals (Sweden)

    Adam Wozniak

    2018-03-01

    Full Text Available Probes for CNC machine tools, as every measurement device, have accuracy limited by random errors and by systematic errors. Random errors of these probes are described by a parameter called unidirectional repeatability. Manufacturers of probes for CNC machine tools usually specify only this parameter, while parameters describing systematic errors of the probes, such as pre-travel variation or triggering radius variation, are used rarely. Systematic errors of the probes, linked to the differences in pre-travel values for different measurement directions, can be corrected or compensated, but it is not a widely used procedure. In this paper, the share of systematic errors and random errors in total error of exemplary probes are determined. In the case of simple, kinematic probes, systematic errors are much greater than random errors, so compensation would significantly reduce the probing error. Moreover, it shows that in the case of kinematic probes commonly specified unidirectional repeatability is significantly better than 2D performance. However, in the case of more precise strain-gauge probe systematic errors are of the same order as random errors, which means that errors correction or compensation, in this case, would not yield any significant benefits.

  6. Systematic sampling with errors in sample locations

    DEFF Research Database (Denmark)

    Ziegel, Johanna; Baddeley, Adrian; Dorph-Petersen, Karl-Anton

    2010-01-01

    analysis using point process methods. We then analyze three different models for the error process, calculate exact expressions for the variances, and derive asymptotic variances. Errors in the placement of sample points can lead to substantial inflation of the variance, dampening of zitterbewegung......Systematic sampling of points in continuous space is widely used in microscopy and spatial surveys. Classical theory provides asymptotic expressions for the variance of estimators based on systematic sampling as the grid spacing decreases. However, the classical theory assumes that the sample grid...... is exactly periodic; real physical sampling procedures may introduce errors in the placement of the sample points. This paper studies the effect of errors in sample positioning on the variance of estimators in the case of one-dimensional systematic sampling. First we sketch a general approach to variance...

  7. Evaluation of Data with Systematic Errors

    International Nuclear Information System (INIS)

    Froehner, F. H.

    2003-01-01

    Application-oriented evaluated nuclear data libraries such as ENDF and JEFF contain not only recommended values but also uncertainty information in the form of 'covariance' or 'error files'. These can neither be constructed nor utilized properly without a thorough understanding of uncertainties and correlations. It is shown how incomplete information about errors is described by multivariate probability distributions or, more summarily, by covariance matrices, and how correlations are caused by incompletely known common errors. Parameter estimation for the practically most important case of the Gaussian distribution with common errors is developed in close analogy to the more familiar case without. The formalism shows that, contrary to widespread belief, common ('systematic') and uncorrelated ('random' or 'statistical') errors are to be added in quadrature. It also shows explicitly that repetition of a measurement reduces mainly the statistical uncertainties but not the systematic ones. While statistical uncertainties are readily estimated from the scatter of repeatedly measured data, systematic uncertainties can only be inferred from prior information about common errors and their propagation. The optimal way to handle error-affected auxiliary quantities ('nuisance parameters') in data fitting and parameter estimation is to adjust them on the same footing as the parameters of interest and to integrate (marginalize) them out of the joint posterior distribution afterward

  8. Errors in causal inference: an organizational schema for systematic error and random error.

    Science.gov (United States)

    Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji

    2016-11-01

    To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Systematic errors in VLF direction-finding of whistler ducts

    International Nuclear Information System (INIS)

    Strangeways, H.J.; Rycroft, M.J.

    1980-01-01

    In the previous paper it was shown that the systematic error in the azimuthal bearing due to multipath propagation and incident wave polarisation (when this also constitutes an error) was given by only three different forms for all VLF direction-finders currently used to investigate the position of whistler ducts. In this paper the magnitude of this error is investigated for different ionospheric and ground parameters for these three different systematic error types. By incorporating an ionosphere for which the refractive index is given by the full Appleton-Hartree formula, the variation of the systematic error with ionospheric electron density and latitude and direction of propagation is investigated in addition to the variation with wave frequency, ground conductivity and dielectric constant and distance of propagation. The systematic bearing error is also investigated for the three methods when the azimuthal bearing is averaged over a 2 kHz bandwidth. This is found to lead to a significantly smaller bearing error which, for the crossed-loops goniometer, approximates the bearing error calculated when phase-dependent terms in the receiver response are ignored. (author)

  10. Systematic Review of Errors in Inhaler Use

    DEFF Research Database (Denmark)

    Sanchis, Joaquin; Gich, Ignasi; Pedersen, Søren

    2016-01-01

    in these outcomes over these 40 years and when partitioned into years 1 to 20 and years 21 to 40. Analyses were conducted in accordance with recommendations from Preferred Reporting Items for Systematic Reviews and Meta-Analyses and Strengthening the Reporting of Observational Studies in Epidemiology. Results Data...... A systematic search for articles reporting direct observation of inhaler technique by trained personnel covered the period from 1975 to 2014. Outcomes were the nature and frequencies of the three most common errors; the percentage of patients demonstrating correct, acceptable, or poor technique; and variations...

  11. Investigation of systematic errors of metastable "atomic pair" number

    CERN Document Server

    Yazkov, V

    2015-01-01

    Sources of systematic errors in analysis of data, collected in 2012, are analysed. Esti- mations of systematic errors in a number of “atomic pairs” fr om metastable π + π − atoms are presented.

  12. Tropical systematic and random error energetics based on NCEP ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Systematic error growth rate peak is observed at wavenumber 2 up to 4-day forecast then .... the influence of summer systematic error and ran- ... total exchange. When the error energy budgets are examined in spectral domain, one may ask ques- tions on the error growth at a certain wavenum- ber from its interaction with ...

  13. A procedure for the significance testing of unmodeled errors in GNSS observations

    Science.gov (United States)

    Li, Bofeng; Zhang, Zhetao; Shen, Yunzhong; Yang, Ling

    2018-01-01

    It is a crucial task to establish a precise mathematical model for global navigation satellite system (GNSS) observations in precise positioning. Due to the spatiotemporal complexity of, and limited knowledge on, systematic errors in GNSS observations, some residual systematic errors would inevitably remain even after corrected with empirical model and parameterization. These residual systematic errors are referred to as unmodeled errors. However, most of the existing studies mainly focus on handling the systematic errors that can be properly modeled and then simply ignore the unmodeled errors that may actually exist. To further improve the accuracy and reliability of GNSS applications, such unmodeled errors must be handled especially when they are significant. Therefore, a very first question is how to statistically validate the significance of unmodeled errors. In this research, we will propose a procedure to examine the significance of these unmodeled errors by the combined use of the hypothesis tests. With this testing procedure, three components of unmodeled errors, i.e., the nonstationary signal, stationary signal and white noise, are identified. The procedure is tested by using simulated data and real BeiDou datasets with varying error sources. The results show that the unmodeled errors can be discriminated by our procedure with approximately 90% confidence. The efficiency of the proposed procedure is further reassured by applying the time-domain Allan variance analysis and frequency-domain fast Fourier transform. In summary, the spatiotemporally correlated unmodeled errors are commonly existent in GNSS observations and mainly governed by the residual atmospheric biases and multipath. Their patterns may also be impacted by the receiver.

  14. Reducing systematic errors in measurements made by a SQUID magnetometer

    International Nuclear Information System (INIS)

    Kiss, L.F.; Kaptás, D.; Balogh, J.

    2014-01-01

    A simple method is described which reduces those systematic errors of a superconducting quantum interference device (SQUID) magnetometer that arise from possible radial displacements of the sample in the second-order gradiometer superconducting pickup coil. By rotating the sample rod (and hence the sample) around its axis into a position where the best fit is obtained to the output voltage of the SQUID as the sample is moved through the pickup coil, the accuracy of measuring magnetic moments can be increased significantly. In the cases of an examined Co 1.9 Fe 1.1 Si Heusler alloy, pure iron and nickel samples, the accuracy could be increased over the value given in the specification of the device. The suggested method is only meaningful if the measurement uncertainty is dominated by systematic errors – radial displacement in particular – and not by instrumental or environmental noise. - Highlights: • A simple method is described which reduces systematic errors of a SQUID. • The errors arise from a radial displacement of the sample in the gradiometer coil. • The procedure is to rotate the sample rod (with the sample) around its axis. • The best fit to the SQUID voltage has to be attained moving the sample through the coil. • The accuracy of measuring magnetic moment can be increased significantly

  15. SHERPA: A systematic human error reduction and prediction approach

    International Nuclear Information System (INIS)

    Embrey, D.E.

    1986-01-01

    This paper describes a Systematic Human Error Reduction and Prediction Approach (SHERPA) which is intended to provide guidelines for human error reduction and quantification in a wide range of human-machine systems. The approach utilizes as its basic current cognitive models of human performance. The first module in SHERPA performs task and human error analyses, which identify likely error modes, together with guidelines for the reduction of these errors by training, procedures and equipment redesign. The second module uses a SARAH approach to quantify the probability of occurrence of the errors identified earlier, and provides cost benefit analyses to assist in choosing the appropriate error reduction approaches in the third module

  16. Identifying systematic DFT errors in catalytic reactions

    DEFF Research Database (Denmark)

    Christensen, Rune; Hansen, Heine Anton; Vegge, Tejs

    2015-01-01

    Using CO2 reduction reactions as examples, we present a widely applicable method for identifying the main source of errors in density functional theory (DFT) calculations. The method has broad applications for error correction in DFT calculations in general, as it relies on the dependence...... of the applied exchange–correlation functional on the reaction energies rather than on errors versus the experimental data. As a result, improved energy corrections can now be determined for both gas phase and adsorbed reaction species, particularly interesting within heterogeneous catalysis. We show...... that for the CO2 reduction reactions, the main source of error is associated with the C[double bond, length as m-dash]O bonds and not the typically energy corrected OCO backbone....

  17. Systematic Errors in Dimensional X-ray Computed Tomography

    DEFF Research Database (Denmark)

    that it is possible to compensate them. In dimensional X-ray computed tomography (CT), many physical quantities influence the final result. However, it is important to know which factors in CT measurements potentially lead to systematic errors. In this talk, typical error sources in dimensional X-ray CT are discussed...

  18. Tackling systematic errors in quantum logic gates with composite rotations

    International Nuclear Information System (INIS)

    Cummins, Holly K.; Llewellyn, Gavin; Jones, Jonathan A.

    2003-01-01

    We describe the use of composite rotations to combat systematic errors in single-qubit quantum logic gates and discuss three families of composite rotations which can be used to correct off-resonance and pulse length errors. Although developed and described within the context of nuclear magnetic resonance quantum computing, these sequences should be applicable to any implementation of quantum computation

  19. Numerical study of the systematic error in Monte Carlo schemes for semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Muscato, Orazio [Univ. degli Studi di Catania (Italy). Dipt. di Matematica e Informatica; Di Stefano, Vincenza [Univ. degli Studi di Messina (Italy). Dipt. di Matematica; Wagner, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany)

    2008-07-01

    The paper studies the convergence behavior of Monte Carlo schemes for semiconductors. A detailed analysis of the systematic error with respect to numerical parameters is performed. Different sources of systematic error are pointed out and illustrated in a spatially one-dimensional test case. The error with respect to the number of simulation particles occurs during the calculation of the internal electric field. The time step error, which is related to the splitting of transport and electric field calculations, vanishes sufficiently fast. The error due to the approximation of the trajectories of particles depends on the ODE solver used in the algorithm. It is negligible compared to the other sources of time step error, when a second order Runge-Kutta solver is used. The error related to the approximate scattering mechanism is the most significant source of error with respect to the time step. (orig.)

  20. RHIC susceptibility to variations in systematic magnetic harmonic errors

    International Nuclear Information System (INIS)

    Dell, G.F.; Peggs, S.; Pilat, F.; Satogata, T.; Tepikian, S.; Trbojevic, D.; Wei, J.

    1994-01-01

    Results of a study to determine the sensitivity of tune to uncertainties of the systematic magnetic harmonic errors in the 8 cm dipoles of RHIC are reported. Tolerances specified to the manufacturer for tooling and fabrication can result in systematic harmonics different from the expected values. Limits on the range of systematic harmonics have been established from magnet calculations, and the impact on tune from such harmonics has been established

  1. Multi-isocenter stereotactic radiotherapy: implications for target dose distributions of systematic and random localization errors

    International Nuclear Information System (INIS)

    Ebert, M.A.; Zavgorodni, S.F.; Kendrick, L.A.; Weston, S.; Harper, C.S.

    2001-01-01

    Purpose: This investigation examined the effect of alignment and localization errors on dose distributions in stereotactic radiotherapy (SRT) with arced circular fields. In particular, it was desired to determine the effect of systematic and random localization errors on multi-isocenter treatments. Methods and Materials: A research version of the FastPlan system from Surgical Navigation Technologies was used to generate a series of SRT plans of varying complexity. These plans were used to examine the influence of random setup errors by recalculating dose distributions with successive setup errors convolved into the off-axis ratio data tables used in the dose calculation. The influence of systematic errors was investigated by displacing isocenters from their planned positions. Results: For single-isocenter plans, it is found that the influences of setup error are strongly dependent on the size of the target volume, with minimum doses decreasing most significantly with increasing random and systematic alignment error. For multi-isocenter plans, similar variations in target dose are encountered, with this result benefiting from the conventional method of prescribing to a lower isodose value for multi-isocenter treatments relative to single-isocenter treatments. Conclusions: It is recommended that the systematic errors associated with target localization in SRT be tracked via a thorough quality assurance program, and that random setup errors be minimized by use of a sufficiently robust relocation system. These errors should also be accounted for by incorporating corrections into the treatment planning algorithm or, alternatively, by inclusion of sufficient margins in target definition

  2. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    Science.gov (United States)

    Brantjes, N. P. M.; Dzordzhadze, V.; Gebel, R.; Gonnella, F.; Gray, F. E.; van der Hoek, D. J.; Imig, A.; Kruithof, W. L.; Lazarus, D. M.; Lehrach, A.; Lorentz, B.; Messi, R.; Moricciani, D.; Morse, W. M.; Noid, G. A.; Onderwater, C. J. G.; Özben, C. S.; Prasuhn, D.; Levi Sandri, P.; Semertzidis, Y. K.; da Silva e Silva, M.; Stephenson, E. J.; Stockhorst, H.; Venanzoni, G.; Versolato, O. O.

    2012-02-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Jülich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10 -5 for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10 -6 in a search for an electric dipole moment using a storage ring.

  3. Sources of variability and systematic error in mouse timing behavior.

    Science.gov (United States)

    Gallistel, C R; King, Adam; McDonald, Robert

    2004-01-01

    In the peak procedure, starts and stops in responding bracket the target time at which food is expected. The variability in start and stop times is proportional to the target time (scalar variability), as is the systematic error in the mean center (scalar error). The authors investigated the source of the error and the variability, using head poking in the mouse, with target intervals of 5 s, 15 s, and 45 s, in the standard procedure, and in a variant with 3 different target intervals at 3 different locations in a single trial. The authors conclude that the systematic error is due to the asymmetric location of start and stop decision criteria, and the scalar variability derives primarily from sources other than memory.

  4. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Brantjes, N.P.M. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Dzordzhadze, V. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Gebel, R. [Institut fuer Kernphysik, Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Gonnella, F. [Physica Department of ' Tor Vergata' University, Rome (Italy); INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Gray, F.E. [Regis University, Denver, CO 80221 (United States); Hoek, D.J. van der [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Imig, A. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Kruithof, W.L. [Kernfysisch Versneller Instituut, University of Groningen, NL-9747AA Groningen (Netherlands); Lazarus, D.M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Lehrach, A.; Lorentz, B. [Institut fuer Kernphysik, Juelich Center for Hadron Physics, Forschungszentrum Juelich, D-52425 Juelich (Germany); Messi, R. [Physica Department of ' Tor Vergata' University, Rome (Italy); INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Moricciani, D. [INFN-Sez. ' Roma tor Vergata,' Rome (Italy); Morse, W.M. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Noid, G.A. [Indiana University Cyclotron Facility, Bloomington, IN 47408 (United States); and others

    2012-02-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY at Juelich. By measuring with very high statistical precision, the contributions that are second-order in the systematic errors become apparent. By calibrating the sensitivity of the polarimeter to such errors, it becomes possible to obtain information from the raw count rate values on the size of the errors and to use this information to correct the polarization measurements. During the experiment, it was possible to demonstrate that corrections were satisfactory at the level of 10{sup -5} for deliberately large errors. This may facilitate the real time observation of vector polarization changes smaller than 10{sup -6} in a search for an electric dipole moment using a storage ring.

  5. Auto-calibration of Systematic Odometry Errors in Mobile Robots

    DEFF Research Database (Denmark)

    Bak, Martin; Larsen, Thomas Dall; Andersen, Nils Axel

    1999-01-01

    This paper describes the phenomenon of systematic errors in odometry models in mobile robots and looks at various ways of avoiding it by means of auto-calibration. The systematic errors considered are incorrect knowledge of the wheel base and the gains from encoder readings to wheel displacement....... By auto-calibration we mean a standardized procedure which estimates the uncertainties using only on-board equipment such as encoders, an absolute measurement system and filters; no intervention by operator or off-line data processing is necessary. Results are illustrated by a number of simulations...... and experiments on a mobile robot....

  6. Clinical significance of multi-leaf collimator calibration errors

    International Nuclear Information System (INIS)

    Norvill, Craig; Jenetsky, Guy

    2016-01-01

    This planning study investigates the clinical impact of multi-leaf collimator (MLC) calibration errors on three common treatment sites; head and neck (H&N), prostate and stereotactic body radiotherapy (SBRT) for lung. All plans used using either volumetric modulated adaptive therapy or dynamic MLC techniques. Five patient plans were retrospectively selected from each treatment site, and MLC errors intentionally introduced. MLC errors of 0.7, 0.4 and 0.2 mm were sufficient to cause major violations in the PTV planning criteria for the H&N, prostate and SBRT lung plans. Mean PTV dose followed a linear trend with MLC error, increasing at rates of 3.2–5.9 % per millimeter depending on treatment site. The results indicate that an MLC quality assurance program that provides sub-millimeter accuracy is an important component of intensity modulated radiotherapy delivery techniques.

  7. Study of systematic errors in the luminosity measurement

    International Nuclear Information System (INIS)

    Arima, Tatsumi

    1993-01-01

    The experimental systematic error in the barrel region was estimated to be 0.44 %. This value is derived considering the systematic uncertainties from the dominant sources but does not include uncertainties which are being studied. In the end cap region, the study of shower behavior and clustering effect is under way in order to determine the angular resolution at the low angle edge of the Liquid Argon Calorimeter. We also expect that the systematic error in this region will be less than 1 %. The technical precision of theoretical uncertainty is better than 0.1 % comparing the Tobimatsu-Shimizu program and BABAMC modified by ALEPH. To estimate the physical uncertainty we will use the ALIBABA [9] which includes O(α 2 ) QED correction in leading-log approximation. (J.P.N.)

  8. Study of systematic errors in the luminosity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Arima, Tatsumi [Tsukuba Univ., Ibaraki (Japan). Inst. of Applied Physics

    1993-04-01

    The experimental systematic error in the barrel region was estimated to be 0.44 %. This value is derived considering the systematic uncertainties from the dominant sources but does not include uncertainties which are being studied. In the end cap region, the study of shower behavior and clustering effect is under way in order to determine the angular resolution at the low angle edge of the Liquid Argon Calorimeter. We also expect that the systematic error in this region will be less than 1 %. The technical precision of theoretical uncertainty is better than 0.1 % comparing the Tobimatsu-Shimizu program and BABAMC modified by ALEPH. To estimate the physical uncertainty we will use the ALIBABA [9] which includes O({alpha}{sup 2}) QED correction in leading-log approximation. (J.P.N.).

  9. Medication Errors in the Southeast Asian Countries: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Shahrzad Salmasi

    Full Text Available Medication error (ME is a worldwide issue, but most studies on ME have been undertaken in developed countries and very little is known about ME in Southeast Asian countries. This study aimed systematically to identify and review research done on ME in Southeast Asian countries in order to identify common types of ME and estimate its prevalence in this region.The literature relating to MEs in Southeast Asian countries was systematically reviewed in December 2014 by using; Embase, Medline, Pubmed, ProQuest Central and the CINAHL. Inclusion criteria were studies (in any languages that investigated the incidence and the contributing factors of ME in patients of all ages.The 17 included studies reported data from six of the eleven Southeast Asian countries: five studies in Singapore, four in Malaysia, three in Thailand, three in Vietnam, one in the Philippines and one in Indonesia. There was no data on MEs in Brunei, Laos, Cambodia, Myanmar and Timor. Of the seventeen included studies, eleven measured administration errors, four focused on prescribing errors, three were done on preparation errors, three on dispensing errors and two on transcribing errors. There was only one study of reconciliation error. Three studies were interventional.The most frequently reported types of administration error were incorrect time, omission error and incorrect dose. Staff shortages, and hence heavy workload for nurses, doctor/nurse distraction, and misinterpretation of the prescription/medication chart, were identified as contributing factors of ME. There is a serious lack of studies on this topic in this region which needs to be addressed if the issue of ME is to be fully understood and addressed.

  10. Medication errors in the Middle East countries: a systematic review of the literature.

    Science.gov (United States)

    Alsulami, Zayed; Conroy, Sharon; Choonara, Imti

    2013-04-01

    Medication errors are a significant global concern and can cause serious medical consequences for patients. Little is known about medication errors in Middle Eastern countries. The objectives of this systematic review were to review studies of the incidence and types of medication errors in Middle Eastern countries and to identify the main contributory factors involved. A systematic review of the literature related to medication errors in Middle Eastern countries was conducted in October 2011 using the following databases: Embase, Medline, Pubmed, the British Nursing Index and the Cumulative Index to Nursing & Allied Health Literature. The search strategy included all ages and languages. Inclusion criteria were that the studies assessed or discussed the incidence of medication errors and contributory factors to medication errors during the medication treatment process in adults or in children. Forty-five studies from 10 of the 15 Middle Eastern countries met the inclusion criteria. Nine (20 %) studies focused on medication errors in paediatric patients. Twenty-one focused on prescribing errors, 11 measured administration errors, 12 were interventional studies and one assessed transcribing errors. Dispensing and documentation errors were inadequately evaluated. Error rates varied from 7.1 % to 90.5 % for prescribing and from 9.4 % to 80 % for administration. The most common types of prescribing errors reported were incorrect dose (with an incidence rate from 0.15 % to 34.8 % of prescriptions), wrong frequency and wrong strength. Computerised physician rder entry and clinical pharmacist input were the main interventions evaluated. Poor knowledge of medicines was identified as a contributory factor for errors by both doctors (prescribers) and nurses (when administering drugs). Most studies did not assess the clinical severity of the medication errors. Studies related to medication errors in the Middle Eastern countries were relatively few in number and of poor quality

  11. Systematic investigation of SLC final focus tolerances to errors

    International Nuclear Information System (INIS)

    Napoly, O.

    1996-10-01

    In this paper we review the tolerances of the SLC final focus system. To calculate these tolerances we used the error analysis routine of the program FFADA which has been written to aid the design and the analysis of final focus systems for the future linear colliders. This routine, complete by S. Fartoukh, systematically reviews the errors generated by the geometric 6-d Euclidean displacements of each magnet as well as by the field errors (normal and skew) up to the sextipolar order. It calculates their effects on the orbit and the transfer matrix at the second order in the errors, thus including cross-talk between errors originating from two different magnets. It also translates these effects in terms of tolerance derived from spot size growth and luminosity loss. We have run the routine for the following set of beam IP parameters: σ * x = 2.1 μm; σ * x' = 300 μrd; σ * x = 1 mm; σ * y = 0.55 μm; σ * y' = 200 μrd; σ * b = 2 x 10 -3 . The resulting errors and tolerances are displayed in a series of histograms which are reproduced in this paper. (author)

  12. SYSTEMATIC ERROR REDUCTION: NON-TILTED REFERENCE BEAM METHOD FOR LONG TRACE PROFILER

    International Nuclear Information System (INIS)

    QIAN, S.; QIAN, K.; HONG, Y.; SENG, L.; HO, T.; TAKACS, P.

    2007-01-01

    Systematic error in the Long Trace Profiler (LTP) has become the major error source as measurement accuracy enters the nanoradian and nanometer regime. Great efforts have been made to reduce the systematic error at a number of synchrotron radiation laboratories around the world. Generally, the LTP reference beam has to be tilted away from the optical axis in order to avoid fringe overlap between the sample and reference beams. However, a tilted reference beam will result in considerable systematic error due to optical system imperfections, which is difficult to correct. Six methods of implementing a non-tilted reference beam in the LTP are introduced: (1) application of an external precision angle device to measure and remove slide pitch error without a reference beam, (2) independent slide pitch test by use of not tilted reference beam, (3) non-tilted reference test combined with tilted sample, (4) penta-prism scanning mode without a reference beam correction, (5) non-tilted reference using a second optical head, and (6) alternate switching of data acquisition between the sample and reference beams. With a non-tilted reference method, the measurement accuracy can be improved significantly. Some measurement results are presented. Systematic error in the sample beam arm is not addressed in this paper and should be treated separately

  13. Economic impact of medication error: a systematic review.

    Science.gov (United States)

    Walsh, Elaine K; Hansen, Christina Raae; Sahm, Laura J; Kearney, Patricia M; Doherty, Edel; Bradley, Colin P

    2017-05-01

    Medication error is a significant source of morbidity and mortality among patients. Clinical and cost-effectiveness evidence are required for the implementation of quality of care interventions. Reduction of error-related cost is a key potential benefit of interventions addressing medication error. The aim of this review was to describe and quantify the economic burden associated with medication error. PubMed, Cochrane, Embase, CINAHL, EconLit, ABI/INFORM, Business Source Complete were searched. Studies published 2004-2016 assessing the economic impact of medication error were included. Cost values were expressed in Euro 2015. A narrative synthesis was performed. A total of 4572 articles were identified from database searching, and 16 were included in the review. One study met all applicable quality criteria. Fifteen studies expressed economic impact in monetary terms. Mean cost per error per study ranged from €2.58 to €111 727.08. Healthcare costs were used to measure economic impact in 15 of the included studies with one study measuring litigation costs. Four studies included costs incurred in primary care with the remaining 12 measuring hospital costs. Five studies looked at general medication error in a general population with 11 studies reporting the economic impact of an individual type of medication error or error within a specific patient population. Considerable variability existed between studies in terms of financial cost, patients, settings and errors included. Many were of poor quality. Assessment of economic impact was conducted predominantly in the hospital setting with little assessment of primary care impact. Limited parameters were used to establish economic impact. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Physical predictions from lattice QCD. Reducing systematic errors

    International Nuclear Information System (INIS)

    Pittori, C.

    1994-01-01

    Some recent developments in the theoretical understanding of lattice quantum chromodynamics and of its possible sources of systematic errors are reported, and a review of some of the latest Monte Carlo results for light quarks phenomenology is presented. A very general introduction on a quantum field theory on a discrete spacetime lattice is given, and the Monte Carlo methods which allow to compute many interesting physical quantities in the non-perturbative domain of strong interactions, is illustrated. (author). 17 refs., 3 figs., 3 tabs

  15. ANALYSIS AND CORRECTION OF SYSTEMATIC HEIGHT MODEL ERRORS

    Directory of Open Access Journals (Sweden)

    K. Jacobsen

    2016-06-01

    Full Text Available The geometry of digital height models (DHM determined with optical satellite stereo combinations depends upon the image orientation, influenced by the satellite camera, the system calibration and attitude registration. As standard these days the image orientation is available in form of rational polynomial coefficients (RPC. Usually a bias correction of the RPC based on ground control points is required. In most cases the bias correction requires affine transformation, sometimes only shifts, in image or object space. For some satellites and some cases, as caused by small base length, such an image orientation does not lead to the possible accuracy of height models. As reported e.g. by Yong-hua et al. 2015 and Zhang et al. 2015, especially the Chinese stereo satellite ZiYuan-3 (ZY-3 has a limited calibration accuracy and just an attitude recording of 4 Hz which may not be satisfying. Zhang et al. 2015 tried to improve the attitude based on the color sensor bands of ZY-3, but the color images are not always available as also detailed satellite orientation information. There is a tendency of systematic deformation at a Pléiades tri-stereo combination with small base length. The small base length enlarges small systematic errors to object space. But also in some other satellite stereo combinations systematic height model errors have been detected. The largest influence is the not satisfying leveling of height models, but also low frequency height deformations can be seen. A tilt of the DHM by theory can be eliminated by ground control points (GCP, but often the GCP accuracy and distribution is not optimal, not allowing a correct leveling of the height model. In addition a model deformation at GCP locations may lead to not optimal DHM leveling. Supported by reference height models better accuracy has been reached. As reference height model the Shuttle Radar Topography Mission (SRTM digital surface model (DSM or the new AW3D30 DSM, based on ALOS

  16. The statistical significance of error probability as determined from decoding simulations for long codes

    Science.gov (United States)

    Massey, J. L.

    1976-01-01

    The very low error probability obtained with long error-correcting codes results in a very small number of observed errors in simulation studies of practical size and renders the usual confidence interval techniques inapplicable to the observed error probability. A natural extension of the notion of a 'confidence interval' is made and applied to such determinations of error probability by simulation. An example is included to show the surprisingly great significance of as few as two decoding errors in a very large number of decoding trials.

  17. Random and systematic beam modulator errors in dynamic intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Parsai, Homayon; Cho, Paul S; Phillips, Mark H; Giansiracusa, Robert S; Axen, David

    2003-01-01

    This paper reports on the dosimetric effects of random and systematic modulator errors in delivery of dynamic intensity modulated beams. A sliding-widow type delivery that utilizes a combination of multileaf collimators (MLCs) and backup diaphragms was examined. Gaussian functions with standard deviations ranging from 0.5 to 1.5 mm were used to simulate random positioning errors. A clinical example involving a clival meningioma was chosen with optic chiasm and brain stem as limiting critical structures in the vicinity of the tumour. Dose calculations for different modulator fluctuations were performed, and a quantitative analysis was carried out based on cumulative and differential dose volume histograms for the gross target volume and surrounding critical structures. The study indicated that random modulator errors have a strong tendency to reduce minimum target dose and homogeneity. Furthermore, it was shown that random perturbation of both MLCs and backup diaphragms in the order of σ = 1 mm can lead to 5% errors in prescribed dose. In comparison, when MLCs or backup diaphragms alone was perturbed, the system was more robust and modulator errors of at least σ = 1.5 mm were required to cause dose discrepancies greater than 5%. For systematic perturbation, even errors in the order of ±0.5 mm were shown to result in significant dosimetric deviations

  18. Error evaluation method for material accountancy measurement. Evaluation of random and systematic errors based on material accountancy data

    International Nuclear Information System (INIS)

    Nidaira, Kazuo

    2008-01-01

    International Target Values (ITV) shows random and systematic measurement uncertainty components as a reference for routinely achievable measurement quality in the accountancy measurement. The measurement uncertainty, called error henceforth, needs to be periodically evaluated and checked against ITV for consistency as the error varies according to measurement methods, instruments, operators, certified reference samples, frequency of calibration, and so on. In the paper an error evaluation method was developed with focuses on (1) Specifying clearly error calculation model, (2) Getting always positive random and systematic error variances, (3) Obtaining probability density distribution of an error variance and (4) Confirming the evaluation method by simulation. In addition the method was demonstrated by applying real data. (author)

  19. Systematic literature review of hospital medication administration errors in children

    Directory of Open Access Journals (Sweden)

    Ameer A

    2015-11-01

    Full Text Available Ahmed Ameer,1 Soraya Dhillon,1 Mark J Peters,2 Maisoon Ghaleb11Department of Pharmacy, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK; 2Paediatric Intensive Care Unit, Great Ormond Street Hospital, London, UK Objective: Medication administration is the last step in the medication process. It can act as a safety net to prevent unintended harm to patients if detected. However, medication administration errors (MAEs during this process have been documented and thought to be preventable. In pediatric medicine, doses are usually administered based on the child's weight or body surface area. This in turn increases the risk of drug miscalculations and therefore MAEs. The aim of this review is to report MAEs occurring in pediatric inpatients. Methods: Twelve bibliographic databases were searched for studies published between January 2000 and February 2015 using “medication administration errors”, “hospital”, and “children” related terminologies. Handsearching of relevant publications was also carried out. A second reviewer screened articles for eligibility and quality in accordance with the inclusion/exclusion criteria. Key findings: A total of 44 studies were systematically reviewed. MAEs were generally defined as a deviation of dose given from that prescribed; this included omitted doses and administration at the wrong time. Hospital MAEs in children accounted for a mean of 50% of all reported medication error reports (n=12,588. It was also identified in a mean of 29% of doses observed (n=8,894. The most prevalent type of MAEs related to preparation, infusion rate, dose, and time. This review has identified five types of interventions to reduce hospital MAEs in children: barcode medicine administration, electronic prescribing, education, use of smart pumps, and standard concentration. Conclusion: This review has identified a wide variation in the prevalence of hospital MAEs in children. This is attributed to

  20. ILRS Activities in Monitoring Systematic Errors in SLR Data

    Science.gov (United States)

    Pavlis, E. C.; Luceri, V.; Kuzmicz-Cieslak, M.; Bianco, G.

    2017-12-01

    The International Laser Ranging Service (ILRS) contributes to ITRF development unique information that only Satellite Laser Ranging—SLR is sensitive to: the definition of the origin, and in equal parts with VLBI, the scale of the model. For the development of ITRF2014, the ILRS analysts adopted a revision of the internal standards and procedures in generating our contribution from the eight ILRS Analysis Centers. The improved results for the ILRS components were reflected in the resulting new time series of the ITRF origin and scale, showing insignificant trends and tighter scatter. This effort was further extended after the release of ITRF2014, with the execution of a Pilot Project (PP) in the 2016-2017 timeframe that demonstrated the robust estimation of persistent systematic errors at the millimeter level. ILRS ASC is now turning this into an operational tool to monitor station performance and to generate a history of systematics at each station, to be used with each re-analysis for future ITRF model developments. This is part of a broader ILRS effort to improve the quality control of the data collection process as well as that of our products. To this end, the ILRS has established a "Quality Control Board—QCB" that comprises of members from the analysis and engineering groups, the Central Bureau, and even user groups with special interests. The QCB meets by telecon monthly and oversees the various ongoing projects, develops ideas for new tools and future products. This presentation will focus on the main topic with an update on the results so far, the schedule for the near future and its operational implementation, along with a brief description of upcoming new ILRS products.

  1. IceCube systematic errors investigation: Simulation of the ice

    Energy Technology Data Exchange (ETDEWEB)

    Resconi, Elisa; Wolf, Martin [Max-Planck-Institute for Nuclear Physics, Heidelberg (Germany); Schukraft, Anne [RWTH, Aachen University (Germany)

    2010-07-01

    IceCube is a neutrino observatory for astroparticle and astronomy research at the South Pole. It uses one cubic kilometer of Antartica's deepest ice (1500 m-2500 m in depth) to detect Cherenkov light, generated by charged particles traveling through the ice, with an array of phototubes encapsulated in glass pressure spheres. The arrival time as well as the charge deposited of the detected photons represent the base measurements that are used for track and energy reconstruction of those charged particles. The optical properties of the deep antarctic ice vary from layer to layer. Measurements of the ice properties and their correct modeling in Monte Carlo simulation is then of primary importance for the correct understanding of the IceCube telescope behavior. After a short summary about the different methods to investigate the ice properties and to calibrate the detector, we show how the simulation obtained by using this information compares to the measured data and how systematic errors due to uncertain ice properties are determined in IceCube.

  2. Black hole spectroscopy: Systematic errors and ringdown energy estimates

    Science.gov (United States)

    Baibhav, Vishal; Berti, Emanuele; Cardoso, Vitor; Khanna, Gaurav

    2018-02-01

    The relaxation of a distorted black hole to its final state provides important tests of general relativity within the reach of current and upcoming gravitational wave facilities. In black hole perturbation theory, this phase consists of a simple linear superposition of exponentially damped sinusoids (the quasinormal modes) and of a power-law tail. How many quasinormal modes are necessary to describe waveforms with a prescribed precision? What error do we incur by only including quasinormal modes, and not tails? What other systematic effects are present in current state-of-the-art numerical waveforms? These issues, which are basic to testing fundamental physics with distorted black holes, have hardly been addressed in the literature. We use numerical relativity waveforms and accurate evolutions within black hole perturbation theory to provide some answers. We show that (i) a determination of the fundamental l =m =2 quasinormal frequencies and damping times to within 1% or better requires the inclusion of at least the first overtone, and preferably of the first two or three overtones; (ii) a determination of the black hole mass and spin with precision better than 1% requires the inclusion of at least two quasinormal modes for any given angular harmonic mode (ℓ , m ). We also improve on previous estimates and fits for the ringdown energy radiated in the various multipoles. These results are important to quantify theoretical (as opposed to instrumental) limits in parameter estimation accuracy and tests of general relativity allowed by ringdown measurements with high signal-to-noise ratio gravitational wave detectors.

  3. Systematic Error of Acoustic Particle Image Velocimetry and Its Correction

    Directory of Open Access Journals (Sweden)

    Mickiewicz Witold

    2014-08-01

    Full Text Available Particle Image Velocimetry is getting more and more often the method of choice not only for visualization of turbulent mass flows in fluid mechanics, but also in linear and non-linear acoustics for non-intrusive visualization of acoustic particle velocity. Particle Image Velocimetry with low sampling rate (about 15Hz can be applied to visualize the acoustic field using the acquisition synchronized to the excitation signal. Such phase-locked PIV technique is described and used in experiments presented in the paper. The main goal of research was to propose a model of PIV systematic error due to non-zero time interval between acquisitions of two images of the examined sound field seeded with tracer particles, what affects the measurement of complex acoustic signals. Usefulness of the presented model is confirmed experimentally. The correction procedure, based on the proposed model, applied to measurement data increases the accuracy of acoustic particle velocity field visualization and creates new possibilities in observation of sound fields excited with multi-tonal or band-limited noise signals.

  4. Systematic reviews of anesthesiologic interventions reported as statistically significant

    DEFF Research Database (Denmark)

    Imberger, Georgina; Gluud, Christian; Boylan, John

    2015-01-01

    statistically significant meta-analyses of anesthesiologic interventions, we used TSA to estimate power and imprecision in the context of sparse data and repeated updates. METHODS: We conducted a search to identify all systematic reviews with meta-analyses that investigated an intervention that may......: From 11,870 titles, we found 682 systematic reviews that investigated anesthesiologic interventions. In the 50 sampled meta-analyses, the median number of trials included was 8 (interquartile range [IQR], 5-14), the median number of participants was 964 (IQR, 523-1736), and the median number...

  5. On the Source of the Systematic Errors in the Quatum Mechanical Calculation of the Superheavy Elements

    Directory of Open Access Journals (Sweden)

    Khazan A.

    2010-10-01

    Full Text Available It is shown that only the hyperbolic law of the Periodic Table of Elements allows the exact calculation for the atomic masses. The reference data of Periods 8 and 9 manifest a systematic error in the computer software applied to such a calculation (this systematic error increases with the number of the elements in the Table.

  6. On the Source of the Systematic Errors in the Quantum Mechanical Calculation of the Superheavy Elements

    Directory of Open Access Journals (Sweden)

    Khazan A.

    2010-10-01

    Full Text Available It is shown that only the hyperbolic law of the Periodic Table of Elements allows the exact calculation for the atomic masses. The reference data of Periods 8 and 9 manifest a systematic error in the computer software applied to such a calculation (this systematic error increases with the number of the elements in the Table.

  7. Assessment of the uncertainty associated with systematic errors in digital instruments: an experimental study on offset errors

    International Nuclear Information System (INIS)

    Attivissimo, F; Giaquinto, N; Savino, M; Cataldo, A

    2012-01-01

    This paper deals with the assessment of the uncertainty due to systematic errors, particularly in A/D conversion-based instruments. The problem of defining and assessing systematic errors is briefly discussed, and the conceptual scheme of gauge repeatability and reproducibility is adopted. A practical example regarding the evaluation of the uncertainty caused by the systematic offset error is presented. The experimental results, obtained under various ambient conditions, show that modelling the variability of systematic errors is more problematic than suggested by the ISO 5725 norm. Additionally, the paper demonstrates the substantial difference between the type B uncertainty evaluation, obtained via the maximum entropy principle applied to manufacturer's specifications, and the type A (experimental) uncertainty evaluation, which reflects actually observable reality. Although it is reasonable to assume a uniform distribution of the offset error, experiments demonstrate that the distribution is not centred and that a correction must be applied. In such a context, this work motivates a more pragmatic and experimental approach to uncertainty, with respect to the directions of supplement 1 of GUM. (paper)

  8. Seeing your error alters my pointing: observing systematic pointing errors induces sensori-motor after-effects.

    Directory of Open Access Journals (Sweden)

    Roberta Ronchi

    Full Text Available During the procedure of prism adaptation, subjects execute pointing movements to visual targets under a lateral optical displacement: as consequence of the discrepancy between visual and proprioceptive inputs, their visuo-motor activity is characterized by pointing errors. The perception of such final errors triggers error-correction processes that eventually result into sensori-motor compensation, opposite to the prismatic displacement (i.e., after-effects. Here we tested whether the mere observation of erroneous pointing movements, similar to those executed during prism adaptation, is sufficient to produce adaptation-like after-effects. Neurotypical participants observed, from a first-person perspective, the examiner's arm making incorrect pointing movements that systematically overshot visual targets location to the right, thus simulating a rightward optical deviation. Three classical after-effect measures (proprioceptive, visual and visual-proprioceptive shift were recorded before and after first-person's perspective observation of pointing errors. Results showed that mere visual exposure to an arm that systematically points on the right-side of a target (i.e., without error correction produces a leftward after-effect, which mostly affects the observer's proprioceptive estimation of her body midline. In addition, being exposed to such a constant visual error induced in the observer the illusion "to feel" the seen movement. These findings indicate that it is possible to elicit sensori-motor after-effects by mere observation of movement errors.

  9. The systematic and random errors determination using realtime 3D surface tracking system in breast cancer

    International Nuclear Information System (INIS)

    Kanphet, J; Suriyapee, S; Sanghangthum, T; Kumkhwao, J; Wisetrintong, M; Dumrongkijudom, N

    2016-01-01

    The purpose of this study to determine the patient setup uncertainties in deep inspiration breath-hold (DIBH) radiation therapy for left breast cancer patients using real-time 3D surface tracking system. The six breast cancer patients treated by 6 MV photon beams from TrueBeam linear accelerator were selected. The patient setup errors and motion during treatment were observed and calculated for interfraction and intrafraction motions. The systematic and random errors were calculated in vertical, longitudinal and lateral directions. From 180 images tracking before and during treatment, the maximum systematic error of interfraction and intrafraction motions were 0.56 mm and 0.23 mm, the maximum random error of interfraction and intrafraction motions were 1.18 mm and 0.53 mm, respectively. The interfraction was more pronounce than the intrafraction, while the systematic error was less impact than random error. In conclusion the intrafraction motion error from patient setup uncertainty is about half of interfraction motion error, which is less impact due to the stability in organ movement from DIBH. The systematic reproducibility is also half of random error because of the high efficiency of modern linac machine that can reduce the systematic uncertainty effectively, while the random errors is uncontrollable. (paper)

  10. The quality of systematic reviews about interventions for refractive error can be improved: a review of systematic reviews.

    Science.gov (United States)

    Mayo-Wilson, Evan; Ng, Sueko Matsumura; Chuck, Roy S; Li, Tianjing

    2017-09-05

    Systematic reviews should inform American Academy of Ophthalmology (AAO) Preferred Practice Pattern® (PPP) guidelines. The quality of systematic reviews related to the forthcoming Preferred Practice Pattern® guideline (PPP) Refractive Errors & Refractive Surgery is unknown. We sought to identify reliable systematic reviews to assist the AAO Refractive Errors & Refractive Surgery PPP. Systematic reviews were eligible if they evaluated the effectiveness or safety of interventions included in the 2012 PPP Refractive Errors & Refractive Surgery. To identify potentially eligible systematic reviews, we searched the Cochrane Eyes and Vision United States Satellite database of systematic reviews. Two authors identified eligible reviews and abstracted information about the characteristics and quality of the reviews independently using the Systematic Review Data Repository. We classified systematic reviews as "reliable" when they (1) defined criteria for the selection of studies, (2) conducted comprehensive literature searches for eligible studies, (3) assessed the methodological quality (risk of bias) of the included studies, (4) used appropriate methods for meta-analyses (which we assessed only when meta-analyses were reported), (5) presented conclusions that were supported by the evidence provided in the review. We identified 124 systematic reviews related to refractive error; 39 met our eligibility criteria, of which we classified 11 to be reliable. Systematic reviews classified as unreliable did not define the criteria for selecting studies (5; 13%), did not assess methodological rigor (10; 26%), did not conduct comprehensive searches (17; 44%), or used inappropriate quantitative methods (3; 8%). The 11 reliable reviews were published between 2002 and 2016. They included 0 to 23 studies (median = 9) and analyzed 0 to 4696 participants (median = 666). Seven reliable reviews (64%) assessed surgical interventions. Most systematic reviews of interventions for

  11. Progressive significance map and its application to error-resilient image transmission.

    Science.gov (United States)

    Hu, Yang; Pearlman, William A; Li, Xin

    2012-07-01

    Set partition coding (SPC) has shown tremendous success in image compression. Despite its popularity, the lack of error resilience remains a significant challenge to the transmission of images in error-prone environments. In this paper, we propose a novel data representation called the progressive significance map (prog-sig-map) for error-resilient SPC. It structures the significance map (sig-map) into two parts: a high-level summation sig-map and a low-level complementary sig-map (comp-sig-map). Such a structured representation of the sig-map allows us to improve its error-resilient property at the price of only a slight sacrifice in compression efficiency. For example, we have found that a fixed-length coding of the comp-sig-map in the prog-sig-map renders 64% of the coded bitstream insensitive to bit errors, compared with 40% with that of the conventional sig-map. Simulation results have shown that the prog-sig-map can achieve highly competitive rate-distortion performance for binary symmetric channels while maintaining low computational complexity. Moreover, we note that prog-sig-map is complementary to existing independent packetization and channel-coding-based error-resilient approaches and readily lends itself to other source coding applications such as distributed video coding.

  12. Performance monitoring and error significance in patients with obsessive-compulsive disorder.

    Science.gov (United States)

    Endrass, Tanja; Schuermann, Beate; Kaufmann, Christan; Spielberg, Rüdiger; Kniesche, Rainer; Kathmann, Norbert

    2010-05-01

    Performance monitoring has been consistently found to be overactive in obsessive-compulsive disorder (OCD). The present study examines whether performance monitoring in OCD is adjusted with error significance. Therefore, errors in a flanker task were followed by neutral (standard condition) or punishment feedbacks (punishment condition). In the standard condition patients had significantly larger error-related negativity (ERN) and correct-related negativity (CRN) ampliudes than controls. But, in the punishment condition groups did not differ in ERN and CRN amplitudes. While healthy controls showed an amplitude enhancement between standard and punishment condition, OCD patients showed no variation. In contrast, group differences were not found for the error positivity (Pe): both groups had larger Pe amplitudes in the punishment condition. Results confirm earlier findings of overactive error monitoring in OCD. The absence of a variation with error significance might indicate that OCD patients are unable to down-regulate their monitoring activity according to external requirements. Copyright 2010 Elsevier B.V. All rights reserved.

  13. On the effects of systematic errors in analysis of nuclear scattering data

    International Nuclear Information System (INIS)

    Bennett, M.T.; Steward, C.; Amos, K.; Allen, L.J.

    1995-01-01

    The effects of systematic errors on elastic scattering differential cross-section data upon the assessment of quality fits to that data have been studied. Three cases are studied, namely the differential cross-section data sets from elastic scattering of 200 MeV protons from 12 C, of 350 MeV 16 O- 16 O scattering and of 288.6 MeV 12 C- 12 C scattering. First, to estimate the probability of any unknown systematic errors, select sets of data have been processed using the method of generalized cross validation; a method based upon the premise that any data set should satisfy an optimal smoothness criterion. In another case, the S function that provided a statistically significant fit to data, upon allowance for angle variation, became overdetermined. A far simpler S function form could then be found to describe the scattering process. The S functions so obtained have been used in a fixed energy inverse scattering study to specify effective, local, Schroedinger potentials for the collisions. An error analysis has been performed on the results to specify confidence levels for those interactions. 19 refs., 6 tabs., 15 figs

  14. The sensitivity of patient specific IMRT QC to systematic MLC leaf bank offset errors

    International Nuclear Information System (INIS)

    Rangel, Alejandra; Palte, Gesa; Dunscombe, Peter

    2010-01-01

    Purpose: Patient specific IMRT QC is performed routinely in many clinics as a safeguard against errors and inaccuracies which may be introduced during the complex planning, data transfer, and delivery phases of this type of treatment. The purpose of this work is to evaluate the feasibility of detecting systematic errors in MLC leaf bank position with patient specific checks. Methods: 9 head and neck (H and N) and 14 prostate IMRT beams were delivered using MLC files containing systematic offsets (±1 mm in two banks, ±0.5 mm in two banks, and 1 mm in one bank of leaves). The beams were measured using both MAPCHECK (Sun Nuclear Corp., Melbourne, FL) and the aS1000 electronic portal imaging device (Varian Medical Systems, Palo Alto, CA). Comparisons with calculated fields, without offsets, were made using commonly adopted criteria including absolute dose (AD) difference, relative dose difference, distance to agreement (DTA), and the gamma index. Results: The criteria most sensitive to systematic leaf bank offsets were the 3% AD, 3 mm DTA for MAPCHECK and the gamma index with 2% AD and 2 mm DTA for the EPID. The criterion based on the relative dose measurements was the least sensitive to MLC offsets. More highly modulated fields, i.e., H and N, showed greater changes in the percentage of passing points due to systematic MLC inaccuracy than prostate fields. Conclusions: None of the techniques or criteria tested is sufficiently sensitive, with the population of IMRT fields, to detect a systematic MLC offset at a clinically significant level on an individual field. Patient specific QC cannot, therefore, substitute for routine QC of the MLC itself.

  15. The sensitivity of patient specific IMRT QC to systematic MLC leaf bank offset errors

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Alejandra; Palte, Gesa; Dunscombe, Peter [Department of Medical Physics, Tom Baker Cancer Centre, 1331-29 Street NW, Calgary, Alberta T2N 4N2, Canada and Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4 (Canada); Department of Medical Physics, Tom Baker Cancer Centre, 1331-29 Street NW, Calgary, Alberta T2N 4N2 (Canada); Department of Medical Physics, Tom Baker Cancer Centre, 1331-29 Street NW, Calgary, Alberta T2N 4N2 (Canada); Department of Physics and Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4 (Canada) and Department of Oncology, Tom Baker Cancer Centre, 1331-29 Street NW, Calgary, Alberta T2N 4N2 (Canada)

    2010-07-15

    Purpose: Patient specific IMRT QC is performed routinely in many clinics as a safeguard against errors and inaccuracies which may be introduced during the complex planning, data transfer, and delivery phases of this type of treatment. The purpose of this work is to evaluate the feasibility of detecting systematic errors in MLC leaf bank position with patient specific checks. Methods: 9 head and neck (H and N) and 14 prostate IMRT beams were delivered using MLC files containing systematic offsets ({+-}1 mm in two banks, {+-}0.5 mm in two banks, and 1 mm in one bank of leaves). The beams were measured using both MAPCHECK (Sun Nuclear Corp., Melbourne, FL) and the aS1000 electronic portal imaging device (Varian Medical Systems, Palo Alto, CA). Comparisons with calculated fields, without offsets, were made using commonly adopted criteria including absolute dose (AD) difference, relative dose difference, distance to agreement (DTA), and the gamma index. Results: The criteria most sensitive to systematic leaf bank offsets were the 3% AD, 3 mm DTA for MAPCHECK and the gamma index with 2% AD and 2 mm DTA for the EPID. The criterion based on the relative dose measurements was the least sensitive to MLC offsets. More highly modulated fields, i.e., H and N, showed greater changes in the percentage of passing points due to systematic MLC inaccuracy than prostate fields. Conclusions: None of the techniques or criteria tested is sufficiently sensitive, with the population of IMRT fields, to detect a systematic MLC offset at a clinically significant level on an individual field. Patient specific QC cannot, therefore, substitute for routine QC of the MLC itself.

  16. Analysis of human error and organizational deficiency in events considering risk significance

    International Nuclear Information System (INIS)

    Lee, Yong Suk; Kim, Yoonik; Kim, Say Hyung; Kim, Chansoo; Chung, Chang Hyun; Jung, Won Dea

    2004-01-01

    In this study, we analyzed human and organizational deficiencies in the trip events of Korean nuclear power plants. K-HPES items were used in human error analysis, and the organizational factors by Jacobs and Haber were used for organizational deficiency analysis. We proposed the use of CCDP as a risk measure to consider risk information in prioritizing K-HPES items and organizational factors. Until now, the risk significance of events has not been considered in human error and organizational deficiency analysis. Considering the risk significance of events in the process of analysis is necessary for effective enhancement of nuclear power plant safety by focusing on causes of human error and organizational deficiencies that are associated with significant risk

  17. Analysis of possible systematic errors in the Oslo method

    International Nuclear Information System (INIS)

    Larsen, A. C.; Guttormsen, M.; Buerger, A.; Goergen, A.; Nyhus, H. T.; Rekstad, J.; Siem, S.; Toft, H. K.; Tveten, G. M.; Wikan, K.; Krticka, M.; Betak, E.; Schiller, A.; Voinov, A. V.

    2011-01-01

    In this work, we have reviewed the Oslo method, which enables the simultaneous extraction of the level density and γ-ray transmission coefficient from a set of particle-γ coincidence data. Possible errors and uncertainties have been investigated. Typical data sets from various mass regions as well as simulated data have been tested against the assumptions behind the data analysis.

  18. Tolerable systematic errors in Really Large Hadron Collider dipoles

    International Nuclear Information System (INIS)

    Peggs, S.; Dell, F.

    1996-01-01

    Maximum allowable systematic harmonics for arc dipoles in a Really Large Hadron Collider are derived. The possibility of half cell lengths much greater than 100 meters is justified. A convenient analytical model evaluating horizontal tune shifts is developed, and tested against a sample high field collider

  19. Correcting systematic errors in high-sensitivity deuteron polarization measurements

    NARCIS (Netherlands)

    Brantjes, N. P. M.; Dzordzhadze, V.; Gebel, R.; Gonnella, F.; Gray, F. E.; van der Hoek, D. J.; Imig, A.; Kruithof, W. L.; Lazarus, D. M.; Lehrach, A.; Lorentz, B.; Messi, R.; Moricciani, D.; Morse, W. M.; Noid, G. A.; Onderwater, C. J. G.; Ozben, C. S.; Prasuhn, D.; Sandri, P. Levi; Semertzidis, Y. K.; da Silva e Silva, M.; Stephenson, E. J.; Stockhorst, H.; Venanzoni, G.; Versolato, O. O.

    2012-01-01

    This paper reports deuteron vector and tensor beam polarization measurements taken to investigate the systematic variations due to geometric beam misalignments and high data rates. The experiments used the In-Beam Polarimeter at the KVI-Groningen and the EDDA detector at the Cooler Synchrotron COSY

  20. Systematic Error Study for ALICE charged-jet v2 Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soltz, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-07-18

    We study the treatment of systematic errors in the determination of v2 for charged jets in √ sNN = 2:76 TeV Pb-Pb collisions by the ALICE Collaboration. Working with the reported values and errors for the 0-5% centrality data we evaluate the Χ2 according to the formulas given for the statistical and systematic errors, where the latter are separated into correlated and shape contributions. We reproduce both the Χ2 and p-values relative to a null (zero) result. We then re-cast the systematic errors into an equivalent co-variance matrix and obtain identical results, demonstrating that the two methods are equivalent.

  1. Saccades to remembered target locations: an analysis of systematic and variable errors.

    Science.gov (United States)

    White, J M; Sparks, D L; Stanford, T R

    1994-01-01

    We studied the effects of varying delay interval on the accuracy and velocity of saccades to the remembered locations of visual targets. Remembered saccades were less accurate than control saccades. Both systematic and variable errors contributed to the loss of accuracy. Systematic errors were similar in size for delay intervals ranging from 400 msec to 5.6 sec, but variable errors increased monotonically as delay intervals were lengthened. Compared to control saccades, remembered saccades were slower and the peak velocities were more variable. However, neither peak velocity nor variability in peak velocity was related to the duration of the delay interval. Our findings indicate that a memory-related process is not the major source of the systematic errors observed on memory trials.

  2. Computer input devices: neutral party or source of significant error in manual lesion segmentation?

    Science.gov (United States)

    Chen, James Y; Seagull, F Jacob; Nagy, Paul; Lakhani, Paras; Melhem, Elias R; Siegel, Eliot L; Safdar, Nabile M

    2011-02-01

    Lesion segmentation involves outlining the contour of an abnormality on an image to distinguish boundaries between normal and abnormal tissue and is essential to track malignant and benign disease in medical imaging for clinical, research, and treatment purposes. A laser optical mouse and a graphics tablet were used by radiologists to segment 12 simulated reference lesions per subject in two groups (one group comprised three lesion morphologies in two sizes, one for each input device for each device two sets of six, composed of three morphologies in two sizes each). Time for segmentation was recorded. Subjects completed an opinion survey following segmentation. Error in contour segmentation was calculated using root mean square error. Error in area of segmentation was calculated compared to the reference lesion. 11 radiologists segmented a total of 132 simulated lesions. Overall error in contour segmentation was less with the graphics tablet than with the mouse (P Error in area of segmentation was not significantly different between the tablet and the mouse (P = 0.62). Time for segmentation was less with the tablet than the mouse (P = 0.011). All subjects preferred the graphics tablet for future segmentation (P = 0.011) and felt subjectively that the tablet was faster, easier, and more accurate (P = 0.0005). For purposes in which accuracy in contour of lesion segmentation is of the greater importance, the graphics tablet is superior to the mouse in accuracy with a small speed benefit. For purposes in which accuracy of area of lesion segmentation is of greater importance, the graphics tablet and mouse are equally accurate.

  3. Preventing statistical errors in scientific journals.

    NARCIS (Netherlands)

    Nuijten, M.B.

    2016-01-01

    There is evidence for a high prevalence of statistical reporting errors in psychology and other scientific fields. These errors display a systematic preference for statistically significant results, distorting the scientific literature. There are several possible causes for this systematic error

  4. Impact of systematic errors on DVH parameters of different OAR and target volumes in Intracavitary Brachytherapy (ICBT)

    International Nuclear Information System (INIS)

    Mourya, Ankur; Singh, Gaganpreet; Kumar, Vivek; Oinam, Arun S.

    2016-01-01

    Aim of this study is to analyze the impact of systematic errors on DVH parameters of different OAR and Target volumes in intracavitary brachytherapy (ICBT). To quantify the changes in dose-volume histogram parameters due to systematic errors in applicator reconstruction of brachytherapy planning, known errors in catheter reconstructions have to be introduced in applicator coordinate system

  5. On systematic and statistic errors in radionuclide mass activity estimation procedure

    International Nuclear Information System (INIS)

    Smelcerovic, M.; Djuric, G.; Popovic, D.

    1989-01-01

    One of the most important requirements during nuclear accidents is the fast estimation of the mass activity of the radionuclides that suddenly and without control reach the environment. The paper points to systematic errors in the procedures of sampling, sample preparation and measurement itself, that in high degree contribute to total mass activity evaluation error. Statistic errors in gamma spectrometry as well as in total mass alpha and beta activity evaluation are also discussed. Beside, some of the possible sources of errors in the partial mass activity evaluation for some of the radionuclides are presented. The contribution of the errors in the total mass activity evaluation error is estimated and procedures that could possibly reduce it are discussed (author)

  6. Design of roundness measurement model with multi-systematic error for cylindrical components with large radius.

    Science.gov (United States)

    Sun, Chuanzhi; Wang, Lei; Tan, Jiubin; Zhao, Bo; Tang, Yangchao

    2016-02-01

    The paper designs a roundness measurement model with multi-systematic error, which takes eccentricity, probe offset, radius of tip head of probe, and tilt error into account for roundness measurement of cylindrical components. The effects of the systematic errors and radius of components are analysed in the roundness measurement. The proposed method is built on the instrument with a high precision rotating spindle. The effectiveness of the proposed method is verified by experiment with the standard cylindrical component, which is measured on a roundness measuring machine. Compared to the traditional limacon measurement model, the accuracy of roundness measurement can be increased by about 2.2 μm using the proposed roundness measurement model for the object with a large radius of around 37 mm. The proposed method can improve the accuracy of roundness measurement and can be used for error separation, calibration, and comparison, especially for cylindrical components with a large radius.

  7. Effects of averaging over motion and the resulting systematic errors in radiation therapy

    International Nuclear Information System (INIS)

    Evans, Philip M; Coolens, Catherine; Nioutsikou, Elena

    2006-01-01

    The potential for systematic errors in radiotherapy of a breathing patient is considered using the statistical model of Bortfeld et al (2002 Phys. Med. Biol. 47 2203-20). It is shown that although averaging over 30 fractions does result in a narrow Gaussian distribution of errors, as predicted by the central limit theorem, the fact that one or a few samples of the breathing patient's motion distribution are used for treatment planning (in contrast to the many treatment fractions that are likely to be delivered) may result in a much larger error with a systematic component. The error distribution may be particularly large if a scan at breath-hold is used for planning. (note)

  8. Complete Systematic Error Model of SSR for Sensor Registration in ATC Surveillance Networks.

    Science.gov (United States)

    Jarama, Ángel J; López-Araquistain, Jaime; Miguel, Gonzalo de; Besada, Juan A

    2017-09-21

    In this paper, a complete and rigorous mathematical model for secondary surveillance radar systematic errors (biases) is developed. The model takes into account the physical effects systematically affecting the measurement processes. The azimuth biases are calculated from the physical error of the antenna calibration and the errors of the angle determination dispositive. Distance bias is calculated from the delay of the signal produced by the refractivity index of the atmosphere, and from clock errors, while the altitude bias is calculated taking into account the atmosphere conditions (pressure and temperature). It will be shown, using simulated and real data, that adapting a classical bias estimation process to use the complete parametrized model results in improved accuracy in the bias estimation.

  9. Complete Systematic Error Model of SSR for Sensor Registration in ATC Surveillance Networks

    Directory of Open Access Journals (Sweden)

    Ángel J. Jarama

    2017-09-01

    Full Text Available In this paper, a complete and rigorous mathematical model for secondary surveillance radar systematic errors (biases is developed. The model takes into account the physical effects systematically affecting the measurement processes. The azimuth biases are calculated from the physical error of the antenna calibration and the errors of the angle determination dispositive. Distance bias is calculated from the delay of the signal produced by the refractivity index of the atmosphere, and from clock errors, while the altitude bias is calculated taking into account the atmosphere conditions (pressure and temperature. It will be shown, using simulated and real data, that adapting a classical bias estimation process to use the complete parametrized model results in improved accuracy in the bias estimation.

  10. Sampling of systematic errors to estimate likelihood weights in nuclear data uncertainty propagation

    International Nuclear Information System (INIS)

    Helgesson, P.; Sjöstrand, H.; Koning, A.J.; Rydén, J.; Rochman, D.; Alhassan, E.; Pomp, S.

    2016-01-01

    In methodologies for nuclear data (ND) uncertainty assessment and propagation based on random sampling, likelihood weights can be used to infer experimental information into the distributions for the ND. As the included number of correlated experimental points grows large, the computational time for the matrix inversion involved in obtaining the likelihood can become a practical problem. There are also other problems related to the conventional computation of the likelihood, e.g., the assumption that all experimental uncertainties are Gaussian. In this study, a way to estimate the likelihood which avoids matrix inversion is investigated; instead, the experimental correlations are included by sampling of systematic errors. It is shown that the model underlying the sampling methodology (using univariate normal distributions for random and systematic errors) implies a multivariate Gaussian for the experimental points (i.e., the conventional model). It is also shown that the likelihood estimates obtained through sampling of systematic errors approach the likelihood obtained with matrix inversion as the sample size for the systematic errors grows large. In studied practical cases, it is seen that the estimates for the likelihood weights converge impractically slowly with the sample size, compared to matrix inversion. The computational time is estimated to be greater than for matrix inversion in cases with more experimental points, too. Hence, the sampling of systematic errors has little potential to compete with matrix inversion in cases where the latter is applicable. Nevertheless, the underlying model and the likelihood estimates can be easier to intuitively interpret than the conventional model and the likelihood function involving the inverted covariance matrix. Therefore, this work can both have pedagogical value and be used to help motivating the conventional assumption of a multivariate Gaussian for experimental data. The sampling of systematic errors could also

  11. Unaccounted source of systematic errors in measurements of the Newtonian gravitational constant G

    Science.gov (United States)

    DeSalvo, Riccardo

    2015-06-01

    Many precision measurements of G have produced a spread of results incompatible with measurement errors. Clearly an unknown source of systematic errors is at work. It is proposed here that most of the discrepancies derive from subtle deviations from Hooke's law, caused by avalanches of entangled dislocations. The idea is supported by deviations from linearity reported by experimenters measuring G, similarly to what is observed, on a larger scale, in low-frequency spring oscillators. Some mitigating experimental apparatus modifications are suggested.

  12. Systematic errors of EIT systems determined by easily-scalable resistive phantoms.

    Science.gov (United States)

    Hahn, G; Just, A; Dittmar, J; Hellige, G

    2008-06-01

    We present a simple method to determine systematic errors that will occur in the measurements by EIT systems. The approach is based on very simple scalable resistive phantoms for EIT systems using a 16 electrode adjacent drive pattern. The output voltage of the phantoms is constant for all combinations of current injection and voltage measurements and the trans-impedance of each phantom is determined by only one component. It can be chosen independently from the input and output impedance, which can be set in order to simulate measurements on the human thorax. Additional serial adapters allow investigation of the influence of the contact impedance at the electrodes on resulting errors. Since real errors depend on the dynamic properties of an EIT system, the following parameters are accessible: crosstalk, the absolute error of each driving/sensing channel and the signal to noise ratio in each channel. Measurements were performed on a Goe-MF II EIT system under four different simulated operational conditions. We found that systematic measurement errors always exceeded the error level of stochastic noise since the Goe-MF II system had been optimized for a sufficient signal to noise ratio but not for accuracy. In time difference imaging and functional EIT (f-EIT) systematic errors are reduced to a minimum by dividing the raw data by reference data. This is not the case in absolute EIT (a-EIT) where the resistivity of the examined object is determined on an absolute scale. We conclude that a reduction of systematic errors has to be one major goal in future system design.

  13. Systematic errors of EIT systems determined by easily-scalable resistive phantoms

    International Nuclear Information System (INIS)

    Hahn, G; Just, A; Dittmar, J; Hellige, G

    2008-01-01

    We present a simple method to determine systematic errors that will occur in the measurements by EIT systems. The approach is based on very simple scalable resistive phantoms for EIT systems using a 16 electrode adjacent drive pattern. The output voltage of the phantoms is constant for all combinations of current injection and voltage measurements and the trans-impedance of each phantom is determined by only one component. It can be chosen independently from the input and output impedance, which can be set in order to simulate measurements on the human thorax. Additional serial adapters allow investigation of the influence of the contact impedance at the electrodes on resulting errors. Since real errors depend on the dynamic properties of an EIT system, the following parameters are accessible: crosstalk, the absolute error of each driving/sensing channel and the signal to noise ratio in each channel. Measurements were performed on a Goe-MF II EIT system under four different simulated operational conditions. We found that systematic measurement errors always exceeded the error level of stochastic noise since the Goe-MF II system had been optimized for a sufficient signal to noise ratio but not for accuracy. In time difference imaging and functional EIT (f-EIT) systematic errors are reduced to a minimum by dividing the raw data by reference data. This is not the case in absolute EIT (a-EIT) where the resistivity of the examined object is determined on an absolute scale. We conclude that a reduction of systematic errors has to be one major goal in future system design

  14. ac driving amplitude dependent systematic error in scanning Kelvin probe microscope measurements: Detection and correction

    International Nuclear Information System (INIS)

    Wu Yan; Shannon, Mark A.

    2006-01-01

    The dependence of the contact potential difference (CPD) reading on the ac driving amplitude in scanning Kelvin probe microscope (SKPM) hinders researchers from quantifying true material properties. We show theoretically and demonstrate experimentally that an ac driving amplitude dependence in the SKPM measurement can come from a systematic error, and it is common for all tip sample systems as long as there is a nonzero tracking error in the feedback control loop of the instrument. We further propose a methodology to detect and to correct the ac driving amplitude dependent systematic error in SKPM measurements. The true contact potential difference can be found by applying a linear regression to the measured CPD versus one over ac driving amplitude data. Two scenarios are studied: (a) when the surface being scanned by SKPM is not semiconducting and there is an ac driving amplitude dependent systematic error; (b) when a semiconductor surface is probed and asymmetric band bending occurs when the systematic error is present. Experiments are conducted using a commercial SKPM and CPD measurement results of two systems: platinum-iridium/gap/gold and platinum-iridium/gap/thermal oxide/silicon are discussed

  15. ERESYE - a expert system for the evaluation of uncertainties related to systematic experimental errors

    International Nuclear Information System (INIS)

    Martinelli, T.; Panini, G.C.; Amoroso, A.

    1989-11-01

    Information about systematic errors are not given In EXFOR, the data base of nuclear experimental measurements: their assessment is committed to the ability of the evaluator. A tool Is needed which performs this task in a fully automatic way or, at least, gives a valuable aid. The expert system ERESYE has been implemented for investigating the feasibility of an automatic evaluation of the systematic errors in the experiments. The features of the project which led to the implementation of the system are presented. (author)

  16. Effects of systematic phase errors on optimized quantum random-walk search algorithm

    International Nuclear Information System (INIS)

    Zhang Yu-Chao; Bao Wan-Su; Wang Xiang; Fu Xiang-Qun

    2015-01-01

    This study investigates the effects of systematic errors in phase inversions on the success rate and number of iterations in the optimized quantum random-walk search algorithm. Using the geometric description of this algorithm, a model of the algorithm with phase errors is established, and the relationship between the success rate of the algorithm, the database size, the number of iterations, and the phase error is determined. For a given database size, we obtain both the maximum success rate of the algorithm and the required number of iterations when phase errors are present in the algorithm. Analyses and numerical simulations show that the optimized quantum random-walk search algorithm is more robust against phase errors than Grover’s algorithm. (paper)

  17. Electronic portal image assisted reduction of systematic set-up errors in head and neck irradiation

    International Nuclear Information System (INIS)

    Boer, Hans C.J. de; Soernsen de Koste, John R. van; Creutzberg, Carien L.; Visser, Andries G.; Levendag, Peter C.; Heijmen, Ben J.M.

    2001-01-01

    Purpose: To quantify systematic and random patient set-up errors in head and neck irradiation and to investigate the impact of an off-line correction protocol on the systematic errors. Material and methods: Electronic portal images were obtained for 31 patients treated for primary supra-glottic larynx carcinoma who were immobilised using a polyvinyl chloride cast. The observed patient set-up errors were input to the shrinking action level (SAL) off-line decision protocol and appropriate set-up corrections were applied. To assess the impact of the protocol, the positioning accuracy without application of set-up corrections was reconstructed. Results: The set-up errors obtained without set-up corrections (1 standard deviation (SD)=1.5-2 mm for random and systematic errors) were comparable to those reported in other studies on similar fixation devices. On an average, six fractions per patient were imaged and the set-up of half the patients was changed due to the decision protocol. Most changes were detected during weekly check measurements, not during the first days of treatment. The application of the SAL protocol reduced the width of the distribution of systematic errors to 1 mm (1 SD), as expected from simulations. A retrospective analysis showed that this accuracy should be attainable with only two measurements per patient using a different off-line correction protocol, which does not apply action levels. Conclusions: Off-line verification protocols can be particularly effective in head and neck patients due to the smallness of the random set-up errors. The excellent set-up reproducibility that can be achieved with such protocols enables accurate dose delivery in conformal treatments

  18. The systematic error of temperature noise correlation measurement method and self-calibration

    International Nuclear Information System (INIS)

    Tian Hong; Tong Yunxian

    1993-04-01

    The turbulent transport behavior of fluid noise and the nature of noise affect on the velocity measurement system have been studied. The systematic error of velocity measurement system is analyzed. A theoretical calibration method is proposed, which makes the velocity measurement of time-correlation as an absolute measurement method. The theoretical results are in good agreement with experiments

  19. End-point construction and systematic titration error in linear titration curves-complexation reactions

    NARCIS (Netherlands)

    Coenegracht, P.M.J.; Duisenberg, A.J.M.

    The systematic titration error which is introduced by the intersection of tangents to hyperbolic titration curves is discussed. The effects of the apparent (conditional) formation constant, of the concentration of the unknown component and of the ranges used for the end-point construction are

  20. On the effect of systematic errors in near real time accountancy

    International Nuclear Information System (INIS)

    Avenhaus, R.

    1987-01-01

    Systematic measurement errors have a decisive impact on nuclear materials accountancy. This has been demonstrated at various occasions for a fixed number of inventory periods, i.e. for situations where the overall probability of detection is taken as the measure of effectiveness. In the framework of Near Real Time Accountancy (NRTA), however, such analyses have not yet been performed. In this paper sequential test procedures are considered which are based on the so-called MUF-Residuals. It is shown that, if the decision maker does not know the systematic error variance, the average run lengths tend towards infinity if this variance is equal or longer than that of the random error. Furthermore, if the decision maker knows this invariance, the average run length for constant loss or diversion is not shorter than that without loss or diversion. These results cast some doubt on the present practice of data evaluation where systematic errors are tacitly assumed to persist for an infinite time. In fact, information about the time dependence of the variances of these errors has to be gathered in order that the efficiency of NRTA evaluation methods can be estimated realistically

  1. Coping with medical error: a systematic review of papers to assess the effects of involvement in medical errors on healthcare professionals' psychological well-being.

    Science.gov (United States)

    Sirriyeh, Reema; Lawton, Rebecca; Gardner, Peter; Armitage, Gerry

    2010-12-01

    Previous research has established health professionals as secondary victims of medical error, with the identification of a range of emotional and psychological repercussions that may occur as a result of involvement in error.2 3 Due to the vast range of emotional and psychological outcomes, research to date has been inconsistent in the variables measured and tools used. Therefore, differing conclusions have been drawn as to the nature of the impact of error on professionals and the subsequent repercussions for their team, patients and healthcare institution. A systematic review was conducted. Data sources were identified using database searches, with additional reference and hand searching. Eligibility criteria were applied to all studies identified, resulting in a total of 24 included studies. Quality assessment was conducted with the included studies using a tool that was developed as part of this research, but due to the limited number and diverse nature of studies, no exclusions were made on this basis. Review findings suggest that there is consistent evidence for the widespread impact of medical error on health professionals. Psychological repercussions may include negative states such as shame, self-doubt, anxiety and guilt. Despite much attention devoted to the assessment of negative outcomes, the potential for positive outcomes resulting from error also became apparent, with increased assertiveness, confidence and improved colleague relationships reported. It is evident that involvement in a medical error can elicit a significant psychological response from the health professional involved. However, a lack of literature around coping and support, coupled with inconsistencies and weaknesses in methodology, may need be addressed in future work.

  2. Systematic significance of anatomical characterization in some euphorbiaceous species

    International Nuclear Information System (INIS)

    Zahra, N.B.; Shinwari, Z.K.

    2014-01-01

    The study was aimed to explore the systematic potential of anatomical characters for identification and delimitation among Euphorbia species. Eight species of leafy spurges of genus Euphorbia L. (Euphorbiaceae) were evaluated for variations in micro morphological characters of foliar epidermal anatomy. While anatomical observations are of importance in the assessments and appraisals, use of these characters as an effective tool in interpreting phyletic evaluations and systematic delineations has its limitations too. The epidermal cell wall in majority of species was wavy to undulate on both adaxial and abaxial surfaces. The observations made in this study indicate that there is not a single type of stomata which appears as characteristic of the genus Euphorbia. Also their distribution whether epistomatic or hypostomatic is not a genus-characteristic. The trichomes found were simple, unicellular or multicellular, uniseriate. Present investigation revealed the utility of both qualitative and quantitative characters in systematic studies; also the potential influence in the delimitation of species cannot be ignored. Our results show that the micro-morphology of anatomical characters play an important role in definition of taxa at species and sectional levels. (author)

  3. Strategies to reduce the systematic error due to tumor and rectum motion in radiotherapy of prostate cancer

    International Nuclear Information System (INIS)

    Hoogeman, Mischa S.; Herk, Marcel van; Bois, Josien de; Lebesque, Joos V.

    2005-01-01

    Background and purpose: The goal of this work is to develop and evaluate strategies to reduce the uncertainty in the prostate position and rectum shape that arises in the preparation stage of the radiation treatment of prostate cancer. Patients and methods: Nineteen prostate cancer patients, who were treated with 3-dimensional conformal radiotherapy, received each a planning CT scan and 8-13 repeat CT scans during the treatment period. We quantified prostate motion relative to the pelvic bone by first matching the repeat CT scans on the planning CT scan using the bony anatomy. Subsequently, each contoured prostate, including seminal vesicles, was matched on the prostate in the planning CT scan to obtain the translations and rotations. The variation in prostate position was determined in terms of the systematic, random and group mean error. We tested the performance of two correction strategies to reduce the systematic error due to prostate motion. The first strategy, the pre-treatment strategy, used only the initial rectum volume in the planning CT scan to adjust the angle of the prostate with respect to the left-right (LR) axis and the shape and position of the rectum. The second strategy, the adaptive strategy, used the data of repeat CT scans to improve the estimate of the prostate position and rectum shape during the treatment. Results: The largest component of prostate motion was a rotation around the LR axis. The systematic error (1 SD) was 5.1 deg and the random error was 3.6 deg (1 SD). The average LR-axis rotation between the planning and the repeat CT scans correlated significantly with the rectum volume in the planning CT scan (r=0.86, P<0.0001). Correction of the rotational position on the basis of the planning rectum volume alone reduced the systematic error by 28%. A correction, based on the data of the planning CT scan and 4 repeat CT scans reduced the systematic error over the complete treatment period by a factor of 2. When the correction was

  4. Joint position sense error in people with neck pain: A systematic review.

    Science.gov (United States)

    de Vries, J; Ischebeck, B K; Voogt, L P; van der Geest, J N; Janssen, M; Frens, M A; Kleinrensink, G J

    2015-12-01

    Several studies in recent decades have examined the relationship between proprioceptive deficits and neck pain. However, there is no uniform conclusion on the relationship between the two. Clinically, proprioception is evaluated using the Joint Position Sense Error (JPSE), which reflects a person's ability to accurately return his head to a predefined target after a cervical movement. We focused to differentiate between JPSE in people with neck pain compared to healthy controls. Systematic review according to the PRISMA guidelines. Our data sources were Embase, Medline OvidSP, Web of Science, Cochrane Central, CINAHL and Pubmed Publisher. To be included, studies had to compare JPSE of the neck (O) in people with neck pain (P) with JPSE of the neck in healthy controls (C). Fourteen studies were included. Four studies reported that participants with traumatic neck pain had a significantly higher JPSE than healthy controls. Of the eight studies involving people with non-traumatic neck pain, four reported significant differences between the groups. The JPSE did not vary between neck-pain groups. Current literature shows the JPSE to be a relevant measure when it is used correctly. All studies which calculated the JPSE over at least six trials showed a significantly increased JPSE in the neck pain group. This strongly suggests that 'number of repetitions' is a major element in correctly performing the JPSE test. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Towards eliminating systematic errors caused by the experimental conditions in Biochemical Methane Potential (BMP) tests

    International Nuclear Information System (INIS)

    Strömberg, Sten; Nistor, Mihaela; Liu, Jing

    2014-01-01

    Highlights: • The evaluated factors introduce significant systematic errors (10–38%) in BMP tests. • Ambient temperature (T) has the most substantial impact (∼10%) at low altitude. • Ambient pressure (p) has the most substantial impact (∼68%) at high altitude. • Continuous monitoring of T and p is not necessary for kinetic calculations. - Abstract: The Biochemical Methane Potential (BMP) test is increasingly recognised as a tool for selecting and pricing biomass material for production of biogas. However, the results for the same substrate often differ between laboratories and much work to standardise such tests is still needed. In the current study, the effects from four environmental factors (i.e. ambient temperature and pressure, water vapour content and initial gas composition of the reactor headspace) on the degradation kinetics and the determined methane potential were evaluated with a 2 4 full factorial design. Four substrates, with different biodegradation profiles, were investigated and the ambient temperature was found to be the most significant contributor to errors in the methane potential. Concerning the kinetics of the process, the environmental factors’ impact on the calculated rate constants was negligible. The impact of the environmental factors on the kinetic parameters and methane potential from performing a BMP test at different geographical locations around the world was simulated by adjusting the data according to the ambient temperature and pressure of some chosen model sites. The largest effect on the methane potential was registered from tests performed at high altitudes due to a low ambient pressure. The results from this study illustrate the importance of considering the environmental factors’ influence on volumetric gas measurement in BMP tests. This is essential to achieve trustworthy and standardised results that can be used by researchers and end users from all over the world

  6. Towards eliminating systematic errors caused by the experimental conditions in Biochemical Methane Potential (BMP) tests

    Energy Technology Data Exchange (ETDEWEB)

    Strömberg, Sten, E-mail: sten.stromberg@biotek.lu.se [Department of Biotechnology, Lund University, Getingevägen 60, 221 00 Lund (Sweden); Nistor, Mihaela, E-mail: mn@bioprocesscontrol.com [Bioprocess Control, Scheelevägen 22, 223 63 Lund (Sweden); Liu, Jing, E-mail: jing.liu@biotek.lu.se [Department of Biotechnology, Lund University, Getingevägen 60, 221 00 Lund (Sweden); Bioprocess Control, Scheelevägen 22, 223 63 Lund (Sweden)

    2014-11-15

    Highlights: • The evaluated factors introduce significant systematic errors (10–38%) in BMP tests. • Ambient temperature (T) has the most substantial impact (∼10%) at low altitude. • Ambient pressure (p) has the most substantial impact (∼68%) at high altitude. • Continuous monitoring of T and p is not necessary for kinetic calculations. - Abstract: The Biochemical Methane Potential (BMP) test is increasingly recognised as a tool for selecting and pricing biomass material for production of biogas. However, the results for the same substrate often differ between laboratories and much work to standardise such tests is still needed. In the current study, the effects from four environmental factors (i.e. ambient temperature and pressure, water vapour content and initial gas composition of the reactor headspace) on the degradation kinetics and the determined methane potential were evaluated with a 2{sup 4} full factorial design. Four substrates, with different biodegradation profiles, were investigated and the ambient temperature was found to be the most significant contributor to errors in the methane potential. Concerning the kinetics of the process, the environmental factors’ impact on the calculated rate constants was negligible. The impact of the environmental factors on the kinetic parameters and methane potential from performing a BMP test at different geographical locations around the world was simulated by adjusting the data according to the ambient temperature and pressure of some chosen model sites. The largest effect on the methane potential was registered from tests performed at high altitudes due to a low ambient pressure. The results from this study illustrate the importance of considering the environmental factors’ influence on volumetric gas measurement in BMP tests. This is essential to achieve trustworthy and standardised results that can be used by researchers and end users from all over the world.

  7. Systematic error in the precision measurement of the mean wavelength of a nearly monochromatic neutron beam due to geometric errors

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, K.J., E-mail: kevin.coakley@nist.go [National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305 (United States); Dewey, M.S. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Yue, A.T. [University of Tennessee, Knoxville, TN (United States); Laptev, A.B. [Tulane University, New Orleans, LA (United States)

    2009-12-11

    Many experiments at neutron scattering facilities require nearly monochromatic neutron beams. In such experiments, one must accurately measure the mean wavelength of the beam. We seek to reduce the systematic uncertainty of this measurement to approximately 0.1%. This work is motivated mainly by an effort to improve the measurement of the neutron lifetime determined from data collected in a 2003 in-beam experiment performed at NIST. More specifically, we seek to reduce systematic uncertainty by calibrating the neutron detector used in this lifetime experiment. This calibration requires simultaneous measurement of the responses of both the neutron detector used in the lifetime experiment and an absolute black neutron detector to a highly collimated nearly monochromatic beam of cold neutrons, as well as a separate measurement of the mean wavelength of the neutron beam. The calibration uncertainty will depend on the uncertainty of the measured efficiency of the black neutron detector and the uncertainty of the measured mean wavelength. The mean wavelength of the beam is measured by Bragg diffracting the beam from a nearly perfect silicon analyzer crystal. Given the rocking curve data and knowledge of the directions of the rocking axis and the normal to the scattering planes in the silicon crystal, one determines the mean wavelength of the beam. In practice, the direction of the rocking axis and the normal to the silicon scattering planes are not known exactly. Based on Monte Carlo simulation studies, we quantify systematic uncertainties in the mean wavelength measurement due to these geometric errors. Both theoretical and empirical results are presented and compared.

  8. Prevalence and reporting of recruitment, randomisation and treatment errors in clinical trials: A systematic review.

    Science.gov (United States)

    Yelland, Lisa N; Kahan, Brennan C; Dent, Elsa; Lee, Katherine J; Voysey, Merryn; Forbes, Andrew B; Cook, Jonathan A

    2018-06-01

    Background/aims In clinical trials, it is not unusual for errors to occur during the process of recruiting, randomising and providing treatment to participants. For example, an ineligible participant may inadvertently be randomised, a participant may be randomised in the incorrect stratum, a participant may be randomised multiple times when only a single randomisation is permitted or the incorrect treatment may inadvertently be issued to a participant at randomisation. Such errors have the potential to introduce bias into treatment effect estimates and affect the validity of the trial, yet there is little motivation for researchers to report these errors and it is unclear how often they occur. The aim of this study is to assess the prevalence of recruitment, randomisation and treatment errors and review current approaches for reporting these errors in trials published in leading medical journals. Methods We conducted a systematic review of individually randomised, phase III, randomised controlled trials published in New England Journal of Medicine, Lancet, Journal of the American Medical Association, Annals of Internal Medicine and British Medical Journal from January to March 2015. The number and type of recruitment, randomisation and treatment errors that were reported and how they were handled were recorded. The corresponding authors were contacted for a random sample of trials included in the review and asked to provide details on unreported errors that occurred during their trial. Results We identified 241 potentially eligible articles, of which 82 met the inclusion criteria and were included in the review. These trials involved a median of 24 centres and 650 participants, and 87% involved two treatment arms. Recruitment, randomisation or treatment errors were reported in 32 in 82 trials (39%) that had a median of eight errors. The most commonly reported error was ineligible participants inadvertently being randomised. No mention of recruitment, randomisation

  9. Characterization of electromagnetic fields in the aSPECT spectrometer and reduction of systematic errors

    Energy Technology Data Exchange (ETDEWEB)

    Ayala Guardia, Fidel

    2011-10-15

    The aSPECT spectrometer has been designed to measure, with high precision, the recoil proton spectrum of the free neutron decay. From this spectrum, the electron antineutrino angular correlation coefficient a can be extracted with high accuracy. The goal of the experiment is to determine the coefficient a with a total relative error smaller than 0.3%, well below the current literature value of 5%. First measurements with the aSPECT spectrometer were performed in the Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Munich. However, time-dependent background instabilities prevented us from reporting a new value of a. The contents of this thesis are based on the latest measurements performed with the aSPECT spectrometer at the Institut Laue-Langevin (ILL) in Grenoble, France. In these measurements, background instabilities were considerably reduced. Furthermore, diverse modifications intended to minimize systematic errors and to achieve a more reliable setup were successfully performed. Unfortunately, saturation effects of the detector electronics turned out to be too high to determine a meaningful result. However, this and other systematics were identified and decreased, or even eliminated, for future aSPECT beamtimes. The central part of this work is focused on the analysis and improvement of systematic errors related to the aSPECT electromagnetic fields. This work yielded in many improvements, particularly in the reduction of the systematic effects due to electric fields. The systematics related to the aSPECT magnetic field were also minimized and determined down to a level which permits to improve the present literature value of a. Furthermore, a custom NMR-magnetometer was developed and improved during this thesis, which will lead to reduction of magnetic field-related uncertainties down to a negligible level to determine a with a total relative error of at least 0.3%.

  10. Characterization of electromagnetic fields in the αSPECTspectrometer and reduction of systematic errors

    International Nuclear Information System (INIS)

    Ayala Guardia, Fidel

    2011-10-01

    The aSPECT spectrometer has been designed to measure, with high precision, the recoil proton spectrum of the free neutron decay. From this spectrum, the electron antineutrino angular correlation coefficient a can be extracted with high accuracy. The goal of the experiment is to determine the coefficient a with a total relative error smaller than 0.3%, well below the current literature value of 5%. First measurements with the aSPECT spectrometer were performed in the Forschungs-Neutronenquelle Heinz Maier-Leibnitz in Munich. However, time-dependent background instabilities prevented us from reporting a new value of a. The contents of this thesis are based on the latest measurements performed with the aSPECT spectrometer at the Institut Laue-Langevin (ILL) in Grenoble, France. In these measurements, background instabilities were considerably reduced. Furthermore, diverse modifications intended to minimize systematic errors and to achieve a more reliable setup were successfully performed. Unfortunately, saturation effects of the detector electronics turned out to be too high to determine a meaningful result. However, this and other systematics were identified and decreased, or even eliminated, for future aSPECT beamtimes. The central part of this work is focused on the analysis and improvement of systematic errors related to the aSPECT electromagnetic fields. This work yielded in many improvements, particularly in the reduction of the systematic effects due to electric fields. The systematics related to the aSPECT magnetic field were also minimized and determined down to a level which permits to improve the present literature value of a. Furthermore, a custom NMR-magnetometer was developed and improved during this thesis, which will lead to reduction of magnetic field-related uncertainties down to a negligible level to determine a with a total relative error of at least 0.3%.

  11. Enamel differentiations in Myoxid incisors and their systematic significance

    Directory of Open Access Journals (Sweden)

    Wighart Koenigswald

    1995-05-01

    Full Text Available Abstract Based on enamel microstructure of lower incisors, extant and fossil myoxids can be arranged into three groups. In the first group, Hunter-Schreger bands retain the plesiomorphic state, a transverse orientation. An oblique orientation is found in the second, and in the third group a longitudinal orientation is achieved. This additional morphological character should enter into phylogenetic and systematic discussions. This modification of the schmelzmuster is so far exclusively found in myoxids. Even if parallel evolution within myoxids cannot be excluded, a reversal of the direction of differentiation is most unlikely. Riassunto Differenziazione dello smalto negli incisivi dei Mioxidi e suo significato sistematico - I Mioxidi esistenti e fossili possono essere riuniti in tre gruppi in base alla microstruttura dello smalto degli incisivi inferiori. Nel primo gruppo, le bande Hunter-Schreger mantengono lo stato plesiomorfico, ovvero un orientamento trasversale. L'orientamento è obliquo nel secondo gruppo e longitudinale nel terzo. Questo ulteriore carattere morfologico dovrebbe essere incluso nelle discussioni di sistematica e filogenesi. Questa modificazione del tipo di smalto è stata finora riscontrata solo nei Mioxidi. Anche se non è possibile escludere una evoluzione parallela tra i Mioxidi, una inversione nella direzione di differenziamento è piu improbabile.

  12. Insights on the impact of systematic model errors on data assimilation performance in changing catchments

    Science.gov (United States)

    Pathiraja, S.; Anghileri, D.; Burlando, P.; Sharma, A.; Marshall, L.; Moradkhani, H.

    2018-03-01

    The global prevalence of rapid and extensive land use change necessitates hydrologic modelling methodologies capable of handling non-stationarity. This is particularly true in the context of Hydrologic Forecasting using Data Assimilation. Data Assimilation has been shown to dramatically improve forecast skill in hydrologic and meteorological applications, although such improvements are conditional on using bias-free observations and model simulations. A hydrologic model calibrated to a particular set of land cover conditions has the potential to produce biased simulations when the catchment is disturbed. This paper sheds new light on the impacts of bias or systematic errors in hydrologic data assimilation, in the context of forecasting in catchments with changing land surface conditions and a model calibrated to pre-change conditions. We posit that in such cases, the impact of systematic model errors on assimilation or forecast quality is dependent on the inherent prediction uncertainty that persists even in pre-change conditions. Through experiments on a range of catchments, we develop a conceptual relationship between total prediction uncertainty and the impacts of land cover changes on the hydrologic regime to demonstrate how forecast quality is affected when using state estimation Data Assimilation with no modifications to account for land cover changes. This work shows that systematic model errors as a result of changing or changed catchment conditions do not always necessitate adjustments to the modelling or assimilation methodology, for instance through re-calibration of the hydrologic model, time varying model parameters or revised offline/online bias estimation.

  13. Investigating Systematic Errors of the Interstellar Flow Longitude Derived from the Pickup Ion Cutoff

    Science.gov (United States)

    Taut, A.; Berger, L.; Drews, C.; Bower, J.; Keilbach, D.; Lee, M. A.; Moebius, E.; Wimmer-Schweingruber, R. F.

    2017-12-01

    Complementary to the direct neutral particle measurements performed by e.g. IBEX, the measurement of PickUp Ions (PUIs) constitutes a diagnostic tool to investigate the local interstellar medium. PUIs are former neutral particles that have been ionized in the inner heliosphere. Subsequently, they are picked up by the solar wind and its frozen-in magnetic field. Due to this process, a characteristic Velocity Distribution Function (VDF) with a sharp cutoff evolves, which carries information about the PUI's injection speed and thus the former neutral particle velocity. The symmetry of the injection speed about the interstellar flow vector is used to derive the interstellar flow longitude from PUI measurements. Using He PUI data obtained by the PLASTIC sensor on STEREO A, we investigate how this concept may be affected by systematic errors. The PUI VDF strongly depends on the orientation of the local interplanetary magnetic field. Recently injected PUIs with speeds just below the cutoff speed typically form a highly anisotropic torus distribution in velocity space, which leads to a longitudinal transport for certain magnetic field orientation. Therefore, we investigate how the selection of magnetic field configurations in the data affects the result for the interstellar flow longitude that we derive from the PUI cutoff. Indeed, we find that the results follow a systematic trend with the filtered magnetic field angles that can lead to a shift of the result up to 5°. In turn, this means that every value for the interstellar flow longitude derived from the PUI cutoff is affected by a systematic error depending on the utilized magnetic field orientations. Here, we present our observations, discuss possible reasons for the systematic trend we discovered, and indicate selections that may minimize the systematic errors.

  14. An assessment of the risk significance of human errors in selected PSAs and operating events

    International Nuclear Information System (INIS)

    Palla, R.L. Jr.; El-Bassioni, A.

    1991-01-01

    Sensitivity studies based on Probabilistic Safety Assessments (PSAs) for a pressurized water reactor and a boiling water reactor are described. In each case human errors modeled in the PSAs were categorized according to such factors as error type, location, timing, and plant personnel involved. Sensitivity studies were then conducted by varying the error rates in each category and evaluating the corresponding change in total core damage frequency and accident sequence frequency. Insights obtained are discussed and reasons for differences in risk sensitivity between plants are explored. A separate investigation into the role of human error in risk-important operating events is also described. This investigation involved the analysis of data from the USNRC Accident Sequence Precursor program to determine the effect of operator-initiated events on accident precursor trends, and to determine whether improved training can be correlated to current trends. The findings of this study are also presented. 5 refs., 15 figs., 1 tab

  15. Systematic Significance of Leaf Epidermal Features in Holcoglossum (Orchidaceae)

    OpenAIRE

    Fan, Jie; He, Runli; Zhang, Yinbo; Jin, Xiaohua

    2014-01-01

    Determining the generic delimitations within Aeridinae has been a significant issue in the taxonomy of Orchidaceae, and Holcoglossum is a typical case. We investigated the phylogenetic utility of the morphological traits of leaf epidermis in the taxonomy of Holcoglossum s.l. by using light and scanning electron microscopy to analyze 38 samples representing 12 species of Holcoglossum, with five species from five closely related genera, such as Ascocentrum, Luisia, Papilionanthe, Rhynchostylis ...

  16. Using Analysis Increments (AI) to Estimate and Correct Systematic Errors in the Global Forecast System (GFS) Online

    Science.gov (United States)

    Bhargava, K.; Kalnay, E.; Carton, J.; Yang, F.

    2017-12-01

    Systematic forecast errors, arising from model deficiencies, form a significant portion of the total forecast error in weather prediction models like the Global Forecast System (GFS). While much effort has been expended to improve models, substantial model error remains. The aim here is to (i) estimate the model deficiencies in the GFS that lead to systematic forecast errors, (ii) implement an online correction (i.e., within the model) scheme to correct GFS following the methodology of Danforth et al. [2007] and Danforth and Kalnay [2008, GRL]. Analysis Increments represent the corrections that new observations make on, in this case, the 6-hr forecast in the analysis cycle. Model bias corrections are estimated from the time average of the analysis increments divided by 6-hr, assuming that initial model errors grow linearly and first ignoring the impact of observation bias. During 2012-2016, seasonal means of the 6-hr model bias are generally robust despite changes in model resolution and data assimilation systems, and their broad continental scales explain their insensitivity to model resolution. The daily bias dominates the sub-monthly analysis increments and consists primarily of diurnal and semidiurnal components, also requiring a low dimensional correction. Analysis increments in 2015 and 2016 are reduced over oceans, which is attributed to improvements in the specification of the SSTs. These results encourage application of online correction, as suggested by Danforth and Kalnay, for mean, seasonal and diurnal and semidiurnal model biases in GFS to reduce both systematic and random errors. As the error growth in the short-term is still linear, estimated model bias corrections can be added as a forcing term in the model tendency equation to correct online. Preliminary experiments with GFS, correcting temperature and specific humidity online show reduction in model bias in 6-hr forecast. This approach can then be used to guide and optimize the design of sub

  17. Causes of medication administration errors in hospitals: a systematic review of quantitative and qualitative evidence.

    Science.gov (United States)

    Keers, Richard N; Williams, Steven D; Cooke, Jonathan; Ashcroft, Darren M

    2013-11-01

    Underlying systems factors have been seen to be crucial contributors to the occurrence of medication errors. By understanding the causes of these errors, the most appropriate interventions can be designed and implemented to minimise their occurrence. This study aimed to systematically review and appraise empirical evidence relating to the causes of medication administration errors (MAEs) in hospital settings. Nine electronic databases (MEDLINE, EMBASE, International Pharmaceutical Abstracts, ASSIA, PsycINFO, British Nursing Index, CINAHL, Health Management Information Consortium and Social Science Citations Index) were searched between 1985 and May 2013. Inclusion and exclusion criteria were applied to identify eligible publications through title analysis followed by abstract and then full text examination. English language publications reporting empirical data on causes of MAEs were included. Reference lists of included articles and relevant review papers were hand searched for additional studies. Studies were excluded if they did not report data on specific MAEs, used accounts from individuals not directly involved in the MAE concerned or were presented as conference abstracts with insufficient detail. A total of 54 unique studies were included. Causes of MAEs were categorised according to Reason's model of accident causation. Studies were assessed to determine relevance to the research question and how likely the results were to reflect the potential underlying causes of MAEs based on the method(s) used. Slips and lapses were the most commonly reported unsafe acts, followed by knowledge-based mistakes and deliberate violations. Error-provoking conditions influencing administration errors included inadequate written communication (prescriptions, documentation, transcription), problems with medicines supply and storage (pharmacy dispensing errors and ward stock management), high perceived workload, problems with ward-based equipment (access, functionality

  18. Systematic significance of leaf epidermal features in holcoglossum (orchidaceae).

    Science.gov (United States)

    Fan, Jie; He, Runli; Zhang, Yinbo; Jin, Xiaohua

    2014-01-01

    Determining the generic delimitations within Aeridinae has been a significant issue in the taxonomy of Orchidaceae, and Holcoglossum is a typical case. We investigated the phylogenetic utility of the morphological traits of leaf epidermis in the taxonomy of Holcoglossum s.l. by using light and scanning electron microscopy to analyze 38 samples representing 12 species of Holcoglossum, with five species from five closely related genera, such as Ascocentrum, Luisia, Papilionanthe, Rhynchostylis and Vanda. Our results indicated that Holcoglossum can be distinguished from the related genera based on cuticular wax characteristics, and the inclusion of Holcoglossum himalaicum in Holcoglossum is supported by the epidermis characteristics found by LM and SEM. The percentage of the tetracytic, brachyparacytic, and laterocytic stomata types as well as the stomata index and certain combinations of special wax types support infrageneric clades and phylogenetic relationships that have been inferred from molecular data. Laterocytic and polarcytic stomata are perhaps ecological adaptations to the strong winds and ample rains in the alpine region of the Hengduanshan Mountains.

  19. Systematic significance of leaf epidermal features in holcoglossum (orchidaceae.

    Directory of Open Access Journals (Sweden)

    Jie Fan

    Full Text Available Determining the generic delimitations within Aeridinae has been a significant issue in the taxonomy of Orchidaceae, and Holcoglossum is a typical case. We investigated the phylogenetic utility of the morphological traits of leaf epidermis in the taxonomy of Holcoglossum s.l. by using light and scanning electron microscopy to analyze 38 samples representing 12 species of Holcoglossum, with five species from five closely related genera, such as Ascocentrum, Luisia, Papilionanthe, Rhynchostylis and Vanda. Our results indicated that Holcoglossum can be distinguished from the related genera based on cuticular wax characteristics, and the inclusion of Holcoglossum himalaicum in Holcoglossum is supported by the epidermis characteristics found by LM and SEM. The percentage of the tetracytic, brachyparacytic, and laterocytic stomata types as well as the stomata index and certain combinations of special wax types support infrageneric clades and phylogenetic relationships that have been inferred from molecular data. Laterocytic and polarcytic stomata are perhaps ecological adaptations to the strong winds and ample rains in the alpine region of the Hengduanshan Mountains.

  20. 'When measurements mean action' decision models for portal image review to eliminate systematic set-up errors

    International Nuclear Information System (INIS)

    Wratten, C.R.; Denham, J.W.; O; Brien, P.; Hamilton, C.S.; Kron, T.; London Regional Cancer Centre, London, Ontario

    2004-01-01

    The aim of the present paper is to evaluate how the use of decision models in the review of portal images can eliminate systematic set-up errors during conformal therapy. Sixteen patients undergoing four-field irradiation of prostate cancer have had daily portal images obtained during the first two treatment weeks and weekly thereafter. The magnitude of random and systematic variations has been calculated by comparison of the portal image with the reference simulator images using the two-dimensional decision model embodied in the Hotelling's evaluation process (HEP). Random day-to-day set-up variation was small in this group of patients. Systematic errors were, however, common. In 15 of 16 patients, one or more errors of >2 mm were diagnosed at some stage during treatment. Sixteen of the 23 errors were between 2 and 4 mm. Although there were examples of oversensitivity of the HEP in three cases, and one instance of undersensitivity, the HEP proved highly sensitive to the small (2-4 mm) systematic errors that must be eliminated during high precision radiotherapy. The HEP has proven valuable in diagnosing very small ( 4 mm) systematic errors using one-dimensional decision models, HEP can eliminate the majority of systematic errors during the first 2 treatment weeks. Copyright (2004) Blackwell Science Pty Ltd

  1. Adverse Drug Events and Medication Errors in African Hospitals: A Systematic Review.

    Science.gov (United States)

    Mekonnen, Alemayehu B; Alhawassi, Tariq M; McLachlan, Andrew J; Brien, Jo-Anne E

    2018-03-01

    Medication errors and adverse drug events are universal problems contributing to patient harm but the magnitude of these problems in Africa remains unclear. The objective of this study was to systematically investigate the literature on the extent of medication errors and adverse drug events, and the factors contributing to medication errors in African hospitals. We searched PubMed, MEDLINE, EMBASE, Web of Science and Global Health databases from inception to 31 August, 2017 and hand searched the reference lists of included studies. Original research studies of any design published in English that investigated adverse drug events and/or medication errors in any patient population in the hospital setting in Africa were included. Descriptive statistics including median and interquartile range were presented. Fifty-one studies were included; of these, 33 focused on medication errors, 15 on adverse drug events, and three studies focused on medication errors and adverse drug events. These studies were conducted in nine (of the 54) African countries. In any patient population, the median (interquartile range) percentage of patients reported to have experienced any suspected adverse drug event at hospital admission was 8.4% (4.5-20.1%), while adverse drug events causing admission were reported in 2.8% (0.7-6.4%) of patients but it was reported that a median of 43.5% (20.0-47.0%) of the adverse drug events were deemed preventable. Similarly, the median mortality rate attributed to adverse drug events was reported to be 0.1% (interquartile range 0.0-0.3%). The most commonly reported types of medication errors were prescribing errors, occurring in a median of 57.4% (interquartile range 22.8-72.8%) of all prescriptions and a median of 15.5% (interquartile range 7.5-50.6%) of the prescriptions evaluated had dosing problems. Major contributing factors for medication errors reported in these studies were individual practitioner factors (e.g. fatigue and inadequate knowledge

  2. Benefits and risks of using smart pumps to reduce medication error rates: a systematic review.

    Science.gov (United States)

    Ohashi, Kumiko; Dalleur, Olivia; Dykes, Patricia C; Bates, David W

    2014-12-01

    Smart infusion pumps have been introduced to prevent medication errors and have been widely adopted nationally in the USA, though they are not always used in Europe or other regions. Despite widespread usage of smart pumps, intravenous medication errors have not been fully eliminated. Through a systematic review of recent studies and reports regarding smart pump implementation and use, we aimed to identify the impact of smart pumps on error reduction and on the complex process of medication administration, and strategies to maximize the benefits of smart pumps. The medical literature related to the effects of smart pumps for improving patient safety was searched in PUBMED, EMBASE, and the Cochrane Central Register of Controlled Trials (CENTRAL) (2000-2014) and relevant papers were selected by two researchers. After the literature search, 231 papers were identified and the full texts of 138 articles were assessed for eligibility. Of these, 22 were included after removal of papers that did not meet the inclusion criteria. We assessed both the benefits and negative effects of smart pumps from these studies. One of the benefits of using smart pumps was intercepting errors such as the wrong rate, wrong dose, and pump setting errors. Other benefits include reduction of adverse drug event rates, practice improvements, and cost effectiveness. Meanwhile, the current issues or negative effects related to using smart pumps were lower compliance rates of using smart pumps, the overriding of soft alerts, non-intercepted errors, or the possibility of using the wrong drug library. The literature suggests that smart pumps reduce but do not eliminate programming errors. Although the hard limits of a drug library play a main role in intercepting medication errors, soft limits were still not as effective as hard limits because of high override rates. Compliance in using smart pumps is key towards effectively preventing errors. Opportunities for improvement include upgrading drug

  3. Unaccounted source of systematic errors in measurements of the Newtonian gravitational constant G

    International Nuclear Information System (INIS)

    DeSalvo, Riccardo

    2015-01-01

    Many precision measurements of G have produced a spread of results incompatible with measurement errors. Clearly an unknown source of systematic errors is at work. It is proposed here that most of the discrepancies derive from subtle deviations from Hooke's law, caused by avalanches of entangled dislocations. The idea is supported by deviations from linearity reported by experimenters measuring G, similarly to what is observed, on a larger scale, in low-frequency spring oscillators. Some mitigating experimental apparatus modifications are suggested. - Highlights: • Source of discrepancies on universal gravitational constant G measurements. • Collective motion of dislocations results in breakdown of Hook's law. • Self-organized criticality produce non-predictive shifts of equilibrium point. • New dissipation mechanism different from loss angle and viscous models is necessary. • Mitigation measures proposed may bring coherence to the measurements of G

  4. Reliability and Measurement Error of Tensiomyography to Assess Mechanical Muscle Function: A Systematic Review.

    Science.gov (United States)

    Martín-Rodríguez, Saúl; Loturco, Irineu; Hunter, Angus M; Rodríguez-Ruiz, David; Munguia-Izquierdo, Diego

    2017-12-01

    Martín-Rodríguez, S, Loturco, I, Hunter, AM, Rodríguez-Ruiz, D, and Munguia-Izquierdo, D. Reliability and measurement error of tensiomyography to assess mechanical muscle function: A systematic review. J Strength Cond Res 31(12): 3524-3536, 2017-Interest in studying mechanical skeletal muscle function through tensiomyography (TMG) has increased in recent years. This systematic review aimed to (a) report the reliability and measurement error of all TMG parameters (i.e., maximum radial displacement of the muscle belly [Dm], contraction time [Tc], delay time [Td], half-relaxation time [½ Tr], and sustained contraction time [Ts]) and (b) to provide critical reflection on how to perform accurate and appropriate measurements for informing clinicians, exercise professionals, and researchers. A comprehensive literature search was performed of the Pubmed, Scopus, Science Direct, and Cochrane databases up to July 2017. Eight studies were included in this systematic review. Meta-analysis could not be performed because of the low quality of the evidence of some studies evaluated. Overall, the review of the 9 studies involving 158 participants revealed high relative reliability (intraclass correlation coefficient [ICC]) for Dm (0.91-0.99); moderate-to-high ICC for Ts (0.80-0.96), Tc (0.70-0.98), and ½ Tr (0.77-0.93); and low-to-high ICC for Td (0.60-0.98), independently of the evaluated muscles. In addition, absolute reliability (coefficient of variation [CV]) was low for all TMG parameters except for ½ Tr (CV = >20%), whereas measurement error indexes were high for this parameter. In conclusion, this study indicates that 3 of the TMG parameters (Dm, Td, and Tc) are highly reliable, whereas ½ Tr demonstrate insufficient reliability, and thus should not be used in future studies.

  5. Comparison of two stochastic techniques for reliable urban runoff prediction by modeling systematic errors

    DEFF Research Database (Denmark)

    Del Giudice, Dario; Löwe, Roland; Madsen, Henrik

    2015-01-01

    from different fields and have not yet been compared in environmental modeling. To compare the two approaches, we develop a unifying terminology, evaluate them theoretically, and apply them to conceptual rainfall-runoff modeling in the same drainage system. Our results show that both approaches can......In urban rainfall-runoff, commonly applied statistical techniques for uncertainty quantification mostly ignore systematic output errors originating from simplified models and erroneous inputs. Consequently, the resulting predictive uncertainty is often unreliable. Our objective is to present two...... approaches which use stochastic processes to describe systematic deviations and to discuss their advantages and drawbacks for urban drainage modeling. The two methodologies are an external bias description (EBD) and an internal noise description (IND, also known as stochastic gray-box modeling). They emerge...

  6. Noncontact thermometry via laser pumped, thermographic phosphors: Characterization of systematic errors and industrial applications

    International Nuclear Information System (INIS)

    Gillies, G.T.; Dowell, L.J.; Lutz, W.N.; Allison, S.W.; Cates, M.R.; Noel, B.W.; Franks, L.A.; Borella, H.M.

    1987-10-01

    There are a growing number of industrial measurement situations that call for a high precision, noncontact method of thermometry. Our collaboration has been successful in developing one such method based on the laser-induced fluorescence of rare-earth-doped ceramic phosphors like Y 2 O 3 :Eu. In this paper, we summarize the results of characterization studies aimed at identifying the sources of systematic error in a laboratory-grade version of the method. We then go on to present data from measurements made in the afterburner plume of a jet turbine and inside an operating permanent magnet motor. 12 refs., 6 figs

  7. Carers' Medication Administration Errors in the Domiciliary Setting: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Anam Parand

    Full Text Available Medications are mostly taken in patients' own homes, increasingly administered by carers, yet studies of medication safety have been largely conducted in the hospital setting. We aimed to review studies of how carers cause and/or prevent medication administration errors (MAEs within the patient's home; to identify types, prevalence and causes of these MAEs and any interventions to prevent them.A narrative systematic review of literature published between 1 Jan 1946 and 23 Sep 2013 was carried out across the databases EMBASE, MEDLINE, PSYCHINFO, COCHRANE and CINAHL. Empirical studies were included where carers were responsible for preventing/causing MAEs in the home and standardised tools used for data extraction and quality assessment.Thirty-six papers met the criteria for narrative review, 33 of which included parents caring for children, two predominantly comprised adult children and spouses caring for older parents/partners, and one focused on paid carers mostly looking after older adults. The carer administration error rate ranged from 1.9 to 33% of medications administered and from 12 to 92.7% of carers administering medication. These included dosage errors, omitted administration, wrong medication and wrong time or route of administration. Contributory factors included individual carer factors (e.g. carer age, environmental factors (e.g. storage, medication factors (e.g. number of medicines, prescription communication factors (e.g. comprehensibility of instructions, psychosocial factors (e.g. carer-to-carer communication, and care-recipient factors (e.g. recipient age. The few interventions effective in preventing MAEs involved carer training and tailored equipment.This review shows that home medication administration errors made by carers are a potentially serious patient safety issue. Carers made similar errors to those made by professionals in other contexts and a wide variety of contributory factors were identified. The home care

  8. Design of a real-time spectroscopic rotating compensator ellipsometer without systematic errors

    Energy Technology Data Exchange (ETDEWEB)

    Broch, Laurent, E-mail: laurent.broch@univ-lorraine.fr [Laboratoire de Chimie Physique-Approche Multi-echelle des Milieux Complexes (LCP-A2MC, EA 4632), Universite de Lorraine, 1 boulevard Arago CP 87811, F-57078 Metz Cedex 3 (France); Stein, Nicolas [Institut Jean Lamour, Universite de Lorraine, UMR 7198 CNRS, 1 boulevard Arago CP 87811, F-57078 Metz Cedex 3 (France); Zimmer, Alexandre [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary BP 47870, F-21078 Dijon Cedex (France); Battie, Yann; Naciri, Aotmane En [Laboratoire de Chimie Physique-Approche Multi-echelle des Milieux Complexes (LCP-A2MC, EA 4632), Universite de Lorraine, 1 boulevard Arago CP 87811, F-57078 Metz Cedex 3 (France)

    2014-11-28

    We describe a spectroscopic ellipsometer in the visible domain (400–800 nm) based on a rotating compensator technology using two detectors. The classical analyzer is replaced by a fixed Rochon birefringent beamsplitter which splits the incidence light wave into two perpendicularly polarized waves, one oriented at + 45° and the other one at − 45° according to the plane of incidence. Both emergent optical signals are analyzed by two identical CCD detectors which are synchronized by an optical encoder fixed on the shaft of the step-by-step motor of the compensator. The final spectrum is the result of the two averaged Ψ and Δ spectra acquired by both detectors. We show that Ψ and Δ spectra are acquired without systematic errors on a spectral range fixed from 400 to 800 nm. The acquisition time can be adjusted down to 25 ms. The setup was validated by monitoring the first steps of bismuth telluride film electrocrystallization. The results exhibit that induced experimental growth parameters, such as film thickness and volumic fraction of deposited material can be extracted with a better trueness. - Highlights: • High-speed rotating compensator ellipsometer equipped with 2 detectors. • Ellipsometric angles without systematic errors • In-situ monitoring of electrocrystallization of bismuth telluride thin layer • High-accuracy of fitted physical parameters.

  9. Systematic errors due to linear congruential random-number generators with the Swendsen-Wang algorithm: a warning.

    Science.gov (United States)

    Ossola, Giovanni; Sokal, Alan D

    2004-08-01

    We show that linear congruential pseudo-random-number generators can cause systematic errors in Monte Carlo simulations using the Swendsen-Wang algorithm, if the lattice size is a multiple of a very large power of 2 and one random number is used per bond. These systematic errors arise from correlations within a single bond-update half-sweep. The errors can be eliminated (or at least radically reduced) by updating the bonds in a random order or in an aperiodic manner. It also helps to use a generator of large modulus (e.g., 60 or more bits).

  10. An Examination of the Spatial Distribution of Carbon Dioxide and Systematic Errors

    Science.gov (United States)

    Coffey, Brennan; Gunson, Mike; Frankenberg, Christian; Osterman, Greg

    2011-01-01

    The industrial period and modern age is characterized by combustion of coal, oil, and natural gas for primary energy and transportation leading to rising levels of atmospheric of CO2. This increase, which is being carefully measured, has ramifications throughout the biological world. Through remote sensing, it is possible to measure how many molecules of CO2 lie in a defined column of air. However, other gases and particles are present in the atmosphere, such as aerosols and water, which make such measurements more complicated1. Understanding the detailed geometry and path length of the observation is vital to computing the concentration of CO2. Comparing these satellite readings with ground-truth data (TCCON) the systematic errors arising from these sources can be assessed. Once the error is understood, it can be scaled for in the retrieval algorithms to create a set of data, which is closer to the TCCON measurements1. Using this process, the algorithms are being developed to reduce bias, within.1% worldwide of the true value. At this stage, the accuracy is within 1%, but through correcting small errors contained in the algorithms, such as accounting for the scattering of sunlight, the desired accuracy can be achieved.

  11. Assessment of Systematic Chromatic Errors that Impact Sub-1% Photometric Precision in Large-Area Sky Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Li, T. S. [et al.

    2016-05-27

    Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is stable in time and uniform over the sky to 1% precision or better. Past surveys have achieved photometric precision of 1-2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors using photometry from the Dark Energy Survey (DES) as an example. We define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes, when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the systematic chromatic errors caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane, can be up to 2% in some bandpasses. We compare the calculated systematic chromatic errors with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput. The residual after correction is less than 0.3%. We also find that the errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.

  12. Barriers to reporting medication errors and near misses among nurses: A systematic review.

    Science.gov (United States)

    Vrbnjak, Dominika; Denieffe, Suzanne; O'Gorman, Claire; Pajnkihar, Majda

    2016-11-01

    To explore barriers to nurses' reporting of medication errors and near misses in hospital settings. Systematic review. Medline, CINAHL, PubMed and Cochrane Library in addition to Google and Google Scholar and reference lists of relevant studies published in English between January 1981 and April 2015 were searched for relevant qualitative, quantitative or mixed methods empirical studies or unpublished PhD theses. Papers with a primary focus on barriers to reporting medication errors and near misses in nursing were included. The titles and abstracts of the search results were assessed for eligibility and relevance by one of the authors. After retrieval of the full texts, two of the authors independently made decisions concerning the final inclusion and these were validated by the third reviewer. Three authors independently assessed methodological quality of studies. Relevant data were extracted and findings were synthesised using thematic synthesis. From 4038 identified records, 38 studies were included in the synthesis. Findings suggest that organizational barriers such as culture, the reporting system and management behaviour in addition to personal and professional barriers such as fear, accountability and characteristics of nurses are barriers to reporting medication errors. To overcome reported barriers it is necessary to develop a non-blaming, non-punitive and non-fearful learning culture at unit and organizational level. Anonymous, effective, uncomplicated and efficient reporting systems and supportive management behaviour that provides open feedback to nurses is needed. Nurses are accountable for patients' safety, so they need to be educated and skilled in error management. Lack of research into barriers to reporting of near misses' and low awareness of reporting suggests the need for further research and development of educational and management approaches to overcome these barriers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Managing Systematic Errors in a Polarimeter for the Storage Ring EDM Experiment

    Science.gov (United States)

    Stephenson, Edward J.; Storage Ring EDM Collaboration

    2011-05-01

    The EDDA plastic scintillator detector system at the Cooler Synchrotron (COSY) has been used to demonstrate that it is possible using a thick target at the edge of the circulating beam to meet the requirements for a polarimeter to be used in the search for an electric dipole moment on the proton or deuteron. Emphasizing elastic and low Q-value reactions leads to large analyzing powers and, along with thick targets, to efficiencies near 1%. Using only information obtained comparing count rates for oppositely vector-polarized beam states and a calibration of the sensitivity of the polarimeter to rate and geometric changes, the contribution of systematic errors can be suppressed below the level of one part per million.

  14. Simulating systematic errors in X-ray absorption spectroscopy experiments: Sample and beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Curis, Emmanuel [Laboratoire de Biomathematiques, Faculte de Pharmacie, Universite Rene, Descartes (Paris V)-4, Avenue de l' Observatoire, 75006 Paris (France)]. E-mail: emmanuel.curis@univ-paris5.fr; Osan, Janos [KFKI Atomic Energy Research Institute (AEKI)-P.O. Box 49, H-1525 Budapest (Hungary); Falkenberg, Gerald [Hamburger Synchrotronstrahlungslabor (HASYLAB), Deutsches Elektronen-Synchrotron (DESY)-Notkestrasse 85, 22607 Hamburg (Germany); Benazeth, Simone [Laboratoire de Biomathematiques, Faculte de Pharmacie, Universite Rene, Descartes (Paris V)-4, Avenue de l' Observatoire, 75006 Paris (France); Laboratoire d' Utilisation du Rayonnement Electromagnetique (LURE)-Ba-hat timent 209D, Campus d' Orsay, 91406 Orsay (France); Toeroek, Szabina [KFKI Atomic Energy Research Institute (AEKI)-P.O. Box 49, H-1525 Budapest (Hungary)

    2005-07-15

    The article presents an analytical model to simulate experimental imperfections in the realization of an X-ray absorption spectroscopy experiment, performed in transmission or fluorescence mode. Distinction is made between sources of systematic errors on a time-scale basis, to select the more appropriate model for their handling. For short time-scale, statistical models are the most suited. For large time-scale, the model is developed for sample and beam imperfections: mainly sample inhomogeneity, sample self-absorption, beam achromaticity. The ability of this model to reproduce the effects of these imperfections is exemplified, and the model is validated on real samples. Various potential application fields of the model are then presented.

  15. Simulating systematic errors in X-ray absorption spectroscopy experiments: Sample and beam effects

    International Nuclear Information System (INIS)

    Curis, Emmanuel; Osan, Janos; Falkenberg, Gerald; Benazeth, Simone; Toeroek, Szabina

    2005-01-01

    The article presents an analytical model to simulate experimental imperfections in the realization of an X-ray absorption spectroscopy experiment, performed in transmission or fluorescence mode. Distinction is made between sources of systematic errors on a time-scale basis, to select the more appropriate model for their handling. For short time-scale, statistical models are the most suited. For large time-scale, the model is developed for sample and beam imperfections: mainly sample inhomogeneity, sample self-absorption, beam achromaticity. The ability of this model to reproduce the effects of these imperfections is exemplified, and the model is validated on real samples. Various potential application fields of the model are then presented

  16. Experiences of and support for nurses as second victims of adverse nursing errors: a qualitative systematic review.

    Science.gov (United States)

    Cabilan, C J; Kynoch, Kathryn

    2017-09-01

    Second victims are clinicians who have made adverse errors and feel traumatized by the experience. The current published literature on second victims is mainly representative of doctors, hence nurses' experiences are not fully depicted. This systematic review was necessary to understand the second victim experience for nurses, explore the support provided, and recommend appropriate support systems for nurses. To synthesize the best available evidence on nurses' experiences as second victims, and explore their experiences of the support they receive and the support they need. Participants were registered nurses who made adverse errors. The review included studies that described nurses' experiences as second victims and/or the support they received after making adverse errors. All studies conducted in any health care settings worldwide. The qualitative studies included were grounded theory, discourse analysis and phenomenology. A structured search strategy was used to locate all unpublished and published qualitative studies, but was limited to the English language, and published between 1980 and February 2017. The references of studies selected for eligibility screening were hand-searched for additional literature. Eligible studies were assessed by two independent reviewers for methodological quality using a standardized critical appraisal instrument from the Joanna Briggs Institute Qualitative Assessment and Review Instrument (JBI QARI). Themes and narrative statements were extracted from papers included in the review using the standardized data extraction tool from JBI QARI. Data synthesis was conducted using the Joanna Briggs Institute meta-aggregation approach. There were nine qualitative studies included in the review. The narratives of 284 nurses generated a total of 43 findings, which formed 15 categories based on similarity of meaning. Four synthesized findings were generated from the categories: (i) The error brings a considerable emotional burden to the

  17. Significant uncertainty in global scale hydrological modeling from precipitation data errors

    NARCIS (Netherlands)

    Weiland, Frederiek C. Sperna; Vrugt, Jasper A.; van Beek, Rens (L. ) P. H.; Weerts, Albrecht H.; Bierkens, Marc F. P.

    2015-01-01

    In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we

  18. Systematic errors in the determination of the spectroscopic g-factor in broadband ferromagnetic resonance spectroscopy: A proposed solution

    Science.gov (United States)

    Gonzalez-Fuentes, C.; Dumas, R. K.; García, C.

    2018-01-01

    A theoretical and experimental study of the influence of small offsets of the magnetic field (δH) on the measurement accuracy of the spectroscopic g-factor (g) and saturation magnetization (Ms) obtained by broadband ferromagnetic resonance (FMR) measurements is presented. The random nature of δH generates systematic and opposite sign deviations of the values of g and Ms with respect to their true values. A δH on the order of a few Oe leads to a ˜10% error of g and Ms for a typical range of frequencies employed in broadband FMR experiments. We propose a simple experimental methodology to significantly minimize the effect of δH on the fitted values of g and Ms, eliminating their apparent dependence in the range of frequencies employed. Our method was successfully tested using broadband FMR measurements on a 5 nm thick Ni80Fe20 film for frequencies ranging between 3 and 17 GHz.

  19. Systematic analysis of dependent human errors from the maintenance history at finnish NPPs - A status report

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, K. [VTT Industrial Systems (Finland)

    2002-12-01

    Operating experience has shown missed detection events, where faults have passed inspections and functional tests to operating periods after the maintenance activities during the outage. The causes of these failures have often been complex event sequences, involving human and organisational factors. Especially common cause and other dependent failures of safety systems may significantly contribute to the reactor core damage risk. The topic has been addressed in the Finnish studies of human common cause failures, where experiences on latent human errors have been searched and analysed in detail from the maintenance history. The review of the bulk of the analysis results of the Olkiluoto and Loviisa plant sites shows that the instrumentation and control and electrical equipment is more prone to human error caused failure events than the other maintenance and that plant modifications and also predetermined preventive maintenance are significant sources of common cause failures. Most errors stem from the refuelling and maintenance outage period at the both sites, and less than half of the dependent errors were identified during the same outage. The dependent human errors originating from modifications could be reduced by a more tailored specification and coverage of their start-up testing programs. Improvements could also be achieved by a more case specific planning of the installation inspection and functional testing of complicated maintenance works or work objects of higher plant safety and availability importance. A better use and analysis of condition monitoring information for maintenance steering could also help. The feedback from discussions of the analysis results with plant experts and professionals is still crucial in developing the final conclusions and recommendations that meet the specific development needs at the plants. (au)

  20. Human-simulation-based learning to prevent medication error: A systematic review.

    Science.gov (United States)

    Sarfati, Laura; Ranchon, Florence; Vantard, Nicolas; Schwiertz, Vérane; Larbre, Virginie; Parat, Stéphanie; Faudel, Amélie; Rioufol, Catherine

    2018-01-31

    In the past 2 decades, there has been an increasing interest in simulation-based learning programs to prevent medication error (ME). To improve knowledge, skills, and attitudes in prescribers, nurses, and pharmaceutical staff, these methods enable training without directly involving patients. However, best practices for simulation for healthcare providers are as yet undefined. By analysing the current state of experience in the field, the present review aims to assess whether human simulation in healthcare helps to reduce ME. A systematic review was conducted on Medline from 2000 to June 2015, associating the terms "Patient Simulation," "Medication Errors," and "Simulation Healthcare." Reports of technology-based simulation were excluded, to focus exclusively on human simulation in nontechnical skills learning. Twenty-one studies assessing simulation-based learning programs were selected, focusing on pharmacy, medicine or nursing students, or concerning programs aimed at reducing administration or preparation errors, managing crises, or learning communication skills for healthcare professionals. The studies varied in design, methodology, and assessment criteria. Few demonstrated that simulation was more effective than didactic learning in reducing ME. This review highlights a lack of long-term assessment and real-life extrapolation, with limited scenarios and participant samples. These various experiences, however, help in identifying the key elements required for an effective human simulation-based learning program for ME prevention: ie, scenario design, debriefing, and perception assessment. The performance of these programs depends on their ability to reflect reality and on professional guidance. Properly regulated simulation is a good way to train staff in events that happen only exceptionally, as well as in standard daily activities. By integrating human factors, simulation seems to be effective in preventing iatrogenic risk related to ME, if the program is

  1. 'Galileo Galilei-GG': design, requirements, error budget and significance of the ground prototype

    International Nuclear Information System (INIS)

    Nobili, A.M.; Bramanti, D.; Comandi, G.L.; Toncelli, R.; Polacco, E.; Chiofalo, M.L.

    2003-01-01

    'Galileo Galilei-GG' is a proposed experiment in low orbit around the Earth aiming to test the equivalence principle to the level of 1 part in 10 17 at room temperature. A unique feature of GG, which is pivotal to achieve high accuracy at room temperature, is fast rotation in supercritical regime around the symmetry axis of the test cylinders, with very weak coupling in the plane perpendicular to it. Another unique feature of GG is the possibility to fly 2 concentric pairs of test cylinders, the outer pair being made of the same material for detection of spurious effects. GG was originally designed for an equatorial orbit. The much lower launching cost for higher inclinations has made it worth redesigning the experiment for a sun-synchronous orbit. We report the main conclusions of this study, which confirms the feasibility of the original goal of the mission also at high inclination, and conclude by stressing the significance of the ground based prototype of the apparatus proposed for space

  2. Significant uncertainty in global scale hydrological modeling from precipitation data errors

    Science.gov (United States)

    Sperna Weiland, Frederiek C.; Vrugt, Jasper A.; van Beek, Rens (L.) P. H.; Weerts, Albrecht H.; Bierkens, Marc F. P.

    2015-10-01

    In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we focus on large-scale hydrologic modeling and analyze the effect of parameter and rainfall data uncertainty on simulated discharge dynamics with the global hydrologic model PCR-GLOBWB. We use three rainfall data products; the CFSR reanalysis, the ERA-Interim reanalysis, and a combined ERA-40 reanalysis and CRU dataset. Parameter uncertainty is derived from Latin Hypercube Sampling (LHS) using monthly discharge data from five of the largest river systems in the world. Our results demonstrate that the default parameterization of PCR-GLOBWB, derived from global datasets, can be improved by calibrating the model against monthly discharge observations. Yet, it is difficult to find a single parameterization of PCR-GLOBWB that works well for all of the five river basins considered herein and shows consistent performance during both the calibration and evaluation period. Still there may be possibilities for regionalization based on catchment similarities. Our simulations illustrate that parameter uncertainty constitutes only a minor part of predictive uncertainty. Thus, the apparent dichotomy between simulations of global-scale hydrologic behavior and actual data cannot be resolved by simply increasing the model complexity of PCR-GLOBWB and resolving sub-grid processes. Instead, it would be more productive to improve the characterization of global rainfall amounts at spatial resolutions of 0.5° and smaller.

  3. GREAT3 results - I. Systematic errors in shear estimation and the impact of real galaxy morphology

    Energy Technology Data Exchange (ETDEWEB)

    Mandelbaum, R.; Rowe, B.; Armstrong, R.; Bard, D.; Bertin, E.; Bosch, J.; Boutigny, D.; Courbin, F.; Dawson, W. A.; Donnarumma, A.; Fenech Conti, I.; Gavazzi, R.; Gentile, M.; Gill, M. S. S.; Hogg, D. W.; Huff, E. M.; Jee, M. J.; Kacprzak, T.; Kilbinger, M.; Kuntzer, T.; Lang, D.; Luo, W.; March, M. C.; Marshall, P. J.; Meyers, J. E.; Miller, L.; Miyatake, H.; Nakajima, R.; Ngole Mboula, F. M.; Nurbaeva, G.; Okura, Y.; Paulin-Henriksson, S.; Rhodes, J.; Schneider, M. D.; Shan, H.; Sheldon, E. S.; Simet, M.; Starck, J. -L.; Sureau, F.; Tewes, M.; Zarb Adami, K.; Zhang, J.; Zuntz, J.

    2015-05-01

    We present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT3 was divided into experiments to test three specific questions, and included simulated space- and ground-based data with constant or cosmologically varying shear fields. The simplest (control) experiment included parametric galaxies with a realistic distribution of signal-to-noise, size, and ellipticity, and a complex point spread function (PSF). The other experiments tested the additional impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty about a spatially varying PSF; the last two questions will be explored in Paper II. The 24 participating teams competed to estimate lensing shears to within systematic error tolerances for upcoming Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable variety and innovation in the types of methods applied. Several teams now meet or exceed the targets in many of the tests conducted (to within the statistical errors). We conclude that the presence of realistic galaxy morphology in simulations changes shear calibration biases by ~1 per cent for a wide range of methods. Other effects such as truncation biases due to finite galaxy postage stamps, and the impact of galaxy type as measured by the Sérsic index, are quantified for the first time. Our results generalize previous studies regarding sensitivities to galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all methods’ results support the simple model in which additive shear biases depend linearly on PSF ellipticity.

  4. Systematic instrumental errors between oxygen saturation analysers in fetal blood during deep hypoxemia.

    Science.gov (United States)

    Porath, M; Sinha, P; Dudenhausen, J W; Luttkus, A K

    2001-05-01

    During a study of artificially produced deep hypoxemia in fetal cord blood, systematic errors of three different oxygen saturation analysers were evaluated against a reference CO oximeter. The oxygen tensions (PO2) of 83 pre-heparinized fetal blood samples from umbilical veins were reduced by tonometry to 1.3 kPa (10 mm Hg) and 2.7 kPa (20 mm Hg). The oxygen saturation (SO2) was determined (n=1328) on a reference CO oximeter (ABL625, Radiometer Copenhagen) and on three tested instruments (two CO oximeters: Chiron865, Bayer Diagnostics; ABL700, Radiometer Copenhagen, and a portable blood gas analyser, i-STAT, Abbott). The CO oximeters measure the oxyhemoglobin and the reduced hemoglobin fractions by absorption spectrophotometry. The i-STAT system calculates the oxygen saturation from the measured pH, PO2, and PCO2. The measurements were performed in duplicate. Statistical evaluation focused on the differences between duplicate measurements and on systematic instrumental errors in oxygen saturation analysis compared to the reference CO oximeter. After tonometry, the median saturation dropped to 32.9% at a PO2=2.7 kPa (20 mm Hg), defined as saturation range 1, and to 10% SO2 at a PO2=1.3 kPa (10 mm Hg), defined as range 2. With decreasing SO2, all devices showed an increased difference between duplicate measurements. ABL625 and ABL700 showed the closest agreement between instruments (0.25% SO2 bias at saturation range 1 and -0.33% SO2 bias at saturation range 2). Chiron865 indicated higher saturation values than ABL 625 (3.07% SO2 bias at saturation range 1 and 2.28% SO2 bias at saturation range 2). Calculated saturation values (i-STAT) were more than 30% lower than the measured values of ABL625. The disagreement among CO oximeters was small but increasing under deep hypoxemia. Calculation found unacceptably low saturation.

  5. Thresholds for statistical and clinical significance in systematic reviews with meta-analytic methods

    DEFF Research Database (Denmark)

    Jakobsen, Janus Christian; Wetterslev, Jorn; Winkel, Per

    2014-01-01

    BACKGROUND: Thresholds for statistical significance when assessing meta-analysis results are being insufficiently demonstrated by traditional 95% confidence intervals and P-values. Assessment of intervention effects in systematic reviews with meta-analysis deserves greater rigour. METHODS......: Methodologies for assessing statistical and clinical significance of intervention effects in systematic reviews were considered. Balancing simplicity and comprehensiveness, an operational procedure was developed, based mainly on The Cochrane Collaboration methodology and the Grading of Recommendations...... Assessment, Development, and Evaluation (GRADE) guidelines. RESULTS: We propose an eight-step procedure for better validation of meta-analytic results in systematic reviews (1) Obtain the 95% confidence intervals and the P-values from both fixed-effect and random-effects meta-analyses and report the most...

  6. Avoiding a Systematic Error in Assessing Fat Graft Survival in the Breast with Repeated Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Glovinski, Peter Viktor; Herly, Mikkel; Müller, Felix C

    2016-01-01

    Several techniques for measuring breast volume (BV) are based on examining the breast on magnetic resonance imaging. However, when techniques designed to measure total BV are used to quantify BV changes, for example, after fat grafting, a systematic error is introduced because BV changes lead to ...

  7. Convolution method and CTV-to-PTV margins for finite fractions and small systematic errors

    International Nuclear Information System (INIS)

    Gordon, J J; Siebers, J V

    2007-01-01

    The van Herk margin formula (VHMF) relies on the accuracy of the convolution method (CM) to determine clinical target volume (CTV) to planning target volume (PTV) margins. This work (1) evaluates the accuracy of the CM and VHMF as a function of the number of fractions N and other parameters, and (2) proposes an alternative margin algorithm which ensures target coverage for a wider range of parameter values. Dose coverage was evaluated for a spherical target with uniform margin, using the same simplified dose model and CTV coverage criterion as were used in development of the VHMF. Systematic and random setup errors were assumed to be normally distributed with standard deviations Σ and σ. For clinically relevant combinations of σ, Σ and N, margins were determined by requiring that 90% of treatment course simulations have a CTV minimum dose greater than or equal to the static PTV minimum dose. Simulation results were compared with the VHMF and the alternative margin algorithm. The CM and VHMF were found to be accurate for parameter values satisfying the approximate criterion: σ[1 - γN/25] 0.2, because they failed to account for the non-negligible dose variability associated with random setup errors. These criteria are applicable when σ ∼> σ P , where σ P = 0.32 cm is the standard deviation of the normal dose penumbra. (Qualitative behaviour of the CM and VHMF will remain the same, though the criteria might vary if σ P takes values other than 0.32 cm.) When σ P , dose variability due to random setup errors becomes negligible, and the CM and VHMF are valid regardless of the values of Σ and N. When σ ∼> σ P , consistent with the above criteria, it was found that the VHMF can underestimate margins for large σ, small Σ and small N. A potential consequence of this underestimate is that the CTV minimum dose can fall below its planned value in more than the prescribed 10% of treatments. The proposed alternative margin algorithm provides better margin

  8. The Thirty Gigahertz Instrument Receiver for the QUIJOTE Experiment: Preliminary Polarization Measurements and Systematic-Error Analysis

    Directory of Open Access Journals (Sweden)

    Francisco J. Casas

    2015-08-01

    Full Text Available This paper presents preliminary polarization measurements and systematic-error characterization of the Thirty Gigahertz Instrument receiver developed for the QUIJOTE experiment. The instrument has been designed to measure the polarization of Cosmic Microwave Background radiation from the sky, obtaining the Q, U, and I Stokes parameters of the incoming signal simultaneously. Two kinds of linearly polarized input signals have been used as excitations in the polarimeter measurement tests in the laboratory; these show consistent results in terms of the Stokes parameters obtained. A measurement-based systematic-error characterization technique has been used in order to determine the possible sources of instrumental errors and to assist in the polarimeter calibration process.

  9. A permutation test to analyse systematic bias and random measurement errors of medical devices via boosting location and scale models.

    Science.gov (United States)

    Mayr, Andreas; Schmid, Matthias; Pfahlberg, Annette; Uter, Wolfgang; Gefeller, Olaf

    2017-06-01

    Measurement errors of medico-technical devices can be separated into systematic bias and random error. We propose a new method to address both simultaneously via generalized additive models for location, scale and shape (GAMLSS) in combination with permutation tests. More precisely, we extend a recently proposed boosting algorithm for GAMLSS to provide a test procedure to analyse potential device effects on the measurements. We carried out a large-scale simulation study to provide empirical evidence that our method is able to identify possible sources of systematic bias as well as random error under different conditions. Finally, we apply our approach to compare measurements of skin pigmentation from two different devices in an epidemiological study.

  10. Modeling systematic errors: polychromatic sources of Beer-Lambert deviations in HPLC/UV and nonchromatographic spectrophotometric assays.

    Science.gov (United States)

    Galli, C

    2001-07-01

    It is well established that the use of polychromatic radiation in spectrophotometric assays leads to excursions from the Beer-Lambert limit. This Note models the resulting systematic error as a function of assay spectral width, slope of molecular extinction coefficient, and analyte concentration. The theoretical calculations are compared with recent experimental results; a parameter is introduced which can be used to estimate the magnitude of the systematic error in both chromatographic and nonchromatographic spectrophotometric assays. It is important to realize that the polychromatic radiation employed in common laboratory equipment can yield assay errors up to approximately 4%, even at absorption levels generally considered 'safe' (i.e. absorption <1). Thus careful consideration of instrumental spectral width, analyte concentration, and slope of molecular extinction coefficient is required to ensure robust analytical methods.

  11. Measuring nuclear-spin-dependent parity violation with molecules: Experimental methods and analysis of systematic errors

    Science.gov (United States)

    Altuntaş, Emine; Ammon, Jeffrey; Cahn, Sidney B.; DeMille, David

    2018-04-01

    Nuclear-spin-dependent parity violation (NSD-PV) effects in atoms and molecules arise from Z0 boson exchange between electrons and the nucleus and from the magnetic interaction between electrons and the parity-violating nuclear anapole moment. It has been proposed to study NSD-PV effects using an enhancement of the observable effect in diatomic molecules [D. DeMille et al., Phys. Rev. Lett. 100, 023003 (2008), 10.1103/PhysRevLett.100.023003]. Here we demonstrate highly sensitive measurements of this type, using the test system 138Ba19F. We show that systematic errors associated with our technique can be suppressed to at least the level of the present statistical sensitivity. With ˜170 h of data, we measure the matrix element W of the NSD-PV interaction with uncertainty δ W /(2 π )<0.7 Hz for each of two configurations where W must have different signs. This sensitivity would be sufficient to measure NSD-PV effects of the size anticipated across a wide range of nuclei.

  12. Measurement of Systematic Error Effects for a Sensitive Storage Ring EDM Polarimeter

    Science.gov (United States)

    Imig, Astrid; Stephenson, Edward

    2009-10-01

    The Storage Ring EDM Collaboration was using the Cooler Synchrotron (COSY) and the EDDA detector at the Forschungszentrum J"ulich to explore systematic errors in very sensitive storage-ring polarization measurements. Polarized deuterons of 235 MeV were used. The analyzer target was a block of 17 mm thick carbon placed close to the beam so that white noise applied to upstream electrostatic plates increases the vertical phase space of the beam, allowing deuterons to strike the front face of the block. For a detector acceptance that covers laboratory angles larger than 9 ^o, the efficiency for particles to scatter into the polarimeter detectors was about 0.1% (all directions) and the vector analyzing power was about 0.2. Measurements were made of the sensitivity of the polarization measurement to beam position and angle. Both vector and tensor asymmetries were measured using beams with both vector and tensor polarization. Effects were seen that depend upon both the beam geometry and the data rate in the detectors.

  13. In-Situ Systematic Error Correction for Digital Volume Correlation Using a Reference Sample

    KAUST Repository

    Wang, B.

    2017-11-27

    The self-heating effect of a laboratory X-ray computed tomography (CT) scanner causes slight change in its imaging geometry, which induces translation and dilatation (i.e., artificial displacement and strain) in reconstructed volume images recorded at different times. To realize high-accuracy internal full-field deformation measurements using digital volume correlation (DVC), these artificial displacements and strains associated with unstable CT imaging must be eliminated. In this work, an effective and easily implemented reference sample compensation (RSC) method is proposed for in-situ systematic error correction in DVC. The proposed method utilizes a stationary reference sample, which is placed beside the test sample to record the artificial displacement fields caused by the self-heating effect of CT scanners. The detected displacement fields are then fitted by a parametric polynomial model, which is used to remove the unwanted artificial deformations in the test sample. Rescan tests of a stationary sample and real uniaxial compression tests performed on copper foam specimens demonstrate the accuracy, efficacy, and practicality of the presented RSC method.

  14. In-Situ Systematic Error Correction for Digital Volume Correlation Using a Reference Sample

    KAUST Repository

    Wang, B.; Pan, B.; Lubineau, Gilles

    2017-01-01

    The self-heating effect of a laboratory X-ray computed tomography (CT) scanner causes slight change in its imaging geometry, which induces translation and dilatation (i.e., artificial displacement and strain) in reconstructed volume images recorded at different times. To realize high-accuracy internal full-field deformation measurements using digital volume correlation (DVC), these artificial displacements and strains associated with unstable CT imaging must be eliminated. In this work, an effective and easily implemented reference sample compensation (RSC) method is proposed for in-situ systematic error correction in DVC. The proposed method utilizes a stationary reference sample, which is placed beside the test sample to record the artificial displacement fields caused by the self-heating effect of CT scanners. The detected displacement fields are then fitted by a parametric polynomial model, which is used to remove the unwanted artificial deformations in the test sample. Rescan tests of a stationary sample and real uniaxial compression tests performed on copper foam specimens demonstrate the accuracy, efficacy, and practicality of the presented RSC method.

  15. Prognostic significance of detection of microscopic peritoneal disease in colorectal cancer: a systematic review.

    LENUS (Irish Health Repository)

    Mohan, Helen M

    2013-06-01

    Free intraperitoneal tumour cells are an independent indicator of poor prognosis, and are encorporated in current staging systems in upper gastrointestinal cancers, but not colorectal cancer. This systematic review aimed to evaluate the role and prognostic significance of positive peritoneal lavage in colorectal cancer.

  16. Prognostic significance of neurological signs in high-risk infants : a systematic review

    NARCIS (Netherlands)

    Hamer, Elisa G.; Hadders-Algra, Mijna

    The aim of this paper was to systematically review the literature on the significance of specific neurological signs in infancy, in particular in infants at risk for developmental problems such as cerebral palsy (CP). A literature search was performed using the databases PubMed, Embase, Web of

  17. Prognostic significance of neurological signs in high-risk infants - a systematic review

    NARCIS (Netherlands)

    Hamer, E.G.; Hadders-Algra, M.

    2016-01-01

    The aim of this paper was to systematically review the literature on the significance of specific neurological signs in infancy, in particular in infants at risk for developmental problems such as cerebral palsy (CP). A literature search was performed using the databases PubMed, Embase, Web of

  18. ASSESSMENT OF SYSTEMATIC CHROMATIC ERRORS THAT IMPACT SUB-1% PHOTOMETRIC PRECISION IN LARGE-AREA SKY SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Li, T. S.; DePoy, D. L.; Marshall, J. L.; Boada, S.; Mondrik, N.; Nagasawa, D. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Tucker, D.; Annis, J.; Finley, D. A.; Kent, S.; Lin, H.; Marriner, J.; Wester, W. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Kessler, R.; Scolnic, D. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Bernstein, G. M. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Burke, D. L.; Rykoff, E. S. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); James, D. J.; Walker, A. R. [Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena (Chile); Collaboration: DES Collaboration; and others

    2016-06-01

    Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%–2% by calibrating the survey’s stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. The residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for

  19. Effects of Systematic and Random Errors on the Retrieval of Particle Microphysical Properties from Multiwavelength Lidar Measurements Using Inversion with Regularization

    Science.gov (United States)

    Ramirez, Daniel Perez; Whiteman, David N.; Veselovskii, Igor; Kolgotin, Alexei; Korenskiy, Michael; Alados-Arboledas, Lucas

    2013-01-01

    In this work we study the effects of systematic and random errors on the inversion of multiwavelength (MW) lidar data using the well-known regularization technique to obtain vertically resolved aerosol microphysical properties. The software implementation used here was developed at the Physics Instrumentation Center (PIC) in Troitsk (Russia) in conjunction with the NASA/Goddard Space Flight Center. Its applicability to Raman lidar systems based on backscattering measurements at three wavelengths (355, 532 and 1064 nm) and extinction measurements at two wavelengths (355 and 532 nm) has been demonstrated widely. The systematic error sensitivity is quantified by first determining the retrieved parameters for a given set of optical input data consistent with three different sets of aerosol physical parameters. Then each optical input is perturbed by varying amounts and the inversion is repeated. Using bimodal aerosol size distributions, we find a generally linear dependence of the retrieved errors in the microphysical properties on the induced systematic errors in the optical data. For the retrievals of effective radius, number/surface/volume concentrations and fine-mode radius and volume, we find that these results are not significantly affected by the range of the constraints used in inversions. But significant sensitivity was found to the allowed range of the imaginary part of the particle refractive index. Our results also indicate that there exists an additive property for the deviations induced by the biases present in the individual optical data. This property permits the results here to be used to predict deviations in retrieved parameters when multiple input optical data are biased simultaneously as well as to study the influence of random errors on the retrievals. The above results are applied to questions regarding lidar design, in particular for the spaceborne multiwavelength lidar under consideration for the upcoming ACE mission.

  20. Can the Bruckner test be used as a rapid screening test to detect significant refractive errors in children?

    Directory of Open Access Journals (Sweden)

    Kothari Mihir

    2007-01-01

    Full Text Available Purpose: To assess the suitability of Brückner test as a screening test to detect significant refractive errors in children. Materials and Methods: A pediatric ophthalmologist prospectively observed the size and location of pupillary crescent on Brückner test as hyperopic, myopic or astigmatic. This was compared with the cycloplegic refraction. Detailed ophthalmic examination was done for all. Sensitivity, specificity, positive predictive value and negative predictive value of Brückner test were determined for the defined cutoff levels of ametropia. Results: Ninety-six subjects were examined. Mean age was 8.6 years (range 1 to 16 years. Brückner test could be completed for all; the time taken to complete this test was 10 seconds per subject. The ophthalmologist identified 131 eyes as ametropic, 61 as emmetropic. The Brückner test had sensitivity 91%, specificity 72.8%, positive predictive value 85.5% and negative predictive value 83.6%. Of 10 false negatives four had compound hypermetropic astigmatism and three had myopia. Conclusions: Brückner test can be used to rapidly screen the children for significant refractive errors. The potential benefits from such use may be maximized if programs use the test with lower crescent measurement cutoffs, a crescent measurement ruler and a distance fixation target.

  1. Increased errors and decreased performance at night: A systematic review of the evidence concerning shift work and quality.

    Science.gov (United States)

    de Cordova, Pamela B; Bradford, Michelle A; Stone, Patricia W

    2016-02-15

    Shift workers have worse health outcomes than employees who work standard business hours. However, it is unclear how this poorer health shift may be related to employee work productivity. The purpose of this systematic review is to assess the relationship between shift work and errors and performance. Searches of MEDLINE/PubMed, EBSCOhost, and CINAHL were conducted to identify articles that examined the relationship between shift work, errors, quality, productivity, and performance. All articles were assessed for study quality. A total of 435 abstracts were screened with 13 meeting inclusion criteria. Eight studies were rated to be of strong, methodological quality. Nine studies demonstrated a positive relationship that night shift workers committed more errors and had decreased performance. Night shift workers have worse health that may contribute to errors and decreased performance in the workplace.

  2. Mapping the absolute magnetic field and evaluating the quadratic Zeeman-effect-induced systematic error in an atom interferometer gravimeter

    Science.gov (United States)

    Hu, Qing-Qing; Freier, Christian; Leykauf, Bastian; Schkolnik, Vladimir; Yang, Jun; Krutzik, Markus; Peters, Achim

    2017-09-01

    Precisely evaluating the systematic error induced by the quadratic Zeeman effect is important for developing atom interferometer gravimeters aiming at an accuracy in the μ Gal regime (1 μ Gal =10-8m /s2 ≈10-9g ). This paper reports on the experimental investigation of Raman spectroscopy-based magnetic field measurements and the evaluation of the systematic error in the gravimetric atom interferometer (GAIN) due to quadratic Zeeman effect. We discuss Raman duration and frequency step-size-dependent magnetic field measurement uncertainty, present vector light shift and tensor light shift induced magnetic field measurement offset, and map the absolute magnetic field inside the interferometer chamber of GAIN with an uncertainty of 0.72 nT and a spatial resolution of 12.8 mm. We evaluate the quadratic Zeeman-effect-induced gravity measurement error in GAIN as 2.04 μ Gal . The methods shown in this paper are important for precisely mapping the absolute magnetic field in vacuum and reducing the quadratic Zeeman-effect-induced systematic error in Raman transition-based precision measurements, such as atomic interferometer gravimeters.

  3. How are medication errors defined? A systematic literature review of definitions and characteristics

    DEFF Research Database (Denmark)

    Lisby, Marianne; Nielsen, L P; Brock, Birgitte

    2010-01-01

    Multiplicity in terminology has been suggested as a possible explanation for the variation in the prevalence of medication errors. So far, few empirical studies have challenged this assertion. The objective of this review was, therefore, to describe the extent and characteristics of medication er...... error definitions in hospitals and to consider the consequences for measuring the prevalence of medication errors....

  4. Combined influence of CT random noise and HU-RSP calibration curve nonlinearities on proton range systematic errors

    Science.gov (United States)

    Brousmiche, S.; Souris, K.; Orban de Xivry, J.; Lee, J. A.; Macq, B.; Seco, J.

    2017-11-01

    Proton range random and systematic uncertainties are the major factors undermining the advantages of proton therapy, namely, a sharp dose falloff and a better dose conformality for lower doses in normal tissues. The influence of CT artifacts such as beam hardening or scatter can easily be understood and estimated due to their large-scale effects on the CT image, like cupping and streaks. In comparison, the effects of weakly-correlated stochastic noise are more insidious and less attention is drawn on them partly due to the common belief that they only contribute to proton range uncertainties and not to systematic errors thanks to some averaging effects. A new source of systematic errors on the range and relative stopping powers (RSP) has been highlighted and proved not to be negligible compared to the 3.5% uncertainty reference value used for safety margin design. Hence, we demonstrate that the angular points in the HU-to-RSP calibration curve are an intrinsic source of proton range systematic error for typical levels of zero-mean stochastic CT noise. Systematic errors on RSP of up to 1% have been computed for these levels. We also show that the range uncertainty does not generally vary linearly with the noise standard deviation. We define a noise-dependent effective calibration curve that better describes, for a given material, the RSP value that is actually used. The statistics of the RSP and the range continuous slowing down approximation (CSDA) have been analytically derived for the general case of a calibration curve obtained by the stoichiometric calibration procedure. These models have been validated against actual CSDA simulations for homogeneous and heterogeneous synthetical objects as well as on actual patient CTs for prostate and head-and-neck treatment planning situations.

  5. Scale interactions on diurnal toseasonal timescales and their relevanceto model systematic errors

    Directory of Open Access Journals (Sweden)

    G. Yang

    2003-06-01

    Full Text Available Examples of current research into systematic errors in climate models are used to demonstrate the importance of scale interactions on diurnal,intraseasonal and seasonal timescales for the mean and variability of the tropical climate system. It has enabled some conclusions to be drawn about possible processes that may need to be represented, and some recommendations to be made regarding model improvements. It has been shown that the Maritime Continent heat source is a major driver of the global circulation but yet is poorly represented in GCMs. A new climatology of the diurnal cycle has been used to provide compelling evidence of important land-sea breeze and gravity wave effects, which may play a crucial role in the heat and moisture budget of this key region for the tropical and global circulation. The role of the diurnal cycle has also been emphasized for intraseasonal variability associated with the Madden Julian Oscillation (MJO. It is suggested that the diurnal cycle in Sea Surface Temperature (SST during the suppressed phase of the MJO leads to a triggering of cumulus congestus clouds, which serve to moisten the free troposphere and hence precondition the atmosphere for the next active phase. It has been further shown that coupling between the ocean and atmosphere on intraseasonal timescales leads to a more realistic simulation of the MJO. These results stress the need for models to be able to simulate firstly, the observed tri-modal distribution of convection, and secondly, the coupling between the ocean and atmosphere on diurnal to intraseasonal timescales. It is argued, however, that the current representation of the ocean mixed layer in coupled models is not adequate to represent the complex structure of the observed mixed layer, in particular the formation of salinity barrier layers which can potentially provide much stronger local coupling between the atmosphere and ocean on diurnal to intraseasonal timescales.

  6. Modeling coherent errors in quantum error correction

    Science.gov (United States)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  7. SU-E-T-377: Inaccurate Positioning Might Introduce Significant MapCheck Calibration Error in Flatten Filter Free Beams

    International Nuclear Information System (INIS)

    Wang, S; Chao, C; Chang, J

    2014-01-01

    Purpose: This study investigates the calibration error of detector sensitivity for MapCheck due to inaccurate positioning of the device, which is not taken into account by the current commercial iterative calibration algorithm. We hypothesize the calibration is more vulnerable to the positioning error for the flatten filter free (FFF) beams than the conventional flatten filter flattened beams. Methods: MapCheck2 was calibrated with 10MV conventional and FFF beams, with careful alignment and with 1cm positioning error during calibration, respectively. Open fields of 37cmx37cm were delivered to gauge the impact of resultant calibration errors. The local calibration error was modeled as a detector independent multiplication factor, with which propagation error was estimated with positioning error from 1mm to 1cm. The calibrated sensitivities, without positioning error, were compared between the conventional and FFF beams to evaluate the dependence on the beam type. Results: The 1cm positioning error leads to 0.39% and 5.24% local calibration error in the conventional and FFF beams respectively. After propagating to the edges of MapCheck, the calibration errors become 6.5% and 57.7%, respectively. The propagation error increases almost linearly with respect to the positioning error. The difference of sensitivities between the conventional and FFF beams was small (0.11 ± 0.49%). Conclusion: The results demonstrate that the positioning error is not handled by the current commercial calibration algorithm of MapCheck. Particularly, the calibration errors for the FFF beams are ~9 times greater than those for the conventional beams with identical positioning error, and a small 1mm positioning error might lead to up to 8% calibration error. Since the sensitivities are only slightly dependent of the beam type and the conventional beam is less affected by the positioning error, it is advisable to cross-check the sensitivities between the conventional and FFF beams to detect

  8. Methods, analysis, and the treatment of systematic errors for the electron electric dipole moment search in thorium monoxide

    Science.gov (United States)

    Baron, J.; Campbell, W. C.; DeMille, D.; Doyle, J. M.; Gabrielse, G.; Gurevich, Y. V.; Hess, P. W.; Hutzler, N. R.; Kirilov, E.; Kozyryev, I.; O'Leary, B. R.; Panda, C. D.; Parsons, M. F.; Spaun, B.; Vutha, A. C.; West, A. D.; West, E. P.; ACME Collaboration

    2017-07-01

    We recently set a new limit on the electric dipole moment of the electron (eEDM) (J Baron et al and ACME collaboration 2014 Science 343 269-272), which represented an order-of-magnitude improvement on the previous limit and placed more stringent constraints on many charge-parity-violating extensions to the standard model. In this paper we discuss the measurement in detail. The experimental method and associated apparatus are described, together with the techniques used to isolate the eEDM signal. In particular, we detail the way experimental switches were used to suppress effects that can mimic the signal of interest. The methods used to search for systematic errors, and models explaining observed systematic errors, are also described. We briefly discuss possible improvements to the experiment.

  9. Systematic errors in the readings of track etch neutron dosemeters caused by the energy dependence of response

    International Nuclear Information System (INIS)

    Tanner, R.J.; Thomas, D.J.; Bartlett, D.T.; Horwood, N.

    1999-01-01

    A study has been performed to assess the extent to which variations in the energy dependence of response of neutron personal dosemeters can cause systematic errors in readings obtained in workplace fields. This involved a detailed determination of the response functions of personal dosemeters used in the UK. These response functions were folded with workplace spectra to ascertain the under- or over-response in workplace fields

  10. Systematic errors in the readings of track etch neutron dosemeters caused by the energy dependence of response

    CERN Document Server

    Tanner, R J; Bartlett, D T; Horwood, N

    1999-01-01

    A study has been performed to assess the extent to which variations in the energy dependence of response of neutron personal dosemeters can cause systematic errors in readings obtained in workplace fields. This involved a detailed determination of the response functions of personal dosemeters used in the UK. These response functions were folded with workplace spectra to ascertain the under- or over-response in workplace fields.

  11. Galaxy Cluster Shapes and Systematic Errors in H_0 as Determined by the Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Sulkanen, Martin E.; Patel, Sandeep K.

    1998-01-01

    Imaging of the Sunyaev-Zeldovich (SZ) effect in galaxy clusters combined with cluster plasma x-ray diagnostics promises to measure the cosmic distance scale to high accuracy. However, projecting the inverse-Compton scattering and x-ray emission along the cluster line-of-sight will introduce systematic error's in the Hubble constant, H_0, because the true shape of the cluster is not known. In this paper we present a study of the systematic errors in the value of H_0, as determined by the x-ray and SZ properties of theoretical samples of triaxial isothermal "beta-model" clusters, caused by projection effects and observer orientation relative to the model clusters' principal axes. We calculate three estimates for H_0 for each cluster, based on their large and small apparent angular core radii, and their arithmetic mean. We average the estimates for H_0 for a sample of 25 clusters and find that the estimates have limited systematic error: the 99.7% confidence intervals for the mean estimated H_0 analyzing the clusters using either their large or mean angular core r;dius are within 14% of the "true" (assumed) value of H_0 (and enclose it), for a triaxial beta model cluster sample possessing a distribution of apparent x-ray cluster ellipticities consistent with that of observed x-ray clusters.

  12. Variation across mitochondrial gene trees provides evidence for systematic error: How much gene tree variation is biological?

    Science.gov (United States)

    Richards, Emilie J; Brown, Jeremy M; Barley, Anthony J; Chong, Rebecca A; Thomson, Robert C

    2018-02-19

    The use of large genomic datasets in phylogenetics has highlighted extensive topological variation across genes. Much of this discordance is assumed to result from biological processes. However, variation among gene trees can also be a consequence of systematic error driven by poor model fit, and the relative importance of biological versus methodological factors in explaining gene tree variation is a major unresolved question. Using mitochondrial genomes to control for biological causes of gene tree variation, we estimate the extent of gene tree discordance driven by systematic error and employ posterior prediction to highlight the role of model fit in producing this discordance. We find that the amount of discordance among mitochondrial gene trees is similar to the amount of discordance found in other studies that assume only biological causes of variation. This similarity suggests that the role of systematic error in generating gene tree variation is underappreciated and critical evaluation of fit between assumed models and the data used for inference is important for the resolution of unresolved phylogenetic questions.

  13. Nature versus nurture: A systematic approach to elucidate gene-environment interactions in the development of myopic refractive errors.

    Science.gov (United States)

    Miraldi Utz, Virginia

    2017-01-01

    Myopia is the most common eye disorder and major cause of visual impairment worldwide. As the incidence of myopia continues to rise, the need to further understand the complex roles of molecular and environmental factors controlling variation in refractive error is of increasing importance. Tkatchenko and colleagues applied a systematic approach using a combination of gene set enrichment analysis, genome-wide association studies, and functional analysis of a murine model to identify a myopia susceptibility gene, APLP2. Differential expression of refractive error was associated with time spent reading for those with low frequency variants in this gene. This provides support for the longstanding hypothesis of gene-environment interactions in refractive error development.

  14. Dosimetric impact of systematic MLC positional errors on step and shoot IMRT for prostate cancer: a planning study

    International Nuclear Information System (INIS)

    Ung, N.M.; Wee, L.; Harper, C.S.

    2010-01-01

    Full text: The positional accuracy of multi leaf collimators (MLC) is crucial in ensuring precise delivery of intensity-modulated radiotherapy (IMRT). The aim of this planning study was to investigate the dosimetric impact of systematic MLC errors on step and shoot IMRT of prostate cancer. Twelve MLC leaf banks perturbations were introduced to six prostate IMRT treatment plans to simulate MLC systematic errors. Dose volume histograms (OYHs) were generated for the extraction of dose endpoint parameters. Plans were evaluated in terms of changes to the defined endpoint dose parameters, conformity index (CI) and healthy tissue avoidance (HTA) to planning target volume (PTY), rectum and bladder. Negative perturbations of MLC had been found to produce greater changes to endpoint dose parameters than positive perturbations of MLC (p < 0.05). Negative and positive synchronized MLC perturbations of I mm resulted in median changes of -2.32 and 1.78%, respectively to 095% of PTY whereas asynchronized MLC perturbations of the same direction and magnitude resulted in median changes of 1.18 and 0.90%, respectively. Doses to rectum were generally more sensitive to systematic MLC errors compared to bladder. Synchronized MLC perturbations of I mm resulted in median changes of endpoint dose parameters to both rectum and bladder from about I to 3%. Maximum reduction of -4.44 and -7.29% were recorded for CI and HTA, respectively, due to synchronized MLC perturbation of I mm. In summary, MLC errors resulted in measurable amount of dose changes to PTY and surrounding critical structures in prostate LMRT. (author)

  15. Resilience to emotional distress in response to failure, error or mistakes: A systematic review.

    Science.gov (United States)

    Johnson, Judith; Panagioti, Maria; Bass, Jennifer; Ramsey, Lauren; Harrison, Reema

    2017-03-01

    Perceptions of failure have been implicated in a range of psychological disorders, and even a single experience of failure can heighten anxiety and depression. However, not all individuals experience significant emotional distress following failure, indicating the presence of resilience. The current systematic review synthesised studies investigating resilience factors to emotional distress resulting from the experience of failure. For the definition of resilience we used the Bi-Dimensional Framework for resilience research (BDF) which suggests that resilience factors are those which buffer the impact of risk factors, and outlines criteria a variable should meet in order to be considered as conferring resilience. Studies were identified through electronic searches of PsycINFO, MEDLINE, EMBASE and Web of Knowledge. Forty-six relevant studies reported in 38 papers met the inclusion criteria. These provided evidence of the presence of factors which confer resilience to emotional distress in response to failure. The strongest support was found for the factors of higher self-esteem, more positive attributional style, and lower socially-prescribed perfectionism. Weaker evidence was found for the factors of lower trait reappraisal, lower self-oriented perfectionism and higher emotional intelligence. The majority of studies used experimental or longitudinal designs. These results identify specific factors which should be targeted by resilience-building interventions. Resilience; failure; stress; self-esteem; attributional style; perfectionism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Systematic errors in the tables of theoretical total internal conversion coefficients

    International Nuclear Information System (INIS)

    Dragoun, O.; Rysavy, M.

    1992-01-01

    Some of the total internal conversion coefficients presented in widely used tables of Rosel et al (1978 Atom. Data Nucl. Data Tables 21, 291) were found to be erroneous. The errors appear for some low transition energies, all multipolarities, and probably for all elements. The origin of the errors is explained. The subshell conversion coefficients of Rosel et al, where available, agree with our calculations. to within a few percent. (author)

  17. Assessing systematic errors in GOSAT CO2 retrievals by comparing assimilated fields to independent CO2 data

    Science.gov (United States)

    Baker, D. F.; Oda, T.; O'Dell, C.; Wunch, D.; Jacobson, A. R.; Yoshida, Y.; Partners, T.

    2012-12-01

    Measurements of column CO2 concentration from space are now being taken at a spatial and temporal density that permits regional CO2 sources and sinks to be estimated. Systematic errors in the satellite retrievals must be minimized for these estimates to be useful, however. CO2 retrievals from the TANSO instrument aboard the GOSAT satellite are compared to similar column retrievals from the Total Carbon Column Observing Network (TCCON) as the primary method of validation; while this is a powerful approach, it can only be done for overflights of 10-20 locations and has not, for example, permitted validation of GOSAT data over the oceans or deserts. Here we present a complementary approach that uses a global atmospheric transport model and flux inversion method to compare different types of CO2 measurements (GOSAT, TCCON, surface in situ, and aircraft) at different locations, at the cost of added transport error. The measurements from any single type of data are used in a variational carbon data assimilation method to optimize surface CO2 fluxes (with a CarbonTracker prior), then the corresponding optimized CO2 concentration fields are compared to those data types not inverted, using the appropriate vertical weighting. With this approach, we find that GOSAT column CO2 retrievals from the ACOS project (version 2.9 and 2.10) contain systematic errors that make the modeled fit to the independent data worse. However, we find that the differences between the GOSAT data and our prior model are correlated with certain physical variables (aerosol amount, surface albedo, correction to total column mass) that are likely driving errors in the retrievals, independent of CO2 concentration. If we correct the GOSAT data using a fit to these variables, then we find the GOSAT data to improve the fit to independent CO2 data, which suggests that the useful information in the measurements outweighs the negative impact of the remaining systematic errors. With this assurance, we compare

  18. SU-D-BRA-03: Analysis of Systematic Errors with 2D/3D Image Registration for Target Localization and Treatment Delivery in Stereotactic Radiosurgery

    International Nuclear Information System (INIS)

    Xu, H; Chetty, I; Wen, N

    2016-01-01

    Purpose: Determine systematic deviations between 2D/3D and 3D/3D image registrations with six degrees of freedom (6DOF) for various imaging modalities and registration algorithms on the Varian Edge Linac. Methods: The 6DOF systematic errors were assessed by comparing automated 2D/3D (kV/MV vs. CT) with 3D/3D (CBCT vs. CT) image registrations from different imaging pairs, CT slice thicknesses, couch angles, similarity measures, etc., using a Rando head and a pelvic phantom. The 2D/3D image registration accuracy was evaluated at different treatment sites (intra-cranial and extra-cranial) by statistically analyzing 2D/3D pre-treatment verification against 3D/3D localization of 192 Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy treatment fractions for 88 patients. Results: The systematic errors of 2D/3D image registration using kV-kV, MV-kV and MV-MV image pairs using 0.8 mm slice thickness CT images were within 0.3 mm and 0.3° for translations and rotations with a 95% confidence interval (CI). No significant difference between 2D/3D and 3D/3D image registrations (P>0.05) was observed for target localization at various CT slice thicknesses ranging from 0.8 to 3 mm. Couch angles (30, 45, 60 degree) did not impact the accuracy of 2D/3D image registration. Using pattern intensity with content image filtering was recommended for 2D/3D image registration to achieve the best accuracy. For the patient study, translational error was within 2 mm and rotational error was within 0.6 degrees in terms of 95% CI for 2D/3D image registration. For intra-cranial sites, means and std. deviations of translational errors were −0.2±0.7, 0.04±0.5, 0.1±0.4 mm for LNG, LAT, VRT directions, respectively. For extra-cranial sites, means and std. deviations of translational errors were - 0.04±1, 0.2±1, 0.1±1 mm for LNG, LAT, VRT directions, respectively. 2D/3D image registration uncertainties for intra-cranial and extra-cranial sites were comparable. Conclusion: The Varian

  19. SU-D-BRA-03: Analysis of Systematic Errors with 2D/3D Image Registration for Target Localization and Treatment Delivery in Stereotactic Radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H [Wayne State University, Detroit, MI (United States); Chetty, I; Wen, N [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: Determine systematic deviations between 2D/3D and 3D/3D image registrations with six degrees of freedom (6DOF) for various imaging modalities and registration algorithms on the Varian Edge Linac. Methods: The 6DOF systematic errors were assessed by comparing automated 2D/3D (kV/MV vs. CT) with 3D/3D (CBCT vs. CT) image registrations from different imaging pairs, CT slice thicknesses, couch angles, similarity measures, etc., using a Rando head and a pelvic phantom. The 2D/3D image registration accuracy was evaluated at different treatment sites (intra-cranial and extra-cranial) by statistically analyzing 2D/3D pre-treatment verification against 3D/3D localization of 192 Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy treatment fractions for 88 patients. Results: The systematic errors of 2D/3D image registration using kV-kV, MV-kV and MV-MV image pairs using 0.8 mm slice thickness CT images were within 0.3 mm and 0.3° for translations and rotations with a 95% confidence interval (CI). No significant difference between 2D/3D and 3D/3D image registrations (P>0.05) was observed for target localization at various CT slice thicknesses ranging from 0.8 to 3 mm. Couch angles (30, 45, 60 degree) did not impact the accuracy of 2D/3D image registration. Using pattern intensity with content image filtering was recommended for 2D/3D image registration to achieve the best accuracy. For the patient study, translational error was within 2 mm and rotational error was within 0.6 degrees in terms of 95% CI for 2D/3D image registration. For intra-cranial sites, means and std. deviations of translational errors were −0.2±0.7, 0.04±0.5, 0.1±0.4 mm for LNG, LAT, VRT directions, respectively. For extra-cranial sites, means and std. deviations of translational errors were - 0.04±1, 0.2±1, 0.1±1 mm for LNG, LAT, VRT directions, respectively. 2D/3D image registration uncertainties for intra-cranial and extra-cranial sites were comparable. Conclusion: The Varian

  20. Dosimetric impact of systematic MLC positional errors on step and shoot IMRT for prostate cancer: a planning study

    International Nuclear Information System (INIS)

    Ung, N.M.; Harper, C.S.; Wee, L.

    2011-01-01

    Full text: The positional accuracy of multileaf collimators (MLC) is crucial in ensuring precise delivery of intensity-modulated radiotherapy (IMRT). The aim of this planning study was to investigate the dosimetric impact of systematic MLC positional errors on step and shoot IMRT of prostate cancer. A total of 12 perturbations of MLC leaf banks were introduced to six prostate IMRT treatment plans to simulate MLC systematic positional errors. Dose volume histograms (DVHs) were generated for the extraction of dose endpoint parameters. Plans were evaluated in terms of changes to the defined endpoint dose parameters, conformity index (CI) and healthy tissue avoidance (HTA) to planning target volume (PTV), rectum and bladder. Negative perturbations of MLC had been found to produce greater changes to endpoint dose parameters than positive perturbations of MLC (p 9 5 of -1.2 and 0.9% respectively. Negative and positive synchronised MLC perturbations of I mm in one direction resulted in median changes in D 9 5 of -2.3 and 1.8% respectively. Doses to rectum were generally more sensitive to systematic MLC en-ors compared to bladder (p < 0.01). Negative and positive synchronised MLC perturbations of I mm in one direction resulted in median changes in endpoint dose parameters of rectum and bladder from 1.0 to 2.5%. Maximum reduction of -4.4 and -7.3% were recorded for conformity index (CI) and healthy tissue avoidance (HT A) respectively due to synchronised MLC perturbation of 1 mm. MLC errors resulted in dosimetric changes in IMRT plans for prostate. (author)

  1. The Curious Anomaly of Skewed Judgment Distributions and Systematic Error in the Wisdom of Crowds

    DEFF Research Database (Denmark)

    Nash, Ulrik William

    2014-01-01

    about true values, when neurons categorize cues better than chance, and when the particular true value is extreme compared to what is typical and anchored upon, then populations of judges form skewed judgment distributions with high probability. Moreover, the collective error made by these people can...... positively with collective error, thereby challenging what is commonly believed about how diversity and collective intelligence relate. Data from 3053 judgment surveys about US macroeconomic variables obtained from the Federal Reserve Bank of Philadelphia and the Wall Street Journal provide strong support...

  2. Global CO2 flux inversions from remote-sensing data with systematic errors using hierarchical statistical models

    Science.gov (United States)

    Zammit-Mangion, Andrew; Stavert, Ann; Rigby, Matthew; Ganesan, Anita; Rayner, Peter; Cressie, Noel

    2017-04-01

    The Orbiting Carbon Observatory-2 (OCO-2) satellite was launched on 2 July 2014, and it has been a source of atmospheric CO2 data since September 2014. The OCO-2 dataset contains a number of variables, but the one of most interest for flux inversion has been the column-averaged dry-air mole fraction (in units of ppm). These global level-2 data offer the possibility of inferring CO2 fluxes at Earth's surface and tracking those fluxes over time. However, as well as having a component of random error, the OCO-2 data have a component of systematic error that is dependent on the instrument's mode, namely land nadir, land glint, and ocean glint. Our statistical approach to CO2-flux inversion starts with constructing a statistical model for the random and systematic errors with parameters that can be estimated from the OCO-2 data and possibly in situ sources from flasks, towers, and the Total Column Carbon Observing Network (TCCON). Dimension reduction of the flux field is achieved through the use of physical basis functions, while temporal evolution of the flux is captured by modelling the basis-function coefficients as a vector autoregressive process. For computational efficiency, flux inversion uses only three months of sensitivities of mole fraction to changes in flux, computed using MOZART; any residual variation is captured through the modelling of a stochastic process that varies smoothly as a function of latitude. The second stage of our statistical approach is to simulate from the posterior distribution of the basis-function coefficients and all unknown parameters given the data using a fully Bayesian Markov chain Monte Carlo (MCMC) algorithm. Estimates and posterior variances of the flux field can then be obtained straightforwardly from this distribution. Our statistical approach is different than others, as it simultaneously makes inference (and quantifies uncertainty) on both the error components' parameters and the CO2 fluxes. We compare it to more classical

  3. A systematic framework for Monte Carlo simulation of remote sensing errors map in carbon assessments

    Science.gov (United States)

    S. Healey; P. Patterson; S. Urbanski

    2014-01-01

    Remotely sensed observations can provide unique perspective on how management and natural disturbance affect carbon stocks in forests. However, integration of these observations into formal decision support will rely upon improved uncertainty accounting. Monte Carlo (MC) simulations offer a practical, empirical method of accounting for potential remote sensing errors...

  4. A Systematic Approach for Identifying Level-1 Error Covariance Structures in Latent Growth Modeling

    Science.gov (United States)

    Ding, Cherng G.; Jane, Ten-Der; Wu, Chiu-Hui; Lin, Hang-Rung; Shen, Chih-Kang

    2017-01-01

    It has been pointed out in the literature that misspecification of the level-1 error covariance structure in latent growth modeling (LGM) has detrimental impacts on the inferences about growth parameters. Since correct covariance structure is difficult to specify by theory, the identification needs to rely on a specification search, which,…

  5. Systematic comparative and sensitivity analyses of additive and outranking techniques for supporting impact significance assessments

    International Nuclear Information System (INIS)

    Cloquell-Ballester, Vicente-Agustin; Monterde-Diaz, Rafael; Cloquell-Ballester, Victor-Andres; Santamarina-Siurana, Maria-Cristina

    2007-01-01

    Assessing the significance of environmental impacts is one of the most important and all together difficult processes of Environmental Impact Assessment. This is largely due to the multicriteria nature of the problem. To date, decision techniques used in the process suffer from two drawbacks, namely the problem of compensation and the problem of identification of the 'exact boundary' between sub-ranges. This article discusses these issues and proposes a methodology for determining the significance of environmental impacts based on comparative and sensitivity analyses using the Electre TRI technique. An application of the methodology for the environmental assessment of a Power Plant project within the Valencian Region (Spain) is presented, and its performance evaluated. It is concluded that contrary to other techniques, Electre TRI automatically identifies those cases where allocation of significance categories is most difficult and, when combined with sensitivity analysis, offers greatest robustness in the face of variation in weights of the significance attributes. Likewise, this research demonstrates the efficacy of systematic comparison between Electre TRI and sum-based techniques, in the solution of assignment problems. The proposed methodology can therefore be regarded as a successful aid to the decision-maker, who will ultimately take the final decision

  6. Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a pan-India scale

    Science.gov (United States)

    Beria, Harsh; Nanda, Trushnamayee; Singh Bisht, Deepak; Chatterjee, Chandranath

    2017-12-01

    The last couple of decades have seen the outburst of a number of satellite-based precipitation products with Tropical Rainfall Measuring Mission (TRMM) as the most widely used for hydrologic applications. Transition of TRMM into the Global Precipitation Measurement (GPM) promises enhanced spatio-temporal resolution along with upgrades to sensors and rainfall estimation techniques. The dependence of systematic error components in rainfall estimates of the Integrated Multi-satellitE Retrievals for GPM (IMERG), and their variation with climatology and topography, was evaluated over 86 basins in India for year 2014 and compared with the corresponding (2014) and retrospective (1998-2013) TRMM estimates. IMERG outperformed TRMM for all rainfall intensities across a majority of Indian basins, with significant improvement in low rainfall estimates showing smaller negative biases in 75 out of 86 basins. Low rainfall estimates in TRMM showed a systematic dependence on basin climatology, with significant overprediction in semi-arid basins, which gradually improved in the higher rainfall basins. Medium and high rainfall estimates of TRMM exhibited a strong dependence on basin topography, with declining skill in higher elevation basins. The systematic dependence of error components on basin climatology and topography was reduced in IMERG, especially in terms of topography. Rainfall-runoff modeling using the Variable Infiltration Capacity (VIC) model over two flood-prone basins (Mahanadi and Wainganga) revealed that improvement in rainfall estimates in IMERG did not translate into improvement in runoff simulations. More studies are required over basins in different hydroclimatic zones to evaluate the hydrologic significance of IMERG.

  7. Does the GPM mission improve the systematic error component in satellite rainfall estimates over TRMM? An evaluation at a pan-India scale

    Directory of Open Access Journals (Sweden)

    H. Beria

    2017-12-01

    Full Text Available The last couple of decades have seen the outburst of a number of satellite-based precipitation products with Tropical Rainfall Measuring Mission (TRMM as the most widely used for hydrologic applications. Transition of TRMM into the Global Precipitation Measurement (GPM promises enhanced spatio-temporal resolution along with upgrades to sensors and rainfall estimation techniques. The dependence of systematic error components in rainfall estimates of the Integrated Multi-satellitE Retrievals for GPM (IMERG, and their variation with climatology and topography, was evaluated over 86 basins in India for year 2014 and compared with the corresponding (2014 and retrospective (1998–2013 TRMM estimates. IMERG outperformed TRMM for all rainfall intensities across a majority of Indian basins, with significant improvement in low rainfall estimates showing smaller negative biases in 75 out of 86 basins. Low rainfall estimates in TRMM showed a systematic dependence on basin climatology, with significant overprediction in semi-arid basins, which gradually improved in the higher rainfall basins. Medium and high rainfall estimates of TRMM exhibited a strong dependence on basin topography, with declining skill in higher elevation basins. The systematic dependence of error components on basin climatology and topography was reduced in IMERG, especially in terms of topography. Rainfall-runoff modeling using the Variable Infiltration Capacity (VIC model over two flood-prone basins (Mahanadi and Wainganga revealed that improvement in rainfall estimates in IMERG did not translate into improvement in runoff simulations. More studies are required over basins in different hydroclimatic zones to evaluate the hydrologic significance of IMERG.

  8. Modeling Systematic Error Effects for a Sensitive Storage Ring EDM Polarimeter

    Science.gov (United States)

    Stephenson, Edward; Imig, Astrid

    2009-10-01

    The Storage Ring EDM Collaboration has obtained a set of measurements detailing the sensitivity of a storage ring polarimeter for deuterons to small geometrical and rate changes. Various schemes, such as the calculation of the cross ratio [1], can cancel effects due to detector acceptance differences and luminosity differences for states of opposite polarization. Such schemes fail at second-order in the errors, becoming sensitive to geometrical changes, polarization magnitude differences between opposite polarization states, and changes to the detector response with changing data rates. An expansion of the polarimeter response in a Taylor series based on small errors about the polarimeter operating point can parametrize such effects, primarily in terms of the logarithmic derivatives of the cross section and analyzing power. A comparison will be made to measurements obtained with the EDDA detector at COSY-J"ulich. [4pt] [1] G.G. Ohlsen and P.W. Keaton, Jr., NIM 109, 41 (1973).

  9. Galaxy Cluster Shapes and Systematic Errors in the Hubble Constant as Determined by the Sunyaev-Zel'dovich Effect

    Science.gov (United States)

    Sulkanen, Martin E.; Joy, M. K.; Patel, S. K.

    1998-01-01

    Imaging of the Sunyaev-Zei'dovich (S-Z) effect in galaxy clusters combined with the cluster plasma x-ray diagnostics can measure the cosmic distance scale to high accuracy. However, projecting the inverse-Compton scattering and x-ray emission along the cluster line-of-sight will introduce systematic errors in the Hubble constant, H$-O$, because the true shape of the cluster is not known. This effect remains present for clusters that are otherwise chosen to avoid complications for the S-Z and x-ray analysis, such as plasma temperature variations, cluster substructure, or cluster dynamical evolution. In this paper we present a study of the systematic errors in the value of H$-0$, as determined by the x-ray and S-Z properties of a theoretical sample of triaxial isothermal 'beta-model' clusters, caused by projection effects and observer orientation relative to the model clusters' principal axes. The model clusters are not generated as ellipsoids of rotation, but have three independent 'core radii', as well as a random orientation to the plane of the sky.

  10. A systematic review of patient medication error on self-administering medication at home.

    Science.gov (United States)

    Mira, José Joaquín; Lorenzo, Susana; Guilabert, Mercedes; Navarro, Isabel; Pérez-Jover, Virtudes

    2015-06-01

    Medication errors have been analyzed as a health professionals' responsibility (due to mistakes in prescription, preparation or dispensing). However, sometimes, patients themselves (or their caregivers) make mistakes in the administration of the medication. The epidemiology of patient medication errors (PEs) has been scarcely reviewed in spite of its impact on people, on therapeutic effectiveness and on incremental cost for the health systems. This study reviews and describes the methodological approaches and results of published studies on the frequency, causes and consequences of medication errors committed by patients at home. A review of research articles published between 1990 and 2014 was carried out using MEDLINE, Web-of-Knowledge, Scopus, Tripdatabase and Index Medicus. The frequency of PE was situated between 19 and 59%. The elderly and the preschooler population constituted a higher number of mistakes than others. The most common were: incorrect dosage, forgetting, mixing up medications, failing to recall indications and taking out-of-date or inappropriately stored drugs. The majority of these mistakes have no negative consequences. Health literacy, information and communication and complexity of use of dispensing devices were identified as causes of PEs. Apps and other new technologies offer several opportunities for improving drug safety.

  11. Errors, lies and misunderstandings: Systematic review on behavioural decision making in projects

    DEFF Research Database (Denmark)

    Stingl, Verena; Geraldi, Joana

    2017-01-01

    limitations—errors), pluralist (on political behaviour—lies), and contextualist (on social and organizational sensemaking—misunderstandings). Our review suggests avenues for future research with a wider coverage of theories in cognitive and social psychology and critical and mindful integration of findings...... in projects and beyond. However, the literature is fragmented and draws only on a fraction of the recent, insightful, and relevant developments on behavioural decision making. This paper organizes current research in a conceptual framework rooted in three schools of thinking—reductionist (on cognitive...

  12. The application of SHERPA (Systematic Human Error Reduction and Prediction Approach) in the development of compensatory cognitive rehabilitation strategies for stroke patients with left and right brain damage.

    Science.gov (United States)

    Hughes, Charmayne M L; Baber, Chris; Bienkiewicz, Marta; Worthington, Andrew; Hazell, Alexa; Hermsdörfer, Joachim

    2015-01-01

    Approximately 33% of stroke patients have difficulty performing activities of daily living, often committing errors during the planning and execution of such activities. The objective of this study was to evaluate the ability of the human error identification (HEI) technique SHERPA (Systematic Human Error Reduction and Prediction Approach) to predict errors during the performance of daily activities in stroke patients with left and right hemisphere lesions. Using SHERPA we successfully predicted 36 of the 38 observed errors, with analysis indicating that the proportion of predicted and observed errors was similar for all sub-tasks and severity levels. HEI results were used to develop compensatory cognitive strategies that clinicians could employ to reduce or prevent errors from occurring. This study provides evidence for the reliability and validity of SHERPA in the design of cognitive rehabilitation strategies in stroke populations.

  13. The curious anomaly of skewed judgment distributions and systematic error in the wisdom of crowds.

    Directory of Open Access Journals (Sweden)

    Ulrik W Nash

    Full Text Available Judgment distributions are often skewed and we know little about why. This paper explains the phenomenon of skewed judgment distributions by introducing the augmented quincunx (AQ model of sequential and probabilistic cue categorization by neurons of judges. In the process of developing inferences about true values, when neurons categorize cues better than chance, and when the particular true value is extreme compared to what is typical and anchored upon, then populations of judges form skewed judgment distributions with high probability. Moreover, the collective error made by these people can be inferred from how skewed their judgment distributions are, and in what direction they tilt. This implies not just that judgment distributions are shaped by cues, but that judgment distributions are cues themselves for the wisdom of crowds. The AQ model also predicts that judgment variance correlates positively with collective error, thereby challenging what is commonly believed about how diversity and collective intelligence relate. Data from 3053 judgment surveys about US macroeconomic variables obtained from the Federal Reserve Bank of Philadelphia and the Wall Street Journal provide strong support, and implications are discussed with reference to three central ideas on collective intelligence, these being Galton's conjecture on the distribution of judgments, Muth's rational expectations hypothesis, and Page's diversity prediction theorem.

  14. Diagnostic and therapeutic errors in trigeminal autonomic cephalalgias and hemicrania continua: a systematic review

    Science.gov (United States)

    2013-01-01

    Trigeminal autonomic cephalalgias (TACs) and hemicrania continua (HC) are relatively rare but clinically rather well-defined primary headaches. Despite the existence of clear-cut diagnostic criteria (The International Classification of Headache Disorders, 2nd edition - ICHD-II) and several therapeutic guidelines, errors in workup and treatment of these conditions are frequent in clinical practice. We set out to review all available published data on mismanagement of TACs and HC patients in order to understand and avoid its causes. The search strategy identified 22 published studies. The most frequent errors described in the management of patients with TACs and HC are: referral to wrong type of specialist, diagnostic delay, misdiagnosis, and the use of treatments without overt indication. Migraine with and without aura, trigeminal neuralgia, sinus infection, dental pain and temporomandibular dysfunction are the disorders most frequently overdiagnosed. Even when the clinical picture is clear-cut, TACs and HC are frequently not recognized and/or mistaken for other disorders, not only by general physicians, dentists and ENT surgeons, but also by neurologists and headache specialists. This seems to be due to limited knowledge of the specific characteristics and variants of these disorders, and it results in the unnecessary prescription of ineffective and sometimes invasive treatments which may have negative consequences for patients. Greater knowledge of and education about these disorders, among both primary care physicians and headache specialists, might contribute to improving the quality of life of TACs and HC patients. PMID:23565739

  15. Systematic errors in transport calculations of shear viscosity using the Green-Kubo formalism

    Science.gov (United States)

    Rose, J. B.; Torres-Rincon, J. M.; Oliinychenko, D.; Schäfer, A.; Petersen, H.

    2018-05-01

    The purpose of this study is to provide a reproducible framework in the use of the Green-Kubo formalism to extract transport coefficients. More specifically, in the case of shear viscosity, we investigate the limitations and technical details of fitting the auto-correlation function to a decaying exponential. This fitting procedure is found to be applicable for systems interacting both through constant and energy-dependent cross-sections, although this is only true for sufficiently dilute systems in the latter case. We find that the optimal fit technique consists in simultaneously fixing the intercept of the correlation function and use a fitting interval constrained by the relative error on the correlation function. The formalism is then applied to the full hadron gas, for which we obtain the shear viscosity to entropy ratio.

  16. Avoiding Systematic Errors in Isometric Squat-Related Studies without Pre-Familiarization by Using Sufficient Numbers of Trials

    Directory of Open Access Journals (Sweden)

    Pekünlü Ekim

    2014-10-01

    Full Text Available There is no scientific evidence in the literature indicating that maximal isometric strength measures can be assessed within 3 trials. We questioned whether the results of isometric squat-related studies in which maximal isometric squat strength (MISS testing was performed using limited numbers of trials without pre-familiarization might have included systematic errors, especially those resulting from acute learning effects. Forty resistance-trained male participants performed 8 isometric squat trials without pre-familiarization. The highest measures in the first “n” trials (3 ≤ n ≤ 8 of these 8 squats were regarded as MISS obtained using 6 different MISS test methods featuring different numbers of trials (The Best of n Trials Method [BnT]. When B3T and B8T were paired with other methods, high reliability was found between the paired methods in terms of intraclass correlation coefficients (0.93-0.98 and coefficients of variation (3.4-7.0%. The Wilcoxon’s signed rank test indicated that MISS obtained using B3T and B8T were lower (p < 0.001 and higher (p < 0.001, respectively, than those obtained using other methods. The Bland- Altman method revealed a lack of agreement between any of the paired methods. Simulation studies illustrated that increasing the number of trials to 9-10 using a relatively large sample size (i.e., ≥ 24 could be an effective means of obtaining the actual MISS values of the participants. The common use of a limited number of trials in MISS tests without pre-familiarization appears to have no solid scientific base. Our findings suggest that the number of trials should be increased in commonly used MISS tests to avoid learning effect-related systematic errors

  17. The MRI features of placental adhesion disorder and their diagnostic significance: systematic review

    International Nuclear Information System (INIS)

    Rahaim, N.S.A.; Whitby, E.H.

    2015-01-01

    Aim: To identify the most frequently used MRI features in the diagnosis of placenta adhesion disorder (PAD) in the antenatal period and their significance. Materials and methods: The online databases Medline via PubMed and Ovid, Google Scholar, and Scopus were searched using the keywords and subject headings MRI*, magnetic resonance imaging*, prenatal diagnosis and placenta accreta*, morbidly adherent placenta* or placenta. Cases where MRI was carried out at/after 20 weeks gestation with detailed information available in relation to criteria and sequences used were included in the review. Exclusion criteria were case report study and studies that used intravenous contrast agents. Information regards sensitivity and specificity for each feature was taken, or calculated where possible, from the papers. Any new features were identified. The overall contribution of each feature to the diagnostic process was noted. Results: Six hundred and fourteen potentially relevant articles were identified of which only 11 met the inclusion criteria. The commonest MRI criteria used were T2 dark intraplacental bands, heterogeneity of placenta, abnormal uterine bulging, and disruption of the uteroplacental zone. A newly described criterion is disorganised vasculature of placenta. MRI sensitivity and specificity varied between 75–100% and 65–100% respectively. Conclusion: MRI diagnosis of PAD relies on unstandardised criteria of diagnosis that enable systematic image interpretation of invasion status in all studies and enable the reproducibility. However, it is still has a high diagnostic accuracy and frequently aids in surgical planning, emphasising its value in supporting ultrasound. Most studies are of a small sample size. Additional multicentre studies are recommended to enhance the generalisability of the findings and asses the value of the newly described criteria

  18. A systematic review on diagnostic accuracy of CT-based detection of significant coronary artery disease

    International Nuclear Information System (INIS)

    Janne d'Othee, Bertrand; Siebert, Uwe; Cury, Ricardo; Jadvar, Hossein; Dunn, Edward J.; Hoffmann, Udo

    2008-01-01

    Objectives: Systematic review of diagnostic accuracy of contrast enhanced coronary computed tomography (CE-CCT). Background: Noninvasive detection of coronary artery stenosis (CAS) by CE-CCT as an alternative to catheter-based coronary angiography (CCA) may improve patient management. Methods: Forty-one articles published between 1997 and 2006 were included that evaluated native coronary arteries for significant stenosis and used CE-CCT as diagnostic test and CCA as reference standard. Study group characteristics, study methodology and diagnostic outcomes were extracted. Pooled summary sensitivity and specificity of CE-CCT were calculated using a random effects model (1) for all coronary segments, (2) assessable segments, and (3) per patient. Results: The 41 studies totaled 2515 patients (75% males; mean age: 59 years, CAS prevalence: 59%). Analysis of all coronary segments yielded a sensitivity of 95% (80%, 89%, 86%, 98% for electron beam CT, 4/8-slice, 16-slice and 64-slice MDCT, respectively) for a specificity of 85% (77%, 84%, 95%, 91%). Analysis limited to segments deemed assessable by CT showed sensitivity of 96% (86%, 85%, 98%, 97%) for a specificity of 95% (90%, 96%, 96%, 96%). Per patient, sensitivity was 99% (90%, 97%, 99%, 98%) and specificity was 76% (59%, 81%, 83%, 92%). Heterogeneity was quantitatively important but not explainable by patient group characteristics or study methodology. Conclusions: Current diagnostic accuracy of CE-CCT is high. Advances in CT technology have resulted in increases in diagnostic accuracy and proportion of assessable coronary segments. However, per patient, accuracy may be lower and CT may have more limited clinical utility in populations at high risk for CAD

  19. Range camera on conveyor belts: estimating size distribution and systematic errors due to occlusion

    Science.gov (United States)

    Blomquist, Mats; Wernersson, Ake V.

    1999-11-01

    When range cameras are used for analyzing irregular material on a conveyor belt there will be complications like missing segments caused by occlusion. Also, a number of range discontinuities will be present. In a frame work towards stochastic geometry, conditions are found for the cases when range discontinuities take place. The test objects in this paper are pellets for the steel industry. An illuminating laser plane will give range discontinuities at the edges of each individual object. These discontinuities are used to detect and measure the chord created by the intersection of the laser plane and the object. From the measured chords we derive the average diameter and its variance. An improved method is to use a pair of parallel illuminating light planes to extract two chords. The estimation error for this method is not larger than the natural shape fluctuations (the difference in diameter) for the pellets. The laser- camera optronics is sensitive enough both for material on a conveyor belt and free falling material leaving the conveyor.

  20. Systematical and statistical errors in using reference light sources to calibrate TLD readers

    International Nuclear Information System (INIS)

    Burgkhardt, B.; Piesch, E.

    1981-01-01

    Three light sources, namely an NaI(Tl) scintillator + Ra, an NaI(Tl) scintillator + 14 C and a plastic scintillator + 14 C, were used during a period of 24 months for a daily check of two TLD readers: the Harshaw 2000 A + B and the Toledo 651. On the basis of light source measurements long-term changes and day-to-day fluctuations of the reader response were investigated. Systematical changes of the Toledo reader response of up to 6% during a working week are explained by nitrogen effects in the plastic scintillator light source. It was found that the temperature coefficient of the light source intensity was -0.05%/ 0 C for the plastic scintillator and -0.3%/ 0 C for the NaI(Tl) scintillator. The 210 Pb content in the Ra activated NaI(Tl) scintillator caused a time-dependent decrease in light source intensity of 3%/yr for the light source in the Harshaw reader. The internal light sources revealed a relative standard deviation of 0.5% for the Toledo reader and the Harshaw reader after respective reading times of 0.45 and 100 sec. (author)

  1. Constituent quarks and systematic errors in mid-rapidity charged multiplicity dNch/dη distributions

    Science.gov (United States)

    Tannenbaum, M. J.

    2018-01-01

    Centrality definition in A + A collisions at colliders such as RHIC and LHC suffers from a correlated systematic uncertainty caused by the efficiency of detecting a p + p collision (50 ± 5% for PHENIX at RHIC). In A + A collisions where centrality is measured by the number of nucleon collisions, Ncoll, or the number of nucleon participants, Npart, or the number of constituent quark participants, Nqp, the error in the efficiency of the primary interaction trigger (Beam-Beam Counters) for a p + p collision leads to a correlated systematic uncertainty in Npart, Ncoll or Nqp which reduces binomially as the A + A collisions become more central. If this is not correctly accounted for in projections of A + A to p + p collisions, then mistaken conclusions can result. A recent example is presented in whether the mid-rapidity charged multiplicity per constituent quark participant (dNch/dη)/Nqp in Au + Au at RHIC was the same as the value in p + p collisions.

  2. What Makes Hydrologic Models Differ? Using SUMMA to Systematically Explore Model Uncertainty and Error

    Science.gov (United States)

    Bennett, A.; Nijssen, B.; Chegwidden, O.; Wood, A.; Clark, M. P.

    2017-12-01

    Model intercomparison experiments have been conducted to quantify the variability introduced during the model development process, but have had limited success in identifying the sources of this model variability. The Structure for Unifying Multiple Modeling Alternatives (SUMMA) has been developed as a framework which defines a general set of conservation equations for mass and energy as well as a common core of numerical solvers along with the ability to set options for choosing between different spatial discretizations and flux parameterizations. SUMMA can be thought of as a framework for implementing meta-models which allows for the investigation of the impacts of decisions made during the model development process. Through this flexibility we develop a hierarchy of definitions which allows for models to be compared to one another. This vocabulary allows us to define the notion of weak equivalence between model instantiations. Through this weak equivalence we develop the concept of model mimicry, which can be used to investigate the introduction of uncertainty and error during the modeling process as well as provide a framework for identifying modeling decisions which may complement or negate one another. We instantiate SUMMA instances that mimic the behaviors of the Variable Infiltration Capacity (VIC) model and the Precipitation Runoff Modeling System (PRMS) by choosing modeling decisions which are implemented in each model. We compare runs from these models and their corresponding mimics across the Columbia River Basin located in the Pacific Northwest of the United States and Canada. From these comparisons, we are able to determine the extent to which model implementation has an effect on the results, as well as determine the changes in sensitivity of parameters due to these implementation differences. By examining these changes in results and sensitivities we can attempt to postulate changes in the modeling decisions which may provide better estimation of

  3. Systematic errors in respiratory gating due to intrafraction deformations of the liver

    International Nuclear Information System (INIS)

    Siebenthal, Martin von; Szekely, Gabor; Lomax, Antony J.; Cattin, Philippe C.

    2007-01-01

    This article shows the limitations of respiratory gating due to intrafraction deformations of the right liver lobe. The variability of organ shape and motion over tens of minutes was taken into account for this evaluation, which closes the gap between short-term analysis of a few regular cycles, as it is possible with 4DCT, and long-term analysis of interfraction motion. Time resolved MR volumes (4D MR sequences) were reconstructed for 12 volunteers and subsequent non-rigid registration provided estimates of the 3D trajectories of points within the liver over time. The full motion during free breathing and its distribution over the liver were quantified and respiratory gating was simulated to determine the gating accuracy for different gating signals, duty cycles, and different intervals between patient setup and treatment. Gating effectively compensated for the respiratory motion within short sequences (3 min), but deformations, mainly in the anterior inferior part (Couinaud segments IVb and V), led to systematic deviations from the setup position of more than 5 mm in 7 of 12 subjects after 20 min. We conclude that measurements over a few breathing cycles should not be used as a proof of accurate reproducibility of motion, not even within the same fraction, if it is longer than a few minutes. Although the diaphragm shows the largest magnitude of motion, it should not be used to assess the gating accuracy over the entire liver because the reproducibility is typically much more limited in inferior parts. Simple gating signals, such as the trajectory of skin motion, can detect the exhalation phase, but do not allow for an absolute localization of the complete liver over longer periods because the drift of these signals does not necessarily correlate with the internal drift

  4. ERESYE - a expert system for the evaluation of uncertainties related to systematic experimental errors; ERESYE - un sistema esperto per la valutazione di incertezze correlate ad errori sperimentali sistematici

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, T; Panini, G C [ENEA - Dipartimento Tecnologie Intersettoriali di Base, Centro Ricerche Energia, Casaccia (Italy); Amoroso, A [Ricercatore Ospite (Italy)

    1989-11-15

    Information about systematic errors are not given In EXFOR, the data base of nuclear experimental measurements: their assessment is committed to the ability of the evaluator. A tool Is needed which performs this task in a fully automatic way or, at least, gives a valuable aid. The expert system ERESYE has been implemented for investigating the feasibility of an automatic evaluation of the systematic errors in the experiments. The features of the project which led to the implementation of the system are presented. (author)

  5. The systematic description of cacao clones and its significance for taxonomy and plant breeding

    NARCIS (Netherlands)

    Engels, J.M.M.

    1986-01-01

    The value of germplasm collections depends to a large extent on the data accompanying the individual accessions. In order to facilitate the selection of the most useful characters for the systematic description of a cacao germplasm collection methods were developed to measure and to compare

  6. An outline of the systematic-dialectical method: scientific and political significance

    NARCIS (Netherlands)

    Reuten, G.; Moseley, F.; Smith, T.

    2014-01-01

    The method of systematic-dialectics (SD) is reconstructed with a focus on what institutions and processes are necessary - rather than contingent - for the capitalist system. This allows for the detection of strengths and weaknesses in the actual structure of the system. Weaknesses should be

  7. SU-D-BRD-07: Evaluation of the Effectiveness of Statistical Process Control Methods to Detect Systematic Errors For Routine Electron Energy Verification

    International Nuclear Information System (INIS)

    Parker, S

    2015-01-01

    Purpose: To evaluate the ability of statistical process control methods to detect systematic errors when using a two dimensional (2D) detector array for routine electron beam energy verification. Methods: Electron beam energy constancy was measured using an aluminum wedge and a 2D diode array on four linear accelerators. Process control limits were established. Measurements were recorded in control charts and compared with both calculated process control limits and TG-142 recommended specification limits. The data was tested for normality, process capability and process acceptability. Additional measurements were recorded while systematic errors were intentionally introduced. Systematic errors included shifts in the alignment of the wedge, incorrect orientation of the wedge, and incorrect array calibration. Results: Control limits calculated for each beam were smaller than the recommended specification limits. Process capability and process acceptability ratios were greater than one in all cases. All data was normally distributed. Shifts in the alignment of the wedge were most apparent for low energies. The smallest shift (0.5 mm) was detectable using process control limits in some cases, while the largest shift (2 mm) was detectable using specification limits in only one case. The wedge orientation tested did not affect the measurements as this did not affect the thickness of aluminum over the detectors of interest. Array calibration dependence varied with energy and selected array calibration. 6 MeV was the least sensitive to array calibration selection while 16 MeV was the most sensitive. Conclusion: Statistical process control methods demonstrated that the data distribution was normally distributed, the process was capable of meeting specifications, and that the process was centered within the specification limits. Though not all systematic errors were distinguishable from random errors, process control limits increased the ability to detect systematic errors

  8. Price formation in electricity forward markets and the relevance of systematic forecast errors

    International Nuclear Information System (INIS)

    Redl, Christian; Haas, Reinhard; Huber, Claus; Boehm, Bernhard

    2009-01-01

    Since the liberalisation of the European electricity sector, forward and futures contracts have gained significant interest of market participants due to risk management reasons. For pricing of these contracts an important fact concerns the non-storability of electricity. In this case, according to economic theory, forward prices are related to the expected spot prices which are built on fundamental market expectations. In the following article the crucial impact parameters of forward electricity prices and the relationship between forward and future spot prices will be assessed by an empirical analysis of electricity prices at the European Energy Exchange and the Nord Pool Power Exchange. In fact, price formation in the considered markets is influenced by historic spot market prices yielding a biased forecasting power of long-term contracts. Although market and risk assessment measures of market participants and supply and demand shocks can partly explain the futures-spot bias inefficiencies in the analysed forward markets cannot be ruled out. (author)

  9. Medico-legal significance of service difficulties and clinical errors in the management of patients with inflammatory bowel diseases.

    Science.gov (United States)

    Farrukh, Affifa; Mayberry, John F

    2015-03-01

    There is a significant growth in medical litigation, and cases involving the care and management of patients with inflammatory bowel disease are becoming common. There is no central register of such cases, and the majority are settled before court proceedings. As a result, there is no specific case law related to such conditions, and secrecy usually surrounds the outcome with "no admission of guilt" by the defendant and a clause about non-disclosure and discussion linked to the financial compensation received by the claimant. This review discusses common areas of potential litigation. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. The influence of random and systematic errors on a general definition of minimum detectable amount (MDA) applicable to all radiobioassay measurements

    International Nuclear Information System (INIS)

    Brodsky, A.

    1985-01-01

    An approach to defining minimum detectable amount (MDA) of radioactivity in a sample will be discussed, with the aim of obtaining comments helpful in developing a formulation of MDA that will be broadly applicable to all kinds of radiobioassay measurements, and acceptable to the scientists who make these measurements. Also, the influence of random and systematic errors on the defined MDA are examined

  11. A systematic review on screening for Fabry disease: prevalence of individuals with genetic variants of unknown significance

    NARCIS (Netherlands)

    van der Tol, L.; Smid, B. E.; Poorthuis, B. J. H. M.; Biegstraaten, M.; Deprez, R. H. Lekanne; Linthorst, G. E.; Hollak, C. E. M.

    2014-01-01

    Screening for Fabry disease (FD) reveals a high prevalence of individuals with α-galactosidase A (GLA) genetic variants of unknown significance (GVUS). These individuals often do not express characteristic features of FD. A systematic review on FD screening studies was performed to interpret the

  12. Measuring galaxy cluster masses with CMB lensing using a Maximum Likelihood estimator: statistical and systematic error budgets for future experiments

    Energy Technology Data Exchange (ETDEWEB)

    Raghunathan, Srinivasan; Patil, Sanjaykumar; Bianchini, Federico; Reichardt, Christian L. [School of Physics, University of Melbourne, 313 David Caro building, Swanston St and Tin Alley, Parkville VIC 3010 (Australia); Baxter, Eric J. [Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd Street, Philadelphia, PA 19104 (United States); Bleem, Lindsey E. [Argonne National Laboratory, High-Energy Physics Division, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Crawford, Thomas M. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Holder, Gilbert P. [Department of Astronomy and Department of Physics, University of Illinois, 1002 West Green St., Urbana, IL 61801 (United States); Manzotti, Alessandro, E-mail: srinivasan.raghunathan@unimelb.edu.au, E-mail: s.patil2@student.unimelb.edu.au, E-mail: ebax@sas.upenn.edu, E-mail: federico.bianchini@unimelb.edu.au, E-mail: bleeml@uchicago.edu, E-mail: tcrawfor@kicp.uchicago.edu, E-mail: gholder@illinois.edu, E-mail: manzotti@uchicago.edu, E-mail: christian.reichardt@unimelb.edu.au [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)

    2017-08-01

    We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, we examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment's beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.

  13. Analysis of systematic error deviation of water temperature measurement at the fuel channel outlet of the reactor Maria

    International Nuclear Information System (INIS)

    Bykowski, W.

    2000-01-01

    The reactor Maria has two primary cooling circuits; fuel channels cooling circuit and reactor pool cooling circuit. Fuel elements are placed inside the fuel channels which are parallely linked in parallel, between the collectors. In the course of reactor operation the following measurements are performed: continuous measurement of water temperature at the fuel channels inlet, continuous measurement of water temperature at the outlet of each fuel channel and continuous measurement of water flow rate through each fuel channel. Based on those thermal-hydraulic parameters the instantaneous thermal power generated in each fuel channel is determined and by use of that value the thermal balance and the degree of fuel burnup is assessed. The work contains an analysis concerning estimate of the systematic error of temperature measurement at outlet of each fuel channel and so the erroneous assessment of thermal power extracted in each fuel channel and the burnup degree for the individual fuel element. The results of measurements of separate factors of deviations for the fuel channels are enclosed. (author)

  14. A systematic approach to assessing the clinical significance of genetic variants.

    Science.gov (United States)

    Duzkale, H; Shen, J; McLaughlin, H; Alfares, A; Kelly, M A; Pugh, T J; Funke, B H; Rehm, H L; Lebo, M S

    2013-11-01

    Molecular genetic testing informs diagnosis, prognosis, and risk assessment for patients and their family members. Recent advances in low-cost, high-throughput DNA sequencing and computing technologies have enabled the rapid expansion of genetic test content, resulting in dramatically increased numbers of DNA variants identified per test. To address this challenge, our laboratory has developed a systematic approach to thorough and efficient assessments of variants for pathogenicity determination. We first search for existing data in publications and databases including internal, collaborative and public resources. We then perform full evidence-based assessments through statistical analyses of observations in the general population and disease cohorts, evaluation of experimental data from in vivo or in vitro studies, and computational predictions of potential impacts of each variant. Finally, we weigh all evidence to reach an overall conclusion on the potential for each variant to be disease causing. In this report, we highlight the principles of variant assessment, address the caveats and pitfalls, and provide examples to illustrate the process. By sharing our experience and providing a framework for variant assessment, including access to a freely available customizable tool, we hope to help move towards standardized and consistent approaches to variant assessment. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Evaluating IMRT and VMAT dose accuracy: Practical examples of failure to detect systematic errors when applying a commonly used metric and action levels

    Energy Technology Data Exchange (ETDEWEB)

    Nelms, Benjamin E. [Canis Lupus LLC, Merrimac, Wisconsin 53561 (United States); Chan, Maria F. [Memorial Sloan-Kettering Cancer Center, Basking Ridge, New Jersey 07920 (United States); Jarry, Geneviève; Lemire, Matthieu [Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4 (Canada); Lowden, John [Indiana University Health - Goshen Hospital, Goshen, Indiana 46526 (United States); Hampton, Carnell [Levine Cancer Institute/Carolinas Medical Center, Concord, North Carolina 28025 (United States); Feygelman, Vladimir [Moffitt Cancer Center, Tampa, Florida 33612 (United States)

    2013-11-15

    Purpose: This study (1) examines a variety of real-world cases where systematic errors were not detected by widely accepted methods for IMRT/VMAT dosimetric accuracy evaluation, and (2) drills-down to identify failure modes and their corresponding means for detection, diagnosis, and mitigation. The primary goal of detailing these case studies is to explore different, more sensitive methods and metrics that could be used more effectively for evaluating accuracy of dose algorithms, delivery systems, and QA devices.Methods: The authors present seven real-world case studies representing a variety of combinations of the treatment planning system (TPS), linac, delivery modality, and systematic error type. These case studies are typical to what might be used as part of an IMRT or VMAT commissioning test suite, varying in complexity. Each case study is analyzed according to TG-119 instructions for gamma passing rates and action levels for per-beam and/or composite plan dosimetric QA. Then, each case study is analyzed in-depth with advanced diagnostic methods (dose profile examination, EPID-based measurements, dose difference pattern analysis, 3D measurement-guided dose reconstruction, and dose grid inspection) and more sensitive metrics (2% local normalization/2 mm DTA and estimated DVH comparisons).Results: For these case studies, the conventional 3%/3 mm gamma passing rates exceeded 99% for IMRT per-beam analyses and ranged from 93.9% to 100% for composite plan dose analysis, well above the TG-119 action levels of 90% and 88%, respectively. However, all cases had systematic errors that were detected only by using advanced diagnostic techniques and more sensitive metrics. The systematic errors caused variable but noteworthy impact, including estimated target dose coverage loss of up to 5.5% and local dose deviations up to 31.5%. Types of errors included TPS model settings, algorithm limitations, and modeling and alignment of QA phantoms in the TPS. Most of the errors were

  16. Generalized Gaussian Error Calculus

    CERN Document Server

    Grabe, Michael

    2010-01-01

    For the first time in 200 years Generalized Gaussian Error Calculus addresses a rigorous, complete and self-consistent revision of the Gaussian error calculus. Since experimentalists realized that measurements in general are burdened by unknown systematic errors, the classical, widespread used evaluation procedures scrutinizing the consequences of random errors alone turned out to be obsolete. As a matter of course, the error calculus to-be, treating random and unknown systematic errors side by side, should ensure the consistency and traceability of physical units, physical constants and physical quantities at large. The generalized Gaussian error calculus considers unknown systematic errors to spawn biased estimators. Beyond, random errors are asked to conform to the idea of what the author calls well-defined measuring conditions. The approach features the properties of a building kit: any overall uncertainty turns out to be the sum of a contribution due to random errors, to be taken from a confidence inter...

  17. A correction method for systematic error in (1)H-NMR time-course data validated through stochastic cell culture simulation.

    Science.gov (United States)

    Sokolenko, Stanislav; Aucoin, Marc G

    2015-09-04

    The growing ubiquity of metabolomic techniques has facilitated high frequency time-course data collection for an increasing number of applications. While the concentration trends of individual metabolites can be modeled with common curve fitting techniques, a more accurate representation of the data needs to consider effects that act on more than one metabolite in a given sample. To this end, we present a simple algorithm that uses nonparametric smoothing carried out on all observed metabolites at once to identify and correct systematic error from dilution effects. In addition, we develop a simulation of metabolite concentration time-course trends to supplement available data and explore algorithm performance. Although we focus on nuclear magnetic resonance (NMR) analysis in the context of cell culture, a number of possible extensions are discussed. Realistic metabolic data was successfully simulated using a 4-step process. Starting with a set of metabolite concentration time-courses from a metabolomic experiment, each time-course was classified as either increasing, decreasing, concave, or approximately constant. Trend shapes were simulated from generic functions corresponding to each classification. The resulting shapes were then scaled to simulated compound concentrations. Finally, the scaled trends were perturbed using a combination of random and systematic errors. To detect systematic errors, a nonparametric fit was applied to each trend and percent deviations calculated at every timepoint. Systematic errors could be identified at time-points where the median percent deviation exceeded a threshold value, determined by the choice of smoothing model and the number of observed trends. Regardless of model, increasing the number of observations over a time-course resulted in more accurate error estimates, although the improvement was not particularly large between 10 and 20 samples per trend. The presented algorithm was able to identify systematic errors as small

  18. Analysis and mitigation of systematic errors in spectral shearing interferometry of pulses approaching the single-cycle limit [Invited

    International Nuclear Information System (INIS)

    Birge, Jonathan R.; Kaertner, Franz X.

    2008-01-01

    We derive an analytical approximation for the measured pulse width error in spectral shearing methods, such as spectral phase interferometry for direct electric-field reconstruction (SPIDER), caused by an anomalous delay between the two sheared pulse components. This analysis suggests that, as pulses approach the single-cycle limit, the resulting requirements on the calibration and stability of this delay become significant, requiring precision orders of magnitude higher than the scale of a wavelength. This is demonstrated by numerical simulations of SPIDER pulse reconstruction using actual data from a sub-two-cycle laser. We briefly propose methods to minimize the effects of this sensitivity in SPIDER and review variants of spectral shearing that attempt to avoid this difficulty

  19. Relationship and significance of gait deviations associated with limb length discrepancy: A systematic review.

    Science.gov (United States)

    Khamis, Sam; Carmeli, Eli

    2017-09-01

    Controversy still exists as to the clinical significance of leg length discrepancy (LLD) in spite of the fact that further evidence has been emerging regarding the relationship between several clinical conditions and LLD. The objectives of our study were to review the available research with regard to LLD as a cause of clinically significant gait deviations, to determine if there is a relationship between the magnitude of LLD and the presence of gait deviations and to identify the most common gait deviations associated with LLD. In line with the PRISMA guidelines, a literature search was carried out throughout the Medline, CINAHL and EMBASE databases. Twelve articles met the predetermined inclusion criteria and were included in the review. Quality assessment using the Methodological Index for Non-Randomized Studies (MINORS) scale was completed for all included studies. Two main methodologies were found in 4 studies evaluating gait asymmetry in patients or healthy participants with anatomic LLD and 8 studies evaluating gait deviations while simulating LLD by employing artificial lifts of 1-5cm on healthy subjects. A significant relationship was found between anatomic LLD and gait deviation. Evidence suggests that gait deviations may occur with discrepancies of >1cm, with greater impact seen as the discrepancy increases. Compensatory strategies were found to occur in both the shorter and longer limb, throughout the lower limb. As the discrepancy increases, more compensatory strategies occur. Sagittal plane deviations seem to be the most effective deviations, although, frontal plane compensations also occur in the pelvis, hip and foot. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Learning from Errors

    Directory of Open Access Journals (Sweden)

    MA. Lendita Kryeziu

    2015-06-01

    Full Text Available “Errare humanum est”, a well known and widespread Latin proverb which states that: to err is human, and that people make mistakes all the time. However, what counts is that people must learn from mistakes. On these grounds Steve Jobs stated: “Sometimes when you innovate, you make mistakes. It is best to admit them quickly, and get on with improving your other innovations.” Similarly, in learning new language, learners make mistakes, thus it is important to accept them, learn from them, discover the reason why they make them, improve and move on. The significance of studying errors is described by Corder as: “There have always been two justifications proposed for the study of learners' errors: the pedagogical justification, namely that a good understanding of the nature of error is necessary before a systematic means of eradicating them could be found, and the theoretical justification, which claims that a study of learners' errors is part of the systematic study of the learners' language which is itself necessary to an understanding of the process of second language acquisition” (Corder, 1982; 1. Thus the importance and the aim of this paper is analyzing errors in the process of second language acquisition and the way we teachers can benefit from mistakes to help students improve themselves while giving the proper feedback.

  1. Candida parapsilosis is a Significant Neonatal Pathogen: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Pammi, Mohan; Holland, Linda; Butler, Geraldine; Gacser, Attila; Bliss, Joseph M.

    2013-01-01

    Background Candida is the third most common cause of late-onset neonatal sepsis in infants born at Candida infections. C. parapsilosis rates were similar in studies performed before the year 2000, 33.53 % [95% CI, 30.06, 37.40] (28 studies), to those after 2000, 27.00% [95% CI, 8.25, 88.37] (8 studies). The mortality due to neonatal Candida parapsilosis infections was 10.02% [95% CI, 7.66, 13.12]. Geographical variations in C. parapsilosis infections included a low incidence in Europe and higher incidence in North America and Australia. Biofilm formation was a significant virulence determinant and predominant risk factors for C. parapsilosis infections were prematurity, prior colonization and catheterization. Amphotericin B remains the antifungal drug of choice and combination therapy with caspofungin or other echinocandins may be considered in resistant cases. Conclusion C. parapsilosis is a significant neonatal pathogen, comprises a third of all Candida infections and is associated with 10% mortality. Availability of tools for genetic manipulation of this organism will identify virulence determinants and organism characteristics that may explain predilection for preterm neonates. Strategies to prevent horizontal transmission in the neonatal unit are paramount in decreasing infection rates. PMID:23340551

  2. Systematic Analysis of Video Data from Different Human-Robot Interaction Studies: A Categorisation of Social Signals During Error Situations

    OpenAIRE

    Manuel eGiuliani; Nicole eMirnig; Gerald eStollnberger; Susanne eStadler; Roland eBuchner; Manfred eTscheligi

    2015-01-01

    Human?robot interactions are often affected by error situations that are caused by either the robot or the human. Therefore, robots would profit from the ability to recognize when error situations occur. We investigated the verbal and non-verbal social signals that humans show when error situations occur in human?robot interaction experiments. For that, we analyzed 201 videos of five human?robot interaction user studies with varying tasks from four independent projects. The analysis shows tha...

  3. Edge profile analysis of Joint European Torus (JET) Thomson scattering data: Quantifying the systematic error due to edge localised mode synchronisation.

    Science.gov (United States)

    Leyland, M J; Beurskens, M N A; Flanagan, J C; Frassinetti, L; Gibson, K J; Kempenaars, M; Maslov, M; Scannell, R

    2016-01-01

    The Joint European Torus (JET) high resolution Thomson scattering (HRTS) system measures radial electron temperature and density profiles. One of the key capabilities of this diagnostic is measuring the steep pressure gradient, termed the pedestal, at the edge of JET plasmas. The pedestal is susceptible to limiting instabilities, such as Edge Localised Modes (ELMs), characterised by a periodic collapse of the steep gradient region. A common method to extract the pedestal width, gradient, and height, used on numerous machines, is by performing a modified hyperbolic tangent (mtanh) fit to overlaid profiles selected from the same region of the ELM cycle. This process of overlaying profiles, termed ELM synchronisation, maximises the number of data points defining the pedestal region for a given phase of the ELM cycle. When fitting to HRTS profiles, it is necessary to incorporate the diagnostic radial instrument function, particularly important when considering the pedestal width. A deconvolved fit is determined by a forward convolution method requiring knowledge of only the instrument function and profiles. The systematic error due to the deconvolution technique incorporated into the JET pedestal fitting tool has been documented by Frassinetti et al. [Rev. Sci. Instrum. 83, 013506 (2012)]. This paper seeks to understand and quantify the systematic error introduced to the pedestal width due to ELM synchronisation. Synthetic profiles, generated with error bars and point-to-point variation characteristic of real HRTS profiles, are used to evaluate the deviation from the underlying pedestal width. We find on JET that the ELM synchronisation systematic error is negligible in comparison to the statistical error when assuming ten overlaid profiles (typical for a pre-ELM fit to HRTS profiles). This confirms that fitting a mtanh to ELM synchronised profiles is a robust and practical technique for extracting the pedestal structure.

  4. A systematic experimental investigation of significant parameters affecting model tire hydroplaning

    Science.gov (United States)

    Wray, G. A.; Ehrlich, I. R.

    1973-01-01

    The results of a comprehensive parametric study of model and small pneumatic tires operating on a wet surface are presented. Hydroplaning inception (spin down) and rolling restoration (spin up) are discussed. Conclusions indicate that hydroplaning inception occurs at a speed significantly higher than the rolling restoration speed. Hydroplaning speed increases considerably with tread depth, surface roughness and tire inflation pressure of footprint pressure, and only moderately with increased load. Water film thickness affects spin down speed only slightly. Spin down speed varies inversely as approximately the one-sixth power of film thickness. Empirical equations relating tire inflation pressure, normal load, tire diameter and water film thickness have been generated for various tire tread and surface configurations.

  5. Comparison between calorimeter and HLNC errors

    International Nuclear Information System (INIS)

    Goldman, A.S.; De Ridder, P.; Laszlo, G.

    1991-01-01

    This paper summarizes an error analysis that compares systematic and random errors of total plutonium mass estimated for high-level neutron coincidence counter (HLNC) and calorimeter measurements. This task was part of an International Atomic Energy Agency (IAEA) study on the comparison of the two instruments to determine if HLNC measurement errors met IAEA standards and if the calorimeter gave ''significantly'' better precision. Our analysis was based on propagation of error models that contained all known sources of errors including uncertainties associated with plutonium isotopic measurements. 5 refs., 2 tabs

  6. Interpretations of systematic errors in the NCEP Climate Forecast System at lead times of 2, 4, 8, ..., 256 days

    Directory of Open Access Journals (Sweden)

    Siwon Song

    2012-09-01

    Full Text Available The climatology of mean bias errors (relative to 1-day forecasts was examined in a 20-year hindcast set from version 1 of the Climate Forecast System (CFS, for forecast lead times of 2, 4, 8, 16, ... 256 days, verifying in different seasons. Results mostly confirm the simple expectation that atmospheric model biases should be evident at short lead (2–4 days, while soil moisture errors develop over days-weeks and ocean errors emerge over months. A further simplification is also evident: surface temperature bias patterns have nearly fixed geographical structure, growing with different time scales over land and ocean. The geographical pattern has mostly warm and dry biases over land and cool bias over the oceans, with two main exceptions: (1 deficient stratocumulus clouds cause warm biases in eastern subtropical oceans, and (2 high latitude land is too cold in boreal winter. Further study of the east Pacific cold tongue-Intertropical Convergence Zone (ITCZ complex shows a possible interaction between a rapidly-expressed atmospheric model bias (poleward shift of deep convection beginning at day 2 and slow ocean dynamics (erroneously cold upwelling along the equator in leads > 1 month. Further study of the high latitude land cold bias shows that it is a thermal wind balance aspect of the deep polar vortex, not just a near-surface temperature error under the wintertime inversion, suggesting that its development time scale of weeks to months may involve long timescale processes in the atmosphere, not necessarily in the land model. Winter zonal wind errors are small in magnitude, but a refractive index map shows that this can cause modest errors in Rossby wave ducting. Finally, as a counterpoint to our initial expectations about error growth, a case of non-monotonic error growth is shown: velocity potential bias grows with lead on a time scale of weeks, then decays over months. It is hypothesized that compensations between land and ocean errors may

  7. Error Mitigation in Computational Design of Sustainable Energy Materials

    DEFF Research Database (Denmark)

    Christensen, Rune

    by individual C=O bonds. Energy corrections applied to C=O bonds significantly reduce systematic errors and can be extended to adsorbates. A similar study is performed for intermediates in the oxygen evolution and oxygen reduction reactions. An identified systematic error on peroxide bonds is found to also...... be present in the OOH* adsorbate. However, the systematic error will almost be canceled by inclusion of van der Waals energy. The energy difference between key adsorbates is thus similar to that previously found. Finally, a method is developed for error estimation in computationally inexpensive neural...

  8. Prognostic significance of lymphovascular invasion in radical cystectomy on patients with bladder cancer: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Hwanik Kim

    Full Text Available PURPOSE: The objective of the present study was to conduct a systematic review and meta-analysis of published literature to appraise the prognostic value of lymphovascular invasion (LVI in radical cystectomy specimens. MATERIALS AND METHODS: Following the PRISMA statement, PubMed, Cochrane Library, and SCOPUS database were searched from the respective dates of inception until June 2013. RESULTS: A total of 21 articles met the eligibility criteria for this systematic review, which included a total of 12,527 patients ranging from 57 to 4,257 per study. LVI was detected in 34.6% in radical cystectomy specimens. LVI was associated with higher pathological T stage and tumor grade, as well as lymph node metastasis. The pooled hazard ratio (HR was statistically significant for recurrence-free survival (pooled HR, 1.61; 95% confidence interval [CI], 1.26-2.06, cancer-specific survival (pooled HR, 1.67; 95% CI, 1.38-2.01, and overall survival (pooled HR, 1.67; 95% CI, 1.38-2.01, despite the heterogeneity among included studies. On sensitivity analysis, the pooled HRs and 95% CIs were not significantly altered when any one study was omitted. The funnel plot for overall survival demonstrated a certain degree of asymmetry, which showed slight publication bias. CONCLUSIONS: This meta-analysis indicates that LVI is significantly associated with poor outcome in patients with bladder cancer who underwent radical cystectomy. Adequately designed prospective studies are required to provide the precise prognostic significance of LVI in bladder cancer.

  9. Food Classification Systems Based on Food Processing: Significance and Implications for Policies and Actions: A Systematic Literature Review and Assessment.

    Science.gov (United States)

    Moubarac, Jean-Claude; Parra, Diana C; Cannon, Geoffrey; Monteiro, Carlos A

    2014-06-01

    This paper is the first to make a systematic review and assessment of the literature that attempts methodically to incorporate food processing into classification of diets. The review identified 1276 papers, of which 110 were screened and 21 studied, derived from five classification systems. This paper analyses and assesses the five systems, one of which has been devised and developed by a research team that includes co-authors of this paper. The quality of the five systems is assessed and scored according to how specific, coherent, clear, comprehensive and workable they are. Their relevance to food, nutrition and health, and their use in various settings, is described. The paper shows that the significance of industrial food processing in shaping global food systems and supplies and thus dietary patterns worldwide, and its role in the pandemic of overweight and obesity, remains overlooked and underestimated. Once food processing is systematically incorporated into food classifications, they will be more useful in assessing and monitoring dietary patterns. Food classification systems that emphasize industrial food processing, and that define and distinguish relevant different types of processing, will improve understanding of how to prevent and control overweight, obesity and related chronic non-communicable diseases, and also malnutrition. They will also be a firmer basis for rational policies and effective actions designed to protect and improve public health at all levels from global to local.

  10. Prognostic Significance of Neutrophil-to-Lymphocyte Ratio in Colorectal Liver Metastasis: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Tang, Haowen; Li, Bingmin; Zhang, Aiqun; Lu, Wenping; Xiang, Canhong; Dong, Jiahong

    2016-01-01

    Inflammation is deemed to play critical roles in tumor progression and metastasis, and an increased neutrophil-lymphocyte ratio (NLR) has been reported to correlate with poor survivals in various malignancies. However, association between NLR elevation and survival outcome in patients with colorectal liver metastasis (CRLM) remains controversial. The aim of this study was to investigate the prognostic significance of elevated NLR in CRLM. The meta-analysis was conducted in adherence to the MOOSE guidelines. PubMed, Embase, Cochrane Library, Web of Science and the Chinese SinoMed were systematically searched to identify eligible studies from the initiation of the databases to May, 2016. Overall survival (OS) and recurrence free survival (RFS) were pooled by using hazard ratio (HR) with corresponding 95% confidence interval (CI). Correlation between NLR values and clinicopathological features was synthesized by using odds ratio (OR) with corresponding 95% CI. A total of 1685 patients from 8 studies (9 cohorts) were analyzed, consisting 347 (20.59%) in high pretreatment NLR value group and 1338 (79.41%) in low pretreatment NLR value one. The results demonstrated that elevated pretreatment NLR was significantly related to poor OS (HR 2.17, 95% CI 1.82-2.58) and RFS (HR 1.96, 95% CI 1.64-2.35) in patients with CRLM. The result of this systematic review and meta-analysis indicated that an elevated pretreatment NLR was closely correlated with poor long-term survival (OS and RFS) in CRLM patients. NLR can be routinely monitored and serve as a useful and cost-effective marker with strong prognostic significance in patients with CRLM.

  11. A New Approach to Detection of Systematic Errors in Secondary Substation Monitoring Equipment Based on Short Term Load Forecasting

    Directory of Open Access Journals (Sweden)

    Javier Moriano

    2016-01-01

    Full Text Available In recent years, Secondary Substations (SSs are being provided with equipment that allows their full management. This is particularly useful not only for monitoring and planning purposes but also for detecting erroneous measurements, which could negatively affect the performance of the SS. On the other hand, load forecasting is extremely important since they help electricity companies to make crucial decisions regarding purchasing and generating electric power, load switching, and infrastructure development. In this regard, Short Term Load Forecasting (STLF allows the electric power load to be predicted over an interval ranging from one hour to one week. However, important issues concerning error detection by employing STLF has not been specifically addressed until now. This paper proposes a novel STLF-based approach to the detection of gain and offset errors introduced by the measurement equipment. The implemented system has been tested against real power load data provided by electricity suppliers. Different gain and offset error levels are successfully detected.

  12. Systematic analysis of video data from different human–robot interaction studies: a categorization of social signals during error situations

    Science.gov (United States)

    Giuliani, Manuel; Mirnig, Nicole; Stollnberger, Gerald; Stadler, Susanne; Buchner, Roland; Tscheligi, Manfred

    2015-01-01

    Human–robot interactions are often affected by error situations that are caused by either the robot or the human. Therefore, robots would profit from the ability to recognize when error situations occur. We investigated the verbal and non-verbal social signals that humans show when error situations occur in human–robot interaction experiments. For that, we analyzed 201 videos of five human–robot interaction user studies with varying tasks from four independent projects. The analysis shows that there are two types of error situations: social norm violations and technical failures. Social norm violations are situations in which the robot does not adhere to the underlying social script of the interaction. Technical failures are caused by technical shortcomings of the robot. The results of the video analysis show that the study participants use many head movements and very few gestures, but they often smile, when in an error situation with the robot. Another result is that the participants sometimes stop moving at the beginning of error situations. We also found that the participants talked more in the case of social norm violations and less during technical failures. Finally, the participants use fewer non-verbal social signals (for example smiling, nodding, and head shaking), when they are interacting with the robot alone and no experimenter or other human is present. The results suggest that participants do not see the robot as a social interaction partner with comparable communication skills. Our findings have implications for builders and evaluators of human–robot interaction systems. The builders need to consider including modules for recognition and classification of head movements to the robot input channels. The evaluators need to make sure that the presence of an experimenter does not skew the results of their user studies. PMID:26217266

  13. Systematic analysis of video data from different human-robot interaction studies: a categorization of social signals during error situations.

    Science.gov (United States)

    Giuliani, Manuel; Mirnig, Nicole; Stollnberger, Gerald; Stadler, Susanne; Buchner, Roland; Tscheligi, Manfred

    2015-01-01

    Human-robot interactions are often affected by error situations that are caused by either the robot or the human. Therefore, robots would profit from the ability to recognize when error situations occur. We investigated the verbal and non-verbal social signals that humans show when error situations occur in human-robot interaction experiments. For that, we analyzed 201 videos of five human-robot interaction user studies with varying tasks from four independent projects. The analysis shows that there are two types of error situations: social norm violations and technical failures. Social norm violations are situations in which the robot does not adhere to the underlying social script of the interaction. Technical failures are caused by technical shortcomings of the robot. The results of the video analysis show that the study participants use many head movements and very few gestures, but they often smile, when in an error situation with the robot. Another result is that the participants sometimes stop moving at the beginning of error situations. We also found that the participants talked more in the case of social norm violations and less during technical failures. Finally, the participants use fewer non-verbal social signals (for example smiling, nodding, and head shaking), when they are interacting with the robot alone and no experimenter or other human is present. The results suggest that participants do not see the robot as a social interaction partner with comparable communication skills. Our findings have implications for builders and evaluators of human-robot interaction systems. The builders need to consider including modules for recognition and classification of head movements to the robot input channels. The evaluators need to make sure that the presence of an experimenter does not skew the results of their user studies.

  14. Determination of fission products and actinides by inductively coupled plasma-mass spectrometry using isotope dilution analysis. A study of random and systematic errors

    International Nuclear Information System (INIS)

    Ignacio Garcia Alonso, Jose

    1995-01-01

    The theory of the propagation of errors (random and systematic) for isotope dilution analysis (IDA) has been applied to the analysis of fission products and actinide elements by inductively coupled plasma-mass spectrometry (ICP-MS). Systematic errors in ID-ICP-MS arising from mass-discrimination (mass bias), detector non-linearity and isobaric interferences in the measured isotopes have to be corrected for in order to achieve accurate results. The mass bias factor and the detector dead-time can be determined by using natural elements with well-defined isotope abundances. A combined method for the simultaneous determination of both factors is proposed. On the other hand, isobaric interferences for some fission products and actinides cannot be eliminated using mathematical corrections (due to the unknown isotope abundances in the sample) and a chemical separation is necessary. The theory for random error propagation in IDA has been applied to the determination of non-natural elements by ICP-MS taking into account all possible sources of uncertainty with pulse counting detection. For the analysis of fission products, the selection of the right spike isotope composition and spike to sample ratio can be performed by applying conventional random propagation theory. However, it has been observed that, in the experimental determination of the isotope abundances of the fission product elements to be determined, the correction for mass-discrimination and the correction for detector dead-time losses contribute to the total random uncertainty. For the instrument used in the experimental part of this study, it was found that the random uncertainty on the measured isotope ratios followed Poisson statistics for low counting rates whereas, for high counting rates, source instability was the main source of error

  15. Random and systematic errors in case–control studies calculating the injury risk of driving under the influence of psychoactive substances

    DEFF Research Database (Denmark)

    Houwing, Sjoerd; Hagenzieker, Marjan; Mathijssen, René P.M.

    2013-01-01

    Between 2006 and 2010, six population based case-control studies were conducted as part of the European research-project DRUID (DRiving Under the Influence of Drugs, alcohol and medicines). The aim of these case-control studies was to calculate odds ratios indicating the relative risk of serious....... The list of indicators that was identified in this study is useful both as guidance for systematic reviews and meta-analyses and for future epidemiological studies in the field of driving under the influence to minimize sources of errors already at the start of the study. © 2013 Published by Elsevier Ltd....

  16. There Is a Significant Discrepancy Between "Big Data" Database and Original Research Publications on Hip Arthroscopy Outcomes: A Systematic Review.

    Science.gov (United States)

    Sochacki, Kyle R; Jack, Robert A; Safran, Marc R; Nho, Shane J; Harris, Joshua D

    2018-06-01

    The purpose of this study was to compare (1) major complication, (2) revision, and (3) conversion to arthroplasty rates following hip arthroscopy between database studies and original research peer-reviewed publications. A systematic review was performed using PRISMA guidelines. PubMed, SCOPUS, SportDiscus, and Cochrane Central Register of Controlled Trials were searched for studies that investigated major complication (dislocation, femoral neck fracture, avascular necrosis, fluid extravasation, septic arthritis, death), revision, and hip arthroplasty conversion rates following hip arthroscopy. Major complication, revision, and conversion to hip arthroplasty rates were compared between original research (single- or multicenter therapeutic studies) and database (insurance database using ICD-9/10 and/or current procedural terminology coding terminology) publishing studies. Two hundred seven studies (201 original research publications [15,780 subjects; 54% female] and 6 database studies [20,825 subjects; 60% female]) were analyzed (mean age, 38.2 ± 11.6 years old; mean follow-up, 2.7 ± 2.9 years). The database studies had a significantly higher age (40.6 + 2.8 vs 35.4 ± 11.6), body mass index (27.4 ± 5.6 vs 24.9 ± 3.1), percentage of females (60.1% vs 53.8%), and longer follow-up (3.1 ± 1.6 vs 2.7 ± 3.0) compared with original research (P database studies (P = .029; relative risk [RR], 1.3). There was a significantly higher rate of femoral neck fracture (0.24% vs 0.03%; P database studies. Reoperations occurred at a significantly higher rate in the database studies (11.1% vs 7.3%; P database studies (8.0% vs 3.7%; P Database studies report significantly increased major complication, revision, and conversion to hip arthroplasty rates compared with original research investigations of hip arthroscopy outcomes. Level IV, systematic review of Level I-IV studies. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights

  17. SU-G-BRC-15: The Potential Clinical Significance of Dose Mapping Error for Intra- Fraction Dose Mapping for Lung Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Sayah, N [Thomas Cancer Center, Richmond, VA (United States); Weiss, E [Virginia Commonwealth University, Richmond, Virginia (United States); Watkins, W [University of Virginia, Charlottesville, VA (United States); Siebers, J [University of Virginia Health System, Charlottesville, VA (United States)

    2016-06-15

    Purpose: To evaluate the dose-mapping error (DME) inherent to conventional dose-mapping algorithms as a function of dose-matrix resolution. Methods: As DME has been reported to be greatest where dose-gradients overlap tissue-density gradients, non-clinical 66 Gy IMRT plans were generated for 11 lung patients with the target edge defined as the maximum 3D density gradient on the 0% (end of inhale) breathing phase. Post-optimization, Beams were copied to 9 breathing phases. Monte Carlo dose computed (with 2*2*2 mm{sup 3} resolution) on all 10 breathing phases was deformably mapped to phase 0% using the Monte Carlo energy-transfer method with congruent mass-mapping (EMCM); an externally implemented tri-linear interpolation method with voxel sub-division; Pinnacle’s internal (tri-linear) method; and a post-processing energy-mass voxel-warping method (dTransform). All methods used the same base displacement-vector-field (or it’s pseudo-inverse as appropriate) for the dose mapping. Mapping was also performed at 4*4*4 mm{sup 3} by merging adjacent dose voxels. Results: Using EMCM as the reference standard, no clinically significant (>1 Gy) DMEs were found for the mean lung dose (MLD), lung V20Gy, or esophagus dose-volume indices, although MLD and V20Gy were statistically different (2*2*2 mm{sup 3}). Pinnacle-to-EMCM target D98% DMEs of 4.4 and 1.2 Gy were observed ( 2*2*2 mm{sup 3}). However dTransform, which like EMCM conserves integral dose, had DME >1 Gy for one case. The root mean square RMS of the DME for the tri-linear-to- EMCM methods was lower for the smaller voxel volume for the tumor 4D-D98%, lung V20Gy, and cord D1%. Conclusion: When tissue gradients overlap with dose gradients, organs-at-risk DME was statistically significant but not clinically significant. Target-D98%-DME was deemed clinically significant for 2/11 patients (2*2*2 mm{sup 3}). Since tri-linear RMS-DME between EMCM and tri-linear was reduced at 2*2*2 mm{sup 3}, use of this resolution is

  18. Toward a Framework for Systematic Error Modeling of NASA Spaceborne Radar with NOAA/NSSL Ground Radar-Based National Mosaic QPE

    Science.gov (United States)

    Kirstettier, Pierre-Emmanual; Honh, Y.; Gourley, J. J.; Chen, S.; Flamig, Z.; Zhang, J.; Howard, K.; Schwaller, M.; Petersen, W.; Amitai, E.

    2011-01-01

    Characterization of the error associated to satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving space-born passive and active microwave measurement") for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. We focus here on the error structure of NASA's Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements using NOAA/NSSL ground radar-based National Mosaic and QPE system (NMQ/Q2). A preliminary investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) using a three-month data sample in the southern part of US. The primary contribution of this study is the presentation of the detailed steps required to derive trustworthy reference rainfall dataset from Q2 at the PR pixel resolution. It relics on a bias correction and a radar quality index, both of which provide a basis to filter out the less trustworthy Q2 values. Several aspects of PR errors arc revealed and quantified including sensitivity to the processing steps with the reference rainfall, comparisons of rainfall detectability and rainfall rate distributions, spatial representativeness of error, and separation of systematic biases and random errors. The methodology and framework developed herein applies more generally to rainfall rate estimates from other sensors onboard low-earth orbiting satellites such as microwave imagers and dual-wavelength radars such as with the Global Precipitation Measurement (GPM) mission.

  19. Prognostic significance of neutrophil-to-lymphocyte ratio in biliary tract cancers: a systematic review and meta-analysis.

    Science.gov (United States)

    Tang, Haowen; Lu, Wenping; Li, Bingmin; Li, Chonghui; Xu, Yinzhe; Dong, Jiahong

    2017-05-30

    Inflammation was considered to perform crucial roles in the development and metastasis of malignancies. A heightened neutrophil-lymphocyte ratio has been described to be associated with detrimental survivals in different malignancies. Debate remains over the impact of heightened neutrophil-lymphocyte ratio on survivals in biliary tract cancer. The review evaluated the prognostic value of neutrophil-lymphocyte ratio in biliary tract cancer. MEDLINE, the Cochrane Library, EMBASE, and the Chinese SinoMed were systematically searched for relevant articles. Associations between neutrophil-lymphocyte ratio and long-term outcomes were expressed as the hazard ratios and 95% confidence intervals. The odds ratio was utilized to assess the association between neutrophil-lymphocyte ratio and clinicopathological parameters. Fourteen studies consisting of 3217 patients were analyzed: 1278 (39.73%) in the high pretreatment neutrophil-lymphocyte ratio group and 1939 (60.27%) in the low pretreatment neutrophil-lymphocyte ratio one. The results proved that heightened pretreatment neutrophil-lymphocyte ratio was significantly associated with detrimental overall survival and relapse free survival for biliary tract cancer patients. In addition, elevated neutrophil-lymphocyte ratio was positively correlated with higher carbohydrate antigen 19-9 levels, advanced TNM staging and greater lymph node involvement. This meta-analysis marked that an increased pretreatment neutrophil-lymphocyte ratio was significantly linked with detrimental long-term outcomes and clinicopathological parameters for patients with biliary tract cancer.

  20. Slotted rotatable target assembly and systematic error analysis for a search for long range spin dependent interactions from exotic vector boson exchange using neutron spin rotation

    Science.gov (United States)

    Haddock, C.; Crawford, B.; Fox, W.; Francis, I.; Holley, A.; Magers, S.; Sarsour, M.; Snow, W. M.; Vanderwerp, J.

    2018-03-01

    We discuss the design and construction of a novel target array of nonmagnetic test masses used in a neutron polarimetry measurement made in search for new possible exotic spin dependent neutron-atominteractions of Nature at sub-mm length scales. This target was designed to accept and efficiently transmit a transversely polarized slow neutron beam through a series of long open parallel slots bounded by flat rectangular plates. These openings possessed equal atom density gradients normal to the slots from the flat test masses with dimensions optimized to achieve maximum sensitivity to an exotic spin-dependent interaction from vector boson exchanges with ranges in the mm - μm regime. The parallel slots were oriented differently in four quadrants that can be rotated about the neutron beam axis in discrete 90°increments using a Geneva drive. The spin rotation signals from the 4 quadrants were measured using a segmented neutron ion chamber to suppress possible systematic errors from stray magnetic fields in the target region. We discuss the per-neutron sensitivity of the target to the exotic interaction, the design constraints, the potential sources of systematic errors which could be present in this design, and our estimate of the achievable sensitivity using this method.

  1. Towards a systematic assessment of errors in diffusion Monte Carlo calculations of semiconductors: Case study of zinc selenide and zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jaehyung [Department of Mechanical Science and Engineering, 1206 W Green Street, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Wagner, Lucas K. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Ertekin, Elif, E-mail: ertekin@illinois.edu [Department of Mechanical Science and Engineering, 1206 W Green Street, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); International Institute for Carbon Neutral Energy Research - WPI-I" 2CNER, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2015-12-14

    The fixed node diffusion Monte Carlo (DMC) method has attracted interest in recent years as a way to calculate properties of solid materials with high accuracy. However, the framework for the calculation of properties such as total energies, atomization energies, and excited state energies is not yet fully established. Several outstanding questions remain as to the effect of pseudopotentials, the magnitude of the fixed node error, and the size of supercell finite size effects. Here, we consider in detail the semiconductors ZnSe and ZnO and carry out systematic studies to assess the magnitude of the energy differences arising from controlled and uncontrolled approximations in DMC. The former include time step errors and supercell finite size effects for ground and optically excited states, and the latter include pseudopotentials, the pseudopotential localization approximation, and the fixed node approximation. We find that for these compounds, the errors can be controlled to good precision using modern computational resources and that quantum Monte Carlo calculations using Dirac-Fock pseudopotentials can offer good estimates of both cohesive energy and the gap of these systems. We do however observe differences in calculated optical gaps that arise when different pseudopotentials are used.

  2. Prevalence and clinical significance of incidental F18-FDG breast uptake. A systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Bertagna, F.; Giubbini, R.; Treglia, G.; Giovanella, L.; Orlando, E.; Dognini, L.; Sadeghi, R.

    2014-01-01

    This review aims to analyse the published data on the prevalence and clinical significance of breast incidental F18-FDG uptake detected by PET or PET/CT (BIU). A comprehensive computer literature search of the Pub-Med/MEDLINE, Scopus and Embase databases for studies on BIU published through July 2013 was performed. Pooled prevalence and malignancy risk of BIU were calculated. The literature search revealed 42 articles, and 17 were selected. One study was excluded because of data overlap but four additional studies were found screening the references. Finally, 20 articles were included in the systematic review and 13 were eligible for a meta-analysis. The pooled prevalence of BIU on all scans was 0.4% (95% CI 0.23-0.61%), the pooled prevalence on scans on female patients only was 0.82% (95% CI 0.51-1.2%), the pooled risk of malignancy of BIU when further analysed was 48% (95% CI 38-58%) and the pooled risk of malignancy of BIU with histological examination was 60% (95% CI 53-66%). The most frequent malignant lesion detected was infiltrating ductal carcinoma. Despite being rare, the identification of BIU frequently signals the presence of an unsuspected subclinical lesion, which differs from the indicated reason for which the patient was initially scanned, and the risk of malignancy is very high. (author)

  3. Clinically significant drug–drug interactions involving opioid analgesics used for pain treatment in patients with cancer: a systematic review

    Directory of Open Access Journals (Sweden)

    Kotlinska-Lemieszek A

    2015-09-01

    Full Text Available Aleksandra Kotlinska-Lemieszek,1 Pål Klepstad,2,3,6 Dagny Faksvåg Haugen2,4,5 1Palliative Medicine Chair and Department, University Hospital of the Lord’s Transfiguration, Karol Marcinkowski University of Medical Sciences, Poznan, Poland; 2European Palliative Care Research Centre, Faculty of Medicine, Norwegian University of Science and Technology,Trondheim, Norway; 3Department of Anaesthesiology and Intensive Care Medicine, St Olavs Hospital, Trondheim, Norway; 4Regional Centre of Excellence for Palliative Care, Haukeland University Hospital, Bergen, Norway; 5Department of Clinical Medicine K1, University of Bergen, Bergen, Norway; 6Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway Background: Opioids are the most frequently used drugs to treat pain in cancer patients. In some patients, however, opioids can cause adverse effects and drug–drug interactions. No advice concerning the combination of opioids and other drugs is given in the current European guidelines. Objective: To identify studies that report clinically significant drug–drug interactions involving opioids used for pain treatment in adult cancer patients. Design and data sources: Systematic review with searches in Embase, MEDLINE, and Cochrane Central Register of Controlled Trials from the start of the databases (Embase from 1980 through January 2014. In addition, reference lists of relevant full-text papers were hand-searched. Results: Of 901 retrieved papers, 112 were considered as potentially eligible. After full-text reading, 17 were included in the final analysis, together with 15 papers identified through hand-searching of reference lists. All of the 32 included publications were case reports or case series. Clinical manifestations of drug–drug interactions involving opioids were grouped as follows: 1 sedation and respiratory depression, 2 other central nervous system symptoms, 3 impairment of pain

  4. Validation of the calculation of the renal impulse response function. An analysis of errors and systematic biases

    International Nuclear Information System (INIS)

    Erbsman, F.; Ham, H.; Piepsz, A.; Struyven, J.

    1978-01-01

    The renal impulse response function (Renal IRF) is the time-activity curve measured over one kidney after injection of a radiopharmaceutical in the renal artery. If the tracer is injected intravenously it is possible to compute the renal IRF by deconvoluting the kidney curve by a blood curve. In previous work we demonstrated that the computed IRF is in good agreement with measurements made after injection in the renal artery. The goal of the present work is the analysis of the effect of sampling errors and the influence of extra-renal activity. The sampling error is only important for the first point of the plasma curve and yields an ill-conditioned function P -1 . The addition of 50 computed renal IRF's demonstrated that the three first points show a larger variability due to incomplete mixing of the tracer. These points should thus not be included in the smoothing process. Subtraction of non-renal activity does not modify appreciably the shape of the renal IRF. The mean transit time and the time to half value are almost independent of non-renal activity and seem to be the parameters of choice

  5. Benzodiazepine Use During Hospitalization: Automated Identification of Potential Medication Errors and Systematic Assessment of Preventable Adverse Events.

    Directory of Open Access Journals (Sweden)

    David Franklin Niedrig

    Full Text Available Benzodiazepines and "Z-drug" GABA-receptor modulators (BDZ are among the most frequently used drugs in hospitals. Adverse drug events (ADE associated with BDZ can be the result of preventable medication errors (ME related to dosing, drug interactions and comorbidities. The present study evaluated inpatient use of BDZ and related ME and ADE.We conducted an observational study within a pharmacoepidemiological database derived from the clinical information system of a tertiary care hospital. We developed algorithms that identified dosing errors and interacting comedication for all administered BDZ. Associated ADE and risk factors were validated in medical records.Among 53,081 patients contributing 495,813 patient-days BDZ were administered to 25,626 patients (48.3% on 115,150 patient-days (23.2%. We identified 3,372 patient-days (2.9% with comedication that inhibits BDZ metabolism, and 1,197 (1.0% with lorazepam administration in severe renal impairment. After validation we classified 134, 56, 12, and 3 cases involving lorazepam, zolpidem, midazolam and triazolam, respectively, as clinically relevant ME. Among those there were 23 cases with associated adverse drug events, including severe CNS-depression, falls with subsequent injuries and severe dyspnea. Causality for BDZ was formally assessed as 'possible' or 'probable' in 20 of those cases. Four cases with ME and associated severe ADE required administration of the BDZ antagonist flumazenil.BDZ use was remarkably high in the studied setting, frequently involved potential ME related to dosing, co-medication and comorbidities, and rarely cases with associated ADE. We propose the implementation of automated ME screening and validation for the prevention of BDZ-related ADE.

  6. Study of systematic errors in the determination of total Hg levels in the range -5% in inorganic and organic matrices with two reliable spectrometrical determination procedures

    International Nuclear Information System (INIS)

    Kaiser, G.; Goetz, D.; Toelg, G.; Max-Planck-Institut fuer Metallforschung, Stuttgart; Knapp, G.; Maichin, B.; Spitzy, H.

    1978-01-01

    In the determiniation of Hg at ng/g and pg/g levels systematic errors are due to faults in the analytical methods such as intake, preparation and decomposition of a sample. The sources of these errors have been studied both with 203 Hg-radiotracer techniques and two multi-stage procedures developed for the determiniation of trace levels. The emission spectrometrie (OES-MIP) procedure includes incineration of the sample in a microwave induced oxygen plasma (MIP), the isolation and enrichment on a gold absorbent and its excitation in an argon plasma (MIP). The emitted Hg-radiation (253,7 nm) is evaluated photometrically with a semiconductor element. The detection limit of the OES-MIP procedure was found to be 0,01 ng, the coefficient of variation 5% for 1 ng Hg. The second procedure combines a semi-automated wet digestion method (HCLO 3 /HNO 3 ) with a reduction-aeration (ascorbic acid/SnCl 2 ), and the flameless atomic absorption technique (253,7 nm). The detection limit of this procedure was found to be 0,5 ng, the coefficient of variation 5% for 5 ng Hg. (orig.) [de

  7. Random and systematic sampling error when hooking fish to monitor skin fluke (Benedenia seriolae) and gill fluke (Zeuxapta seriolae) burden in Australian farmed yellowtail kingfish (Seriola lalandi).

    Science.gov (United States)

    Fensham, J R; Bubner, E; D'Antignana, T; Landos, M; Caraguel, C G B

    2018-05-01

    The Australian farmed yellowtail kingfish (Seriola lalandi, YTK) industry monitor skin fluke (Benedenia seriolae) and gill fluke (Zeuxapta seriolae) burden by pooling the fluke count of 10 hooked YTK. The random and systematic error of this sampling strategy was evaluated to assess potential impact on treatment decisions. Fluke abundance (fluke count per fish) in a study cage (estimated 30,502 fish) was assessed five times using the current sampling protocol and its repeatability was estimated the repeatability coefficient (CR) and the coefficient of variation (CV). Individual body weight, fork length, fluke abundance, prevalence, intensity (fluke count per infested fish) and density (fluke count per Kg of fish) were compared between 100 hooked and 100 seined YTK (assumed representative of the entire population) to estimate potential selection bias. Depending on the fluke species and age category, CR (expected difference in parasite count between 2 sampling iterations) ranged from 0.78 to 114 flukes per fish. Capturing YTK by hooking increased the selection of fish of a weight and length in the lowest 5th percentile of the cage (RR = 5.75, 95% CI: 2.06-16.03, P-value = 0.0001). These lower end YTK had on average an extra 31 juveniles and 6 adults Z. seriolae per Kg of fish and an extra 3 juvenile and 0.4 adult B. seriolae per Kg of fish, compared to the rest of the cage population (P-value sampling towards the smallest and most heavily infested fish in the population, resulting in poor repeatability (more variability amongst sampled fish) and an overestimation of parasite burden in the population. In this particular commercial situation these finding supported that health management program, where the finding of an underestimation of parasite burden could provide a production impact on the study population. In instances where fish populations and parasite burdens are more homogenous, sampling error may be less severe. Sampling error when capturing fish

  8. Improving the Comprehension of Students with Significant Developmental Disabilities: Systematic Instruction on the Steps for Completing and Using a Graphic Organizer

    Science.gov (United States)

    Britt, Alexander P.

    2015-01-01

    A single-subject, multiple-baseline across participants design was used to examine the functional relation between systematic instruction and the ability to complete a graphic organizer and recall facts about informational texts by students with significant development disabilities. Four high school students enrolled in an adapted academic program…

  9. Analysis and reduction of 3D systematic and random setup errors during the simulation and treatment of lung cancer patients with CT-based external beam radiotherapy dose planning.

    NARCIS (Netherlands)

    Boer, H.D. de; Sornsen de Koste, J.R. van; Senan, S.; Visser, A.G.; Heijmen, B.J.M.

    2001-01-01

    PURPOSE: To determine the magnitude of the errors made in (a) the setup of patients with lung cancer on the simulator relative to their intended setup with respect to the planned treatment beams and (b) in the setup of these patients on the treatment unit. To investigate how the systematic component

  10. Human errors and mistakes

    International Nuclear Information System (INIS)

    Wahlstroem, B.

    1993-01-01

    Human errors have a major contribution to the risks for industrial accidents. Accidents have provided important lesson making it possible to build safer systems. In avoiding human errors it is necessary to adapt the systems to their operators. The complexity of modern industrial systems is however increasing the danger of system accidents. Models of the human operator have been proposed, but the models are not able to give accurate predictions of human performance. Human errors can never be eliminated, but their frequency can be decreased by systematic efforts. The paper gives a brief summary of research in human error and it concludes with suggestions for further work. (orig.)

  11. A Low-Cost Environmental Monitoring System: How to Prevent Systematic Errors in the Design Phase through the Combined Use of Additive Manufacturing and Thermographic Techniques

    Directory of Open Access Journals (Sweden)

    Francesco Salamone

    2017-04-01

    Full Text Available nEMoS (nano Environmental Monitoring System is a 3D-printed device built following the Do-It-Yourself (DIY approach. It can be connected to the web and it can be used to assess indoor environmental quality (IEQ. It is built using some low-cost sensors connected to an Arduino microcontroller board. The device is assembled in a small-sized case and both thermohygrometric sensors used to measure the air temperature and relative humidity, and the globe thermometer used to measure the radiant temperature, can be subject to thermal effects due to overheating of some nearby components. A thermographic analysis was made to rule out this possibility. The paper shows how the pervasive technique of additive manufacturing can be combined with the more traditional thermographic techniques to redesign the case and to verify the accuracy of the optimized system in order to prevent instrumental systematic errors in terms of the difference between experimental and actual values of the above-mentioned environmental parameters.

  12. Evaluation of Stability of Complexes of Inner Transition Metal Ions with 2-Oxo-1-pyrrolidine Acetamide and Role of Systematic Errors

    Directory of Open Access Journals (Sweden)

    Sangita Sharma

    2011-01-01

    Full Text Available BEST FIT models were used to study the complexation of inner transition metal ions like Y(III, La(III, Ce(III, Pr(III, Nd(III, Sm(III, Gd(III, Dy(III and Th(IV with 2-oxo-1-pyrrolidine acetamide at 30 °C in 10%, 20, 30, 40, 50% and 60% v/v dioxane-water mixture at 0.2 M ionic strength. Irving Rossotti titration method was used to get titration data. Calculations were carried out with PKAS and BEST Fortran IV computer programs. The expected species like L, LH+, ML, ML2 and ML(OH3, were obtained with SPEPLOT. Stability of complexes has increased with increasing the dioxane content. The observed change in stability can be explained on the basis of electrostatic effects, non electrostatic effects, solvating power of solvent mixture, interaction between ions and interaction of ions with solvents. Effect of systematic errors like effect of dissolved carbon dioxide, concentration of alkali, concentration of acid, concentration of ligand and concentration of metal have also been explained here.

  13. A Low-Cost Environmental Monitoring System: How to Prevent Systematic Errors in the Design Phase through the Combined Use of Additive Manufacturing and Thermographic Techniques.

    Science.gov (United States)

    Salamone, Francesco; Danza, Ludovico; Meroni, Italo; Pollastro, Maria Cristina

    2017-04-11

    nEMoS (nano Environmental Monitoring System) is a 3D-printed device built following the Do-It-Yourself (DIY) approach. It can be connected to the web and it can be used to assess indoor environmental quality (IEQ). It is built using some low-cost sensors connected to an Arduino microcontroller board. The device is assembled in a small-sized case and both thermohygrometric sensors used to measure the air temperature and relative humidity, and the globe thermometer used to measure the radiant temperature, can be subject to thermal effects due to overheating of some nearby components. A thermographic analysis was made to rule out this possibility. The paper shows how the pervasive technique of additive manufacturing can be combined with the more traditional thermographic techniques to redesign the case and to verify the accuracy of the optimized system in order to prevent instrumental systematic errors in terms of the difference between experimental and actual values of the above-mentioned environmental parameters.

  14. Heuristics and Cognitive Error in Medical Imaging.

    Science.gov (United States)

    Itri, Jason N; Patel, Sohil H

    2018-05-01

    The field of cognitive science has provided important insights into mental processes underlying the interpretation of imaging examinations. Despite these insights, diagnostic error remains a major obstacle in the goal to improve quality in radiology. In this article, we describe several types of cognitive bias that lead to diagnostic errors in imaging and discuss approaches to mitigate cognitive biases and diagnostic error. Radiologists rely on heuristic principles to reduce complex tasks of assessing probabilities and predicting values into simpler judgmental operations. These mental shortcuts allow rapid problem solving based on assumptions and past experiences. Heuristics used in the interpretation of imaging studies are generally helpful but can sometimes result in cognitive biases that lead to significant errors. An understanding of the causes of cognitive biases can lead to the development of educational content and systematic improvements that mitigate errors and improve the quality of care provided by radiologists.

  15. Pencil kernel correction and residual error estimation for quality-index-based dose calculations

    International Nuclear Information System (INIS)

    Nyholm, Tufve; Olofsson, Joergen; Ahnesjoe, Anders; Georg, Dietmar; Karlsson, Mikael

    2006-01-01

    Experimental data from 593 photon beams were used to quantify the errors in dose calculations using a previously published pencil kernel model. A correction of the kernel was derived in order to remove the observed systematic errors. The remaining residual error for individual beams was modelled through uncertainty associated with the kernel model. The methods were tested against an independent set of measurements. No significant systematic error was observed in the calculations using the derived correction of the kernel and the remaining random errors were found to be adequately predicted by the proposed method

  16. Micromorphological studies on seeds of orobanche species from the iberian peninsula and the balearic islands, and their systematic significance.

    Science.gov (United States)

    Plaza, L; Fernández, I; Juan, R; Pastor, J; Pujadas, A

    2004-07-01

    Previous research has made clear the intrinsic taxonomic difficulties in identifying species in the genus Orobanche. The aim of this study, therefore, was to investigate the systematic utility of seed characteristics. Light and scanning electron microscopy was used to examine the seeds of 33 taxa of Orobanche from the Iberian Peninsula and the Balearic Islands. Characters such as size, shape and ornamentation of the seeds were not found to be very useful in differentiation of taxa; however, other characters of the epidermal seed coat cells proved to be very helpful in this respect. Ornamentation of the periclinal walls could be used to discriminate four morphological types. Other features related to the anticlinal walls of the cells, such as thickness, presence/absence of a narrow trough, or relative depth, all contributed to the characterization of a large number of species. The usefulness of micromorphological studies on seeds of Orobanche in relation to differentiating taxa is demonstrated, and a key is provided to distinguish species or groups of species.

  17. Uncertainty quantification and error analysis

    Energy Technology Data Exchange (ETDEWEB)

    Higdon, Dave M [Los Alamos National Laboratory; Anderson, Mark C [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Klein, Richard [Los Alamos National Laboratory; Berliner, Mark [OHIO STATE UNIV.; Covey, Curt [LLNL; Ghattas, Omar [UNIV OF TEXAS; Graziani, Carlo [UNIV OF CHICAGO; Seager, Mark [LLNL; Sefcik, Joseph [LLNL; Stark, Philip [UC/BERKELEY; Stewart, James [SNL

    2010-01-01

    UQ studies all sources of error and uncertainty, including: systematic and stochastic measurement error; ignorance; limitations of theoretical models; limitations of numerical representations of those models; limitations on the accuracy and reliability of computations, approximations, and algorithms; and human error. A more precise definition for UQ is suggested below.

  18. Analysis of error patterns in clinical radiotherapy

    International Nuclear Information System (INIS)

    Macklis, Roger; Meier, Tim; Barrett, Patricia; Weinhous, Martin

    1996-01-01

    Purpose: Until very recently, prescription errors and adverse treatment events have rarely been studied or reported systematically in oncology. We wished to understand the spectrum and severity of radiotherapy errors that take place on a day-to-day basis in a high-volume academic practice and to understand the resource needs and quality assurance challenges placed on a department by rapid upswings in contract-based clinical volumes requiring additional operating hours, procedures, and personnel. The goal was to define clinical benchmarks for operating safety and to detect error-prone treatment processes that might function as 'early warning' signs. Methods: A multi-tiered prospective and retrospective system for clinical error detection and classification was developed, with formal analysis of the antecedents and consequences of all deviations from prescribed treatment delivery, no matter how trivial. A department-wide record-and-verify system was operational during this period and was used as one method of treatment verification and error detection. Brachytherapy discrepancies were analyzed separately. Results: During the analysis year, over 2000 patients were treated with over 93,000 individual fields. A total of 59 errors affecting a total of 170 individual treated fields were reported or detected during this period. After review, all of these errors were classified as Level 1 (minor discrepancy with essentially no potential for negative clinical implications). This total treatment delivery error rate (170/93, 332 or 0.18%) is significantly better than corresponding error rates reported for other hospital and oncology treatment services, perhaps reflecting the relatively sophisticated error avoidance and detection procedures used in modern clinical radiation oncology. Error rates were independent of linac model and manufacturer, time of day (normal operating hours versus late evening or early morning) or clinical machine volumes. There was some relationship to

  19. Is valve choice a significant determinant of paravalular leak post-transcatheter aortic valve implantation? A systematic review and meta-analysis.

    LENUS (Irish Health Repository)

    O'Sullivan, Katie E

    2013-11-01

    Paravalvular regurgitation (PVR) following transcatheter aortic valve implantation (TAVI) is associated with poor survival. The two main valve delivery systems used to date differ significantly in both structure and deployment technique. The primary objective of this study was to perform a systematic review and meta-analysis of studies identifying PVR in patients post-TAVI using Medtronic CoreValve (MCV) and Edward Sapien (ES) valves in order to identify whether a significant difference exists between valve types. The secondary objective was to identify additional factors predisposing to PVR to provide an overview of the other associated considerations.

  20. Significance, Nature, and Direction of the Association Between Child Sexual Abuse and Conduct Disorder: A Systematic Review.

    Science.gov (United States)

    Maniglio, Roberto

    2015-07-01

    To elucidate the significance, nature, and direction of the potential relationship between child sexual abuse and conduct disorder, all the pertinent studies were reviewed. Ten databases were searched. Blind assessments of study eligibility and quality were performed by two independent researchers. Thirty-six studies including 185,358 participants and meeting minimum quality criteria that were enough to ensure objectivity and to not invalidate results were analyzed. Across the majority of studies, conduct disorder was significantly and directly related to child sexual abuse, especially repeated sexual molestation and abuse involving penetration, even after controlling for various sociodemographic, family, and clinical variables. The association between child sexual abuse and conduct disorder was not confounded by other risk factors, such as gender, socioeconomic status, school achievement, substance problems, physical abuse, parental antisocial behavior or substance problems, parent-child relationships, and family disruption, conflict, or violence. Evidence for a significant interactive effect between child sexual abuse and monoamine oxidase A gene on conduct disorder was scant. Early sexual abuse might predispose to the subsequent onset of conduct disorder which, in turn, may lead to further sexual victimization through association with sexually abusive peers or involvement in dangerous situations or sexual survival strategies. © The Author(s) 2014.

  1. Error Patterns

    NARCIS (Netherlands)

    Hoede, C.; Li, Z.

    2001-01-01

    In coding theory the problem of decoding focuses on error vectors. In the simplest situation code words are $(0,1)$-vectors, as are the received messages and the error vectors. Comparison of a received word with the code words yields a set of error vectors. In deciding on the original code word,

  2. Average beta-beating from random errors

    CERN Document Server

    Tomas Garcia, Rogelio; Langner, Andy Sven; Malina, Lukas; Franchi, Andrea; CERN. Geneva. ATS Department

    2018-01-01

    The impact of random errors on average β-beating is studied via analytical derivations and simulations. A systematic positive β-beating is expected from random errors quadratic with the sources or, equivalently, with the rms β-beating. However, random errors do not have a systematic effect on the tune.

  3. Prognostic and clinicopathological significance of serum interleukin-6 expression in colorectal cancer: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Wang Z

    2015-12-01

    Full Text Available Zhen Wang,1 Pin Wu,1,2 Dang Wu,1 Zhigang Zhang,3 Guoming Hu,1 Shuai Zhao,1 Yucheng Lai,1 Jian Huang1,41Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Key Laboratory of Molecular Biology in Medical Sciences, China National Ministry of Education, 2Department of Thoracic Surgery, 3Department of Gynecology, 4Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of ChinaPurpose: Interleukin-6 (IL-6 plays an important role in human colorectal cancer (CRC development. However, the exact clinical and prognostic significance of IL-6 in CRC is still unclear. Here, we conducted this meta-analysis to explore this issue in detail.Methods: A meta-analysis was performed to clarify the association between serum IL-6 expression and clinical outcomes in articles published up to June 2015. Weighted mean difference (WMD and its corresponding 95% confidence interval (CI were used to assess the association between serum IL-6 expression and the clinicopathological characteristics of CRC. Hazard ratio (HR with 95% CI was used to quantify the predictive value of IL-6 on CRC prognosis.Results: Fourteen studies comprising 1,245 patients were included. Analysis of these data showed that serum IL-6 expression was highly correlated with poor 5-year overall survival (OS rate (HR =0.43, 95% CI: 0.31–0.59, P=0.755. Simultaneously, we also found that serum IL-6 expression was associated with certain clinical parameters of CRC, such as tumor invasion (T category: T0–T2, T3–T4 (WMD =3.15, 95% CI: 1.92–4.39, P=0.816, distant metastasis (M category: M0, M1 (WMD =4.69, 95% CI: 3.33–6.06, P=0.377, and tumor stage (I–II, III–IV (WMD =2.65, 95% CI: 1.09–4.21, P=0.066.Conclusion: A high serum IL-6 expression is associated with adverse OS in CRC. The IL-6 expression can be an important supplement in establishing prognostic score

  4. Quality of life, psychological adjustment, and adaptive functioning of patients with intoxication-type inborn errors of metabolism - a systematic review.

    Science.gov (United States)

    Zeltner, Nina A; Huemer, Martina; Baumgartner, Matthias R; Landolt, Markus A

    2014-10-25

    In recent decades, considerable progress in diagnosis and treatment of patients with intoxication-type inborn errors of metabolism (IT-IEM) such as urea cycle disorders (UCD), organic acidurias (OA), maple syrup urine disease (MSUD), or tyrosinemia type 1 (TYR 1) has resulted in a growing group of long-term survivors. However, IT-IEM still require intense patient and caregiver effort in terms of strict dietetic and pharmacological treatment, and the threat of metabolic crises is always present. Furthermore, crises can affect the central nervous system (CNS), leading to cognitive, behavioural and psychiatric sequelae. Consequently, the well-being of the patients warrants consideration from both a medical and a psychosocial viewpoint by assessing health-related quality of life (HrQoL), psychological adjustment, and adaptive functioning. To date, an overview of findings on these topics for IT-IEM is lacking. We therefore aimed to systematically review the research on HrQoL, psychological adjustment, and adaptive functioning in patients with IT-IEM. Relevant databases were searched with predefined keywords. Study selection was conducted in two steps based on predefined criteria. Two independent reviewers completed the selection and data extraction. Eleven articles met the inclusion criteria. Studies were of varying methodological quality and used different assessment measures. Findings on HrQoL were inconsistent, with some showing lower and others showing higher or equal HrQoL for IT-IEM patients compared to norms. Findings on psychological adjustment and adaptive functioning were more consistent, showing mostly either no difference or worse adjustment of IT-IEM patients compared to norms. Single medical risk factors for HrQoL, psychological adjustment, or adaptive functioning have been addressed, while psychosocial risk factors have not been addressed. Data on HrQoL, psychological adjustment, and adaptive functioning for IT-IEM are sparse. Studies are inconsistent in

  5. Is valve choice a significant determinant of paravalular leak post-transcatheter aortic valve implantation? A systematic review and meta-analysis.

    Science.gov (United States)

    O'Sullivan, Katie E; Gough, Aideen; Segurado, Ricardo; Barry, Mitchel; Sugrue, Declan; Hurley, John

    2014-05-01

    Paravalvular regurgitation (PVR) following transcatheter aortic valve implantation (TAVI) is associated with poor survival. The two main valve delivery systems used to date differ significantly in both structure and deployment technique. The primary objective of this study was to perform a systematic review and meta-analysis of studies identifying PVR in patients post-TAVI using Medtronic CoreValve (MCV) and Edward Sapien (ES) valves in order to identify whether a significant difference exists between valve types. The secondary objective was to identify additional factors predisposing to PVR to provide an overview of the other associated considerations. A systematic review and meta-analysis of the current literature to identify PVR rate in patients with MCV and ES valves was performed. We also sought to examine other factors predisposing to PVR. A total of 5910 patients were identified from 9 studies. PVR rates for MCV and ES were analysed. MCV was associated with a higher PVR rate of 15.75% [95% confidence interval (CI) 12.48-19.32] compared with ES 3.93% [95% CI 1.05-8.38]. We separately reviewed predisposing factors associated with PVR. A formal comparison of the MCV and ES valve leakage rates by mixed-effects meta-regression with a fixed-effect moderator variable for valve type (MCV or ES) suggested a statistically significant difference in leakage rate between the two valve types (P = 0.0002). Unfavourable anatomical and pathological factors as well as valve choice have an impact on rates of PVR. Additionally, certain anatomical features dictate valve choice. A direct comparison of all the predisposing factors at this time is not possible and will require prospective multivariate analysis. There is, however, a significant difference in the PVR rates between valves based on the published observational data available to date. The ES valve associated with a lower incidence of PVR overall; therefore, we conclude that valve choice is indeed a significant

  6. Arthroscopic Debridement for Primary Degenerative Osteoarthritis of the Elbow Leads to Significant Improvement in Range of Motion and Clinical Outcomes: A Systematic Review.

    Science.gov (United States)

    Sochacki, Kyle R; Jack, Robert A; Hirase, Takashi; McCulloch, Patrick C; Lintner, David M; Liberman, Shari R; Harris, Joshua D

    2017-12-01

    The purpose of this investigation was to determine whether arthroscopic debridement of primary elbow osteoarthritis results in statistically significant and clinically relevant improvement in (1) elbow range of motion and (2) clinical outcomes with (3) low complication and reoperation rates. A systematic review was registered with PROSPERO and performed using PRISMA guidelines. Databases were searched for studies that investigated the outcomes of arthroscopic debridement for the treatment of primary osteoarthritis of the elbow in adult human patients. Study methodological quality was analyzed. Studies that included post-traumatic arthritis were excluded. Elbow motion and all elbow-specific patient-reported outcome scores were eligible for analysis. Comparisons between preoperative and postoperative values from each study were made using 2-sample Z-tests (http://in-silico.net/tools/statistics/ztest) using a P value osteoarthritis results in statistically significant and clinically relevant improvement in elbow range of motion and clinical outcomes with low complication and reoperation rates. Systematic review of level IV studies. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  7. Systematic errors in digital volume correlation due to the self-heating effect of a laboratory x-ray CT scanner

    International Nuclear Information System (INIS)

    Wang, B; Pan, B; Tao, R; Lubineau, G

    2017-01-01

    The use of digital volume correlation (DVC) in combination with a laboratory x-ray computed tomography (CT) for full-field internal 3D deformation measurement of opaque materials has flourished in recent years. During x-ray tomographic imaging, the heat generated by the x-ray tube changes the imaging geometry of x-ray scanner, and further introduces noticeable errors in DVC measurements. In this work, to provide practical guidance high-accuracy DVC measurement, the errors in displacements and strains measured by DVC due to the self-heating for effect of a commercially available x-ray scanner were experimentally investigated. The errors were characterized by performing simple rescan tests with different scan durations. The results indicate that the maximum strain errors associated with the self-heating of the x-ray scanner exceed 400 µε . Possible approaches for minimizing or correcting these displacement and strain errors are discussed. Finally, a series of translation and uniaxial compression tests were performed, in which strain errors were detected and then removed using pre-established artificial dilatational strain-time curve. Experimental results demonstrate the efficacy and accuracy of the proposed strain error correction approach. (paper)

  8. Systematic errors in digital volume correlation due to the self-heating effect of a laboratory x-ray CT scanner

    KAUST Repository

    Wang, B

    2017-02-15

    The use of digital volume correlation (DVC) in combination with a laboratory x-ray computed tomography (CT) for full-field internal 3D deformation measurement of opaque materials has flourished in recent years. During x-ray tomographic imaging, the heat generated by the x-ray tube changes the imaging geometry of x-ray scanner, and further introduces noticeable errors in DVC measurements. In this work, to provide practical guidance high-accuracy DVC measurement, the errors in displacements and strains measured by DVC due to the self-heating for effect of a commercially available x-ray scanner were experimentally investigated. The errors were characterized by performing simple rescan tests with different scan durations. The results indicate that the maximum strain errors associated with the self-heating of the x-ray scanner exceed 400 µε. Possible approaches for minimizing or correcting these displacement and strain errors are discussed. Finally, a series of translation and uniaxial compression tests were performed, in which strain errors were detected and then removed using pre-established artificial dilatational strain-time curve. Experimental results demonstrate the efficacy and accuracy of the proposed strain error correction approach.

  9. Operator errors

    International Nuclear Information System (INIS)

    Knuefer; Lindauer

    1980-01-01

    Besides that at spectacular events a combination of component failure and human error is often found. Especially the Rasmussen-Report and the German Risk Assessment Study show for pressurised water reactors that human error must not be underestimated. Although operator errors as a form of human error can never be eliminated entirely, they can be minimized and their effects kept within acceptable limits if a thorough training of personnel is combined with an adequate design of the plant against accidents. Contrary to the investigation of engineering errors, the investigation of human errors has so far been carried out with relatively small budgets. Intensified investigations in this field appear to be a worthwhile effort. (orig.)

  10. Is the prognostic significance of O6-methylguanine- DNA methyltransferase promoter methylation equally important in glioblastomas of patients from different continents? A systematic review with meta-analysis.

    Science.gov (United States)

    Meng, Wei; Jiang, Yangyang; Ma, Jie

    2017-01-01

    O6-methylguanine-DNA methyltransferase (MGMT) is an independent predictor of therapeutic response and potential prognosis in patients with glioblastoma multiforme (GBM). However, its significance of clinical prognosis in different continents still needs to be explored. To explore the effects of MGMT promoter methylation on both progression-free survival (PFS) and overall survival (OS) among GBM patients from different continents, a systematic review of published studies was conducted. A total of 5103 patients from 53 studies were involved in the systematic review and the total percentage of MGMT promoter methylation was 45.53%. Of these studies, 16 studies performed univariate analyses and 17 performed multivariate analyses of MGMT promoter methylation on PFS. The pooled hazard ratio (HR) estimated for PFS was 0.55 (95% CI 0.50, 0.60) by univariate analysis and 0.43 (95% CI 0.38, 0.48) by multivariate analysis. The effect of MGMT promoter methylation on OS was explored in 30 studies by univariate analysis and in 30 studies by multivariate analysis. The combined HR was 0.48 (95% CI 0.44, 0.52) and 0.42 (95% CI 0.38, 0.45), respectively. In each subgroup divided by areas, the prognostic significance still remained highly significant. The proportion of methylation in each group was in inverse proportion to the corresponding HR in the univariate and multivariate analyses of PFS. However, from the perspective of OS, compared with data from Europe and the US, higher methylation rates in Asia did not bring better returns.

  11. Detecting errors in micro and trace analysis by using statistics

    DEFF Research Database (Denmark)

    Heydorn, K.

    1993-01-01

    By assigning a standard deviation to each step in an analytical method it is possible to predict the standard deviation of each analytical result obtained by this method. If the actual variability of replicate analytical results agrees with the expected, the analytical method is said...... to be in statistical control. Significant deviations between analytical results from different laboratories reveal the presence of systematic errors, and agreement between different laboratories indicate the absence of systematic errors. This statistical approach, referred to as the analysis of precision, was applied...

  12. The Significance of an Excess in a Counting Experiment: Assessing the Impact of Systematic Uncertainties and the Case with a Gaussian Background

    Science.gov (United States)

    Vianello, Giacomo

    2018-05-01

    Several experiments in high-energy physics and astrophysics can be treated as on/off measurements, where an observation potentially containing a new source or effect (“on” measurement) is contrasted with a background-only observation free of the effect (“off” measurement). In counting experiments, the significance of the new source or effect can be estimated with a widely used formula from Li & Ma, which assumes that both measurements are Poisson random variables. In this paper we study three other cases: (i) the ideal case where the background measurement has no uncertainty, which can be used to study the maximum sensitivity that an instrument can achieve, (ii) the case where the background estimate b in the off measurement has an additional systematic uncertainty, and (iii) the case where b is a Gaussian random variable instead of a Poisson random variable. The latter case applies when b comes from a model fitted on archival or ancillary data, or from the interpolation of a function fitted on data surrounding the candidate new source/effect. Practitioners typically use a formula that is only valid when b is large and when its uncertainty is very small, while we derive a general formula that can be applied in all regimes. We also develop simple methods that can be used to assess how much an estimate of significance is sensitive to systematic uncertainties on the efficiency or on the background. Examples of applications include the detection of short gamma-ray bursts and of new X-ray or γ-ray sources. All the techniques presented in this paper are made available in a Python code that is ready to use.

  13. The significance of OLGA and OLGIM staging systems in the risk assessment of gastric cancer: a systematic review and meta-analysis.

    Science.gov (United States)

    Yue, Hu; Shan, Liu; Bin, Lv

    2018-02-19

    Despite extensive research on the criteria for the assessment of gastric cancer risk using the Operative Link on Gastritis Assessment (OLGA) and Operative Link on Gastritis/Intestinal-Metaplasia Assessment (OLGIM) systems, no comprehensive overview or systematic summary on their use is currently available. To perform a systematic review and meta-analysis to assess the efficacy of the OLGA and OLGIM staging systems in evaluating gastric cancer risk. We searched various databases, including PubMed, EMBASE, Medline, and Cochrane's library, for articles published before March 2017 on the association between OLGA/OLGIM stages and risk of gastric cancer. Statistical analysis was performed using RevMan 5.30 and Stata 14.0, with the odds ratio, risk ratio, and 95% confidence interval as the effect measures. A meta-analysis of six case-control studies and two cohort studies, comprising 2700 subjects, was performed. The meta-analysis of prospective case-control studies demonstrated a significant association between the OLGA/OLGIM stages III/IV and gastric cancer. The Newcastle-Ottawa Scale (NOS) score reflected heterogeneity in the case-control studies on OLGA. Subgroup analysis of high-quality (NOS score ≥ 5) studies showed an association between OLGA stage III/IV and increased risk of gastric cancer; the association was also high in the remaining study with low NOS score. The association between higher stages of gastritis defined by OLGA and risk of gastric cancer was significant. This correlation implies that close and frequent monitoring of such high-risk patients is necessary to facilitate timely diagnosis of gastric cancer.

  14. Quantification and handling of sampling errors in instrumental measurements: a case study

    DEFF Research Database (Denmark)

    Andersen, Charlotte Møller; Bro, R.

    2004-01-01

    in certain situations, the effect of systematic errors is also considerable. The relevant errors contributing to the prediction error are: error in instrumental measurements (x-error), error in reference measurements (y-error), error in the estimated calibration model (regression coefficient error) and model...

  15. Einstein's error

    International Nuclear Information System (INIS)

    Winterflood, A.H.

    1980-01-01

    In discussing Einstein's Special Relativity theory it is claimed that it violates the principle of relativity itself and that an anomalous sign in the mathematics is found in the factor which transforms one inertial observer's measurements into those of another inertial observer. The apparent source of this error is discussed. Having corrected the error a new theory, called Observational Kinematics, is introduced to replace Einstein's Special Relativity. (U.K.)

  16. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions

    NARCIS (Netherlands)

    Luijten, M.; Machielsen, M.W.J.; Veltman, D.J.; Hester, R.; de Haan, L.; Franken, I.H.A.

    2014-01-01

    Background: Several current theories emphasize the role of cognitive control in addiction. The present review evaluates neural deficits in the domains of inhibitory control and error processing in individuals with substance dependence and in those showing excessive addiction-like behaviours. The

  17. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions

    NARCIS (Netherlands)

    Luijten, Maartje; Machielsen, Marise W. J.; Veltman, Dick J.; Hester, Robert; de Haan, Lieuwe; Franken, Ingmar H. A.

    2014-01-01

    Several current theories emphasize the role of cognitive control in addiction. The present review evaluates neural deficits in the domains of inhibitory control and error processing in individuals with substance dependence and in those showing excessive addiction-like behaviours. The combined

  18. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions

    Science.gov (United States)

    Luijten, Maartje; Machielsen, Marise W.J.; Veltman, Dick J.; Hester, Robert; de Haan, Lieuwe; Franken, Ingmar H.A.

    2014-01-01

    Background Several current theories emphasize the role of cognitive control in addiction. The present review evaluates neural deficits in the domains of inhibitory control and error processing in individuals with substance dependence and in those showing excessive addiction-like behaviours. The combined evaluation of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) findings in the present review offers unique information on neural deficits in addicted individuals. Methods We selected 19 ERP and 22 fMRI studies using stop-signal, go/no-go or Flanker paradigms based on a search of PubMed and Embase. Results The most consistent findings in addicted individuals relative to healthy controls were lower N2, error-related negativity and error positivity amplitudes as well as hypoactivation in the anterior cingulate cortex (ACC), inferior frontal gyrus and dorsolateral prefrontal cortex. These neural deficits, however, were not always associated with impaired task performance. With regard to behavioural addictions, some evidence has been found for similar neural deficits; however, studies are scarce and results are not yet conclusive. Differences among the major classes of substances of abuse were identified and involve stronger neural responses to errors in individuals with alcohol dependence versus weaker neural responses to errors in other substance-dependent populations. Limitations Task design and analysis techniques vary across studies, thereby reducing comparability among studies and the potential of clinical use of these measures. Conclusion Current addiction theories were supported by identifying consistent abnormalities in prefrontal brain function in individuals with addiction. An integrative model is proposed, suggesting that neural deficits in the dorsal ACC may constitute a hallmark neurocognitive deficit underlying addictive behaviours, such as loss of control. PMID:24359877

  19. Improving Type Error Messages in OCaml

    Directory of Open Access Journals (Sweden)

    Arthur Charguéraud

    2015-12-01

    Full Text Available Cryptic type error messages are a major obstacle to learning OCaml or other ML-based languages. In many cases, error messages cannot be interpreted without a sufficiently-precise model of the type inference algorithm. The problem of improving type error messages in ML has received quite a bit of attention over the past two decades, and many different strategies have been considered. The challenge is not only to produce error messages that are both sufficiently concise and systematically useful to the programmer, but also to handle a full-blown programming language and to cope with large-sized programs efficiently. In this work, we present a modification to the traditional ML type inference algorithm implemented in OCaml that, by significantly reducing the left-to-right bias, allows us to report error messages that are more helpful to the programmer. Our algorithm remains fully predictable and continues to produce fairly concise error messages that always help making some progress towards fixing the code. We implemented our approach as a patch to the OCaml compiler in just a few hundred lines of code. We believe that this patch should benefit not just to beginners, but also to experienced programs developing large-scale OCaml programs.

  20. Measurement Error in Education and Growth Regressions

    NARCIS (Netherlands)

    Portela, M.; Teulings, C.N.; Alessie, R.

    The perpetual inventory method used for the construction of education data per country leads to systematic measurement error. This paper analyses the effect of this measurement error on GDP regressions. There is a systematic difference in the education level between census data and observations

  1. Measurement error in education and growth regressions

    NARCIS (Netherlands)

    Portela, Miguel; Teulings, Coen; Alessie, R.

    2004-01-01

    The perpetual inventory method used for the construction of education data per country leads to systematic measurement error. This paper analyses the effect of this measurement error on GDP regressions. There is a systematic difference in the education level between census data and observations

  2. Clinical significance of serum tumor markers for gastric cancer: a systematic review of literature by the Task Force of the Japanese Gastric Cancer Association.

    Science.gov (United States)

    Shimada, Hideaki; Noie, Tamaki; Ohashi, Manabu; Oba, Koji; Takahashi, Yutaka

    2014-01-01

    The aim of this review was to evaluate the clinical significance of serum tumor markers, particularly CEA, CA19-9, and CA72-4, in patients with gastric cancer. A systematic literature search was performed using PubMed/MEDLINE with the keywords "gastric cancer" and "tumor marker," to select 4,925 relevant reports published before the end of November 2012. A total of 187 publications contained data for CEA and CA19-9, and 19 publications contained data related to all three tumor markers. The positive rates were 21.1 % for CEA, 27.8 % for CA19-9, and 30.0 % for CA72-4. These three markers were significantly associated with tumor stage and patient survival. Serum markers are not useful for early cancer, but they are useful for detecting recurrence and distant metastasis, predicting patient survival, and monitoring after surgery. Tumor marker monitoring may be useful for patients after surgery because the positive conversion of tumor markers usually occurs 2-3 months before imaging abnormalities. Among other tumor markers, alpha-fetoprotein (AFP) is useful for detecting and predicting liver metastases. Moreover, CA125 and sialyl Tn antigens (STN) are useful for detecting peritoneal metastases. Although no prospective trial has yet been completed to evaluate the clinical significance of these serum markers, this literature survey suggests that combinations of CEA, CA19-9, and CA72-4 are the most effective ways for staging before surgery or chemotherapy. In particular, monitoring tumor markers that were elevated before surgery or chemotherapy could be useful for detection of recurrence or evaluation of the response.

  3. Clinical significance of tumor necrosis factor-α inhibitors in the treatment of sciatica: a systematic review and meta-analysis.

    Science.gov (United States)

    Wang, Yun Fu; Chen, Ping You; Chang, Wei; Zhu, Fi Qi; Xu, Li Li; Wang, Song Lin; Chang, Li Ying; Luo, Jie; Liu, Guang Jian

    2014-01-01

    Currently, no satisfactory treatment is available for sciatica caused by herniated discs and/or spinal stenosis. The objective of this study is to assess the value of tumor necrosis factor (TNF)-α inhibitors in the treatment of sciatica. Without language restrictions, we searched PubMed, OVID, EMBASE, the Web of Science, the Clinical Trials Registers, the Cochrane Central Register of Controlled Trials and the China Academic Library and Information System. We then performed a systematic review and meta-analysis on the enrolled trials that met the inclusion criteria. Nine prospective randomized controlled trials (RCTs) and two before-after controlled trials involving 531 patients met our inclusion criteria and were included in this study. Our systematic assessment and meta-analysis demonstrated that in terms of the natural course of the disease, compared with the control condition, TNF-α inhibitors neither significantly relieved lower back and leg pain (both p > 0.05) nor enhanced the proportion of patients who felt overall satisfaction (global perceived effect (satisfaction)) or were able to return to work (return to work) (combined endpoint; p > 0.05) at the short-term, medium-term and long-term follow-ups. In addition, compared with the control condition, TNF-α inhibitors could reduce the risk ratio (RR) of discectomy or radicular block (combined endpoint; RR = 0.51, 95% CI 0.26 to 1.00, p = 0.049) at medium-term follow-up, but did not decrease RR at the short-term (RR = 0.64, 95% CI 0.17 to 2.40, p = 0.508) and long-term follow-ups (RR = 0.64, 95% CI 0.40 to 1.03, p = 0.065). The currently available evidence demonstrated that other than reducing the RR of discectomy or radicular block (combined endpoint) at medium-term follow-up, TNF-α inhibitors showed limited clinical value in the treatment of sciatica caused by herniated discs and/or spinal stenosis.

  4. Clinical significance of tumor necrosis factor-α inhibitors in the treatment of sciatica: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Yun Fu Wang

    Full Text Available Currently, no satisfactory treatment is available for sciatica caused by herniated discs and/or spinal stenosis. The objective of this study is to assess the value of tumor necrosis factor (TNF-α inhibitors in the treatment of sciatica.Without language restrictions, we searched PubMed, OVID, EMBASE, the Web of Science, the Clinical Trials Registers, the Cochrane Central Register of Controlled Trials and the China Academic Library and Information System. We then performed a systematic review and meta-analysis on the enrolled trials that met the inclusion criteria.Nine prospective randomized controlled trials (RCTs and two before-after controlled trials involving 531 patients met our inclusion criteria and were included in this study. Our systematic assessment and meta-analysis demonstrated that in terms of the natural course of the disease, compared with the control condition, TNF-α inhibitors neither significantly relieved lower back and leg pain (both p > 0.05 nor enhanced the proportion of patients who felt overall satisfaction (global perceived effect (satisfaction or were able to return to work (return to work (combined endpoint; p > 0.05 at the short-term, medium-term and long-term follow-ups. In addition, compared with the control condition, TNF-α inhibitors could reduce the risk ratio (RR of discectomy or radicular block (combined endpoint; RR = 0.51, 95% CI 0.26 to 1.00, p = 0.049 at medium-term follow-up, but did not decrease RR at the short-term (RR = 0.64, 95% CI 0.17 to 2.40, p = 0.508 and long-term follow-ups (RR = 0.64, 95% CI 0.40 to 1.03, p = 0.065.The currently available evidence demonstrated that other than reducing the RR of discectomy or radicular block (combined endpoint at medium-term follow-up, TNF-α inhibitors showed limited clinical value in the treatment of sciatica caused by herniated discs and/or spinal stenosis.

  5. The potentiometric and laser RAMAN study of the hydrolysis of uranyl chloride under physiological conditions and the effect of systematic and random errors on the hydrolysis constants

    International Nuclear Information System (INIS)

    Deschenes, L.L.; Kramer, G.H.; Monserrat, K.J.; Robinson, P.A.

    1986-12-01

    The hydrolysis of uranyl ions in 0.15 mol/L (Na)C1 solution at 37 degrees Celsius has been studied by potentiometric titration. The results were consistent with the formation of (UO 2 ) 2 (OH) 2 , (UO 2 ) 3 (OH) 4 , (UO 2 ) 3 (OH) 5 and (UO 2 ) 4 (OH) 7 . The stability constants, which were evaluated using a version of MINIQUAD, were found to be: log β 22 = -5.693 ± 0.007, log β 34 = -11.499 ± 0.024, log β 35 = -16.001 ± 0.050, log β 47 = -21.027 ± 0.051. Laser Raman spectroscopy has been used to identify the products including (UO 2 ) 4 (OH) 7 species. The difficulties in identifying the chemical species in solution and the effect of small errors on this selection has also been investigated by computer simulation. The results clearly indicate that small errors can lead to the selection of species that may not exist

  6. Diagnostic errors in pediatric radiology

    International Nuclear Information System (INIS)

    Taylor, George A.; Voss, Stephan D.; Melvin, Patrice R.; Graham, Dionne A.

    2011-01-01

    Little information is known about the frequency, types and causes of diagnostic errors in imaging children. Our goals were to describe the patterns and potential etiologies of diagnostic error in our subspecialty. We reviewed 265 cases with clinically significant diagnostic errors identified during a 10-year period. Errors were defined as a diagnosis that was delayed, wrong or missed; they were classified as perceptual, cognitive, system-related or unavoidable; and they were evaluated by imaging modality and level of training of the physician involved. We identified 484 specific errors in the 265 cases reviewed (mean:1.8 errors/case). Most discrepancies involved staff (45.5%). Two hundred fifty-eight individual cognitive errors were identified in 151 cases (mean = 1.7 errors/case). Of these, 83 cases (55%) had additional perceptual or system-related errors. One hundred sixty-five perceptual errors were identified in 165 cases. Of these, 68 cases (41%) also had cognitive or system-related errors. Fifty-four system-related errors were identified in 46 cases (mean = 1.2 errors/case) of which all were multi-factorial. Seven cases were unavoidable. Our study defines a taxonomy of diagnostic errors in a large academic pediatric radiology practice and suggests that most are multi-factorial in etiology. Further study is needed to define effective strategies for improvement. (orig.)

  7. Research Pearls: The Significance of Statistics and Perils of Pooling. Part 3: Pearls and Pitfalls of Meta-analyses and Systematic Reviews.

    Science.gov (United States)

    Harris, Joshua D; Brand, Jefferson C; Cote, Mark P; Dhawan, Aman

    2017-08-01

    Within the health care environment, there has been a recent and appropriate trend towards emphasizing the value of care provision. Reduced cost and higher quality improve the value of care. Quality is a challenging, heterogeneous, variably defined concept. At the core of quality is the patient's outcome, quantified by a vast assortment of subjective and objective outcome measures. There has been a recent evolution towards evidence-based medicine in health care, clearly elucidating the role of high-quality evidence across groups of patients and studies. Synthetic studies, such as systematic reviews and meta-analyses, are at the top of the evidence-based medicine hierarchy. Thus, these investigations may be the best potential source of guiding diagnostic, therapeutic, prognostic, and economic medical decision making. Systematic reviews critically appraise and synthesize the best available evidence to provide a conclusion statement (a "take-home point") in response to a specific answerable clinical question. A meta-analysis uses statistical methods to quantitatively combine data from single studies. Meta-analyses should be performed with high methodological quality homogenous studies (Level I or II) or evidence randomized studies, to minimize confounding variable bias. When it is known that the literature is inadequate or a recent systematic review has already been performed with a demonstration of insufficient data, then a new systematic review does not add anything meaningful to the literature. PROSPERO registration and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines assist authors in the design and conduct of systematic reviews and should always be used. Complete transparency of the conduct of the review permits reproducibility and improves fidelity of the conclusions. Pooling of data from overly dissimilar investigations should be avoided. This particularly applies to Level IV evidence, that is, noncomparative investigations

  8. Boost first, eliminate systematic error, and individualize CTV to PTV margin when treating lymph nodes in high-risk prostate cancer

    International Nuclear Information System (INIS)

    Rossi, Peter J.; Schreibmann, Eduard; Jani, Ashesh B.; Master, Viraj A.; Johnstone, Peter A.S.

    2009-01-01

    Purpose: The purpose of this report is to evaluate the movement of the planning target volume (PTV) in relation to the pelvic lymph nodes (PLNs) during treatment of high-risk prostate cancer. Patients and methods: We reviewed the daily treatment course of ten consecutively treated patients with high-risk prostate cancer. PLNs were included in the initial PTV for each patient. Daily on-board imaging of gold fiducial markers implanted in the prostate was used; daily couch shifts were made as needed and recorded. We analyzed how the daily couch shifts impacted the dose delivered to the PLN. Results: A PLN clinical target volume was identified in each man using CT-based treatment planning. At treatment planning, median minimum planned dose to the PLN was 95%, maximum 101%, and mean 97%. Daily couch shifting to prostate markers degraded the dose slightly; median minimum dose to the PLN was 92%, maximum, 101%, and mean delivered, 96%. We found two cases, where daily systematic shifts resulted in an underdosing of the PLN by 9% and 29%, respectively. In other cases, daily shifts were random and led to a mean 2.2% degradation of planned to delivered PLN dose. Conclusions: We demonstrated degradation of the delivered dose to PLN PTV, which may occur if daily alignment only to the prostate is considered. To improve PLN PTV, it maybe preferable to deliver the prostate/boost treatment first, and adapt the PTV of the pelvic/nodal treatment to uncertainties documented during prostate/boost treatment

  9. Medication Errors - A Review

    OpenAIRE

    Vinay BC; Nikhitha MK; Patel Sunil B

    2015-01-01

    In this present review article, regarding medication errors its definition, medication error problem, types of medication errors, common causes of medication errors, monitoring medication errors, consequences of medication errors, prevention of medication error and managing medication errors have been explained neatly and legibly with proper tables which is easy to understand.

  10. Hospital medication errors in a pharmacovigilance system in Colombia

    Directory of Open Access Journals (Sweden)

    Jorge Enrique Machado-Alba

    2015-11-01

    Full Text Available Objective: this study analyzes the medication errors reported to a pharmacovigilance system by 26 hospitals for patients in the healthcare system of Colombia. Methods: this retrospective study analyzed the medication errors reported to a systematized database between 1 January 2008 and 12 September 2013. The medication is dispensed by the company Audifarma S.A. to hospitals and clinics around Colombia. Data were classified according to the taxonomy of the National Coordinating Council for Medication Error Reporting and Prevention (NCC MERP. The data analysis was performed using SPSS 22.0 for Windows, considering p-values < 0.05 significant. Results: there were 9 062 medication errors in 45 hospital pharmacies. Real errors accounted for 51.9% (n = 4 707, of which 12.0% (n = 567 reached the patient (Categories C to I and caused harm (Categories E to I to 17 subjects (0.36%. The main process involved in errors that occurred (categories B to I was prescription (n = 1 758, 37.3%, followed by dispensation (n = 1 737, 36.9%, transcription (n = 970, 20.6% and administration (n = 242, 5.1%. The errors in the administration process were 45.2 times more likely to reach the patient (CI 95%: 20.2–100.9. Conclusions: medication error reporting systems and prevention strategies should be widespread in hospital settings, prioritizing efforts to address the administration process.

  11. Theory of Test Translation Error

    Science.gov (United States)

    Solano-Flores, Guillermo; Backhoff, Eduardo; Contreras-Nino, Luis Angel

    2009-01-01

    In this article, we present a theory of test translation whose intent is to provide the conceptual foundation for effective, systematic work in the process of test translation and test translation review. According to the theory, translation error is multidimensional; it is not simply the consequence of defective translation but an inevitable fact…

  12. Error budget calculations in laboratory medicine: linking the concepts of biological variation and allowable medical errors

    NARCIS (Netherlands)

    Stroobants, A. K.; Goldschmidt, H. M. J.; Plebani, M.

    2003-01-01

    Background: Random, systematic and sporadic errors, which unfortunately are not uncommon in laboratory medicine, can have a considerable impact on the well being of patients. Although somewhat difficult to attain, our main goal should be to prevent all possible errors. A good insight on error-prone

  13. Error management process for power stations

    International Nuclear Information System (INIS)

    Hirotsu, Yuko; Takeda, Daisuke; Fujimoto, Junzo; Nagasaka, Akihiko

    2016-01-01

    The purpose of this study is to establish 'error management process for power stations' for systematizing activities for human error prevention and for festering continuous improvement of these activities. The following are proposed by deriving concepts concerning error management process from existing knowledge and realizing them through application and evaluation of their effectiveness at a power station: an entire picture of error management process that facilitate four functions requisite for maraging human error prevention effectively (1. systematizing human error prevention tools, 2. identifying problems based on incident reports and taking corrective actions, 3. identifying good practices and potential problems for taking proactive measures, 4. prioritizeng human error prevention tools based on identified problems); detail steps for each activity (i.e. developing an annual plan for human error prevention, reporting and analyzing incidents and near misses) based on a model of human error causation; procedures and example of items for identifying gaps between current and desired levels of executions and outputs of each activity; stages for introducing and establishing the above proposed error management process into a power station. By giving shape to above proposals at a power station, systematization and continuous improvement of activities for human error prevention in line with the actual situation of the power station can be expected. (author)

  14. The surveillance error grid.

    Science.gov (United States)

    Klonoff, David C; Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B; Kirkman, M Sue; Kovatchev, Boris

    2014-07-01

    Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments plotted on the SEG when compared to

  15. Error Budgeting

    Energy Technology Data Exchange (ETDEWEB)

    Vinyard, Natalia Sergeevna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, Theodore Sonne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-04

    We calculate opacity from k (hn)=-ln[T(hv)]/pL, where T(hv) is the transmission for photon energy hv, p is sample density, and L is path length through the sample. The density and path length are measured together by Rutherford backscatter. Δk = $\\partial k$\\ $\\partial T$ ΔT + $\\partial k$\\ $\\partial (pL)$. We can re-write this in terms of fractional error as Δk/k = Δ1n(T)/T + Δ(pL)/(pL). Transmission itself is calculated from T=(U-E)/(V-E)=B/B0, where B is transmitted backlighter (BL) signal and B0 is unattenuated backlighter signal. Then ΔT/T=Δln(T)=ΔB/B+ΔB0/B0, and consequently Δk/k = 1/T (ΔB/B + ΔB$_0$/B$_0$ + Δ(pL)/(pL). Transmission is measured in the range of 0.2

  16. Medical error

    African Journals Online (AJOL)

    QuickSilver

    Department of Psychiatry, University of Melbourne, Australia systems of ... traditional M&M (morbidity and mortality) meetings play a significant role in education .... inaccurate and inflammatory media reports their community accepted the ex-.

  17. Learning time-dependent noise to reduce logical errors: real time error rate estimation in quantum error correction

    Science.gov (United States)

    Huo, Ming-Xia; Li, Ying

    2017-12-01

    Quantum error correction is important to quantum information processing, which allows us to reliably process information encoded in quantum error correction codes. Efficient quantum error correction benefits from the knowledge of error rates. We propose a protocol for monitoring error rates in real time without interrupting the quantum error correction. Any adaptation of the quantum error correction code or its implementation circuit is not required. The protocol can be directly applied to the most advanced quantum error correction techniques, e.g. surface code. A Gaussian processes algorithm is used to estimate and predict error rates based on error correction data in the past. We find that using these estimated error rates, the probability of error correction failures can be significantly reduced by a factor increasing with the code distance.

  18. Aliasing errors in measurements of beam position and ellipticity

    International Nuclear Information System (INIS)

    Ekdahl, Carl

    2005-01-01

    Beam position monitors (BPMs) are used in accelerators and ion experiments to measure currents, position, and azimuthal asymmetry. These usually consist of discrete arrays of electromagnetic field detectors, with detectors located at several equally spaced azimuthal positions at the beam tube wall. The discrete nature of these arrays introduces systematic errors into the data, independent of uncertainties resulting from signal noise, lack of recording dynamic range, etc. Computer simulations were used to understand and quantify these aliasing errors. If required, aliasing errors can be significantly reduced by employing more than the usual four detectors in the BPMs. These simulations show that the error in measurements of the centroid position of a large beam is indistinguishable from the error in the position of a filament. The simulations also show that aliasing errors in the measurement of beam ellipticity are very large unless the beam is accurately centered. The simulations were used to quantify the aliasing errors in beam parameter measurements during early experiments on the DARHT-II accelerator, demonstrating that they affected the measurements only slightly, if at all

  19. Aliasing errors in measurements of beam position and ellipticity

    Science.gov (United States)

    Ekdahl, Carl

    2005-09-01

    Beam position monitors (BPMs) are used in accelerators and ion experiments to measure currents, position, and azimuthal asymmetry. These usually consist of discrete arrays of electromagnetic field detectors, with detectors located at several equally spaced azimuthal positions at the beam tube wall. The discrete nature of these arrays introduces systematic errors into the data, independent of uncertainties resulting from signal noise, lack of recording dynamic range, etc. Computer simulations were used to understand and quantify these aliasing errors. If required, aliasing errors can be significantly reduced by employing more than the usual four detectors in the BPMs. These simulations show that the error in measurements of the centroid position of a large beam is indistinguishable from the error in the position of a filament. The simulations also show that aliasing errors in the measurement of beam ellipticity are very large unless the beam is accurately centered. The simulations were used to quantify the aliasing errors in beam parameter measurements during early experiments on the DARHT-II accelerator, demonstrating that they affected the measurements only slightly, if at all.

  20. Measurement Error in Education and Growth Regressions

    NARCIS (Netherlands)

    Portela, Miguel; Alessie, Rob; Teulings, Coen

    2010-01-01

    The use of the perpetual inventory method for the construction of education data per country leads to systematic measurement error. This paper analyzes its effect on growth regressions. We suggest a methodology for correcting this error. The standard attenuation bias suggests that using these

  1. Random error in cardiovascular meta-analyses

    DEFF Research Database (Denmark)

    Albalawi, Zaina; McAlister, Finlay A; Thorlund, Kristian

    2013-01-01

    BACKGROUND: Cochrane reviews are viewed as the gold standard in meta-analyses given their efforts to identify and limit systematic error which could cause spurious conclusions. The potential for random error to cause spurious conclusions in meta-analyses is less well appreciated. METHODS: We exam...

  2. Error tracking in a clinical biochemistry laboratory

    DEFF Research Database (Denmark)

    Szecsi, Pal Bela; Ødum, Lars

    2009-01-01

    BACKGROUND: We report our results for the systematic recording of all errors in a standard clinical laboratory over a 1-year period. METHODS: Recording was performed using a commercial database program. All individuals in the laboratory were allowed to report errors. The testing processes were cl...

  3. Understanding human management of automation errors

    Science.gov (United States)

    McBride, Sara E.; Rogers, Wendy A.; Fisk, Arthur D.

    2013-01-01

    Automation has the potential to aid humans with a diverse set of tasks and support overall system performance. Automated systems are not always reliable, and when automation errs, humans must engage in error management, which is the process of detecting, understanding, and correcting errors. However, this process of error management in the context of human-automation interaction is not well understood. Therefore, we conducted a systematic review of the variables that contribute to error management. We examined relevant research in human-automation interaction and human error to identify critical automation, person, task, and emergent variables. We propose a framework for management of automation errors to incorporate and build upon previous models. Further, our analysis highlights variables that may be addressed through design and training to positively influence error management. Additional efforts to understand the error management process will contribute to automation designed and implemented to support safe and effective system performance. PMID:25383042

  4. Error calculations statistics in radioactive measurements

    International Nuclear Information System (INIS)

    Verdera, Silvia

    1994-01-01

    Basic approach and procedures frequently used in the practice of radioactive measurements.Statistical principles applied are part of Good radiopharmaceutical Practices and quality assurance.Concept of error, classification as systematic and random errors.Statistic fundamentals,probability theories, populations distributions, Bernoulli, Poisson,Gauss, t-test distribution,Ξ2 test, error propagation based on analysis of variance.Bibliography.z table,t-test table, Poisson index ,Ξ2 test

  5. Error Analysis of Satellite Precipitation-Driven Modeling of Flood Events in Complex Alpine Terrain

    Directory of Open Access Journals (Sweden)

    Yiwen Mei

    2016-03-01

    Full Text Available The error in satellite precipitation-driven complex terrain flood simulations is characterized in this study for eight different global satellite products and 128 flood events over the Eastern Italian Alps. The flood events are grouped according to two flood types: rain floods and flash floods. The satellite precipitation products and runoff simulations are evaluated based on systematic and random error metrics applied on the matched event pairs and basin-scale event properties (i.e., rainfall and runoff cumulative depth and time series shape. Overall, error characteristics exhibit dependency on the flood type. Generally, timing of the event precipitation mass center and dispersion of the time series derived from satellite precipitation exhibits good agreement with the reference; the cumulative depth is mostly underestimated. The study shows a dampening effect in both systematic and random error components of the satellite-driven hydrograph relative to the satellite-retrieved hyetograph. The systematic error in shape of the time series shows a significant dampening effect. The random error dampening effect is less pronounced for the flash flood events and the rain flood events with a high runoff coefficient. This event-based analysis of the satellite precipitation error propagation in flood modeling sheds light on the application of satellite precipitation in mountain flood hydrology.

  6. A Systematic Approach to Error Free Telemetry

    Science.gov (United States)

    2017-06-28

    FORCE BASE , CALIFORNIA AIR FORCE MATERIEL COMMAND UNITED STATES AIR FORCE 4 1 2 T W This Technical Information Memorandum (412TW-TIM-17-03, A...INTRODUCTION The airborne telemetry channel between the test article and ground receiving station introduces impairments that distort the received signal...the airframe under certain airplane-to-ground station geometries can exist should only one transmit antenna be used. Conversely, using two transmit

  7. Prognostic significances of overexpression MYC and/or BCL2 in R-CHOP-treated diffuse large B-cell lymphoma: A Systematic review and meta-analysis.

    Science.gov (United States)

    Li, Lu; Li, Yanyan; Que, Ximei; Gao, Xue; Gao, Qian; Yu, Mingxing; Ma, Kaili; Xi, Yanfeng; Wang, Tong

    2018-04-19

    Numerous studies have investigated the prognostic values of MYC and/or BCL2 protein overexpression in diffuse large B-cell lymphoma (DLBCL). However, the results still demonstrate discrepancies among different studies. We aimed to do a systematic review and meta-analysis on the relationships between overexpression MYC and/or BCL2 and DLBCLs treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). This study followed the guidelines of PRISMA and Cochrane handbook. The hazard ratios (HRs) for overall survival (OS) were pooled to estimate the main effect size. Twenty studies recruited a total of 5576 patients were available for this meta-analysis. The results showed that MYC (HR = 1.96, 95%CI (confidence interval) = 1.69-2.27)without heterogeneity(I 2  = 17.2%, P = 0.280), BCL2 (HR = 1.65, 95%CI = 1.43-1.89, I 2  = 20.7%, P = 0.234) protein overexpression, and co-overexpression (HR = 2.58, 95%CI = 2.19-3.04, I 2  = 17.2%, P = 0.275) had a poor prognosis in R-CHOP treated DLBCL patients, respectively. The current analysis indicated that MYC and/or BCL2 protein overexpression, and particularly co-overexpression was related to short overall survival in R-CHOP treated DLBCL patients, showing that application of the two new biomarkers can help to better stratify DLBCL patients and guide targeted treatment.

  8. Palliative patients’ and significant others’ experiences of transitions concerning organizational, psychosocial and existential issues during the course of incurable cancer: A systematic review protocol

    DEFF Research Database (Denmark)

    Madsen, Rikke; Uhrenfeldt, Lisbeth

    2014-01-01

    ABSTRACT Review question/objective The objective of this review is to identify, appraise and synthesize the best available evidence exploring palliative patients’ or their significant others’ experiences of transitions during the course of incurable cancer. In this review, transitions are concept...... exploring euthanasia will be excluded because euthanasia is not included in the WHO definition of palliation. KEYWORDS Lived experience; incurable cancer; patient; significant other; transition; organizational; psychosocial; existential...

  9. Association of Placebo, Indomethacin, Ibuprofen, and Acetaminophen With Closure of Hemodynamically Significant Patent Ductus Arteriosus in Preterm Infants: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Mitra, Souvik; Florez, Ivan D; Tamayo, Maria E; Mbuagbaw, Lawrence; Vanniyasingam, Thuva; Veroniki, Areti Angeliki; Zea, Adriana M; Zhang, Yuan; Sadeghirad, Behnam; Thabane, Lehana

    2018-03-27

    Despite increasing emphasis on conservative management of patent ductus arteriosus (PDA) in preterm infants, different pharmacotherapeutic interventions are used to treat those developing a hemodynamically significant PDA. To estimate the relative likelihood of hemodynamically significant PDA closure with common pharmacotherapeutic interventions and to compare adverse event rates. The databases of MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials were searched from inception until August 15, 2015, and updated on December 31, 2017, along with conference proceedings up to December 2017. Randomized clinical trials that enrolled preterm infants with a gestational age younger than 37 weeks treated with intravenous or oral indomethacin, ibuprofen, or acetaminophen vs each other, placebo, or no treatment for a clinically or echocardiographically diagnosed hemodynamically significant PDA. Data were independently extracted in pairs by 6 reviewers and synthesized with Bayesian random-effects network meta-analyses. Primary outcome: hemodynamically significant PDA closure; secondary: included surgical closure, mortality, necrotizing enterocolitis, and intraventricular hemorrhage. In 68 randomized clinical trials of 4802 infants, 14 different variations of indomethacin, ibuprofen, or acetaminophen were used as treatment modalities. The overall PDA closure rate was 67.4% (2867 of 4256 infants). A high dose of oral ibuprofen was associated with a significantly higher odds of PDA closure vs a standard dose of intravenous ibuprofen (odds ratio [OR], 3.59; 95% credible interval [CrI], 1.64-8.17; absolute risk difference, 199 [95% CrI, 95-258] more per 1000 infants) and a standard dose of intravenous indomethacin (OR, 2.35 [95% CrI, 1.08-5.31]; absolute risk difference, 124 [95% CrI, 14-188] more per 1000 infants). Based on the ranking statistics, a high dose of oral ibuprofen ranked as the best pharmacotherapeutic option for PDA closure (mean surface under the

  10. Orbit error characteristic and distribution of TLE using CHAMP orbit data

    Science.gov (United States)

    Xu, Xiao-li; Xiong, Yong-qing

    2018-02-01

    Space object orbital covariance data is required for collision risk assessments, but publicly accessible two line element (TLE) data does not provide orbital error information. This paper compared historical TLE data and GPS precision ephemerides of CHAMP to assess TLE orbit accuracy from 2002 to 2008, inclusive. TLE error spatial variations with longitude and latitude were calculated to analyze error characteristics and distribution. The results indicate that TLE orbit data are systematically biased from the limited SGP4 model. The biases can reach the level of kilometers, and the sign and magnitude are correlate significantly with longitude.

  11. On low-frequency errors of uniformly modulated filtered white-noise models for ground motions

    Science.gov (United States)

    Safak, Erdal; Boore, David M.

    1988-01-01

    Low-frequency errors of a commonly used non-stationary stochastic model (uniformly modulated filtered white-noise model) for earthquake ground motions are investigated. It is shown both analytically and by numerical simulation that uniformly modulated filter white-noise-type models systematically overestimate the spectral response for periods longer than the effective duration of the earthquake, because of the built-in low-frequency errors in the model. The errors, which are significant for low-magnitude short-duration earthquakes, can be eliminated by using the filtered shot-noise-type models (i. e. white noise, modulated by the envelope first, and then filtered).

  12. Impact of MLC leaf position errors on simple and complex IMRT plans for head and neck cancer

    International Nuclear Information System (INIS)

    Mu, G; Ludlum, E; Xia, P

    2008-01-01

    The dosimetric impact of random and systematic multi-leaf collimator (MLC) leaf position errors is relatively unknown for head and neck intensity-modulated radiotherapy (IMRT) patients. In this report we studied 17 head and neck IMRT patients, including 12 treated with simple plans ( 100 segments). Random errors (-2 to +2 mm) and systematic errors (±0.5 mm and ±1 mm) in MLC leaf positions were introduced into the clinical plans and the resultant dose distributions were analyzed based on defined endpoint doses. The dosimetric effect was insignificant for random MLC leaf position errors up to 2 mm for both simple and complex plans. However, for systematic MLC leaf position errors, we found significant dosimetric differences between the simple and complex IMRT plans. For 1 mm systematic error, the average changes in D 95% were 4% in simple plans versus 8% in complex plans. The average changes in D 0.1cc of the spinal cord and brain stem were 4% in simple plans versus 12% in complex plans. The average changes in parotid glands were 9% in simple plans versus 13% for the complex plans. Overall, simple IMRT plans are less sensitive to leaf position errors than complex IMRT plans

  13. Interactive analysis of human error factors in NPP operation events

    International Nuclear Information System (INIS)

    Zhang Li; Zou Yanhua; Huang Weigang

    2010-01-01

    Interactive of human error factors in NPP operation events were introduced, and 645 WANO operation event reports from 1999 to 2008 were analyzed, among which 432 were found relative to human errors. After classifying these errors with the Root Causes or Causal Factors, and then applying SPSS for correlation analysis,we concluded: (1) Personnel work practices are restricted by many factors. Forming a good personnel work practices is a systematic work which need supports in many aspects. (2)Verbal communications,personnel work practices, man-machine interface and written procedures and documents play great roles. They are four interaction factors which often come in bundle. If some improvements need to be made on one of them,synchronous measures are also necessary for the others.(3) Management direction and decision process, which are related to management,have a significant interaction with personnel factors. (authors)

  14. The VTTVIS line imaging spectrometer - principles, error sources, and calibration

    DEFF Research Database (Denmark)

    Jørgensen, R.N.

    2002-01-01

    work describing the basic principles, potential error sources, and/or adjustment and calibration procedures. This report fulfils the need for such documentationwith special focus on the system at KVL. The PGP based system has several severe error sources, which should be removed prior any analysis......Hyperspectral imaging with a spatial resolution of a few mm2 has proved to have a great potential within crop and weed classification and also within nutrient diagnostics. A commonly used hyperspectral imaging system is based on the Prism-Grating-Prism(PGP) principles produced by Specim Ltd...... in off-axis transmission efficiencies, diffractionefficiencies, and image distortion have a significant impact on the instrument performance. Procedures removing or minimising these systematic error sources are developed and described for the system build at KVL but can be generalised to other PGP...

  15. Errors in clinical laboratories or errors in laboratory medicine?

    Science.gov (United States)

    Plebani, Mario

    2006-01-01

    Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes

  16. Error begat error: design error analysis and prevention in social infrastructure projects.

    Science.gov (United States)

    Love, Peter E D; Lopez, Robert; Edwards, David J; Goh, Yang M

    2012-09-01

    Design errors contribute significantly to cost and schedule growth in social infrastructure projects and to engineering failures, which can result in accidents and loss of life. Despite considerable research that has addressed their error causation in construction projects they still remain prevalent. This paper identifies the underlying conditions that contribute to design errors in social infrastructure projects (e.g. hospitals, education, law and order type buildings). A systemic model of error causation is propagated and subsequently used to develop a learning framework for design error prevention. The research suggests that a multitude of strategies should be adopted in congruence to prevent design errors from occurring and so ensure that safety and project performance are ameliorated. Copyright © 2011. Published by Elsevier Ltd.

  17. [Errors in Peruvian medical journals references].

    Science.gov (United States)

    Huamaní, Charles; Pacheco-Romero, José

    2009-01-01

    References are fundamental in our studies; an adequate selection is asimportant as an adequate description. To determine the number of errors in a sample of references found in Peruvian medical journals. We reviewed 515 scientific papers references selected by systematic randomized sampling and corroborated reference information with the original document or its citation in Pubmed, LILACS or SciELO-Peru. We found errors in 47,6% (245) of the references, identifying 372 types of errors; the most frequent were errors in presentation style (120), authorship (100) and title (100), mainly due to spelling mistakes (91). References error percentage was high, varied and multiple. We suggest systematic revision of references in the editorial process as well as to extend the discussion on this theme. references, periodicals, research, bibliometrics.

  18. THE DISKMASS SURVEY. II. ERROR BUDGET

    International Nuclear Information System (INIS)

    Bershady, Matthew A.; Westfall, Kyle B.; Verheijen, Marc A. W.; Martinsson, Thomas; Andersen, David R.; Swaters, Rob A.

    2010-01-01

    We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio (Υ * ), and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies. We find that a disk inclination range of 25 0 -35 0 is optimal for our measurements, consistent with our survey design to select nearly face-on galaxies. Uncertainties in disk scale heights are significant, but can be estimated from radial scale lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and an extensive library of observed stars. We show that the baryon-to-total mass fraction (F bar ) is not a well-defined observational quantity because it is coupled to the halo mass model. This remains true even when the disk mass is known and spatially extended rotation curves are available. In contrast, the fraction of the rotation speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the baryonic disk contribution to the potential. We construct the error budget for the key quantities: dynamical disk mass surface density (Σ dyn ), disk stellar mass-to-light ratio (Υ disk * ), and disk maximality (F *,max disk ≡V disk *,max / V c ). Random and systematic errors in these quantities for individual galaxies will be ∼25%, while survey precision for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.

  19. Laboratory errors and patient safety.

    Science.gov (United States)

    Miligy, Dawlat A

    2015-01-01

    Laboratory data are extensively used in medical practice; consequently, laboratory errors have a tremendous impact on patient safety. Therefore, programs designed to identify and reduce laboratory errors, as well as, setting specific strategies are required to minimize these errors and improve patient safety. The purpose of this paper is to identify part of the commonly encountered laboratory errors throughout our practice in laboratory work, their hazards on patient health care and some measures and recommendations to minimize or to eliminate these errors. Recording the encountered laboratory errors during May 2008 and their statistical evaluation (using simple percent distribution) have been done in the department of laboratory of one of the private hospitals in Egypt. Errors have been classified according to the laboratory phases and according to their implication on patient health. Data obtained out of 1,600 testing procedure revealed that the total number of encountered errors is 14 tests (0.87 percent of total testing procedures). Most of the encountered errors lay in the pre- and post-analytic phases of testing cycle (representing 35.7 and 50 percent, respectively, of total errors). While the number of test errors encountered in the analytic phase represented only 14.3 percent of total errors. About 85.7 percent of total errors were of non-significant implication on patients health being detected before test reports have been submitted to the patients. On the other hand, the number of test errors that have been already submitted to patients and reach the physician represented 14.3 percent of total errors. Only 7.1 percent of the errors could have an impact on patient diagnosis. The findings of this study were concomitant with those published from the USA and other countries. This proves that laboratory problems are universal and need general standardization and bench marking measures. Original being the first data published from Arabic countries that

  20. Significance of Serum Pepsinogens as a Biomarker for Gastric Cancer and Atrophic Gastritis Screening: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Huang, Ya-kai; Yu, Jian-chun; Kang, Wei-ming; Ma, Zhi-qiang; Ye, Xin; Tian, Shu-bo; Yan, Chao

    2015-01-01

    Background Human pepsinogens are considered promising serological biomarkers for the screening of atrophic gastritis (AG) and gastric cancer (GC). However, there has been controversy in the literature with respect to the validity of serum pepsinogen (SPG) for the detection of GC and AG. Consequently, we conducted a systematic review and meta-analysis to assess the diagnostic accuracy of SPG in GC and AG detection. Methods We searched PubMed, Embase, and the Chinese National Knowledge Infrastructure (CNKI) for correlative original studies published up to September 30, 2014. The summary sensitivity, specificity, positive diagnostic likelihood ratio (DLR+), negative diagnostic likelihood ratio (DLR-), area under the summary receiver operating characteristic curve (AUC) and diagnostic odds ratio (DOR) were used to evaluate SPG in GC and AG screening based on bivariate random effects models. The inter-study heterogeneity was evaluated by the I2 statistics and publication bias was assessed using Begg and Mazumdar’s test. Meta-regression and subgroup analyses were performed to explore study heterogeneity. Results In total, 31 studies involving 1,520 GC patients and 2,265 AG patients were included in the meta-analysis. The summary sensitivity, specificity, DLR+, DLR-, AUC and DOR for GC screening using SPG were 0.69 (95% CI: 0.60–0.76), 0.73 (95% CI: 0.62–0.82), 2.57 (95% CI: 1.82–3.62), and 0.43 (95% CI: 0.34–0.54), 0.76 (95% CI: 0.72–0.80) and 6.01 (95% CI: 3.69–9.79), respectively. For AG screening, the summary sensitivity, specificity, DLR+, DLR-, AUC and DOR were 0.69 (95% CI: 0.55–0.80), 0.88 (95% CI: 0.77–0.94), 5.80 (95% CI: 3.06–10.99), and 0.35 (95% CI: 0.24–0.51), 0.85 (95% CI: 0.82–0.88) and 16.50 (95% CI: 8.18–33.28), respectively. In subgroup analysis, the use of combination of concentration of PGI and the ratio of PGI:PGII as measurement of SPG for GC screening yielded sensitivity of 0.70 (95% CI: 0.66–0.75), specificity of 0

  1. Significance of Serum Pepsinogens as a Biomarker for Gastric Cancer and Atrophic Gastritis Screening: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Ya-kai Huang

    Full Text Available Human pepsinogens are considered promising serological biomarkers for the screening of atrophic gastritis (AG and gastric cancer (GC. However, there has been controversy in the literature with respect to the validity of serum pepsinogen (SPG for the detection of GC and AG. Consequently, we conducted a systematic review and meta-analysis to assess the diagnostic accuracy of SPG in GC and AG detection.We searched PubMed, Embase, and the Chinese National Knowledge Infrastructure (CNKI for correlative original studies published up to September 30, 2014. The summary sensitivity, specificity, positive diagnostic likelihood ratio (DLR+, negative diagnostic likelihood ratio (DLR-, area under the summary receiver operating characteristic curve (AUC and diagnostic odds ratio (DOR were used to evaluate SPG in GC and AG screening based on bivariate random effects models. The inter-study heterogeneity was evaluated by the I2 statistics and publication bias was assessed using Begg and Mazumdar's test. Meta-regression and subgroup analyses were performed to explore study heterogeneity.In total, 31 studies involving 1,520 GC patients and 2,265 AG patients were included in the meta-analysis. The summary sensitivity, specificity, DLR+, DLR-, AUC and DOR for GC screening using SPG were 0.69 (95% CI: 0.60-0.76, 0.73 (95% CI: 0.62-0.82, 2.57 (95% CI: 1.82-3.62, and 0.43 (95% CI: 0.34-0.54, 0.76 (95% CI: 0.72-0.80 and 6.01 (95% CI: 3.69-9.79, respectively. For AG screening, the summary sensitivity, specificity, DLR+, DLR-, AUC and DOR were 0.69 (95% CI: 0.55-0.80, 0.88 (95% CI: 0.77-0.94, 5.80 (95% CI: 3.06-10.99, and 0.35 (95% CI: 0.24-0.51, 0.85 (95% CI: 0.82-0.88 and 16.50 (95% CI: 8.18-33.28, respectively. In subgroup analysis, the use of combination of concentration of PGI and the ratio of PGI:PGII as measurement of SPG for GC screening yielded sensitivity of 0.70 (95% CI: 0.66-0.75, specificity of 0.79 (95% CI: 0.79-0.80, DOR of 6.92 (95% CI: 4.36-11.00, and

  2. Clinical Significance of ErbB Receptor Family in Urothelial Carcinoma of the Bladder: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Yuh-Shyan Tsai

    2012-01-01

    Full Text Available The prognostic importance of examining ErbB receptor family expression in human bladder cancer remains uncertain. Using published evidence, we examined the clinical value and the updated results of clinical trials targeting ErbB receptor family members. Twenty-seven articles from 65 references related to ErbB receptor expression assessment in bladder cancer were reviewed. The estimates included the association significance, hazard ratios, and 95% confidence intervals (CIs from actuarial curves and survival analyses. A meta-analysis was done on those reports using univariate log-rank tests or a Cox-regression model. The methods of analysis and study subjects chosen varied widely among studies. The overall risks of disease progression for patients with EGFR or ErbB2 overexpression were 4.5 (95% CI: 2.5–8.4 and 1.1 (95% CI: 0.6–1.9, and the risks of mortality were 3.0 (95% CI: 1.6–5.9 and 1.1 (95% CI: 1.0–1.2, respectively. However, the significance of coexpression patterns of the ErbB receptor family remains controversial. None of six clinical trials yielded convincing results for blockading ErbB receptor signaling in urothelial carcinoma. The results of this analysis suggest that assessing co-expression patterns of the ErbB family may provide better prognostic information for bladder cancer patients.

  3. Learning from prescribing errors

    OpenAIRE

    Dean, B

    2002-01-01

    

 The importance of learning from medical error has recently received increasing emphasis. This paper focuses on prescribing errors and argues that, while learning from prescribing errors is a laudable goal, there are currently barriers that can prevent this occurring. Learning from errors can take place on an individual level, at a team level, and across an organisation. Barriers to learning from prescribing errors include the non-discovery of many prescribing errors, lack of feedback to th...

  4. ICU Acquisition Rate, Risk Factors, and Clinical Significance of Digestive Tract Colonization With Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Detsis, Marios; Karanika, Styliani; Mylonakis, Eleftherios

    2017-04-01

    -lactamase-producing Enterobacteriaceae ranged from 5% to 10%. Previous use of beta-lactam/beta-lactamase or carbapenems and recent hospitalization were independent risk factors for extended-spectrum beta-lactamase-producing Enterobacteriaceae colonization, and colonization was associated with significantly higher frequency of extended-spectrum beta-lactamase-producing Enterobacteriaceae subsequent infection and increased mortality.

  5. Analysis of errors in forensic science

    Directory of Open Access Journals (Sweden)

    Mingxiao Du

    2017-01-01

    Full Text Available Reliability of expert testimony is one of the foundations of judicial justice. Both expert bias and scientific errors affect the reliability of expert opinion, which in turn affects the trustworthiness of the findings of fact in legal proceedings. Expert bias can be eliminated by replacing experts; however, it may be more difficult to eliminate scientific errors. From the perspective of statistics, errors in operation of forensic science include systematic errors, random errors, and gross errors. In general, process repetition and abiding by the standard ISO/IEC:17025: 2005, general requirements for the competence of testing and calibration laboratories, during operation are common measures used to reduce errors that originate from experts and equipment, respectively. For example, to reduce gross errors, the laboratory can ensure that a test is repeated several times by different experts. In applying for forensic principles and methods, the Federal Rules of Evidence 702 mandate that judges consider factors such as peer review, to ensure the reliability of the expert testimony. As the scientific principles and methods may not undergo professional review by specialists in a certain field, peer review serves as an exclusive standard. This study also examines two types of statistical errors. As false-positive errors involve a higher possibility of an unfair decision-making, they should receive more attention than false-negative errors.

  6. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  7. Part two: Error propagation

    International Nuclear Information System (INIS)

    Picard, R.R.

    1989-01-01

    Topics covered in this chapter include a discussion of exact results as related to nuclear materials management and accounting in nuclear facilities; propagation of error for a single measured value; propagation of error for several measured values; error propagation for materials balances; and an application of error propagation to an example of uranium hexafluoride conversion process

  8. Learning from Errors

    OpenAIRE

    Martínez-Legaz, Juan Enrique; Soubeyran, Antoine

    2003-01-01

    We present a model of learning in which agents learn from errors. If an action turns out to be an error, the agent rejects not only that action but also neighboring actions. We find that, keeping memory of his errors, under mild assumptions an acceptable solution is asymptotically reached. Moreover, one can take advantage of big errors for a faster learning.

  9. A new calibration model for pointing a radio telescope that considers nonlinear errors in the azimuth axis

    International Nuclear Information System (INIS)

    Kong De-Qing; Wang Song-Gen; Zhang Hong-Bo; Wang Jin-Qing; Wang Min

    2014-01-01

    A new calibration model of a radio telescope that includes pointing error is presented, which considers nonlinear errors in the azimuth axis. For a large radio telescope, in particular for a telescope with a turntable, it is difficult to correct pointing errors using a traditional linear calibration model, because errors produced by the wheel-on-rail or center bearing structures are generally nonlinear. Fourier expansion is made for the oblique error and parameters describing the inclination direction along the azimuth axis based on the linear calibration model, and a new calibration model for pointing is derived. The new pointing model is applied to the 40m radio telescope administered by Yunnan Observatories, which is a telescope that uses a turntable. The results show that this model can significantly reduce the residual systematic errors due to nonlinearity in the azimuth axis compared with the linear model

  10. Human errors in NPP operations

    International Nuclear Information System (INIS)

    Sheng Jufang

    1993-01-01

    Based on the operational experiences of nuclear power plants (NPPs), the importance of studying human performance problems is described. Statistical analysis on the significance or frequency of various root-causes and error-modes from a large number of human-error-related events demonstrate that the defects in operation/maintenance procedures, working place factors, communication and training practices are primary root-causes, while omission, transposition, quantitative mistake are the most frequent among the error-modes. Recommendations about domestic research on human performance problem in NPPs are suggested

  11. Medication errors: prescribing faults and prescription errors.

    Science.gov (United States)

    Velo, Giampaolo P; Minuz, Pietro

    2009-06-01

    1. Medication errors are common in general practice and in hospitals. Both errors in the act of writing (prescription errors) and prescribing faults due to erroneous medical decisions can result in harm to patients. 2. Any step in the prescribing process can generate errors. Slips, lapses, or mistakes are sources of errors, as in unintended omissions in the transcription of drugs. Faults in dose selection, omitted transcription, and poor handwriting are common. 3. Inadequate knowledge or competence and incomplete information about clinical characteristics and previous treatment of individual patients can result in prescribing faults, including the use of potentially inappropriate medications. 4. An unsafe working environment, complex or undefined procedures, and inadequate communication among health-care personnel, particularly between doctors and nurses, have been identified as important underlying factors that contribute to prescription errors and prescribing faults. 5. Active interventions aimed at reducing prescription errors and prescribing faults are strongly recommended. These should be focused on the education and training of prescribers and the use of on-line aids. The complexity of the prescribing procedure should be reduced by introducing automated systems or uniform prescribing charts, in order to avoid transcription and omission errors. Feedback control systems and immediate review of prescriptions, which can be performed with the assistance of a hospital pharmacist, are also helpful. Audits should be performed periodically.

  12. Applying Intelligent Algorithms to Automate the Identification of Error Factors.

    Science.gov (United States)

    Jin, Haizhe; Qu, Qingxing; Munechika, Masahiko; Sano, Masataka; Kajihara, Chisato; Duffy, Vincent G; Chen, Han

    2018-05-03

    Medical errors are the manifestation of the defects occurring in medical processes. Extracting and identifying defects as medical error factors from these processes are an effective approach to prevent medical errors. However, it is a difficult and time-consuming task and requires an analyst with a professional medical background. The issues of identifying a method to extract medical error factors and reduce the extraction difficulty need to be resolved. In this research, a systematic methodology to extract and identify error factors in the medical administration process was proposed. The design of the error report, extraction of the error factors, and identification of the error factors were analyzed. Based on 624 medical error cases across four medical institutes in both Japan and China, 19 error-related items and their levels were extracted. After which, they were closely related to 12 error factors. The relational model between the error-related items and error factors was established based on a genetic algorithm (GA)-back-propagation neural network (BPNN) model. Additionally, compared to GA-BPNN, BPNN, partial least squares regression and support vector regression, GA-BPNN exhibited a higher overall prediction accuracy, being able to promptly identify the error factors from the error-related items. The combination of "error-related items, their different levels, and the GA-BPNN model" was proposed as an error-factor identification technology, which could automatically identify medical error factors.

  13. Evaluation of measurement precision errors at different bone density values

    International Nuclear Information System (INIS)

    Wilson, M.; Wong, J.; Bartlett, M.; Lee, N.

    2002-01-01

    Full text: The precision error commonly used in serial monitoring of BMD values using Dual Energy X Ray Absorptometry (DEXA) is 0.01-0.015g/cm - for both the L2 L4 lumbar spine and total femur. However, this limit is based on normal individuals with bone densities similar to the population mean. The purpose of this study was to systematically evaluate precision errors over the range of bone density values encountered in clinical practice. In 96 patients a BMD scan of the spine and femur was immediately repeated by the same technologist with the patient taken off the bed and repositioned between scans. Nine technologists participated. Values were obtained for the total femur and spine. Each value was classified as low range (0.75-1.05 g/cm ) and medium range (1.05- 1.35g/cm ) for the spine, low range (0.55 0. 85 g/cm ) and medium range (0.85-1.15 g/cm ) for the total femur. Results show that the precision error was significantly lower in the medium range for total femur results with the medium range value at 0.015 g/cm - and the low range at 0.025 g/cm - (p<0.01). No significant difference was found for the spine results. We also analysed precision errors between three technologists and found a significant difference (p=0.05) occurred between only two technologists and this was seen in the spine data only. We conclude that there is some evidence that the precision error increases at the outer limits of the normal bone density range. Also, the results show that having multiple trained operators does not greatly increase the BMD precision error. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  14. Learner Corpora without Error Tagging

    Directory of Open Access Journals (Sweden)

    Rastelli, Stefano

    2009-01-01

    Full Text Available The article explores the possibility of adopting a form-to-function perspective when annotating learner corpora in order to get deeper insights about systematic features of interlanguage. A split between forms and functions (or categories is desirable in order to avoid the "comparative fallacy" and because – especially in basic varieties – forms may precede functions (e.g., what resembles to a "noun" might have a different function or a function may show up in unexpected forms. In the computer-aided error analysis tradition, all items produced by learners are traced to a grid of error tags which is based on the categories of the target language. Differently, we believe it is possible to record and make retrievable both words and sequence of characters independently from their functional-grammatical label in the target language. For this purpose at the University of Pavia we adapted a probabilistic POS tagger designed for L1 on L2 data. Despite the criticism that this operation can raise, we found that it is better to work with "virtual categories" rather than with errors. The article outlines the theoretical background of the project and shows some examples in which some potential of SLA-oriented (non error-based tagging will be possibly made clearer.

  15. Notes on human error analysis and prediction

    International Nuclear Information System (INIS)

    Rasmussen, J.

    1978-11-01

    The notes comprise an introductory discussion of the role of human error analysis and prediction in industrial risk analysis. Following this introduction, different classes of human errors and role in industrial systems are mentioned. Problems related to the prediction of human behaviour in reliability and safety analysis are formulated and ''criteria for analyzability'' which must be met by industrial systems so that a systematic analysis can be performed are suggested. The appendices contain illustrative case stories and a review of human error reports for the task of equipment calibration and testing as found in the US Licensee Event Reports. (author)

  16. Analysis of field errors in existing undulators

    International Nuclear Information System (INIS)

    Kincaid, B.M.

    1990-01-01

    The Advanced Light Source (ALS) and other third generation synchrotron light sources have been designed for optimum performance with undulator insertion devices. The performance requirements for these new undulators are explored, with emphasis on the effects of errors on source spectral brightness. Analysis of magnetic field data for several existing hybrid undulators is presented, decomposing errors into systematic and random components. An attempts is made to identify the sources of these errors, and recommendations are made for designing future insertion devices. 12 refs., 16 figs

  17. Field error lottery

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, C.J.; McVey, B. (Los Alamos National Lab., NM (USA)); Quimby, D.C. (Spectra Technology, Inc., Bellevue, WA (USA))

    1990-01-01

    The level of field errors in an FEL is an important determinant of its performance. We have computed 3D performance of a large laser subsystem subjected to field errors of various types. These calculations have been guided by simple models such as SWOOP. The technique of choice is utilization of the FELEX free electron laser code that now possesses extensive engineering capabilities. Modeling includes the ability to establish tolerances of various types: fast and slow scale field bowing, field error level, beam position monitor error level, gap errors, defocusing errors, energy slew, displacement and pointing errors. Many effects of these errors on relative gain and relative power extraction are displayed and are the essential elements of determining an error budget. The random errors also depend on the particular random number seed used in the calculation. The simultaneous display of the performance versus error level of cases with multiple seeds illustrates the variations attributable to stochasticity of this model. All these errors are evaluated numerically for comprehensive engineering of the system. In particular, gap errors are found to place requirements beyond mechanical tolerances of {plus minus}25{mu}m, and amelioration of these may occur by a procedure utilizing direct measurement of the magnetic fields at assembly time. 4 refs., 12 figs.

  18. Comparison of MLC error sensitivity of various commercial devices for VMAT pre-treatment quality assurance.

    Science.gov (United States)

    Saito, Masahide; Sano, Naoki; Shibata, Yuki; Kuriyama, Kengo; Komiyama, Takafumi; Marino, Kan; Aoki, Shinichi; Ashizawa, Kazunari; Yoshizawa, Kazuya; Onishi, Hiroshi

    2018-05-01

    The purpose of this study was to compare the MLC error sensitivity of various measurement devices for VMAT pre-treatment quality assurance (QA). This study used four QA devices (Scandidos Delta4, PTW 2D-array, iRT systems IQM, and PTW Farmer chamber). Nine retrospective VMAT plans were used and nine MLC error plans were generated for all nine original VMAT plans. The IQM and Farmer chamber were evaluated using the cumulative signal difference between the baseline and error-induced measurements. In addition, to investigate the sensitivity of the Delta4 device and the 2D-array, global gamma analysis (1%/1, 2%/2, and 3%/3 mm), dose difference (1%, 2%, and 3%) were used between the baseline and error-induced measurements. Some deviations of the MLC error sensitivity for the evaluation metrics and MLC error ranges were observed. For the two ionization devices, the sensitivity of the IQM was significantly better than that of the Farmer chamber (P < 0.01) while both devices had good linearly correlation between the cumulative signal difference and the magnitude of MLC errors. The pass rates decreased as the magnitude of the MLC error increased for both Delta4 and 2D-array. However, the small MLC error for small aperture sizes, such as for lung SBRT, could not be detected using the loosest gamma criteria (3%/3 mm). Our results indicate that DD could be more useful than gamma analysis for daily MLC QA, and that a large-area ionization chamber has a greater advantage for detecting systematic MLC error because of the large sensitive volume, while the other devices could not detect this error for some cases with a small range of MLC error. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  19. Technical Note: Interference errors in infrared remote sounding of the atmosphere

    Directory of Open Access Journals (Sweden)

    R. Sussmann

    2007-07-01

    Full Text Available Classical error analysis in remote sounding distinguishes between four classes: "smoothing errors," "model parameter errors," "forward model errors," and "retrieval noise errors". For infrared sounding "interference errors", which, in general, cannot be described by these four terms, can be significant. Interference errors originate from spectral residuals due to "interfering species" whose spectral features overlap with the signatures of the target species. A general method for quantification of interference errors is presented, which covers all possible algorithmic implementations, i.e., fine-grid retrievals of the interfering species or coarse-grid retrievals, and cases where the interfering species are not retrieved. In classical retrieval setups interference errors can exceed smoothing errors and can vary by orders of magnitude due to state dependency. An optimum strategy is suggested which practically eliminates interference errors by systematically minimizing the regularization strength applied to joint profile retrieval of the interfering species. This leads to an interfering-species selective deweighting of the retrieval. Details of microwindow selection are no longer critical for this optimum retrieval and widened microwindows even lead to reduced overall (smoothing and interference errors. Since computational power will increase, more and more operational algorithms will be able to utilize this optimum strategy in the future. The findings of this paper can be applied to soundings of all infrared-active atmospheric species, which include more than two dozen different gases relevant to climate and ozone. This holds for all kinds of infrared remote sounding systems, i.e., retrievals from ground-based, balloon-borne, airborne, or satellite spectroradiometers.

  20. Prescription Errors in Psychiatry

    African Journals Online (AJOL)

    Arun Kumar Agnihotri

    clinical pharmacists in detecting errors before they have a (sometimes serious) clinical impact should not be underestimated. Research on medication error in mental health care is limited. .... participation in ward rounds and adverse drug.

  1. Understanding errors in EIA projections of energy demand

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Carolyn; Herrnstadt, Evan; Morgenstern, Richard [Resources for the Future, 1616 P St. NW, Washington, DC 20036 (United States)

    2009-08-15

    This paper investigates the potential for systematic errors in the Energy Information Administration's (EIA) widely used Annual Energy Outlook, focusing on the near- to mid-term projections of energy demand. Based on analysis of the EIA's 22-year projection record, we find a fairly modest but persistent tendency to underestimate total energy demand by an average of 2 percent per year after controlling for projection errors in gross domestic product, oil prices, and heating/cooling degree days. For 14 individual fuels/consuming sectors routinely reported by the EIA, we observe a great deal of directional consistency in the errors over time, ranging up to 7 percent per year. Electric utility renewables, electric utility natural gas, transportation distillate, and residential electricity show significant biases on average. Projections for certain other sectors have significant unexplained errors for selected time horizons. Such independent evaluation can be useful for validating analytic efforts and for prioritizing future model revisions. (author)

  2. The use of adaptive radiation therapy to reduce setup error: a prospective clinical study

    International Nuclear Information System (INIS)

    Yan Di; Wong, John; Vicini, Frank; Robertson, John; Horwitz, Eric; Brabbins, Donald; Cook, Carla; Gustafson, Gary; Stromberg, Jannifer; Martinez, Alvaro

    1996-01-01

    , eight patients had completed the study. Their mean systematic setup error was 4 mm with a range of 2 mm to 6 mm before adjustment; and was reduced to 0.8 mm with a range of 0.2 mm to 1.8 mm after adjustments. There was no significant difference in their random setup errors before and after adjustment. Analysis of the block overlap distributions shows that the fractions of the prescribed field areas covered by the daily treatment increased after setup adjustment. The block overlap distributions also show that the magnitude of random setup errors at different field edges were different; 50% of which were small enough to allow the treatment margin to be reduced to 4 mm or less. Results from the on-going treatments of the remaining 12 patients show similar trends and magnitudes, and are not expected to be different. Conclusion: Our prospective study demonstrates that the ART process provides an effective and reliable approach to compensate for the systematic setup error of the individual patient. Adjusting the MLC field allows accurate setup adjustment as small as 2 mm, minimizes the possibility of 'unsettling' the patient and reduces the work load of the therapists. The ART process can be extended to correct for random setup errors by further modification of the MLC field shape and prescribed dose. Most importantly, ART integrates the use of advanced technologies to maximize treatment benefits, and can be important in the implementation of dose escalated conformal therapy

  3. Interventions to significantly improve service uptake and retention of HIV-positive pregnant women and HIV-exposed infants along the prevention of mother-to-child transmission continuum of care: systematic review.

    Science.gov (United States)

    Vrazo, Alexandra C; Firth, Jacqueline; Amzel, Anouk; Sedillo, Rebecca; Ryan, Julia; Phelps, B Ryan

    2018-02-01

    Despite the success of Prevention of Mother-to-Child Transmission of HIV (PMTCT) programmes, low uptake of services and poor retention pose a formidable challenge to achieving the elimination of vertical HIV transmission in low- and middle-income countries. This systematic review summarises interventions that demonstrate statistically significant improvements in service uptake and retention of HIV-positive pregnant and breastfeeding women and their infants along the PMTCT cascade. Databases were systematically searched for peer-reviewed studies. Outcomes of interest included uptake of services, such as antiretroviral therapy (ART) such as initiation, early infant diagnostic testing, and retention of HIV-positive pregnant and breastfeeding women and their infants. Interventions that led to statistically significant outcomes were included and mapped to the PMTCT cascade. An eight-item assessment tool assessed study rigour. CRD42017063816. Of 686 citations reviewed, 11 articles met inclusion criteria. Ten studies detailed maternal outcomes and seven studies detailed infant outcomes in PMTCT programmes. Interventions to increase access to antenatal care (ANC) and ART services (n = 4) and those using lay cadres (n = 3) were most common. Other interventions included quality improvement (n = 2), mHealth (n = 1), and counselling (n = 1). One study described interventions in an Option B+ programme. Limitations included lack of HIV testing and counselling and viral load monitoring outcomes, small sample size, geographical location, and non-randomized assignment and selection of participants. Interventions including ANC/ART integration, family-centred approaches, and the use of lay healthcare providers are demonstrably effective in increasing service uptake and retention of HIV-positive mothers and their infants in PMTCT programmes. Future studies should include control groups and assess whether interventions developed in the context of earlier 'Options' are

  4. Local blur analysis and phase error correction method for fringe projection profilometry systems.

    Science.gov (United States)

    Rao, Li; Da, Feipeng

    2018-05-20

    We introduce a flexible error correction method for fringe projection profilometry (FPP) systems in the presence of local blur phenomenon. Local blur caused by global light transport such as camera defocus, projector defocus, and subsurface scattering will cause significant systematic errors in FPP systems. Previous methods, which adopt high-frequency patterns to separate the direct and global components, fail when the global light phenomenon occurs locally. In this paper, the influence of local blur on phase quality is thoroughly analyzed, and a concise error correction method is proposed to compensate the phase errors. For defocus phenomenon, this method can be directly applied. With the aid of spatially varying point spread functions and local frontal plane assumption, experiments show that the proposed method can effectively alleviate the system errors and improve the final reconstruction accuracy in various scenes. For a subsurface scattering scenario, if the translucent object is dominated by multiple scattering, the proposed method can also be applied to correct systematic errors once the bidirectional scattering-surface reflectance distribution function of the object material is measured.

  5. Applying lessons learned to enhance human performance and reduce human error for ISS operations

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.R.

    1998-09-01

    A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation of the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy`s Idaho National Engineering and Environmental Laboratory (INEEL) is developed a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper describes previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS.

  6. Three-dimensional patient setup errors at different treatment sites measured by the Tomotherapy megavoltage CT

    Energy Technology Data Exchange (ETDEWEB)

    Hui, S.K.; Lusczek, E.; Dusenbery, K. [Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Therapeutic Radiology - Radiation Oncology; DeFor, T. [Univ. of Minnesota Medical School, Minneapolis, MN (United States). Biostatistics and Informatics Core; Levitt, S. [Univ. of Minnesota Medical School, Minneapolis, MN (United States). Dept. of Therapeutic Radiology - Radiation Oncology; Karolinska Institutet, Stockholm (Sweden). Dept. of Onkol-Patol

    2012-04-15

    Reduction of interfraction setup uncertainty is vital for assuring the accuracy of conformal radiotherapy. We report a systematic study of setup error to assess patients' three-dimensional (3D) localization at various treatment sites. Tomotherapy megavoltage CT (MVCT) images were scanned daily in 259 patients from 2005-2008. We analyzed 6,465 MVCT images to measure setup error for head and neck (H and N), chest/thorax, abdomen, prostate, legs, and total marrow irradiation (TMI). Statistical comparisons of the absolute displacements across sites and time were performed in rotation (R), lateral (x), craniocaudal (y), and vertical (z) directions. The global systematic errors were measured to be less than 3 mm in each direction with increasing order of errors for different sites: H and N, prostate, chest, pelvis, spine, legs, and TMI. The differences in displacements in the x, y, and z directions, and 3D average displacement between treatment sites were significant (p < 0.01). Overall improvement in patient localization with time (after 3-4 treatment fractions) was observed. Large displacement (> 5 mm) was observed in the 75{sup th} percentile of the patient groups for chest, pelvis, legs, and spine in the x and y direction in the second week of the treatment. MVCT imaging is essential for determining 3D setup error and to reduce uncertainty in localization at all anatomical locations. Setup error evaluation should be performed daily for all treatment regions, preferably for all treatment fractions. (orig.)

  7. Writing errors by adults and by children

    NARCIS (Netherlands)

    Nes, van F.L.

    1984-01-01

    Writing errors are defined as occasional deviations from a person' s normal handwriting; thus they are different from spelling mistakes. The deviations are systematic in nature to a certain degree and can therefore be quantitatively classified in accordance with (1) type and (2) location in a word.

  8. Errors in otology.

    Science.gov (United States)

    Kartush, J M

    1996-11-01

    Practicing medicine successfully requires that errors in diagnosis and treatment be minimized. Malpractice laws encourage litigators to ascribe all medical errors to incompetence and negligence. There are, however, many other causes of unintended outcomes. This article describes common causes of errors and suggests ways to minimize mistakes in otologic practice. Widespread dissemination of knowledge about common errors and their precursors can reduce the incidence of their occurrence. Consequently, laws should be passed to allow for a system of non-punitive, confidential reporting of errors and "near misses" that can be shared by physicians nationwide.

  9. Volumetric error modeling, identification and compensation based on screw theory for a large multi-axis propeller-measuring machine

    Science.gov (United States)

    Zhong, Xuemin; Liu, Hongqi; Mao, Xinyong; Li, Bin; He, Songping; Peng, Fangyu

    2018-05-01

    Large multi-axis propeller-measuring machines have two types of geometric error, position-independent geometric errors (PIGEs) and position-dependent geometric errors (PDGEs), which both have significant effects on the volumetric error of the measuring tool relative to the worktable. This paper focuses on modeling, identifying and compensating for the volumetric error of the measuring machine. A volumetric error model in the base coordinate system is established based on screw theory considering all the geometric errors. In order to fully identify all the geometric error parameters, a new method for systematic measurement and identification is proposed. All the PIGEs of adjacent axes and the six PDGEs of the linear axes are identified with a laser tracker using the proposed model. Finally, a volumetric error compensation strategy is presented and an inverse kinematic solution for compensation is proposed. The final measuring and compensation experiments have further verified the efficiency and effectiveness of the measuring and identification method, indicating that the method can be used in volumetric error compensation for large machine tools.

  10. Eliminating US hospital medical errors.

    Science.gov (United States)

    Kumar, Sameer; Steinebach, Marc

    2008-01-01

    Healthcare costs in the USA have continued to rise steadily since the 1980s. Medical errors are one of the major causes of deaths and injuries of thousands of patients every year, contributing to soaring healthcare costs. The purpose of this study is to examine what has been done to deal with the medical-error problem in the last two decades and present a closed-loop mistake-proof operation system for surgery processes that would likely eliminate preventable medical errors. The design method used is a combination of creating a service blueprint, implementing the six sigma DMAIC cycle, developing cause-and-effect diagrams as well as devising poka-yokes in order to develop a robust surgery operation process for a typical US hospital. In the improve phase of the six sigma DMAIC cycle, a number of poka-yoke techniques are introduced to prevent typical medical errors (identified through cause-and-effect diagrams) that may occur in surgery operation processes in US hospitals. It is the authors' assertion that implementing the new service blueprint along with the poka-yokes, will likely result in the current medical error rate to significantly improve to the six-sigma level. Additionally, designing as many redundancies as possible in the delivery of care will help reduce medical errors. Primary healthcare providers should strongly consider investing in adequate doctor and nurse staffing, and improving their education related to the quality of service delivery to minimize clinical errors. This will lead to an increase in higher fixed costs, especially in the shorter time frame. This paper focuses additional attention needed to make a sound technical and business case for implementing six sigma tools to eliminate medical errors that will enable hospital managers to increase their hospital's profitability in the long run and also ensure patient safety.

  11. Large errors and severe conditions

    CERN Document Server

    Smith, D L; Van Wormer, L A

    2002-01-01

    Physical parameters that can assume real-number values over a continuous range are generally represented by inherently positive random variables. However, if the uncertainties in these parameters are significant (large errors), conventional means of representing and manipulating the associated variables can lead to erroneous results. Instead, all analyses involving them must be conducted in a probabilistic framework. Several issues must be considered: First, non-linear functional relations between primary and derived variables may lead to significant 'error amplification' (severe conditions). Second, the commonly used normal (Gaussian) probability distribution must be replaced by a more appropriate function that avoids the occurrence of negative sampling results. Third, both primary random variables and those derived through well-defined functions must be dealt with entirely in terms of their probability distributions. Parameter 'values' and 'errors' should be interpreted as specific moments of these probabil...

  12. Error-related anterior cingulate cortex activity and the prediction of conscious error awareness

    Directory of Open Access Journals (Sweden)

    Catherine eOrr

    2012-06-01

    Full Text Available Research examining the neural mechanisms associated with error awareness has consistently identified dorsal anterior cingulate activity (ACC as necessary but not predictive of conscious error detection. Two recent studies (Steinhauser and Yeung, 2010; Wessel et al. 2011 have found a contrary pattern of greater dorsal ACC activity (in the form of the error-related negativity during detected errors, but suggested that the greater activity may instead reflect task influences (e.g., response conflict, error probability and or individual variability (e.g., statistical power. We re-analyzed fMRI BOLD data from 56 healthy participants who had previously been administered the Error Awareness Task, a motor Go/No-go response inhibition task in which subjects make errors of commission of which they are aware (Aware errors, or unaware (Unaware errors. Consistent with previous data, the activity in a number of cortical regions was predictive of error awareness, including bilateral inferior parietal and insula cortices, however in contrast to previous studies, including our own smaller sample studies using the same task, error-related dorsal ACC activity was significantly greater during aware errors when compared to unaware errors. While the significantly faster RT for aware errors (compared to unaware was consistent with the hypothesis of higher response conflict increasing ACC activity, we could find no relationship between dorsal ACC activity and the error RT difference. The data suggests that individual variability in error awareness is associated with error-related dorsal ACC activity, and therefore this region may be important to conscious error detection, but it remains unclear what task and individual factors influence error awareness.

  13. Accounting for measurement error: a critical but often overlooked process.

    Science.gov (United States)

    Harris, Edward F; Smith, Richard N

    2009-12-01

    Due to instrument imprecision and human inconsistencies, measurements are not free of error. Technical error of measurement (TEM) is the variability encountered between dimensions when the same specimens are measured at multiple sessions. A goal of a data collection regimen is to minimise TEM. The few studies that actually quantify TEM, regardless of discipline, report that it is substantial and can affect results and inferences. This paper reviews some statistical approaches for identifying and controlling TEM. Statistically, TEM is part of the residual ('unexplained') variance in a statistical test, so accounting for TEM, which requires repeated measurements, enhances the chances of finding a statistically significant difference if one exists. The aim of this paper was to review and discuss common statistical designs relating to types of error and statistical approaches to error accountability. This paper addresses issues of landmark location, validity, technical and systematic error, analysis of variance, scaled measures and correlation coefficients in order to guide the reader towards correct identification of true experimental differences. Researchers commonly infer characteristics about populations from comparatively restricted study samples. Most inferences are statistical and, aside from concerns about adequate accounting for known sources of variation with the research design, an important source of variability is measurement error. Variability in locating landmarks that define variables is obvious in odontometrics, cephalometrics and anthropometry, but the same concerns about measurement accuracy and precision extend to all disciplines. With increasing accessibility to computer-assisted methods of data collection, the ease of incorporating repeated measures into statistical designs has improved. Accounting for this technical source of variation increases the chance of finding biologically true differences when they exist.

  14. The error in total error reduction.

    Science.gov (United States)

    Witnauer, James E; Urcelay, Gonzalo P; Miller, Ralph R

    2014-02-01

    Most models of human and animal learning assume that learning is proportional to the discrepancy between a delivered outcome and the outcome predicted by all cues present during that trial (i.e., total error across a stimulus compound). This total error reduction (TER) view has been implemented in connectionist and artificial neural network models to describe the conditions under which weights between units change. Electrophysiological work has revealed that the activity of dopamine neurons is correlated with the total error signal in models of reward learning. Similar neural mechanisms presumably support fear conditioning, human contingency learning, and other types of learning. Using a computational modeling approach, we compared several TER models of associative learning to an alternative model that rejects the TER assumption in favor of local error reduction (LER), which assumes that learning about each cue is proportional to the discrepancy between the delivered outcome and the outcome predicted by that specific cue on that trial. The LER model provided a better fit to the reviewed data than the TER models. Given the superiority of the LER model with the present data sets, acceptance of TER should be tempered. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Errors in Neonatology

    OpenAIRE

    Antonio Boldrini; Rosa T. Scaramuzzo; Armando Cuttano

    2013-01-01

    Introduction: Danger and errors are inherent in human activities. In medical practice errors can lean to adverse events for patients. Mass media echo the whole scenario. Methods: We reviewed recent published papers in PubMed database to focus on the evidence and management of errors in medical practice in general and in Neonatology in particular. We compared the results of the literature with our specific experience in Nina Simulation Centre (Pisa, Italy). Results: In Neonatology the main err...

  16. Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.jp; Nakamura, Mitsuhiro; Mizowaki, Takashi; Hiraoka, Masahiro [Department of Radiation Oncology and Image-applied Therapy, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo, Kyoto 606-8507 (Japan)

    2016-09-15

    Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiple causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.

  17. Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy

    International Nuclear Information System (INIS)

    Matsuo, Yukinori; Nakamura, Mitsuhiro; Mizowaki, Takashi; Hiraoka, Masahiro

    2016-01-01

    Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiple causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.

  18. The Acquisition of Subject-Verb Agreement in Written French: From Novices to Experts' Errors.

    Science.gov (United States)

    Fayol, Michel; Largy, Pierre; Hupet, Michel

    1999-01-01

    Aims at demonstrating the gradual automatization of subject-verb agreement operation in young writers by examining developmental changes in the occurrence of agreement errors. Finds that subjects' performance moved from systematic errors to attraction errors through an intermediate phase. Concludes that attraction errors are a byproduct of the…

  19. Redundant measurements for controlling errors

    International Nuclear Information System (INIS)

    Ehinger, M.H.; Crawford, J.M.; Madeen, M.L.

    1979-07-01

    Current federal regulations for nuclear materials control require consideration of operating data as part of the quality control program and limits of error propagation. Recent work at the BNFP has revealed that operating data are subject to a number of measurement problems which are very difficult to detect and even more difficult to correct in a timely manner. Thus error estimates based on operational data reflect those problems. During the FY 1978 and FY 1979 R and D demonstration runs at the BNFP, redundant measurement techniques were shown to be effective in detecting these problems to allow corrective action. The net effect is a reduction in measurement errors and a significant increase in measurement sensitivity. Results show that normal operation process control measurements, in conjunction with routine accountability measurements, are sensitive problem indicators when incorporated in a redundant measurement program

  20. Comparing Absolute Error with Squared Error for Evaluating Empirical Models of Continuous Variables: Compositions, Implications, and Consequences

    Science.gov (United States)

    Gao, J.

    2014-12-01

    Reducing modeling error is often a major concern of empirical geophysical models. However, modeling errors can be defined in different ways: When the response variable is continuous, the most commonly used metrics are squared (SQ) and absolute (ABS) errors. For most applications, ABS error is the more natural, but SQ error is mathematically more tractable, so is often used as a substitute with little scientific justification. Existing literature has not thoroughly investigated the implications of using SQ error in place of ABS error, especially not geospatially. This study compares the two metrics through the lens of bias-variance decomposition (BVD). BVD breaks down the expected modeling error of each model evaluation point into bias (systematic error), variance (model sensitivity), and noise (observation instability). It offers a way to probe the composition of various error metrics. I analytically derived the BVD of ABS error and compared it with the well-known SQ error BVD, and found that not only the two metrics measure the characteristics of the probability distributions of modeling errors differently, but also the effects of these characteristics on the overall expected error are different. Most notably, under SQ error all bias, variance, and noise increase expected error, while under ABS error certain parts of the error components reduce expected error. Since manipulating these subtractive terms is a legitimate way to reduce expected modeling error, SQ error can never capture the complete story embedded in ABS error. I then empirically compared the two metrics with a supervised remote sensing model for mapping surface imperviousness. Pair-wise spatially-explicit comparison for each error component showed that SQ error overstates all error components in comparison to ABS error, especially variance-related terms. Hence, substituting ABS error with SQ error makes model performance appear worse than it actually is, and the analyst would more likely accept a

  1. Learning from Errors

    Science.gov (United States)

    Metcalfe, Janet

    2017-01-01

    Although error avoidance during learning appears to be the rule in American classrooms, laboratory studies suggest that it may be a counterproductive strategy, at least for neurologically typical students. Experimental investigations indicate that errorful learning followed by corrective feedback is beneficial to learning. Interestingly, the…

  2. Errors in Viking Lander Atmospheric Profiles Discovered Using MOLA Topography

    Science.gov (United States)

    Withers, Paul; Lorenz, R. D.; Neumann, G. A.

    2002-01-01

    Each Viking lander measured a topographic profile during entry. Comparing to MOLA (Mars Orbiter Laser Altimeter), we find a vertical error of 1-2 km in the Viking trajectory. This introduces a systematic error of 10-20% in the Viking densities and pressures at a given altitude. Additional information is contained in the original extended abstract.

  3. Errors in practical measurement in surveying, engineering, and technology

    International Nuclear Information System (INIS)

    Barry, B.A.; Morris, M.D.

    1991-01-01

    This book discusses statistical measurement, error theory, and statistical error analysis. The topics of the book include an introduction to measurement, measurement errors, the reliability of measurements, probability theory of errors, measures of reliability, reliability of repeated measurements, propagation of errors in computing, errors and weights, practical application of the theory of errors in measurement, two-dimensional errors and includes a bibliography. Appendices are included which address significant figures in measurement, basic concepts of probability and the normal probability curve, writing a sample specification for a procedure, classification, standards of accuracy, and general specifications of geodetic control surveys, the geoid, the frequency distribution curve and the computer and calculator solution of problems

  4. Action errors, error management, and learning in organizations.

    Science.gov (United States)

    Frese, Michael; Keith, Nina

    2015-01-03

    Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.

  5. NLO error propagation exercise: statistical results

    International Nuclear Information System (INIS)

    Pack, D.J.; Downing, D.J.

    1985-09-01

    Error propagation is the extrapolation and cumulation of uncertainty (variance) above total amounts of special nuclear material, for example, uranium or 235 U, that are present in a defined location at a given time. The uncertainty results from the inevitable inexactness of individual measurements of weight, uranium concentration, 235 U enrichment, etc. The extrapolated and cumulated uncertainty leads directly to quantified limits of error on inventory differences (LEIDs) for such material. The NLO error propagation exercise was planned as a field demonstration of the utilization of statistical error propagation methodology at the Feed Materials Production Center in Fernald, Ohio from April 1 to July 1, 1983 in a single material balance area formed specially for the exercise. Major elements of the error propagation methodology were: variance approximation by Taylor Series expansion; variance cumulation by uncorrelated primary error sources as suggested by Jaech; random effects ANOVA model estimation of variance effects (systematic error); provision for inclusion of process variance in addition to measurement variance; and exclusion of static material. The methodology was applied to material balance area transactions from the indicated time period through a FORTRAN computer code developed specifically for this purpose on the NLO HP-3000 computer. This paper contains a complete description of the error propagation methodology and a full summary of the numerical results of applying the methodlogy in the field demonstration. The error propagation LEIDs did encompass the actual uranium and 235 U inventory differences. Further, one can see that error propagation actually provides guidance for reducing inventory differences and LEIDs in future time periods

  6. On the Correspondence between Mean Forecast Errors and Climate Errors in CMIP5 Models

    Energy Technology Data Exchange (ETDEWEB)

    Ma, H. -Y.; Xie, S.; Klein, S. A.; Williams, K. D.; Boyle, J. S.; Bony, S.; Douville, H.; Fermepin, S.; Medeiros, B.; Tyteca, S.; Watanabe, M.; Williamson, D.

    2014-02-01

    The present study examines the correspondence between short- and long-term systematic errors in five atmospheric models by comparing the 16 five-day hindcast ensembles from the Transpose Atmospheric Model Intercomparison Project II (Transpose-AMIP II) for July–August 2009 (short term) to the climate simulations from phase 5 of the Coupled Model Intercomparison Project (CMIP5) and AMIP for the June–August mean conditions of the years of 1979–2008 (long term). Because the short-term hindcasts were conducted with identical climate models used in the CMIP5/AMIP simulations, one can diagnose over what time scale systematic errors in these climate simulations develop, thus yielding insights into their origin through a seamless modeling approach. The analysis suggests that most systematic errors of precipitation, clouds, and radiation processes in the long-term climate runs are present by day 5 in ensemble average hindcasts in all models. Errors typically saturate after few days of hindcasts with amplitudes comparable to the climate errors, and the impacts of initial conditions on the simulated ensemble mean errors are relatively small. This robust bias correspondence suggests that these systematic errors across different models likely are initiated by model parameterizations since the atmospheric large-scale states remain close to observations in the first 2–3 days. However, biases associated with model physics can have impacts on the large-scale states by day 5, such as zonal winds, 2-m temperature, and sea level pressure, and the analysis further indicates a good correspondence between short- and long-term biases for these large-scale states. Therefore, improving individual model parameterizations in the hindcast mode could lead to the improvement of most climate models in simulating their climate mean state and potentially their future projections.

  7. Group representations, error bases and quantum codes

    Energy Technology Data Exchange (ETDEWEB)

    Knill, E

    1996-01-01

    This report continues the discussion of unitary error bases and quantum codes. Nice error bases are characterized in terms of the existence of certain characters in a group. A general construction for error bases which are non-abelian over the center is given. The method for obtaining codes due to Calderbank et al. is generalized and expressed purely in representation theoretic terms. The significance of the inertia subgroup both for constructing codes and obtaining the set of transversally implementable operations is demonstrated.

  8. Drought Persistence Errors in Global Climate Models

    Science.gov (United States)

    Moon, H.; Gudmundsson, L.; Seneviratne, S. I.

    2018-04-01

    The persistence of drought events largely determines the severity of socioeconomic and ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assessed by comparing state-of-the-art GCM model simulations to observation-based data sets. For doing so, we consider dry-to-dry transition probabilities at monthly and annual scales as estimates for drought persistence, where a dry status is defined as negative precipitation anomaly. Though there is a substantial spread in the drought persistence bias, most of the simulations show systematic underestimation of drought persistence at global scale. Subsequently, we analyzed to which degree (i) inaccurate observations, (ii) differences among models, (iii) internal climate variability, and (iv) uncertainty of the employed statistical methods contribute to the spread in drought persistence errors using an analysis of variance approach. The results show that at monthly scale, model uncertainty and observational uncertainty dominate, while the contribution from internal variability is small in most cases. At annual scale, the spread of the drought persistence error is dominated by the statistical estimation error of drought persistence, indicating that the partitioning of the error is impaired by the limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current GCMs and suggest directions for further model improvement.

  9. Influence of calculation error of total field anomaly in strongly magnetic environments

    Science.gov (United States)

    Yuan, Xiaoyu; Yao, Changli; Zheng, Yuanman; Li, Zelin

    2016-04-01

    An assumption made in many magnetic interpretation techniques is that ΔTact (total field anomaly - the measurement given by total field magnetometers, after we remove the main geomagnetic field, T0) can be approximated mathematically by ΔTpro (the projection of anomalous field vector in the direction of the earth's normal field). In order to meet the demand for high-precision processing of magnetic prospecting, the approximate error E between ΔTact and ΔTpro is studied in this research. Generally speaking, the error E is extremely small when anomalies not greater than about 0.2T0. However, the errorE may be large in highly magnetic environments. This leads to significant effects on subsequent quantitative inference. Therefore, we investigate the error E through numerical experiments of high-susceptibility bodies. A systematic error analysis was made by using a 2-D elliptic cylinder model. Error analysis show that the magnitude of ΔTact is usually larger than that of ΔTpro. This imply that a theoretical anomaly computed without accounting for the error E overestimate the anomaly associated with the body. It is demonstrated through numerical experiments that the error E is obvious and should not be ignored. It is also shown that the curves of ΔTpro and the error E had a certain symmetry when the directions of magnetization and geomagnetic field changed. To be more specific, the Emax (the maximum of the error E) appeared above the center of the magnetic body when the magnetic parameters are determined. Some other characteristics about the error Eare discovered. For instance, the curve of Emax with respect to the latitude was symmetrical on both sides of magnetic equator, and the extremum of the Emax can always be found in the mid-latitudes, and so on. It is also demonstrated that the error Ehas great influence on magnetic processing transformation and inversion results. It is conclude that when the bodies have highly magnetic susceptibilities, the error E can

  10. ERF/ERFC, Calculation of Error Function, Complementary Error Function, Probability Integrals

    International Nuclear Information System (INIS)

    Vogel, J.E.

    1983-01-01

    1 - Description of problem or function: ERF and ERFC are used to compute values of the error function and complementary error function for any real number. They may be used to compute other related functions such as the normal probability integrals. 4. Method of solution: The error function and complementary error function are approximated by rational functions. Three such rational approximations are used depending on whether - x .GE.4.0. In the first region the error function is computed directly and the complementary error function is computed via the identity erfc(x)=1.0-erf(x). In the other two regions the complementary error function is computed directly and the error function is computed from the identity erf(x)=1.0-erfc(x). The error function and complementary error function are real-valued functions of any real argument. The range of the error function is (-1,1). The range of the complementary error function is (0,2). 5. Restrictions on the complexity of the problem: The user is cautioned against using ERF to compute the complementary error function by using the identity erfc(x)=1.0-erf(x). This subtraction may cause partial or total loss of significance for certain values of x

  11. Uncorrected refractive errors.

    Science.gov (United States)

    Naidoo, Kovin S; Jaggernath, Jyoti

    2012-01-01

    Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC), were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR) Development, Service Development and Social Entrepreneurship.

  12. Uncorrected refractive errors

    Directory of Open Access Journals (Sweden)

    Kovin S Naidoo

    2012-01-01

    Full Text Available Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC, were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR Development, Service Development and Social Entrepreneurship.

  13. Force Reproduction Error Depends on Force Level, whereas the Position Reproduction Error Does Not

    NARCIS (Netherlands)

    Onneweer, B.; Mugge, W.; Schouten, Alfred Christiaan

    2016-01-01

    When reproducing a previously perceived force or position humans make systematic errors. This study determined the effect of force level on force and position reproduction, when both target and reproduction force are self-generated with the same hand. Subjects performed force reproduction tasks at

  14. Preventing Errors in Laterality

    OpenAIRE

    Landau, Elliot; Hirschorn, David; Koutras, Iakovos; Malek, Alexander; Demissie, Seleshie

    2014-01-01

    An error in laterality is the reporting of a finding that is present on the right side as on the left or vice versa. While different medical and surgical specialties have implemented protocols to help prevent such errors, very few studies have been published that describe these errors in radiology reports and ways to prevent them. We devised a system that allows the radiologist to view reports in a separate window, displayed in a simple font and with all terms of laterality highlighted in sep...

  15. Errors and violations

    International Nuclear Information System (INIS)

    Reason, J.

    1988-01-01

    This paper is in three parts. The first part summarizes the human failures responsible for the Chernobyl disaster and argues that, in considering the human contribution to power plant emergencies, it is necessary to distinguish between: errors and violations; and active and latent failures. The second part presents empirical evidence, drawn from driver behavior, which suggest that errors and violations have different psychological origins. The concluding part outlines a resident pathogen view of accident causation, and seeks to identify the various system pathways along which errors and violations may be propagated

  16. Positioning errors assessed with kV cone-beam CT for image-guided prostate radiotherapy

    International Nuclear Information System (INIS)

    Li Jiongyan; Guo Xiaomao; Yao Weiqiang; Wang Yanyang; Ma Jinli; Chen Jiayi; Zhang Zhen; Feng Yan

    2010-01-01

    Objective: To assess set-up errors measured with kilovoltage cone-beam CT (KV-CBCT), and the impact of online corrections on margins required to account for set-up variability during IMRT for patients with prostate cancer. Methods: Seven patients with prostate cancer undergoing IMRT were enrolled onto the study. The KV-CBCT scans were acquired at least twice weekly. After initial set-up using the skin marks, a CBCT scan was acquired and registered with the planning CT to determine the setup errors using an auto grey-scale registration software. Corrections would be made by moving the table if the setup errors were considered clinically significant (i. e. , > 2 mm). A second CBCT scan was acquired immediately after the corrections to evaluate the residual error. PTV margins were derived to account for the measured set-up errors and residual errors determined for this group of patients. Results: 197 KV-CBCT images in total were acquired. The random and systematic positioning errors and calculated PTV margins without correction in mm were : a) Lateral 3.1, 2.1, 9.3; b) Longitudinal 1.5, 1.8, 5.1;c) Vertical 4.2, 3.7, 13.0. The random and systematic positioning errors and calculated PTV margin with correction in mm were : a) Lateral 1.1, 0.9, 3.4; b) Longitudinal 0.7, 1.1, 2.5; c) Vertical 1.1, 1.3, 3.7. Conclusions: With the guidance of online KV-CBCT, set-up errors could be reduced significantly for patients with prostate cancer receiving IMRT. The margin required after online CBCT correction for the patients enrolled in the study would be appoximatively 3-4 mm. (authors)

  17. Help prevent hospital errors

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000618.htm Help prevent hospital errors To use the sharing features ... in the hospital. If You Are Having Surgery, Help Keep Yourself Safe Go to a hospital you ...

  18. Pedal Application Errors

    Science.gov (United States)

    2012-03-01

    This project examined the prevalence of pedal application errors and the driver, vehicle, roadway and/or environmental characteristics associated with pedal misapplication crashes based on a literature review, analysis of news media reports, a panel ...

  19. Rounding errors in weighing

    International Nuclear Information System (INIS)

    Jeach, J.L.

    1976-01-01

    When rounding error is large relative to weighing error, it cannot be ignored when estimating scale precision and bias from calibration data. Further, if the data grouping is coarse, rounding error is correlated with weighing error and may also have a mean quite different from zero. These facts are taken into account in a moment estimation method. A copy of the program listing for the MERDA program that provides moment estimates is available from the author. Experience suggests that if the data fall into four or more cells or groups, it is not necessary to apply the moment estimation method. Rather, the estimate given by equation (3) is valid in this instance. 5 tables

  20. Spotting software errors sooner

    International Nuclear Information System (INIS)

    Munro, D.

    1989-01-01

    Static analysis is helping to identify software errors at an earlier stage and more cheaply than conventional methods of testing. RTP Software's MALPAS system also has the ability to check that a code conforms to its original specification. (author)

  1. Errors in energy bills

    International Nuclear Information System (INIS)

    Kop, L.

    2001-01-01

    On request, the Dutch Association for Energy, Environment and Water (VEMW) checks the energy bills for her customers. It appeared that in the year 2000 many small, but also big errors were discovered in the bills of 42 businesses

  2. Medical Errors Reduction Initiative

    National Research Council Canada - National Science Library

    Mutter, Michael L

    2005-01-01

    The Valley Hospital of Ridgewood, New Jersey, is proposing to extend a limited but highly successful specimen management and medication administration medical errors reduction initiative on a hospital-wide basis...

  3. Volterra Filtering for ADC Error Correction

    Directory of Open Access Journals (Sweden)

    J. Saliga

    2001-09-01

    Full Text Available Dynamic non-linearity of analog-to-digital converters (ADCcontributes significantly to the distortion of digitized signals. Thispaper introduces a new effective method for compensation such adistortion based on application of Volterra filtering. Considering ana-priori error model of ADC allows finding an efficient inverseVolterra model for error correction. Efficiency of proposed method isdemonstrated on experimental results.

  4. Error and uncertainty in scientific practice

    NARCIS (Netherlands)

    Boumans, M.; Hon, G.; Petersen, A.C.

    2014-01-01

    Assessment of error and uncertainty is a vital component of both natural and social science. Empirical research involves dealing with all kinds of errors and uncertainties, yet there is significant variance in how such results are dealt with. Contributors to this volume present case studies of

  5. Design for Error Tolerance

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1983-01-01

    An important aspect of the optimal design of computer-based operator support systems is the sensitivity of such systems to operator errors. The author discusses how a system might allow for human variability with the use of reversibility and observability.......An important aspect of the optimal design of computer-based operator support systems is the sensitivity of such systems to operator errors. The author discusses how a system might allow for human variability with the use of reversibility and observability....

  6. Apologies and Medical Error

    Science.gov (United States)

    2008-01-01

    One way in which physicians can respond to a medical error is to apologize. Apologies—statements that acknowledge an error and its consequences, take responsibility, and communicate regret for having caused harm—can decrease blame, decrease anger, increase trust, and improve relationships. Importantly, apologies also have the potential to decrease the risk of a medical malpractice lawsuit and can help settle claims by patients. Patients indicate they want and expect explanations and apologies after medical errors and physicians indicate they want to apologize. However, in practice, physicians tend to provide minimal information to patients after medical errors and infrequently offer complete apologies. Although fears about potential litigation are the most commonly cited barrier to apologizing after medical error, the link between litigation risk and the practice of disclosure and apology is tenuous. Other barriers might include the culture of medicine and the inherent psychological difficulties in facing one’s mistakes and apologizing for them. Despite these barriers, incorporating apology into conversations between physicians and patients can address the needs of both parties and can play a role in the effective resolution of disputes related to medical error. PMID:18972177

  7. Thermodynamics of Error Correction

    Directory of Open Access Journals (Sweden)

    Pablo Sartori

    2015-12-01

    Full Text Available Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and work dissipated by the system during wrong incorporations. Its derivation is based on the second law of thermodynamics; hence, its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.

  8. Sequential Ensembles Tolerant to Synthetic Aperture Radar (SAR Soil Moisture Retrieval Errors

    Directory of Open Access Journals (Sweden)

    Ju Hyoung Lee

    2016-04-01

    Full Text Available Due to complicated and undefined systematic errors in satellite observation, data assimilation integrating model states with satellite observations is more complicated than field measurements-based data assimilation at a local scale. In the case of Synthetic Aperture Radar (SAR soil moisture, the systematic errors arising from uncertainties in roughness conditions are significant and unavoidable, but current satellite bias correction methods do not resolve the problems very well. Thus, apart from the bias correction process of satellite observation, it is important to assess the inherent capability of satellite data assimilation in such sub-optimal but more realistic observational error conditions. To this end, time-evolving sequential ensembles of the Ensemble Kalman Filter (EnKF is compared with stationary ensemble of the Ensemble Optimal Interpolation (EnOI scheme that does not evolve the ensembles over time. As the sensitivity analysis demonstrated that the surface roughness is more sensitive to the SAR retrievals than measurement errors, it is a scope of this study to monitor how data assimilation alters the effects of roughness on SAR soil moisture retrievals. In results, two data assimilation schemes all provided intermediate values between SAR overestimation, and model underestimation. However, under the same SAR observational error conditions, the sequential ensembles approached a calibrated model showing the lowest Root Mean Square Error (RMSE, while the stationary ensemble converged towards the SAR observations exhibiting the highest RMSE. As compared to stationary ensembles, sequential ensembles have a better tolerance to SAR retrieval errors. Such inherent nature of EnKF suggests an operational merit as a satellite data assimilation system, due to the limitation of bias correction methods currently available.

  9. Human errors related to maintenance and modifications

    International Nuclear Information System (INIS)

    Laakso, K.; Pyy, P.; Reiman, L.

    1998-01-01

    The focus in human reliability analysis (HRA) relating to nuclear power plants has traditionally been on human performance in disturbance conditions. On the other hand, some studies and incidents have shown that also maintenance errors, which have taken place earlier in plant history, may have an impact on the severity of a disturbance, e.g. if they disable safety related equipment. Especially common cause and other dependent failures of safety systems may significantly contribute to the core damage risk. The first aim of the study was to identify and give examples of multiple human errors which have penetrated the various error detection and inspection processes of plant safety barriers. Another objective was to generate numerical safety indicators to describe and forecast the effectiveness of maintenance. A more general objective was to identify needs for further development of maintenance quality and planning. In the first phase of this operational experience feedback analysis, human errors recognisable in connection with maintenance were looked for by reviewing about 4400 failure and repair reports and some special reports which cover two nuclear power plant units on the same site during 1992-94. A special effort was made to study dependent human errors since they are generally the most serious ones. An in-depth root cause analysis was made for 14 dependent errors by interviewing plant maintenance foremen and by thoroughly analysing the errors. A more simple treatment was given to maintenance-related single errors. The results were shown as a distribution of errors among operating states i.a. as regards the following matters: in what operational state the errors were committed and detected; in what operational and working condition the errors were detected, and what component and error type they were related to. These results were presented separately for single and dependent maintenance-related errors. As regards dependent errors, observations were also made

  10. Clinical errors and medical negligence.

    Science.gov (United States)

    Oyebode, Femi

    2013-01-01

    This paper discusses the definition, nature and origins of clinical errors including their prevention. The relationship between clinical errors and medical negligence is examined as are the characteristics of litigants and events that are the source of litigation. The pattern of malpractice claims in different specialties and settings is examined. Among hospitalized patients worldwide, 3-16% suffer injury as a result of medical intervention, the most common being the adverse effects of drugs. The frequency of adverse drug effects appears superficially to be higher in intensive care units and emergency departments but once rates have been corrected for volume of patients, comorbidity of conditions and number of drugs prescribed, the difference is not significant. It is concluded that probably no more than 1 in 7 adverse events in medicine result in a malpractice claim and the factors that predict that a patient will resort to litigation include a prior poor relationship with the clinician and the feeling that the patient is not being kept informed. Methods for preventing clinical errors are still in their infancy. The most promising include new technologies such as electronic prescribing systems, diagnostic and clinical decision-making aids and error-resistant systems. Copyright © 2013 S. Karger AG, Basel.

  11. Errors from Image Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wood, William Monford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    Presenting a systematic study of the standard analysis of rod-pinch radiographs for obtaining quantitative measurements of areal mass densities, and making suggestions for improving the methodology of obtaining quantitative information from radiographed objects.

  12. Analytical modeling for thermal errors of motorized spindle unit

    OpenAIRE

    Liu, Teng; Gao, Weiguo; Zhang, Dawei; Zhang, Yifan; Chang, Wenfen; Liang, Cunman; Tian, Yanling

    2017-01-01

    Modeling method investigation about spindle thermal errors is significant for spindle thermal optimization in design phase. To accurately analyze the thermal errors of motorized spindle unit, this paper assumes approximately that 1) spindle linear thermal error on axial direction is ascribed to shaft thermal elongation for its heat transfer from bearings, and 2) spindle linear thermal errors on radial directions and angular thermal errors are attributed to thermal variations of bearing relati...

  13. The DiskMass Survey. II. Error Budget

    Science.gov (United States)

    Bershady, Matthew A.; Verheijen, Marc A. W.; Westfall, Kyle B.; Andersen, David R.; Swaters, Rob A.; Martinsson, Thomas

    2010-06-01

    We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio (Υ_{*}), and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies. We find that a disk inclination range of 25°-35° is optimal for our measurements, consistent with our survey design to select nearly face-on galaxies. Uncertainties in disk scale heights are significant, but can be estimated from radial scale lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and an extensive library of observed stars. We show that the baryon-to-total mass fraction ({F}_bar) is not a well-defined observational quantity because it is coupled to the halo mass model. This remains true even when the disk mass is known and spatially extended rotation curves are available. In contrast, the fraction of the rotation speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the baryonic disk contribution to the potential. We construct the error budget for the key quantities: dynamical disk mass surface density (Σdyn), disk stellar mass-to-light ratio (Υ^disk_{*}), and disk maximality ({F}_{*,max}^disk≡ V^disk_{*,max}/ V_c). Random and systematic errors in these quantities for individual galaxies will be ~25%, while survey precision for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.

  14. Compact disk error measurements

    Science.gov (United States)

    Howe, D.; Harriman, K.; Tehranchi, B.

    1993-01-01

    The objectives of this project are as follows: provide hardware and software that will perform simple, real-time, high resolution (single-byte) measurement of the error burst and good data gap statistics seen by a photoCD player read channel when recorded CD write-once discs of variable quality (i.e., condition) are being read; extend the above system to enable measurement of the hard decision (i.e., 1-bit error flags) and soft decision (i.e., 2-bit error flags) decoding information that is produced/used by the Cross Interleaved - Reed - Solomon - Code (CIRC) block decoder employed in the photoCD player read channel; construct a model that uses data obtained via the systems described above to produce meaningful estimates of output error rates (due to both uncorrected ECC words and misdecoded ECC words) when a CD disc having specific (measured) error statistics is read (completion date to be determined); and check the hypothesis that current adaptive CIRC block decoders are optimized for pressed (DAD/ROM) CD discs. If warranted, do a conceptual design of an adaptive CIRC decoder that is optimized for write-once CD discs.

  15. Dosimetric Implications of Residual Tracking Errors During Robotic SBRT of Liver Metastases

    International Nuclear Information System (INIS)

    Chan, Mark; Grehn, Melanie; Cremers, Florian; Siebert, Frank-Andre; Wurster, Stefan; Huttenlocher, Stefan; Dunst, Jürgen; Hildebrandt, Guido; Schweikard, Achim; Rades, Dirk; Ernst, Floris

    2017-01-01

    Purpose: Although the metric precision of robotic stereotactic body radiation therapy in the presence of breathing motion is widely known, we investigated the dosimetric implications of breathing phase–related residual tracking errors. Methods and Materials: In 24 patients (28 liver metastases) treated with the CyberKnife, we recorded the residual correlation, prediction, and rotational tracking errors from 90 fractions and binned them into 10 breathing phases. The average breathing phase errors were used to shift and rotate the clinical tumor volume (CTV) and planning target volume (PTV) for each phase to calculate a pseudo 4-dimensional error dose distribution for comparison with the original planned dose distribution. Results: The median systematic directional correlation, prediction, and absolute aggregate rotation errors were 0.3 mm (range, 0.1-1.3 mm), 0.01 mm (range, 0.00-0.05 mm), and 1.5° (range, 0.4°-2.7°), respectively. Dosimetrically, 44%, 81%, and 92% of all voxels differed by less than 1%, 3%, and 5% of the planned local dose, respectively. The median coverage reduction for the PTV was 1.1% (range in coverage difference, −7.8% to +0.8%), significantly depending on correlation (P=.026) and rotational (P=.005) error. With a 3-mm PTV margin, the median coverage change for the CTV was 0.0% (range, −1.0% to +5.4%), not significantly depending on any investigated parameter. In 42% of patients, the 3-mm margin did not fully compensate for the residual tracking errors, resulting in a CTV coverage reduction of 0.1% to 1.0%. Conclusions: For liver tumors treated with robotic stereotactic body radiation therapy, a safety margin of 3 mm is not always sufficient to cover all residual tracking errors. Dosimetrically, this translates into only small CTV coverage reductions.

  16. Dosimetric Implications of Residual Tracking Errors During Robotic SBRT of Liver Metastases

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Mark [Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel (Germany); Tuen Mun Hospital, Hong Kong (China); Grehn, Melanie [Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Lübeck (Germany); Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck (Germany); Cremers, Florian [Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Lübeck (Germany); Siebert, Frank-Andre [Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel (Germany); Wurster, Stefan [Saphir Radiosurgery Center Northern Germany, Güstrow (Germany); Department for Radiation Oncology, University Medicine Greifswald, Greifswald (Germany); Huttenlocher, Stefan [Saphir Radiosurgery Center Northern Germany, Güstrow (Germany); Dunst, Jürgen [Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel (Germany); Department for Radiation Oncology, University Clinic Copenhagen, Copenhagen (Denmark); Hildebrandt, Guido [Department for Radiation Oncology, University Medicine Rostock, Rostock (Germany); Schweikard, Achim [Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck (Germany); Rades, Dirk [Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Lübeck (Germany); Ernst, Floris [Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck (Germany); and others

    2017-03-15

    Purpose: Although the metric precision of robotic stereotactic body radiation therapy in the presence of breathing motion is widely known, we investigated the dosimetric implications of breathing phase–related residual tracking errors. Methods and Materials: In 24 patients (28 liver metastases) treated with the CyberKnife, we recorded the residual correlation, prediction, and rotational tracking errors from 90 fractions and binned them into 10 breathing phases. The average breathing phase errors were used to shift and rotate the clinical tumor volume (CTV) and planning target volume (PTV) for each phase to calculate a pseudo 4-dimensional error dose distribution for comparison with the original planned dose distribution. Results: The median systematic directional correlation, prediction, and absolute aggregate rotation errors were 0.3 mm (range, 0.1-1.3 mm), 0.01 mm (range, 0.00-0.05 mm), and 1.5° (range, 0.4°-2.7°), respectively. Dosimetrically, 44%, 81%, and 92% of all voxels differed by less than 1%, 3%, and 5% of the planned local dose, respectively. The median coverage reduction for the PTV was 1.1% (range in coverage difference, −7.8% to +0.8%), significantly depending on correlation (P=.026) and rotational (P=.005) error. With a 3-mm PTV margin, the median coverage change for the CTV was 0.0% (range, −1.0% to +5.4%), not significantly depending on any investigated parameter. In 42% of patients, the 3-mm margin did not fully compensate for the residual tracking errors, resulting in a CTV coverage reduction of 0.1% to 1.0%. Conclusions: For liver tumors treated with robotic stereotactic body radiation therapy, a safety margin of 3 mm is not always sufficient to cover all residual tracking errors. Dosimetrically, this translates into only small CTV coverage reductions.

  17. The Relationships Among Perceived Patients' Safety Culture, Intention to Report Errors, and Leader Coaching Behavior of Nurses in Korea: A Pilot Study.

    Science.gov (United States)

    Ko, YuKyung; Yu, Soyoung

    2017-09-01

    This study was undertaken to explore the correlations among nurses' perceptions of patient safety culture, their intention to report errors, and leader coaching behaviors. The participants (N = 289) were nurses from 5 Korean hospitals with approximately 300 to 500 beds each. Sociodemographic variables, patient safety culture, intention to report errors, and coaching behavior were measured using self-report instruments. Data were analyzed using descriptive statistics, Pearson correlation coefficient, the t test, and the Mann-Whitney U test. Nurses' perceptions of patient safety culture and their intention to report errors showed significant differences between groups of nurses who rated their leaders as high-performing or low-performing coaches. Perceived coaching behavior showed a significant, positive correlation with patient safety culture and intention to report errors, i.e., as nurses' perceptions of coaching behaviors increased, so did their ratings of patient safety culture and error reporting. There is a need in health care settings for coaching by nurse managers to provide quality nursing care and thus improve patient safety. Programs that are systematically developed and implemented to enhance the coaching behaviors of nurse managers are crucial to the improvement of patient safety and nursing care. Moreover, a systematic analysis of the causes of malpractice, as opposed to a focus on the punitive consequences of errors, could increase error reporting and therefore promote a culture in which a higher level of patient safety can thrive.

  18. Neurochemical enhancement of conscious error awareness.

    Science.gov (United States)

    Hester, Robert; Nandam, L Sanjay; O'Connell, Redmond G; Wagner, Joe; Strudwick, Mark; Nathan, Pradeep J; Mattingley, Jason B; Bellgrove, Mark A

    2012-02-22

    How the brain monitors ongoing behavior for performance errors is a central question of cognitive neuroscience. Diminished awareness of performance errors limits the extent to which humans engage in corrective behavior and has been linked to loss of insight in a number of psychiatric syndromes (e.g., attention deficit hyperactivity disorder, drug addiction). These conditions share alterations in monoamine signaling that may influence the neural mechanisms underlying error processing, but our understanding of the neurochemical drivers of these processes is limited. We conducted a randomized, double-blind, placebo-controlled, cross-over design of the influence of methylphenidate, atomoxetine, and citalopram on error awareness in 27 healthy participants. The error awareness task, a go/no-go response inhibition paradigm, was administered to assess the influence of monoaminergic agents on performance errors during fMRI data acquisition. A single dose of methylphenidate, but not atomoxetine or citalopram, significantly improved the ability of healthy volunteers to consciously detect performance errors. Furthermore, this behavioral effect was associated with a strengthening of activation differences in the dorsal anterior cingulate cortex and inferior parietal lobe during the methylphenidate condition for errors made with versus without awareness. Our results have implications for the understanding of the neurochemical underpinnings of performance monitoring and for the pharmacological treatment of a range of disparate clinical conditions that are marked by poor awareness of errors.

  19. [Analysis of intrusion errors in free recall].

    Science.gov (United States)

    Diesfeldt, H F A

    2017-06-01

    Extra-list intrusion errors during five trials of the eight-word list-learning task of the Amsterdam Dementia Screening Test (ADST) were investigated in 823 consecutive psychogeriatric patients (87.1% suffering from major neurocognitive disorder). Almost half of the participants (45.9%) produced one or more intrusion errors on the verbal recall test. Correct responses were lower when subjects made intrusion errors, but learning slopes did not differ between subjects who committed intrusion errors and those who did not so. Bivariate regression analyses revealed that participants who committed intrusion errors were more deficient on measures of eight-word recognition memory, delayed visual recognition and tests of executive control (the Behavioral Dyscontrol Scale and the ADST-Graphical Sequences as measures of response inhibition). Using hierarchical multiple regression, only free recall and delayed visual recognition retained an independent effect in the association with intrusion errors, such that deficient scores on tests of episodic memory were sufficient to explain the occurrence of intrusion errors. Measures of inhibitory control did not add significantly to the explanation of intrusion errors in free recall, which makes insufficient strength of memory traces rather than a primary deficit in inhibition the preferred account for intrusion errors in free recall.

  20. Error correction and degeneracy in surface codes suffering loss

    International Nuclear Information System (INIS)

    Stace, Thomas M.; Barrett, Sean D.

    2010-01-01

    Many proposals for quantum information processing are subject to detectable loss errors. In this paper, we give a detailed account of recent results in which we showed that topological quantum memories can simultaneously tolerate both loss errors and computational errors, with a graceful tradeoff between the threshold for each. We further discuss a number of subtleties that arise when implementing error correction on topological memories. We particularly focus on the role played by degeneracy in the matching algorithms and present a systematic study of its effects on thresholds. We also discuss some of the implications of degeneracy for estimating phase transition temperatures in the random bond Ising model.

  1. Common patterns in 558 diagnostic radiology errors.

    Science.gov (United States)

    Donald, Jennifer J; Barnard, Stuart A

    2012-04-01

    As a Quality Improvement initiative our department has held regular discrepancy meetings since 2003. We performed a retrospective analysis of the cases presented and identified the most common pattern of error. A total of 558 cases were referred for discussion over 92 months, and errors were classified as perceptual or interpretative. The most common patterns of error for each imaging modality were analysed, and the misses were scored by consensus as subtle or non-subtle. Of 558 diagnostic errors, 447 (80%) were perceptual and 111 (20%) were interpretative errors. Plain radiography and computed tomography (CT) scans were the most frequent imaging modalities accounting for 246 (44%) and 241 (43%) of the total number of errors, respectively. In the plain radiography group 120 (49%) of the errors occurred in chest X-ray reports with perceptual miss of a lung nodule occurring in 40% of this subgroup. In the axial and appendicular skeleton missed fractures occurred most frequently, and metastatic bone disease was overlooked in 12 of 50 plain X-rays of the pelvis or spine. The majority of errors within the CT group were in reports of body scans with the commonest perceptual errors identified including 16 missed significant bone lesions, 14 cases of thromboembolic disease and 14 gastrointestinal tumours. Of the 558 errors, 312 (56%) were considered subtle and 246 (44%) non-subtle. Diagnostic errors are not uncommon and are most frequently perceptual in nature. Identification of the most common patterns of error has the potential to improve the quality of reporting by improving the search behaviour of radiologists. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  2. Errors in Neonatology

    Directory of Open Access Journals (Sweden)

    Antonio Boldrini

    2013-06-01

    Full Text Available Introduction: Danger and errors are inherent in human activities. In medical practice errors can lean to adverse events for patients. Mass media echo the whole scenario. Methods: We reviewed recent published papers in PubMed database to focus on the evidence and management of errors in medical practice in general and in Neonatology in particular. We compared the results of the literature with our specific experience in Nina Simulation Centre (Pisa, Italy. Results: In Neonatology the main error domains are: medication and total parenteral nutrition, resuscitation and respiratory care, invasive procedures, nosocomial infections, patient identification, diagnostics. Risk factors include patients’ size, prematurity, vulnerability and underlying disease conditions but also multidisciplinary teams, working conditions providing fatigue, a large variety of treatment and investigative modalities needed. Discussion and Conclusions: In our opinion, it is hardly possible to change the human beings but it is likely possible to change the conditions under they work. Voluntary errors report systems can help in preventing adverse events. Education and re-training by means of simulation can be an effective strategy too. In Pisa (Italy Nina (ceNtro di FormazIone e SimulazioNe NeonAtale is a simulation center that offers the possibility of a continuous retraining for technical and non-technical skills to optimize neonatological care strategies. Furthermore, we have been working on a novel skill trainer for mechanical ventilation (MEchatronic REspiratory System SImulator for Neonatal Applications, MERESSINA. Finally, in our opinion national health policy indirectly influences risk for errors. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  3. LIBERTARISMO & ERROR CATEGORIAL

    Directory of Open Access Journals (Sweden)

    Carlos G. Patarroyo G.

    2009-01-01

    Full Text Available En este artículo se ofrece una defensa del libertarismo frente a dos acusaciones según las cuales éste comete un error categorial. Para ello, se utiliza la filosofía de Gilbert Ryle como herramienta para explicar las razones que fundamentan estas acusaciones y para mostrar por qué, pese a que ciertas versiones del libertarismo que acuden a la causalidad de agentes o al dualismo cartesiano cometen estos errores, un libertarismo que busque en el indeterminismo fisicalista la base de la posibilidad de la libertad humana no necesariamente puede ser acusado de incurrir en ellos.

  4. Libertarismo & Error Categorial

    OpenAIRE

    PATARROYO G, CARLOS G

    2009-01-01

    En este artículo se ofrece una defensa del libertarismo frente a dos acusaciones según las cuales éste comete un error categorial. Para ello, se utiliza la filosofía de Gilbert Ryle como herramienta para explicar las razones que fundamentan estas acusaciones y para mostrar por qué, pese a que ciertas versiones del libertarismo que acuden a la causalidad de agentes o al dualismo cartesiano cometen estos errores, un libertarismo que busque en el indeterminismo fisicalista la base de la posibili...

  5. Error Free Software

    Science.gov (United States)

    1985-01-01

    A mathematical theory for development of "higher order" software to catch computer mistakes resulted from a Johnson Space Center contract for Apollo spacecraft navigation. Two women who were involved in the project formed Higher Order Software, Inc. to develop and market the system of error analysis and correction. They designed software which is logically error-free, which, in one instance, was found to increase productivity by 600%. USE.IT defines its objectives using AXES -- a user can write in English and the system converts to computer languages. It is employed by several large corporations.

  6. Large-scale simulations of error-prone quantum computation devices

    International Nuclear Information System (INIS)

    Trieu, Doan Binh

    2009-01-01

    The theoretical concepts of quantum computation in the idealized and undisturbed case are well understood. However, in practice, all quantum computation devices do suffer from decoherence effects as well as from operational imprecisions. This work assesses the power of error-prone quantum computation devices using large-scale numerical simulations on parallel supercomputers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quantum computer on gate level. It comprises an error model for decoherence and operational errors. The robustness of various algorithms in the presence of noise has been analyzed. The simulation results show that for large system sizes and long computations it is imperative to actively correct errors by means of quantum error correction. We implemented the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using error-prone correction circuits with non-fault-tolerant quantum error correction will always fail, because more errors are introduced than being corrected. Fault-tolerant methods can overcome this problem, provided that the single qubit error rate is below a certain threshold. We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS using Steane's 7-qubit code and determined this threshold numerically. Using the depolarizing channel as the source of decoherence, we find a threshold error rate of (5.2±0.2) x 10 -6 . For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 0.0431±0.0002. We can conclude that quantum error correction is especially well suited for the correction of operational imprecisions and systematic over-rotations. For realistic simulations of specific quantum computation devices we need to extend the generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of realistic hardware models. We focus on today's most advanced technology, i

  7. Large-scale simulations of error-prone quantum computation devices

    Energy Technology Data Exchange (ETDEWEB)

    Trieu, Doan Binh

    2009-07-01

    The theoretical concepts of quantum computation in the idealized and undisturbed case are well understood. However, in practice, all quantum computation devices do suffer from decoherence effects as well as from operational imprecisions. This work assesses the power of error-prone quantum computation devices using large-scale numerical simulations on parallel supercomputers. We present the Juelich Massively Parallel Ideal Quantum Computer Simulator (JUMPIQCS), that simulates a generic quantum computer on gate level. It comprises an error model for decoherence and operational errors. The robustness of various algorithms in the presence of noise has been analyzed. The simulation results show that for large system sizes and long computations it is imperative to actively correct errors by means of quantum error correction. We implemented the 5-, 7-, and 9-qubit quantum error correction codes. Our simulations confirm that using error-prone correction circuits with non-fault-tolerant quantum error correction will always fail, because more errors are introduced than being corrected. Fault-tolerant methods can overcome this problem, provided that the single qubit error rate is below a certain threshold. We incorporated fault-tolerant quantum error correction techniques into JUMPIQCS using Steane's 7-qubit code and determined this threshold numerically. Using the depolarizing channel as the source of decoherence, we find a threshold error rate of (5.2{+-}0.2) x 10{sup -6}. For Gaussian distributed operational over-rotations the threshold lies at a standard deviation of 0.0431{+-}0.0002. We can conclude that quantum error correction is especially well suited for the correction of operational imprecisions and systematic over-rotations. For realistic simulations of specific quantum computation devices we need to extend the generic model to dynamic simulations, i.e. time-dependent Hamiltonian simulations of realistic hardware models. We focus on today's most advanced

  8. Error estimation and global fitting in transverse-relaxation dispersion experiments to determine chemical-exchange parameters

    International Nuclear Information System (INIS)

    Ishima, Rieko; Torchia, Dennis A.

    2005-01-01

    Off-resonance effects can introduce significant systematic errors in R 2 measurements in constant-time Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation dispersion experiments. For an off-resonance chemical shift of 500 Hz, 15 N relaxation dispersion profiles obtained from experiment and computer simulation indicated a systematic error of ca. 3%. This error is three- to five-fold larger than the random error in R 2 caused by noise. Good estimates of total R 2 uncertainty are critical in order to obtain accurate estimates in optimized chemical exchange parameters and their uncertainties derived from χ 2 minimization of a target function. Here, we present a simple empirical approach that provides a good estimate of the total error (systematic + random) in 15 N R 2 values measured for the HIV protease. The advantage of this empirical error estimate is that it is applicable even when some of the factors that contribute to the off-resonance error are not known. These errors are incorporated into a χ 2 minimization protocol, in which the Carver-Richards equation is used fit the observed R 2 dispersion profiles, that yields optimized chemical exchange parameters and their confidence limits. Optimized parameters are also derived, using the same protein sample and data-fitting protocol, from 1 H R 2 measurements in which systematic errors are negligible. Although 1 H and 15 N relaxation profiles of individual residues were well fit, the optimized exchange parameters had large uncertainties (confidence limits). In contrast, when a single pair of exchange parameters (the exchange lifetime, τ ex , and the fractional population, p a ), were constrained to globally fit all R 2 profiles for residues in the dimer interface of the protein, confidence limits were less than 8% for all optimized exchange parameters. In addition, F-tests showed that quality of the fits obtained using τ ex , p a as global parameters were not improved when these parameters were free to fit the R

  9. Error-finding and error-correcting methods for the start-up of the SLC

    International Nuclear Information System (INIS)

    Lee, M.J.; Clearwater, S.H.; Kleban, S.D.; Selig, L.J.

    1987-02-01

    During the commissioning of an accelerator, storage ring, or beam transfer line, one of the important tasks of an accelertor physicist is to check the first-order optics of the beam line and to look for errors in the system. Conceptually, it is important to distinguish between techniques for finding the machine errors that are the cause of the problem and techniques for correcting the beam errors that are the result of the machine errors. In this paper we will limit our presentation to certain applications of these two methods for finding or correcting beam-focus errors and beam-kick errors that affect the profile and trajectory of the beam respectively. Many of these methods have been used successfully in the commissioning of SLC systems. In order not to waste expensive beam time we have developed and used a beam-line simulator to test the ideas that have not been tested experimentally. To save valuable physicist's time we have further automated the beam-kick error-finding procedures by adopting methods from the field of artificial intelligence to develop a prototype expert system. Our experience with this prototype has demonstrated the usefulness of expert systems in solving accelerator control problems. The expert system is able to find the same solutions as an expert physicist but in a more systematic fashion. The methods used in these procedures and some of the recent applications will be described in this paper

  10. Error Correcting Codes

    Indian Academy of Sciences (India)

    Science and Automation at ... the Reed-Solomon code contained 223 bytes of data, (a byte ... then you have a data storage system with error correction, that ..... practical codes, storing such a table is infeasible, as it is generally too large.

  11. Error Correcting Codes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. Error Correcting Codes - Reed Solomon Codes. Priti Shankar. Series Article Volume 2 Issue 3 March ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  12. Errors generated with the use of rectangular collimation

    International Nuclear Information System (INIS)

    Parks, E.T.

    1991-01-01

    This study was designed to determine whether various techniques for achieving rectangular collimation generate different numbers and types of errors and remakes and to determine whether operator skill level influences errors and remakes. Eighteen students exposed full-mouth series of radiographs on manikins with the use of six techniques. The students were grouped according to skill level. The radiographs were evaluated for errors and remakes resulting from errors in the following categories: cone cutting, vertical angulation, and film placement. Significant differences were found among the techniques in cone cutting errors and remakes, vertical angulation errors and remakes, and total errors and remakes. Operator skill did not appear to influence the number or types of errors or remakes generated. Rectangular collimation techniques produced more errors than did the round collimation techniques. However, only one rectangular collimation technique generated significantly more remakes than the other techniques

  13. Automatic error compensation in dc amplifiers

    International Nuclear Information System (INIS)

    Longden, L.L.

    1976-01-01

    When operational amplifiers are exposed to high levels of neutron fluence or total ionizing dose, significant changes may be observed in input voltages and currents. These changes may produce large errors at the output of direct-coupled amplifier stages. Therefore, the need exists for automatic compensation techniques. However, previously introduced techniques compensate only for errors in the main amplifier and neglect the errors induced by the compensating circuitry. In this paper, the techniques introduced compensate not only for errors in the main operational amplifier, but also for errors induced by the compensation circuitry. Included in the paper is a theoretical analysis of each compensation technique, along with advantages and disadvantages of each. Important design criteria and information necessary for proper selection of semiconductor switches will also be included. Introduced in this paper will be compensation circuitry for both resistive and capacitive feedback networks

  14. Challenge and Error: Critical Events and Attention-Related Errors

    Science.gov (United States)

    Cheyne, James Allan; Carriere, Jonathan S. A.; Solman, Grayden J. F.; Smilek, Daniel

    2011-01-01

    Attention lapses resulting from reactivity to task challenges and their consequences constitute a pervasive factor affecting everyday performance errors and accidents. A bidirectional model of attention lapses (error [image omitted] attention-lapse: Cheyne, Solman, Carriere, & Smilek, 2009) argues that errors beget errors by generating attention…

  15. Team errors: definition and taxonomy

    International Nuclear Information System (INIS)

    Sasou, Kunihide; Reason, James

    1999-01-01

    In error analysis or error management, the focus is usually upon individuals who have made errors. In large complex systems, however, most people work in teams or groups. Considering this working environment, insufficient emphasis has been given to 'team errors'. This paper discusses the definition of team errors and its taxonomy. These notions are also applied to events that have occurred in the nuclear power industry, aviation industry and shipping industry. The paper also discusses the relations between team errors and Performance Shaping Factors (PSFs). As a result, the proposed definition and taxonomy are found to be useful in categorizing team errors. The analysis also reveals that deficiencies in communication, resource/task management, excessive authority gradient, excessive professional courtesy will cause team errors. Handling human errors as team errors provides an opportunity to reduce human errors

  16. Conclusive meta-analyses on antenatal magnesium may be inconclusive! Are we underestimating the risk of random error?

    DEFF Research Database (Denmark)

    Brok, Jesper; Huusom, Lene D; Thorlund, Kristian

    2012-01-01

    Results from meta-analyses significantly influence clinical practice. Both simulation and empirical studies have demonstrated that the risk of random error (i.e. spurious chance findings) in meta-analyses is much higher than previously anticipated. Hence, authors and users of systematic reviews a...... about the investigated intervention effect(s). We outline the rationale for conducting trial sequential analysis including some examples of the meta-analysis on antenatal magnesium for women at risk of preterm birth....

  17. State estimation bias induced by optimization under uncertainty and error cost asymmetry is likely reflected in perception.

    Science.gov (United States)

    Shimansky, Y P

    2011-05-01

    It is well known from numerous studies that perception can be significantly affected by intended action in many everyday situations, indicating that perception and related decision-making is not a simple, one-way sequence, but a complex iterative cognitive process. However, the underlying functional mechanisms are yet unclear. Based on an optimality approach, a quantitative computational model of one such mechanism has been developed in this study. It is assumed in the model that significant uncertainty about task-related parameters of the environment results in parameter estimation errors and an optimal control system should minimize the cost of such errors in terms of the optimality criterion. It is demonstrated that, if the cost of a parameter estimation error is significantly asymmetrical with respect to error direction, the tendency to minimize error cost creates a systematic deviation of the optimal parameter estimate from its maximum likelihood value. Consequently, optimization of parameter estimate and optimization of control action cannot be performed separately from each other under parameter uncertainty combined with asymmetry of estimation error cost, thus making the certainty equivalence principle non-applicable under those conditions. A hypothesis that not only the action, but also perception itself is biased by the above deviation of parameter estimate is supported by ample experimental evidence. The results provide important insights into the cognitive mechanisms of interaction between sensory perception and planning an action under realistic conditions. Implications for understanding related functional mechanisms of optimal control in the CNS are discussed.

  18. Error studies of Halbach Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-03-02

    These error studies were done on the Halbach magnets for the CBETA “First Girder” as described in note [CBETA001]. The CBETA magnets have since changed slightly to the lattice in [CBETA009]. However, this is not a large enough change to significantly affect the results here. The QF and BD arc FFAG magnets are considered. For each assumed set of error distributions and each ideal magnet, 100 random magnets with errors are generated. These are then run through an automated version of the iron wire multipole cancellation algorithm. The maximum wire diameter allowed is 0.063” as in the proof-of-principle magnets. Initially, 32 wires (2 per Halbach wedge) are tried, then if this does not achieve 1e-­4 level accuracy in the simulation, 48 and then 64 wires. By “1e-4 accuracy”, it is meant the FOM defined by √(Σn≥sextupole an 2+bn 2) is less than 1 unit, where the multipoles are taken at the maximum nominal beam radius, R=23mm for these magnets. The algorithm initially uses 20 convergence interations. If 64 wires does not achieve 1e-­4 accuracy, this is increased to 50 iterations to check for slow converging cases. There are also classifications for magnets that do not achieve 1e-4 but do achieve 1e-3 (FOM ≤ 10 units). This is technically within the spec discussed in the Jan 30, 2017 review; however, there will be errors in practical shimming not dealt with in the simulation, so it is preferable to do much better than the spec in the simulation.

  19. Imagery of Errors in Typing

    Science.gov (United States)

    Rieger, Martina; Martinez, Fanny; Wenke, Dorit

    2011-01-01

    Using a typing task we investigated whether insufficient imagination of errors and error corrections is related to duration differences between execution and imagination. In Experiment 1 spontaneous error imagination was investigated, whereas in Experiment 2 participants were specifically instructed to imagine errors. Further, in Experiment 2 we…

  20. Correction of refractive errors

    Directory of Open Access Journals (Sweden)

    Vladimir Pfeifer

    2005-10-01

    Full Text Available Background: Spectacles and contact lenses are the most frequently used, the safest and the cheapest way to correct refractive errors. The development of keratorefractive surgery has brought new opportunities for correction of refractive errors in patients who have the need to be less dependent of spectacles or contact lenses. Until recently, RK was the most commonly performed refractive procedure for nearsighted patients.Conclusions: The introduction of excimer laser in refractive surgery has given the new opportunities of remodelling the cornea. The laser energy can be delivered on the stromal surface like in PRK or deeper on the corneal stroma by means of lamellar surgery. In LASIK flap is created with microkeratome in LASEK with ethanol and in epi-LASIK the ultra thin flap is created mechanically.

  1. Error-Free Software

    Science.gov (United States)

    1989-01-01

    001 is an integrated tool suited for automatically developing ultra reliable models, simulations and software systems. Developed and marketed by Hamilton Technologies, Inc. (HTI), it has been applied in engineering, manufacturing, banking and software tools development. The software provides the ability to simplify the complex. A system developed with 001 can be a prototype or fully developed with production quality code. It is free of interface errors, consistent, logically complete and has no data or control flow errors. Systems can be designed, developed and maintained with maximum productivity. Margaret Hamilton, President of Hamilton Technologies, also directed the research and development of USE.IT, an earlier product which was the first computer aided software engineering product in the industry to concentrate on automatically supporting the development of an ultrareliable system throughout its life cycle. Both products originated in NASA technology developed under a Johnson Space Center contract.

  2. Minimum Tracking Error Volatility

    OpenAIRE

    Luca RICCETTI

    2010-01-01

    Investors assign part of their funds to asset managers that are given the task of beating a benchmark. The risk management department usually imposes a maximum value of the tracking error volatility (TEV) in order to keep the risk of the portfolio near to that of the selected benchmark. However, risk management does not establish a rule on TEV which enables us to understand whether the asset manager is really active or not and, in practice, asset managers sometimes follow passively the corres...

  3. Error-correction coding

    Science.gov (United States)

    Hinds, Erold W. (Principal Investigator)

    1996-01-01

    This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.

  4. Satellite Photometric Error Determination

    Science.gov (United States)

    2015-10-18

    Satellite Photometric Error Determination Tamara E. Payne, Philip J. Castro, Stephen A. Gregory Applied Optimization 714 East Monument Ave, Suite...advocate the adoption of new techniques based on in-frame photometric calibrations enabled by newly available all-sky star catalogs that contain highly...filter systems will likely be supplanted by the Sloan based filter systems. The Johnson photometric system is a set of filters in the optical

  5. Video Error Correction Using Steganography

    Science.gov (United States)

    Robie, David L.; Mersereau, Russell M.

    2002-12-01

    The transmission of any data is always subject to corruption due to errors, but video transmission, because of its real time nature must deal with these errors without retransmission of the corrupted data. The error can be handled using forward error correction in the encoder or error concealment techniques in the decoder. This MPEG-2 compliant codec uses data hiding to transmit error correction information and several error concealment techniques in the decoder. The decoder resynchronizes more quickly with fewer errors than traditional resynchronization techniques. It also allows for perfect recovery of differentially encoded DCT-DC components and motion vectors. This provides for a much higher quality picture in an error-prone environment while creating an almost imperceptible degradation of the picture in an error-free environment.

  6. Video Error Correction Using Steganography

    Directory of Open Access Journals (Sweden)

    Robie David L

    2002-01-01

    Full Text Available The transmission of any data is always subject to corruption due to errors, but video transmission, because of its real time nature must deal with these errors without retransmission of the corrupted data. The error can be handled using forward error correction in the encoder or error concealment techniques in the decoder. This MPEG-2 compliant codec uses data hiding to transmit error correction information and several error concealment techniques in the decoder. The decoder resynchronizes more quickly with fewer errors than traditional resynchronization techniques. It also allows for perfect recovery of differentially encoded DCT-DC components and motion vectors. This provides for a much higher quality picture in an error-prone environment while creating an almost imperceptible degradation of the picture in an error-free environment.

  7. Medication errors : the impact of prescribing and transcribing errors on preventable harm in hospitalised patients

    NARCIS (Netherlands)

    van Doormaal, J.E.; van der Bemt, P.M.L.A.; Mol, P.G.M.; Egberts, A.C.G.; Haaijer-Ruskamp, F.M.; Kosterink, J.G.W.; Zaal, Rianne J.

    Background: Medication errors (MEs) affect patient safety to a significant extent. Because these errors can lead to preventable adverse drug events (pADEs), it is important to know what type of ME is the most prevalent cause of these pADEs. This study determined the impact of the various types of

  8. Wavefront error sensing for LDR

    Science.gov (United States)

    Tubbs, Eldred F.; Glavich, T. A.

    1988-01-01

    Wavefront sensing is a significant aspect of the LDR control problem and requires attention at an early stage of the control system definition and design. A combination of a Hartmann test for wavefront slope measurement and an interference test for piston errors of the segments was examined and is presented as a point of departure for further discussion. The assumption is made that the wavefront sensor will be used for initial alignment and periodic alignment checks but that it will not be used during scientific observations. The Hartmann test and the interferometric test are briefly examined.

  9. Fixturing error measurement and analysis using CMMs

    International Nuclear Information System (INIS)

    Wang, Y; Chen, X; Gindy, N

    2005-01-01

    Influence of fixture on the errors of a machined surface can be very significant. The machined surface errors generated during machining can be measured by using a coordinate measurement machine (CMM) through the displacements of three coordinate systems on a fixture-workpiece pair in relation to the deviation of the machined surface. The surface errors consist of the component movement, component twist, deviation between actual machined surface and defined tool path. A turbine blade fixture for grinding operation is used for case study

  10. Human error in remote Afterloading Brachytherapy

    International Nuclear Information System (INIS)

    Quinn, M.L.; Callan, J.; Schoenfeld, I.; Serig, D.

    1994-01-01

    Remote Afterloading Brachytherapy (RAB) is a medical process used in the treatment of cancer. RAB uses a computer-controlled device to remotely insert and remove radioactive sources close to a target (or tumor) in the body. Some RAB problems affecting the radiation dose to the patient have been reported and attributed to human error. To determine the root cause of human error in the RAB system, a human factors team visited 23 RAB treatment sites in the US. The team observed RAB treatment planning and delivery, interviewed RAB personnel, and performed walk-throughs, during which staff demonstrated the procedures and practices used in performing RAB tasks. Factors leading to human error in the RAB system were identified. The impact of those factors on the performance of RAB was then evaluated and prioritized in terms of safety significance. Finally, the project identified and evaluated alternative approaches for resolving the safety significant problems related to human error

  11. Error-related brain activity and error awareness in an error classification paradigm.

    Science.gov (United States)

    Di Gregorio, Francesco; Steinhauser, Marco; Maier, Martin E

    2016-10-01

    Error-related brain activity has been linked to error detection enabling adaptive behavioral adjustments. However, it is still unclear which role error awareness plays in this process. Here, we show that the error-related negativity (Ne/ERN), an event-related potential reflecting early error monitoring, is dissociable from the degree of error awareness. Participants responded to a target while ignoring two different incongruent distractors. After responding, they indicated whether they had committed an error, and if so, whether they had responded to one or to the other distractor. This error classification paradigm allowed distinguishing partially aware errors, (i.e., errors that were noticed but misclassified) and fully aware errors (i.e., errors that were correctly classified). The Ne/ERN was larger for partially aware errors than for fully aware errors. Whereas this speaks against the idea that the Ne/ERN foreshadows the degree of error awareness, it confirms the prediction of a computational model, which relates the Ne/ERN to post-response conflict. This model predicts that stronger distractor processing - a prerequisite of error classification in our paradigm - leads to lower post-response conflict and thus a smaller Ne/ERN. This implies that the relationship between Ne/ERN and error awareness depends on how error awareness is related to response conflict in a specific task. Our results further indicate that the Ne/ERN but not the degree of error awareness determines adaptive performance adjustments. Taken together, we conclude that the Ne/ERN is dissociable from error awareness and foreshadows adaptive performance adjustments. Our results suggest that the relationship between the Ne/ERN and error awareness is correlative and mediated by response conflict. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Haplotype reconstruction error as a classical misclassification problem: introducing sensitivity and specificity as error measures.

    Directory of Open Access Journals (Sweden)

    Claudia Lamina

    Full Text Available BACKGROUND: Statistically reconstructing haplotypes from single nucleotide polymorphism (SNP genotypes, can lead to falsely classified haplotypes. This can be an issue when interpreting haplotype association results or when selecting subjects with certain haplotypes for subsequent functional studies. It was our aim to quantify haplotype reconstruction error and to provide tools for it. METHODS AND RESULTS: By numerous simulation scenarios, we systematically investigated several error measures, including discrepancy, error rate, and R(2, and introduced the sensitivity and specificity to this context. We exemplified several measures in the KORA study, a large population-based study from Southern Germany. We find that the specificity is slightly reduced only for common haplotypes, while the sensitivity was decreased for some, but not all rare haplotypes. The overall error rate was generally increasing with increasing number of loci, increasing minor allele frequency of SNPs, decreasing correlation between the alleles and increasing ambiguity. CONCLUSIONS: We conclude that, with the analytical approach presented here, haplotype-specific error measures can be computed to gain insight into the haplotype uncertainty. This method provides the information, if a specific risk haplotype can be expected to be reconstructed with rather no or high misclassification and thus on the magnitude of expected bias in association estimates. We also illustrate that sensitivity and specificity separate two dimensions of the haplotype reconstruction error, which completely describe the misclassification matrix and thus provide the prerequisite for methods accounting for misclassification.

  13. The Nature of Error in Adolescent Student Writing

    Science.gov (United States)

    Wilcox, Kristen Campbell; Yagelski, Robert; Yu, Fang

    2014-01-01

    This study examined the nature and frequency of error in high school native English speaker (L1) and English learner (L2) writing. Four main research questions were addressed: Are there significant differences in students' error rates in English language arts (ELA) and social studies? Do the most common errors made by students differ in ELA…

  14. An Investigation into Soft Error Detection Efficiency at Operating System Level

    OpenAIRE

    Asghari, Seyyed Amir; Kaynak, Okyay; Taheri, Hassan

    2014-01-01

    Electronic equipment operating in harsh environments such as space is subjected to a range of threats. The most important of these is radiation that gives rise to permanent and transient errors on microelectronic components. The occurrence rate of transient errors is significantly more than permanent errors. The transient errors, or soft errors, emerge in two formats: control flow errors (CFEs) and data errors. Valuable research results have already appeared in literature at hardware and soft...

  15. Minimum Error Entropy Classification

    CERN Document Server

    Marques de Sá, Joaquim P; Santos, Jorge M F; Alexandre, Luís A

    2013-01-01

    This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi‐layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE‐like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.

  16. Sources of medical error in refractive surgery.

    Science.gov (United States)

    Moshirfar, Majid; Simpson, Rachel G; Dave, Sonal B; Christiansen, Steven M; Edmonds, Jason N; Culbertson, William W; Pascucci, Stephen E; Sher, Neal A; Cano, David B; Trattler, William B

    2013-05-01

    To evaluate the causes of laser programming errors in refractive surgery and outcomes in these cases. In this multicenter, retrospective chart review, 22 eyes of 18 patients who had incorrect data entered into the refractive laser computer system at the time of treatment were evaluated. Cases were analyzed to uncover the etiology of these errors, patient follow-up treatments, and final outcomes. The results were used to identify potential methods to avoid similar errors in the future. Every patient experienced compromised uncorrected visual acuity requiring additional intervention, and 7 of 22 eyes (32%) lost corrected distance visual acuity (CDVA) of at least one line. Sixteen patients were suitable candidates for additional surgical correction to address these residual visual symptoms and six were not. Thirteen of 22 eyes (59%) received surgical follow-up treatment; nine eyes were treated with contact lenses. After follow-up treatment, six patients (27%) still had a loss of one line or more of CDVA. Three significant sources of error were identified: errors of cylinder conversion, data entry, and patient identification error. Twenty-seven percent of eyes with laser programming errors ultimately lost one or more lines of CDVA. Patients who underwent surgical revision had better outcomes than those who did not. Many of the mistakes identified were likely avoidable had preventive measures been taken, such as strict adherence to patient verification protocol or rigorous rechecking of treatment parameters. Copyright 2013, SLACK Incorporated.

  17. The benefit of generating errors during learning.

    Science.gov (United States)

    Potts, Rosalind; Shanks, David R

    2014-04-01

    Testing has been found to be a powerful learning tool, but educators might be reluctant to make full use of its benefits for fear that any errors made would be harmful to learning. We asked whether testing could be beneficial to memory even during novel learning, when nearly all responses were errors, and where errors were unlikely to be related to either cues or targets. In 4 experiments, participants learned definitions for unfamiliar English words, or translations for foreign vocabulary, by generating a response and being given corrective feedback, by reading the word and its definition or translation, or by selecting from a choice of definitions or translations followed by feedback. In a final test of all words, generating errors followed by feedback led to significantly better memory for the correct definition or translation than either reading or making incorrect choices, suggesting that the benefits of generation are not restricted to correctly generated items. Even when information to be learned is novel, errorful generation may play a powerful role in potentiating encoding of corrective feedback. Experiments 2A, 2B, and 3 revealed, via metacognitive judgments of learning, that participants are strikingly unaware of this benefit, judging errorful generation to be a less effective encoding method than reading or incorrect choosing, when in fact it was better. Predictions reflected participants' subjective experience during learning. If subjective difficulty leads to more effort at encoding, this could at least partly explain the errorful generation advantage.

  18. Accuracy Improvement of Multi-Axis Systems Based on Laser Correction of Volumetric Geometric Errors

    Science.gov (United States)

    Teleshevsky, V. I.; Sokolov, V. A.; Pimushkin, Ya I.

    2018-04-01

    The article describes a volumetric geometric errors correction method for CNC- controlled multi-axis systems (machine-tools, CMMs etc.). The Kalman’s concept of “Control and Observation” is used. A versatile multi-function laser interferometer is used as Observer in order to measure machine’s error functions. A systematic error map of machine’s workspace is produced based on error functions measurements. The error map results into error correction strategy. The article proposes a new method of error correction strategy forming. The method is based on error distribution within machine’s workspace and a CNC-program postprocessor. The postprocessor provides minimal error values within maximal workspace zone. The results are confirmed by error correction of precision CNC machine-tools.

  19. Predicting areas of sustainable error growth in quasigeostrophic flows using perturbation alignment properties

    Science.gov (United States)

    Rivière, G.; Hua, B. L.

    2004-10-01

    A new perturbation initialization method is used to quantify error growth due to inaccuracies of the forecast model initial conditions in a quasigeostrophic box ocean model describing a wind-driven double gyre circulation. This method is based on recent analytical results on Lagrangian alignment dynamics of the perturbation velocity vector in quasigeostrophic flows. More specifically, it consists in initializing a unique perturbation from the sole knowledge of the control flow properties at the initial time of the forecast and whose velocity vector orientation satisfies a Lagrangian equilibrium criterion. This Alignment-based Initialization method is hereafter denoted as the AI method.In terms of spatial distribution of the errors, we have compared favorably the AI error forecast with the mean error obtained with a Monte-Carlo ensemble prediction. It is shown that the AI forecast is on average as efficient as the error forecast initialized with the leading singular vector for the palenstrophy norm, and significantly more efficient than that for total energy and enstrophy norms. Furthermore, a more precise examination shows that the AI forecast is systematically relevant for all control flows whereas the palenstrophy singular vector forecast leads sometimes to very good scores and sometimes to very bad ones.A principal component analysis at the final time of the forecast shows that the AI mode spatial structure is comparable to that of the first eigenvector of the error covariance matrix for a "bred mode" ensemble. Furthermore, the kinetic energy of the AI mode grows at the same constant rate as that of the "bred modes" from the initial time to the final time of the forecast and is therefore characterized by a sustained phase of error growth. In this sense, the AI mode based on Lagrangian dynamics of the perturbation velocity orientation provides a rationale of the "bred mode" behavior.

  20. Medication administration errors in Eastern Saudi Arabia

    International Nuclear Information System (INIS)

    Mir Sadat-Ali

    2010-01-01

    To assess the prevalence and characteristics of medication errors (ME) in patients admitted to King Fahd University Hospital, Alkhobar, Kingdom of Saudi Arabia. Medication errors are documented by the nurses and physicians standard reporting forms (Hospital Based Incident Report). The study was carried out in King Fahd University Hospital, Alkhobar, Kingdom of Saudi Arabia and all the incident reports were collected during the period from January 2008 to December 2009. The incident reports were analyzed for age, gender, nationality, nursing unit, and time where ME was reported. The data were analyzed and the statistical significance differences between groups were determined by Student's t-test, and p-values of <0.05 using confidence interval of 95% were considered significant. There were 38 ME reported for the study period. The youngest patient was 5 days and the oldest 70 years. There were 31 Saudis, and 7 non-Saudi patients involved. The most common error was missed medication, which was seen in 15 (39.5%) patients. Over 15 (39.5%) of errors occurred in 2 units (pediatric medicine, and obstetrics and gynecology). Nineteen (50%) of the errors occurred during the 3-11 pm shift. Our study shows that the prevalence of ME in our institution is low, in comparison with the world literature. This could be due to under reporting of the errors, and we believe that ME reporting should be made less punitive so that ME can be studied and preventive measures implemented (Author).

  1. Magnetic Nanoparticle Thermometer: An Investigation of Minimum Error Transmission Path and AC Bias Error

    Directory of Open Access Journals (Sweden)

    Zhongzhou Du

    2015-04-01

    Full Text Available The signal transmission module of a magnetic nanoparticle thermometer (MNPT was established in this study to analyze the error sources introduced during the signal flow in the hardware system. The underlying error sources that significantly affected the precision of the MNPT were determined through mathematical modeling and simulation. A transfer module path with the minimum error in the hardware system was then proposed through the analysis of the variations of the system error caused by the significant error sources when the signal flew through the signal transmission module. In addition, a system parameter, named the signal-to-AC bias ratio (i.e., the ratio between the signal and AC bias, was identified as a direct determinant of the precision of the measured temperature. The temperature error was below 0.1 K when the signal-to-AC bias ratio was higher than 80 dB, and other system errors were not considered. The temperature error was below 0.1 K in the experiments with a commercial magnetic fluid (Sample SOR-10, Ocean Nanotechnology, Springdale, AR, USA when the hardware system of the MNPT was designed with the aforementioned method.

  2. Error Sonification of a Complex Motor Task

    Directory of Open Access Journals (Sweden)

    Riener Robert

    2011-12-01

    Full Text Available Visual information is mainly used to master complex motor tasks. Thus, additional information providing augmented feedback should be displayed in other modalities than vision, e.g. hearing. The present work evaluated the potential of error sonification to enhance learning of a rowing-type motor task. In contrast to a control group receiving self-controlled terminal feedback, the experimental group could not significantly reduce spatial errors. Thus, motor learning was not enhanced by error sonification, although during the training the participant could benefit from it. It seems that the motor task was too slow, resulting in immediate corrections of the movement rather than in an internal representation of the general characteristics of the motor task. Therefore, further studies should elaborate the impact of error sonification when general characteristics of the motor tasks are already known.

  3. Uranium chemistry: significant advances

    International Nuclear Information System (INIS)

    Mazzanti, M.

    2011-01-01

    The author reviews recent progress in uranium chemistry achieved in CEA laboratories. Like its neighbors in the Mendeleev chart uranium undergoes hydrolysis, oxidation and disproportionation reactions which make the chemistry of these species in water highly complex. The study of the chemistry of uranium in an anhydrous medium has led to correlate the structural and electronic differences observed in the interaction of uranium(III) and the lanthanides(III) with nitrogen or sulfur molecules and the effectiveness of these molecules in An(III)/Ln(III) separation via liquid-liquid extraction. Recent work on the redox reactivity of trivalent uranium U(III) in an organic medium with molecules such as water or an azide ion (N 3 - ) in stoichiometric quantities, led to extremely interesting uranium aggregates particular those involved in actinide migration in the environment or in aggregation problems in the fuel processing cycle. Another significant advance was the discovery of a compound containing the uranyl ion with a degree of oxidation (V) UO 2 + , obtained by oxidation of uranium(III). Recently chemists have succeeded in blocking the disproportionation reaction of uranyl(V) and in stabilizing polymetallic complexes of uranyl(V), opening the way to to a systematic study of the reactivity and the electronic and magnetic properties of uranyl(V) compounds. (A.C.)

  4. Evaluation of drug administration errors in a teaching hospital

    Directory of Open Access Journals (Sweden)

    Berdot Sarah

    2012-03-01

    Full Text Available Abstract Background Medication errors can occur at any of the three steps of the medication use process: prescribing, dispensing and administration. We aimed to determine the incidence, type and clinical importance of drug administration errors and to identify risk factors. Methods Prospective study based on disguised observation technique in four wards in a teaching hospital in Paris, France (800 beds. A pharmacist accompanied nurses and witnessed the preparation and administration of drugs to all patients during the three drug rounds on each of six days per ward. Main outcomes were number, type and clinical importance of errors and associated risk factors. Drug administration error rate was calculated with and without wrong time errors. Relationship between the occurrence of errors and potential risk factors were investigated using logistic regression models with random effects. Results Twenty-eight nurses caring for 108 patients were observed. Among 1501 opportunities for error, 415 administrations (430 errors with one or more errors were detected (27.6%. There were 312 wrong time errors, ten simultaneously with another type of error, resulting in an error rate without wrong time error of 7.5% (113/1501. The most frequently administered drugs were the cardiovascular drugs (425/1501, 28.3%. The highest risks of error in a drug administration were for dermatological drugs. No potentially life-threatening errors were witnessed and 6% of errors were classified as having a serious or significant impact on patients (mainly omission. In multivariate analysis, the occurrence of errors was associated with drug administration route, drug classification (ATC and the number of patient under the nurse's care. Conclusion Medication administration errors are frequent. The identification of its determinants helps to undertake designed interventions.

  5. Standard Errors for Matrix Correlations.

    Science.gov (United States)

    Ogasawara, Haruhiko

    1999-01-01

    Derives the asymptotic standard errors and intercorrelations for several matrix correlations assuming multivariate normality for manifest variables and derives the asymptotic standard errors of the matrix correlations for two factor-loading matrices. (SLD)

  6. Radon measurements-discussion of error estimates for selected methods

    International Nuclear Information System (INIS)

    Zhukovsky, Michael; Onischenko, Alexandra; Bastrikov, Vladislav

    2010-01-01

    The main sources of uncertainties for grab sampling, short-term (charcoal canisters) and long term (track detectors) measurements are: systematic bias of reference equipment; random Poisson and non-Poisson errors during calibration; random Poisson and non-Poisson errors during measurements. The origins of non-Poisson random errors during calibration are different for different kinds of instrumental measurements. The main sources of uncertainties for retrospective measurements conducted by surface traps techniques can be divided in two groups: errors of surface 210 Pb ( 210 Po) activity measurements and uncertainties of transfer from 210 Pb surface activity in glass objects to average radon concentration during this object exposure. It's shown that total measurement error of surface trap retrospective technique can be decreased to 35%.

  7. Error forecasting schemes of error correction at receiver

    International Nuclear Information System (INIS)

    Bhunia, C.T.

    2007-08-01

    To combat error in computer communication networks, ARQ (Automatic Repeat Request) techniques are used. Recently Chakraborty has proposed a simple technique called the packet combining scheme in which error is corrected at the receiver from the erroneous copies. Packet Combining (PC) scheme fails: (i) when bit error locations in erroneous copies are the same and (ii) when multiple bit errors occur. Both these have been addressed recently by two schemes known as Packet Reversed Packet Combining (PRPC) Scheme, and Modified Packet Combining (MPC) Scheme respectively. In the letter, two error forecasting correction schemes are reported, which in combination with PRPC offer higher throughput. (author)

  8. Evaluating a medical error taxonomy.

    OpenAIRE

    Brixey, Juliana; Johnson, Todd R.; Zhang, Jiajie

    2002-01-01

    Healthcare has been slow in using human factors principles to reduce medical errors. The Center for Devices and Radiological Health (CDRH) recognizes that a lack of attention to human factors during product development may lead to errors that have the potential for patient injury, or even death. In response to the need for reducing medication errors, the National Coordinating Council for Medication Errors Reporting and Prevention (NCC MERP) released the NCC MERP taxonomy that provides a stand...

  9. Evidence Report: Risk of Performance Errors Due to Training Deficiencies

    Science.gov (United States)

    Barshi, Immanuel; Dempsey, Donna L.

    2016-01-01

    Substantial evidence supports the claim that inadequate training leads to performance errors. Barshi and Loukopoulos (2012) demonstrate that even a task as carefully developed and refined over many years as operating an aircraft can be significantly improved by a systematic analysis, followed by improved procedures and improved training (see also Loukopoulos, Dismukes, & Barshi, 2009a). Unfortunately, such a systematic analysis of training needs rarely occurs during the preliminary design phase, when modifications are most feasible. Training is often seen as a way to compensate for deficiencies in task and system design, which in turn increases the training load. As a result, task performance often suffers, and with it, the operators suffer and so does the mission. On the other hand, effective training can indeed compensate for such design deficiencies, and can even go beyond to compensate for failures of our imagination to anticipate all that might be needed when we send our crew members to go where no one else has gone before. Much of the research literature on training is motivated by current training practices aimed at current training needs. Although there is some experience with operations in extreme environments on Earth, there is no experience with long-duration space missions where crews must practice semi-autonomous operations, where ground support must accommodate significant communication delays, and where so little is known about the environment. Thus, we must develop robust methodologies and tools to prepare our crews for the unknown. The research necessary to support such an endeavor does not currently exist, but existing research does reveal general challenges that are relevant to long-duration, high-autonomy missions. The evidence presented here describes issues related to the risk of performance errors due to training deficiencies. Contributing factors regarding training deficiencies may pertain to organizational process and training programs for

  10. Advancing the research agenda for diagnostic error reduction.

    Science.gov (United States)

    Zwaan, Laura; Schiff, Gordon D; Singh, Hardeep

    2013-10-01

    Diagnostic errors remain an underemphasised and understudied area of patient safety research. We briefly summarise the methods that have been used to conduct research on epidemiology, contributing factors and interventions related to diagnostic error and outline directions for future research. Research methods that have studied epidemiology of diagnostic error provide some estimate on diagnostic error rates. However, there appears to be a large variability in the reported rates due to the heterogeneity of definitions and study methods used. Thus, future methods should focus on obtaining more precise estimates in different settings of care. This would lay the foundation for measuring error rates over time to evaluate improvements. Research methods have studied contributing factors for diagnostic error in both naturalistic and experimental settings. Both approaches have revealed important and complementary information. Newer conceptual models from outside healthcare are needed to advance the depth and rigour of analysis of systems and cognitive insights of causes of error. While the literature has suggested many potentially fruitful interventions for reducing diagnostic errors, most have not been systematically evaluated and/or widely implemented in practice. Research is needed to study promising intervention areas such as enhanced patient involvement in diagnosis, improving diagnosis through the use of electronic tools and identification and reduction of specific diagnostic process 'pitfalls' (eg, failure to conduct appropriate diagnostic evaluation of a breast lump after a 'normal' mammogram). The last decade of research on diagnostic error has made promising steps and laid a foundation for more rigorous methods to advance the field.

  11. Error Patterns in Problem Solving.

    Science.gov (United States)

    Babbitt, Beatrice C.

    Although many common problem-solving errors within the realm of school mathematics have been previously identified, a compilation of such errors is not readily available within learning disabilities textbooks, mathematics education texts, or teacher's manuals for school mathematics texts. Using data on error frequencies drawn from both the Fourth…

  12. Performance, postmodernity and errors

    DEFF Research Database (Denmark)

    Harder, Peter

    2013-01-01

    speaker’s competency (note the –y ending!) reflects adaptation to the community langue, including variations. This reversal of perspective also reverses our understanding of the relationship between structure and deviation. In the heyday of structuralism, it was tempting to confuse the invariant system...... with the prestige variety, and conflate non-standard variation with parole/performance and class both as erroneous. Nowadays the anti-structural sentiment of present-day linguistics makes it tempting to confuse the rejection of ideal abstract structure with a rejection of any distinction between grammatical...... as deviant from the perspective of function-based structure and discuss to what extent the recognition of a community langue as a source of adaptive pressure may throw light on different types of deviation, including language handicaps and learner errors....

  13. Optimizer convergence and local minima errors and their clinical importance

    International Nuclear Information System (INIS)

    Jeraj, Robert; Wu, Chuan; Mackie, Thomas R

    2003-01-01

    Two of the errors common in the inverse treatment planning optimization have been investigated. The first error is the optimizer convergence error, which appears because of non-perfect convergence to the global or local solution, usually caused by a non-zero stopping criterion. The second error is the local minima error, which occurs when the objective function is not convex and/or the feasible solution space is not convex. The magnitude of the errors, their relative importance in comparison to other errors as well as their clinical significance in terms of tumour control probability (TCP) and normal tissue complication probability (NTCP) were investigated. Two inherently different optimizers, a stochastic simulated annealing and deterministic gradient method were compared on a clinical example. It was found that for typical optimization the optimizer convergence errors are rather small, especially compared to other convergence errors, e.g., convergence errors due to inaccuracy of the current dose calculation algorithms. This indicates that stopping criteria could often be relaxed leading into optimization speed-ups. The local minima errors were also found to be relatively small and typically in the range of the dose calculation convergence errors. Even for the cases where significantly higher objective function scores were obtained the local minima errors were not significantly higher. Clinical evaluation of the optimizer convergence error showed good correlation between the convergence of the clinical TCP or NTCP measures and convergence of the physical dose distribution. On the other hand, the local minima errors resulted in significantly different TCP or NTCP values (up to a factor of 2) indicating clinical importance of the local minima produced by physical optimization

  14. Open quantum systems and error correction

    Science.gov (United States)

    Shabani Barzegar, Alireza

    Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC

  15. Test models for improving filtering with model errors through stochastic parameter estimation

    International Nuclear Information System (INIS)

    Gershgorin, B.; Harlim, J.; Majda, A.J.

    2010-01-01

    The filtering skill for turbulent signals from nature is often limited by model errors created by utilizing an imperfect model for filtering. Updating the parameters in the imperfect model through stochastic parameter estimation is one way to increase filtering skill and model performance. Here a suite of stringent test models for filtering with stochastic parameter estimation is developed based on the Stochastic Parameterization Extended Kalman Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative and additive biases and involve exact formulas for propagating the mean and covariance including the parameters in the test model. A comprehensive study is presented of robust parameter regimes for increasing filtering skill through stochastic parameter estimation for turbulent signals as the observation time and observation noise are varied and even when the forcing is incorrectly specified. The results here provide useful guidelines for filtering turbulent signals in more complex systems with significant model errors.

  16. Nonlinear mechanism for the suppression of error field magnetic islands by plasma flow

    International Nuclear Information System (INIS)

    Parker, R.D.

    1992-01-01

    Non-axisymmetric magnetic field perturbations generated, for example, by errors in the alignment of the field coils are known to lead to reduced confinement in a tokamak. By inducing the formation of small, stationary, magnetic islands on all rational surfaces they can enhance radial transport and under certain circumstances interact with MHD instabilities to trigger the onset of locked modes leading, in some cases, to disruption of the plasma discharge. Given the stationary nature of the error field islands it is natural to consider whether they can be reduced significantly by the viscous drag of a sheared flow resulting from a bulk rotation of the plasma. In this paper, we examine this interaction by modelling the nonlinear growth and saturation of force-reconnected magnetic islands driven by a corrugated boundary in a slab plasma with an initially uniform flow. A systematic parameter study is made of the time asymptotic steady state. (author) 3 figs., 5 refs

  17. EMG Versus Torque Control of Human-Machine Systems: Equalizing Control Signal Variability Does not Equalize Error or Uncertainty.

    Science.gov (United States)

    Johnson, Reva E; Kording, Konrad P; Hargrove, Levi J; Sensinger, Jonathon W

    2017-06-01

    In this paper we asked the question: if we artificially raise the variability of torque control signals to match that of EMG, do subjects make similar errors and have similar uncertainty about their movements? We answered this question using two experiments in which subjects used three different control signals: torque, torque+noise, and EMG. First, we measured error on a simple target-hitting task in which subjects received visual feedback only at the end of their movements. We found that even when the signal-to-noise ratio was equal across EMG and torque+noise control signals, EMG resulted in larger errors. Second, we quantified uncertainty by measuring the just-noticeable difference of a visual perturbation. We found that for equal errors, EMG resulted in higher movement uncertainty than both torque and torque+noise. The differences suggest that performance and confidence are influenced by more than just the noisiness of the control signal, and suggest that other factors, such as the user's ability to incorporate feedback and develop accurate internal models, also have significant impacts on the performance and confidence of a person's actions. We theorize that users have difficulty distinguishing between random and systematic errors for EMG control, and future work should examine in more detail the types of errors made with EMG control.

  18. Residual rotational set-up errors after daily cone-beam CT image guided radiotherapy of locally advanced cervical cancer

    International Nuclear Information System (INIS)

    Laursen, Louise Vagner; Elstrøm, Ulrik Vindelev; Vestergaard, Anne; Muren, Ludvig P.; Petersen, Jørgen Baltzer; Lindegaard, Jacob Christian; Grau, Cai; Tanderup, Kari

    2012-01-01

    Purpose: Due to the often quite extended treatment fields in cervical cancer radiotherapy, uncorrected rotational set-up errors result in a potential risk of target miss. This study reports on the residual rotational set-up error after using daily cone beam computed tomography (CBCT) to position cervical cancer patients for radiotherapy treatment. Methods and materials: Twenty-five patients with locally advanced cervical cancer had daily CBCT scans (650 CBCTs in total) prior to treatment delivery. We retrospectively analyzed the translational shifts made in the clinic prior to each treatment fraction as well as the residual rotational errors remaining after translational correction. Results: The CBCT-guided couch movement resulted in a mean translational 3D vector correction of 7.4 mm. Residual rotational error resulted in a target shift exceeding 5 mm in 57 of the 650 treatment fractions. Three patients alone accounted for 30 of these fractions. Nine patients had no shifts exceeding 5 mm and 13 patients had 5 or less treatment fractions with such shifts. Conclusion: Twenty-two of the 25 patients have none or few treatment fractions with target shifts larger than 5 mm due to residual rotational error. However, three patients display a significant number of shifts suggesting a more systematic set-up error.

  19. Human error in strabismus surgery: Quantification with a sensitivity analysis

    NARCIS (Netherlands)

    S. Schutte (Sander); J.R. Polling (Jan Roelof); F.C.T. van der Helm (Frans); H.J. Simonsz (Huib)

    2009-01-01

    textabstractBackground: Reoperations are frequently necessary in strabismus surgery. The goal of this study was to analyze human-error related factors that introduce variability in the results of strabismus surgery in a systematic fashion. Methods: We identified the primary factors that influence

  20. Human error in strabismus surgery : Quantification with a sensitivity analysis

    NARCIS (Netherlands)

    Schutte, S.; Polling, J.R.; Van der Helm, F.C.T.; Simonsz, H.J.

    2008-01-01

    Background- Reoperations are frequently necessary in strabismus surgery. The goal of this study was to analyze human-error related factors that introduce variability in the results of strabismus surgery in a systematic fashion. Methods- We identified the primary factors that influence the outcome of

  1. Evaluation of positioning errors of the patient using cone beam CT megavoltage; Evaluacion de errores de posicionamiento del paciente mediante Cone Beam CT de megavoltaje

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Zucca Aparicio, D.; Perez Moreno, J. M.; Minambres Moro, A.

    2013-07-01

    Image-guided radiation therapy allows you to assess and fix the positioning of the patient in the treatment unit, thus reducing the uncertainties due to the positioning of the patient. This work assesses errors systematic and errors of randomness from the corrections made to a series of patients of different diseases through a protocol off line of cone beam CT (CBCT) megavoltage. (Author)

  2. Controlling errors in unidosis carts

    Directory of Open Access Journals (Sweden)

    Inmaculada Díaz Fernández

    2010-01-01

    Full Text Available Objective: To identify errors in the unidosis system carts. Method: For two months, the Pharmacy Service controlled medication either returned or missing from the unidosis carts both in the pharmacy and in the wards. Results: Uncorrected unidosis carts show a 0.9% of medication errors (264 versus 0.6% (154 which appeared in unidosis carts previously revised. In carts not revised, the error is 70.83% and mainly caused when setting up unidosis carts. The rest are due to a lack of stock or unavailability (21.6%, errors in the transcription of medical orders (6.81% or that the boxes had not been emptied previously (0.76%. The errors found in the units correspond to errors in the transcription of the treatment (3.46%, non-receipt of the unidosis copy (23.14%, the patient did not take the medication (14.36%or was discharged without medication (12.77%, was not provided by nurses (14.09%, was withdrawn from the stocks of the unit (14.62%, and errors of the pharmacy service (17.56% . Conclusions: It is concluded the need to redress unidosis carts and a computerized prescription system to avoid errors in transcription.Discussion: A high percentage of medication errors is caused by human error. If unidosis carts are overlooked before sent to hospitalization units, the error diminishes to 0.3%.

  3. [Medication errors in Spanish intensive care units].

    Science.gov (United States)

    Merino, P; Martín, M C; Alonso, A; Gutiérrez, I; Alvarez, J; Becerril, F

    2013-01-01

    To estimate the incidence of medication errors in Spanish intensive care units. Post hoc study of the SYREC trial. A longitudinal observational study carried out during 24 hours in patients admitted to the ICU. Spanish intensive care units. Patients admitted to the intensive care unit participating in the SYREC during the period of study. Risk, individual risk, and rate of medication errors. The final study sample consisted of 1017 patients from 79 intensive care units; 591 (58%) were affected by one or more incidents. Of these, 253 (43%) had at least one medication-related incident. The total number of incidents reported was 1424, of which 350 (25%) were medication errors. The risk of suffering at least one incident was 22% (IQR: 8-50%) while the individual risk was 21% (IQR: 8-42%). The medication error rate was 1.13 medication errors per 100 patient-days of stay. Most incidents occurred in the prescription (34%) and administration (28%) phases, 16% resulted in patient harm, and 82% were considered "totally avoidable". Medication errors are among the most frequent types of incidents in critically ill patients, and are more common in the prescription and administration stages. Although most such incidents have no clinical consequences, a significant percentage prove harmful for the patient, and a large proportion are avoidable. Copyright © 2012 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  4. Prioritising interventions against medication errors

    DEFF Research Database (Denmark)

    Lisby, Marianne; Pape-Larsen, Louise; Sørensen, Ann Lykkegaard

    errors are therefore needed. Development of definition: A definition of medication errors including an index of error types for each stage in the medication process was developed from existing terminology and through a modified Delphi-process in 2008. The Delphi panel consisted of 25 interdisciplinary......Abstract Authors: Lisby M, Larsen LP, Soerensen AL, Nielsen LP, Mainz J Title: Prioritising interventions against medication errors – the importance of a definition Objective: To develop and test a restricted definition of medication errors across health care settings in Denmark Methods: Medication...... errors constitute a major quality and safety problem in modern healthcare. However, far from all are clinically important. The prevalence of medication errors ranges from 2-75% indicating a global problem in defining and measuring these [1]. New cut-of levels focusing the clinical impact of medication...

  5. Social aspects of clinical errors.

    Science.gov (United States)

    Richman, Joel; Mason, Tom; Mason-Whitehead, Elizabeth; McIntosh, Annette; Mercer, Dave

    2009-08-01

    Clinical errors, whether committed by doctors, nurses or other professions allied to healthcare, remain a sensitive issue requiring open debate and policy formulation in order to reduce them. The literature suggests that the issues underpinning errors made by healthcare professionals involve concerns about patient safety, professional disclosure, apology, litigation, compensation, processes of recording and policy development to enhance quality service. Anecdotally, we are aware of narratives of minor errors, which may well have been covered up and remain officially undisclosed whilst the major errors resulting in damage and death to patients alarm both professionals and public with resultant litigation and compensation. This paper attempts to unravel some of these issues by highlighting the historical nature of clinical errors and drawing parallels to contemporary times by outlining the 'compensation culture'. We then provide an overview of what constitutes a clinical error and review the healthcare professional strategies for managing such errors.

  6. Systematic errors in ground heat flux estimation and their correction

    NARCIS (Netherlands)

    Gentine, P.; Entekhabi, D.; Heusinkveld, B.G.

    2012-01-01

    Incoming radiation forcing at the land surface is partitioned among the components of the surface energy balance in varying proportions depending on the time scale of the forcing. Based on a land-atmosphere analytic continuum model, a numerical land-surface model and field observations we show that

  7. Radiologic errors, past, present and future.

    Science.gov (United States)

    Berlin, Leonard

    2014-01-01

    During the 10-year period beginning in 1949 with publication of five articles in two radiology journals and UKs The Lancet, a California radiologist named L.H. Garland almost single-handedly shocked the entire medical and especially the radiologic community. He focused their attention on the fact now known and accepted by all, but at that time not previously recognized and acknowledged only with great reluctance, that a substantial degree of observer error was prevalent in radiologic interpretation. In the more than half-century that followed, Garland's pioneering work has been affirmed and reaffirmed by numerous researchers. Retrospective studies disclosed then and still disclose today that diagnostic errors in radiologic interpretations of plain radiographic (as well as CT, MR, ultrasound, and radionuclide) images hover in the 30% range, not too dissimilar to the error rates in clinical medicine. Seventy percent of these errors are perceptual in nature, i.e., the radiologist does not "see" the abnormality on the imaging exam, perhaps due to poor conspicuity, satisfaction of search, or simply the "inexplicable psycho-visual phenomena of human perception." The remainder are cognitive errors: the radiologist sees an abnormality but fails to render a correct diagnoses by attaching the wrong significance to what is seen, perhaps due to inadequate knowledge, or an alliterative or judgmental error. Computer-assisted detection (CAD), a technology that for the past two decades has been utilized primarily in mammographic interpretation, increases sensitivity but at the same time decreases specificity; whether it reduces errors is debatable. Efforts to reduce diagnostic radiological errors continue, but the degree to which they will be successful remains to be determined.

  8. Counting OCR errors in typeset text

    Science.gov (United States)

    Sandberg, Jonathan S.

    1995-03-01

    Frequently object recognition accuracy is a key component in the performance analysis of pattern matching systems. In the past three years, the results of numerous excellent and rigorous studies of OCR system typeset-character accuracy (henceforth OCR accuracy) have been published, encouraging performance comparisons between a variety of OCR products and technologies. These published figures are important; OCR vendor advertisements in the popular trade magazines lead readers to believe that published OCR accuracy figures effect market share in the lucrative OCR market. Curiously, a detailed review of many of these OCR error occurrence counting results reveals that they are not reproducible as published and they are not strictly comparable due to larger variances in the counts than would be expected by the sampling variance. Naturally, since OCR accuracy is based on a ratio of the number of OCR errors over the size of the text searched for errors, imprecise OCR error accounting leads to similar imprecision in OCR accuracy. Some published papers use informal, non-automatic, or intuitively correct OCR error accounting. Still other published results present OCR error accounting methods based on string matching algorithms such as dynamic programming using Levenshtein (edit) distance but omit critical implementation details (such as the existence of suspect markers in the OCR generated output or the weights used in the dynamic programming minimization procedure). The problem with not specifically revealing the accounting method is that the number of errors found by different methods are significantly different. This paper identifies the basic accounting methods used to measure OCR errors in typeset text and offers an evaluation and comparison of the various accounting methods.

  9. Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans

    International Nuclear Information System (INIS)

    Siebers, Jeffrey V.; Keall, Paul J.; Wu Qiuwen; Williamson, Jeffrey F.; Schmidt-Ullrich, Rupert K.

    2005-01-01

    Purpose: The purpose of this study is to determine dose delivery errors that could result from random and systematic setup errors for head-and-neck patients treated using the simultaneous integrated boost (SIB)-intensity-modulated radiation therapy (IMRT) technique. Methods and Materials: Twenty-four patients who participated in an intramural Phase I/II parotid-sparing IMRT dose-escalation protocol using the SIB treatment technique had their dose distributions reevaluated to assess the impact of random and systematic setup errors. The dosimetric effect of random setup error was simulated by convolving the two-dimensional fluence distribution of each beam with the random setup error probability density distribution. Random setup errors of σ = 1, 3, and 5 mm were simulated. Systematic setup errors were simulated by randomly shifting the patient isocenter along each of the three Cartesian axes, with each shift selected from a normal distribution. Systematic setup error distributions with Σ = 1.5 and 3.0 mm along each axis were simulated. Combined systematic and random setup errors were simulated for σ = Σ = 1.5 and 3.0 mm along each axis. For each dose calculation, the gross tumor volume (GTV) received by 98% of the volume (D 98 ), clinical target volume (CTV) D 90 , nodes D 90 , cord D 2 , and parotid D 50 and parotid mean dose were evaluated with respect to the plan used for treatment for the structure dose and for an effective planning target volume (PTV) with a 3-mm margin. Results: Simultaneous integrated boost-IMRT head-and-neck treatment plans were found to be less sensitive to random setup errors than to systematic setup errors. For random-only errors, errors exceeded 3% only when the random setup error σ exceeded 3 mm. Simulated systematic setup errors with Σ = 1.5 mm resulted in approximately 10% of plan having more than a 3% dose error, whereas a Σ = 3.0 mm resulted in half of the plans having more than a 3% dose error and 28% with a 5% dose error

  10. The commission errors search and assessment (CESA) method

    Energy Technology Data Exchange (ETDEWEB)

    Reer, B.; Dang, V. N

    2007-05-15

    Errors of Commission (EOCs) refer to the performance of inappropriate actions that aggravate a situation. In Probabilistic Safety Assessment (PSA) terms, they are human failure events that result from the performance of an action. This report presents the Commission Errors Search and Assessment (CESA) method and describes the method in the form of user guidance. The purpose of the method is to identify risk-significant situations with a potential for EOCs in a predictive analysis. The main idea underlying the CESA method is to catalog the key actions that are required in the procedural response to plant events and to identify specific scenarios in which these candidate actions could erroneously appear to be required. The catalog of required actions provides a basis for a systematic search of context-action combinations. To focus the search towards risk-significant scenarios, the actions that are examined in the CESA search are prioritized according to the importance of the systems and functions that are affected by these actions. The existing PSA provides this importance information; the Risk Achievement Worth or Risk Increase Factor values indicate the systems/functions for which an EOC contribution would be more significant. In addition, the contexts, i.e. PSA scenarios, for which the EOC opportunities are reviewed are also prioritized according to their importance (top sequences or cut sets). The search through these context-action combinations results in a set of EOC situations to be examined in detail. CESA has been applied in a plant-specific pilot study, which showed the method to be feasible and effective in identifying plausible EOC opportunities. This experience, as well as the experience with other EOC analyses, showed that the quantification of EOCs remains an issue. The quantification difficulties and the outlook for their resolution conclude the report. (author)

  11. The commission errors search and assessment (CESA) method

    International Nuclear Information System (INIS)

    Reer, B.; Dang, V. N.

    2007-05-01

    Errors of Commission (EOCs) refer to the performance of inappropriate actions that aggravate a situation. In Probabilistic Safety Assessment (PSA) terms, they are human failure events that result from the performance of an action. This report presents the Commission Errors Search and Assessment (CESA) method and describes the method in the form of user guidance. The purpose of the method is to identify risk-significant situations with a potential for EOCs in a predictive analysis. The main idea underlying the CESA method is to catalog the key actions that are required in the procedural response to plant events and to identify specific scenarios in which these candidate actions could erroneously appear to be required. The catalog of required actions provides a basis for a systematic search of context-action combinations. To focus the search towards risk-significant scenarios, the actions that are examined in the CESA search are prioritized according to the importance of the systems and functions that are affected by these actions. The existing PSA provides this importance information; the Risk Achievement Worth or Risk Increase Factor values indicate the systems/functions for which an EOC contribution would be more significant. In addition, the contexts, i.e. PSA scenarios, for which the EOC opportunities are reviewed are also prioritized according to their importance (top sequences or cut sets). The search through these context-action combinations results in a set of EOC situations to be examined in detail. CESA has been applied in a plant-specific pilot study, which showed the method to be feasible and effective in identifying plausible EOC opportunities. This experience, as well as the experience with other EOC analyses, showed that the quantification of EOCs remains an issue. The quantification difficulties and the outlook for their resolution conclude the report. (author)

  12. Errors in abdominal computed tomography

    International Nuclear Information System (INIS)

    Stephens, S.; Marting, I.; Dixon, A.K.

    1989-01-01

    Sixty-nine patients are presented in whom a substantial error was made on the initial abdominal computed tomography report. Certain features of these errors have been analysed. In 30 (43.5%) a lesion was simply not recognised (error of observation); in 39 (56.5%) the wrong conclusions were drawn about the nature of normal or abnormal structures (error of interpretation). The 39 errors of interpretation were more complex; in 7 patients an abnormal structure was noted but interpreted as normal, whereas in four a normal structure was thought to represent a lesion. Other interpretive errors included those where the wrong cause for a lesion had been ascribed (24 patients), and those where the abnormality was substantially under-reported (4 patients). Various features of these errors are presented and discussed. Errors were made just as often in relation to small and large lesions. Consultants made as many errors as senior registrar radiologists. It is like that dual reporting is the best method of avoiding such errors and, indeed, this is widely practised in our unit. (Author). 9 refs.; 5 figs.; 1 tab

  13. Consequences of leaf calibration errors on IMRT delivery

    International Nuclear Information System (INIS)

    Sastre-Padro, M; Welleweerd, J; Malinen, E; Eilertsen, K; Olsen, D R; Heide, U A van der

    2007-01-01

    IMRT treatments using multi-leaf collimators may involve a large number of segments in order to spare the organs at risk. When a large proportion of these segments are small, leaf positioning errors may become relevant and have therapeutic consequences. The performance of four head and neck IMRT treatments under eight different cases of leaf positioning errors has been studied. Systematic leaf pair offset errors in the range of ±2.0 mm were introduced, thus modifying the segment sizes of the original IMRT plans. Thirty-six films were irradiated with the original and modified segments. The dose difference and the gamma index (with 2%/2 mm criteria) were used for evaluating the discrepancies between the irradiated films. The median dose differences were linearly related to the simulated leaf pair errors. In the worst case, a 2.0 mm error generated a median dose difference of 1.5%. Following the gamma analysis, two out of the 32 modified plans were not acceptable. In conclusion, small systematic leaf bank positioning errors have a measurable impact on the delivered dose and may have consequences for the therapeutic outcome of IMRT

  14. Error framing effects on performance: cognitive, motivational, and affective pathways.

    Science.gov (United States)

    Steele-Johnson, Debra; Kalinoski, Zachary T

    2014-01-01

    Our purpose was to examine whether positive error framing, that is, making errors salient and cuing individuals to see errors as useful, can benefit learning when task exploration is constrained. Recent research has demonstrated the benefits of a newer approach to training, that is, error management training, that includes the opportunity to actively explore the task and framing errors as beneficial to learning complex tasks (Keith & Frese, 2008). Other research has highlighted the important role of errors in on-the-job learning in complex domains (Hutchins, 1995). Participants (N = 168) from a large undergraduate university performed a class scheduling task. Results provided support for a hypothesized path model in which error framing influenced cognitive, motivational, and affective factors which in turn differentially affected performance quantity and quality. Within this model, error framing had significant direct effects on metacognition and self-efficacy. Our results suggest that positive error framing can have beneficial effects even when tasks cannot be structured to support extensive exploration. Whereas future research can expand our understanding of error framing effects on outcomes, results from the current study suggest that positive error framing can facilitate learning from errors in real-time performance of tasks.

  15. The probability and the management of human error

    International Nuclear Information System (INIS)

    Dufey, R.B.; Saull, J.W.

    2004-01-01

    Embedded within modern technological systems, human error is the largest, and indeed dominant contributor to accident cause. The consequences dominate the risk profiles for nuclear power and for many other technologies. We need to quantify the probability of human error for the system as an integral contribution within the overall system failure, as it is generally not separable or predictable for actual events. We also need to provide a means to manage and effectively reduce the failure (error) rate. The fact that humans learn from their mistakes allows a new determination of the dynamic probability and human failure (error) rate in technological systems. The result is consistent with and derived from the available world data for modern technological systems. Comparisons are made to actual data from large technological systems and recent catastrophes. Best estimate values and relationships can be derived for both the human error rate, and for the probability. We describe the potential for new approaches to the management of human error and safety indicators, based on the principles of error state exclusion and of the systematic effect of learning. A new equation is given for the probability of human error (λ) that combines the influences of early inexperience, learning from experience (ε) and stochastic occurrences with having a finite minimum rate, this equation is λ 5.10 -5 + ((1/ε) - 5.10 -5 ) exp(-3*ε). The future failure rate is entirely determined by the experience: thus the past defines the future

  16. Local systematic differences in 2MASS positions

    Science.gov (United States)

    Bustos Fierro, I. H.; Calderón, J. H.

    2018-01-01

    We have found that positions in the 2MASS All-sky Catalog of Point Sources show local systematic differences with characteristic length-scales of ˜ 5 to ˜ 8 arcminutes when compared with several catalogs. We have observed that when 2MASS positions are used in the computation of proper motions, the mentioned systematic differences cause systematic errors in the resulting proper motions. We have developed a method to locally rectify 2MASS with respect to UCAC4 in order to diminish the systematic differences between these catalogs. The rectified 2MASS catalog with the proposed method can be regarded as an extension of UCAC4 for astrometry with accuracy ˜ 90 mas in its positions, with negligible systematic errors. Also we show that the use of these rectified positions removes the observed systematic pattern in proper motions derived from original 2MASS positions.

  17. Exploring cosmic origins with CORE: Mitigation of systematic effects

    Science.gov (United States)

    Natoli, P.; Ashdown, M.; Banerji, R.; Borrill, J.; Buzzelli, A.; de Gasperis, G.; Delabrouille, J.; Hivon, E.; Molinari, D.; Patanchon, G.; Polastri, L.; Tomasi, M.; Bouchet, F. R.; Henrot-Versillé, S.; Hoang, D. T.; Keskitalo, R.; Kiiveri, K.; Kisner, T.; Lindholm, V.; McCarthy, D.; Piacentini, F.; Perdereau, O.; Polenta, G.; Tristram, M.; Achucarro, A.; Ade, P.; Allison, R.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Bartlett, J.; Bartolo, N.; Basak, S.; Baumann, D.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Cai, Z.-Y.; Calvo, M.; Carvalho, C.-S.; Castellano, M. G.; Challinor, A.; Chluba, J.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; De Zotti, G.; Di Valentino, E.; Diego, J.-M.; Errard, J.; Feeney, S.; Fernandez-Cobos, R.; Finelli, F.; Forastieri, F.; Galli, S.; Genova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Gruppuso, A.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernandez-Monteagudo, C.; Hervías-Caimapo, C.; Hills, M.; Keihänen, E.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Liguori, M.; López-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-González, E.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; Melchiorri, A.; Melin, J.-B.; Migliaccio, M.; Monfardini, A.; Negrello, M.; Notari, A.; Pagano, L.; Paiella, A.; Paoletti, D.; Piat, M.; Pisano, G.; Pollo, A.; Poulin, V.; Quartin, M.; Remazeilles, M.; Roman, M.; Rossi, G.; Rubino-Martin, J.-A.; Salvati, L.; Signorelli, G.; Tartari, A.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Valiviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Vittorio, N.; Wallis, C.; Young, K.; Zannoni, M.

    2018-04-01

    We present an analysis of the main systematic effects that could impact the measurement of CMB polarization with the proposed CORE space mission. We employ timeline-to-map simulations to verify that the CORE instrumental set-up and scanning strategy allow us to measure sky polarization to a level of accuracy adequate to the mission science goals. We also show how the CORE observations can be processed to mitigate the level of contamination by potentially worrying systematics, including intensity-to-polarization leakage due to bandpass mismatch, asymmetric main beams, pointing errors and correlated noise. We use analysis techniques that are well validated on data from current missions such as Planck to demonstrate how the residual contamination of the measurements by these effects can be brought to a level low enough not to hamper the scientific capability of the mission, nor significantly increase the overall error budget. We also present a prototype of the CORE photometric calibration pipeline, based on that used for Planck, and discuss its robustness to systematics, showing how CORE can achieve its calibration requirements. While a fine-grained assessment of the impact of systematics requires a level of knowledge of the system that can only be achieved in a future study phase, the analysis presented here strongly suggests that the main areas of concern for the CORE mission can be addressed using existing knowledge, techniques and algorithms.

  18. Limit of detection in the presence of instrumental and non-instrumental errors: study of the possible sources of error and application to the analysis of 41 elements at trace levels by inductively coupled plasma-mass spectrometry technique

    International Nuclear Information System (INIS)

    Badocco, Denis; Lavagnini, Irma; Mondin, Andrea; Tapparo, Andrea; Pastore, Paolo

    2015-01-01

    In this paper the detection limit was estimated when signals were affected by two error contributions, namely instrumental errors and operational-non-instrumental errors. The detection limit was theoretically obtained following the hypothesis testing schema implemented with the calibration curve methodology. The experimental calibration design was based on J standards measured I times with non-instrumental errors affecting each standard systematically but randomly among the J levels. A two-component variance regression was performed to determine the calibration curve and to define the detection limit in these conditions. The detection limit values obtained from the calibration at trace levels of 41 elements by ICP-MS resulted larger than those obtainable from a one component variance regression. The role of the reagent impurities on the instrumental errors was ascertained and taken into account. Environmental pollution was studied as source of non-instrumental errors. The environmental pollution role was evaluated by Principal Component Analysis technique (PCA) applied to a series of nine calibrations performed in fourteen months. The influence of the seasonality of the environmental pollution on the detection limit was evidenced for many elements usually present in the urban air particulate. The obtained results clearly indicated the need of using the two-component variance regression approach for the calibration of all the elements usually present in the environment at significant concentration levels. - Highlights: • Limit of detection was obtained considering a two variance component regression. • Calibration data may be affected by instrumental and operational conditions errors. • Calibration model was applied to determine 41 elements at trace level by ICP-MS. • Non instrumental errors were evidenced by PCA analysis

  19. Dopamine reward prediction error coding.

    Science.gov (United States)

    Schultz, Wolfram

    2016-03-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.

  20. Study of WATCH GRB error boxes

    DEFF Research Database (Denmark)

    Gorosabel, J.; Castro-Tirado, A. J.; Lund, Niels

    1995-01-01

    We have studied the first WATCH GRB Catalogue ofγ-ray Bursts in order to find correlations between WATCH GRB error boxes and a great variety of celestial objects present in 33 different catalogues. No particular class of objects has been found to be significantly correlated with the WATCH GRBs....

  1. Architecture design for soft errors

    CERN Document Server

    Mukherjee, Shubu

    2008-01-01

    This book provides a comprehensive description of the architetural techniques to tackle the soft error problem. It covers the new methodologies for quantitative analysis of soft errors as well as novel, cost-effective architectural techniques to mitigate them. To provide readers with a better grasp of the broader problem deffinition and solution space, this book also delves into the physics of soft errors and reviews current circuit and software mitigation techniques.

  2. Dopamine reward prediction error coding

    OpenAIRE

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards?an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less...

  3. Instrumental systematics and weak gravitational lensing

    International Nuclear Information System (INIS)

    Mandelbaum, R.

    2015-01-01

    We present a pedagogical review of the weak gravitational lensing measurement process and its connection to major scientific questions such as dark matter and dark energy. Then we describe common ways of parametrizing systematic errors and understanding how they affect weak lensing measurements. Finally, we discuss several instrumental systematics and how they fit into this context, and conclude with some future perspective on how progress can be made in understanding the impact of instrumental systematics on weak lensing measurements

  4. Identifying Error in AUV Communication

    National Research Council Canada - National Science Library

    Coleman, Joseph; Merrill, Kaylani; O'Rourke, Michael; Rajala, Andrew G; Edwards, Dean B

    2006-01-01

    Mine Countermeasures (MCM) involving Autonomous Underwater Vehicles (AUVs) are especially susceptible to error, given the constraints on underwater acoustic communication and the inconstancy of the underwater communication channel...

  5. Human Errors in Decision Making

    OpenAIRE

    Mohamad, Shahriari; Aliandrina, Dessy; Feng, Yan

    2005-01-01

    The aim of this paper was to identify human errors in decision making process. The study was focused on a research question such as: what could be the human error as a potential of decision failure in evaluation of the alternatives in the process of decision making. Two case studies were selected from the literature and analyzed to find the human errors contribute to decision fail. Then the analysis of human errors was linked with mental models in evaluation of alternative step. The results o...

  6. Finding beam focus errors automatically

    International Nuclear Information System (INIS)

    Lee, M.J.; Clearwater, S.H.; Kleban, S.D.

    1987-01-01

    An automated method for finding beam focus errors using an optimization program called COMFORT-PLUS. The steps involved in finding the correction factors using COMFORT-PLUS has been used to find the beam focus errors for two damping rings at the SLAC Linear Collider. The program is to be used as an off-line program to analyze actual measured data for any SLC system. A limitation on the application of this procedure is found to be that it depends on the magnitude of the machine errors. Another is that the program is not totally automated since the user must decide a priori where to look for errors

  7. Heuristic errors in clinical reasoning.

    Science.gov (United States)

    Rylander, Melanie; Guerrasio, Jeannette

    2016-08-01

    Errors in clinical reasoning contribute to patient morbidity and mortality. The purpose of this study was to determine the types of heuristic errors made by third-year medical students and first-year residents. This study surveyed approximately 150 clinical educators inquiring about the types of heuristic errors they observed in third-year medical students and first-year residents. Anchoring and premature closure were the two most common errors observed amongst third-year medical students and first-year residents. There was no difference in the types of errors observed in the two groups. Errors in clinical reasoning contribute to patient morbidity and mortality Clinical educators perceived that both third-year medical students and first-year residents committed similar heuristic errors, implying that additional medical knowledge and clinical experience do not affect the types of heuristic errors made. Further work is needed to help identify methods that can be used to reduce heuristic errors early in a clinician's education. © 2015 John Wiley & Sons Ltd.

  8. A Hybrid Unequal Error Protection / Unequal Error Resilience ...

    African Journals Online (AJOL)

    The quality layers are then assigned an Unequal Error Resilience to synchronization loss by unequally allocating the number of headers available for synchronization to them. Following that Unequal Error Protection against channel noise is provided to the layers by the use of Rate Compatible Punctured Convolutional ...

  9. Complementary Feeding Interventions Have a Small but Significant Impact on Linear and Ponderal Growth of Children in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Panjwani, Anita; Heidkamp, Rebecca

    2017-11-01

    Background: World Health Assembly member states have committed to ambitious global targets for reductions in stunting and wasting by 2025. Improving complementary diets of children aged 6-23 mo is a recommended approach for reducing stunting in children impact of complementary feeding interventions on linear [length-for-age z score (LAZ)] and ponderal [weight-for-length z score (WLZ)] growth of children aged 6-23 mo, with the specific goal of updating intervention-outcome linkages in the Lives Saved Tool (LiST). Methods: We started our review with studies included in the previous LiST review and searched for articles published since January 2012. We identified longitudinal trials that compared children aged 6-23 mo who received 1 of 2 types of complementary feeding interventions (nutrition education or counseling alone or complementary food supplementation with or without nutrition education or counseling) with a no-intervention control. We assessed study quality and generated pooled estimates of LAZ and WLZ change, as well as length and weight gain, for each category of intervention. Results: Interventions that provided nutrition education or counseling had a small but significant impact on linear growth in food-secure populations [LAZ standardized mean difference (SMD): 0.11; 95% CI: 0.01, 0.22] but not on ponderal growth. Complementary food supplementation interventions with or without nutrition education also had a small, significant effect in food-insecure settings on both LAZ (SMD: 0.08; 95% CI: 0.04, 0.13) and WLZ (SMD: 0.05; 95% CI: 0.01, 0.08). Conclusions: Nutrition education and complementary feeding interventions both had a small but significant impact on linear growth, and complementary feeding interventions also had an impact on ponderal growth of children aged 6-23 mo in low- and middle-income countries. The updated LiST model will support nutrition program planning and evaluation efforts by allowing users to model changes in intervention coverage on

  10. Internal Error Propagation in Explicit Runge--Kutta Methods

    KAUST Repository

    Ketcheson, David I.

    2014-09-11

    In practical computation with Runge--Kutta methods, the stage equations are not satisfied exactly, due to roundoff errors, algebraic solver errors, and so forth. We show by example that propagation of such errors within a single step can have catastrophic effects for otherwise practical and well-known methods. We perform a general analysis of internal error propagation, emphasizing that it depends significantly on how the method is implemented. We show that for a fixed method, essentially any set of internal stability polynomials can be obtained by modifying the implementation details. We provide bounds on the internal error amplification constants for some classes of methods with many stages, including strong stability preserving methods and extrapolation methods. These results are used to prove error bounds in the presence of roundoff or other internal errors.

  11. Error Control in Distributed Node Self-Localization

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2008-03-01

    Full Text Available Location information of nodes in an ad hoc sensor network is essential to many tasks such as routing, cooperative sensing, and service delivery. Distributed node self-localization is lightweight and requires little communication overhead, but often suffers from the adverse effects of error propagation. Unlike other localization papers which focus on designing elaborate localization algorithms, this paper takes a different perspective, focusing on the error propagation problem, addressing questions such as where localization error comes from and how it propagates from node to node. To prevent error from propagating and accumulating, we develop an error-control mechanism based on characterization of node uncertainties and discrimination between neighboring nodes. The error-control mechanism uses only local knowledge and is fully decentralized. Simulation results have shown that the active selection strategy significantly mitigates the effect of error propagation for both range and directional sensors. It greatly improves localization accuracy and robustness.

  12. Generalizing human error rates: A taxonomic approach

    International Nuclear Information System (INIS)

    Buffardi, L.; Fleishman, E.; Allen, J.

    1989-01-01

    It is well established that human error plays a major role in malfunctioning of complex, technological systems and in accidents associated with their operation. Estimates of the rate of human error in the nuclear industry range from 20-65% of all system failures. In response to this, the Nuclear Regulatory Commission has developed a variety of techniques for estimating human error probabilities for nuclear power plant personnel. Most of these techniques require the specification of the range of human error probabilities for various tasks. Unfortunately, very little objective performance data on error probabilities exist for nuclear environments. Thus, when human reliability estimates are required, for example in computer simulation modeling of system reliability, only subjective estimates (usually based on experts' best guesses) can be provided. The objective of the current research is to provide guidelines for the selection of human error probabilities based on actual performance data taken in other complex environments and applying them to nuclear settings. A key feature of this research is the application of a comprehensive taxonomic approach to nuclear and non-nuclear tasks to evaluate their similarities and differences, thus providing a basis for generalizing human error estimates across tasks. In recent years significant developments have occurred in classifying and describing tasks. Initial goals of the current research are to: (1) identify alternative taxonomic schemes that can be applied to tasks, and (2) describe nuclear tasks in terms of these schemes. Three standardized taxonomic schemes (Ability Requirements Approach, Generalized Information-Processing Approach, Task Characteristics Approach) are identified, modified, and evaluated for their suitability in comparing nuclear and non-nuclear power plant tasks. An agenda for future research and its relevance to nuclear power plant safety is also discussed

  13. Error studies for SNS Linac. Part 1: Transverse errors

    International Nuclear Information System (INIS)

    Crandall, K.R.

    1998-01-01

    The SNS linac consist of a radio-frequency quadrupole (RFQ), a drift-tube linac (DTL), a coupled-cavity drift-tube linac (CCDTL) and a coupled-cavity linac (CCL). The RFQ and DTL are operated at 402.5 MHz; the CCDTL and CCL are operated at 805 MHz. Between the RFQ and DTL is a medium-energy beam-transport system (MEBT). This error study is concerned with the DTL, CCDTL and CCL, and each will be analyzed separately. In fact, the CCL is divided into two sections, and each of these will be analyzed separately. The types of errors considered here are those that affect the transverse characteristics of the beam. The errors that cause the beam center to be displaced from the linac axis are quad displacements and quad tilts. The errors that cause mismatches are quad gradient errors and quad rotations (roll)

  14. Technological Advancements and Error Rates in Radiation Therapy Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Margalit, Danielle N., E-mail: dmargalit@partners.org [Harvard Radiation Oncology Program, Boston, MA (United States); Harvard Cancer Consortium and Brigham and Women' s Hospital/Dana Farber Cancer Institute, Boston, MA (United States); Chen, Yu-Hui; Catalano, Paul J.; Heckman, Kenneth; Vivenzio, Todd; Nissen, Kristopher; Wolfsberger, Luciant D.; Cormack, Robert A.; Mauch, Peter; Ng, Andrea K. [Harvard Cancer Consortium and Brigham and Women' s Hospital/Dana Farber Cancer Institute, Boston, MA (United States)

    2011-11-15

    Purpose: Technological advances in radiation therapy (RT) delivery have the potential to reduce errors via increased automation and built-in quality assurance (QA) safeguards, yet may also introduce new types of errors. Intensity-modulated RT (IMRT) is an increasingly used technology that is more technically complex than three-dimensional (3D)-conformal RT and conventional RT. We determined the rate of reported errors in RT delivery among IMRT and 3D/conventional RT treatments and characterized the errors associated with the respective techniques to improve existing QA processes. Methods and Materials: All errors in external beam RT delivery were prospectively recorded via a nonpunitive error-reporting system at Brigham and Women's Hospital/Dana Farber Cancer Institute. Errors are defined as any unplanned deviation from the intended RT treatment and are reviewed during monthly departmental quality improvement meetings. We analyzed all reported errors since the routine use of IMRT in our department, from January 2004 to July 2009. Fisher's exact test was used to determine the association between treatment technique (IMRT vs. 3D/conventional) and specific error types. Effect estimates were computed using logistic regression. Results: There were 155 errors in RT delivery among 241,546 fractions (0.06%), and none were clinically significant. IMRT was commonly associated with errors in machine parameters (nine of 19 errors) and data entry and interpretation (six of 19 errors). IMRT was associated with a lower rate of reported errors compared with 3D/conventional RT (0.03% vs. 0.07%, p = 0.001) and specifically fewer accessory errors (odds ratio, 0.11; 95% confidence interval, 0.01-0.78) and setup errors (odds ratio, 0.24; 95% confidence interval, 0.08-0.79). Conclusions: The rate of errors in RT delivery is low. The types of errors differ significantly between IMRT and 3D/conventional RT, suggesting that QA processes must be uniquely adapted for each technique

  15. Technological Advancements and Error Rates in Radiation Therapy Delivery

    International Nuclear Information System (INIS)

    Margalit, Danielle N.; Chen, Yu-Hui; Catalano, Paul J.; Heckman, Kenneth; Vivenzio, Todd; Nissen, Kristopher; Wolfsberger, Luciant D.; Cormack, Robert A.; Mauch, Peter; Ng, Andrea K.

    2011-01-01

    Purpose: Technological advances in radiation therapy (RT) delivery have the potential to reduce errors via increased automation and built-in quality assurance (QA) safeguards, yet may also introduce new types of errors. Intensity-modulated RT (IMRT) is an increasingly used technology that is more technically complex than three-dimensional (3D)–conformal RT and conventional RT. We determined the rate of reported errors in RT delivery among IMRT and 3D/conventional RT treatments and characterized the errors associated with the respective techniques to improve existing QA processes. Methods and Materials: All errors in external beam RT delivery were prospectively recorded via a nonpunitive error-reporting system at Brigham and Women’s Hospital/Dana Farber Cancer Institute. Errors are defined as any unplanned deviation from the intended RT treatment and are reviewed during monthly departmental quality improvement meetings. We analyzed all reported errors since the routine use of IMRT in our department, from January 2004 to July 2009. Fisher’s exact test was used to determine the association between treatment technique (IMRT vs. 3D/conventional) and specific error types. Effect estimates were computed using logistic regression. Results: There were 155 errors in RT delivery among 241,546 fractions (0.06%), and none were clinically significant. IMRT was commonly associated with errors in machine parameters (nine of 19 errors) and data entry and interpretation (six of 19 errors). IMRT was associated with a lower rate of reported errors compared with 3D/conventional RT (0.03% vs. 0.07%, p = 0.001) and specifically fewer accessory errors (odds ratio, 0.11; 95% confidence interval, 0.01–0.78) and setup errors (odds ratio, 0.24; 95% confidence interval, 0.08–0.79). Conclusions: The rate of errors in RT delivery is low. The types of errors differ significantly between IMRT and 3D/conventional RT, suggesting that QA processes must be uniquely adapted for each technique

  16. Abnormal error monitoring in math-anxious individuals: evidence from error-related brain potentials.

    Directory of Open Access Journals (Sweden)

    Macarena Suárez-Pellicioni

    Full Text Available This study used event-related brain potentials to investigate whether math anxiety is related to abnormal error monitoring processing. Seventeen high math-anxious (HMA and seventeen low math-anxious (LMA individuals were presented with a numerical and a classical Stroop task. Groups did not differ in terms of trait or state anxiety. We found enhanced error-related negativity (ERN in the HMA group when subjects committed an error on the numerical Stroop task, but not on the classical Stroop task. Groups did not differ in terms of the correct-related negativity component (CRN, the error positivity component (Pe, classical behavioral measures or post-error measures. The amplitude of the ERN was negatively related to participants' math anxiety scores, showing a more negative amplitude as the score increased. Moreover, using standardized low resolution electromagnetic tomography (sLORETA we found greater activation of the insula in errors on a numerical task as compared to errors in a non-numerical task only for the HMA group. The results were interpreted according to the motivational significance theory of the ERN.

  17. Measurements of stem diameter: implications for individual- and stand-level errors.

    Science.gov (United States)

    Paul, Keryn I; Larmour, John S; Roxburgh, Stephen H; England, Jacqueline R; Davies, Micah J; Luck, Hamish D

    2017-08-01

    Stem diameter is one of the most common measurements made to assess the growth of woody vegetation, and the commercial and environmental benefits that it provides (e.g. wood or biomass products, carbon sequestration, landscape remediation). Yet inconsistency in its measurement is a continuing source of error in estimates of stand-scale measures such as basal area, biomass, and volume. Here we assessed errors in stem diameter measurement through repeated measurements of individual trees and shrubs of varying size and form (i.e. single- and multi-stemmed) across a range of contrasting stands, from complex mixed-species plantings to commercial single-species plantations. We compared a standard diameter tape with a Stepped Diameter Gauge (SDG) for time efficiency and measurement error. Measurement errors in diameter were slightly (but significantly) influenced by size and form of the tree or shrub, and stem height at which the measurement was made. Compared to standard tape measurement, the mean systematic error with SDG measurement was only -0.17 cm, but varied between -0.10 and -0.52 cm. Similarly, random error was relatively large, with standard deviations (and percentage coefficients of variation) averaging only 0.36 cm (and 3.8%), but varying between 0.14 and 0.61 cm (and 1.9 and 7.1%). However, at the stand scale, sampling errors (i.e. how well individual trees or shrubs selected for measurement of diameter represented the true stand population in terms of the average and distribution of diameter) generally had at least a tenfold greater influence on random errors in basal area estimates than errors in diameter measurements. This supports the use of diameter measurement tools that have high efficiency, such as the SDG. Use of the SDG almost halved the time required for measurements compared to the diameter tape. Based on these findings, recommendations include the following: (i) use of a tape to maximise accuracy when developing allometric models, or when

  18. Nature of the Refractive Errors in Rhesus Monkeys (Macaca mulatta) with Experimentally Induced Ametropias

    Science.gov (United States)

    Qiao-Grider, Ying; Hung, Li-Fang; Kee, Chea-su; Ramamirtham, Ramkumar; Smith, Earl L.

    2010-01-01

    We analyzed the contribution of individual ocular components to vision-induced ametropias in 210 rhesus monkeys. The primary contribution to refractive-error development came from vitreous chamber depth; a minor contribution from corneal power was also detected. However, there was no systematic relationship between refractive error and anterior chamber depth or between refractive error and any crystalline lens parameter. Our results are in good agreement with previous studies in humans, suggesting that the refractive errors commonly observed in humans are created by vision-dependent mechanisms that are similar to those operating in monkeys. This concordance emphasizes the applicability of rhesus monkeys in refractive-error studies. PMID:20600237

  19. Forecast errors in IEA-countries' energy consumption

    DEFF Research Database (Denmark)

    Linderoth, Hans

    2002-01-01

    Every year Policy of IEA Countries includes a forecast of the energy consumption in the member countries. Forecasts concerning the years 1985,1990 and 1995 can now be compared to actual values. The second oil crisis resulted in big positive forecast errors. The oil price drop in 1986 did not have...... the small value is often the sum of large positive and negative errors. Almost no significant correlation is found between forecast errors in the 3 years. Correspondingly, no significant correlation coefficient is found between forecasts errors in the 3 main energy sectors. Therefore, a relatively small...

  20. Understanding error generation in fused deposition modeling

    International Nuclear Information System (INIS)

    Bochmann, Lennart; Transchel, Robert; Wegener, Konrad; Bayley, Cindy; Helu, Moneer; Dornfeld, David

    2015-01-01

    Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08–0.30 mm) are generally greater than in the x direction (0.12–0.62 mm) and the z direction (0.21–0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology. (paper)

  1. Understanding error generation in fused deposition modeling

    Science.gov (United States)

    Bochmann, Lennart; Bayley, Cindy; Helu, Moneer; Transchel, Robert; Wegener, Konrad; Dornfeld, David

    2015-03-01

    Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08-0.30 mm) are generally greater than in the x direction (0.12-0.62 mm) and the z direction (0.21-0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology.

  2. Forecast Combination under Heavy-Tailed Errors

    Directory of Open Access Journals (Sweden)

    Gang Cheng

    2015-11-01

    Full Text Available Forecast combination has been proven to be a very important technique to obtain accurate predictions for various applications in economics, finance, marketing and many other areas. In many applications, forecast errors exhibit heavy-tailed behaviors for various reasons. Unfortunately, to our knowledge, little has been done to obtain reliable forecast combinations for such situations. The familiar forecast combination methods, such as simple average, least squares regression or those based on the variance-covariance of the forecasts, may perform very poorly due to the fact that outliers tend to occur, and they make these methods have unstable weights, leading to un-robust forecasts. To address this problem, in this paper, we propose two nonparametric forecast combination methods. One is specially proposed for the situations in which the forecast errors are strongly believed to have heavy tails that can be modeled by a scaled Student’s t-distribution; the other is designed for relatively more general situations when there is a lack of strong or consistent evidence on the tail behaviors of the forecast errors due to a shortage of data and/or an evolving data-generating process. Adaptive risk bounds of both methods are developed. They show that the resulting combined forecasts yield near optimal mean forecast errors relative to the candidate forecasts. Simulations and a real example demonstrate their superior performance in that they indeed tend to have significantly smaller prediction errors than the previous combination methods in the presence of forecast outliers.

  3. Advanced error diagnostics of the CMAQ and Chimere modelling systems within the AQMEII3 model evaluation framework

    Directory of Open Access Journals (Sweden)

    E. Solazzo

    2017-09-01

    Full Text Available The work here complements the overview analysis of the modelling systems participating in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3 by focusing on the performance for hourly surface ozone by two modelling systems, Chimere for Europe and CMAQ for North America. The evaluation strategy outlined in the course of the three phases of the AQMEII activity, aimed to build up a diagnostic methodology for model evaluation, is pursued here and novel diagnostic methods are proposed. In addition to evaluating the base case simulation in which all model components are configured in their standard mode, the analysis also makes use of sensitivity simulations in which the models have been applied by altering and/or zeroing lateral boundary conditions, emissions of anthropogenic precursors, and ozone dry deposition. To help understand of the causes of model deficiencies, the error components (bias, variance, and covariance of the base case and of the sensitivity runs are analysed in conjunction with timescale considerations and error modelling using the available error fields of temperature, wind speed, and NOx concentration. The results reveal the effectiveness and diagnostic power of the methods devised (which remains the main scope of this study, allowing the detection of the timescale and the fields that the two models are most sensitive to. The representation of planetary boundary layer (PBL dynamics is pivotal to both models. In particular, (i the fluctuations slower than ∼ 1.5 days account for 70–85 % of the mean square error of the full (undecomposed ozone time series; (ii a recursive, systematic error with daily periodicity is detected, responsible for 10–20 % of the quadratic total error; (iii errors in representing the timing of the daily transition between stability regimes in the PBL are responsible for a covariance error as large as 9 ppb (as much as the standard deviation of the network

  4. Advanced error diagnostics of the CMAQ and Chimere modelling systems within the AQMEII3 model evaluation framework

    Science.gov (United States)

    Solazzo, Efisio; Hogrefe, Christian; Colette, Augustin; Garcia-Vivanco, Marta; Galmarini, Stefano

    2017-09-01

    The work here complements the overview analysis of the modelling systems participating in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3) by focusing on the performance for hourly surface ozone by two modelling systems, Chimere for Europe and CMAQ for North America. The evaluation strategy outlined in the course of the three phases of the AQMEII activity, aimed to build up a diagnostic methodology for model evaluation, is pursued here and novel diagnostic methods are proposed. In addition to evaluating the base case simulation in which all model components are configured in their standard mode, the analysis also makes use of sensitivity simulations in which the models have been applied by altering and/or zeroing lateral boundary conditions, emissions of anthropogenic precursors, and ozone dry deposition. To help understand of the causes of model deficiencies, the error components (bias, variance, and covariance) of the base case and of the sensitivity runs are analysed in conjunction with timescale considerations and error modelling using the available error fields of temperature, wind speed, and NOx concentration. The results reveal the effectiveness and diagnostic power of the methods devised (which remains the main scope of this study), allowing the detection of the timescale and the fields that the two models are most sensitive to. The representation of planetary boundary layer (PBL) dynamics is pivotal to both models. In particular, (i) the fluctuations slower than ˜ 1.5 days account for 70-85 % of the mean square error of the full (undecomposed) ozone time series; (ii) a recursive, systematic error with daily periodicity is detected, responsible for 10-20 % of the quadratic total error; (iii) errors in representing the timing of the daily transition between stability regimes in the PBL are responsible for a covariance error as large as 9 ppb (as much as the standard deviation of the network-average ozone observations in

  5. Modeling the North American vertical datum of 1988 errors in the conterminous United States

    Science.gov (United States)

    Li, X.

    2018-02-01

    A large systematic difference (ranging from -20 cm to +130 cm) was found between NAVD 88 (North AmericanVertical Datum of 1988) and the pure gravimetric geoid models. This difference not only makes it very difficult to augment the local geoid model by directly using the vast NAVD 88 network with state-of-the-art technologies recently developed in geodesy, but also limits the ability of researchers to effectively demonstrate the geoid model improvements on the NAVD 88 network. Here, both conventional regression analyses based on various predefined basis functions such as polynomials, B-splines, and Legendre functions and the Latent Variable Analysis (LVA) such as the Factor Analysis (FA) are used to analyze the systematic difference. Besides giving a mathematical model, the regression results do not reveal a great deal about the physical reasons that caused the large differences in NAVD 88, which may be of interest to various researchers. Furthermore, there is still a significant amount of no-Gaussian signals left in the residuals of the conventional regression models. On the other side, the FA method not only provides a better not of the data, but also offers possible explanations of the error sources. Without requiring extra hypothesis tests on the model coefficients, the results from FA are more efficient in terms of capturing the systematic difference. Furthermore, without using a covariance model, a novel interpolating method based on the relationship between the loading matrix and the factor scores is developed for predictive purposes. The prediction error analysis shows that about 3-7 cm precision is expected in NAVD 88 after removing the systematic difference.

  6. Modeling the North American vertical datum of 1988 errors in the conterminous United States

    Directory of Open Access Journals (Sweden)

    Li X.

    2018-02-01

    Full Text Available A large systematic difference (ranging from −20 cm to +130 cm was found between NAVD 88 (North AmericanVertical Datum of 1988 and the pure gravimetric geoid models. This difference not only makes it very difficult to augment the local geoid model by directly using the vast NAVD 88 network with state-of-the-art technologies recently developed in geodesy, but also limits the ability of researchers to effectively demonstrate the geoid model improvements on the NAVD 88 network. Here, both conventional regression analyses based on various predefined basis functions such as polynomials, B-splines, and Legendre functions and the Latent Variable Analysis (LVA such as the Factor Analysis (FA are used to analyze the systematic difference. Besides giving a mathematical model, the regression results do not reveal a great deal about the physical reasons that caused the large differences in NAVD 88, which may be of interest to various researchers. Furthermore, there is still a significant amount of no-Gaussian signals left in the residuals of the conventional regression models. On the other side, the FA method not only provides a better not of the data, but also offers possible explanations of the error sources. Without requiring extra hypothesis tests on the model coefficients, the results from FA are more efficient in terms of capturing the systematic difference. Furthermore, without using a covariance model, a novel interpolating method based on the relationship between the loading matrix and the factor scores is developed for predictive purposes. The prediction error analysis shows that about 3-7 cm precision is expected in NAVD 88 after removing the systematic difference.

  7. Image pre-filtering for measurement error reduction in digital image correlation

    Science.gov (United States)

    Zhou, Yihao; Sun, Chen; Song, Yuntao; Chen, Jubing

    2015-02-01

    In digital image correlation, the sub-pixel intensity interpolation causes a systematic error in the measured displacements. The error increases toward high-frequency component of the speckle pattern. In practice, a captured image is usually corrupted by additive white noise. The noise introduces additional energy in the high frequencies and therefore raises the systematic error. Meanwhile, the noise also elevates the random error which increases with the noise power. In order to reduce the systematic error and the random error of the measurements, we apply a pre-filtering to the images prior to the correlation so that the high-frequency contents are suppressed. Two spatial-domain filters (binomial and Gaussian) and two frequency-domain filters (Butterworth and Wiener) are tested on speckle images undergoing both simulated and real-world translations. By evaluating the errors of the various combinations of speckle patterns, interpolators, noise levels, and filter configurations, we come to the following conclusions. All the four filters are able to reduce the systematic error. Meanwhile, the random error can also be reduced if the signal power is mainly distributed around DC. For high-frequency speckle patterns, the low-pass filters (binomial, Gaussian and Butterworth) slightly increase the random error and Butterworth filter produces the lowest random error among them. By using Wiener filter with over-estimated noise power, the random error can be reduced but the resultant systematic error is higher than that of low-pass filters. In general, Butterworth filter is recommended for error reduction due to its flexibility of passband selection and maximal preservation of the allowed frequencies. Binomial filter enables efficient implementation and thus becomes a good option if computational cost is a critical issue. While used together with pre-filtering, B-spline interpolator produces lower systematic error than bicubic interpolator and similar level of the random

  8. Electronic prescribing reduces prescribing error in public hospitals.

    Science.gov (United States)

    Shawahna, Ramzi; Rahman, Nisar-Ur; Ahmad, Mahmood; Debray, Marcel; Yliperttula, Marjo; Declèves, Xavier

    2011-11-01

    To examine the incidence of prescribing errors in a main public hospital in Pakistan and to assess the impact of introducing electronic prescribing system on the reduction of their incidence. Medication errors are persistent in today's healthcare system. The impact of electronic prescribing on reducing errors has not been tested in developing world. Prospective review of medication and discharge medication charts before and after the introduction of an electronic inpatient record and prescribing system. Inpatient records (n = 3300) and 1100 discharge medication sheets were reviewed for prescribing errors before and after the installation of electronic prescribing system in 11 wards. Medications (13,328 and 14,064) were prescribed for inpatients, among which 3008 and 1147 prescribing errors were identified, giving an overall error rate of 22·6% and 8·2% throughout paper-based and electronic prescribing, respectively. Medications (2480 and 2790) were prescribed for discharge patients, among which 418 and 123 errors were detected, giving an overall error rate of 16·9% and 4·4% during paper-based and electronic prescribing, respectively. Electronic prescribing has a significant effect on the reduction of prescribing errors. Prescribing errors are commonplace in Pakistan public hospitals. The study evaluated the impact of introducing electronic inpatient records and electronic prescribing in the reduction of prescribing errors in a public hospital in Pakistan. © 2011 Blackwell Publishing Ltd.

  9. Error analysis of the microradiographical determination of mineral content in mineralised tissue slices

    International Nuclear Information System (INIS)

    Jong, E. de J. de; Bosch, J.J. ten

    1985-01-01

    The microradiographic method, used to measure the mineral content in slices of mineralised tissues as a function of position, is analysed. The total error in the measured mineral content is split into systematic errors per microradiogram and random noise errors. These errors are measured quantitatively. Predominant contributions to systematic errors appear to be x-ray beam inhomogeneity, the determination of the step wedge thickness and stray light in the densitometer microscope, while noise errors are under the influence of the choice of film, the value of the optical film transmission of the microradiographic image and the area of the densitometer window. Optimisation criteria are given. The authors used these criteria, together with the requirement that the method be fast and easy to build an optimised microradiographic system. (author)

  10. Errorful and errorless learning: The impact of cue-target constraint in learning from errors.

    Science.gov (United States)

    Bridger, Emma K; Mecklinger, Axel

    2014-08-01

    The benefits of testing on learning are well described, and attention has recently turned to what happens when errors are elicited during learning: Is testing nonetheless beneficial, or can errors hinder learning? Whilst recent findings have indicated that tests boost learning even if errors are made on every trial, other reports, emphasizing the benefits of errorless learning, have indicated that errors lead to poorer later memory performance. The possibility that this discrepancy is a function of the materials that must be learned-in particular, the relationship between the cues and targets-was addressed here. Cued recall after either a study-only errorless condition or an errorful learning condition was contrasted across cue-target associations, for which the extent to which the target was constrained by the cue was either high or low. Experiment 1 showed that whereas errorful learning led to greater recall for low-constraint stimuli, it led to a significant decrease in recall for high-constraint stimuli. This interaction is thought to reflect the extent to which retrieval is constrained by the cue-target association, as well as by the presence of preexisting semantic associations. The advantage of errorful retrieval for low-constraint stimuli was replicated in Experiment 2, and the interaction with stimulus type was replicated in Experiment 3, even when guesses were randomly designated as being either correct or incorrect. This pattern provides support for inferences derived from reports in which participants made errors on all learning trials, whilst highlighting the impact of material characteristics on the benefits and disadvantages that accrue from errorful learning in episodic memory.

  11. Dual Processing and Diagnostic Errors

    Science.gov (United States)

    Norman, Geoff

    2009-01-01

    In this paper, I review evidence from two theories in psychology relevant to diagnosis and diagnostic errors. "Dual Process" theories of thinking, frequently mentioned with respect to diagnostic error, propose that categorization decisions can be made with either a fast, unconscious, contextual process called System 1 or a slow, analytical,…

  12. Barriers to medical error reporting

    Directory of Open Access Journals (Sweden)

    Jalal Poorolajal

    2015-01-01

    Full Text Available Background: This study was conducted to explore the prevalence of medical error underreporting and associated barriers. Methods: This cross-sectional study was performed from September to December 2012. Five hospitals, affiliated with Hamadan University of Medical Sciences, in Hamedan,Iran were investigated. A self-administered questionnaire was used for data collection. Participants consisted of physicians, nurses, midwives, residents, interns, and staffs of radiology and laboratory departments. Results: Overall, 50.26% of subjects had committed but not reported medical errors. The main reasons mentioned for underreporting were lack of effective medical error reporting system (60.0%, lack of proper reporting form (51.8%, lack of peer supporting a person who has committed an error (56.0%, and lack of personal attention to the importance of medical errors (62.9%. The rate of committing medical errors was higher in men (71.4%, age of 50-40 years (67.6%, less-experienced personnel (58.7%, educational level of MSc (87.5%, and staff of radiology department (88.9%. Conclusions: This study outlined the main barriers to reporting medical errors and associated factors that may be helpful for healthcare organizations in improving medical error reporting as an essential component for patient safety enhancement.

  13. Significant association between perceived HIV related stigma and late presentation for HIV/AIDS care in low and middle-income countries: A systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Hailay Abrha Gesesew

    Full Text Available Late presentation for human immunodeficiency virus (HIV