WorldWideScience

Sample records for significant surface warming

  1. Regional seasonal warming anomalies and land-surface feedbacks

    Science.gov (United States)

    Coffel, E.; Horton, R. M.

    2017-12-01

    Significant seasonal variations in warming are projected in some regions, especially central Europe, the southeastern U.S., and central South America. Europe in particular may experience up to 2°C more warming during June, July, and August than in the annual mean, enhancing the risk of extreme summertime heat. Previous research has shown that heat waves in Europe and other regions are tied to seasonal soil moisture variations, and that in general land-surface feedbacks have a strong effect on seasonal temperature anomalies. In this study, we show that the seasonal anomalies in warming are also due in part to land-surface feedbacks. We find that in regions with amplified warming during the hot season, surface soil moisture levels generally decline and Bowen ratios increase as a result of a preferential partitioning of incoming energy into sensible vs. latent. The CMIP5 model suite shows significant variability in the strength of land-atmosphere coupling and in projections of future precipitation and soil moisture. Due to the dependence of seasonal warming on land-surface processes, these inter-model variations influence the projected summertime warming amplification and contribute to the uncertainty in projections of future extreme heat.

  2. AN INVESTIGATION OF LOCAL EFFECTS ON SURFACE WARMING WITH GEOGRAPHICALLY WEIGHTED REGRESSION (GWR

    Directory of Open Access Journals (Sweden)

    Y. Xue

    2012-07-01

    Full Text Available Urban warming is sensitive to the nature (thermal properties, including albedo, water content, heat capacity and thermal conductivity and the placement (surface geometry or urban topography of urban surface. In the literature the spatial dependence and heterogeneity of urban thermal landscape is widely observed based on thermal infrared remote sensing within the urban environment. Urban surface warming is conceived as a big contribution to urban warming, the study of urban surface warming possesses significant meaning for probing into the problem of urban warming.The urban thermal landscape study takes advantage of the continuous surface derived from thermal infrared remote sensing at the landscape scale, the detailed variation of local surface temperature can be measured and analyzed through the systematic investigation. At the same time urban environmental factors can be quantified with remote sensing and GIS techniques. This enables a systematic investigation of urban thermal landscape with a link to be established between local environmental setting and surface temperature variation. The goal of this research is utilizing Geographically Weighted Regression (GWR to analyze the spatial relationship between urban form and surface temperature variation in order to clarify the local effects on surface warming, moreover to reveal the possible dynamics in the local influences of environmental indicators on the variation of local surface temperature across space and time. In this research, GWR analysis proved that the spatial variation in relationships between environmental setting and surface temperature was significant with Monte Carlo significance test and distinctive in day-night change. Comparatively, GWR facilitated the site specific investigation based on local statistical technique. The inference based on GWR model provided enriched information regarding the spatial variation of local environment effect on surface temperature variation which

  3. Evolution of surface sensible heat over the Tibetan Plateau under the recent global warming hiatus

    Science.gov (United States)

    Zhu, Lihua; Huang, Gang; Fan, Guangzhou; Qu, Xia; Zhao, Guijie; Hua, Wei

    2017-10-01

    Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat (SH) over the central and eastern Tibetan Plateau (CE-TP) under the recent global warming hiatus. The results reveal that the SH over the CE-TP presents a recovery since the slowdown of the global warming. The restored surface wind speed together with increased difference in ground-air temperature contribute to the recovery in SH. During the global warming hiatus, the persistent weakening wind speed is alleviated due to the variation of the meridional temperature gradient. Meanwhile, the ground surface temperature and the difference in ground-air temperature show a significant increasing trend in that period caused by the increased total cloud amount, especially at night. At nighttime, the increased total cloud cover reduces the surface effective radiation via a strengthening of atmospheric counter radiation and subsequently brings about a clear upward trend in ground surface temperature and the difference in ground-air temperature. Cloud-radiation feedback plays a significant role in the evolution of the surface temperature and even SH during the global warming hiatus. Consequently, besides the surface wind speed, the difference in ground-air temperature becomes another significant factor for the variation in SH since the slowdown of global warming, particularly at night.

  4. Global Surface Warming Hiatus Analysis Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data were used to conduct the study of the global surface warming hiatus, an apparent decrease in the upward trend of global surface temperatures since 1998....

  5. Moored surface buoy observations of the diurnal warm layer

    KAUST Repository

    Prytherch, J.

    2013-09-01

    An extensive data set is used to examine the dynamics of diurnal warming in the upper ocean. The data set comprises more than 4700 days of measurements at five sites in the tropics and subtropics, obtained from surface moorings equipped to make comprehensive meteorological, incoming solar and infrared radiation, and high-resolution subsurface temperature (and, in some cases, velocity) measurements. The observations, which include surface warmings of up to 3.4°C, are compared with a selection of existing models of the diurnal warm layer (DWL). A simple one-layer physical model is shown to give a reasonable estimate of both the magnitude of diurnal surface warming (model-observation correlation 0.88) and the structure and temporal evolution of the DWL. Novel observations of velocity shear obtained during 346 days at one site, incorporating high-resolution (1 m) upper ocean (5-15 m) acoustic Doppler current profile measurements, are also shown to be in reasonable agreement with estimates from the physical model (daily maximum shear model-observation correlation 0.77). Physics-based improvements to the one-layer model (incorporation of rotation and freshwater terms) are discussed, though they do not provide significant improvements against the observations reported here. The simplicity and limitations of the physical model are used to discuss DWL dynamics. The physical model is shown to give better model performance under the range of forcing conditions experienced across the five sites than the more empirical models. ©2013. American Geophysical Union. All Rights Reserved.

  6. Moored surface buoy observations of the diurnal warm layer

    KAUST Repository

    Prytherch, J.; Farrar, J. T.; Weller, R. A.

    2013-01-01

    An extensive data set is used to examine the dynamics of diurnal warming in the upper ocean. The data set comprises more than 4700 days of measurements at five sites in the tropics and subtropics, obtained from surface moorings equipped to make comprehensive meteorological, incoming solar and infrared radiation, and high-resolution subsurface temperature (and, in some cases, velocity) measurements. The observations, which include surface warmings of up to 3.4°C, are compared with a selection of existing models of the diurnal warm layer (DWL). A simple one-layer physical model is shown to give a reasonable estimate of both the magnitude of diurnal surface warming (model-observation correlation 0.88) and the structure and temporal evolution of the DWL. Novel observations of velocity shear obtained during 346 days at one site, incorporating high-resolution (1 m) upper ocean (5-15 m) acoustic Doppler current profile measurements, are also shown to be in reasonable agreement with estimates from the physical model (daily maximum shear model-observation correlation 0.77). Physics-based improvements to the one-layer model (incorporation of rotation and freshwater terms) are discussed, though they do not provide significant improvements against the observations reported here. The simplicity and limitations of the physical model are used to discuss DWL dynamics. The physical model is shown to give better model performance under the range of forcing conditions experienced across the five sites than the more empirical models. ©2013. American Geophysical Union. All Rights Reserved.

  7. Early onset of significant local warming in low latitude countries

    International Nuclear Information System (INIS)

    Mahlstein, I; Knutti, R; Solomon, S; Portmann, R W

    2011-01-01

    The Earth is warming on average, and most of the global warming of the past half-century can very likely be attributed to human influence. But the climate in particular locations is much more variable, raising the question of where and when local changes could become perceptible enough to be obvious to people in the form of local warming that exceeds interannual variability; indeed only a few studies have addressed the significance of local signals relative to variability. It is well known that the largest total warming is expected to occur in high latitudes, but high latitudes are also subject to the largest variability, delaying the emergence of significant changes there. Here we show that due to the small temperature variability from one year to another, the earliest emergence of significant warming occurs in the summer season in low latitude countries (∼25 deg. S-25 deg. N). We also show that a local warming signal that exceeds past variability is emerging at present, or will likely emerge in the next two decades, in many tropical countries. Further, for most countries worldwide, a mean global warming of 1 deg. C is sufficient for a significant temperature change, which is less than the total warming projected for any economically plausible emission scenario. The most strongly affected countries emit small amounts of CO 2 per capita and have therefore contributed little to the changes in climate that they are beginning to experience.

  8. Decadal evolution of the surface energy budget during the fast warming and global warming hiatus periods in the ERA-interim

    Science.gov (United States)

    Hu, Xiaoming; Sejas, Sergio A.; Cai, Ming; Taylor, Patrick C.; Deng, Yi; Yang, Song

    2018-05-01

    The global-mean surface temperature has experienced a rapid warming from the 1980s to early-2000s but a muted warming since, referred to as the global warming hiatus in the literature. Decadal changes in deep ocean heat uptake are thought to primarily account for the rapid warming and subsequent slowdown. Here, we examine the role of ocean heat uptake in establishing the fast warming and warming hiatus periods in the ERA-Interim through a decomposition of the global-mean surface energy budget. We find the increase of carbon dioxide alone yields a nearly steady increase of the downward longwave radiation at the surface from the 1980s to the present, but neither accounts for the fast warming nor warming hiatus periods. During the global warming hiatus period, the transfer of latent heat energy from the ocean to atmosphere increases and the total downward radiative energy flux to the surface decreases due to a reduction of solar absorption caused primarily by an increase of clouds. The reduction of radiative energy into the ocean and the surface latent heat flux increase cause the ocean heat uptake to decrease and thus contribute to the slowdown of the global-mean surface warming. Our analysis also finds that in addition to a reduction of deep ocean heat uptake, the fast warming period is also driven by enhanced solar absorption due predominantly to a decrease of clouds and by enhanced longwave absorption mainly attributed to the air temperature feedback.

  9. Sea Surface Warming and Increased Aridity at Mid-latitudes during Eocene Thermal Maximum 2

    Science.gov (United States)

    Harper, D. T.; Zeebe, R. E.; Hoenisch, B.; Schrader, C.; Lourens, L. J.; Zachos, J. C.

    2017-12-01

    Early Eocene hyperthermals, i.e. abrupt global warming events characterized by the release of isotopically light carbon to the atmosphere, can provide insight into the sensitivity of the Earth's climate system and hydrologic cycle to carbon emissions. Indeed, the largest Eocene hyperthermal, the Paleocene-Eocene Thermal Maximum (PETM), has provided one case study of extreme and abrupt global warming, with a mass of carbon release roughly equivalent to total modern fossil fuel reserves and a release rate 1/10 that of modern. Global sea surface temperatures (SST) increased by 5-8°C during the PETM and extensive evidence from marine and terrestrial records indicates significant shifts in the hydrologic cycle consistent with an increase in poleward moisture transport in response to surface warming. The second largest Eocene hyperthermal, Eocene Thermal Maximum 2 (ETM-2) provides an additional calibration point for determining the sensitivity of climate and the hydrologic cycle to massive carbon release. Marine carbon isotope excursions (CIE) and warming at the ETM-2 were roughly half as large as at the PETM, but reliable evidence for shifts in temperature and the hydrologic cycle are sparse for the ETM-2. Here, we utilize coupled planktic foraminiferal δ18O and Mg/Ca to determine ΔSST and ΔSSS (changes in sea surface temperature and salinity) for ETM-2 at ODP Sites 1209 (28°N paleolatitude in the Pacific) and 1265 (42°S paleolatitude in the S. Atlantic), accounting for potential pH influence on the two proxies by using LOSCAR climate-carbon cycle simulated ΔpH. Our results indicate a warming of 2-4°C at both mid-latitude sites and an increase in SSS of 1-3ppt, consistent with simulations of early Paleogene hydroclimate that suggest an increase in low- to mid-latitude aridity due to an intensification of moisture transport to high-latitudes. Furthermore, the magnitude of the CIE and warming for ETM-2 scales with the CIE and warming for the PETM, suggesting that

  10. Ocean Heat Uptake Slows 21st Century Surface Warming Driven by Extratropical Cloud Feedbacks

    Science.gov (United States)

    Frey, W.; Maroon, E.; Pendergrass, A. G.; Kay, J. E.

    2017-12-01

    Equilibrium climate sensitivity (ECS), the warming in response to instantaneously doubled CO2, has long been used to compare climate models. In many models, ECS is well correlated with warming produced by transient forcing experiments. Modifications to cloud phase at high latitudes in a state-of-the-art climate model, the Community Earth System Model (CESM), produce a large increase in ECS (1.5 K) via extratropical cloud feedbacks. However, only a small surface warming increase occurs in a realistic 21st century simulation including a full-depth dynamic ocean and the "business as usual" RCP8.5 emissions scenario. In fact, the increase in surface warming is only barely above the internal variability-generated range in the CESM Large Ensemble. The small change in 21st century warming is attributed to subpolar ocean heat uptake in both hemispheres. In the Southern Ocean, the mean-state circulation takes up heat while in the North Atlantic a slowdown in circulation acts as a feedback to slow surface warming. These results show the importance of subpolar ocean heat uptake in controlling the pace of warming and demonstrate that ECS cannot be used to reliably infer transient warming when it is driven by extratropical feedbacks.

  11. Recent global-warming hiatus tied to equatorial Pacific surface cooling.

    Science.gov (United States)

    Kosaka, Yu; Xie, Shang-Ping

    2013-09-19

    Despite the continued increase in atmospheric greenhouse gas concentrations, the annual-mean global temperature has not risen in the twenty-first century, challenging the prevailing view that anthropogenic forcing causes climate warming. Various mechanisms have been proposed for this hiatus in global warming, but their relative importance has not been quantified, hampering observational estimates of climate sensitivity. Here we show that accounting for recent cooling in the eastern equatorial Pacific reconciles climate simulations and observations. We present a novel method of uncovering mechanisms for global temperature change by prescribing, in addition to radiative forcing, the observed history of sea surface temperature over the central to eastern tropical Pacific in a climate model. Although the surface temperature prescription is limited to only 8.2% of the global surface, our model reproduces the annual-mean global temperature remarkably well with correlation coefficient r = 0.97 for 1970-2012 (which includes the current hiatus and a period of accelerated global warming). Moreover, our simulation captures major seasonal and regional characteristics of the hiatus, including the intensified Walker circulation, the winter cooling in northwestern North America and the prolonged drought in the southern USA. Our results show that the current hiatus is part of natural climate variability, tied specifically to a La-Niña-like decadal cooling. Although similar decadal hiatus events may occur in the future, the multi-decadal warming trend is very likely to continue with greenhouse gas increase.

  12. Recent warming of lake Kivu.

    Science.gov (United States)

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  13. Recent warming of lake Kivu.

    Directory of Open Access Journals (Sweden)

    Sergei Katsev

    Full Text Available Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  14. Influence of warm air-drying on enamel bond strength and surface free-energy of self-etch adhesives.

    Science.gov (United States)

    Shiratsuchi, Koji; Tsujimoto, Akimasa; Takamizawa, Toshiki; Furuichi, Tetsuya; Tsubota, Keishi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2013-08-01

    We examined the effect of warm air-drying on the enamel bond strengths and the surface free-energy of three single-step self-etch adhesives. Bovine mandibular incisors were mounted in self-curing resin and then wet ground with #600 silicon carbide (SiC) paper. The adhesives were applied according to the instructions of the respective manufacturers and then dried in a stream of normal (23°C) or warm (37°C) air for 5, 10, and 20 s. After visible-light irradiation of the adhesives, resin composites were condensed into a mold and polymerized. Ten samples per test group were stored in distilled water at 37°C for 24 h and then the bond strengths were measured. The surface free-energies were determined by measuring the contact angles of three test liquids placed on the cured adhesives. The enamel bond strengths varied according to the air-drying time and ranged from 15.8 to 19.1 MPa. The trends for the bond strengths were different among the materials. The value of the γS⁺ component increased slightly when drying was performed with a stream of warm air, whereas that of the γS⁻ component decreased significantly. These data suggest that warm air-drying is essential to obtain adequate enamel bond strengths, although increasing the drying time did not significantly influence the bond strength. © 2013 Eur J Oral Sci.

  15. Estimation of Radiative Efficiency of Chemicals with Potentially Significant Global Warming Potential

    Data.gov (United States)

    U.S. Environmental Protection Agency — The set of commercially available chemical substances in commerce that may have significant global warming potential (GWP) is not well defined. Although there are...

  16. Amplified Arctic warming by phytoplankton under greenhouse warming.

    Science.gov (United States)

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  17. Global warming: the significance of methane

    International Nuclear Information System (INIS)

    Dessus, B.; Le Treut, H.; Laponche, B.

    2008-01-01

    the concept of Global Warming Potential (GWP) indicates the relative contribution to global warming over a given period (for example 100 years) of a pulse emission at the start of the period of 1 kg of a specific greenhouse gas (GHG) in comparison to the contribution, over the same period, of an emission of 1 kg of CO 2 . The GWPs calculated for different time intervals take into account the differences in atmospheric lifetimes of the different GHGs. Using the '100-year GWP' to measure non CO 2 GHG emissions is not well suited to the case of permanent or long lifetime measures whose effectiveness is to be assessed at a given time horizon. In this context, it contributes to significantly playing down the importance of reducing emissions of GHGs with short atmospheric lifetimes. Thus, for example, methane which is not emitted over the period 2020- 2100 as a result of a landfill site being closed in 2020 will have an impact (as opposed to if the site remained in operation) that would be far greater towards 2100 compared to a CO 2 emission source that has also been stopped permanently and whose climate impact is measured in an equivalent manner. Using the GWP is only appropriate if applied year after year to time horizons considered to be of concern or decisive by climate studies, thus in particular 2050, 2100 and 2150. This is all the more significant as climate experts' current concerns lead them not only to advocate long-term stabilisation of GHG concentrations but also to avoid as far as possible intermediate excess of these concentrations over the coming century. Finally, it is noted that CH 4 prevention policies implemented in the short term may continue to have a long-term impact greater than merely taking into account the current GWP would imply. To more or less ignore the impact of CH 4 as it is unsuitable for accounting purposes affects the exclusive character of the link that may exist between the issue of GHGs and that of energy. Furthermore, if the

  18. CLIMATE CHANGE. Possible artifacts of data biases in the recent global surface warming hiatus.

    Science.gov (United States)

    Karl, Thomas R; Arguez, Anthony; Huang, Boyin; Lawrimore, Jay H; McMahon, James R; Menne, Matthew J; Peterson, Thomas C; Vose, Russell S; Zhang, Huai-Min

    2015-06-26

    Much study has been devoted to the possible causes of an apparent decrease in the upward trend of global surface temperatures since 1998, a phenomenon that has been dubbed the global warming "hiatus." Here, we present an updated global surface temperature analysis that reveals that global trends are higher than those reported by the Intergovernmental Panel on Climate Change, especially in recent decades, and that the central estimate for the rate of warming during the first 15 years of the 21st century is at least as great as the last half of the 20th century. These results do not support the notion of a "slowdown" in the increase of global surface temperature. Copyright © 2015, American Association for the Advancement of Science.

  19. Global lake response to the recent warming hiatus

    Science.gov (United States)

    Winslow, Luke A.; Leach, Taylor H.; Rose, Kevin C.

    2018-05-01

    Understanding temporal variability in lake warming rates over decadal scales is important for understanding observed change in aquatic systems. We analyzed a global dataset of lake surface water temperature observations (1985‑2009) to examine how lake temperatures responded to a recent global air temperature warming hiatus (1998‑2012). Prior to the hiatus (1985‑1998), surface water temperatures significantly increased at an average rate of 0.532 °C decade‑1 (±0.214). In contrast, water temperatures did not change significantly during the hiatus (average rate ‑0.087 °C decade‑1 ±0.223). Overall, 83% of lakes in our dataset (129 of 155) had faster warming rates during the pre-hiatus period than during the hiatus period. These results demonstrate that lakes have exhibited decadal-scale variability in warming rates coherent with global air temperatures and represent an independent line of evidence for the recent warming hiatus. Our analyses provide evidence that lakes are sentinels of broader climatological processes and indicate that warming rates based on datasets where a large proportion of observations were collected during the hiatus period may underestimate longer-term trends.

  20. Dependence of Arctic climate on the latitudinal position of stationary waves and to high-latitudes surface warming

    Science.gov (United States)

    Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro

    2017-12-01

    Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.

  1. Intensified Arctic warming under greenhouse warming by vegetation–atmosphere–sea ice interaction

    International Nuclear Information System (INIS)

    Jeong, Jee-Hoon; Kug, Jong-Seong; Linderholm, Hans W; Chen, Deliang; Kim, Baek-Min; Jun, Sang-Yoon

    2014-01-01

    Observations and modeling studies indicate that enhanced vegetation activities over high latitudes under an elevated CO 2 concentration accelerate surface warming by reducing the surface albedo. In this study, we suggest that vegetation-atmosphere-sea ice interactions over high latitudes can induce an additional amplification of Arctic warming. Our hypothesis is tested by a series of coupled vegetation-climate model simulations under 2xCO 2 environments. The increased vegetation activities over high latitudes under a 2xCO 2 condition induce additional surface warming and turbulent heat fluxes to the atmosphere, which are transported to the Arctic through the atmosphere. This causes additional sea-ice melting and upper-ocean warming during the warm season. As a consequence, the Arctic and high-latitude warming is greatly amplified in the following winter and spring, which further promotes vegetation activities the following year. We conclude that the vegetation-atmosphere-sea ice interaction gives rise to additional positive feedback of the Arctic amplification. (letter)

  2. Divergent surface and total soil moisture projections under global warming

    Science.gov (United States)

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  3. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming.

    Science.gov (United States)

    Lin, Yong; Franzke, Christian L E

    2015-08-11

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary.

  4. Radiative warming of the air observed near a bare-soil surface on calm clear nights

    International Nuclear Information System (INIS)

    Sang, N.; Kobayahsi, T.

    1999-01-01

    The radiative flux in the lowest three meters above a bare-soil surface was directly measured on calm nights with little cloud cover. Although divergence of upward radiative flux occurred above 1m, convergence was often observed between 0.2m and 1m all through the night. Almost the same results were obtained for the net flux except that the transitional height between divergence and convergence was some tens of centimeters, which means that radiative warming occurred just above the bare-soil surface during the night. This phenomenon can be explained by postulating that cold air is produced by conduction at the surface of small heat-insulated projections (HIPs) such as soil grains on the ground surface, while the ground releases the heat stored during the day by radiation through the pores between HIPs and warms the air immediately above the surface at night. This “HIP hypothesis” can also account for the so-called “raised minimum (RM)” phenomenon. (author)

  5. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming

    Science.gov (United States)

    Lin, Yong; Franzke, Christian L. E.

    2015-01-01

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary. PMID:26259555

  6. Will surface winds weaken in response to global warming?

    Science.gov (United States)

    Ma, Jian; Foltz, Gregory R.; Soden, Brian J.; Huang, Gang; He, Jie; Dong, Changming

    2016-12-01

    The surface Walker and tropical tropospheric circulations have been inferred to slow down from historical observations and model projections, yet analysis of large-scale surface wind predictions is lacking. Satellite measurements of surface wind speed indicate strengthening trends averaged over the global and tropical oceans that are supported by precipitation and evaporation changes. Here we use corrected anemometer-based observations to show that the surface wind speed has not decreased in the averaged tropical oceans, despite its reduction in the region of the Walker circulation. Historical simulations and future projections for climate change also suggest a near-zero wind speed trend averaged in space, regardless of the Walker cell change. In the tropics, the sea surface temperature pattern effect acts against the large-scale circulation slow-down. For higher latitudes, the surface winds shift poleward along with the eddy-driven mid-latitude westerlies, resulting in a very small contribution to the global change in surface wind speed. Despite its importance for surface wind speed change, the influence of the SST pattern change on global-mean rainfall is insignificant since it cannot substantially alter the global energy balance. As a result, the precipitation response to global warming remains ‘muted’ relative to atmospheric moisture increase. Our results therefore show consistency between projections and observations of surface winds and precipitation.

  7. Warming Effects on Enzyme Activities are Predominant in Sub-surface Soils of an Arctic Tundra Ecosystem over 6-Year Field Manipulation

    Science.gov (United States)

    Kang, H.; Seo, J.; Kim, M.; Jung, J. Y.; Lee, Y. K.

    2017-12-01

    Arctic tundra ecosystems are of great importance because they store a large amount of carbon as un-decomposed organic matter. Global climate change is expected to affect enzyme activities and heterotrophic respiration in Arctic soils, which may accelerate greenhouse gas (GHG) emission through positive biological feedbacks. Unlike laboratory-based incubation experiments, field measurements often show different warming effects on decomposition of organic carbon and releases of GHGs. In the present study, we conducted a field-based warming experiment in Cambridge Bay, Canada (69°07'48″N, 105°03'36″W) by employing passive chambers during growing seasons over 6 years. A suite of enzyme activities (ß-glucosidase, cellobiohydrolase, N-acetylglucosaminidase, leucine aminopeptidase and phenol oxidase), microbial community structure (NGS), microbial abundances (gene copy numbers of bacteria and fungi), and soil chemical properties have been monitored in two depths (0-5 cm and 5-10 cm) of tundra soils, which were exposed to four different treatments (`control', `warming-only', `water-addition only', and both `warming and water-addition'). Phenol oxidase activity increased substantially, and bacterial community structure and abundance changed in the early stage (after 1 year's warming manipulation), but these changes disappeared afterwards. Most hydrolases were enhanced in surface soils by `water-addition only' over the period. However, the long-term effects of warming appeared in sub-surface soils where both `warming only' and `warming and water addition' increased hydrolase activities. Overall results of this study indicate that the warming effects on enzyme activities in surface soils are only short-term (phenol oxidase) or masked by water-limitation (hydrolases). However, hydrolases activities in sub-surface soils are more strongly enhanced than surface soils by warming, probably due to the lack of water limitation. Meanwhile, negative correlations between hydrolase

  8. Cold climate bioventing with soil warming in Alaska

    International Nuclear Information System (INIS)

    Sayles, G.D.; Brenner, R.C.; Leeson, A.; Hinchee, R.E.; Vogel, C.M.

    1995-01-01

    In the heart of Alaska, a 3-year field study was conducted of bioventing in conjunction with several soil warming methods. The contamination was JP-4 jet fuel. The soil warming methods evaluated, chosen for their apparent low cost, were (1) application of warm water at a low rate, (2) enhanced solar warming by covering the surface with clear plastic in the summer and covering the surface with insulation in the winter, and (3) buried heat pipe. The warm water and buried heat tape methods performed best, maintaining summer-like 10 to 20 C temperatures in the test plots year round, compared to the temperature of the unheated control plot, which dipped to -1 C in the winter. The solar/insulation warming method showed a modest improvement in temperature over the unheated control test plot. The annual average temperatures of the warm water, heat tape, solar, and control plots were 16.9, 14.5, 6.1, and 3.5 C, respectively. The biodegradation rates, measured by in situ respirometry, were higher in plots with higher temperatures and followed the Arrhenius relationship. Despite the low temperature, significant biodegradation was observed in the unheated plot during the winter

  9. Surface reflectance and conversion efficiency dependence of technologies for mitigating global warming

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, Ian [Solartran Pty Ltd., 12 Lentara St, Kenmore, Brisbane 4069 (Australia); Smith, Geoff [Physics and Advanced Materials, University of Technology, Sydney, PO Box 123, Broadway, New South Wales 2007 (Australia)

    2011-05-15

    A means of assessing the relative impact of different renewable energy technologies on global warming has been developed. All power plants emit thermal energy to the atmosphere. Fossil fuel power plants also emit CO{sub 2} which accumulates in the atmosphere and provides an indirect increase in global warming via the greenhouse effect. A fossil fuel power plant may operate for some time before the global warming due to its CO{sub 2} emission exceeds the warming due to its direct heat emission. When a renewable energy power plant is deployed instead of a fossil fuel power plant there may be a significant time delay before the direct global warming effect is less than the combined direct and indirect global warming effect from an equivalent output coal fired plant - the ''business as usual'' case. Simple expressions are derived to calculate global temperature change as a function of ground reflectance and conversion efficiency for various types of fossil fuelled and renewable energy power plants. These expressions are used to assess the global warming mitigation potential of some proposed Australian renewable energy projects. The application of the expressions is extended to evaluate the deployment in Australia of current and new geo-engineering and carbon sequestration solutions to mitigate global warming. Principal findings are that warming mitigation depends strongly on the solar to electric conversion efficiency of renewable technologies, geo-engineering projects may offer more economic mitigation than renewable energy projects and the mitigation potential of reforestation projects depends strongly on the location of the projects. (author)

  10. Global warming 2007. An update to global warming: the balance of evidence and its policy implications.

    Science.gov (United States)

    Keller, Charles F

    2007-03-09

    In the four years since my original review (Keller[25]; hereafter referred to as CFK03), research has clarified and strengthened our understanding of how humans are warming the planet. So many of the details highlighted in the IPCC's Third Assessment Report[21] and in CFK03 have been resolved that I expect many to be a bit overwhelmed, and I hope that, by treating just the most significant aspects of the research, this update may provide a road map through the expected maze of new information. In particular, while most of CFK03 remains current, there are important items that have changed: Most notable is the resolution of the conundrum that mid-tropospheric warming did not seem to match surface warming. Both satellite and radiosonde (balloon-borne sensors) data reduction showed little warming in the middle troposphere (4-8 km altitude). In the CFK03 I discussed potential solutions to this problem, but at that time there was no clear resolution. This problem has now been solved, and the middle troposphere is seen to be warming apace with the surface. There have also been advances in determinations of temperatures over the past 1,000 years showing a cooler Little Ice Age (LIA) but essentially the same warming during medieval times (not as large as recent warming). The recent uproar over the so-called "hockey stick" temperature determination is much overblown since at least seven other groups have made relatively independent determinations of northern hemisphere temperatures over the same time period and derived essentially the same results. They differ on how cold the LIA was but essentially agree with the Mann's hockey stick result that the Medieval Warm Period was not as warm as the last 25 years. The question of the sun's influence on climate continues to generate controversy. It appears there is a growing consensus that, while the sun was a major factor in earlier temperature variations, it is incapable of having caused observed warming in the past quarter

  11. Increasing occurrence of cold and warm extremes during the recent global warming slowdown.

    Science.gov (United States)

    Johnson, Nathaniel C; Xie, Shang-Ping; Kosaka, Yu; Li, Xichen

    2018-04-30

    The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature.

  12. Sudden Stratospheric Warming Compendium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sudden Stratospheric Warming Compendium (SSWC) data set documents the stratospheric, tropospheric, and surface climate impacts of sudden stratospheric warmings. This...

  13. Recently amplified arctic warming has contributed to a continual global warming trend

    Science.gov (United States)

    Huang, Jianbin; Zhang, Xiangdong; Zhang, Qiyi; Lin, Yanluan; Hao, Mingju; Luo, Yong; Zhao, Zongci; Yao, Yao; Chen, Xin; Wang, Lei; Nie, Suping; Yin, Yizhou; Xu, Ying; Zhang, Jiansong

    2017-12-01

    The existence and magnitude of the recently suggested global warming hiatus, or slowdown, have been strongly debated1-3. Although various physical processes4-8 have been examined to elucidate this phenomenon, the accuracy and completeness of observational data that comprise global average surface air temperature (SAT) datasets is a concern9,10. In particular, these datasets lack either complete geographic coverage or in situ observations over the Arctic, owing to the sparse observational network in this area9. As a consequence, the contribution of Arctic warming to global SAT changes may have been underestimated, leading to an uncertainty in the hiatus debate. Here, we constructed a new Arctic SAT dataset using the most recently updated global SATs2 and a drifting buoys based Arctic SAT dataset11 through employing the `data interpolating empirical orthogonal functions' method12. Our estimate of global SAT rate of increase is around 0.112 °C per decade, instead of 0.05 °C per decade from IPCC AR51, for 1998-2012. Analysis of this dataset shows that the amplified Arctic warming over the past decade has significantly contributed to a continual global warming trend, rather than a hiatus or slowdown.

  14. Corresponding Relation between Warm Season Precipitation Extremes and Surface Air Temperature in South China

    Institute of Scientific and Technical Information of China (English)

    SUN; Wei; LI; Jian; YU; Ru-Cong

    2013-01-01

    Hourly data of 42 rain gauges over South China during 1966–2005 were used to analyze the corresponding relation between precipitation extremes and surface air temperature in the warm season(May to October).The results show that below 25℃,both daily and hourly precipitation extremes in South China increase with rising temperature.More extreme events transit to the two-time Clausius-Clapeyron(CC)relationship at lower temperatures.Daily as well as hourly precipitation extremes have a decreasing tendency nearly above 25℃,among which the decrease of hourly extremes is much more significant.In order to investigate the efects of rainfall durations,hourly precipitation extremes are presented by short duration and long duration precipitation,respectively.Results show that the dramatic decrease of hourly rainfall intensities above 25℃ is mainly caused by short duration precipitation,and long duration precipitation extremes rarely occur in South China when surface air temperature surpasses 28℃.

  15. The warming trend of ground surface temperature in the Choshui Alluvial Fan, western central Taiwan

    Science.gov (United States)

    Chen, W.; Chang, M.; Chen, J.; Lu, W.; Huang, C. C.; Wang, Y.

    2013-12-01

    Heat storage in subsurface of the continents forms a fundamental component of the global energy budget and plays an important role in the climate system. Several researches revealed that subsurface temperatures were being increased to 1.8-2.8°C higher in mean ground surface temperature (GST) for some Asian cities where are experiencing a rapid growth of population. Taiwan is a subtropic-tropic island with densely populated in the coastal plains surrounding its mountains. We investigate the subsurface temperature distribution and the borehole temperature-depth profiles by using groundwater monitoring wells in years 2000 and 2010. Our data show that the western central Taiwan plain also has been experiencing a warming trend but with a higher temperatures approximately 3-4 °C of GST during the last 250 yrs. We suggest that the warming were mostly due to the land change to urbanization and agriculture. The current GSTs from our wells are approximately 25.51-26.79 °C which are higher than the current surface air temperature (SAT) of 23.65 °C. Data from Taiwan's weather stations also show 1-1.5 °C higher for the GST than the SAT at neighboring stations. The earth surface heat balance data indicate that GST higher than SAT is reasonable. More researches are needed to evaluate the interaction of GST and SAT, and how a warming GST's impact to the SAT and the climate system of the Earth.

  16. Greenhouse Warming Research

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    2016-01-01

    The changing greenhouse effect caused by natural and anthropogenic causes is explained and efforts to model the behavior of the near-surface constituents of the Earth's land, ocean and atmosphere are discussed. Emissions of various substances and other aspects of human activity influence...... the greenhouse warming, and the impacts of the warming may again impact the wellbeing of human societies. Thus physical modeling of the near-surface ocean-soil-atmosphere system cannot be carried out without an idea of the development of human activities, which is done by scenario analysis. The interactive...

  17. Enhanced Surface Warming and Accelerated Snow Melt in the Himalayas and Tibetan Plateau Induced by Absorbing Aerosols

    Science.gov (United States)

    Lau, William K.; Kim, Maeng-Ki; Kim, Kyu-Myong; Lee, Woo-Seop

    2010-01-01

    Numerical experiments with the NASA finite-volume general circulation model show that heating of the atmosphere by dust and black carbon can lead to widespread enhanced warming over the Tibetan Plateau (TP) and accelerated snow melt in the western TP and Himalayas. During the boreal spring, a thick aerosol layer, composed mainly of dust transported from adjacent deserts and black carbon from local emissions, builds up over the Indo-Gangetic Plain, against the foothills of the Himalaya and the TP. The aerosol layer, which extends from the surface to high elevation (approx.5 km), heats the mid-troposphere by absorbing solar radiation. The heating produces an atmospheric dynamical feedback the so-called elevated-heat-pump (EHP) effect, which increases moisture, cloudiness, and deep convection over northern India, as well as enhancing the rate of snow melt in the Himalayas and TP. The accelerated melting of snow is mostly confined to the western TP, first slowly in early April and then rapidly from early to mid-May. The snow cover remains reduced from mid-May through early June. The accelerated snow melt is accompanied by similar phases of enhanced warming of the atmosphere-land system of the TP, with the atmospheric warming leading the surface warming by several days. Surface energy balance analysis shows that the short-wave and long-wave surface radiative fluxes strongly offset each other, and are largely regulated by the changes in cloudiness and moisture over the TP. The slow melting phase in April is initiated by an effective transfer of sensible heat from a warmer atmosphere to land. The rapid melting phase in May is due to an evaporation-snow-land feedback coupled to an increase in atmospheric moisture over the TP induced by the EHP effect.

  18. Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols

    International Nuclear Information System (INIS)

    Lau, William K M; Kim, Maeng-Ki; Lee, Woo-Seop; Kim, Kyu-Myong

    2010-01-01

    Numerical experiments with the NASA finite-volume general circulation model show that heating of the atmosphere by dust and black carbon can lead to widespread enhanced warming over the Tibetan Plateau (TP) and accelerated snow melt in the western TP and Himalayas. During the boreal spring, a thick aerosol layer, composed mainly of dust transported from adjacent deserts and black carbon from local emissions, builds up over the Indo-Gangetic Plain, against the foothills of the Himalaya and the TP. The aerosol layer, which extends from the surface to high elevation (∼5 km), heats the mid-troposphere by absorbing solar radiation. The heating produces an atmospheric dynamical feedback-the so-called elevated-heat-pump (EHP) effect, which increases moisture, cloudiness, and deep convection over northern India, as well as enhancing the rate of snow melt in the Himalayas and TP. The accelerated melting of snow is mostly confined to the western TP, first slowly in early April and then rapidly from early to mid-May. The snow cover remains reduced from mid-May through early June. The accelerated snow melt is accompanied by similar phases of enhanced warming of the atmosphere-land system of the TP, with the atmospheric warming leading the surface warming by several days. Surface energy balance analysis shows that the short-wave and long-wave surface radiative fluxes strongly offset each other, and are largely regulated by the changes in cloudiness and moisture over the TP. The slow melting phase in April is initiated by an effective transfer of sensible heat from a warmer atmosphere to land. The rapid melting phase in May is due to an evaporation-snow-land feedback coupled to an increase in atmospheric moisture over the TP induced by the EHP effect.

  19. Active body surface warming systems for preventing complications caused by inadvertent perioperative hypothermia in adults.

    Science.gov (United States)

    Madrid, Eva; Urrútia, Gerard; Roqué i Figuls, Marta; Pardo-Hernandez, Hector; Campos, Juan Manuel; Paniagua, Pilar; Maestre, Luz; Alonso-Coello, Pablo

    2016-04-21

    Inadvertent perioperative hypothermia is a phenomenon that can occur as a result of the suppression of the central mechanisms of temperature regulation due to anaesthesia, and of prolonged exposure of large surfaces of skin to cold temperatures in operating rooms. Inadvertent perioperative hypothermia has been associated with clinical complications such as surgical site infection and wound-healing delay, increased bleeding or cardiovascular events. One of the most frequently used techniques to prevent inadvertent perioperative hypothermia is active body surface warming systems (ABSW), which generate heat mechanically (heating of air, water or gels) that is transferred to the patient via skin contact. To assess the effectiveness of pre- or intraoperative active body surface warming systems (ABSW), or both, to prevent perioperative complications from unintended hypothermia during surgery in adults. We searched the Cochrane Central Register of Controlled Trials (CENTRAL; Issue 9, 2015); MEDLINE (PubMed) (1964 to October 2015), EMBASE (Ovid) (1980 to October 2015), and CINAHL (Ovid) (1982 to October 2015). We included randomized controlled trials (RCTs) that compared an ABSW system aimed at maintaining normothermia perioperatively against a control or against any other ABSW system. Eligible studies also had to include relevant clinical outcomes other than measuring temperature alone. Several authors, by pairs, screened references and determined eligibility, extracted data, and assessed risks of bias. We resolved disagreements by discussion and consensus, with the collaboration of a third author. We included 67 trials with 5438 participants that comprised 79 comparisons. Forty-five RCTs compared ABSW versus control, whereas 18 compared two different types of ABSW, and 10 compared two different techniques to administer the same type of ABSW. Forced-air warming (FAW) was by far the most studied intervention.Trials varied widely regarding whether the interventions were

  20. Warming and surface ocean acidification over the last deglaciation: implications for foraminiferal assemblages

    Science.gov (United States)

    Dyez, K. A.; Hoenisch, B.; deMenocal, P. B.

    2017-12-01

    Although plankton drift with ocean currents, their presence and relative abundance varies across latitudes and environmental seawater conditions (e.g. temperature, pH, salinity). While earlier studies have focused on temperature as the primary factor for determining the regional species composition of planktic foraminiferal communities, evidence has recently been presented that foraminiferal shell thickness varies with ocean pH, and it remains unclear whether ongoing ocean acidification will cause ecological shifts within this plankton group. The transition from the last glacial maximum (LGM; 19,000-23,000 years B.P.) to the late Holocene (0-5,000 years B.P.) was characterized by both warming and acidification of the surface ocean, and thus provides an opportunity to study ecosystem shifts in response to these environmental changes. Here we provide new δ11B, Mg/Ca, and δ18O measurements from a suite of global sediment cores spanning this time range. We use these geochemical data to reconstruct ocean temperature, pH and salinity and pair the new data with previously published analyses of planktic foraminifera assemblages to study the respective effects of ocean warming and acidification on the foraminiferal habitat. At most open-ocean sample locations, our proxies indicate warming and acidification similar to previously published estimates, but in some marginal seas and coastal locations pH changes little between over the glacial termination. At face value, these observations suggest that warming is generally more important for ecosystem changes than acidification, at least over the slow rates of warming and ocean acidification in this time period. While geochemical data collection is being completed, we aim to include these data in an ecological model of foraminiferal habitat preferences.

  1. Development of an Urban Multilayer Radiation Scheme and Its Application to the Urban Surface Warming Potential

    Science.gov (United States)

    Aoyagi, Toshinori; Takahashi, Shunji

    2012-02-01

    To investigate how a three-dimensional structure such as an urban canyon can affect urban surface warming, we developed an urban multilayer radiation scheme. The complete consideration of multiple scattering of shortwave and longwave radiation using the radiosity method is an important feature of the present scheme. A brief description of this scheme is presented, followed by evaluations that compare its results with observations of the effective albedo and radiative temperature for urban blocks. Next, we calculate the urban surface warming potential (USWP), defined as the difference between the daily mean radiative temperature of urban surfaces (which are assumed to be black bodies), including their canyon effects and the daily mean temperature of a flat surface with the same material properties, under a radiative equilibrium state. Assuming standard material properties (albedo and emissivity of 0.4 and 0.9, respectively), we studied the sensitivity of the USWP to various aspect ratios of building heights to road widths. The results show that the temporally-averaged surface temperature of an urban area can be higher than that of a flat surface. In addition, we determined the overestimation of the effective temperature of urban surfaces induced by the overestimation of the radiation distribution to the walls when one uses a single-layer scheme for urban block arrays that have a low sky-view factor less than around 0.5.

  2. Trichodesmium blooms and warm-core ocean surface features in the Arabian Sea and the Bay of Bengal.

    Science.gov (United States)

    Jyothibabu, R; Karnan, C; Jagadeesan, L; Arunpandi, N; Pandiarajan, R S; Muraleedharan, K R; Balachandran, K K

    2017-08-15

    Trichodesmium is a bloom-forming, diazotrophic, non-heterocystous cyanobacteria widely distributed in the warmer oceans, and their bloom is considered a 'biological indication' of stratification and nitrogen limitation in the ocean surface layer. In the first part of this paper, based on the retrospective analyses of the ocean surface mesoscale features associated with 59 Trichodesmium bloom incidences recorded in the past, 32 from the Arabian Sea and the Bay of Bengal, and 27 from the rest of the world, we have showed that warm-core features have an inducing effect on bloom formation. In the second part, we have considered the environmental preferences of Trichodesmium bloom based on laboratory and field studies across the globe, and proposed a view about how warm-core features could provide an inducing pre-requisite condition for the bloom formation in the Arabian Sea and the Bay of Bengal. Proposed that the subsurface waters of warm-core features maintain more likely chances for the conducive nutrient and light conditions required for the triggering of the blooms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Winter warming from large volcanic eruptions

    Science.gov (United States)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  4. Acute Warm-up Effects in Submaximal Athletes: An EMG Study of Skilled Violinists.

    Science.gov (United States)

    McCrary, J Matt; Halaki, Mark; Sorkin, Evgeny; Ackermann, Bronwen J

    2016-02-01

    Warm-up is commonly recommended for injury prevention and performance enhancement across all activities, yet this recommendation is not supported by evidence for repetitive submaximal activities such as instrumental music performance. The objective of this study is to quantify the effects of cardiovascular, core muscle, and musical warm-ups on muscle activity levels, musical performance, and subjective experience in skilled violinists. Fifty-five undergraduate, postgraduate, or professional violinists performed five randomly ordered 45-s musical excerpts of varying physical demands both before and after a randomly assigned 15-min, moderate-intensity cardiovascular, core muscle, musical (technical violin exercises), or inactive control warm-up protocol. Surface EMG data were obtained for 16 muscles of the trunk, shoulders, and right arm during each musical performance. Sound recording and perceived exertion (RPE) data were also obtained. Sound recordings were randomly ordered and rated for performance quality by blinded adjudicators. Questionnaire data regarding participant pain sites and fitness levels were used to stratify participants according to pain and fitness levels. Data were analyzed using two- and three-factor ANCOVA (surface EMG and sound recording) and Wilcoxon matched pairs tests (RPE). None of the three warm-up protocols had significant effects on muscle activity levels (P ≥ 0.10). Performance quality did not significantly increase (P ≥ 0.21). RPE significantly decreased (P warm-up for each of the three experimental warm-ups; control condition RPE did not significantly decrease (P > 0.23). Acute physiological and musical benefits from cardiovascular, core muscle, and musical warm-ups in skilled violinists are limited to decreases in RPE. This investigation provides data from the performing arts in support of sports medical evidence suggesting that warm-up only effectively enhances maximal strength and power performance.

  5. Soil-surface CO2 flux and growth in a boreal Norway spruce stand: Effects of soil warming and nutrition

    International Nuclear Information System (INIS)

    Stroemgren, M.

    2001-01-01

    Global warming is predicted to affect the carbon balance of forests. A change in the carbon balance would give a positive or negative feedback to the greenhouse effect, which would affect global warming. The effects of long-term soil warming on growth, nutrient and soil-surface CO 2 flux (R) dynamics were studied in irrigated (I) and irrigated-fertilised (IL) stands of Norway spruce in northern Sweden. Soil temperature on heated plots (Ih and ILh) was maintained 5 deg C above that on unheated plots (Ic and ILc) from May to October, by heating cables. After six years' soil warming, stemwood production increased by 100% and 50% in the I and IL treatment, respectively. The main production increase occurred at the beginning of the season, probably as an effect of the earlier increase in soil temperature. In the 1h treatment, however, the growth increase was evident during the entire season. The effect of increased nitrogen (N) mineralisation on annual growth appeared to be stronger than the direct effect of warming. From 1995-2000, the total amount of N stored in aboveground tree parts increased by 100 and 475 kg N/ha on Ic and ILc plots, respectively. During the same period, 450 kg N fertiliser was added to the ILc plot. Soil warming increased the total amount of N stored in aboveground tree parts by 50 kg N/ha, independently of nutrient treatment. Soil warming did not significantly increase R, except in early spring, when R was 30-50% higher on heated compared to unheated plots. The extended growing season, however, increased annual respiration (RA) by 12-30% throughout. RA losses were estimated to be 0.6-0.7 kg C/ha/year. Use of relationships between R and soil temperature, derived from unheated plots, overestimated RA on heated plots by 50-80%. These results suggest that acclimation of root or microbial respiration or both to temperature had occurred, but the exact process(es) and their relative contribution are still unclear. In conclusion, the study showed that

  6. How warm was the year 2010? Background; Wie warm war das Jahr 2010? Hintergrund

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-05-06

    In the background paper under consideration, the Federal Environment Agency (Dessau-Rosslau, Federal Republic of Germany) reports on a global measurement of the surface air temperature in order to obtain a global mean temperature. The global mean temperature of the year 2010 is not very significant. The deviation of the global mean temperature of the year 2010 from the mean temperature in a recent, extended period of time is more significant. The long-term trend in the global mean temperature shows a progressive global warming. The year 2010 was the warmest calendar year with the largest amount of rainfall since the records began in the 19th century. The global mean surface air temperature was very slight above the average temperature of the previous record year 2005.

  7. Substrate texture properties induce triatomine probing on bitten warm surfaces

    Directory of Open Access Journals (Sweden)

    Lorenzo Marcelo G

    2011-06-01

    Full Text Available Abstract Background In this work we initially evaluated whether the biting process of Rhodnius prolixus relies on the detection of mechanical properties of the substrate. A linear thermal source was used to simulate the presence of a blood vessel under the skin of a host. This apparatus consisted of an aluminium plate and a nickel-chrome wire, both thermostatized and presented at 33 and 36°C, respectively. To evaluate whether mechanical properties of the substrate affect the biting behaviour of bugs, this apparatus was covered by a latex membrane. Additionally, we evaluated whether the expression of probing depends on the integration of bilateral thermal inputs from the antennae. Results The presence of a latex cover on a thermal source induced a change in the biting pattern shown by bugs. In fact, with latex covered sources it was possible to observe long bites that were never performed in response to warm metal surfaces. The total number of bites was higher in intact versus unilaterally antennectomized insects. These bites were significantly longer in intact than in unilaterally antennectomized insects. Conclusions Our results suggest that substrate recognition by simultaneous input through thermal and mechanical modalities is required for triggering maxillary probing activity.

  8. A Warming Surface but a Cooling Top of Atmosphere Associated with Warm, Moist Air Mass Advection over the Ice and Snow Covered Arctic

    Science.gov (United States)

    Sedlar, J.

    2015-12-01

    Atmospheric advection of heat and moisture from lower latitudes to the high-latitude Arctic is a critical component of Earth's energy cycle. Large-scale advective events have been shown to make up a significant portion of the moist static energy budget of the Arctic atmosphere, even though such events are typically infrequent. The transport of heat and moisture over surfaces covered by ice and snow results in dynamic changes to the boundary layer structure, stability and turbulence, as well as to diabatic processes such as cloud distribution, microphysics and subsequent radiative effects. Recent studies have identified advection into the Arctic as a key mechanism for modulating the melt and freeze of snow and sea ice, via modification to all-sky longwave radiation. This paper examines the radiative impact during summer of such Arctic advective events at the top of the atmosphere (TOA), considering also the important role they play for the surface energy budget. Using infrared sounder measurements from the AIRS satellite, the summer frequency of significantly stable and moist advective events from 2003-2014 are characterized; justification of AIRS profiles over the Arctic are made using radiosoundings during a 3-month transect (ACSE) across the Eastern Arctic basin. One such event was observed within the East Siberian Sea in August 2014 during ACSE, providing in situ verification on the robustness and capability of AIRS to monitor advective cases. Results will highlight the important surface warming aspect of stable, moist instrusions. However a paradox emerges as such events also result in a cooling at the TOA evident on monthly mean TOA radiation. Thus such events have a climatic importance over ice and snow covered surfaces across the Arctic. ERA-Interim reanalyses are examined to provide a longer term perspective on the frequency of such events as well as providing capability to estimate meridional fluxes of moist static energy.

  9. Global warming: Clouds cooled the Earth

    Science.gov (United States)

    Mauritsen, Thorsten

    2016-12-01

    The slow instrumental-record warming is consistent with lower-end climate sensitivity. Simulations and observations now show that changing sea surface temperature patterns could have affected cloudiness and thereby dampened the warming.

  10. Recent Global Warming As Depicted by AIRS, GISSTEMP, and MERRA-2

    Science.gov (United States)

    Susskind, J.; Iredell, L. F.; Lee, J. N.

    2017-12-01

    We observed anomalously warm global mean surface temperatures since 2015. The year 2016 represents the warmest annual mean surface skin and surface air temperatures in the AIRS observational period, September 2002 through August 2017. Additionally, AIRS monthly mean surface skin temperature, from January 2016 through September 2016, and November 2016, were the warmest observed for each month of the year. Continuing this trend, the AIRS global surface temperatures of 2017 February and April show the second greatest positive anomalies from average. This recent warming is particularly significant over the Arctic where the snow and sea ice melt is closely tied to the spring and summer surface temperatures. In this paper, we show the global distribution of surface temperature anomalies as observed by AIRS over the period September 2002 through August 2017 and compare them with those from the GISSTEMP and MERRA-2 surface temperatures. The spatial patterns of warm and cold anomalies for a given month show reasonably good agreement in all three data set. AIRS anomalies, which do not have the benefit of in-situ measurements, are in almost perfect agreement with those of MERRA-2, which does use in-situ surface measurements. GISSTEMP anomaly patterns for the most part look similar to those of AIRS and MERRA-2, but are more spread out spatially, and consequently are also weaker.

  11. Intraseasonal sea surface warming in the western Indian Ocean by oceanic equatorial Rossby waves

    Science.gov (United States)

    2017-05-09

    USA, 2Naval Research Laboratory, Ocean Dynamics and Prediction Branch, Stennis Space Center, Hancock County, Mississippi, USA, 3Department of Physics ...IO and predominantly located south of the equator. The intraseasonal currents associated with downwelling ER waves act on the temperature gradient to...yield warm anomalies in the western IO, even in the presence of cooling by surface fluxes. The SST gradient is unique to the western IO and likely

  12. Does the correlation between solar cycle lengths and Northern Hemisphere land temperatures rule out any significant global warming from greenhouse gases?

    DEFF Research Database (Denmark)

    Laut, Peter; Gundermann, Jesper

    1998-01-01

    Since the discovery of a striking correlation between solar cycle lengths and Northern Hemisphere land temperatures there have been widespread speculations as to whether these findings would rule out any significant contributions to global warming from the enhanced concentrations of greenhouse...... gases. The present analysis shows that a similar degree of correlation is obtained when testing the solar data against a couple of fictitious temperature series representing different global warming trends. Therefore, the correlation cannot be used to estimate the magnitude of a possible contribution...... to global warming from human activities, nor to rule out a sizable contribution from that source....

  13. Early onset of industrial-era warming across the oceans and continents.

    Science.gov (United States)

    Abram, Nerilie J; McGregor, Helen V; Tierney, Jessica E; Evans, Michael N; McKay, Nicholas P; Kaufman, Darrell S

    2016-08-25

    The evolution of industrial-era warming across the continents and oceans provides a context for future climate change and is important for determining climate sensitivity and the processes that control regional warming. Here we use post-ad 1500 palaeoclimate records to show that sustained industrial-era warming of the tropical oceans first developed during the mid-nineteenth century and was nearly synchronous with Northern Hemisphere continental warming. The early onset of sustained, significant warming in palaeoclimate records and model simulations suggests that greenhouse forcing of industrial-era warming commenced as early as the mid-nineteenth century and included an enhanced equatorial ocean response mechanism. The development of Southern Hemisphere warming is delayed in reconstructions, but this apparent delay is not reproduced in climate simulations. Our findings imply that instrumental records are too short to comprehensively assess anthropogenic climate change and that, in some regions, about 180 years of industrial-era warming has already caused surface temperatures to emerge above pre-industrial values, even when taking natural variability into account.

  14. Evaluating the Dominant Components of Warming in Pliocene Climate Simulations

    Science.gov (United States)

    Hill, D. J.; Haywood, A. M.; Lunt, D. J.; Hunter, S. J.; Bragg, F. J.; Contoux, C.; Stepanek, C.; Sohl, L.; Rosenbloom, N. A.; Chan, W.-L.; hide

    2014-01-01

    The Pliocene Model Intercomparison Project (PlioMIP) is the first coordinated climate model comparison for a warmer palaeoclimate with atmospheric CO2 significantly higher than pre-industrial concentrations. The simulations of the mid-Pliocene warm period show global warming of between 1.8 and 3.6 C above pre-industrial surface air temperatures, with significant polar amplification. Here we perform energy balance calculations on all eight of the coupled ocean-atmosphere simulations within PlioMIP Experiment 2 to evaluate the causes of the increased temperatures and differences between the models. In the tropics simulated warming is dominated by greenhouse gas increases, with the cloud component of planetary albedo enhancing the warming in most of the models, but by widely varying amounts. The responses to mid-Pliocene climate forcing in the Northern Hemisphere midlatitudes are substantially different between the climate models, with the only consistent response being a warming due to increased greenhouse gases. In the high latitudes all the energy balance components become important, but the dominant warming influence comes from the clear sky albedo, only partially offset by the increases in the cooling impact of cloud albedo. This demonstrates the importance of specified ice sheet and high latitude vegetation boundary conditions and simulated sea ice and snow albedo feedbacks. The largest components in the overall uncertainty are associated with clouds in the tropics and polar clear sky albedo, particularly in sea ice regions. These simulations show that albedo feedbacks, particularly those of sea ice and ice sheets, provide the most significant enhancements to high latitude warming in the Pliocene.

  15. A preliminary study of the tropical water cycle and its sensitivity to surface warming

    Science.gov (United States)

    Lau, K. M.; Sui, C. H.; Tao, W. K.

    1993-01-01

    The Goddard Cumulus Ensemble Model (GCEM) has been used to demonstrate that cumulus-scale dynamics and microphysics play a major role in determining the vertical distribution of water vapor and clouds in the tropical atmosphere. The GCEM is described and is the basic structure of cumulus convection. The long-term equilibrium response to tropical convection to surface warming is examined. A picture of the water cycle within tropical cumulus clusters is developed.

  16. Global warming

    International Nuclear Information System (INIS)

    Houghton, John

    2005-01-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources

  17. Global warming: Sea ice and snow cover

    International Nuclear Information System (INIS)

    Walsh, J.E.

    1993-01-01

    In spite of differences among global climate simulations under scenarios where atmospheric CO 2 is doubled, all models indicate at least some amplification of greenouse warming at the polar regions. Several decades of recent data on air temperature, sea ice, and snow cover of the high latitudes of the Northern Hemisphere are summarized to illustrate the general compatibility of recent variations in those parameters. Despite a data void over the Arctic Ocean, some noteworthy patterns emerge. Warming dominates in winter and spring, as projected by global climate models, with the warming strongest over subpolar land areas of Alaska, northwestern Canada, and northern Eurasia. A time-longitude summary of Arctic sea ice variations indicates that timescales of most anomalies range from several months to several years. Wintertime maxima of total sea ice extent contain no apparent secular trends. The statistical significance of trends in recent sea ice variations was evaluated by a Monte Carlo procedure, showing a statistically significant negative trend in the summer. Snow cover data over the 20-y period of record show a noticeable decrease of Arctic snow cover in the late 1980s. This is of potential climatic significance since the accompanying decrease of surface albedo leads to a rapid increase of solar heating. 21 refs., 3 figs., 1 tab

  18. How does whole ecosystem warming of a peatland affect methane production and consumption?

    Science.gov (United States)

    Hopple, A.; Brunik, K.; Keller, J.; Pfeifer-Meister, L.; Woerndle, G.; Zalman, C.; Hanson, P.; Bridgham, S. D.

    2017-12-01

    Peatlands are among Earth's most important terrestrial ecosystems due to their massive soil carbon (C) stores and significant release of methane (CH4) into the atmosphere. Methane has a sustained-flux global warming potential 45-times greater than carbon dioxide (CO2), and the accuracy of Earth system model projections relies on our mechanistic understanding of peatland CH4 cycling in the context of environmental change. The objective of this study was to determine, under in situ conditions, how heating of the peat profile affects ecosystem-level anaerobic C cycling. We assessed the response of CO2 and CH4 production, as well as the anaerobic oxidation of CH4 (AOM), in a boreal peatland following 13 months of deep peat heating (DPH) and 16 months of subsequent whole-ecosystem warming (surface and deep heating; WEW) as part of the Spruce and Peatland Responses Under Changing Environments (SPRUCE) project in northern Minnesota, USA. The study uses a regression-based experimental design including 5 temperature treatments that warmed the entire 2 m peat profile from 0 to +9 °C above ambient temperature. Soil cores were collected at multiple depths (25-200 cm) from each experimental chamber at the SPRUCE site and anaerobically incubated at in situ temperatures for 1-2 weeks. Methane and CO2 production in surface peat were positively correlated with elevated temperature, but no consistent temperature response was found at depth (75-200 cm) following DPH. However, during WEW, we observed significant increases in both surface and deep peat methanogenesis with increasing temperature. Surface peat had greater CH4 production rates than deeper peat, implying that the increased CH4 emissions observed in the field were largely driven by surface peat warming. The CO2:CH4 ratio was inversely correlated with temperature across all depths following 16 months of WEW, indicating that the entire peat profile is becoming more methanogenic with warming. We also observed AOM throughout

  19. The coastal ocean response to the global warming acceleration and hiatus.

    Science.gov (United States)

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-11-16

    Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes.

  20. The coastal ocean response to the global warming acceleration and hiatus

    Science.gov (United States)

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-01-01

    Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes. PMID:26568024

  1. Experimental Warming Aggravates Degradation-Induced Topsoil Drought in Alpine Meadows of The Qinghai-Tibetan Plateau

    Science.gov (United States)

    Xue, X.

    2017-12-01

    Climatic warming is presumed to cause topsoil drought by increasing evapotranspiration and water infiltration, and by progressively inducing land degradation in alpine meadows of the Qinghai-Tibetan Plateau. However, how soil moisture and temperature patterns of degraded alpine meadows respond to climate warming remains unclear. A six-year continuous warming experiment was carried out in both degraded and undegraded alpine meadows in the source region of the Yangtze River. The goal was to identify the effects of climatic warming and land degradation on soil moisture (θ), soil surface temperature (Tsfc), and soil temperature (Ts). In the present study, land degradation significantly reduced θ by 4.5-6.1% at a depth of 0-100 cm (P soil surface. Experimental warming aggravated topsoil drought caused by land degradation, intensified the magnitude of degradation, and caused a positive feedback in the degraded alpine meadow ecosystem. Therefore, an immediate need exists to restore degraded alpine meadow grasslands in the Qinghai-Tibetan Plateau in anticipation of a warmer future.

  2. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    Science.gov (United States)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  3. Global Warming on Triton

    Science.gov (United States)

    Elliot, J. L.; Hammel, H. B.; Wasserman, L. H.; Franz, O. G.; McDonald, S. W.; Person, M. J.; Olkin, C. B.; Dunham, E. J.; Spencer, J. R.; Stansberry, J. A.; hide

    1998-01-01

    Triton, Neptune's largest moon, has been predicted to undergo significant seasonal changes that would reveal themselves as changes in its mean frost temperature. But whether this temperature should at the present time be increasing, decreasing or constant depends on a number of parameters (such as the thermal properties of the surface, and frost migration patterns) that are unknown. Here we report observations of a recent stellar occultation by Triton which, when combined with earlier results, show that Triton has undergone a period of global warming since 1989. Our most conservative estimates of the rate of temperature and surface-pressure increase during this period imply that the atmosphere is doubling in bulk every 10 years, significantly faster than predicted by any published frost model for Triton. Our result suggests that permanent polar caps on Triton play a c dominant role in regulating seasonal atmospheric changes. Similar processes should also be active on Pluto.

  4. Methane Cycling in a Warming Wetland

    Science.gov (United States)

    Noyce, G. L.; Megonigal, P.; Rich, R.; Kirwan, M. L.; Herbert, E. R.

    2017-12-01

    Coastal wetlands are global hotspots of carbon (C) storage, but the future of these systems is uncertain. In June 2016, we initiated an in-situ, active, whole-ecosystem warming experiment in the Smithsonian's Global Change Research Wetland to quantify how warming and elevated CO2 affect the stability of coastal wetland soil C pools and contemporary rates of C sequestration. Transects are located in two plant communities, dominated by C3 sedges or C4 grasses. The experiment has a gradient design with air and soil warming treatments ranging from ambient to +5.1 °C and heated plots consistently maintain their target temperature year-round. In April 2017, an elevated CO2 treatment was crossed with temperature in the C3community. Ongoing measurements include soil elevation, C fluxes, porewater chemistry and redox potential, and above- and below-ground growth and biomass. In both years, warming increased methane (CH4) emissions (measured at 3-4 week intervals) from spring through fall at the C3 site, but had little effect on emissions from the C4 site. Winter (Dec-Mar) emissions showed no treatment effect. Stable isotope analysis of dissolved CH4 and DIC also indicated that warming had differing effects on CH4 pathways in the two vegetation communities. To better understand temperature effects on rates of CH4 production and oxidation, 1 m soil cores were collected from control areas of the marsh in summer 2017 and incubated at temperatures ranging from 4 °C to 35 °C. Warming increased CH4 production and oxidation rates in surface samples and oxidation rates in the rooting zone samples from both sites, but temperature responses in deep (1 m) soil samples were minimal. In the surface and rooting zone samples, production rates were also consistently higher in C3 soils compared to C4 soils, but, contrary to our expectations, the temperature response was stronger in the C4 soils. However, oxidation in C3 rooting zone samples did have a strong temperature response. The

  5. An Analysis of Historical Global Warming and Social Engagement

    OpenAIRE

    Train, Joseph; Roizenman, David; Damiani, Seth; Rochwerg, Ronny

    2018-01-01

    The goal of this paper is to determine whether there is a correlation between awareness of global warming, and where global warming occurs. This theory is carried out by analyzing maps containing various forms of data that have to do with global warming, such as precipitation and surface temperature, and comparing it with a map of engagement from tweets which mention global warming. This paper found that there is no solid correlation between mentioning global warming in tweets and global warm...

  6. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    International Nuclear Information System (INIS)

    Sejas, Sergio A; Albert, Oriene S; Cai, Ming; Deng, Yi

    2014-01-01

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heat flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Therefore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea. (letter)

  7. Does the climate warming hiatus exist over the Tibetan Plateau?

    Science.gov (United States)

    Duan, Anmin; Xiao, Zhixiang

    2015-09-02

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998-2013 (0.25 °C decade(-1)), compared with that during 1980-1997 (0.21 °C decade(-1)). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud-radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud-radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau.

  8. Global Warming: The Balance of Evidence and Its Policy Implications

    Directory of Open Access Journals (Sweden)

    Charles Keller

    2003-01-01

    Full Text Available Global warming and attendant climate change have been controversial for at least a decade. This is largely because of its societal implications. With the recent publication of the Third Assessment Report of the United Nations’ Intergovernmental Panel on Climate Change there has been renewed interest and controversy about how certain the scientific community is of its conclusions: that humans are influencing the climate and that global temperatures will continue to rise rapidly in this century. This review attempts to update what is known and in particular what advances have been made in the past 5 years or so. It does not attempt to be comprehensive. Rather it focuses on the most controversial issues, which are actually few in number. They are: 1-Is the surface temperature record accurate or is it biased by heat from cities, etc.? 2-Is that record significantly different from past warmings such as the Medieval Warming Period? 3-Is not the sun’s increasing activity the cause of most of the warming? 4-Can we model climate and predict its future, or is it just too complex and chaotic? 5-Are there any other changes in climate other than warming, and can they be attributed to the warming?Despite continued uncertainties, the review finds affirmative answers to these questions. Of particular interest are advances that seem to explain why satellites do not see as much warming as surface instruments, how we are getting a good idea of recent paleoclimates, and why the 20th century temperature record was so complex. It makes the point that in each area new information could come to light that would change our thinking on the quantitative magnitude and timing of anthropogenic warming, but it is unlikely to alter the basic conclusions.Finally, there is a very brief discussion of the societal policy response to the scientific message, and the author comments on his 2-year email discussions with many of the world’s most outspoken critics of the

  9. The Indo-Pacific Warm Pool: critical to world oceanography and world climate

    Science.gov (United States)

    De Deckker, Patrick

    2016-12-01

    The Indo-Pacific Warm Pool holds a unique place on the globe. It is a large area [>30 × 106 km2] that is characterised by permanent surface temperature >28 °C and is therefore called the `heat engine' of the globe. High convective clouds which can reach altitudes up to 15 km generate much latent heat in the process of convection and this area is therefore called the `steam engine' of the world. Seasonal and contrasting monsoonal activity over the region is the cause for a broad seasonal change of surface salinities, and since the area lies along the path of the Great Ocean Conveyor Belt, it is coined the `dilution' basin due to the high incidence of tropical rain and, away from the equator, tropical cyclones contribute to a significant drop in sea water salinity. Discussion about what may happen in the future of the Warm Pool under global warming is presented together with a description of the Warm Pool during the past, such as the Last Glacial Maximum when sea levels had dropped by ~125 m. A call for urgent monitoring of the IPWP area is justified on the grounds of the significance of this area for global oceanographic and climatological processes, but also because of the concerned threats to human population living there.

  10. Significant Atmospheric Boundary Layer Change Observed above an Agulhas Current Warm Cored Eddy

    Directory of Open Access Journals (Sweden)

    C. Messager

    2016-01-01

    Full Text Available The air-sea impact of a warm cored eddy ejected from the Agulhas Retroflection region south of Africa was assessed through both ocean and atmospheric profiling measurements during the austral summer. The presence of the eddy causes dramatic atmospheric boundary layer deepening, exceeding what was measured previously over such a feature in the region. This deepening seems mainly due to the turbulent heat flux anomaly above the warm eddy inducing extensive deep and persistent changes in the atmospheric boundary layer thermodynamics. The loss of heat by turbulent processes suggests that this kind of oceanic feature is an important and persistent source of heat for the atmosphere.

  11. Physical mechanisms of spring and summertime drought related with the global warming over the northern America

    Science.gov (United States)

    Choi, W.; Kim, K. Y.

    2017-12-01

    Drought during the growing season (spring through summer) is severe natural hazard in the large cropland over the northern America. It is important to understand how the drought is related with the global warming and how it will change in the future. This study aims to investigate the physical mechanism of global warming impact on the spring and summertime drought over the northern America using Cyclostationary Empirical Orthogonal Function (CSEOF) analysis. The Northern Hemisphere surface warming, the most dominant mode of the surface air temperature, has resulted in decreased relative humidity and precipitation over the mid-latitude region of North America. For the viewpoint of atmospheric water demand, soil moisture and evaporation have also decreased significantly, exacerbating vulnerability of drought. These consistent features of changes in water demand and supply related with the global warming can provide a possibility of credible insight for future drought change.

  12. Human-caused Indo-Pacific warm pool expansion

    OpenAIRE

    Weller, Evan; Min, Seung-Ki; Cai, Wenju; Zwiers, Francis W.; Kim, Yeon-Hee; Lee, Donghyun

    2016-01-01

    The Indo-Pacific warm pool (IPWP) has warmed and grown substantially during the past century. The IPWP is Earth?s largest region of warm sea surface temperatures (SSTs), has the highest rainfall, and is fundamental to global atmospheric circulation and hydrological cycle. The region has also experienced the world?s highest rates of sea-level rise in recent decades, indicating large increases in ocean heat content and leading to substantial impacts on small island states in the region. Previou...

  13. An observational study on the temperature rising effects in water warming canal and water warming pond

    Energy Technology Data Exchange (ETDEWEB)

    Hong, J. B.; Hong, S. B. [Rural Development Cooperation, Seoul (Korea, Republic of)

    1990-09-15

    The power water flowed out from the multipurpose darn influences the ecosystem approximately because of the low water temperature. An appropriate counter measure to the rising water temperature is needed for growing crops especially when the temperature is below 18°C in the source of the irrigation water This observational study is practiced in Yong-Doo water warming canal and pond in the down stream of Choong-Ju multipurpose dam and is practiced for analyse and compare the rising effects in actural water temperature by actual measurement with the rising effects of planned water temperatuer by the basic theoritical method and for the help to present the direction in plan establishment through investigate the results afterwards. The results are as follows. 1. The degree of the rise of the water temperature can be decided by θ{sub x} = θ{sub 0} + K (L/(v * h)) * (T - θ{sub 0}) Then, K values of a factor representing the characteristics of the water warming canal were 0.00002043 for the type I. and 0.0000173 for the type II. respectively. 2. A variation of water temperature which produced by the difference effective temperature and water temperature in the water warming canal was θ{sub x1} = 16.5 + 15.9 (1-e{sup -0.00018x}), θ{sub x2} = 18.8 + 8.4(1-e{sup -0.000298x}) for the type I. and θ{sub x} = 19.6 + 12.8 (1-e{sup -0.00041x}) for the type II. 3. It was shown that the effects of the rise of water temperature for the type I. water warming canal were greater than that of type II. as a resultes of broadening the surface of the canal compared with the depth of water, coloring the surface of water canal and installing the resistance block. 4. In case of the type I. water warming canal, the equation between the air temperature and the degree of the rise of water temprature could be made; Y = 0.4134X + 7.728 In addition, in case of the type II. water warming canal, the correlation was very low. 5. A monthly variation of the water temperature in the water warming

  14. Delimitation of the warm and cold period of the year based on the variation of the Aegean sea surface temperature

    Directory of Open Access Journals (Sweden)

    A. MAVRAKIS

    2004-06-01

    Full Text Available Knowledge of the warm and cold season onset is important for the living conditions and the occupational activities of the inhabitants of a given area, and especially for agriculture and tourism. This paper presents a way to estimate the onset/end of the cold and warm period of the year, based on the sinusoidal annual variation of the Sea Surface Temperature. The method was applied on data from 8 stations of the Hellenic Navy Hydrographic Service, covering the period from 1965-1995. The results showed that the warm period starts sometime between April 28th and May 21st while it ends between October 27th and November 19th in accordance with the findings of other studies. Characteristic of the nature of the parameter used is the very low variance per station – 15 days at maximum. The average date of warm period onset is statistically the same for the largest part of the Aegean, with only one differentiation, that between Kavala and the southern stations ( Thira and Heraklion.

  15. Springtime warming and reduced snow cover from carbonaceous particles

    Directory of Open Access Journals (Sweden)

    M. G. Flanner

    2009-04-01

    Full Text Available Boreal spring climate is uniquely susceptible to solar warming mechanisms because it has expansive snow cover and receives relatively strong insolation. Carbonaceous particles can influence snow coverage by warming the atmosphere, reducing surface-incident solar energy (dimming, and reducing snow reflectance after deposition (darkening. We apply a range of models and observations to explore impacts of these processes on springtime climate, drawing several conclusions: 1 Nearly all atmospheric particles (those with visible-band single-scatter albedo less than 0.999, including all mixtures of black carbon (BC and organic matter (OM, increase net solar heating of the atmosphere-snow column. 2 Darkening caused by small concentrations of particles within snow exceeds the loss of absorbed energy from concurrent dimming, thus increasing solar heating of snowpack as well (positive net surface forcing. Over global snow, we estimate 6-fold greater surface forcing from darkening than dimming, caused by BC+OM. 3 Equilibrium climate experiments suggest that fossil fuel and biofuel emissions of BC+OM induce 95% as much springtime snow cover loss over Eurasia as anthropogenic carbon dioxide, a consequence of strong snow-albedo feedback and large BC+OM emissions from Asia. 4 Of 22 climate models contributing to the IPCC Fourth Assessment Report, 21 underpredict the rapid warming (0.64°C decade−1 observed over springtime Eurasia since 1979. Darkening from natural and anthropogenic sources of BC and mineral dust exerts 3-fold greater forcing on springtime snow over Eurasia (3.9 W m−2 than North America (1.2 W m−2. Inclusion of this forcing significantly improves simulated continental warming trends, but does not reconcile the low bias in rate of Eurasian spring snow cover decline exhibited by all models, likely because BC deposition trends are negative or near-neutral over much of Eurasia. Improved Eurasian

  16. Irrigation enhances local warming with greater nocturnal warming effects than daytime cooling effects

    Science.gov (United States)

    Chen, Xing; Jeong, Su-Jong

    2018-02-01

    To meet the growing demand for food, land is being managed to be more productive using agricultural intensification practices, such as the use of irrigation. Understanding the specific environmental impacts of irrigation is a critical part of using it as a sustainable way to provide food security. However, our knowledge of irrigation effects on climate is still limited to daytime effects. This is a critical issue to define the effects of irrigation on warming related to greenhouse gases (GHGs). This study shows that irrigation led to an increasing temperature (0.002 °C year-1) by enhancing nighttime warming (0.009 °C year-1) more than daytime cooling (-0.007 °C year-1) during the dry season from 1961-2004 over the North China Plain (NCP), which is one of largest irrigated areas in the world. By implementing irrigation processes in regional climate model simulations, the consistent warming effect of irrigation on nighttime temperatures over the NCP was shown to match observations. The intensive nocturnal warming is attributed to energy storage in the wetter soil during the daytime, which contributed to the nighttime surface warming. Our results suggest that irrigation could locally amplify the warming related to GHGs, and this effect should be taken into account in future climate change projections.

  17. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown

    Science.gov (United States)

    Smith, Doug M.; Booth, Ben B. B.; Dunstone, Nick J.; Eade, Rosie; Hermanson, Leon; Jones, Gareth S.; Scaife, Adam A.; Sheen, Katy L.; Thompson, Vikki

    2016-10-01

    The rate of global mean surface temperature (GMST) warming has slowed this century despite the increasing concentrations of greenhouse gases. Climate model experiments show that this slowdown was largely driven by a negative phase of the Pacific Decadal Oscillation (PDO), with a smaller external contribution from solar variability, and volcanic and anthropogenic aerosols. The prevailing view is that this negative PDO occurred through internal variability. However, here we show that coupled models from the Fifth Coupled Model Intercomparison Project robustly simulate a negative PDO in response to anthropogenic aerosols implying a potentially important role for external human influences. The recovery from the eruption of Mount Pinatubo in 1991 also contributed to the slowdown in GMST trends. Our results suggest that a slowdown in GMST trends could have been predicted in advance, and that future reduction of anthropogenic aerosol emissions, particularly from China, would promote a positive PDO and increased GMST trends over the coming years. Furthermore, the overestimation of the magnitude of recent warming by models is substantially reduced by using detection and attribution analysis to rescale their response to external factors, especially cooling following volcanic eruptions. Improved understanding of external influences on climate is therefore crucial to constrain near-term climate predictions.

  18. EVIDENCE FOR DCO+ AS A PROBE OF IONIZATION IN THE WARM DISK SURFACE

    International Nuclear Information System (INIS)

    Favre, Cécile; Bergin, Edwin A.; Cleeves, L. Ilsedore; Hersant, Franck; Qi, Chunhua; Aikawa, Yuri

    2015-01-01

    In this Letter, we model the chemistry of DCO + in protoplanetary disks. We find that the overall distribution of the DCO + abundance is qualitatively similar to that of CO but is dominated by a thin layer located at the inner disk surface. To understand its distribution, we investigate the different key gas-phase deuteration pathways that can lead to the formation of DCO + . Our analysis shows that the recent update in the exothermicity of the reaction involving CH 2 D + as a parent molecule of DCO + favors deuterium fractionation in warmer conditions. As a result, the formation of DCO + is enhanced in the inner warm surface layers of the disk where X-ray ionization occurs. Our analysis points out that DCO + is not a reliable tracer of the CO snow line as previously suggested. We thus predict that DCO + is a tracer of active deuterium and, in particular, X-ray ionization of the inner disk

  19. Global Warming - Are We on Thin Ice?

    Science.gov (United States)

    Tucker, Compton J.

    2007-01-01

    The evidence for global warming is very conclusive for the past 400-500 years. Prior to the 16th century, proxy surface temperature data are regionally good but lack a global distribution. The speaker will review surface temperature reconstruction based upon ice cores, coral cores, tree rings, deep sea sediments, and bore holes and discuss the controversy surrounding global warming. This will be contrasted with the excellent data we have from the satellite era of earth observations the past 30+ years that enables the quantitative study of climate across earth science disciplines.

  20. Characteristics of the resonant instability of surface electrostatic-ion-cyclotron waves in a semi-bounded warm magnetized dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Woo-Pyo [Department of Electronics Engineering, Catholic University of Daegu, Hayang, 38430 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3590 (United States)

    2016-03-11

    The influence of magnetic field and dust rotation on the resonant instability of surface electrostatic-ion-cyclotron wave is kinetically investigated in a semi-bounded warm magnetized dusty plasma. The dispersion relation and the temporal growth rate of the surface electrostatic-ion-cyclotron wave are derived by the specular-reflection boundary condition including the magnetic field and dust rotation effects. It is found that the instability domain decreases with an increase of the rotation frequency of elongated dust grain. It is also found that the dependence of the propagation wave number on the temporal growth rate is more significant for small ion cyclotron frequencies. In addition, it is shown that the scaled growth rate increases with an increase of the strength of magnetic field. The variation of the domain and magnitude of temporal growth rate due to the change of plasma parameters is also discussed. - Highlights: • The resonant instability of surface electrostatic-ion-cyclotron wave is investigated in a semi-bounded magnetized dusty plasma. • The dispersion relation and the temporal growth rate are derived by the specular-reflection condition. • The influence of magnetic field and dust rotation on the resonant instability is discussed.

  1. Understanding the Asian summer monsoon response to greenhouse warming: the relative roles of direct radiative forcing and sea surface temperature change

    Science.gov (United States)

    Li, Xiaoqiong; Ting, Mingfang

    2017-10-01

    Future hydroclimate projections from state-of-the-art climate models show large uncertainty and model spread, particularly in the tropics and over the monsoon regions. The precipitation and circulation responses to rising greenhouse gases involve a fast component associated with direct radiative forcing and a slow component associated with sea surface temperature (SST) warming; the relative importance of the two may contribute to model discrepancies. In this study, regional hydroclimate responses to greenhouse warming are assessed using output from coupled general circulation models in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) and idealized atmospheric general circulation model experiments from the Atmosphere Model Intercomparison Project. The thermodynamic and dynamic mechanisms causing the rainfall changes are examined using moisture budget analysis. Results show that direct radiative forcing and SST change exert significantly different responses both over land and ocean. For most part of the Asian monsoon region, the summertime rainfall changes are dominated by the direct CO2 radiative effect through enhanced monsoon circulation. The response to SST warming shows a larger model spread compared to direct radiative forcing, possibly due to the cancellation between the thermodynamical and dynamical components. While the thermodynamical response of the Asian monsoon is robust across the models, there is a lack of consensus for the dynamical response among the models and weak multi-model mean responses in the CMIP5 ensemble, which may be related to the multiple physical processes evolving on different time scales.

  2. Human-caused Indo-Pacific warm pool expansion.

    Science.gov (United States)

    Weller, Evan; Min, Seung-Ki; Cai, Wenju; Zwiers, Francis W; Kim, Yeon-Hee; Lee, Donghyun

    2016-07-01

    The Indo-Pacific warm pool (IPWP) has warmed and grown substantially during the past century. The IPWP is Earth's largest region of warm sea surface temperatures (SSTs), has the highest rainfall, and is fundamental to global atmospheric circulation and hydrological cycle. The region has also experienced the world's highest rates of sea-level rise in recent decades, indicating large increases in ocean heat content and leading to substantial impacts on small island states in the region. Previous studies have considered mechanisms for the basin-scale ocean warming, but not the causes of the observed IPWP expansion, where expansion in the Indian Ocean has far exceeded that in the Pacific Ocean. We identify human and natural contributions to the observed IPWP changes since the 1950s by comparing observations with climate model simulations using an optimal fingerprinting technique. Greenhouse gas forcing is found to be the dominant cause of the observed increases in IPWP intensity and size, whereas natural fluctuations associated with the Pacific Decadal Oscillation have played a smaller yet significant role. Further, we show that the shape and impact of human-induced IPWP growth could be asymmetric between the Indian and Pacific basins, the causes of which remain uncertain. Human-induced changes in the IPWP have important implications for understanding and projecting related changes in monsoonal rainfall, and frequency or intensity of tropical storms, which have profound socioeconomic consequences.

  3. A century of ocean warming on Florida Keys coral reefs: historic in situ observations

    Science.gov (United States)

    Kuffner, Ilsa B.; Lidz, Barbara H.; Hudson, J. Harold; Anderson, Jeffery S.

    2015-01-01

    There is strong evidence that global climate change over the last several decades has caused shifts in species distributions, species extinctions, and alterations in the functioning of ecosystems. However, because of high variability on short (i.e., diurnal, seasonal, and annual) timescales as well as the recency of a comprehensive instrumental record, it is difficult to detect or provide evidence for long-term, site-specific trends in ocean temperature. Here we analyze five in situ datasets from Florida Keys coral reef habitats, including historic measurements taken by lighthouse keepers, to provide three independent lines of evidence supporting approximately 0.8 °C of warming in sea surface temperature (SST) over the last century. Results indicate that the warming observed in the records between 1878 and 2012 can be fully accounted for by the warming observed in recent decades (from 1975 to 2007), documented using in situ thermographs on a mid-shore patch reef. The magnitude of warming revealed here is similar to that found in other SST datasets from the region and to that observed in global mean surface temperature. The geologic context and significance of recent ocean warming to coral growth and population dynamics are discussed, as is the future prognosis for the Florida reef tract.

  4. Hot stuff. Global warming as a giant trend

    International Nuclear Information System (INIS)

    Brunstad, Bjoern

    2007-01-01

    The article presents various aspects of global warming with focus on meteorological data, global discharges, estimated surface temperature increments, ocean level elevations and net warming effects of various human activities. The consequences for the economic and social developments are discussed. Some action possibilities are mentioned. (tk)

  5. Long-Term Warming Shifts the Composition of Bacterial Communities in the Phyllosphere of Galium album in a Permanent Grassland Field-Experiment

    Directory of Open Access Journals (Sweden)

    Ebru L. Aydogan

    2018-02-01

    Full Text Available Global warming is currently a much discussed topic with as yet largely unexplored consequences for agro-ecosystems. Little is known about the warming effect on the bacterial microbiota inhabiting the plant surface (phyllosphere, which can have a strong impact on plant growth and health, as well as on plant diseases and colonization by human pathogens. The aim of this study was to investigate the effect of moderate surface warming on the diversity and composition of the bacterial leaf microbiota of the herbaceous plant Galium album. Leaves were collected from four control and four surface warmed (+2°C plots located at the field site of the Environmental Monitoring and Climate Impact Research Station Linden in Germany over a 6-year period. Warming had no effect on the concentration of total number of cells attached to the leaf surface as counted by Sybr Green I staining after detachment, but changes in the diversity and phylogenetic composition of the bacterial leaf microbiota analyzed by bacterial 16S rRNA gene Illumina amplicon sequencing were observed. The bacterial phyllosphere microbiota were dominated by Proteobacteria, Bacteroidetes, and Actinobacteria. Warming caused a significant higher relative abundance of members of the Gammaproteobacteria, Actinobacteria, and Firmicutes, and a lower relative abundance of members of the Alphaproteobacteria and Bacteroidetes. Plant beneficial bacteria like Sphingomonas spp. and Rhizobium spp. occurred in significantly lower relative abundance in leaf samples of warmed plots. In contrast, several members of the Enterobacteriaceae, especially Enterobacter and Erwinia, and other potential plant or human pathogenic genera such as Acinetobacter and insect-associated Buchnera and Wolbachia spp. occurred in higher relative abundances in the phyllosphere samples from warmed plots. This study showed for the first time the long-term impact of moderate (+2°C surface warming on the phyllosphere microbiota on

  6. Nanoscale study on water damage for different warm mix asphalt binders

    Directory of Open Access Journals (Sweden)

    Kefei Liu

    2016-11-01

    Full Text Available In order to analyze the water damage to different warm mix asphalt binders from the micro scale, five kinds of asphalt binders, 70#A base asphalt, sasobit warm mix asphalt, energy champion 120 °C (EC120 warm mix asphalt, aspha-min warm mix asphalt, sulfur-extended asphalt modifier (SEAM warm mix asphalt, under different conditions (dry/wet, original/aging are prepared for laboratory tests. The atomic force microscope (AFM is used to observe the surface properties and measure the adhesion force between the asphalt and the mineral aggregate. The obtained results show that under the dry condition aspha-min warm mix asphalt and SEAM warm mix asphalt show stronger adhesive ability with the mineral aggregate compared with other asphalt binders, but also have relatively large dispersion and fluctuation in the tested results; under the wet condition, aspha-min warm mix asphalt and SEAM warm mix asphalt show stronger water damage resistance ability. The EC120 warm mix asphalt and aspha-min warm mix asphalt are less sensitive to moist, and their corresponding adhesion force is less susceptible to the change of external moisture conditions, leading to a better ability to resist water erosion. The aging process significantly lowers the moisture erosion resistance ability, which further impairs the water damage resistance ability. The base asphalt is more sensitive to moisture and more vulnerable to water damage, no matter whether it is under original or aging conditions. The aging aspha-min warm mix asphalt has the least loss of adhesion force, the smallest dispersion of the tested adhesion force, the strongest water damage resistance ability, no matter it is dry or wet. Keywords: Road engineering, Warm mix asphalt, Moisture damage, Atomic force microscope, Microcosmic

  7. Seagrass ecophysiological performance under ocean warming and acidification.

    Science.gov (United States)

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R; Rosa, Inês C; Grilo, Tiago F; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-02-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, F v /F m ) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and F v /F m (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming.

  8. Reconciling controversies about the 'global warming hiatus'.

    Science.gov (United States)

    Medhaug, Iselin; Stolpe, Martin B; Fischer, Erich M; Knutti, Reto

    2017-05-03

    Between about 1998 and 2012, a time that coincided with political negotiations for preventing climate change, the surface of Earth seemed hardly to warm. This phenomenon, often termed the 'global warming hiatus', caused doubt in the public mind about how well anthropogenic climate change and natural variability are understood. Here we show that apparently contradictory conclusions stem from different definitions of 'hiatus' and from different datasets. A combination of changes in forcing, uptake of heat by the oceans, natural variability and incomplete observational coverage reconciles models and data. Combined with stronger recent warming trends in newer datasets, we are now more confident than ever that human influence is dominant in long-term warming.

  9. The Madden-Julian Oscillation and the Indo-Pacific Warm Pool

    Science.gov (United States)

    Raymond, David J.; Fuchs, Željka

    2018-04-01

    A minimal model of the interaction of the Madden-Julian oscillation (MJO) with the Indo-Pacific warm pool is presented. This model is based on the linear superposition of the flow associated with a highly simplified treatment of the MJO plus the flow induced by the warm pool itself. Both of these components parameterize rainfall as proportional to the column water vapor, which in turn is governed by a linearized moisture equation in which WISHE (wind induced surface heat exchange) plays a governing role. The MJO component has maximum growth rate for planetary wavenumber 1 and is equatorially trapped with purely zonal winds. The warm pool component exhibits a complex flow pattern, differing significantly from the classical Gill model as a result of the mean easterly flow. The combination of the two produce a flow that reproduces many aspects of the observed global flow associated with the MJO.

  10. An appraisal of the geologic structure beneath the Ikogosi warm spring in south-western Nigeria using integrated surface geophysical methods

    Directory of Open Access Journals (Sweden)

    J.S Ojo

    2011-06-01

    Full Text Available An integrated surface geophysical investigation involving resistivity and magnetic methods was carried out in the immediate vicinity of the Ikogosi warm spring situated in south-western Nigeria with a view to delineating its subsurface geological sequence and evaluating the structural setting beneath the warmspring. Total field magnetic measurements and vertical electrical sounding (VES data were acquired along five N-S traverses. Magnetic and VES data interpretation
    involved inverse modelling. The inverse magnetic models delineated fractured quartzite/faulted areas within fresh massive quartzite at varying depths and beneath all traverses. The geoelectrical sections developed from VESinterpretation results also delineated a subsurface sequence consisting of a topsoil/weathered layer, fresh quartzite, fractured/faulted quartzite and fresh quartzite bedrock. It was deduced that the fractured/faulted quartzite may have acted as conduit for the
    movement of warm groundwater from profound depths to the surface while the spring outlet was located on a geological interface  (lineament.

  11. Response of organic matter quality in permafrost soils to warming

    Science.gov (United States)

    Plaza, C.; Pegoraro, E.; Schuur, E.

    2016-12-01

    Global warming is predicted to thaw large quantities of the perennially frozen organic matter stored in northern permafrost soils. Upon thaw, this organic matter will be exposed to lateral export to water bodies and to microbial decomposition, which may exacerbate climate change by releasing significant amounts of greenhouse gases. To gain an insight into these processes, we investigated how the quality of permafrost soil organic matter responded to five years of warming. In particular, we sampled control and experimentally warmed soils in 2009 and 2013 from an experiment established in 2008 in a moist acidic tundra ecosystem in Healy, Alaska. We examined surface organic (0 to 15 cm), deep organic (15 to 35 cm), and mineral soil layers (35 to 55 cm) separately by means of stable isotope analysis (δ13C and δ15N) and solid-state 13C nuclear magnetic resonance. Compared to the control, the experimental warming did not affect the isotopic and molecular composition of soil organic matter across the depth profile. However, we did find significant changes with time. In particular, in the surface organic layer, δ13C decreased and alkyl/O-alkyl ratio increased from 2009 to 2013, which indicated variations in soil organic sources (e.g., changes in vegetation) and accelerated decomposition. In the deep organic layer, we found a slight increase in δ15N with time. In the mineral layer, δ13C values decreased slightly, whereas alkyl C/O-alkyl ratio increased, suggesting a preferential loss of relatively more degraded organic matter fractions probably by lateral transport by water flowing through the soil. Acknowledgements: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 654132. Web site: http://vulcan.comule.com

  12. Biofilm Composition and Threshold Concentration for Growth of Legionella pneumophila on Surfaces Exposed to Flowing Warm Tap Water without Disinfectant.

    Science.gov (United States)

    van der Kooij, Dick; Bakker, Geo L; Italiaander, Ronald; Veenendaal, Harm R; Wullings, Bart A

    2017-03-01

    Legionella pneumophila in potable water installations poses a potential health risk, but quantitative information about its replication in biofilms in relation to water quality is scarce. Therefore, biofilm formation on the surfaces of glass and chlorinated polyvinyl chloride (CPVC) in contact with tap water at 34 to 39°C was investigated under controlled hydraulic conditions in a model system inoculated with biofilm-grown L. pneumophila The biofilm on glass (average steady-state concentration, 23 ± 9 pg ATP cm -2 ) exposed to treated aerobic groundwater (0.3 mg C liter -1 ; 1 μg assimilable organic carbon [AOC] liter -1 ) did not support growth of the organism, which also disappeared from the biofilm on CPVC (49 ± 9 pg ATP cm -2 ) after initial growth. L. pneumophila attained a level of 4.3 log CFU cm -2 in the biofilms on glass (1,055 ± 225 pg ATP cm -2 ) and CPVC (2,755 ± 460 pg ATP cm -2 ) exposed to treated anaerobic groundwater (7.9 mg C liter -1 ; 10 μg AOC liter -1 ). An elevated biofilm concentration and growth of L. pneumophila were also observed with tap water from the laboratory. The Betaproteobacteria Piscinibacter and Methyloversatilis and amoeba-resisting Alphaproteobacteria predominated in the clones and isolates retrieved from the biofilms. In the biofilms, the Legionella colony count correlated significantly with the total cell count (TCC), heterotrophic plate count, ATP concentration, and presence of Vermamoeba vermiformis This amoeba was rarely detected at biofilm concentrations of water-associated disease outbreaks reported in the United States. The organism proliferates in biofilms on surfaces exposed to warm water in engineered freshwater installations. An investigation with a test system supplied with different types of warm drinking water without disinfectant under controlled hydraulic conditions showed that treated aerobic groundwater (0.3 mg liter -1 of organic carbon) induced a low biofilm concentration that supported no or very

  13. Physics of greenhouse effect and convection in warm oceans

    Science.gov (United States)

    Inamdar, A. K.; Ramanathan, V.

    1994-01-01

    Sea surface temperature (SST) in roughly 50% of the tropical Pacific Ocean is warm enough (SST greater than 300 K) to permit deep convection. This paper examines the effects of deep convection on the climatological mean vertical distributions of water vapor and its greenhouse effect over such warm oceans. The study, which uses a combination of satellite radiation budget observations, atmospheric soundings deployed from ships, and radiation model calculations, also examines the link between SST, vertical distribution of water vapor, and its greenhouse effect in the tropical oceans. Since the focus of the study is on the radiative effects of water vapor, the radiation model calculations do not include the effects of clouds. The data are grouped into nonconvective and convective categories using SST as an index for convective activity. On average, convective regions are more humid, trap significantly more longwave radiation, and emit more radiation to the sea surface. The greenhouse effect in regions of convection operates as per classical ideas, that is, as the SST increases, the atmosphere traps the excess longwave energy emitted by the surface and reradiates it locally back to the ocean surface. The important departure from the classical picture is that the net (up minus down) fluxes at the surface and at the top of the atmosphere decrease with an increase in SST; that is, the surface and the surface-troposphere column lose the ability to radiate the excess energy to space. The cause of this super greenhouse effect at the surface is the rapid increase in the lower-troposphere humidity with SST; that of the column is due to a combination of increase in humidity in the entire column and increase in the lapse rate within the lower troposphere. The increase in the vertical distribution of humidity far exceeds that which can be attributed to the temperature dependence of saturation vapor pressure; that is, the tropospheric relative humidity is larger in convective

  14. Wind changes above warm Agulhas Current eddies

    CSIR Research Space (South Africa)

    Roualt, M

    2016-10-01

    Full Text Available Sea-surface temperature (SST), altimetry derived sea-level anomalies (SLA) and surface current are used south of the Agulhas Current to identify warm core mesoscale ocean eddies presenting a distinct SST perturbation superior to 1(supo...

  15. A Contribution by Ice Nuclei to Global Warming

    Science.gov (United States)

    Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Hou, Arthur Y.; Xie, Shaocheng; Lang, Stephen; Li, Xiaowen; Starr, David O.; Li, Xiaofan

    2009-01-01

    Ice nuclei (IN) significantly affect clouds via supercooled droplets, that in turn modulate atmospheric radiation and thus climate change. Since the IN effect is relatively strong in stratiform clouds but weak in convective ones, the overall effect depends on the ratio of stratiform to convective cloud amount. In this paper, 10 years of TRMM (Tropical Rainfall Measuring Mission) satellite data are analyzed to confirm that stratiform precipitation fraction increases with increasing latitude, which implies that the IN effect is stronger at higher latitudes. To quantitatively evaluate the IN effect versus latitude, large-scale forcing data from ten field campaigns are used to drive a CRM (cloud-resolving model) to generate longterm cloud simulations. As revealed in the simulations, the increase in the net downward radiative flux at the TOA (top of the atmosphere) from doubling the current IN concentrations is larger at higher latitude, which is attributed to the meridional tendency in the stratiform precipitation fraction. Surface warming from doubling the IN concentrations, based on the radiative balance of the globe, is compared with that from anthropogenic COZ . It is found that the former effect is stronger than the latter in middle and high latitudes but not in the Tropics. With regard to the impact of IN on global warming, there are two factors to consider: the radiative effect from increasing the IN concentration and the increase in IN concentration itself. The former relies on cloud ensembles and thus varies mainly with latitude. In contrast, the latter relies on IN sources (e.g., the land surface distribution) and thus varies not only with latitude but also longitude. Global desertification and industrialization provide clues on the geographic variation of the increase in IN concentration since pre-industrial times. Thus, their effect on global warming can be inferred and then be compared with observations. A general match in geographic and seasonal

  16. An investigation of the effects from a urethral warming system on temperature distributions during cryoablation treatment of the prostate: a phantom study.

    Science.gov (United States)

    Favazza, C P; Gorny, K R; King, D M; Rossman, P J; Felmlee, J P; Woodrum, D A; Mynderse, L A

    2014-08-01

    Introduction of urethral warmers to aid cryosurgery in the prostate has significantly reduced the incidence of urethral sloughing; however, the incidence rate still remains as high as 15%. Furthermore, urethral warmers have been associated with an increase of cancer recurrence rates. Here, we report results from our phantom-based investigation to determine the impact of a urethral warmer on temperature distributions around cryoneedles during cryosurgery. Cryoablation treatments were simulated in a tissue mimicking phantom containing a urethral warming catheter. Four different configurations of cryoneedles relative to urethral warming catheter were investigated. For each configuration, the freeze-thaw cycles were repeated with and without the urethral warming system activated. Temperature histories were recorded at various pre-arranged positions relative to the cryoneedles and urethral warming catheter. In all configurations, the urethral warming system was effective at maintaining sub-lethal temperatures at the simulated surface of the urethra. The warmer action, however, was additionally demonstrated to potentially negatively impact treatment lethality in the target zone by elevating minimal temperatures to sub-lethal levels. In all needle configurations, rates of freezing and thawing were not significantly affected by the use of the urethral warmer. The results indicate that the urethral warming system can protect urethral tissue during cryoablation therapy with cryoneedles placed as close as 5mm to the surface of the urethra. Using a urethral warming system and placing multiple cryoneedles within 1cm of each other delivers lethal cooling at least 5mm from the urethral surface while sparing urethral tissue. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming.

    Science.gov (United States)

    Castillo, Karl D; Ries, Justin B; Bruno, John F; Westfield, Isaac T

    2014-12-22

    Anthropogenic increases in atmospheric CO2 over this century are predicted to cause global average surface ocean pH to decline by 0.1-0.3 pH units and sea surface temperature to increase by 1-4°C. We conducted controlled laboratory experiments to investigate the impacts of CO2-induced ocean acidification (pCO2 = 324, 477, 604, 2553 µatm) and warming (25, 28, 32°C) on the calcification rate of the zooxanthellate scleractinian coral Siderastrea siderea, a widespread, abundant and keystone reef-builder in the Caribbean Sea. We show that both acidification and warming cause a parabolic response in the calcification rate within this coral species. Moderate increases in pCO2 and warming, relative to near-present-day values, enhanced coral calcification, with calcification rates declining under the highest pCO2 and thermal conditions. Equivalent responses to acidification and warming were exhibited by colonies across reef zones and the parabolic nature of the corals' response to these stressors was evident across all three of the experiment's 30-day observational intervals. Furthermore, the warming projected by the Intergovernmental Panel on Climate Change for the end of the twenty-first century caused a fivefold decrease in the rate of coral calcification, while the acidification projected for the same interval had no statistically significant impact on the calcification rate-suggesting that ocean warming poses a more immediate threat than acidification for this important coral species.

  18. Change of ENSO characteristics in response to global warming

    Science.gov (United States)

    Sun, X.; Xia, Y.; Yan, Y.; Feng, W.; Huang, F.; Yang, X. Q.

    2017-12-01

    By using datasets of HadISST monthly SST from 1895 to 2014 and 600-year simulations of two CESM model experiments with/without doubling of CO2 concentration, ENSO characteristics are compared pre- and post- global warming. The main results are as follows. Due to global warming, the maximum climatological SST warming occurs in the tropical western Pacific (La Niña-like background warming) and the tropical eastern Pacific (El Niño-like background warming) for observations and model, respectively, resulting in opposite zonal SST gradient anomalies in the tropical Pacific. The La Niña-like background warming induces intense surface divergence in the tropical central Pacific, which enhances the easterly trade winds in the tropical central-western Pacific and shifts the strongest ocean-atmosphere coupling westward, correspondingly. On the contrary, the El Niño-like background warming causes westerly winds in the whole tropical Pacific and moves the strongest ocean-atmosphere coupling eastward. Under the La Niña-like background warming, ENSO tends to develop and mature in the tropical central Pacific, because the background easterly wind anomaly weakens the ENSO-induced westerly wind anomaly in the tropical western Pacific, leading to the so-called "Central Pacific ENSO (CP ENSO)". However, the so-called "Eastern Pacific ENSO (EP ENSO)" is likely formed due to increased westerly wind anomaly by the El Niño-like background warming. ENSO lifetime is significantly extended under both the El Niño-like and the La Niña-like background warmings, and especially, it can be prolonged by up to 3 months in the situation of El Niño-like background warming. The prolonged El Nino lifetime mainly applies to extreme El Niño events, which is caused by earlier outbreak of the westerly wind bursts, shallower climatological thermocline depth and weaker "discharge" rate of the ENSO warm signal in response to global warming. Results from both observations and the model also show that

  19. Methods of patient warming during abdominal surgery.

    Directory of Open Access Journals (Sweden)

    Li Shao

    Full Text Available BACKGROUND: Keeping abdominal surgery patients warm is common and warming methods are needed in power outages during natural disasters. We aimed to evaluate the efficacy of low-cost, low-power warming methods for maintaining normothermia in abdominal surgery patients. METHODS: Patients (n = 160 scheduled for elective abdominal surgery were included in this prospective clinical study. Five warming methods were applied: heated blood transfusion/fluid infusion vs. unheated; wrapping patients vs. not wrapping; applying moist dressings, heated or not; surgical field rinse heated or not; and applying heating blankets or not. Patients' nasopharyngeal and rectal temperatures were recorded to evaluate warming efficacy. Significant differences were found in mean temperatures of warmed patients compared to those not warmed. RESULTS: When we compared temperatures of abdominal surgery patient groups receiving three specific warming methods with temperatures of control groups not receiving these methods, significant differences were revealed in temperatures maintained during the surgeries between the warmed groups and controls. DISCUSSION: The value of maintaining normothermia in patients undergoing abdominal surgery under general anesthesia is accepted. Three effective economical and practically applicable warming methods are combined body wrapping and heating blanket; combined body wrapping, heated moist dressings, and heating blanket; combined body wrapping, heated moist dressings, and warmed surgical rinse fluid, with or without heating blanket. These methods are practically applicable when low-cost method is indeed needed.

  20. GLOBAL WARMING. Recent hiatus caused by decadal shift in Indo-Pacific heating.

    Science.gov (United States)

    Nieves, Veronica; Willis, Josh K; Patzert, William C

    2015-07-31

    Recent modeling studies have proposed different scenarios to explain the slowdown in surface temperature warming in the most recent decade. Some of these studies seem to support the idea of internal variability and/or rearrangement of heat between the surface and the ocean interior. Others suggest that radiative forcing might also play a role. Our examination of observational data over the past two decades shows some significant differences when compared to model results from reanalyses and provides the most definitive explanation of how the heat was redistributed. We find that cooling in the top 100-meter layer of the Pacific Ocean was mainly compensated for by warming in the 100- to 300-meter layer of the Indian and Pacific Oceans in the past decade since 2003. Copyright © 2015, American Association for the Advancement of Science.

  1. Statistical significant changes in ground thermal conditions of alpine Austria during the last decade

    Science.gov (United States)

    Kellerer-Pirklbauer, Andreas

    2016-04-01

    Longer data series (e.g. >10 a) of ground temperatures in alpine regions are helpful to improve the understanding regarding the effects of present climate change on distribution and thermal characteristics of seasonal frost- and permafrost-affected areas. Beginning in 2004 - and more intensively since 2006 - a permafrost and seasonal frost monitoring network was established in Central and Eastern Austria by the University of Graz. This network consists of c.60 ground temperature (surface and near-surface) monitoring sites which are located at 1922-3002 m a.s.l., at latitude 46°55'-47°22'N and at longitude 12°44'-14°41'E. These data allow conclusions about general ground thermal conditions, potential permafrost occurrence, trend during the observation period, and regional pattern of changes. Calculations and analyses of several different temperature-related parameters were accomplished. At an annual scale a region-wide statistical significant warming during the observation period was revealed by e.g. an increase in mean annual temperature values (mean, maximum) or the significant lowering of the surface frost number (F+). At a seasonal scale no significant trend of any temperature-related parameter was in most cases revealed for spring (MAM) and autumn (SON). Winter (DJF) shows only a weak warming. In contrast, the summer (JJA) season reveals in general a significant warming as confirmed by several different temperature-related parameters such as e.g. mean seasonal temperature, number of thawing degree days, number of freezing degree days, or days without night frost. On a monthly basis August shows the statistically most robust and strongest warming of all months, although regional differences occur. Despite the fact that the general ground temperature warming during the last decade is confirmed by the field data in the study region, complications in trend analyses arise by temperature anomalies (e.g. warm winter 2006/07) or substantial variations in the winter

  2. Characterizing changes in soil bacterial community structure in response to short-term warming

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Jinbo [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; School of Marine Sciences, Ningbo University, Ningbo China; Sun, Huaibo [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; Peng, Fei [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou China; Zhang, Huayong [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China; Xue, Xian [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou China; Gibbons, Sean M. [Argonne National Laboratory Biosciences Division, Argonne IL USA; Graduate Program in Biophysical Sciences, University of Chicago, Chicago IL USA; Gilbert, Jack A. [Argonne National Laboratory Biosciences Division, Argonne IL USA; Department of Ecology and Evolution, University of Chicago, Chicago IL USA; Chu, Haiyan [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing China

    2014-02-18

    High altitude alpine meadows are experiencing considerably greater than average increases in soil surface temperature, potentially as a result of ongoing climate change. The effects of warming on plant productivity and soil edaphic variables have been established previously, but the influence of warming on soil microbial community structure has not been well characterized. Here, the impact of 15 months of soil warming (both + 1 and + 2 degrees C) on bacterial community structure was examined in a field experiment on a Tibetan plateau alpine meadow using bar-coded pyrosequencing. Warming significantly changed (P < 0.05) the structure of the soil bacterial community, but the alpha diversity was not dramatically affected. Changes in the abundance of the Actinobacteria and Alphaproteobacteria were found to contribute the most to differences between ambient (AT) and artificially warmed conditions. A variance partitioning analysis (VPA) showed that warming directly explained 7.15% variation in bacterial community structure, while warming-induced changes in soil edaphic and plant phenotypic properties indirectly accounted for 28.3% and 20.6% of the community variance, respectively. Interestingly, certain taxa showed an inconsistent response to the two warming treatments, for example Deltaproteobacteria showed a decreased relative abundance at + 1 degrees C, but a return to AT control relative abundance at + 2 degrees C. This suggests complex microbial dynamics that could result from conditional dependencies between bacterial taxa.

  3. Estimation of Radiative Efficiency of Chemicals with Potentially Significant Global Warming Potential.

    Science.gov (United States)

    Betowski, Don; Bevington, Charles; Allison, Thomas C

    2016-01-19

    Halogenated chemical substances are used in a broad array of applications, and new chemical substances are continually being developed and introduced into commerce. While recent research has considerably increased our understanding of the global warming potentials (GWPs) of multiple individual chemical substances, this research inevitably lags behind the development of new chemical substances. There are currently over 200 substances known to have high GWP. Evaluation of schemes to estimate radiative efficiency (RE) based on computational chemistry are useful where no measured IR spectrum is available. This study assesses the reliability of values of RE calculated using computational chemistry techniques for 235 chemical substances against the best available values. Computed vibrational frequency data is used to estimate RE values using several Pinnock-type models, and reasonable agreement with reported values is found. Significant improvement is obtained through scaling of both vibrational frequencies and intensities. The effect of varying the computational method and basis set used to calculate the frequency data is discussed. It is found that the vibrational intensities have a strong dependence on basis set and are largely responsible for differences in computed RE values.

  4. Reconciling controversies about the ‘global warming hiatus’

    Science.gov (United States)

    Medhaug, Iselin; Stolpe, Martin B.; Fischer, Erich M.; Knutti, Reto

    2017-05-01

    Between about 1998 and 2012, a time that coincided with political negotiations for preventing climate change, the surface of Earth seemed hardly to warm. This phenomenon, often termed the ‘global warming hiatus’, caused doubt in the public mind about how well anthropogenic climate change and natural variability are understood. Here we show that apparently contradictory conclusions stem from different definitions of ‘hiatus’ and from different datasets. A combination of changes in forcing, uptake of heat by the oceans, natural variability and incomplete observational coverage reconciles models and data. Combined with stronger recent warming trends in newer datasets, we are now more confident than ever that human influence is dominant in long-term warming.

  5. Drylands face potential threat under 2 °C global warming target

    Science.gov (United States)

    Huang, Jianping; Yu, Haipeng; Dai, Aiguo; Wei, Yun; Kang, Litai

    2017-06-01

    The Paris Agreement aims to limit global mean surface warming to less than 2 °C relative to pre-industrial levels. However, we show this target is acceptable only for humid lands, whereas drylands will bear greater warming risks. Over the past century, surface warming over global drylands (1.2-1.3 °C) has been 20-40% higher than that over humid lands (0.8-1.0 °C), while anthropogenic CO2 emissions generated from drylands (~230 Gt) have been only ~30% of those generated from humid lands (~750 Gt). For the twenty-first century, warming of 3.2-4.0 °C (2.4-2.6 °C) over drylands (humid lands) could occur when global warming reaches 2.0 °C, indicating ~44% more warming over drylands than humid lands. Decreased maize yields and runoff, increased long-lasting drought and more favourable conditions for malaria transmission are greatest over drylands if global warming were to rise from 1.5 °C to 2.0 °C. Our analyses indicate that ~38% of the world's population living in drylands would suffer the effects of climate change due to emissions primarily from humid lands. If the 1.5 °C warming limit were attained, the mean warming over drylands could be within 3.0 °C therefore it is necessary to keep global warming within 1.5 °C to prevent disastrous effects over drylands.

  6. Predictability of the recent slowdown and subsequent recovery of large-scale surface warming using statistical methods

    Science.gov (United States)

    Mann, Michael E.; Steinman, Byron A.; Miller, Sonya K.; Frankcombe, Leela M.; England, Matthew H.; Cheung, Anson H.

    2016-04-01

    The temporary slowdown in large-scale surface warming during the early 2000s has been attributed to both external and internal sources of climate variability. Using semiempirical estimates of the internal low-frequency variability component in Northern Hemisphere, Atlantic, and Pacific surface temperatures in concert with statistical hindcast experiments, we investigate whether the slowdown and its recent recovery were predictable. We conclude that the internal variability of the North Pacific, which played a critical role in the slowdown, does not appear to have been predictable using statistical forecast methods. An additional minor contribution from the North Atlantic, by contrast, appears to exhibit some predictability. While our analyses focus on combining semiempirical estimates of internal climatic variability with statistical hindcast experiments, possible implications for initialized model predictions are also discussed.

  7. Warming of the Global Ocean: Spatial Structure and Water-Mass Trends

    Science.gov (United States)

    Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.

    2016-01-01

    This study investigates the multidecadal warming and interannual-to-decadal heat content changes in the upper ocean (0-700 m), focusing on vertical and horizontal patterns of variability. These results support a nearly monotonic warming over much of the World Ocean, with a shift toward Southern Hemisphere warming during the well-observed past decade. This is based on objectively analyzed gridded observational datasets and on a modeled state estimate. Besides the surface warming, a warming climate also has a subsurface effect manifesting as a strong deepening of the midthermocline isopycnals, which can be diagnosed directly from hydrographic data. This deepening appears to be a result of heat entering via subduction and spreading laterally from the high-latitude ventilation regions of subtropical mode waters. The basin-average multidecadal warming mainly expands the subtropical mode water volume, with weak changes in the temperature-salinity (u-S) relationship (known as ''spice'' variability). However, the spice contribution to the heat content can be locally large, for example in Southern Hemisphere. Multidecadal isopycnal sinking has been strongest over the southern basins and weaker elsewhere with the exception of the Gulf Stream/North Atlantic Current/subtropical recirculation gyre. At interannual to decadal time scales, wind-driven sinking and shoaling of density surfaces still dominate ocean heat content changes, while the contribution from temperature changes along density surfaces tends to decrease as time scales shorten.

  8. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China.

    Science.gov (United States)

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C; Sang, Weiguo

    2015-03-13

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  9. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China

    Science.gov (United States)

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo

    2015-03-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  10. The global warming hiatus: Slowdown or redistribution?

    Science.gov (United States)

    Yan, Xiao-Hai; Boyer, Tim; Trenberth, Kevin; Karl, Thomas R.; Xie, Shang-Ping; Nieves, Veronica; Tung, Ka-Kit; Roemmich, Dean

    2016-11-01

    Global mean surface temperatures (GMST) exhibited a smaller rate of warming during 1998-2013, compared to the warming in the latter half of the 20th Century. Although, not a "true" hiatus in the strict definition of the word, this has been termed the "global warming hiatus" by IPCC (2013). There have been other periods that have also been defined as the "hiatus" depending on the analysis. There are a number of uncertainties and knowledge gaps regarding the "hiatus." This report reviews these issues and also posits insights from a collective set of diverse information that helps us understand what we do and do not know. One salient insight is that the GMST phenomenon is a surface characteristic that does not represent a slowdown in warming of the climate system but rather is an energy redistribution within the oceans. Improved understanding of the ocean distribution and redistribution of heat will help better monitor Earth's energy budget and its consequences. A review of recent scientific publications on the "hiatus" shows the difficulty and complexities in pinpointing the oceanic sink of the "missing heat" from the atmosphere and the upper layer of the oceans, which defines the "hiatus." Advances in "hiatus" research and outlooks (recommendations) are given in this report.

  11. Abrupt warming of the Red Sea

    KAUST Repository

    Raitsos, D. E.

    2011-07-19

    Coral reef ecosystems, often referred to as “marine rainforests,” concentrate the most diverse life in the oceans. Red Sea reef dwellers are adapted in a very warm environment, fact that makes them vulnerable to further and rapid warming. The detection and understanding of abrupt temperature changes is an important task, as ecosystems have more chances to adapt in a slowly rather than in a rapid changing environment. Using satellite derived sea surface and ground based air temperatures, it is shown that the Red Sea is going through an intense warming initiated in the mid-90s, with evidence for an abrupt increase after 1994 (0.7°C difference pre and post the shift). The air temperature is found to be a key parameter that influences the Red Sea marine temperature. The comparisons with Northern Hemisphere temperatures revealed that the observed warming is part of global climate change trends. The hitherto results also raise additional questions regarding other broader climatic impacts over the area.

  12. Abrupt warming of the Red Sea

    Science.gov (United States)

    Raitsos, D. E.; Hoteit, I.; Prihartato, P. K.; Chronis, T.; Triantafyllou, G.; Abualnaja, Y.

    2011-07-01

    Coral reef ecosystems, often referred to as “marine rainforests,” concentrate the most diverse life in the oceans. Red Sea reef dwellers are adapted in a very warm environment, fact that makes them vulnerable to further and rapid warming. The detection and understanding of abrupt temperature changes is an important task, as ecosystems have more chances to adapt in a slowly rather than in a rapid changing environment. Using satellite derived sea surface and ground based air temperatures, it is shown that the Red Sea is going through an intense warming initiated in the mid-90s, with evidence for an abrupt increase after 1994 (0.7°C difference pre and post the shift). The air temperature is found to be a key parameter that influences the Red Sea marine temperature. The comparisons with Northern Hemisphere temperatures revealed that the observed warming is part of global climate change trends. The hitherto results also raise additional questions regarding other broader climatic impacts over the area.

  13. Mitigation of global warming through renewable biomass

    International Nuclear Information System (INIS)

    Dhillon, R.S.; Wuehlisch, George von

    2013-01-01

    Rising level of atmospheric CO 2 and consequent global warming is evident. Global surface temperature have already increased by 0.8 °C over the 20th century and is projected to increase by 1.4–5.8 °C during the twenty-first century. The global warming will continue till atmospheric concentrations of the major greenhouse gases are stabilized. Among them, CO 2 is mainly responsible and is expected to account for about 60% of the warming over the next century. This study reviews advances on causes and consequences of global climate change and its impact on nature and society. Renewable biomass has tremendous potential to mitigate the global warming. Renewable biomass is expected to play a multifunctional role including food production, source of energy and fodder, biodiversity conservation, yield of goods and services to the society as well as mitigation of the impact of climate change. The review highlights the different management and research strategies in forestry, agriculture, agroforestry and grasslands to mitigate the global warming. -- Highlights: ► Rising level of atmospheric CO 2 and consequent global warming is evident. ► CO 2 is mainly responsible for global warming. ► Global temperature is predicted to increase by 1.4–5.8 °C during 21st century. ► Renewable biomass has great potential to mitigate the global warming

  14. Global Changes in Drought Conditions Under Different Levels of Warming

    Science.gov (United States)

    Naumann, G.; Alfieri, L.; Wyser, K.; Mentaschi, L.; Betts, R. A.; Carrao, H.; Spinoni, J.; Vogt, J.; Feyen, L.

    2018-04-01

    Higher evaporative demands and more frequent and persistent dry spells associated with rising temperatures suggest that drought conditions could worsen in many regions of the world. In this study, we assess how drought conditions may develop across the globe for 1.5, 2, and 3°C warming compared to preindustrial temperatures. Results show that two thirds of global population will experience a progressive increase in drought conditions with warming. For drying areas, drought durations are projected to rise at rapidly increasing rates with warming, averaged globally from 2.0 month/°C below 1.5°C to 4.2 month/°C when approaching 3°C. Drought magnitudes could double for 30% of global landmass under stringent mitigation. If contemporary warming rates continue, water supply-demand deficits could become fivefold in size for most of Africa, Australia, southern Europe, southern and central states of the United States, Central America, the Caribbean, north-west China, and parts of Southern America. In approximately 20% of the global land surface, drought magnitude will halve with warming of 1.5°C and higher levels, mainly most land areas north of latitude 55°N, but also parts of South America and Eastern and South-eastern Asia. A progressive and significant increase in frequency of droughts is projected with warming in the Mediterranean basin, most of Africa, West and Southern Asia, Central America, and Oceania, where droughts are projected to happen 5 to 10 times more frequent even under ambitious mitigation targets and current 100-year events could occur every two to five years under 3°C of warming.

  15. Authropogenic Warming in North Alaska?.

    Science.gov (United States)

    Michaels, Patrick J.; Sappington, David E.; Stooksbury, David E.

    1988-09-01

    Using permafrost boreholes, Lachenbruch and Marshall recently reported evidence for a 2°-4°C warming in North Alaska occurring at some undetermined time during the last century. Popular accounts suggest their findings are evidence for anthropogenic warming caused by trace gases. Analyses of North Alaskan 1000-500 mb thickness onwards back to 1948 indicate that the warming was prior to that date. Relatively sparse thermometric data for the early twentieth century from Jones et al. are too noisy to support any trend since the data record begins in 1910, or to apply to any subperiod of climatic significance. Any warming detected from the permafrost record therefore occurred before the major emissions of thermally active trace gases.

  16. Trends in continental temperature and humidity directly linked to ocean warming.

    Science.gov (United States)

    Byrne, Michael P; O'Gorman, Paul A

    2018-05-08

    In recent decades, the land surface has warmed substantially more than the ocean surface, and relative humidity has fallen over land. Amplified warming and declining relative humidity over land are also dominant features of future climate projections, with implications for climate-change impacts. An emerging body of research has shown how constraints from atmospheric dynamics and moisture budgets are important for projected future land-ocean contrasts, but these ideas have not been used to investigate temperature and humidity records over recent decades. Here we show how both the temperature and humidity changes observed over land between 1979 and 2016 are linked to warming over neighboring oceans. A simple analytical theory, based on atmospheric dynamics and moisture transport, predicts equal changes in moist static energy over land and ocean and equal fractional changes in specific humidity over land and ocean. The theory is shown to be consistent with the observed trends in land temperature and humidity given the warming over ocean. Amplified land warming is needed for the increase in moist static energy over drier land to match that over ocean, and land relative humidity decreases because land specific humidity is linked via moisture transport to the weaker warming over ocean. However, there is considerable variability about the best-fit trend in land relative humidity that requires further investigation and which may be related to factors such as changes in atmospheric circulations and land-surface properties.

  17. Effects of Global Warming on Vibrio Ecology.

    Science.gov (United States)

    Vezzulli, Luigi; Pezzati, Elisabetta; Brettar, Ingrid; Höfle, Manfred; Pruzzo, Carla

    2015-06-01

    Vibrio-related infections are increasing worldwide both in humans and aquatic animals. Rise in global sea surface temperature (SST), which is approximately 1 °C higher now than 140 years ago and is one of the primary physical impacts of global warming, has been linked to such increases. In this chapter, major known effects of increasing SST on the biology and ecology of vibrios are described. They include the effects on bacterial growth rate, both in the field and in laboratory, culturability, expression of pathogenicity traits, and interactions with aquatic organisms and abiotic surfaces. Special emphasis is given to the effect of ocean warming on Vibrio interactions with zooplankters, which represent one of the most important aquatic reservoirs for these bacteria. The reported findings highlight the biocomplexity of the interactions between vibrios and their natural environment in a climate change scenario, posing the need for interdisciplinary studies to properly understand the connection between ocean warming and persistence and spread of vibrios in sea waters and the epidemiology of the diseases they cause.

  18. Signature of ocean warming in global fisheries catch.

    Science.gov (United States)

    Cheung, William W L; Watson, Reg; Pauly, Daniel

    2013-05-16

    Marine fishes and invertebrates respond to ocean warming through distribution shifts, generally to higher latitudes and deeper waters. Consequently, fisheries should be affected by 'tropicalization' of catch (increasing dominance of warm-water species). However, a signature of such climate-change effects on global fisheries catch has so far not been detected. Here we report such an index, the mean temperature of the catch (MTC), that is calculated from the average inferred temperature preference of exploited species weighted by their annual catch. Our results show that, after accounting for the effects of fishing and large-scale oceanographic variability, global MTC increased at a rate of 0.19 degrees Celsius per decade between 1970 and 2006, and non-tropical MTC increased at a rate of 0.23 degrees Celsius per decade. In tropical areas, MTC increased initially because of the reduction in the proportion of subtropical species catches, but subsequently stabilized as scope for further tropicalization of communities became limited. Changes in MTC in 52 large marine ecosystems, covering the majority of the world's coastal and shelf areas, are significantly and positively related to regional changes in sea surface temperature. This study shows that ocean warming has already affected global fisheries in the past four decades, highlighting the immediate need to develop adaptation plans to minimize the effect of such warming on the economy and food security of coastal communities, particularly in tropical regions.

  19. Global warming without global mean precipitation increase?

    Science.gov (United States)

    Salzmann, Marc

    2016-06-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K(-1) decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge.

  20. The role of perioperative warming in surgery: a systematic review

    Directory of Open Access Journals (Sweden)

    Muhammad Shafique Sajid

    Full Text Available OBJECTIVE: The objective of this review was to systematically analyze the trials on the effectiveness of perioperative warming in surgical patients. METHODS: A systematic review of the literature was undertaken. Clinical trials on perioperative warming were selected according to specific criteria and analyzed to generate summative data expressed as standardized mean difference (SMD. RESULTS: Twenty-five studies encompassing 3,599 patients in various surgical disciplines were retrieved from the electronic databases. Nineteen randomized trials on 1785 patients qualified for this review. The no-warming group developed statistically significant hypothermia. In the fixed effect model, the warming group had significantly less pain and lower incidence of wound infection, compared with the no-warming group. In the random effect model, the warming group was also associated with lower risk of post-anesthetic shivering. Both in the random and the fixed effect models, the warming group was associated with significantly less blood loss. However, there was significant heterogeneity among the trials. CONCLUSION: Perioperative warming of surgical patients is effective in reducing postoperative wound pain, wound infection and shivering. Systemic warming of the surgical patient is also associated with less perioperative blood loss through preventing hypothermia-induced coagulopathy. Perioperative warming may be given routinely to all patients of various surgical disciplines in order to counteract the consequences of hypothermia.

  1. CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States

    Science.gov (United States)

    Ma, H.-Y.; Klein, S. A.; Xie, S.; Zhang, C.; Tang, S.; Tang, Q.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Ahlgrimm, M.; Berg, L. K.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Liu, Y.; Merryfield, W.; Qian, Y.; Roehrig, R.; Wang, Y.-C.

    2018-03-01

    Many weather forecast and climate models simulate warm surface air temperature (T2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions of surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.

  2. Dynamical Analysis of the Global Warming

    Directory of Open Access Journals (Sweden)

    J. A. Tenreiro Machado

    2012-01-01

    Full Text Available Global warming is a major concern nowadays. Weather conditions are changing, and it seems that human activity is one of the main causes. In fact, since the beginning of the industrial revolution, the burning of fossil fuels has increased the nonnatural emissions of carbon dioxide to the atmosphere. Carbon dioxide is a greenhouse gas that absorbs the infrared radiation produced by the reflection of the sunlight on the Earth’s surface, trapping the heat in the atmosphere. Global warming and the associated climate changes are being the subject of intensive research due to their major impact on social, economic, and health aspects of human life. This paper studies the global warming trend in the perspective of dynamical systems and fractional calculus, which is a new standpoint in this context. Worldwide distributed meteorological stations and temperature records for the last 100 years are analysed. It is shown that the application of Fourier transforms and power law trend lines leads to an assertive representation of the global warming dynamics and a simpler analysis of its characteristics.

  3. Response of the global surface ozone distribution to Northern Hemisphere sea surface temperature changes: implications for long-range transport

    Science.gov (United States)

    Yi, Kan; Liu, Junfeng; Ban-Weiss, George; Zhang, Jiachen; Tao, Wei; Cheng, Yanli; Tao, Shu

    2017-07-01

    The response of surface ozone (O3) concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM). Idealized, spatially uniform sea surface temperature (SST) anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage between basin-scale SST

  4. Response of the global surface ozone distribution to Northern Hemisphere sea surface temperature changes: implications for long-range transport

    Directory of Open Access Journals (Sweden)

    K. Yi

    2017-07-01

    Full Text Available The response of surface ozone (O3 concentrations to basin-scale warming and cooling of Northern Hemisphere oceans is investigated using the Community Earth System Model (CESM. Idealized, spatially uniform sea surface temperature (SST anomalies of ±1 °C are individually superimposed onto the North Pacific, North Atlantic, and North Indian oceans. Our simulations suggest large seasonal and regional variability in surface O3 in response to SST anomalies, especially in the boreal summer. The responses of surface O3 associated with basin-scale SST warming and cooling have similar magnitude but are opposite in sign. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv. With fixed emissions, SST increases in a specific ocean basin in the Northern Hemisphere tend to increase the summertime surface O3 concentrations over upwind regions, accompanied by a widespread reduction over downwind continents. We implement the integrated process rate (IPR analysis in CESM and find that meteorological O3 transport in response to SST changes is the key process causing surface O3 perturbations in most cases. During the boreal summer, basin-scale SST warming facilitates the vertical transport of O3 to the surface over upwind regions while significantly reducing the vertical transport over downwind continents. This process, as confirmed by tagged CO-like tracers, indicates a considerable suppression of intercontinental O3 transport due to increased tropospheric stability at lower midlatitudes induced by SST changes. Conversely, the responses of chemical O3 production to regional SST warming can exert positive effects on surface O3 levels over highly polluted continents, except South Asia, where intensified cloud loading in response to North Indian SST warming depresses both the surface air temperature and solar radiation, and thus photochemical O3 production. Our findings indicate a robust linkage

  5. Effect of Warm Atlantic Waters on the Climate Anomalies in the West Arctic

    Directory of Open Access Journals (Sweden)

    A. N. Zolotokrylin

    2015-01-01

    Full Text Available Significant climatic changes of oceanic and atmospheric elements and a relation of them to the ocean surface winter anomalies in North Atlantic are analyzed in the paper. Periods of «warm» ocean (2002–2012 and «cold» ocean (1960–1970 were determined. Positive anomalies of the ocean surface temperature increase the ice-free water area and, correspondingly, decrease the ice-field area. As a result of such changes in a state of the ocean surface (open water and ice, surface air temperature rises, and, consequently, atmospheric pressure in central part of a given Arctic sector drops.

  6. Tribological evaluation of surface modified H13 tool steel in warm forming of Ti–6Al–4V titanium alloy sheet

    OpenAIRE

    Wang, Dan; Li, Heng; Yang, He; Ma, Jun; Li, Guangjun

    2014-01-01

    The H13 hot-working tool steel is widely used as die material in the warm forming of Ti–6Al–4V titanium alloy sheet. However, under the heating condition, severe friction and lubricating conditions between the H13 tools and Ti–6Al–4V titanium alloy sheet would cause difficulty in guaranteeing forming quality. Surface modification may be used to control the level of friction force, reduce the friction wear and extend the service life of dies. In this paper, four surface modification methods (c...

  7. Understanding the tropical warm temperature bias simulated by climate models

    Science.gov (United States)

    Brient, Florent; Schneider, Tapio

    2017-04-01

    The state-of-the-art coupled general circulation models have difficulties in representing the observed spatial pattern of surface tempertaure. A majority of them suffers a warm bias in the tropical subsiding regions located over the eastern parts of oceans. These regions are usually covered by low-level clouds scattered from stratus along the coasts to more vertically developed shallow cumulus farther from them. Models usually fail to represent accurately this transition. Here we investigate physical drivers of this warm bias in CMIP5 models through a near-surface energy budget perspective. We show that overestimated solar insolation due to a lack of stratocumulus mostly explains the warm bias. This bias also arises partly from inter-model differences in surface fluxes that could be traced to differences in near-surface relative humidity and air-sea temperature gradient. We investigate the role of the atmosphere in driving surface biases by comparing historical and atmopsheric (AMIP) experiments. We show that some differences in boundary-layer characteristics, mostly those related to cloud fraction and relative humidity, are already present in AMIP experiments and may be the drivers of coupled biases. This gives insights in how models can be improved for better simulations of the tropical climate.

  8. Global Warming Blame the Sun

    CERN Document Server

    Calder, N

    1997-01-01

    Concern about climate change reaches a political peak at a UN conference in Kyoto, 1-10 December, but behind the scenes the science is in turmoil. A challenge to the hypothesis that greenhouse gases are responsible for global warming comes from the discovery that cosmic rays from the Galaxy are involved in making clouds (Svensmark and Friis-Christensen, 1997). During the 20th Century the wind from the Sun has grown stronger and the count of cosmic rays has diminished. With fewer clouds, the EarthÕs surface has warmed up. This surprising mechanism explains the link between the Sun and climate change that astronomers and geophysicists have suspected for 200 years.

  9. Is the enhancement of global warming important?

    International Nuclear Information System (INIS)

    Symons, M.C.R.; Barrett, J.

    2001-01-01

    There is no doubt that global warming is important; without it the Earth's surface would have a mean temperature of 33 o C lower than it has currently. The IPCC maintains that human activities are to blame for the observed increase in the concentration of carbon dioxide in the atmosphere since pre-industrial times. There are some doubts about whether global warming is being enhanced by the activities of the human race. This article reviews these doubts and the proposed remedies to the alleged enhancement. (author)

  10. Greenland in Warm (1.5 °C) and Warmer (RCP 8.5) Worlds: The Influence of the Paris Agreement on Ice Sheet Surface Melting

    Science.gov (United States)

    Reusch, D. B.

    2017-12-01

    Melting on the surface of the Greenland ice sheet has been changing dramatically as global air temperatures have increased in recent decades, including melt extent often exceeding the 1981-2010 median through much of the melt season and the onset of intermittent melt moving to earlier in the year. To evaluate potential future change, we investigate surface melting characteristics under both "low" (limited to 1.5 °C) and "high" (RCP 8.5) warming scenarios including analysis of differences in scenario outcomes. Climatologies of melt-relevant variables are developed from two publicly available ensembles of CESM1-CAM5-BGC GCM runs: the 30-member Large Ensemble (CESM LE; Kay et al. 2015) for historical calibration and the RCP 8.5 scenario and the 11-member Low Warming ensemble (CESM LW; Sanderson et al. 2017) for the 1.5 °C scenario. For higher spatial resolution (15 km) and improved polar-centric model physics, we also apply the regional forecast model Polar WRF to decadal subsets (1996-2005; 2071-80) using GCM data archived at sub-daily resolution for boundary conditions. Models were skill-tested against ERA-Interim Reanalysis (ERAI) and AWS observations. For example, CESM LE tends to overpredict both maximum (above-freezing) and minimum daily average surface temperatures compared to observations from the GC-Net Swiss Camp AWS. Ensembles of members differing only by initial conditions allow us to also estimate intramodel uncertainty. Historical (1981-2000) CESM LE spatially averaged July temperatures are 2 +/- 0.2 °C cooler than ERAI while local anomalies in individual members reach up to +/- 2 °C. As expected, Greenland does not escape future (2081-2100) warming (and expectations of more widespread surface melting) even in the LW scenario, but positive changes versus ERAI are mostly coastal (2-3 °C) with the interior showing only minor change (+/- 1 °C). In contrast, under RCP 8.5, the entire ice sheet has warmed by 2-6 °C, or a median increase of 5 °C versus

  11. Self-interacting warm dark matter

    International Nuclear Information System (INIS)

    Hannestad, Steen; Scherrer, Robert J.

    2000-01-01

    It has been shown by many independent studies that the cold dark matter scenario produces singular galactic dark halos, in strong contrast with observations. Possible remedies are that either the dark matter is warm so that it has significant thermal motion or that the dark matter has strong self-interactions. We combine these ideas to calculate the linear mass power spectrum and the spectrum of cosmic microwave background (CMB) fluctuations for self-interacting warm dark matter. Our results indicate that such models have more power on small scales than is the case for the standard warm dark matter model, with a CMB fluctuation spectrum which is nearly indistinguishable from standard cold dark matter. This enhanced small-scale power may provide better agreement with the observations than does standard warm dark matter. (c) 2000 The American Physical Society

  12. Clinical Trial Research on Mongolian Medical Warm Acupuncture in Treating Insomnia

    Directory of Open Access Journals (Sweden)

    Agula Bo

    2016-01-01

    Full Text Available Objective. Insomnia is one of the most common sleep disorders. Hypnotics have poor long-term efficacy. Mongolian medical warm acupuncture has significant efficacy in treating insomnia. The paper evaluates the role of Mongolian medical warm acupuncture in treating insomnia by investigating the Mongolian medicine syndromes and conditions, Pittsburgh sleep quality index, and polysomnography indexes. Method. The patients were diagnosed in accordance with International Classification of Sleep Disorders (ICSD-2. The insomnia patients were divided into the acupuncture group (40 cases and the estazolam group (40 cases. The patients underwent intervention of Mongolian medical warm acupuncture and estazolam. The indicators of the Mongolian medicine syndromes and conditions, Pittsburgh sleep quality index (PSQI, and polysomnography indexes (PSG have been detected. Result. Based on the comparison of the Mongolian medicine syndrome scores between the warm acupuncture group and the drug treatment group, the result indicated P<0.01. The clinical efficacy result showed that the effective rate (85% in the warm acupuncture group was higher than that (70% in the drug group. The total scores of PSQI of both groups were approximated. The sleep quality indexes of both groups decreased significantly (P<0.05. The sleep quality index in the Mongolian medical warm acupuncture group decreased significantly (P<0.01 and was better than that in the estazolam group. The sleep efficiency and daytime functions of the patients in the Mongolian medical warm acupuncture group improved significantly (P<0.01. The sleep time was significantly extended (P<0.01 in the Mongolian medical warm acupuncture group following PSG intervention. The sleep time during NREM in the Mongolian warm acupuncture group increased significantly (P<0.01. The sleep time exhibited a decreasing trend during REM and it decreased significantly in the Mongolian warm acupuncture group (P<0.01. The percentage of

  13. Evaluation of RSG-GAS purification system and pool warm water layer supplier performance

    International Nuclear Information System (INIS)

    Sudiyono; Suhadi; Diah-Erlina-Lestari

    2005-01-01

    Function of RSG-GAS purification system and warm water supplier (KBE 02) are to pick up dissolve activation result and another dirts of warm water layer. To keep quality of water at the decided level. The system is equipped by heater to supply warm water layer on the reactor pool surface the distribution is to reduce radiation level in the operation hall area a speciality on the reactor pool surface. Line KBE 02 tomord beam tube headitty system supplies water necessary to be shielding to beam tube in use off time. Of the RSG-GAS purification system and pool warm water layer performance date can be shown north of water is always in good condition. To require the dechded requirement. Resin live time is two years and then months

  14. Role of Stratospheric Water Vapor in Global Warming from GCM Simulations Constrained by MLS Observation

    Science.gov (United States)

    Wang, Y.; Stek, P. C.; Su, H.; Jiang, J. H.; Livesey, N. J.; Santee, M. L.

    2014-12-01

    Over the past century, global average surface temperature has warmed by about 0.16°C/decade, largely due to anthropogenic increases in well-mixed greenhouse gases. However, the trend in global surface temperatures has been nearly flat since 2000, raising a question regarding the exploration of the drivers of climate change. Water vapor is a strong greenhouse gas in the atmosphere. Previous studies suggested that the sudden decrease of stratospheric water vapor (SWV) around 2000 may have contributed to the stall of global warming. Since 2004, the SWV observed by Microwave Limb Sounder (MLS) on Aura satellite has shown a slow recovery. The role of recent SWV variations in global warming has not been quantified. We employ a coupled atmosphere-ocean climate model, the NCAR CESM, to address this issue. It is found that the CESM underestimates the stratospheric water vapor by about 1 ppmv due to limited representations of the stratospheric dynamic and chemical processes important for water vapor variabilities. By nudging the modeled SWV to the MLS observation, we find that increasing SWV by 1 ppmv produces a robust surface warming about 0.2°C in global-mean when the model reaches equilibrium. Conversely, the sudden drop of SWV from 2000 to 2004 would cause a surface cooling about -0.08°C in global-mean. On the other hand, imposing the observed linear trend of SWV based on the 10-year observation of MLS in the CESM yields a rather slow surface warming, about 0.04°C/decade. Our model experiments suggest that SWV contributes positively to the global surface temperature variation, although it may not be the dominant factor that drives the recent global warming hiatus. Additional sensitivity experiments show that the impact of SWV on surface climate is mostly governed by the SWV amount at 100 hPa in the tropics. Furthermore, the atmospheric model simulations driven by observed sea surface temperature (SST) show that the inter-annual variation of SWV follows that of SST

  15. Warm spells in Northern Europe in relation to atmospheric circulation

    Science.gov (United States)

    Tomczyk, Arkadiusz M.; Piotrowski, Piotr; Bednorz, Ewa

    2017-05-01

    This study describes warm spells in Northern Europe and determines the synoptic situations that cause their occurrence. In this article, a relatively warm day was defined as a day when the maximum temperature exceeded the 95th annual percentile, and a warm spell (WS) was considered to be a sequence of at least five relatively warm days. In the analysed multiannual period and within the investigated area, 24 (Kallax) to 53 (Oslo) WSs were observed. The occurrence of WSs was mainly connected with positive anomalies of sea level pressure and a 500-hPa isobaric surface, displaying the presence of high-pressure systems. This occurrence was also accompanied by positive T850 anomalies.

  16. Does the climate warming hiatus exist over the Tibetan Plateau?

    OpenAIRE

    Anmin Duan; Zhixiang Xiao

    2015-01-01

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998–2013 (0.25 °C decade−1), compared with that during 1980–1997 (0.21 °C decade−1). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud–ra...

  17. Arctic plants are capable of sustained responses to long-term warming

    Directory of Open Access Journals (Sweden)

    Robert T. Barrett

    2016-05-01

    Full Text Available Previous studies have shown that Arctic plants typically respond to warming with increased growth and reproductive effort and accelerated phenology, and that the magnitude of these responses is likely to change over time. We investigated the effects of long-term experimental warming on plant growth (leaf length and reproduction (inflorescence height, reproductive phenology and reproductive effort using 17–19 years of measurements collected as part of the International Tundra Experiment (ITEX at sites near Barrow and Atqasuk, Alaska. During the study period, linear regressions indicated non-significant tendencies towards warming air temperatures at our study sites. Results of our meta-analyses on the effect size of experimental warming (calculated as Hedges’ d indicated species generally responded to warming by increasing inflorescence height, increasing leaf length and flowering earlier, while reproductive effort did not respond consistently. Using weighted least-squares regressions on effect sizes, we found a significant trend towards dampened response to experimental warming over time for reproductive phenology. This tendency was consistent, though non-significant, across all traits. A separate analysis revealed significant trends towards reduced responses to experimental warming during warmer summers for all traits. We therefore propose that tendencies towards dampened plant responses to experimental warming over time are the result of regional warming. These results show that Arctic plants are capable of sustained responses to warming over long periods of time but also suggest that, as the region continues to warm, factors such as nutrient availability, competition and herbivory will become more limiting to plant growth and reproduction than temperature.

  18. Distribution of a pelagic tunicate, Salpa fusiformis in warm surface current of the eastern Korean waters and its impingement on cooling water intakes of Uljin nuclear power plant.

    Science.gov (United States)

    Chae, Jinho; Choi, Hyun Woo; Lee, Woo Jin; Kim, Dongsung; Lee, Jae Hac

    2008-07-01

    Impingement of a large amount of gelatinous plankton, Salpa fusiformis on the seawater intake system-screens in a nuclear power plant at Uljin was firstly recorded on 18th June 2003. Whole amount of the clogged animals was estimated were presumptively at 295 tons and the shortage of cooling seawater supply by the animal clogging caused 38% of decrease in generation capability of the power plant. Zooplankton collection with a multiple towing net during the day and at night from 5 to 6 June 2003 included various gelatinous zooplanktons known to be warm water species such as salps and siphonophores. Comparatively larger species, Salpa fusiformis occupied 25.4% in individual density among the gelatinous plankton and showed surface distribution in the depth shallower than thermocline, performing little diel vertical migration. Temperature, salinity and satellite data also showed warm surface current predominated over the southern coastal region near the power plant in June. The results suggested that warm surface current occasionally extended into the neritic region may transfer S. fusiformis, to the waters off the power plant. The environmental factors and their relation to ecobiology of the large quantity of salpa population that are being sucked into the intake channel of the power plant are discussed.

  19. Aridity changes in the Tibetan Plateau in a warming climate

    International Nuclear Information System (INIS)

    Gao, Yanhong; Li, Xia; Xu, Jianwei; Ruby Leung, L.; Chen, Deliang

    2015-01-01

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of increasing climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of precipitation to potential evapotranspiration (P/PET) as an aridity index, we used observed meteorological records at 83 stations in the TP to calculate PET using the Penman–Monteith algorithm and the ratio. Spatial and temporal changes of P/PET in 1979–2011 were analyzed. Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter, and half of the stations in the semi-humid eastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with the change patterns of precipitation, sunshine duration and diurnal temperature range. Temporal correlations between the annual P/PET ratio and other meteorological variables confirm the significant correlation between aridity and the three variables, with precipitation being the dominant driver of P/PET changes at the interannual time scale. Annual PET are insignificantly but negatively correlated with P/PET in the cold season. In the warm season, however, the correlation between PET and P/PET is significant at the confidence level of 99.9% when the cryosphere near the surface melts. Significant correlation between annual wind speed and aridity occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring. (letter)

  20. Enhanced deep ocean ventilation and oxygenation with global warming

    Science.gov (United States)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  1. Will Outer Tropical Cyclone Size Change due to Anthropogenic Warming?

    Science.gov (United States)

    Schenkel, B. A.; Lin, N.; Chavas, D. R.; Vecchi, G. A.; Knutson, T. R.; Oppenheimer, M.

    2017-12-01

    Prior research has shown significant interbasin and intrabasin variability in outer tropical cyclone (TC) size. Moreover, outer TC size has even been shown to vary substantially over the lifetime of the majority of TCs. However, the factors responsible for both setting initial outer TC size and determining its evolution throughout the TC lifetime remain uncertain. Given these gaps in our physical understanding, there remains uncertainty in how outer TC size will change, if at all, due to anthropogenic warming. The present study seeks to quantify whether outer TC size will change significantly in response to anthropogenic warming using data from a high-resolution global climate model and a regional hurricane model. Similar to prior work, the outer TC size metric used in this study is the radius in which the azimuthal-mean surface azimuthal wind equals 8 m/s. The initial results from the high-resolution global climate model data suggest that the distribution of outer TC size shifts significantly towards larger values in each global TC basin during future climates, as revealed by 1) statistically significant increase of the median outer TC size by 5-10% (p<0.05) according to a 1,000-sample bootstrap resampling approach with replacement and 2) statistically significant differences between distributions of outer TC size from current and future climate simulations as shown using two-sample Kolmogorov Smirnov testing (p<<0.01). Additional analysis of the high-resolution global climate model data reveals that outer TC size does not uniformly increase within each basin in future climates, but rather shows substantial locational dependence. Future work will incorporate the regional mesoscale hurricane model data to help focus on identifying the source of the spatial variability in outer TC size increases within each basin during future climates and, more importantly, why outer TC size changes in response to anthropogenic warming.

  2. Effect of Precuring Warming on Mechanical Properties of Restorative Composites

    Directory of Open Access Journals (Sweden)

    Kareem Nada

    2011-01-01

    Full Text Available To investigate the effect of prepolymerization warming on composites' mechanical properties, three composites were evaluated: Clearfil Majesty (CM (Kuraray, Z-100 (3M/ESPE, and Light-Core (LC (Bisco. Specimens were prepared from each composite at room temperature as control and 2 higher temperatures (37∘C and 54∘C to test surface hardness (SH, compressive strength (CS, and diametral tensile strength (DTS. Data were statistically analyzed using ANOVA and Fisher's LSD tests. Results revealed that prewarming CM and Z100 specimens significantly improved their SH mean values (P<0.05. Prewarming also improved mean CS values of Z100 specimens (P<0.05. Furthermore, DTS mean value of CM prepared at 52∘ was significantly higher than that of room temperature specimens (P<0.05. KHN, CS, and DTS mean values varied significantly among the three composites. In conclusion, Prewarming significantly enhanced surface hardness of 2 composites. Prewarming also improved bulk properties of the composites; however, this improvement was significant in only some of the tested materials.

  3. Atmospheric circulation and hydroclimate impacts of alternative warming scenarios for the Eocene

    Science.gov (United States)

    Carlson, Henrik; Caballero, Rodrigo

    2017-08-01

    Recent work in modelling the warm climates of the early Eocene shows that it is possible to obtain a reasonable global match between model surface temperature and proxy reconstructions, but only by using extremely high atmospheric CO2 concentrations or more modest CO2 levels complemented by a reduction in global cloud albedo. Understanding the mix of radiative forcing that gave rise to Eocene warmth has important implications for constraining Earth's climate sensitivity, but progress in this direction is hampered by the lack of direct proxy constraints on cloud properties. Here, we explore the potential for distinguishing among different radiative forcing scenarios via their impact on regional climate changes. We do this by comparing climate model simulations of two end-member scenarios: one in which the climate is warmed entirely by CO2 (which we refer to as the greenhouse gas (GHG) scenario) and another in which it is warmed entirely by reduced cloud albedo (which we refer to as the low CO2-thin clouds or LCTC scenario) . The two simulations have an almost identical global-mean surface temperature and equator-to-pole temperature difference, but the LCTC scenario has ˜ 11 % greater global-mean precipitation than the GHG scenario. The LCTC scenario also has cooler midlatitude continents and warmer oceans than the GHG scenario and a tropical climate which is significantly more El Niño-like. Extremely high warm-season temperatures in the subtropics are mitigated in the LCTC scenario, while cool-season temperatures are lower at all latitudes. These changes appear large enough to motivate further, more detailed study using other climate models and a more realistic set of modelling assumptions.

  4. Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints

    Science.gov (United States)

    Goodwin, Philip; Katavouta, Anna; Roussenov, Vassil M.; Foster, Gavin L.; Rohling, Eelco J.; Williams, Richard G.

    2018-02-01

    To restrict global warming to below the agreed targets requires limiting carbon emissions, the principal driver of anthropogenic warming. However, there is significant uncertainty in projecting the amount of carbon that can be emitted, in part due to the limited number of Earth system model simulations and their discrepancies with present-day observations. Here we demonstrate a novel approach to reduce the uncertainty of climate projections; using theory and geological evidence we generate a very large ensemble (3 × 104) of projections that closely match records for nine key climate metrics, which include warming and ocean heat content. Our analysis narrows the uncertainty in surface-warming projections and reduces the range in equilibrium climate sensitivity. We find that a warming target of 1.5 °C above the pre-industrial level requires the total emitted carbon from the start of year 2017 to be less than 195-205 PgC (in over 66% of the simulations), whereas a warming target of 2 °C is only likely if the emitted carbon remains less than 395-455 PgC. At the current emission rates, these warming targets are reached in 17-18 years and 35-41 years, respectively, so that there is a limited window to develop a more carbon-efficient future.

  5. Mediterranean climate change and Indian Ocean warming

    International Nuclear Information System (INIS)

    Hoerling, M.; Eischeid, J.; Hurrel, J.

    2006-01-01

    General circulation model (GCM) responses to 20. century changes in sea surface temperatures (SSTs) and greenhouse gases are diagnosed, with emphasis on their relationship to observed regional climate change over the Mediterranean region. A major question is whether the Mediterranean region's drying trend since 1950 can be understood as a consequence of the warming trend in tropical SSTs. We focus on the impact of Indian Ocean warming, which is itself the likely result of increasing greenhouse gases. It is discovered that a strong projection onto the positive polarity of the North Atlantic Oscillation (NAO) index characterizes the atmospheric response structure to the 1950-1999 warming of Indian Ocean SSTs. This influence appears to be robust in so far as it is reproduced in ensembles of experiments using three different GCMs. Both the equilibrium and transient responses to Indian Ocean warming are examined. Under each scenario, the latitude of prevailing mid latitude westerlies shifts poleward during the November-April period. The consequence is a drying of the Mediterranean region, whereas northern Europe and Scandinavia receive increased precipitation in concert with the poleward shift of storminess. The IPCC (TAR) 20. century coupled ocean-atmosphere simulations forced by observed greenhouse gas changes also yield a post-1950 drying trend over the Mediterranean. We argue that this feature of human-induced regional climate change is the outcome of a dynamical feedback, one involving Indian Ocean warming and a requisite adjustment of atmospheric circulation systems to such ocean warming

  6. Continuously amplified warming in the Alaskan Arctic: Implications for estimating global warming hiatus

    Science.gov (United States)

    Wang, Kang; Zhang, Tingjun; Zhang, Xiangdong; Clow, Gary D.; Jafarov, Elchin E.; Overeem, Irina; Romanovsky, Vladimir; Peng, Xiaoqing; Cao, Bin

    2017-01-01

    Historically, in situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of surface air temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has increased by 2.19°C in this region, or at a rate of 0.23°C/decade during 1921–2015. Meanwhile, we found that the SAT warmed at 0.71°C/decade over 1998–2015, which is 2 to 3 times faster than the rate established from the gridded data sets. Focusing on the “hiatus” period 1998–2012 as identified by the Intergovernmental Panel on Climate Change (IPCC) report, the SAT has increased at 0.45°C/decade, which captures more than 90% of the regional trend for 1951–2012. We suggest that sparse in situ measurements are responsible for underestimation of the SAT change in the gridded data sets. It is likely that enhanced climate warming may also have happened in the other regions of the Arctic since the late 1990s but left undetected because of incomplete observational coverage.

  7. Sustained climate warming drives declining marine biological productivity

    Science.gov (United States)

    Moore, J. Keith; Fu, Weiwei; Primeau, Francois; Britten, Gregory L.; Lindsay, Keith; Long, Matthew; Doney, Scott C.; Mahowald, Natalie; Hoffman, Forrest; Randerson, James T.

    2018-03-01

    Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease by more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.

  8. Process contributions to the intermodel spread in amplified Arctic warming

    Science.gov (United States)

    Boeke, R.; Taylor, P. C.

    2016-12-01

    The Arctic is warming at a rate more than twice the global average. This robust climate system response to an external forcing is referred to as Arctic Amplification (AA). While Coupled Model Intercomparison Project 5 (CMIP5) climate models simulate AA, the largest intermodel spread in projected warming is also found in the Arctic. Quantifying the amount of polar warming relative to global warming influences how society adapts to climate change; a 2°C increase in global mean temperature would result in a polar warming between 4-8°C according to the intermodel spread in CMIP5 simulations. A trove of previous work has considered AA diagnostically using variations in the surface energy budget to attribute the intermodel spread in AA to an assortment of feedbacks—surface albedo, cloud, surface turbulent flux, and atmospheric and oceanic energy transport. We consider a systems-thinking approach treating AA as a process that evolves over time. We hypothesize that two specific components of the AA process are most important and influence the intermodel spread. (1) The inability of the Arctic system to effectively remove excess heat sourced from natural variability. The change in the efficiency of the `Arctic air conditioner' is thought to be due to thinner and less extensive sea ice and the resulting ice albedo feedback. (2) The process through which energy is stored in the ocean and exchanged with the atmosphere within the context of the sea ice annual cycle is also important. This study uses CMIP5 simulations from the historical and RCP8.5 (Representative Concentration Pathway; an emission scenario with forcing increasing to 8.5 W m-2 by 2100) to analyze how the AA process operates in present and future climate. The intermodel spread in these processes and the influence on the spread in AA are discussed. This approach identifies models that more realistically simulate the AA process and will aid in narrowing intermodel spread in Arctic surface temperature

  9. TOPEX/El Nino Watch - El Nino Warm Water Pool Decreasing, Jan, 08, 1998

    Science.gov (United States)

    1998-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Jan. 8, 1998, and sea surface height is an indicator of the heat content of the ocean. The volume of the warm water pool related to the El Nino has decreased by about 40 percent since its maximum in early November, but the area of the warm water pool is still about one and a half times the size of the continental United States. The volume measurements are computed as the sum of all the sea surface height changes as compared to normal ocean conditions. In addition, the maximum water temperature in the eastern tropical Pacific, as measured by the National Oceanic and Atmospheric Administration (NOAA), is still higher than normal. Until these high temperatures diminish, the El Nino warm water pool still has great potential to disrupt global weather because the high water temperatures directly influence the atmosphere. Oceanographers believe the recent decrease in the size of the warm water pool is a normal part of El Nino's natural rhythm. TOPEX/Poseidon has been tracking these fluctuations of the El Nino warm pool since it began in early 1997. These sea surface height measurements have provided scientists with their first detailed view of how El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level.The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken

  10. Astrochronology of extreme global warming events during the early Eocene greenhouse climate

    NARCIS (Netherlands)

    Lauretano, V.

    2016-01-01

    The early Eocene represents an ideal case study to analyse the impact of enhanced global warming on the ocean-atmosphere system and the relationship between carbon cycling and climate. During this time interval, the Earth’s surface experienced a long-term warming trend that culminated in a period of

  11. Sea level rise, surface warming, and the weakened buffering ability of South China Sea to strong typhoons in recent decades.

    Science.gov (United States)

    Sun, Jingru; Oey, Leo; Xu, F-H; Lin, Y-C

    2017-08-07

    Each year, a number of typhoons in the western North Pacific pass through the Luzon Strait into South China Sea (SCS). Although the storms remain above a warm open sea, the majority of them weaken due to atmospheric and oceanic environments unfavorable for typhoon intensification in SCS, which therefore serves as a natural buffer that shields the surrounding coasts from potentially more powerful storms. This study examines how this buffer has changed over inter-decadal and longer time scales. We show that the buffer weakens (i.e. greater potential for more powerful typhoons) in negative Pacific Decadal Oscillation (PDO) years, as well as with sea-level-rise and surface warming, caused primarily by the deepening of the ocean's 26 °C isotherm Z 26 . A new Intensity Change Index is proposed to describe the typhoon intensity change as a function of Z 26 and other environmental variables. In SCS, the new index accounts for as high as 75% of the total variance of typhoon intensity change.

  12. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    OpenAIRE

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-01-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatmen...

  13. Dynamical response of the Arctic winter stratosphere to global warming

    Science.gov (United States)

    Karpechko, A.; Manzini, E.

    2017-12-01

    Climate models often simulate dynamical warming of the Arctic stratosphere as a response to global warming in association with a strengthening of the deep branch of the Brewer-Dobson circulation; however until now, no satisfactory mechanism for such a response has been suggested. Here we investigate the role of stationary planetary waves in the dynamical response of the Arctic winter stratosphere circulation to global warming by analysing simulations performed with atmosphere-only Coupled Model Intercomparison Project Phase 5 (CMIP5) models driven by prescribed sea surface temperatures (SSTs). We focus on December-February (DJF) because this is the period when the troposphere and stratosphere are strongly coupled. When forced by increased SSTs, all the models analysed here simulate Arctic stratosphere dynamical warming, mostly due to increased upward propagation of quasi-stationary wave number 1, as diagnosed by the meridional eddy heat flux. By analysing intermodel spread in the response we show that the stratospheric warming and increased wave flux to the stratosphere correlate with the strengthening of the zonal winds in subtropics and mid-latitudes near the tropopause- a robust response to global warming. These results support previous studies of future Arctic stratosphere changes and suggest a dynamical warming of the Arctic wintertime polar vortex as the most likely response to global warming.

  14. Seasonal exposure to drought and air warming affects soil Collembola and mites.

    Directory of Open Access Journals (Sweden)

    Guo-Liang Xu

    Full Text Available Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4 °C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length ≤ 0.20 mm increased, but the percentage of large mites (body length >0.40 mm decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type.

  15. Seasonal Exposure to Drought and Air Warming Affects Soil Collembola and Mites

    Science.gov (United States)

    Xu, Guo-Liang; Kuster, Thomas M.; Günthardt-Goerg, Madeleine S.; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4°C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type. PMID:22905210

  16. Seasonal exposure to drought and air warming affects soil Collembola and mites.

    Science.gov (United States)

    Xu, Guo-Liang; Kuster, Thomas M; Günthardt-Goerg, Madeleine S; Dobbertin, Matthias; Li, Mai-He

    2012-01-01

    Global environmental changes affect not only the aboveground but also the belowground components of ecosystems. The effects of seasonal drought and air warming on the genus level richness of Collembola, and on the abundance and biomass of the community of Collembola and mites were studied in an acidic and a calcareous forest soil in a model oak-ecosystem experiment (the Querco experiment) at the Swiss Federal Research Institute WSL in Birmensdorf. The experiment included four climate treatments: control, drought with a 60% reduction in rainfall, air warming with a seasonal temperature increase of 1.4 °C, and air warming + drought. Soil water content was greatly reduced by drought. Soil surface temperature was slightly increased by both the air warming and the drought treatment. Soil mesofauna samples were taken at the end of the first experimental year. Drought was found to increase the abundance of the microarthropod fauna, but reduce the biomass of the community. The percentage of small mites (body length ≤ 0.20 mm) increased, but the percentage of large mites (body length >0.40 mm) decreased under drought. Air warming had only minor effects on the fauna. All climate treatments significantly reduced the richness of Collembola and the biomass of Collembola and mites in acidic soil, but not in calcareous soil. Drought appeared to have a negative impact on soil microarthropod fauna, but the effects of climate change on soil fauna may vary with the soil type.

  17. The effects of the Indo-Pacific warm pool on the stratosphere

    Science.gov (United States)

    Zhou, Xin; Li, Jianping; Xie, Fei; Ding, Ruiqiang; Li, Yanjie; Zhao, Sen; Zhang, Jiankai; Li, Yang

    2017-03-01

    Sea surface temperature (SST) in the Indo-Pacific warm pool (IPWP) plays a key role in influencing East Asian climate, and even affects global-scale climate change. This study defines IPWP Niño and IPWP Niña events to represent the warm and cold phases of IPWP SST anomalies, respectively, and investigates the effects of these events on stratospheric circulation and temperature. Results from simulations forced by observed SST anomalies during IPWP Niño and Niña events show that the tropical lower stratosphere tends to cool during IPWP Niño events and warm during IPWP Niña events. The responses of the northern and southern polar vortices to IPWP Niño events are fairly symmetric, as both vortices are significantly warmed and weakened. However, the responses of the two polar vortices to IPWP Niña events are of opposite sign: the northern polar vortex is warmed and weakened, but the southern polar vortex is cooled and strengthened. These features are further confirmed by composite analysis using reanalysis data. A possible dynamical mechanism connecting IPWP SST to the stratosphere is suggested, in which IPWP Niño and Niña events excite teleconnections, one similar to the Pacific-North America pattern in the Northern Hemisphere and a Rossby wave train in the Southern Hemisphere, which project onto the climatological wave in the mid-high latitudes, intensifying the upward propagation of planetary waves into the stratosphere and, in turn, affecting the polar vortex.

  18. Warming in the Nordic Seas, North Atlantic storms and thinning Arctic sea ice

    Science.gov (United States)

    Alexeev, Vladimir A.; Walsh, John E.; Ivanov, Vladimir V.; Semenov, Vladimir A.; Smirnov, Alexander V.

    2017-08-01

    Arctic sea ice over the last few decades has experienced a significant decline in coverage both in summer and winter. The currently warming Atlantic Water layer has a pronounced impact on sea ice in the Nordic Seas (including the Barents Sea). More open water combined with the prevailing atmospheric pattern of airflow from the southeast, and persistent North Atlantic storms such as the recent extremely strong Storm Frank in December 2015, lead to increased energy transport to the high Arctic. Each of these storms brings sizeable anomalies of heat to the high Arctic, resulting in significant warming and slowing down of sea ice growth or even melting. Our analysis indicates that the recently observed sea ice decline in the Nordic Seas during the cold season around Svalbard, Franz Joseph Land and Novaya Zemlya, and the associated heat release from open water into the atmosphere, contributed significantly to the increase in the downward longwave radiation throughout the entire Arctic. Added to other changes in the surface energy budget, this increase since the 1960s to the present is estimated to be at least 10 W m-2, which can result in thinner (up to at least 15-20 cm) Arctic ice at the end of the winter. This change in the surface budget is an important contributing factor accelerating the thinning of Arctic sea ice.

  19. Analysis of surface air temperature variations and local urbanization effects on central Yunnan Plateau, SW China

    Science.gov (United States)

    He, Yunling; Wu, Zhijie; Liu, Xuelian; Deng, Fuying

    2018-01-01

    With the surface air temperature (SAT) data at 37 stations on Central Yunnan Plateau (CYP) for 1961-2010 and the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data, the temporal-spatial patterns of the SAT trends are detected using Sen's Nonparametric Estimator of Slope approach and MK test, and the impact of urbanization on surface warming is analyzed by comparing the differences between the air temperature change trends of urban stations and their corresponding rural stations. Results indicated that annual mean air temperature showed a significant warming trend, which is equivalent to a rate of 0.17 °C/decade during the past 50 years. Seasonal mean air temperature presents a rising trend, and the trend was more significant in winter (0.31 °C/decade) than in other seasons. Annual/seasonal mean air temperature tends to increase in most areas, and higher warming trend appeared in urban areas, notably in Kunming city. The regional mean air temperature series was significantly impacted by urban warming, and the urbanization-induced warming contributed to approximately 32.3-62.9 % of the total regional warming during the past 50 years. Meantime, the urbanization-induced warming trend in winter and spring was more significant than that in summer and autumn. Since 1985, the urban heat island (UHI) intensity has gradually increased. And the urban temperatures always rise faster than rural temperatures on the CYP.

  20. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming.

    Science.gov (United States)

    Cronin, Timothy W; Tziperman, Eli

    2015-09-15

    High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback--consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state--slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼ 10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the "lapse rate feedback" in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates.

  1. Competition between global warming and an abrupt collapse of the AMOC in Earth's energy imbalance.

    Science.gov (United States)

    Drijfhout, Sybren

    2015-10-06

    A collapse of the Atlantic Meridional Overturning Circulation (AMOC) leads to global cooling through fast feedbacks that selectively amplify the response in the Northern Hemisphere (NH). How such cooling competes with global warming has long been a topic for speculation, but was never addressed using a climate model. Here it is shown that global cooling due to a collapsing AMOC obliterates global warming for a period of 15-20 years. Thereafter, the global mean temperature trend is reversed and becomes similar to a simulation without an AMOC collapse. The resulting surface warming hiatus lasts for 40-50 years. Global warming and AMOC-induced NH cooling are governed by similar feedbacks, giving rise to a global net radiative imbalance of similar sign, although the former is associated with surface warming, the latter with cooling. Their footprints in outgoing longwave and absorbed shortwave radiation are very distinct, making attribution possible.

  2. Surface renewal as a significant mechanism for dust emission

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2016-12-01

    Full Text Available Wind tunnel experiments of dust emissions from different soil surfaces are carried out to better understand dust emission mechanisms. The effects of surface renewal on aerodynamic entrainment and saltation bombardment are analyzed in detail. It is found that flow conditions, surface particle motions (saltation and creep, soil dust content and ground obstacles all strongly affect dust emission, causing its rate to vary over orders of magnitude. Aerodynamic entrainment is highly effective, if dust supply is unlimited, as in the first 2–3 min of our wind tunnel runs. While aerodynamic entrainment is suppressed by dust supply limits, surface renewal through the motion of surface particles appears to be an effective pathway to remove the supply limit. Surface renewal is also found to be important to the efficiency of saltation bombardment. We demonstrate that surface renewal is a significant mechanism affecting dust emission and recommend that this mechanism be included in future dust models.

  3. Heating Pad Performance and Efficacy of 2 Durations of Warming after Isoflurane Anesthesia of Sprague-Dawley Rats (Rattus norvegicus).

    Science.gov (United States)

    Zhang, Emily Q; Knight, Cameron G; Pang, Daniel Sj

    2017-11-01

    Anesthetic agents depress thermoregulatory mechanisms, causing hypothermia within minutes of induction of general anesthesia. The consequences of hypothermia include delayed recovery and increased experimental variability. Even when normothermia is maintained during anesthesia, hypothermia may occur during recovery. The primary aim of this study was to identify an effective warming period for maintaining normothermia during recovery. Adult male (n = 8) and female (n = 9) Sprague-Dawley rats were randomized to 30 min (post30) or 60 min (post60) of warming after recovery from anesthesia. During a 40-min anesthetic period, normothermia (target, 37.5 ± 1.1 °C) was maintained by manual adjustment of an electric heating pad in response to measured rectal temperatures (corrected to estimate core body temperature). Warming was continued in a recovery cage according to treatment group. Rectal temperature was measured for a total of 120 min after anesthesia. Heating pad performance was assessed by measuring temperatures at various sites over its surface. One female rat in the post30 group was excluded from analysis. Normothermia was effectively maintained during and after anesthesia without significant differences between groups. In the post60 group, core temperature was slightly but significantly increased at 90 and 100 min compared with baseline. One rat in each treatment group became hyperthermic (>38.6 °C) during recovery. During recovery, the cage floor temperature required approximately 30 min to stabilize. The heating pad produced heat unevenly over its surface, and measured temperatures frequently exceeded the programmed temperature. Providing 30 min of warming immediately after anesthesia effectively prevented hypothermia in rats. Shorter warming periods may be useful when recovery cages are preheated.

  4. The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus

    Science.gov (United States)

    Deser, Clara; Guo, Ruixia; Lehner, Flavio

    2017-08-01

    The recent slowdown in global mean surface temperature (GMST) warming during boreal winter is examined from a regional perspective using 10-member initial-condition ensembles with two global coupled climate models in which observed tropical Pacific sea surface temperature anomalies (TPAC SSTAs) and radiative forcings are specified. Both models show considerable diversity in their surface air temperature (SAT) trend patterns across the members, attesting to the importance of internal variability beyond the tropical Pacific that is superimposed upon the response to TPAC SSTA and radiative forcing. Only one model shows a close relationship between the realism of its simulated GMST trends and SAT trend patterns. In this model, Eurasian cooling plays a dominant role in determining the GMST trend amplitude, just as in nature. In the most realistic member, intrinsic atmospheric dynamics and teleconnections forced by TPAC SSTA cause cooling over Eurasia (and North America), and contribute equally to its GMST trend.

  5. Ocean acidification ameliorates harmful effects of warming in primary consumer.

    Science.gov (United States)

    Pedersen, Sindre Andre; Hanssen, Anja Elise

    2018-01-01

    Climate change-induced warming and ocean acidification are considered two imminent threats to marine biodiversity and current ecosystem structures. Here, we have for the first time examined an animal's response to a complete life cycle of exposure to co-occurring warming (+3°C) and ocean acidification (+1,600 μatm CO 2 ), using the key subarctic planktonic copepod, Calanus finmarchicus , as a model species. The animals were generally negatively affected by warming, which significantly reduced the females' energy status and reproductive parameters (respectively, 95% and 69%-87% vs. control). Unexpectedly, simultaneous acidification partially offset the negative effect of warming in an antagonistic manner, significantly improving reproductive parameters and hatching success (233%-340% improvement vs. single warming exposure). The results provide proof of concept that ocean acidification may partially offset negative effects caused by warming in some species. Possible explanations and ecological implications for the observed antagonistic effect are discussed.

  6. Does Vibration Warm-up Enhance Kinetic and Temporal Sprint Parameters?

    Science.gov (United States)

    Cochrane, D J; Cronin, M J; Fink, P W

    2015-08-01

    The aim of this study was to investigate the efficacy of vibration warm-up to enhance sprint performance. 12 males involved in representative team sports performed 4 warm-up conditions in a randomised order performed at least 24 h apart; VbX warm-up (VbX-WU); Neural activation warm-up (Neu-WU); Dynamic warm-up (Dyn-WU) and Control (No VbX). Participants completed 5 m sprint at 30 s, 2:30 min and 5 min post warm-up where sprint time, kinetics, and temporal components were recorded. There was no significant (p>0.05) main effect or interaction effect between the split sprint times of 1 m, 2.5 m, and 5 m. There was a condition effect where vertical mean force was significantly higher (p0.05) main and interaction effects in sprint kinetic and temporal parameters existed. Overall, all 4 warm-up conditions produced comparable results for sprint performance, and there was no detrimental effect on short-duration sprint performance using VbX-WU. Therefore, VbX could be useful for adding variety to the training warm-up or be included into the main warm-up routine as a supplementary modality. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Using radiative signatures to diagnose the cause of warming during the 2013-2014 Californian drought

    Science.gov (United States)

    Wolf, Sebastian; Yin, Dongqin; Roderick, Michael L.

    2017-10-01

    California recently experienced among the worst droughts of the last century, with exceptional precipitation deficits and co-occurring record high temperatures. The dry conditions caused severe water shortages in one of the economically most important agricultural regions of the US. It has recently been hypothesized that anthropogenic warming is increasing the likelihood of such extreme droughts in California, or more specifically, that warmer temperatures from the enhanced greenhouse effect intensify drought conditions. However, separating the cause and effect is difficult because the dry conditions lead to a reduction in evaporative cooling that contributes to the warming. Here we investigate and compare the forcing of long-term greenhouse-induced warming with the short-term warming during the 2013-2014 Californian drought. We use the concept of radiative signatures to investigate the source of the radiative perturbation during the drought, relate the signatures to expected changes due to anthropogenic warming, and assess the cause of warming based on observed changes in the surface energy balance compared to the period 2001-2012. We found that the recent meteorological drought based on precipitation deficits was characterised by an increase in incoming shortwave radiation coupled with a decline in incoming longwave radiation, which contributed to record warm temperatures. In contrast, climate models project that anthropogenic warming is accompanied by little change in incoming shortwave but a large increase in incoming longwave radiation. The warming during the drought was associated with increased incoming shortwave radiation in combination with reduced evaporative cooling from water deficits, which enhanced surface temperatures and sensible heat transfer to the atmosphere. Our analyses demonstrate that radiative signatures are a powerful tool to differentiate the source of perturbations in the surface energy balance at monthly to seasonal time scales.

  8. Discharge, water temperature, and water quality of Warm Mineral Springs, Sarasota County, Florida: A retrospective analysis

    Science.gov (United States)

    Metz, Patricia A.

    2016-09-27

    Warm Mineral Springs, located in southern Sarasota County, Florida, is a warm, highly mineralized, inland spring. Since 1946, a bathing spa has been in operation at the spring, attracting vacationers and health enthusiasts. During the winter months, the warm water attracts manatees to the adjoining spring run and provides vital habitat for these mammals. Well-preserved late Pleistocene to early Holocene-age human and animal bones, artifacts, and plant remains have been found in and around the spring, and indicate the surrounding sinkhole formed more than 12,000 years ago. The spring is a multiuse resource of hydrologic importance, ecological and archeological significance, and economic value to the community.The pool of Warm Mineral Springs has a circular shape that reflects its origin as a sinkhole. The pool measures about 240 feet in diameter at the surface and has a maximum depth of about 205 feet. The sinkhole developed in the sand, clay, and dolostone of the Arcadia Formation of the Miocene-age to Oligocene-age Hawthorn Group. Underlying the Hawthorn Group are Oligocene-age to Eocene-age limestones and dolostones, including the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. Mineralized groundwater, under artesian pressure in the underlying aquifers, fills the remnant sink, and the overflow discharges into Warm Mineral Springs Creek, to Salt Creek, and subsequently into the Myakka River. Aquifers described in the vicinity of Warm Mineral Springs include the surficial aquifer system, the intermediate aquifer system within the Hawthorn Group, and the Upper Floridan aquifer in the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. The Hawthorn Group acts as an upper confining unit of the Upper Floridan aquifer.Groundwater flow paths are inferred from the configuration of the potentiometric surface of the Upper Floridan aquifer for September 2010. Groundwater flow models indicate the downward flow of water into the Upper Floridan aquifer

  9. On the influence of simulated SST warming on rainfall projections in the Indo-Pacific domain: an AGCM study

    Science.gov (United States)

    Zhang, Huqiang; Zhao, Y.; Moise, A.; Ye, H.; Colman, R.; Roff, G.; Zhao, M.

    2018-02-01

    Significant uncertainty exists in regional climate change projections, particularly for rainfall and other hydro-climate variables. In this study, we conduct a series of Atmospheric General Circulation Model (AGCM) experiments with different future sea surface temperature (SST) warming simulated by a range of coupled climate models. They allow us to assess the extent to which uncertainty from current coupled climate model rainfall projections can be attributed to their simulated SST warming. Nine CMIP5 model-simulated global SST warming anomalies have been super-imposed onto the current SSTs simulated by the Australian climate model ACCESS1.3. The ACCESS1.3 SST-forced experiments closely reproduce rainfall means and interannual variations as in its own fully coupled experiments. Although different global SST warming intensities explain well the inter-model difference in global mean precipitation changes, at regional scales the SST influence vary significantly. SST warming explains about 20-25% of the patterns of precipitation changes in each of the four/five models in its rainfall projections over the oceans in the Indo-Pacific domain, but there are also a couple of models in which different SST warming explains little of their precipitation pattern changes. The influence is weaker again for rainfall changes over land. Roughly similar levels of contribution can be attributed to different atmospheric responses to SST warming in these models. The weak SST influence in our study could be due to the experimental setup applied: superimposing different SST warming anomalies onto the same SSTs simulated for current climate by ACCESS1.3 rather than directly using model-simulated past and future SSTs. Similar modelling and analysis from other modelling groups with more carefully designed experiments are needed to tease out uncertainties caused by different SST warming patterns, different SST mean biases and different model physical/dynamical responses to the same underlying

  10. Warm and Saline Events Embedded in the Meridional Circulation of the Northern North Atlantic

    Science.gov (United States)

    Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.

    2011-01-01

    Ocean state estimates from 1958 to 2005 from the Simple Ocean Assimilation System (SODA) system are analyzed to understand circulation between subtropical and subpolar Atlantic and their connection with atmospheric forcing. This analysis shows three periods (1960s, around 1980, and 2000s) with enhanced warm, saline waters reaching high latitudes, alternating with freshwater events originating at high latitudes. It complements surface drifter and altimetry data showing the subtropical -subpolar exchange leading to a significant temperature and salinity increase in the northeast Atlantic after 2001. The warm water limb of the Atlantic meridional overturning cell represented by SODA expanded in density/salinity space during these warm events. Tracer simulations using SODA velocities also show decadal variation of the Gulf Stream waters reaching the subpolar gyre and Nordic seas. The negative phase of the North Atlantic Oscillation index, usually invoked in such variability, fails to predict the warming and salinization in the early 2000s, with salinities not seen since the 1960s. Wind stress curl variability provided a linkage to this subtropical/subpolar gyre exchange as illustrated using an idealized two ]layer circulation model. The ocean response to the modulation of the climatological wind stress curl pattern was found to be such that the northward penetration of subtropical tracers is enhanced when amplitude of the wind stress curl is weaker than normal. In this case both the subtropical and subpolar gyres weaken and the subpolar density surfaces relax; hence, the polar front moves westward, opening an enhanced northward access of the subtropical waters in the eastern boundary current.

  11. Climate change under a scenario near 1.5 °C of global warming: monsoon intensification, ocean warming and steric sea level rise

    Directory of Open Access Journals (Sweden)

    J. Schewe

    2011-03-01

    Full Text Available We present climatic consequences of the Representative Concentration Pathways (RCPs using the coupled climate model CLIMBER-3α, which contains a statistical-dynamical atmosphere and a three-dimensional ocean model. We compare those with emulations of 19 state-of-the-art atmosphere-ocean general circulation models (AOGCM using MAGICC6. The RCPs are designed as standard scenarios for the forthcoming IPCC Fifth Assessment Report to span the full range of future greenhouse gas (GHG concentrations pathways currently discussed. The lowest of the RCP scenarios, RCP3-PD, is projected in CLIMBER-3α to imply a maximal warming by the middle of the 21st century slightly above 1.5 °C and a slow decline of temperatures thereafter, approaching today's level by 2500. We identify two mechanisms that slow down global cooling after GHG concentrations peak: The known inertia induced by mixing-related oceanic heat uptake; and a change in oceanic convection that enhances ocean heat loss in high latitudes, reducing the surface cooling rate by almost 50%. Steric sea level rise under the RCP3-PD scenario continues for 200 years after the peak in surface air temperatures, stabilizing around 2250 at 30 cm. This contrasts with around 1.3 m of steric sea level rise by 2250, and 2 m by 2500, under the highest scenario, RCP8.5. Maximum oceanic warming at intermediate depth (300–800 m is found to exceed that of the sea surface by the second half of the 21st century under RCP3-PD. This intermediate-depth warming persists for centuries even after surface temperatures have returned to present-day values, with potential consequences for marine ecosystems, oceanic methane hydrates, and ice-shelf stability. Due to an enhanced land-ocean temperature contrast, all scenarios yield an intensification of monsoon rainfall under global warming.

  12. Terra Data Confirm Warm, Dry U.S. Winter

    Science.gov (United States)

    2002-01-01

    New maps of land surface temperature and snow cover produced by NASA's Terra satellite show this year's winter was warmer than last year's, and the snow line stayed farther north than normal. The observations confirm earlier National Oceanic and Atmospheric Administration reports that the United States was unusually warm and dry this past winter. (Click to read the NASA press release and to access higher-resolution images.) For the last two years, a new sensor aboard Terra has been collecting the most detailed global measurements ever made of our world's land surface temperatures and snow cover. The Moderate-resolution Imaging Spectroradiometer (MODIS) is already giving scientists new insights into our changing planet. Average temperatures during December 2001 through February 2002 for the contiguous United States appear to have been unseasonably warm from the Rockies eastward. In the top image the coldest temperatures appear black, while dark green, blue, red, yellow, and white indicate progressively warmer temperatures. MODIS observes both land surface temperature and emissivity, which indicates how efficiently a surface absorbs and emits thermal radiation. Compared to the winter of 2000-01, temperatures throughout much of the U.S. were warmer in 2001-02. The bottom image depicts the differences on a scale from dark blue (colder this year than last) to red (warmer this year than last). A large region of warm temperatures dominated the northern Great Plains, while the area around the Great Salt Lake was a cold spot. Images courtesy Robert Simmon, NASA GSFC, based upon data courtesy Zhengming Wan, MODIS Land Science Team member at the University of California, Santa Barbara's Institute for Computational Earth System Science

  13. Circumpolar dynamics of a marine top-predator track ocean warming rates.

    Science.gov (United States)

    Descamps, Sébastien; Anker-Nilssen, Tycho; Barrett, Robert T; Irons, David B; Merkel, Flemming; Robertson, Gregory J; Yoccoz, Nigel G; Mallory, Mark L; Montevecchi, William A; Boertmann, David; Artukhin, Yuri; Christensen-Dalsgaard, Signe; Erikstad, Kjell-Einar; Gilchrist, H Grant; Labansen, Aili L; Lorentsen, Svein-Håkon; Mosbech, Anders; Olsen, Bergur; Petersen, Aevar; Rail, Jean-Francois; Renner, Heather M; Strøm, Hallvard; Systad, Geir H; Wilhelm, Sabina I; Zelenskaya, Larisa

    2017-09-01

    Global warming is a nonlinear process, and temperature may increase in a stepwise manner. Periods of abrupt warming can trigger persistent changes in the state of ecosystems, also called regime shifts. The responses of organisms to abrupt warming and associated regime shifts can be unlike responses to periods of slow or moderate change. Understanding of nonlinearity in the biological responses to climate warming is needed to assess the consequences of ongoing climate change. Here, we demonstrate that the population dynamics of a long-lived, wide-ranging marine predator are associated with changes in the rate of ocean warming. Data from 556 colonies of black-legged kittiwakes Rissa tridactyla distributed throughout its breeding range revealed that an abrupt warming of sea-surface temperature in the 1990s coincided with steep kittiwake population decline. Periods of moderate warming in sea temperatures did not seem to affect kittiwake dynamics. The rapid warming observed in the 1990s may have driven large-scale, circumpolar marine ecosystem shifts that strongly affected kittiwakes through bottom-up effects. Our study sheds light on the nonlinear response of a circumpolar seabird to large-scale changes in oceanographic conditions and indicates that marine top predators may be more sensitive to the rate of ocean warming rather than to warming itself. © 2017 John Wiley & Sons Ltd.

  14. Warm damper for a superconducting rotor

    International Nuclear Information System (INIS)

    Hooper, G.D.

    1984-01-01

    A warm damper for a superconducting rotor is described which uses a laminar assembly of a conductive tube and a plurality of support tubes. The conductive tube is soldered to axially adjacent support tubes and the resulting composite tube is explosively welded to two or more support tubes disposed adjacent to its radially inner and outer surfaces

  15. Atmospheric circulation and hydroclimate impacts of alternative warming scenarios for the Eocene

    Directory of Open Access Journals (Sweden)

    H. Carlson

    2017-08-01

    Full Text Available Recent work in modelling the warm climates of the early Eocene shows that it is possible to obtain a reasonable global match between model surface temperature and proxy reconstructions, but only by using extremely high atmospheric CO2 concentrations or more modest CO2 levels complemented by a reduction in global cloud albedo. Understanding the mix of radiative forcing that gave rise to Eocene warmth has important implications for constraining Earth's climate sensitivity, but progress in this direction is hampered by the lack of direct proxy constraints on cloud properties. Here, we explore the potential for distinguishing among different radiative forcing scenarios via their impact on regional climate changes. We do this by comparing climate model simulations of two end-member scenarios: one in which the climate is warmed entirely by CO2 (which we refer to as the greenhouse gas (GHG scenario and another in which it is warmed entirely by reduced cloud albedo (which we refer to as the low CO2–thin clouds or LCTC scenario . The two simulations have an almost identical global-mean surface temperature and equator-to-pole temperature difference, but the LCTC scenario has  ∼  11 % greater global-mean precipitation than the GHG scenario. The LCTC scenario also has cooler midlatitude continents and warmer oceans than the GHG scenario and a tropical climate which is significantly more El Niño-like. Extremely high warm-season temperatures in the subtropics are mitigated in the LCTC scenario, while cool-season temperatures are lower at all latitudes. These changes appear large enough to motivate further, more detailed study using other climate models and a more realistic set of modelling assumptions.

  16. Dominance of climate warming effects on recent drying trends over wet monsoon regions

    Science.gov (United States)

    Park, Chang-Eui; Jeong, Su-Jong; Ho, Chang-Hoi; Park, Hoonyoung; Piao, Shilong; Kim, Jinwon; Feng, Song

    2017-09-01

    Understanding changes in background dryness over land is key information for adapting to climate change because of its critical socioeconomic consequences. However, causes of continental dryness changes remain uncertain because various climate parameters control dryness. Here, we verify dominant climate variables determining dryness trends over continental eastern Asia, which is characterized by diverse hydroclimate regimes ranging from arid to humid, by quantifying the relative effects of changes in precipitation, solar radiation, wind speed, surface air temperature, and relative humidity on trends in the aridity index based on observed data from 189 weather stations for the period of 1961-2010. Before the early 1980s (1961-1983), change in precipitation is a primary condition for determining aridity trends. In the later period (1984-2010), the dominant climate parameter for aridity trends varies according to the hydroclimate regime. Drying trends in arid regions are mostly explained by reduced precipitation. In contrast, the increase in potential evapotranspiration due to increased atmospheric water-holding capacity, a secondary impact of warming, works to increase aridity over the humid monsoon region despite an enhanced water supply and relatively less warming. Our results show significant drying effects of warming over the humid monsoon region in recent decades; this also supports the drying trends over warm and water-sufficient regions in future climate.

  17. An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification

    Science.gov (United States)

    Södergren, A. Helena; McDonald, Adrian J.; Bodeker, Gregory E.

    2017-11-01

    We examine the effects of non-linear interactions between surface albedo, water vapor and cloud cover (referred to as climate variables) on amplified warming of the polar regions, using a new energy balance model. Our simulations show that the sum of the contributions to surface temperature changes due to any variable considered in isolation is smaller than the temperature changes from coupled feedback simulations. This non-linearity is strongest when all three climate variables are allowed to interact. Surface albedo appears to be the strongest driver of this non-linear behavior, followed by water vapor and clouds. This is because increases in longwave radiation absorbed by the surface, related to increases in water vapor and clouds, and increases in surface absorbed shortwave radiation caused by a decrease in surface albedo, amplify each other. Furthermore, our results corroborate previous findings that while increases in cloud cover and water vapor, along with the greenhouse effect itself, warm the polar regions, water vapor also significantly warms equatorial regions, which reduces polar amplification. Changes in surface albedo drive large changes in absorption of incoming shortwave radiation, thereby enhancing surface warming. Unlike high latitudes, surface albedo change at low latitudes are more constrained. Interactions between surface albedo, water vapor and clouds drive larger increases in temperatures in the polar regions compared to low latitudes. This is in spite of the fact that, due to a forcing, cloud cover increases at high latitudes and decreases in low latitudes, and that water vapor significantly enhances warming at low latitudes.

  18. An aftereffect of global warming on tropical Pacific decadal variability

    Science.gov (United States)

    Zheng, Jian; Liu, Qinyu; Wang, Chuanyang

    2018-03-01

    Studies have shown that global warming over the past six decades can weaken the tropical Pacific Walker circulation and maintain the positive phase of the Interdecadal Pacific Oscillation (IPO). Based on observations and model simulations, another aftereffect of global warming on IPO is found. After removing linear trends (global warming signals) from observations, however, the tropical Pacific climate still exhibited some obvious differences between two IPO negative phases. The boreal winter (DJF) equatorial central-eastern Pacific sea surface temperature (SST) was colder during the 1999-2014 period (P2) than that during 1961-1976 (P1). This difference may have been a result of global warming nonlinear modulation of precipitation; i.e., in the climatological rainy region, the core area of the tropical Indo-western Pacific warm pool receives more precipitation through the "wet-get-wetter" mechanism. Positive precipitation anomalies in the warm pool during P2 are much stronger than those during P1, even after subtracting the linear trend. Corresponding to the differences of precipitation, the Pacific Walker circulation is stronger in P2 than in P1. Consequent easterly winds over the equatorial Pacific led to a colder equatorial eastern-central Pacific during P2. Therefore, tropical Pacific climate differences between the two negative IPO phases are aftereffects of global warming. These aftereffects are supported by the results of coupled climate model experiments, with and without global warming.

  19. Comparing the Immediate Effects of a Total Motion Release Warm-up and a Dynamic Warm-up Protocol on the Dominant Shoulder in Baseball Athletes.

    Science.gov (United States)

    Gamma, Stephen C; Baker, Russell; May, James; Seegmiller, Jeff G; Nasypany, Alan; Iorio, Steven M

    2018-04-10

    Gamma, SC, Baker, R, May, J, Seegmiller, JG, Nasypany, A, and Iorio, SM. Comparing the immediate effects of a total motion release warm-up and a dynamic warm-up protocol on the dominant shoulder in baseball athletes. J Strength Cond Res XX(X): 000-000, 2017-A decrease in total range of motion (ROM) of the dominant shoulder may predispose baseball athletes to increased shoulder injury risk; the most effective technique for improving ROM is unknown. The purpose of this study was to compare the immediate effects of Total Motion Release (TMR) to a generic dynamic warm-up program in baseball athletes. Baseball athletes (n = 20) were randomly assigned to an intervention group: TMR group (TMRG; n = 10) or traditional warm-up group (TWG; n = 10). Shoulder ROM measurements were recorded for internal rotation (IR) and external rotation (ER), the intervention was applied, and postmeasurements were recorded. Each group then received the other intervention and postmeasurements were again recorded. The time main effect (p ≤ 0.001) and the time × group interaction effect were significant (p ≤ 0.001) for IR and ER. Post hoc analysis revealed that TMR produced significant increases in mean IR (p ≤ 0.005, d = 1.52) and ER (p ≤ 0.018, d = 1.22) of the dominant shoulder initially. When groups crossed-over, the TMRG experienced a decrease in mean IR and ER after the dynamic warm-up, whereas the TWG experienced a significant increase in mean IR (p ≤ 0.001, d = 3.08) and ER (p ≤ 0.001, d = 2.56) after TMR intervention. Total Motion Release increased IR and ER of the dominant shoulder more than a dynamic warm-up. Dynamic warm-up after TMR also resulted in decreased IR and ER; however, TMR after dynamic warm-up significantly improved IR and ER. Based on these results, TMR is more effective than a generic dynamic warm-up for improving dominant shoulder ROM in baseball players.

  20. EFFECTS OF GLOBAL WARMING

    OpenAIRE

    Dr. Basanti Jain

    2017-01-01

    The abnormal increase in the concentration of the greenhouse gases is resulting in higher temperatures. We call this effect is global warming. The average temperature around the world has increased about 1'c over 140 years, 75% of this has risen just over the past 30 years. The solar radiation, as it reaches the earth, produces "greenhouse effect" in the atmosphere. The thick atmospheric layers over the earth behaves as a glass surface, as it permits short wave radiations from coming in, but ...

  1. Effects of warming on the structure and function of a boreal black spruce forest

    Energy Technology Data Exchange (ETDEWEB)

    Stith T.Gower

    2010-03-03

    net primary production (NPP) budgets. Autotrophic respiration budgets will be constructed using chamber measurements for each tissue and NPP and standard allometry techniques (Gower et al. 1999). (4) Compare microbial and root dynamics, and net soil surface CO2 flux, of control and warmed soils to identify causes that may explain the hypothesized minimal effect of soil warming on soil surface CO2 flux. Fine root production and turnover will be quantified using minirhizotrons, and microbial dynamics will be determined using laboratory mineralization incubations. Soil surface CO2 flux will be measured using automated soil surface CO2 flux systems and portable CO2 analyzers. The proposed study builds on the existing research programs Gower has in northern Manitoba and would not be possible without in-kind services and financial support from Manitoba Hydro and University of Wisconsin.

  2. The importance of warm season warming to western U.S. streamflow changes

    Science.gov (United States)

    Das, T.; Pierce, D.W.; Cayan, D.R.; Vano, J.A.; Lettenmaier, D.P.

    2011-01-01

    Warm season climate warming will be a key driver of annual streamflow changes in four major river basins of the western U.S., as shown by hydrological model simulations using fixed precipitation and idealized seasonal temperature changes based on climate projections with SRES A2 forcing. Warm season (April-September) warming reduces streamflow throughout the year; streamflow declines both immediately and in the subsequent cool season. Cool season (October-March) warming, by contrast, increases streamflow immediately, partially compensating for streamflow reductions during the subsequent warm season. A uniform warm season warming of 3C drives a wide range of annual flow declines across the basins: 13.3%, 7.2%, 1.8%, and 3.6% in the Colorado, Columbia, Northern and Southern Sierra basins, respectively. The same warming applied during the cool season gives annual declines of only 3.5%, 1.7%, 2.1%, and 3.1%, respectively. Copyright 2011 by the American Geophysical Union.

  3. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection

    Science.gov (United States)

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-01-01

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection. PMID:26838053

  4. Global Warming Attenuates the Tropical Atlantic-Pacific Teleconnection.

    Science.gov (United States)

    Jia, Fan; Wu, Lixin; Gan, Bolan; Cai, Wenju

    2016-02-03

    Changes in global sea surface temperature (SST) since the end of last century display a pattern of widespread warming intercepted by cooling in the eastern equatorial Pacific and western coasts of the American continent. Studies have suggested that the cooling in the eastern equatorial Pacific may be partly induced by warming in the North Atlantic. However, it remains unknown how stable this inter-tropical teleconnection will be under global warming. Here we show that the inter-tropical teleconnection from the tropical Atlantic to Pacific weakens substantially as the CO2 concentration increases. This reduced impact is related to the El Niño-like warming of the tropical Pacific mean state, which leads to limited seasonal migration of the Pacific inter-tropical convergence zone (ITCZ) and weakened ocean heat transport. A fast decay of the tropical Atlantic SST anomalies in a warmer climate also contributes to the weakened teleconnection. Our study suggests that as greenhouse warming continues, the trend in the tropical Pacific as well as the development of ENSO will be less frequently interrupted by the Atlantic because of this attenuation. The weakened teleconnection is also supported by CMIP5 models, although only a few of these models can capture this inter-tropical teleconnection.

  5. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment.

    Science.gov (United States)

    Rich, Roy L; Stefanski, Artur; Montgomery, Rebecca A; Hobbie, Sarah E; Kimball, Bruce A; Reich, Peter B

    2015-06-01

    Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open-air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal-temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear-cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7°C, +3.4°C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72-7.0 m(2) plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (∆Tbelow ) of +1.84°C and +3.66°C at 10 cm soil depth and (∆T(above) ) of +1.82°C and +3.45°C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small-statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall). © 2015 John Wiley & Sons Ltd.

  6. Global warming

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Canada's Green Plan strategy for dealing with global warming is being implemented as a multidepartmental partnership involving all Canadians and the international community. Many of the elements of this strategy are built on an existing base of activities predating the Green Plan. Elements of the strategy include programs to limit emissions of greenhouse gases, such as initiatives to encourage more energy-efficient practices and development of alternate fuel sources; studies and policy developments to help Canadians prepare and adapt to climate change; research on the global warming phenomenon; and stimulation of international action on global warming, including obligations arising out of the Framework Convention on Climate Change. All the program elements have been approved, funded, and announced. Major achievements to date are summarized, including improvements in the Energy Efficiency Act, studies on the socioeconomic impacts of global warming, and participation in monitoring networks. Milestones associated with the remaining global warming initiatives are listed

  7. Warming off southwestern Japan linked to distributional shifts of subtidal canopy-forming seaweeds.

    Science.gov (United States)

    Tanaka, Kouki; Taino, Seiya; Haraguchi, Hiroko; Prendergast, Gabrielle; Hiraoka, Masanori

    2012-11-01

    To assess distributional shifts of species in response to recent warming, historical distribution records are the most requisite information. The surface seawater temperature (SST) of Kochi Prefecture, southwestern Japan on the western North Pacific, has significantly risen, being warmed by the Kuroshio Current. Past distributional records of subtidal canopy-forming seaweeds (Laminariales and Fucales) exist at about 10-year intervals from the 1970s, along with detailed SST datasets at several sites along Kochi's >700 km coastline. In order to provide a clear picture of distributional shifts of coastal marine organisms in response to warming SST, we observed the present distribution of seaweeds and analyzed the SST datasets to estimate spatiotemporal SST trends in this coastal region. We present a large increase of 0.3°C/decade in the annual mean SST of this area over the past 40 years. Furthermore, a comparison of the previous and present distributions clearly showed the contraction of temperate species' distributional ranges and expansion of tropical species' distributional ranges in the seaweeds. Although the main temperate kelp Ecklonia (Laminariales) had expanded their distribution during periods of cooler SST, they subsequently declined as the SST warmed. Notably, the warmest SST of the 1997-98 El Niño Southern Oscillation event was the most likely cause of a widespread destruction of the kelp populations; no recovery was found even in the present survey at the formerly habitable sites where warm SSTs have been maintained. Temperate Sargassum spp. (Fucales) that dominated widely in the 1970s also declined in accordance with recent warming SSTs. In contrast, the tropical species, S. ilicifolium, has gradually expanded its distribution to become the most conspicuously dominant among the present observations. Thermal gradients, mainly driven by the warming Kuroshio Current, are presented as an explanation for the successive changes in both temperate and

  8. Warm forming simulation of Al-Mg sheet

    NARCIS (Netherlands)

    Kurukuri, S.; van den Boogaard, Antonius H.; Miroux, A.; Holmedal, B.

    2009-01-01

    The accuracy of warm forming simulations depends to a large extend on the description of the yield surface with temperature and strain-rate dependent hardening and on the modeling of friction. In this paper, the anisotropic behavior of the sheet is described by using the Vegter yield locus, which is

  9. Evaluation of NASA GEOS-ADAS Modeled Diurnal Warming Through Comparisons to SEVIRI and AMSR2 SST Observations

    Science.gov (United States)

    Gentemann, C. L.; Akella, S.

    2018-02-01

    An analysis of the ocean skin Sea Surface Temperature (SST) has been included in the Goddard Earth Observing System (GEOS) - Atmospheric Data Assimilation System (ADAS), Version 5 (GEOS-ADAS). This analysis is based on the GEOS atmospheric general circulation model (AGCM) that simulates near-surface diurnal warming and cool skin effects. Analysis for the skin SST is performed along with the atmospheric state, including Advanced Very High Resolution Radiometer (AVHRR) satellite radiance observations as part of the data assimilation system. One month (September, 2015) of GEOS-ADAS SSTs were compared to collocated satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and Advanced Microwave Scanning Radiometer 2 (AMSR2) SSTs to examine how the GEOS-ADAS diurnal warming compares to the satellite measured warming. The spatial distribution of warming compares well to the satellite observed distributions. Specific diurnal events are analyzed to examine variability within a single day. The dependence of diurnal warming on wind speed, time of day, and daily average insolation is also examined. Overall the magnitude of GEOS-ADAS warming is similar to the warming inferred from satellite retrievals, but several weaknesses in the GEOS-AGCM simulated diurnal warming are identified and directly related back to specific features in the formulation of the diurnal warming model.

  10. Understanding the El Niño-like Oceanic Response in the Tropical Pacific to Global Warming

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yiyong; Lu, Jian; Liu, Fukai; Liu, Wei

    2015-10-10

    The enhanced central and eastern Pacific SST warming and the associated ocean processes under global warming are investigated using the ocean component of the Community Earth System Model (CESM), Parallel Ocean Program version 2 (POP2). The tropical SST warming pattern in the coupled CESM can be faithfully reproduced by the POP2 forced with surface fluxes computed using the aerodynamic bulk formula. By prescribing the wind stress and/or wind speed through the bulk formula, the effects of wind stress change and/or the wind-evaporation-SST (WES) feedback are isolated and their linearity is evaluated in this ocean-alone setting. Result shows that, although the weakening of the equatorial easterlies contributes positively to the El Niño-like SST warming, 80% of which can be simulated by the POP2 without considering the effects of wind change in both mechanical and thermodynamic fluxes. This result points to the importance of the air-sea thermal interaction and the relative feebleness of the ocean dynamical process in the El Niño-like equatorial Pacific SST response to global warming. On the other hand, the wind stress change is found to play a dominant role in the oceanic response in the tropical Pacific, accounting for most of the changes in the equatorial ocean current system and thermal structures, including the weakening of the surface westward currents, the enhancement of the near-surface stratification and the shoaling of the equatorial thermocline. Interestingly, greenhouse gas warming in the absence of wind stress change and WES feedback also contributes substantially to the changes at the subsurface equatorial Pacific. Further, this warming impact can be largely replicated by an idealized ocean experiment forced by a uniform surface heat flux, whereby, arguably, a purest form of oceanic dynamical thermostat is revealed.

  11. Effects of warming on uptake and translocation of cadmium (Cd) and copper (Cu) in a contaminated soil-rice system under Free Air Temperature Increase (FATI).

    Science.gov (United States)

    Ge, Li-Qiang; Cang, Long; Liu, Hui; Zhou, Dong-Mei

    2016-07-01

    Global warming has received growing attentions about its potential threats to human in recent, however little is known about its effects on transfer of heavy metals in agro-ecosystem, especially for Cd in rice. Pot experiments were conducted to evaluate Cd/Cu translocation in a contaminated soil-rice system under Free Air Temperature Increase (FATI). The results showed that warming gradually decreased soil porewater pH and increased water-soluble Cd/Cu concentration, reduced formation of iron plaque on root surface, and thus significantly increased total uptake of Cd/Cu by rice. Subsequently, warming significantly promoted Cd translocation from root to shoot, and increased Cd distribution percentage in shoot, while Cu was not significantly affected. Enhanced Cd uptake and translocation synergistically resulted in higher rice grain contamination with increasing concentration from 0.27 to 0.65 and 0.14-0.40 mg kg(-1) for Indica and Japonica rice, respectively. However increase of Cu in brown grain was only attributed to its uptake enhancement under warming. Our study provides a new understanding about the food production insecurity of heavy metal contaminated soil under the future global warming. Copyright © 2016. Published by Elsevier Ltd.

  12. Global warming from an energy perspective

    International Nuclear Information System (INIS)

    Edwards, A.G.

    1991-01-01

    Global climate change and energy are integrally related. The majority of greenhouse gas emissions are the result of energy production and use; at the same time, warming will affect energy patterns in California through physical increases in energy demand, physical changes in energy supply, and changes in both energy end-use patterns and supplies resulting from climate-change policies. There seems to be a growing political consensus that the world (as well as the state) needs to act soon to minimize further commitment to future warming. While California is not likely to experience the physical changes resulting from a warmer climate for years or perhaps decades, policy responses to the warming issue may cause more immediate impacts. This chapter will discuss how policy response to potential warming may be the most significant early impact of the issue on California's energy system. Makers of energy policy face the dilemma of deciding how to respond to the climate warming issue in the face of scientific uncertainties about its timing and seriousness. The chapter will conclude by presenting a conceptual framework for dealing with this dilemma, along with general recommendations for action

  13. Global Warming Threatens National Interests in the Arctic

    Science.gov (United States)

    2009-03-26

    Global warming has impacted the Arctic Ocean by significantly reducing the extent of the summer ice cover allowing greater access to the region...increased operations in the Arctic region, and DoD must continue to research and develop new and alternate energy sources for its forces. Global warming is

  14. Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes?

    International Nuclear Information System (INIS)

    Bengtsson, L.; Botzet, M.; Esch, M.

    1994-01-01

    The use of a high resolution atmospheric model at T106 resolution, for studying the influence on greenhouse warming on tropical storm climatology, is investigated. The same method for identifying the storms has been used as in a previous study by Bengtsson et al (1994). The sea surface temperature anomalies have been taken from a previous climate change experiment, obtained with a low resolution ocean-atmosphere coupled model. The global distribution of the storms agree in their geographical position and seasonal variability with that of the present climate, but the number of storms is significantly reduced, particularly at the Southern hemisphere. The main reason to this is related to increased tropospheric stability, associated with increased warming at the upper troposphere and changes in the large scale circulation such as a weaker Hadley circulation and stronger upper air westerlies. The surface winds in the tropics are generally weaker and evaporation is also somewhat reduced, in spite of higher sea surface temperatures. (orig.)

  15. Characterizing and attributing the warming trend in sea and land surface temperatures

    NARCIS (Netherlands)

    Estrada, Francisco; Martins, Luis Filipe; Perron, Pierre

    2017-01-01

    Because of low-frequency internal variability, the observed and underlying warming trends in temperature series can be markedly different. Important differences in the observed nonlinear trends in hemispheric temperature series suggest that the northern and southern hemispheres have responded

  16. On some aspects of Indian Ocean warm pool

    Digital Repository Service at National Institute of Oceanography (India)

    Saji, P.K.; Balchand, A.N.; RameshKumar, M.R.

    Annual and interannual variation of Indian Ocean Warm Pool (IOWP) was studied using satellite and in situ ocean temperature data IOWP surface area undergoes a strong annual cycle attaining a maximum of 24x106km2 during April...

  17. Population risk perceptions of global warming in Australia.

    Science.gov (United States)

    Agho, Kingsley; Stevens, Garry; Taylor, Mel; Barr, Margo; Raphael, Beverley

    2010-11-01

    According to the World Health Organisation (WHO), global warming has the potential to dramatically disrupt some of life's essential requirements for health, water, air and food. Understanding how Australians perceive the risk of global warming is essential for climate change policy and planning. The aim of this study was to determine the prevalence of, and socio-demographic factors associated with, high levels of perceived likelihood that global warming would worsen, concern for self and family and reported behaviour changes. A module of questions on global warming was incorporated into the New South Wales Population Health Survey in the second quarter of 2007. This Computer Assisted Telephone Interview (CATI) was completed by a representative sample of 2004 adults. The weighted sample was comparable to the Australian population. Bivariate and multivariate statistical analyses were conducted to examine the socio-demographic and general health factors. Overall 62.1% perceived that global warming was likely to worsen; 56.3% were very or extremely concerned that they or their family would be directly affected by global warming; and 77.6% stated that they had made some level of change to the way they lived their lives, because of the possibility of global warming. After controlling for confounding factors, multivariate analyses revealed that those with high levels of psychological distress were 2.17 (Adjusted Odds Ratio (AOR)=2.17; CI: 1.16-4.03; P=0.015) times more likely to be concerned about global warming than those with low psychological distress levels. Those with a University degree or equivalent and those who lived in urban areas were significantly more likely to think that global warming would worsen compared to those without a University degree or equivalent and those who lived in the rural areas. Females were significantly (AOR=1.69; CI: 1.23-2.33; P=0.001) more likely to report they had made changes to the way they lived their lives due to the risk of

  18. Water vapor changes under global warming and the linkage to present-day interannual variabilities in CMIP5 models

    Science.gov (United States)

    Takahashi, Hanii; Su, Hui; Jiang, Jonathan H.

    2016-12-01

    The fractional water vapor changes under global warming across 14 Coupled Model Intercomparison Project Phase 5 simulations are analyzed. We show that the mean fractional water vapor changes under global warming in the tropical upper troposphere between 300 and 100 hPa range from 12.4 to 28.0 %/K across all models while the fractional water vapor changes are about 5-8 %/K in other regions and at lower altitudes. The "upper-tropospheric amplification" of the water vapor change is primarily driven by a larger temperature increase in the upper troposphere than in the lower troposphere per degree of surface warming. The relative contributions of atmospheric temperature and relative humidity changes to the water vapor change in each model vary between 71.5 to 131.8 % and 24.8 to -20.1 %, respectively. The inter-model differences in the water vapor change is primarily caused by differences in temperature change, except over the inter-tropical convergence zone within 10°S-10°N where the model differences due to the relative humidity change are significant. Furthermore, we find that there is generally a positive correlation between the rates of water vapor change for long-tem surface warming and those on the interannual time scales. However, the rates of water vapor change under long-term warming have a systematic offset from those on the inter-annual time scales and the dominant contributor to the differences also differs for the two time scales, suggesting caution needs to be taken when inferring long-term water vapor changes from the observed interannual variations.

  19. Premonsoon Aerosol Characterization and Radiative Effects Over the Indo-Gangetic Plains: Implications for Regional Climate Warming

    Science.gov (United States)

    Gautam, Ritesh; Hsu, N. Christina; Lau, K.-M.

    2010-01-01

    The Himalayas have a profound effect on the South Asian climate and the regional hydrological cycle, as it forms a barrier for the strong monsoon winds and serves as an elevated heat source, thus controlling the onset and distribution of precipitation during the Indian summer monsoon. Recent studies have suggested that radiative heating by absorbing aerosols, such as dust and black carbon over the Indo-Gangetic Plains (IGP) and slopes of the Himalayas, may significantly accelerate the seasonal warming of the Hindu Kush-Himalayas-Tibetan Plateau (HKHT) and influence the subsequent evolution of the summer monsoon. This paper presents a detailed characterization of aerosols over the IGP and their radiative effects during the premonsoon season (April-May-June) when dust transport constitutes the bulk of the regional aerosol loading, using ground radiometric and spaceborne observations. During the dust-laden period, there is a strong response of surface shortwave flux to aerosol absorption indicated by the diurnally averaged forcing efficiency of -70 W/sq m per unit optical depth. The simulated aerosol single-scattering albedo, constrained by surface flux and aerosol measurements, is estimated to be 0.89+/- 0.01 (at approx.550 nm) with diurnal mean surface and top-of-atmosphere forcing values ranging from -11 to -79.8 W/sq m and +1.4 to +12 W/sq m, respectively, for the premonsoon period. The model-simulated solar heating rate profile peaks in the lower troposphere with enhanced heating penetrating into the middle troposphere (5-6 km), caused by vertically extended aerosols over the IGP with peak altitude of approx.5 km as indicated by spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization observations. On a long-term climate scale, our analysis, on the basis of microwave satellite measurements of tropospheric temperatures from 1979 to 2007, indicates accelerated annual mean warming rates found over the Himalayan-Hindu Kush region (0.21 C/decade+/-0.08 C

  20. Amount and timing of permafrost carbon release in response to climate warming

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Kevin; Zhang, Tingjun; Barrett, Andrew P. (National Snow and Ice Data Center, Cooperative Inst. for Research in Environmental Sciences, Univ. of Colorado at Boulder, Boulder (United States)), e-mail: kevin.schaefer@nsidc.org; Bruhwiler, Lori (National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Boulder (United States))

    2011-04-15

    The thaw and release of carbon currently frozen in permafrost will increase atmospheric CO{sub 2} concentrations and amplify surface warming to initiate a positive permafrost carbon feedback (PCF) on climate.We use surface weather from three global climate models based on the moderate warming, A1B Intergovernmental Panel on Climate Change emissions scenario and the SiBCASA land surface model to estimate the strength and timing of the PCF and associated uncertainty. By 2200, we predict a 29-59% decrease in permafrost area and a 53-97 cm increase in active layer thickness. By 2200, the PCF strength in terms of cumulative permafrost carbon flux to the atmosphere is 190 +- 64 Gt C. This estimate may be low because it does not account for amplified surface warming due to the PCF itself and excludes some discontinuous permafrost regions where SiBCASA did not simulate permafrost. We predict that the PCF will change the arctic from a carbon sink to a source after the mid-2020s and is strong enough to cancel 42-88% of the total global land sink. The thaw and decay of permafrost carbon is irreversible and accounting for the PCF will require larger reductions in fossil fuel emissions to reach a target atmospheric CO{sub 2} concentration

  1. Exceptional Air Mass Transport and Dynamical Drivers of an Extreme Wintertime Arctic Warm Event

    Science.gov (United States)

    Binder, Hanin; Boettcher, Maxi; Grams, Christian M.; Joos, Hanna; Pfahl, Stephan; Wernli, Heini

    2017-12-01

    At the turn of the years 2015/2016, maximum surface temperature in the Arctic reached record-high values, exceeding the melting point, which led to a strong reduction of the Arctic sea ice extent in the middle of the cold season. Here we show, using a Lagrangian method, that a combination of very different airstreams contributed to this event: (i) warm low-level air of subtropical origin, (ii) initially cold low-level air of polar origin heated by surface fluxes, and (iii) strongly descending air heated by adiabatic compression. The poleward transport of these warm airstreams occurred along an intense low-level jet between a series of cyclones and a quasi-stationary anticyclone. The complex 3-D configuration that enabled this transport was facilitated by continuous warm conveyor belt ascent into the upper part of the anticyclone. This study emphasizes the combined role of multiple transport processes and transient synoptic-scale dynamics for establishing an extreme Arctic warm event.

  2. How does ocean ventilation change under global warming?

    Directory of Open Access Journals (Sweden)

    A. Gnanadesikan

    2007-01-01

    Full Text Available Since the upper ocean takes up much of the heat added to the earth system by anthropogenic global warming, one would expect that global warming would lead to an increase in stratification and a decrease in the ventilation of the ocean interior. However, multiple simulations in global coupled climate models using an ideal age tracer which is set to zero in the mixed layer and ages at 1 yr/yr outside this layer show that the intermediate depths in the low latitudes, Northwest Atlantic, and parts of the Arctic Ocean become younger under global warming. This paper reconciles these apparently contradictory trends, showing that the decreases result from changes in the relative contributions of old deep waters and younger surface waters. Implications for the tropical oxygen minimum zones, which play a critical role in global biogeochemical cycling are considered in detail.

  3. Asymmetric Response of the Equatorial Pacific SST to Climate Warming and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fukai [Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Luo, Yiyong [Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Lu, Jian [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Garuba, Oluwayemi [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Wan, Xiuquan [Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

    2017-09-01

    The response of the equatorial Pacific Ocean to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model (CESM). Results show a strong asymmetry in SST changes. In the eastern equatorial Pacific (EEP), the warming responding to the positive forcing exceeds the cooling to the negative forcing; while in the western equatorial Pacific (WEP), it is the other way around and the cooling surpasses the warming. This leads to a zonal dipole asymmetric structure, with positive values in the east and negative values in the west. A surface heat budget analysis suggests that the SST asymmetry is mainly resulted from the oceanic horizontal advection and vertical entrainment, with both of their linear and nonlinear components playing a role. For the linear component, its change appears to be more significant over the EEP (WEP) in the positive (negative) forcing scenario, favoring the seesaw pattern of the SST asymmetry. For the nonlinear component, its change acts to warm (cool) the EEP (WEP) in both scenarios, also favorable for the development of the SST asymmetry. Additional experiments with a slab ocean confirm the dominant role of ocean dynamical processes for this SST asymmetry. The net surface heat flux, in contrast, works to reduce the SST asymmetry through its shortwave radiation and latent heat flux components, with the former being related to the nonlinear relationship between SST and convection, and the latter being attributable to Newtonian damping and air-sea stability effects. The suppressing effect of shortwave radiation on SST asymmetry is further verified by partially coupled overriding experiments.

  4. Effects of turbulence on warm clouds and precipitation with various aerosol concentrations

    Science.gov (United States)

    Lee, Hyunho; Baik, Jong-Jin; Han, Ji-Young

    2015-02-01

    This study investigates the effects of turbulence-induced collision enhancement (TICE) on warm clouds and precipitation by changing the cloud condensation nuclei (CCN) number concentration using a two-dimensional dynamic model with bin microphysics. TICE is determined according to the Taylor microscale Reynolds number and the turbulent dissipation rate. The thermodynamic sounding used in this study is characterized by a warm and humid atmosphere with a capping inversion layer, which is suitable for simulating warm clouds. For all CCN concentrations, TICE slightly reduces the liquid water path during the early stage of cloud development and accelerates the onset of surface precipitation. However, changes in the rainwater path and in the amount of surface precipitation that are caused by TICE depend on the CCN concentrations. For high CCN concentrations, the mean cloud drop number concentration (CDNC) decreases and the mean effective radius increases due to TICE. These changes cause an increase in the amount of surface precipitation. However, for low CCN concentrations, changes in the mean CDNC and in the mean effective radius induced by TICE are small and the amount of surface precipitation decreases slightly due to TICE. A decrease in condensation due to the accelerated coalescence between droplets explains the surface precipitation decrease. In addition, an increase in the CCN concentration can lead to an increase in the amount of surface precipitation, and the relationship between the CCN concentration and the amount of surface precipitation is affected by TICE. It is shown that these results depend on the atmospheric relative humidity.

  5. Soil warming for utilization and dissipation of waste heat from power generation in Pennsylvania

    International Nuclear Information System (INIS)

    DeWalle, D.R.

    1977-01-01

    The purpose of this paper is to describe the Penn State research project, which studies the soil warming by circulation of heated power plant discharge water through a buried pipe network. Waste heat can be utilized by soil warming for increased crop growth in open fields with proper selection of crops and cropping systems. Dissipation of waste heat from a buried pipe network can be predicted using either of two steady-state conduction equations tested. Accurate predictions are dependent upon estimates of the pipe outer-surface temperatures, soil surface temperatures in heated soil and soil thermal conductivity. The effect of economic optimization on soil-warming land area requirements for a 1500 MWe power plant in Pennsylvania is presented. (M.S.)

  6. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China.

    Directory of Open Access Journals (Sweden)

    Yunlu Tian

    Full Text Available Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05, respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05 higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.

  7. Unexpected Impacts of Global warming on Extreme Warm Spells

    Science.gov (United States)

    Sardeshmukh, P. D.; Compo, G. P.; McColl, C.; Penland, C.

    2017-12-01

    It is generally presumed that the likelihood of extreme warm spells around the globe has increased, and will continue to increase, due to global warming. However, we find that this is generally not true in three very different types of global observational datasets and uncoupled atmospheric model simulations of the 1959 to 2012 period with prescribed observed global SSTs, sea ice, and radiative forcing changes. While extreme warm spells indeed became more common in many regions, in many other regions their likelihood remained almost the same or even decreased from the first half to the second half of this period. Such regions of unexpected changes covered nearly 40 percent of the globe in both winter and summer. The basic reason for this was a decrease of temperature variability in such regions that offset or even negated the effect of the mean temperature shift on extreme warm spell probabilities. The possibility of such an impact on extreme value probabilities was highlighted in a recent paper by Sardeshmukh, Compo, and Penland (Journal of Climate 2015). The consistency of the changes in extreme warm spell probabilities among the different observational datasets and model simulations examined suggests that they are robust regional aspects of global warming associated with atmospheric circulation changes. This highlights the need for climate models to represent not just the mean regional temperature signals but also the changes in subseasonal temperature variability associated with global warming. However, current climate models (both CMIP3 and CMIP5) generally underestimate the magnitude of the changes in the atmospheric circulation and associated temperature variability. A likely major cause of this is their continuing underestimation of the magnitude of the spatial variation of tropical SST trends. By generating an overly spatially bland tropical SST warming in response to changes in radiative forcing, the models spuriously mute tropically

  8. On the recent warming in the subcloud layer entropy and vertically integrated moist static energy over South Asian Monsoon region.

    Science.gov (United States)

    Konduru, R.; Gupta, A.; Matsumoto, J.; Takahashi, H. G.

    2017-12-01

    In order to explain monsoon circulation, surface temperature gradients described as most traditional concept. However, it cannot explain certain important aspects of monsoon circulation. Later, convective quasi-equilibrium framework and vertically integrated atmospheric energy budget has become recognized theories to explain the monsoon circulation. In this article, same theories were analyzed and observed for the duration 1979-2010 over south Asian summer monsoon region. With the help of NCEP-R2, NOAA 20th Century, and Era-Interim reanalysis an important feature was noticed pertained to subcloud layer entropy and vertical moist static energy. In the last 32 years, subcloud layer entropy and vertically integrated moist static energy has shown significant seasonal warming all over the region with peak over the poleward flank of the cross-equatorial cell. The important reason related to the warming was found to be increase in surface enthalpy fluxes. Instead, other dynamical contributions pertained to the warming was also observed. Increase in positive anomalies of vertical advection of moist static energy over northern Bay of Bengal, Central India, Peninsular India, Eastern Arabian Sea, and Equatorial Indian Ocean was found to be an important dynamic factor contributing for warming of vertically integrated moist static energy. Along with it vertical moist stability has also supported the argument. Similar interpretations were perceived in the AMIP simulation of CCSM4 model. Further modeling experiments on this warming will be helpful to know the exact mechanism behind it.

  9. Phytoplankton response to winter warming modified by large-bodied zooplankton: an experimental microcosm study

    Directory of Open Access Journals (Sweden)

    Hu He

    2015-03-01

    Full Text Available While several field investigations have demonstrated significant effects of cool season (winter or spring warming on phytoplankton development, the role played by large-bodied zooplankton grazers for the responses of phytoplankton to winter warming is ambiguous. We conducted an outdoor experiment to compare the effect of winter warming (heating by 3°C in combination with presence and absence of Daphnia grazing (D. similis on phytoplankton standing crops and community structure under eutrophic conditions. When Daphnia were absent, warming was associated with significant increases in phytoplankton biomass and cyanobacterial dominance. In contrast, when Daphnia were present, warming effects on phytoplankton dynamics were offset by warming-enhanced grazing, resulting in no significant change in biomass or taxonomic dominance. These results emphasize that large-bodied zooplankton like Daphnia spp. may play an important role in modulating the interactions between climate warming and phytoplankton dynamics in nutrient rich lake ecosystems.

  10. Dominance of climate warming effects on recent drying trends over wet monsoon regions

    Directory of Open Access Journals (Sweden)

    C.-E. Park

    2017-09-01

    Full Text Available Understanding changes in background dryness over land is key information for adapting to climate change because of its critical socioeconomic consequences. However, causes of continental dryness changes remain uncertain because various climate parameters control dryness. Here, we verify dominant climate variables determining dryness trends over continental eastern Asia, which is characterized by diverse hydroclimate regimes ranging from arid to humid, by quantifying the relative effects of changes in precipitation, solar radiation, wind speed, surface air temperature, and relative humidity on trends in the aridity index based on observed data from 189 weather stations for the period of 1961–2010. Before the early 1980s (1961–1983, change in precipitation is a primary condition for determining aridity trends. In the later period (1984–2010, the dominant climate parameter for aridity trends varies according to the hydroclimate regime. Drying trends in arid regions are mostly explained by reduced precipitation. In contrast, the increase in potential evapotranspiration due to increased atmospheric water-holding capacity, a secondary impact of warming, works to increase aridity over the humid monsoon region despite an enhanced water supply and relatively less warming. Our results show significant drying effects of warming over the humid monsoon region in recent decades; this also supports the drying trends over warm and water-sufficient regions in future climate.

  11. CAUSES: Diagnosis of the Summertime Warm Bias in CMIP5 Climate Models at the ARM Southern Great Plains Site

    Science.gov (United States)

    Zhang, Chengzhu; Xie, Shaocheng; Klein, Stephen A.; Ma, Hsi-yen; Tang, Shuaiqi; Van Weverberg, Kwinten; Morcrette, Cyril J.; Petch, Jon

    2018-03-01

    All the weather and climate models participating in the Clouds Above the United States and Errors at the Surface project show a summertime surface air temperature (T2 m) warm bias in the region of the central United States. To understand the warm bias in long-term climate simulations, we assess the Atmospheric Model Intercomparison Project simulations from the Coupled Model Intercomparison Project Phase 5, with long-term observations mainly from the Atmospheric Radiation Measurement program Southern Great Plains site. Quantities related to the surface energy and water budget, and large-scale circulation are analyzed to identify possible factors and plausible links involved in the warm bias. The systematic warm season bias is characterized by an overestimation of T2 m and underestimation of surface humidity, precipitation, and precipitable water. Accompanying the warm bias is an overestimation of absorbed solar radiation at the surface, which is due to a combination of insufficient cloud reflection and clear-sky shortwave absorption by water vapor and an underestimation in surface albedo. The bias in cloud is shown to contribute most to the radiation bias. The surface layer soil moisture impacts T2 m through its control on evaporative fraction. The error in evaporative fraction is another important contributor to T2 m. Similar sources of error are found in hindcast from other Clouds Above the United States and Errors at the Surface studies. In Atmospheric Model Intercomparison Project simulations, biases in meridional wind velocity associated with the low-level jet and the 500 hPa vertical velocity may also relate to T2 m bias through their control on the surface energy and water budget.

  12. Evolution of the curvature perturbations during warm inflation

    International Nuclear Information System (INIS)

    Matsuda, Tomohiro

    2009-01-01

    This paper considers warm inflation as an interesting application of multi-field inflation. Delta-N formalism is used for the calculation of the evolution of the curvature perturbations during warm inflation. Although the perturbations considered in this paper are decaying after the horizon exit, the corrections to the curvature perturbations sourced by these perturbations can remain and dominate the curvature perturbations at large scales. In addition to the typical evolution of the curvature perturbations, inhomogeneous diffusion rate is considered for warm inflation, which may lead to significant non-Gaussianity of the spectrum

  13. TOPEX/El Nino Watch - Warm Water Pool is Increasing, Nov. 10, 1997

    Science.gov (United States)

    1997-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S./French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Nov. 10, 1997. The volume of extra warm surface water (shown in white) in the core of the El Nino continues to increase, especially in the area between 15 degrees south latitude and 15 degrees north latitude in the eastern Pacific Ocean. The area of low sea level (shown in purple) has decreased somewhat from late October. The white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 centimeters and 32 cm (6 inches to 13 inches) above normal; in the red areas, it is about 10 centimeters (4 inches) above normal. The surface area covered by the warm water mass is about one-and-one-half times the size of the continental United States. The added amount of oceanic warm water near the Americas, with a temperature between 21 to 30 degrees Celsius (70 to 85 degrees Fahrenheit), is about 30 times the volume of water in all the U.S. Great Lakes combined. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level.The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white areas) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using these global data, limited regional measurements from buoys and ships, and a forecasting model of the ocean-atmospheric system, the National Centers for Environmental Prediction (NCEP) of the National Oceanic and Atmospheric

  14. Increasing potential of biomass burning over Sumatra, Indonesia induced by anthropogenic tropical warming

    International Nuclear Information System (INIS)

    Lestari, R Kartika; Watanabe, Masahiro; Kimoto, Masahide; Imada, Yukiko; Shiogama, Hideo; Field, Robert D; Takemura, Toshihiko

    2014-01-01

    Uncontrolled biomass burning in Indonesia during drought periods damages the landscape, degrades regional air quality, and acts as a disproportionately large source of greenhouse gas emissions. The expansion of forest fires is mostly observed in October in Sumatra favored by persistent droughts during the dry season from June to November. The contribution of anthropogenic warming to the probability of severe droughts is not yet clear. Here, we show evidence that past events in Sumatra were exacerbated by anthropogenic warming and that they will become more frequent under a future emissions scenario. By conducting two sets of atmospheric general circulation model ensemble experiments driven by observed sea surface temperature for 1960–2011, one with and one without an anthropogenic warming component, we found that a recent weakening of the Walker circulation associated with tropical ocean warming increased the probability of severe droughts in Sumatra, despite increasing tropical-mean precipitation. A future increase in the frequency of droughts is then suggested from our analyses of the Coupled Model Intercomparison Project Phase 5 model ensembles. Increasing precipitation to the north of the equator accompanies drier conditions over Indonesia, amplified by enhanced ocean surface warming in the central equatorial Pacific. The resultant precipitation decrease leads to a ∼25% increase in severe drought events from 1951–2000 to 2001–2050. Our results therefore indicate the global warming impact to a potential of wide-spreading forest fires over Indonesia, which requires mitigation policy for disaster prevention. (letter)

  15. Warm mid-Cretaceous high-latitude sea-surface temperatures from the southern Tethys Ocean and cool high-latitude sea-surface temperatures from the Arctic Ocean: asymmetric worldwide distribution of dinoflagellates

    Science.gov (United States)

    Masure, Edwige; Desmares, Delphine; Vrielynck, Bruno

    2014-05-01

    Dealing with 87 articles and using a Geographical Information System, Masure and Vrielynck (2009) have mapped worldwide biogeography of 38 Late Albian dinoflagellate cysts and have demonstrated Cretaceous oceanic bioclimatic belts. For comparison 30 Aptian species derived from 49 studies (Masure et al., 2013) and 49 Cenomanian species recorded from 33 articles have been encountered. Tropical, Subtropical, Boreal, Austral, bipolar and cosmopolitan species have been identified and Cretaceous dinoflagellate biomes are introduced. Asymmetric distribution of Aptian and Late Albian/Cenomanian subtropical Tethyan species, from 40°N to 70°S, demonstrates asymmetric Aptian and Late Albian/Cenomanian Sea Surface Temperature (SST) gradients with warm water masses in high latitudes of Southern Ocean. The SST gradients were stronger in the Northern Hemisphere than in the Southern Hemisphere. We note that Aptian and Late Albian/Cenomanian dinoflagellates restricted to subtropical and subpolar latitudes met and mixed at 35-40°N, while they mixed from 30°S to 70°S and from 50°S to 70°S respectively in the Southern Hemisphere. Mixing belts extend on 5° in the Northern Hemisphere and along 40° (Aptian) and 20° (Late Albian/Cenomanian) in the Southern one. The board southern mixing belt of Tethyan and Austral dinoflagellates suggest co-occurrence of warm and cold currents. We record climatic changes such as the Early Aptian cooler period and Late Aptian and Albian warming through the poleward migration of species constrained to cool water masses. These species sensitive to temperature migrated from 35°N to 55°N through the shallow Greenland-Norwergian Seaway connecting the Central Atlantic and the Arctic Ocean. While Tethyan species did not migrate staying at 40°N. We suggest that the Greenland-Norwergian Seaway might has been a barrier until Late Albian/Cenomanian for oceanic Tethyan dinoflagellates stopped either by the shallow water column or temperature and salinity

  16. Is cold or warm blood cardioplegia superior for myocardial protection?

    Science.gov (United States)

    Abah, Udo; Roberts, Patrick Garfjeld; Ishaq, Muhammad; De Silva, Ravi

    2012-01-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was whether the use of warm or cold blood cardioplegia has superior myocardial protection. More than 192 papers were found using the reported search, of which 20 represented the best evidence to answer the clinical question. The authors, journal, date, country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. A good breadth of high-level evidence addressing this clinical dilemma is available, including a recent meta-analysis and multiple large randomized clinical trials. Yet despite this level of evidence, no clear significant clinical benefit has been demonstrated by warm or cold blood cardioplegia. This suggests that neither method is significantly superior and that both provide similar efficacy of myocardial protection. The meta-analysis, including 41 randomized control trials (5879 patients in total), concluded that although a lower cardiac enzyme release and improved postoperative cardiac index was demonstrated in the warm cardioplegia group, this benefit was not reflected in clinical outcomes, which were similar in both groups. This theme of benefit in biochemical markers, physiological metrics and non-fatal postoperative events in the warm cardioplegia group ran throughout the literature, in particular the ‘Warm Heart investigators’ who conducted a randomized trial of 1732 patients, demonstrated a reduction in postoperative low output syndrome (6.1 versus 9.3%, P = 0.01) in the warm cardioplegia group, but no significant drop in 30-day all-cause mortality (1.4 versus 2.5%, P = 0.12). However, their later follow-up indicates non-fatal postoperative events predict reduced late survival, independent of cardioplegia. A minority of studies suggested a benefit of cold cardioplegia over warm in particular patient subgroups: One group conducted a retrospective study of 520 patients who

  17. Hurricane Matthew (2016) and its Storm Surge Inundation under Global Warming Scenarios: Application of an Interactively Coupled Atmosphere-Ocean Model

    Science.gov (United States)

    Jisan, M. A.; Bao, S.; Pietrafesa, L.; Pullen, J.

    2017-12-01

    An interactively coupled atmosphere-ocean model was used to investigate the impacts of future ocean warming, both at the surface and the layers below, on the track and intensity of a hurricane and its associated storm surge and inundation. The category-5 hurricane Matthew (2016), which made landfall on the South Carolina coast of the United States, was used for the case study. Future ocean temperature changes and sea level rise (SLR) were estimated based on the projection of Inter-Governmental Panel on Climate Change (IPCC)'s Representative Concentration Pathway scenarios RCP 2.6 and RCP 8.5. After being validated with the present-day observational data, the model was applied to simulate the changes in track, intensity, storm surge and inundation that Hurricane Matthew would cause under future climate change scenarios. It was found that a significant increase in hurricane intensity, storm surge water level, and inundation area for Hurricane Matthew under future ocean warming and SLR scenarios. For example, under the RCP 8.5 scenario, the maximum wind speed would increase by 17 knots (14.2%), the minimum sea level pressure would decrease by 26 hPa (2.85%), and the inundated area would increase by 401 km2 (123%). By including the effect of SLR for the middle-21st-century scenario, the inundated area will further increase by up to 49.6%. The increase in the hurricane intensity and the inundated area was also found for the RCP 2.6 scenario. The response of sea surface temperature was analyzed to investigate the change in intensity. A comparison was made between the impacts when only the sea surface warming is considered versus when both the sea surface and the underneath layers are considered. These results showed that even without the effect of SLR, the storm surge level and the inundated area would be higher due to the increased hurricane intensity under the influence of the future warmer ocean temperature. The coupled effect of ocean warming and SLR would cause the

  18. Contrasting above- and belowground organic matter decomposition and carbon and nitrogen dynamics in response to warming in High Arctic tundra.

    Science.gov (United States)

    Blok, Daan; Faucherre, Samuel; Banyasz, Imre; Rinnan, Riikka; Michelsen, Anders; Elberling, Bo

    2017-12-13

    Tundra regions are projected to warm rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With warming, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global warming. Warming may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental warming on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high-arctic tundra heath sites in NE-Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and warmed plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field warming on soil carbon stocks. Finally, we incubated open cores filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost cores in the lab. Warming significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. Warming also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by warming, while soil dissolved nitrogen was reduced by half in warmed plots. Warming had a positive legacy effect on carbon turnover rates in thawed permafrost cores, with 10% higher respiration rates measured in cores from warmed plots. These results demonstrate that warming may have contrasting effects on above- and belowground tundra carbon turnover, possibly governed by microbial resource availability. © 2017 John

  19. Seasonality of change: Summer warming rates do not fully represent effects of climate change on lake temperatures

    Science.gov (United States)

    Winslow, Luke; Read, Jordan S.; Hansen, Gretchen J. A.; Rose, Kevin C.; Robertson, Dale M.

    2017-01-01

    Responses in lake temperatures to climate warming have primarily been characterized using seasonal metrics of surface-water temperatures such as summertime or stratified period average temperatures. However, climate warming may not affect water temperatures equally across seasons or depths. We analyzed a long-term dataset (1981–2015) of biweekly water temperature data in six temperate lakes in Wisconsin, U.S.A. to understand (1) variability in monthly rates of surface- and deep-water warming, (2) how those rates compared to summertime average trends, and (3) if monthly heterogeneity in water temperature trends can be predicted by heterogeneity in air temperature trends. Monthly surface-water temperature warming rates varied across the open-water season, ranging from 0.013 in August to 0.073°C yr−1 in September (standard deviation [SD]: 0.025°C yr−1). Deep-water trends during summer varied less among months (SD: 0.006°C yr−1), but varied broadly among lakes (–0.056°C yr−1 to 0.035°C yr−1, SD: 0.034°C yr−1). Trends in monthly surface-water temperatures were well correlated with air temperature trends, suggesting monthly air temperature trends, for which data exist at broad scales, may be a proxy for seasonal patterns in surface-water temperature trends during the open water season in lakes similar to those studied here. Seasonally variable warming has broad implications for how ecological processes respond to climate change, because phenological events such as fish spawning and phytoplankton succession respond to specific, seasonal temperature cues.

  20. Modeling the Warming Impact of Urban Land Expansion on Hot Weather Using the Weather Research and Forecasting Model: A Case Study of Beijing, China

    Science.gov (United States)

    Liu, Xiaojuan; Tian, Guangjin; Feng, Jinming; Ma, Bingran; Wang, Jun; Kong, Lingqiang

    2018-06-01

    The impacts of three periods of urban land expansion during 1990-2010 on near-surface air temperature in summer in Beijing were simulated in this study, and then the interrelation between heat waves and urban warming was assessed. We ran the sensitivity tests using the mesoscaleWeather Research and Forecasting model coupled with a single urban canopy model, as well as high-resolution land cover data. The warming area expanded approximately at the same scale as the urban land expansion. The average regional warming induced by urban expansion increased but the warming speed declined slightly during 2000-2010. The smallest warming occurred at noon and then increased gradually in the afternoon before peaking at around 2000 LST—the time of sunset. In the daytime, urban warming was primarily caused by the decrease in latent heat flux at the urban surface. Urbanization led to more ground heat flux during the day and then more release at night, which resulted in nocturnal warming. Urban warming at night was higher than that in the day, although the nighttime increment in sensible heat flux was smaller. This was because the shallower planetary boundary layer at night reduced the release efficiency of near-surface heat. The simulated results also suggested that heat waves or high temperature weather enhanced urban warming intensity at night. Heat waves caused more heat to be stored in the surface during the day, greater heat released at night, and thus higher nighttime warming. Our results demonstrate a positive feedback effect between urban warming and heat waves in urban areas.

  1. Comparison of isokinetic muscle strength and muscle power by types of warm-up.

    Science.gov (United States)

    Sim, Young-Je; Byun, Yong-Hyun; Yoo, Jaehyun

    2015-05-01

    [Purpose] The purpose of this study was to clarify the influence of static stretching at warm-up on the isokinetic muscle torque (at 60°/sec) and muscle power (at 180°/sec) of the flexor muscle and extensor muscle of the knee joint. [Subjects and Methods] The subjects of this study were 10 healthy students with no medically specific findings. The warm-up group and warm-up with stretching group performed their respective warm-up prior to the isokinetic muscle torque evaluation of the knee joint. One-way ANOVA was performed by randomized block design for each variable. [Results] The results were as follows: First, the flexor peak torque and extensor peak torque of the knee joint tended to decrease at 60°/sec in the warm-up with stretching group compared with the control group and warm-up group, but without statistical significance. Second, extensor power at 180°/sec was also not statistically significant. However, it was found that flexor power increased significantly in the warm-up with stretching group at 180°/sec compared with the control group and warm-up group in which stretching was not performed. [Conclusion] Therefore, it is considered that in healthy adults, warm-up including two sets of stretching for 20 seconds per muscle group does not decrease muscle strength and muscle power.

  2. Local warming: daily temperature change influences belief in global warming.

    Science.gov (United States)

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  3. Attribution of observed surface humidity changes to human influence.

    Science.gov (United States)

    Willett, Katharine M; Gillett, Nathan P; Jones, Philip D; Thorne, Peter W

    2007-10-11

    Water vapour is the most important contributor to the natural greenhouse effect, and the amount of water vapour in the atmosphere is expected to increase under conditions of greenhouse-gas-induced warming, leading to a significant feedback on anthropogenic climate change. Theoretical and modelling studies predict that relative humidity will remain approximately constant at the global scale as the climate warms, leading to an increase in specific humidity. Although significant increases in surface specific humidity have been identified in several regions, and on the global scale in non-homogenized data, it has not been shown whether these changes are due to natural or human influences on climate. Here we use a new quality-controlled and homogenized gridded observational data set of surface humidity, with output from a coupled climate model, to identify and explore the causes of changes in surface specific humidity over the late twentieth century. We identify a significant global-scale increase in surface specific humidity that is attributable mainly to human influence. Specific humidity is found to have increased in response to rising temperatures, with relative humidity remaining approximately constant. These changes may have important implications, because atmospheric humidity is a key variable in determining the geographical distribution and maximum intensity of precipitation, the potential maximum intensity of tropical cyclones, and human heat stress, and has important effects on the biosphere and surface hydrology.

  4. A New Wave of Permafrost Warming in the Alaskan Interior?

    Science.gov (United States)

    Romanovsky, V. E.; Nicolsky, D.; Cable, W.; Kholodov, A. L.; Panda, S. K.

    2017-12-01

    The impact of climate warming on permafrost and the potential of climate feedbacks resulting from permafrost thawing have recently received a great deal of attention. Ground temperatures are a primary indicator of permafrost stability. Many of the research sites in our permafrost network are located along the North American Arctic Permafrost-Ecological Transect that spans all permafrost zones in Alaska. Most of the sites in Alaska show substantial warming of permafrost since the 1980s. The magnitude of warming has varied with location, but was typically from 0.5 to 3°C. However, this warming was not linear in time and not spatially uniform. In some regions this warming even may be reversed and a slight recent cooling of permafrost has been observed recently at some locations. The Interior of Alaska is one of such regions where a slight permafrost cooling was observed starting in the late 1990s that has continued through the 2000s and in the beginning of the 2010s. The cooling has followed the substantial increase in permafrost temperatures documented for the Interior during the 1980s and 1990s. Permafrost temperatures at 15 m depth increased here by 0.3 to 0.6°C between 1983 and 1996. In most locations they reached their maximum in the second half of the 1990s. Since then, the permafrost temperatures started to decrease slowly and by 2013 this decrease at some locations was as much as 0.3°C at 15 m depth. There are some indications that the warming trend in the Alaskan Interior permafrost resumed during the last four years. By 2016, new record highs for the entire period of measurements of permafrost temperatures at 15 m depth were recorded at several locations. The latest observed permafrost warming in the Interior was combined with higher than normal summer precipitations. This combination has triggered near-surface permafrost degradation in many locations with adverse consequences for the ground surface stability affecting ecosystems and infrastructure. In

  5. The super greenhouse effect in a warming world: the role of dynamics and thermodynamics

    Science.gov (United States)

    Kashinath, Karthik; O'Brien, Travis; Collins, William

    2016-04-01

    Over warm tropical oceans the increase in greenhouse trapping with increasing SST can be faster than that of the surface emission, resulting in a decrease in clear sky outgoing longwave radiation at the top of the atmosphere (OLR) when SST increases, also known as the super greenhouse effect (SGE). If the SGE is directly linked to SST changes, there are profound implications for positive climate feedbacks in the tropics. We show that CMIP5 models perform well in simulating the observed clear-sky greenhouse effect in the present day. Using global warming experiments we show that the onset and shutdown SST of the SGE, as well as the magnitude of the SGE, increase as the convective threshold SST increases. To account for an increasing convective threshold SST we use an invariant coordinate for convection proposed in a recent study [Williams et al., GRL (2009)]. However, even after accounting for the increase in tropical SST (by normalizing the SGE by surface emission) and accounting for the increase in the threshold temperature for convection (by using the invariant coordinate) we find that the models predict a distinct increase in the clear-sky greenhouse effect in a warmed world. This suggests that thermodynamics (i.e. SST) plays a crucial role in regulating the increasing clear sky greenhouse effect in a warming world. We use theoretical arguments to estimate this increase in SGE and derive its dependence on SST. Finally, as shown in previous studies, we confirm that the increase in the clear-sky greenhouse effect is primarily due to upper tropospheric moistening. Although the absolute increase in upper tropospheric water vapor is small compared to that of the lower troposphere, since the absorptivity scales with fractional changes in water vapor, the contribution of the upper troposphere is more significant, as shown by Chung et al., PNAS (2014).

  6. Does increasing active warm-up duration affect afternoon short-term maximal performance during Ramadan?

    Science.gov (United States)

    Baklouti, Hana; Aloui, Asma; Chtourou, Hamdi; Briki, Walid; Chaouachi, Anis; Souissi, Nizar

    2015-01-01

    The purpose of this study was to examine the effect of active warm-up duration on short-term maximal performance assessed during Ramadan in the afternoon. Twelve healthy active men took part in the study. The experimental design consisted of four test sessions conducted at 5 p.m., before and during Ramadan, either with a 5-minute or a 15-minute warm-up. The warm-up consisted in pedaling at 50% of the power output obtained at the last stage of a submaximal multistage cycling test. During each session, the subjects performed two vertical jump tests (squat jump and counter movement jump) for measurement of vertical jump height followed by a 30-second Wingate test for measurement of peak and mean power. Oral temperature was recorded at rest and after warming-up. Moreover, ratings of perceived exertion were obtained immediately after the Wingate test. Oral temperature was higher before Ramadan than during Ramadan at rest, and was higher after the 15-minute warm-up than the 5-minute warm-up both before and during Ramadan. In addition, vertical jump heights were not significantly different between the two warm-up conditions before and during Ramadan, and were lower during Ramadan than before Ramadan after both warm-up conditions. Peak and mean power were not significantly different between the two warm-up durations before Ramadan, but were significantly higher after the 5-minute warm-up than the 15-minute warm-up during Ramadan. Moreover, peak and mean power were lower during Ramadan than before Ramadan after both warm-up conditions. Furthermore, ratings of perceived exertion were higher after the 15-minute warm-up than the 5-minute warm-up only during Ramadan. The prolonged active warm-up has no effect on vertical jump height but impairs anaerobic power assessed during Ramadan in the afternoon.

  7. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming

    Science.gov (United States)

    Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui

    2015-01-01

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028

  8. Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations

    Science.gov (United States)

    Nuijens, Louise; Emanuel, Kerry; Masunaga, Hirohiko; L'Ecuyer, Tristan

    2017-11-01

    Space-borne observations reveal that 20-40% of marine convective clouds below the freezing level produce rain. In this paper we speculate what the prevalence of warm rain might imply for convection and large-scale circulations over tropical oceans. We present results using a two-column radiative-convective model of hydrostatic, nonlinear flow on a non-rotating sphere, with parameterized convection and radiation, and review ongoing efforts in high-resolution modeling and observations of warm rain. The model experiments investigate the response of convection and circulation to sea surface temperature (SST) gradients between the columns and to changes in a parameter that controls the conversion of cloud condensate to rain. Convection over the cold ocean collapses to a shallow mode with tops near 850 hPa, but a congestus mode with tops near 600 hPa can develop at small SST differences when warm rain formation is more efficient. Here, interactive radiation and the response of the circulation are crucial: along with congestus a deeper moist layer develops, which leads to less low-level radiative cooling, a smaller buoyancy gradient between the columns, and therefore a weaker circulation and less subsidence over the cold ocean. The congestus mode is accompanied with more surface precipitation in the subsiding column and less surface precipitation in the deep convecting column. For the shallow mode over colder oceans, circulations also weaken with more efficient warm rain formation, but only marginally. Here, more warm rain reduces convective tops and the boundary layer depth—similar to Large-Eddy Simulation (LES) studies—which reduces the integrated buoyancy gradient. Elucidating the impact of warm rain can benefit from large-domain high-resolution simulations and observations. Parameterizations of warm rain may be constrained through collocated cloud and rain profiling from ground, and concurrent changes in convection and rain in subsiding and convecting branches of

  9. Surface radiation fluxes in transient climate simulations

    Science.gov (United States)

    Garratt, J. R.; O'Brien, D. M.; Dix, M. R.; Murphy, J. M.; Stephens, G. L.; Wild, M.

    1999-01-01

    Transient CO 2 experiments from five coupled climate models, in which the CO 2 concentration increases at rates of 0.6-1.1% per annum for periods of 75-200 years, are used to document the responses of surface radiation fluxes, and associated atmospheric properties, to the CO 2 increase. In all five models, the responses of global surface temperature and column water vapour are non-linear and fairly tightly constrained. Thus, global warming lies between 1.9 and 2.7 K at doubled, and between 3.1 and 4.1 K at tripled, CO 2, whilst column water vapour increases by between 3.5 and 4.5 mm at doubled, and between 7 and 8 mm at tripled, CO 2. Global cloud fraction tends to decrease by 1-2% out to tripled CO 2, mainly the result of decreases in low cloud. Global increases in column water, and differences in these increases between models, are mainly determined by the warming of the tropical oceans relative to the middle and high latitudes; these links are emphasised in the zonal profiles of warming and column water vapour increase, with strong water vapour maxima in the tropics. In all models the all-sky shortwave flux to the surface S↓ (global, annual average) changes by less than 5 W m -2 out to tripled CO 2, in some cases being essentially invariant in time. In contrast, the longwave flux to the surface L↓ increases significantly, by 25 W m -2 typically at tripled CO 2. The variations of S↓ and L↓ (clear-sky and all-sky fluxes) with increase in CO 2 concentration are generally non-linear, reflecting the effects of ocean thermal inertia, but as functions of global warming are close to linear in all five models. This is best illustrated for the clear-sky downwelling fluxes, and the net radiation. Regionally, as illustrated in zonal profiles and global distributions, greatest changes in both S↓ and L↓ are the result primarily of local maxima in warming and column water vapour increases.

  10. Changes in ENSO amplitude under climate warming and cooling

    Science.gov (United States)

    Wang, Yingying; Luo, Yiyong; Lu, Jian; Liu, Fukai

    2018-05-01

    The response of ENSO amplitude to climate warming and cooling is investigated using the Community Earth System Model (CESM), in which the warming and cooling scenarios are designed by adding heat fluxes of equal amplitude but opposite sign onto the ocean surface, respectively. Results show that the warming induces an increase of the ENSO amplitude but the cooling gives rise to a decrease of the ENSO amplitude, and these changes are robust in statistics. A mixed layer heat budget analysis finds that the increasing (decreasing) SST tendency under climate warming (cooling) is mainly due to an enhancement (weakening) of dynamical feedback processes over the equatorial Pacific, including zonal advective (ZA) feedback, meridional advective (MA) feedback, thermocline (TH) feedback, and Ekman (EK) feedback. As the climate warms, a wind anomaly of the same magnitude across the equatorial Pacific can induce a stronger zonal current change in the east (i.e., a stronger ZA feedback), which in turn produces a greater weakening of upwelling (i.e., a stronger EK feedback) and thus a larger thermocline change (i.e., a stronger TH feedback). In response to the climate warming, in addition, the MA feedback is also strengthened due to an enhancement of the meridional SST gradient around the equator resulting from a weakening of the subtropical cells (STCs). It should be noted that the weakened STCs itself has a negative contribution to the change of the MA feedback which, however, appears to be secondary. And vice versa for the cooling case. Bjerknes linear stability (BJ) index is also evaluated for the linear stability of ENSO, with remarkably larger (smaller) BJ index found for the warming (cooling) case.

  11. Response of the North Atlantic surface and intermediate ocean structure to climate warming of MIS 11.

    Science.gov (United States)

    Kandiano, Evgenia S; van der Meer, Marcel T J; Schouten, Stefan; Fahl, Kirsten; Sinninghe Damsté, Jaap S; Bauch, Henning A

    2017-04-10

    Investigating past interglacial climates not only help to understand how the climate system operates in general, it also forms a vital basis for climate predictions. We reconstructed vertical stratification changes in temperature and salinity in the North Atlantic for a period some 400 ka ago (MIS11), an interglacial time analogue of a future climate. As inferred from a unique set of biogeochemical, geochemical, and faunal data, the internal upper ocean stratification across MIS 11 shows distinct depth-dependent dynamical changes related to vertical as well as lateral shifts in the upper Atlantic meridional circulation system. Importantly, transient cold events are recognized near the end of the long phase of postglacial warming at surface, subsurface, mid, and deeper water layers. These data demonstrate that MIS 11 coolings over the North Atlantic were initially triggered by freshwater input at the surface and expansion of cold polar waters into the Subpolar Gyre. The cooling signal was then transmitted downwards into mid-water depths. Since the cold events occurred after the main deglacial phase we suggest that their cause might be related to continuous melting of the Greenland ice sheet, a mechanism that might also be relevant for the present and upcoming climate.

  12. Effects of back warming in cocoon stars

    International Nuclear Information System (INIS)

    Donnison, J.R.; Williams, I.P.

    1976-01-01

    It is stated that dust shells frequently surround young stars, and attempts have been made to determine some of the properties of these shells. It is probable that the dust absorbs the outgoing radiation from the star and re-emits it in the infrared. If the dust shell does absorb radiation both its inner and outer surfaces will re-emit a certain proportion and some radiation will return to the central star, causing what amounts to 'warming of its own back'. It is interesting to consider how such a star evolves, compared with evolution of a normal pre-main-sequence star. A model for a contracting star that is receiving radiation from an external source has been developed by the authors in connection with the evolution of Jupiter within the radiation field of the Sun (Astrophys. Space Sci., 29:387 (1974)), and this model is here applied to the situation just described. It is emphasised that the discussion is concerned only with the evolution of the central star, the dust being regarded merely as a means of redirecting radiation back on to the surface of this star. Amongst conclusions reached is that a thin shell will cause no significant change in the structure and evolution of the central star, whilst the presence of a thick shell has a substantial effect on the star, slowing down is evolution. Whilst a dust shell is present the star cannot be seen, but only the dust shell emitting in the infrared, but once the dust shell clears the star is seen in a position and with an age that differs considerably from what it would have had if it had evolved without 'back warming' from the dust shell. (U.K.)

  13. The Effect of Traditional Singing Warm-Up Versus Semioccluded Vocal Tract Exercises on the Acoustic Parameters of Singing Voice.

    Science.gov (United States)

    Duke, Emily; Plexico, Laura W; Sandage, Mary J; Hoch, Matthew

    2015-11-01

    This study investigated the effect of traditional vocal warm-up versus semioccluded vocal tract exercises on the acoustic parameters of voice through three questions: does vocal warm-up condition significantly alter the singing power ratio of the singing voice? Is singing power ratio dependent upon vowel? Is perceived phonatory effort affected by warm-up condition? Hypotheses were that vocal warm-up would alter the singing power ratio, and that semioccluded vocal tract warm-up would affect the singing power ratio more than no warm-up or traditional warm-up, that singing power ratio would vary across vowel, and that perceived phonatory effort would vary with warm-up condition. This study was a within-participant repeated measures design with counterbalanced conditions. Thirteen male singers were recorded under three different conditions: no warm-up, traditional warm-up, and semioccluded vocal tract exercise warm-up. Recordings were made of these singers performing the Star Spangled Banner, and singing power ratio (SPR) was calculated from four vowels. Singers rated their perceived phonatory effort (PPE) singing the Star Spangled Banner after each warm-up condition. Warm-up condition did not significantly affect SPR. SPR was significantly different for /i/ and /e/. PPE was not significantly different between warm-up conditions. The present study did not find significant differences in SPR between warm-up conditions. SPR differences for /i/, support previous findings. PPE did not differ significantly across warm-up condition despite the expectation that traditional or semioccluded warm-up would cause a decrease. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  14. Controlled soil warming powered by alternative energy for remote field sites.

    Science.gov (United States)

    Johnstone, Jill F; Henkelman, Jonathan; Allen, Kirsten; Helgason, Warren; Bedard-Haughn, Angela

    2013-01-01

    Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2 °C in 1 m(2) plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.

  15. Controlled soil warming powered by alternative energy for remote field sites.

    Directory of Open Access Journals (Sweden)

    Jill F Johnstone

    Full Text Available Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2 °C in 1 m(2 plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.

  16. Project CLIMPEAT - Influence of global warming and drought on the carbon sequestration and biodiversity of Sphagnum peatlands

    Science.gov (United States)

    Lamentowicz, M.; Buttler, A.; Mitchell, E. A. D.; Chojnicki, B.; Słowińska, S.; Słowiński, M.

    2012-04-01

    Northern peatlands represent a globally significant pool of carbon and are subject to the highest rates of climate warming, and most of these peatlands are in continental settings. However, it is unclear if how fast peatlands respond to past and present changes in temperature and surface moisture in continental vs. oceanic climate settings. The CLIMPEAT project brings together scientists from Poland and Switzerland. Our goal is to assess the past and present vulnerability to climate change of Sphagnum peatland plant and microbial communities, peat organic matter transformations and carbon sequestration using a combination of field and mesocosm experiments simulating warming and water table changes and palaeoecological studies. Warming will be achieved using ITEX-type "Open-Top Chambers". The field studies are conducted in Poland, at the limit between oceanic and continental climates, and are part of a network of projects also including field experiments in the French Jura (sub-oceanic) and in Siberia (continental). We will calibrate the response of key biological (plants, testate amoebae) and geochemical (isotopic composition of organic compounds, organic matter changes) proxies to warming and water table changes and use these proxies to reconstruct climate changes during the last 1000 years.

  17. Soil Warming Elevates the Abundance of Collembola in the Songnen Plain of China

    Directory of Open Access Journals (Sweden)

    Xiumin Yan

    2015-01-01

    Full Text Available The effect of soil warming and precipitation control in the context of soil warming on Collembola community was studied in Songnen grassland, China. Treatments included (1 control; (2 soil warming; (3 soil warming with low precipitation; and (4 soil warming with high precipitation. The open top chambers were used to increase the soil temperature, and the low and high precipitation were created by covering 30% of the chamber and artificial addition after rainfall through the three-year long field experiment. Soil samples were taken and collembolans were extracted in the 15th in June, August and October from 2010 to 2012. Abundance of total Collembola and dominant morphospecies Orchesellides sp.1 was significantly increased by soil warming. Total Collembola abundance was not affected by the precipitation. However, the abundance of Mesaphorura sp.1 was significantly increased by warming with low precipitation treatment. Collembola species richness, diversity and evenness were not impacted by any treatment through all the sampling times. These results suggest that more attention should be paid to the Collembola community variation under global warming in the future.

  18. Ecosystem responses to warming and watering in typical and desert steppes

    Science.gov (United States)

    Xu, Zhenzhu; Hou, Yanhui; Zhang, Lihua; Liu, Tao; Zhou, Guangsheng

    2016-10-01

    Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two years, whereas warming manipulation had no significant effect. The soil microbial biomass carbon (MBC) and the soil respiration (SR) were increased by watering in both steppes, but the SR was significantly decreased by warming in the desert steppe only. The inorganic nitrogen components varied irregularly, with generally lower levels in the desert steppe. The belowground traits of soil total organic carbon (TOC) and the MBC were more closely associated with the ANPP in the desert than in the typical steppes. The results showed that the desert steppe with lower productivity may respond strongly to precipitation changes, particularly with warming, highlighting the positive effect of adding water with warming. Our study implies that the habitat- and year-specific responses to warming and watering should be considered when predicting an ecosystem’s functional responses under climate change scenarios.

  19. The role stratification on Indian ocean mixing under global warming

    Science.gov (United States)

    Praveen, V.; Valsala, V.; Ravindran, A. M.

    2017-12-01

    The impact of changes in Indian ocean stratification on mixing under global warming is examined. Previous studies on global warming and associated weakening of winds reported to increase the stratification of the world ocean leading to a reduction in mixing, increased acidity, reduced oxygen and there by a reduction in productivity. However this processes is not uniform and are also modulated by changes in wind pattern of the future. Our study evaluate the role of stratification and surface fluxes on mixing focusing northern Indian ocean. A dynamical downscaling study using Regional ocean Modelling system (ROMS) forced with stratification and surface fluxes from selected CMIP5 models are presented. Results from an extensive set of historical and Representative Concentration Pathways 8.5 (rcp8.5) scenario simulations are used to quantify the distinctive role of stratification on mixing.

  20. Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming.

    Science.gov (United States)

    Cheng, Jun; Liu, Zhengyu; Zhang, Shaoqing; Liu, Wei; Dong, Lina; Liu, Peng; Li, Hongli

    2016-03-22

    Interdecadal variability of the Atlantic Meridional Overturning Circulation (AMOC-IV) plays an important role in climate variation and has significant societal impacts. Past climate reconstruction indicates that AMOC-IV has likely undergone significant changes. Despite some previous studies, responses of AMOC-IV to global warming remain unclear, in particular regarding its amplitude and time scale. In this study, we analyze the responses of AMOC-IV under various scenarios of future global warming in multiple models and find that AMOC-IV becomes weaker and shorter with enhanced global warming. From the present climate condition to the strongest future warming scenario, on average, the major period of AMOC-IV is shortened from ∼50 y to ∼20 y, and the amplitude is reduced by ∼60%. These reductions in period and amplitude of AMOC-IV are suggested to be associated with increased oceanic stratification under global warming and, in turn, the speedup of oceanic baroclinic Rossby waves.

  1. Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming

    Science.gov (United States)

    Cheng, Jun; Liu, Zhengyu; Zhang, Shaoqing; Liu, Wei; Dong, Lina; Liu, Peng; Li, Hongli

    2016-01-01

    Interdecadal variability of the Atlantic Meridional Overturning Circulation (AMOC-IV) plays an important role in climate variation and has significant societal impacts. Past climate reconstruction indicates that AMOC-IV has likely undergone significant changes. Despite some previous studies, responses of AMOC-IV to global warming remain unclear, in particular regarding its amplitude and time scale. In this study, we analyze the responses of AMOC-IV under various scenarios of future global warming in multiple models and find that AMOC-IV becomes weaker and shorter with enhanced global warming. From the present climate condition to the strongest future warming scenario, on average, the major period of AMOC-IV is shortened from ∼50 y to ∼20 y, and the amplitude is reduced by ∼60%. These reductions in period and amplitude of AMOC-IV are suggested to be associated with increased oceanic stratification under global warming and, in turn, the speedup of oceanic baroclinic Rossby waves. PMID:26951654

  2. Preoperative Warm-Up Using a Virtual Reality Simulator

    Science.gov (United States)

    Târcoveanu, Eugen; Dimofte, Gabriel; Lupaşcu, Cristian; Bradea, Costel

    2011-01-01

    Background and Objectives: All modern surgical procedures require a high level of cognitive and psychomotor skills achieved using different training methods, but could be influenced by fatigue and other psychological factors. We evaluated the effect of warm-up exercises on operative laparoscopic performances. Methods: The surgical team operated on a consecutive series of 20 patients with gallstones. Patients were randomly allocated in 2 groups: group A to be operated on without warm-up exercises and group B to be operated on after a short-term warm-up. All the patients were operated on by the same surgical team. The full-time records of the operation were analyzed by 2 independent reviewers. A modified simplified Global Rating Score (GRS) was used to assess the surgical procedures. A training module using the Lap Mentor simulator was designed for the warm-up. Results: Better performances were noted by both observers in group B only regarding “Respect for tissue” scores (3.75±0.16 vs 4.43±0.20, P=.021 and 3.87±0.22 vs 4.57±0.20, P=.041) achieving significant or marginally significant differences for all categories; GRS scores for “time and motion” and “overall impression” tend to be better after warm-up, but differences failed to reach statistical significance in our series. Conclusion: Surgeons, even the most experienced in laparoscopic surgery, can increase specific psychomotor skills associated with a laparoscopic environment by doing simple exercises on a virtual reality simulator, just before an operation. These improvements are reflected in more accurate handling of tissue during laparoscopic cholecystectomy. PMID:22643511

  3. Global warming-setting the stages

    International Nuclear Information System (INIS)

    1994-01-01

    Most of us have heard or read about global warming. However, the messages we receive are often in conflict, raising more questions than answer. Is global warming a good or a bad thing? has it already started or is it part of our future? Are we, or are we not doing anything about it? Should we be concerned? This primer on Global Warming is designed to clear up some of this confusion by providing basic scientific information on global warming issue. It is clear that there is still much to learn about global warming. However, it is also clear that there is a lot that we already know - and that dose provide cause for concern. We must understand the global warming issue if we are to make wise decisions and take responsible actions in response to the challenges and opportunities posed by global warming. Chapter 1 of 'the primer on global Warming' set the stage with a brief overview of science of global warming within the context of climate change. In addition, it introduces the specific issues that surround the global warming problem. As far as the science of global warming is concerned the following questions are discussed. What is global climate? Is climate change natural? What causes climate to vary on a global scale? How does the composition of the atmosphere relate to climate change. but there are also certain issues discussed here which surround the global warming such as: If climate varies naturally, why is there a concern about 'global warming'? What are the potential consequences of 'global warning'. What human activities contribute to 'global warming'. (Author)

  4. The Role of Atmospheric Heating over the South China Sea and Western Pacific Regions in Modulating Asian Summer Climate under the Global Warming Background

    Science.gov (United States)

    He, B.

    2015-12-01

    Global warming is one of the most significant climate change signals at the earth's surface. However, the responses of monsoon precipitation to global warming show very distinct regional features, especially over the South China Sea (SCS) and surrounding regions during boreal summer. To understand the possible dynamics in these specific regions under the global warming background, the changes in atmospheric latent heating and their possible influences on global climate are investigated by both observational diagnosis and numerical sensitivity simulations. Results indicate that summertime latent heating has intensified in the SCS and western Pacific, accompanied by increased precipitation, cloud cover, lower-tropospheric convergence, and decreased sea level pressure. Sensitivity experiments show that middle and upper tropospheric heating causes an east-west feedback pattern between SCS-western Pacific and South Asia, which strengthens the South Asian High in the upper troposphere and moist convergence in the lower troposphere, consequently forcing a descending motion and adiabatic warming over continental South Asia and leading to a warm and dry climate. When air-sea interaction is considered, the simulation results are overall more similar to observations, and in particular the bias of precipitation over the Indian Ocean simulated by AGCMs has been reduced. The results highlight the important role of latent heating in adjusting the changes in sea surface temperature through atmospheric dynamics.

  5. Warming of subarctic tundra increases emissions of all three important greenhouse gases - carbon dioxide, methane, and nitrous oxide.

    Science.gov (United States)

    Voigt, Carolina; Lamprecht, Richard E; Marushchak, Maija E; Lind, Saara E; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J; Biasi, Christina

    2017-08-01

    Rapidly rising temperatures in the Arctic might cause a greater release of greenhouse gases (GHGs) to the atmosphere. To study the effect of warming on GHG dynamics, we deployed open-top chambers in a subarctic tundra site in Northeast European Russia. We determined carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O) fluxes as well as the concentration of those gases, inorganic nitrogen (N) and dissolved organic carbon (DOC) along the soil profile. Studied tundra surfaces ranged from mineral to organic soils and from vegetated to unvegetated areas. As a result of air warming, the seasonal GHG budget of the vegetated tundra surfaces shifted from a GHG sink of -300 to -198 g CO 2 -eq m -2 to a source of 105 to 144 g CO 2 -eq m -2 . At bare peat surfaces, we observed increased release of all three GHGs. While the positive warming response was dominated by CO 2 , we provide here the first in situ evidence of increasing N 2 O emissions from tundra soils with warming. Warming promoted N 2 O release not only from bare peat, previously identified as a strong N 2 O source, but also from the abundant, vegetated peat surfaces that do not emit N 2 O under present climate. At these surfaces, elevated temperatures had an adverse effect on plant growth, resulting in lower plant N uptake and, consequently, better N availability for soil microbes. Although the warming was limited to the soil surface and did not alter thaw depth, it increased concentrations of DOC, CO 2, and CH 4 in the soil down to the permafrost table. This can be attributed to downward DOC leaching, fueling microbial activity at depth. Taken together, our results emphasize the tight linkages between plant and soil processes, and different soil layers, which need to be taken into account when predicting the climate change feedback of the Arctic. © 2016 John Wiley & Sons Ltd.

  6. Bathymetric controls on Pliocene North Atlantic and Arctic sea surface temperature and deepwater production

    Science.gov (United States)

    Robinson, M.M.; Valdes, P.J.; Haywood, A.M.; Dowsett, H.J.; Hill, D.J.; Jones, S.M.

    2011-01-01

    The mid-Pliocene warm period (MPWP; ~. 3.3 to 3.0. Ma) is the most recent interval in Earth's history in which global temperatures reached and remained at levels similar to those projected for the near future. The distribution of global warmth, however, was different than today in that the high latitudes warmed more than the tropics. Multiple temperature proxies indicate significant sea surface warming in the North Atlantic and Arctic Oceans during the MPWP, but predictions from a fully coupled ocean-atmosphere model (HadCM3) have so far been unable to fully predict the large scale of sea surface warming in the high latitudes. If climate proxies accurately represent Pliocene conditions, and if no weakness exists in the physics of the model, then model boundary conditions may be in error. Here we alter a single boundary condition (bathymetry) to examine if Pliocene high latitude warming was aided by an increase in poleward heat transport due to changes in the subsidence of North Atlantic Ocean ridges. We find an increase in both Arctic sea surface temperature and deepwater production in model experiments that incorporate a deepened Greenland-Scotland Ridge. These results offer both a mechanism for the warming in the North Atlantic and Arctic Oceans indicated by numerous proxies and an explanation for the apparent disparity between proxy data and model simulations of Pliocene northern North Atlantic and Arctic Ocean conditions. Determining the causes of Pliocene warmth remains critical to fully understanding comparisons of the Pliocene warm period to possible future climate change scenarios. ?? 2011.

  7. Consequences of warm-up of a sector above 80K

    CERN Document Server

    Strubin, P

    2009-01-01

    There may be circumstances when a sector has to be partially or totally warmed-up to temperatures above 80 K, that is when thermal dilatation starts to play a role. Some equipment have been identify as presenting a risk, like the non-conform "plug-in" modules in the arcs. Because of motion induced by thermal dilatation, the electrical (ElQA) quality control may also have to be done again after cool-down. The main reason identified so far for partial warm-up is the required maintenance of the cooling towers and the cryogenics plants. There is also the request from the vacuum group to periodically warm-up the beam screen to temperatures in the 100 K region to release and pump-out the gas crysorbed on the surface of the beam screen. Observed and expected temperature conditions and statistics on failures of PIMs in sectors which have been warmed-up will be presented in this contribution. Methods to detect buckled PIMs will be described, as well as a recommended strategy for consolidation. Finally, the required el...

  8. Comparing and contrasting Holocene and Eemian warm periods with greenhouse-gas-induced warming

    International Nuclear Information System (INIS)

    MacCracken, M.C.; Kutzbach, J.

    1990-01-01

    Periods of the past that are estimated to have been warmer than present are of great potential interest for comparison with simulations of future climates associated with greenhouse-gas-induced warming. Certain features of the climates of the mid-Holocene and Eemian periods, both interglacial maxima, are described. The simulated climatic responses to both types of forcing, in terms of land/ocean and latitudinal averages, are also compared. The zonal average and annual (or seasonal) average radiation fluxes associated with the different-from-present orbital conditions that existed for those interglacials are compared to the radiation flux associated with CO 2 -induced warming. There are some similarities but also significant differences in the two types of radiation flux perturbations, and there are both similarities and differences in the simulated climatic responses

  9. Formation of well-mixed warm water column in central Bohai Sea during summer: Role of high-frequency atmospheric forcing

    Science.gov (United States)

    Ma, Weiwei; Wan, Xiuquan; Wang, Zhankun; Liu, Yulong; Wan, Kai

    2017-12-01

    The influence of high-frequency atmospheric forcing on the formation of a well-mixed summer warm water column in the central Bohai Sea is investigated comparing model simulations driven by daily surface forcing and those using monthly forcing data. In the absence of high-frequency atmospheric forcing, numerical simulations have repeatedly failed to reproduce this vertically uniform column of warm water measured over the past 35 years. However, high-frequency surface forcing is found to strongly influence the structure and distribution of the well-mixed warm water column, and simulations are in good agreement with observations. Results show that high frequency forcing enhances vertical mixing over the central bank, intensifies downward heat transport, and homogenizes the water column to form the Bohai central warm column. Evidence presented shows that high frequency forcing plays a dominant role in the formation of the well-mixed warm water column in summer, even without the effects of tidal and surface wave mixing. The present study thus provides a practical and rational way of further improving the performance of oceanic simulations in the Bohai Sea and can be used to adjust parameterization schemes of ocean models.

  10. Paleocene-Eocene warming and biotic response in the epicontinental West Siberian Sea

    NARCIS (Netherlands)

    Frieling, Joost|info:eu-repo/dai/nl/338017909; Iakovleva, Alina I.; Reichart, Gert Jan|info:eu-repo/dai/nl/165599081; Aleksandrova, Galina N.; Gnibidenko, Zinaida N.; Schouten, Stefan|info:eu-repo/dai/nl/137124929; Sluijs, Appy|info:eu-repo/dai/nl/311474748

    2014-01-01

    We present a Paleocene-Eocene (ca. 60-52 Ma) sea-surface temperature record from sediments deposited in the epicontinental West Siberian Sea. TEX86 paleothermometry indicates long-term late Paleocene (~17 °C ca. 59 Ma) to early Eocene (26 °C at 52 Ma) sea-surface warming, consistent with trends

  11. Structural Evolution of a Warm Frontal Precipitation Band During GCPEx

    Science.gov (United States)

    Colle, Brian A.; Naeger, Aaron; Molthan, Andrew; Nesbitt, Stephen

    2015-01-01

    A warm frontal precipitation band developed over a few hours 50-100 km to the north of a surface warm front. The 3-km WRF was able to realistically simulate band development, although the model is somewhat too weak. Band genesis was associated with weak frontogenesis (deformation) in the presence of weak potential and conditional instability feeding into the band region, while it was closer to moist neutral within the band. As the band matured, frontogenesis increased, while the stability gradually increased in the banding region. Cloud top generating cells were prevalent, but not in WRF (too stable). The band decayed as the stability increased upstream and the frontogenesis (deformation) with the warm front weakened. The WRF may have been too weak and short-lived with the band because too stable and forcing too weak (some micro issues as well).

  12. King penguin population threatened by Southern Ocean warming.

    Science.gov (United States)

    Le Bohec, Céline; Durant, Joël M; Gauthier-Clerc, Michel; Stenseth, Nils C; Park, Young-Hyang; Pradel, Roger; Grémillet, David; Gendner, Jean-Paul; Le Maho, Yvon

    2008-02-19

    Seabirds are sensitive indicators of changes in marine ecosystems and might integrate and/or amplify the effects of climate forcing on lower levels in food chains. Current knowledge on the impact of climate changes on penguins is primarily based on Antarctic birds identified by using flipper bands. Although flipper bands have helped to answer many questions about penguin biology, they were shown in some penguin species to have a detrimental effect. Here, we present for a Subantarctic species, king penguin (Aptenodytes patagonicus), reliable results on the effect of climate on survival and breeding based on unbanded birds but instead marked by subcutaneous electronic tags. We show that warm events negatively affect both breeding success and adult survival of this seabird. However, the observed effect is complex because it affects penguins at several spatio/temporal levels. Breeding reveals an immediate response to forcing during warm phases of El Niño Southern Oscillation affecting food availability close to the colony. Conversely, adult survival decreases with a remote sea-surface temperature forcing (i.e., a 2-year lag warming taking place at the northern boundary of pack ice, their winter foraging place). We suggest that this time lag may be explained by the delay between the recruitment and abundance of their prey, adjusted to the particular 1-year breeding cycle of the king penguin. The derived population dynamic model suggests a 9% decline in adult survival for a 0.26 degrees C warming. Our findings suggest that king penguin populations are at heavy extinction risk under the current global warming predictions.

  13. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica; Dreano, Denis; Agusti, Susana; Duarte, Carlos M.; Hoteit, Ibrahim

    2017-01-01

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  14. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica

    2017-08-09

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea\\'s thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  15. Decadal trends in Red Sea maximum surface temperature.

    Science.gov (United States)

    Chaidez, V; Dreano, D; Agusti, S; Duarte, C M; Hoteit, I

    2017-08-15

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade -1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century 1 . However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade -1 , while the northern Red Sea is warming between 0.40 and 0.45 °C decade -1 , all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  16. Land–atmosphere feedbacks amplify aridity increase over land under global warming

    Science.gov (United States)

    Berg, Alexis; Findell, Kirsten; Lintner, Benjamin; Giannini, Alessandra; Seneviratne, Sonia I.; van den Hurk, Bart; Lorenz, Ruth; Pitman, Andy; Hagemann, Stefan; Meier, Arndt; Cheruy, Frédérique; Ducharne, Agnès; Malyshev, Sergey; Milly, Paul C. D.

    2016-01-01

    The response of the terrestrial water cycle to global warming is central to issues including water resources, agriculture and ecosystem health. Recent studies indicate that aridity, defined in terms of atmospheric supply (precipitation, P) and demand (potential evapotranspiration, Ep) of water at the land surface, will increase globally in a warmer world. Recently proposed mechanisms for this response emphasize the driving role of oceanic warming and associated atmospheric processes. Here we show that the aridity response is substantially amplified by land–atmosphere feedbacks associated with the land surface’s response to climate and CO2 change. Using simulations from the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we show that global aridity is enhanced by the feedbacks of projected soil moisture decrease on land surface temperature, relative humidity and precipitation. The physiological impact of increasing atmospheric CO2 on vegetation exerts a qualitatively similar control on aridity. We reconcile these findings with previously proposed mechanisms by showing that the moist enthalpy change over land is unaffected by the land hydrological response. Thus, although oceanic warming constrains the combined moisture and temperature changes over land, land hydrology modulates the partitioning of this enthalpy increase towards increased aridity.

  17. The effect of warm-up on surgical performance: a systematic review.

    Science.gov (United States)

    Abdalla, Gamal; Moran-Atkin, Erin; Chen, Grace; Schweitzer, Michael A; Magnuson, Thomas H; Steele, Kimberley E

    2015-06-01

    The concept of warming-up before a performance has been accepted across many disciplines including sports and music. In contrast, it is uncommon for a surgeon to "warm-up" prior to operating. To date, few studies from various specialties have attempted to answer this question whether warm-up improved the intraoperative performance of the surgeon. However, there has not been a systematic review of these studies. The aim of our systematic review is to assess the effect of warming-up preoperatively on the laparoscopic performance of the surgeon. Pubmed and scopus were searched to identify all published prospective observational studies, which involved either residents, fellows or attending surgeons. We excluded case reports, reviews, non-English studies, and medical student participation. Study risk of bias were assessed regarding sequence generation, allocation concealment, blinding, incomplete outcome data, selective outcome reporting, and other biases, using a validated Cochrane Collaboration's tool. Out of 241 studies, 6 met the inclusion criteria. All included studies were randomized with half of them being randomized controlled studies and the rest randomized crossover studies. The total number of operative cases was 196, including 98 warm-up and 98 non warm-up. The total number of participants was 87, with the largest number in a single study being 38 and the average sample size of all studies was 14. All six studies assessed various aspects of laparoscopic surgical performances. Significant improvement in the intraoperative laparoscopic performance was observed with warming-up preoperatively in five out of six studies (p study failed to reach statistical significance (p > 0.05). Warming-up before an operative procedure improve a trainee's technical, cognitive, and psychomotor performance. Further studies are necessary to assess the ways in which warm-up could impact a surgeon's performance, and to identify the optimal timing and duration of warm-up prior to

  18. [Effects of diurnal warming on soil N2O emission in soybean field].

    Science.gov (United States)

    Hu, Zheng-Hua; Zhou, Ying-Ping; Cui, Hai-Ling; Chen, Shu-Tao; Xiao, Qi-Tao; Liu, Yan

    2013-08-01

    To investigate the impact of experimental warming on N2O emission from soil of soybean field, outdoor experiments with simulating diurnal warming were conducted, and static dark chamber-gas chromatograph method was used to measure N2O emission fluxes. Results indicated that: the diurnal warming did not change the seasonal pattern of N2O emissions from soil. In the whole growing season, comparing to the control treatment (CK), the warming treatment (T) significantly enhanced the N2O flux and the cumulative amount of N2O by 17.31% (P = 0.019), and 20.27% (P = 0.005), respectively. The significant correlations were found between soil N2O emission and soil temperature, moisture. The temperature sensitivity values of soil N2O emission under CK and T treatments were 3.75 and 4.10, respectively. In whole growing stage, T treatment significantly increased the crop aboveground and total biomass, the nitrate reductase activity, and total nitrogen in leaves, while significantly decreased NO3(-) -N content in leaves. T treatment significantly increased soil NO3(-) -N content, but had no significant effect on soil organic carbon and total nitrogen contents. The results of this study suggested that diurnal warming enhanced N2O emission from soil in soybean field.

  19. Paleocene–Eocene warming and biotic response in the epicontinental West Siberian Sea

    NARCIS (Netherlands)

    Frieling, J.; Iakovleva, A.I.; Reichart, G.-J.; Aleksandrova, G.N.; Gnibidenko, Z.N.; Schouten, S.; Sluijs, A.

    2014-01-01

    We present a Paleocene–Eocene (ca. 60–52 Ma) sea-surface temperature record from sediments deposited in the epicontinental West Siberian Sea. TEX86 paleothermometry indicates long-term late Paleocene (~17 °C ca. 59 Ma) to early Eocene (26 °C at 52 Ma) sea-surface warming, consistent with trends

  20. Tribological evaluation of surface modified H13 tool steel in warm forming of Ti–6Al–4V titanium alloy sheet

    Directory of Open Access Journals (Sweden)

    Wang Dan

    2014-08-01

    Full Text Available The H13 hot-working tool steel is widely used as die material in the warm forming of Ti–6Al–4V titanium alloy sheet. However, under the heating condition, severe friction and lubricating conditions between the H13 tools and Ti–6Al–4V titanium alloy sheet would cause difficulty in guaranteeing forming quality. Surface modification may be used to control the level of friction force, reduce the friction wear and extend the service life of dies. In this paper, four surface modification methods (chromium plating, TiAlN coating, surface polishing and nitriding treatment were applied to the H13 surfaces. Taking the coefficient of friction (CoF and the wear degree as evaluation indicators, the high-temperature tribological behavior of the surface modified H13 steel was experimentally investigated under different tribological conditions. The results of this study indicate that the tribological properties of the TiAlN coating under dry friction condition are better than the others for a wide range of temperature (from room temperature to 500 °C, while there is little difference of tribological properties between different surface modifications under graphite lubricated condition, and the variation law of CoF with temperature under graphite lubricated is opposite to that under the dry friction.

  1. Global Warming: A Reduced Threat?.

    Science.gov (United States)

    Michaels, Patrick J.; Stooksbury, David E.

    1992-10-01

    One popular and apocalyptic vision of the world influenced by increasing concentrations of infrared-absorbing trace gases is that of ecological disaster brought about by rapidly rising temperatures, sea level, and evaporation rates. This vision developed from a suite of climate models that have since considerably changed in both their dynamics and their estimates of prospective warming. Observed temperatures indicate that much more warming should already have taken place than predicted by earlier models in the Northern Hemisphere, and that night, rather than day, readings in that hemisphere show a relative warming. A high-latitude polar-night warming or a general night warming could be either benign or beneficial. A large number of plant species show both increased growth and greater water-use efficiency under enhanced carbon dioxide.An extensive body of evidence now indicates that anthropo-generated sulfate emissions are mitigating some of the warming, and that increased cloudiness as a result of these emissions will further enhance night, rather than day, warming. The sulfate emissions, though, are not sufficient to explain all of the night warming. However, the sensitivity of climate to anthropogenerated aerosols, and the general lack of previously predicted warming, could drastically alter the debate on global warming in favor of less expensive policies.

  2. Anthropogenic Warming Impacts on Today's Sierra Nevada Snowpack and Flood Severity

    Science.gov (United States)

    Huang, X.; Hall, A. D.; Berg, N.

    2017-12-01

    Focusing on this recent extreme wet year over California, this study investigates the warming impacts on the snowpack and the flood severity over the Sierra Nevada (SN), where the majority of the precipitation occurs during the winter season and early spring. One of our goals is to quantify anthropogenic warming impacts on the snow water equivalent (SWE) including recent historical warming and prescribed future projected warming scenarios; This work also explores to what extent flooding risk has increased under those warming cases. With a good representation of the historical precipitation and snowpack over the Sierra Nevada from the historical reference run at 9km (using WRF), the results from the offline Noah-MP simulations with perturbed near-surface temperatures reveal magnificent impacts of warming to the loss of the average snowpack. The reduction of the SWE under warming mainly results from the decreased rain-to-snow conversion with a weaker effect from increased snowmelt. Compared to the natural case, the past industrial warming decreased the maximum SWE by about one-fifth averaged over the study area. Future continuing warming can result in around one-third reduction of current maximum SWE under RCP4.5 emissions scenario, and the loss can reach to two-thirds under RCP8.5 as a "business-as-usual" condition. The impact of past warming is particularly outstanding over the North SN region where precipitation dominates and over the middle elevation regions where the snow mainly distributes. In the future, the warming impact on SWE progresses to higher regions, and so to the south and east. Under the business-as-usual scenario, the projected mid-elevation snowpack almost disappears by April 1st with even high-elevation snow reduced by about half. Along with the loss of the snowpack, as the temperature warms, floods can also intensify with increased early season runoff especially under heavy-rainy days caused by the weakened rain-to-snow processes and

  3. A 400-year ice core melt layer record of summertime warming in the Alaska Range

    Science.gov (United States)

    Winski, D.; Osterberg, E. C.; Kreutz, K. J.; Wake, C. P.; Ferris, D. G.; Campbell, S. W.; Baum, M.; Raudzens Bailey, A.; Birkel, S. D.; Introne, D.; Handley, M.

    2017-12-01

    Warming in high-elevation regions has socially relevant impacts on glacier mass balance, water resources, and sensitive alpine ecosystems, yet very few high-elevation temperature records exist from the middle or high latitudes. While many terrestrial paleoclimate records provide critical temperature records from low elevations over recent centuries, melt layers preserved in alpine glaciers present an opportunity to develop calibrated, annually-resolved temperature records from high elevations. We present a 400-year temperature record based on the melt-layer stratigraphy in two ice cores collected from Mt. Hunter in the Central Alaska Range. The ice core record shows a 60-fold increase in melt frequency and water equivalent melt thickness between the pre-industrial period (before 1850) and present day. We calibrate the melt record to summer temperatures based on local and regional weather station analyses, and find that the increase in melt production represents a summer warming of at least 2° C, exceeding rates of temperature increase at most low elevation sites in Alaska. The Mt. Hunter melt layer record is significantly (p<0.05) correlated with surface temperatures in the central tropical Pacific through a Rossby-wave like pattern that induces high temperatures over Alaska. Our results show that rapid alpine warming has taken place in the Alaska Range for at least a century, and that conditions in the tropical oceans contribute to this warming.

  4. Weakening of the North American monsoon with global warming

    Science.gov (United States)

    Pascale, Salvatore; Boos, William R.; Bordoni, Simona; Delworth, Thomas L.; Kapnick, Sarah B.; Murakami, Hiroyuki; Vecchi, Gabriel A.; Zhang, Wei

    2017-11-01

    Future changes in the North American monsoon, a circulation system that brings abundant summer rains to vast areas of the North American Southwest, could have significant consequences for regional water resources. How this monsoon will change with increasing greenhouse gases, however, remains unclear, not least because coarse horizontal resolution and systematic sea-surface temperature biases limit the reliability of its numerical model simulations. Here we investigate the monsoon response to increased atmospheric carbon dioxide (CO2) concentrations using a 50-km-resolution global climate model which features a realistic representation of the monsoon climatology and its synoptic-scale variability. It is found that the monsoon response to CO2 doubling is sensitive to sea-surface temperature biases. When minimizing these biases, the model projects a robust reduction in monsoonal precipitation over the southwestern United States, contrasting with previous multi-model assessments. Most of this precipitation decline can be attributed to increased atmospheric stability, and hence weakened convection, caused by uniform sea-surface warming. These results suggest improved adaptation measures, particularly water resource planning, will be required to cope with projected reductions in monsoon rainfall in the American Southwest.

  5. Influence of warm-up duration on physical performance and psychological perceptions in handball players.

    Science.gov (United States)

    Romaratezabala, Estibaliz; Nakamura, Fábio Yuzo; Castillo, Daniel; Gorostegi-Anduaga, Ilargi; Yanci, Javier

    2018-01-01

    The purpose of the study was to analyse the effect of two warm-up protocols of different duration on physical performance, perceived load and perception of being ready for a match in handball players. Eighteen handball players were randomly divided into two groups (Wup 34min , warm-up protocol of 34 min, Wup 17min , warm-up protocol of 17 min). Before and after the warm-up protocols, they performed a battery of physical tests and recorded their perception of feeling ready for a match. At the end of the warm-up protocols, all the players evaluated their differentiated perceived effort (dRPE). The results showed that neither of the protocols significantly modified (p > 0.05) the players' physical performance. However, the Wup 34min group showed higher values in the differentiated warm-up perceived load (dRPE-WL) (p warm-up protocols significantly modified the players' physical performance, a greater perceived muscular load may cause a greater decrease in acceleration capacity.

  6. CCN concentrations and BC warming influenced by maritime ship emitted aerosol plumes over southern Bay of Bengal.

    Science.gov (United States)

    Ramana, M V; Devi, Archana

    2016-08-02

    Significant quantities of carbon soot aerosols are emitted into pristine parts of the atmosphere by marine shipping. Soot impacts the radiative balance of the Earth-atmosphere system by absorbing solar-terrestrial radiation and modifies the microphysical properties of clouds. Here we examined the impact of black carbon (BC) on net warming during monsoon season over southern Bay-of-Bengal, using surface and satellite measurements of aerosol plumes from shipping. Shipping plumes had enhanced the BC concentrations by a factor of four around the shipping lane and exerted a strong positive influence on net warming. Compiling all the data, we show that BC atmospheric heating rates for relatively-clean and polluted-shipping corridor locations to be 0.06 and 0.16 K/day respectively within the surface layer. Emissions from maritime ships had directly heated the lower troposphere by two-and-half times and created a gradient of around 0.1 K/day on either side of the shipping corridor. Furthermore, we show that ship emitted aerosol plumes were responsible for increase in the concentration of cloud condensation nuclei (CCN) by an order of magnitude that of clean air. The effects seen here may have significant impact on the monsoonal activity over Bay-of-Bengal and implications for climate change mitigation strategies.

  7. Warm Rain Processes Over the Tropical Oceans and Implications on Climate Change

    Science.gov (United States)

    Lau, William K. M.; Wu, H. T.

    2004-01-01

    In this talk, we will first show results from TRMM regarding the characteristics of warm rains over the tropical oceans, and the dependence of rate of warm rain production on sea surface temperature. Results lead to the hypothesis that warm rain production efficiency, i.e., autoconversion, may be increased in a warm climate. We use the GEOS-II GCM to test this hypothesis. Our modeling results show that in a climate with increased rate of autoconversion, the total rain amount is increased, with warm rain contributing to a larger portion of the increase. The abundant rainout of warm precipitation at middle to low levels causes a reduction of high cloud cover due to the depletion of water available for ice-phase rain production. As a result, more isolated, but more intense penetrative convection develops. Results also show that increased autoconversion reduces the convective adjustment time scale tends, implying a faster recycling of atmospheric water. Most interestingly, the increased low level heating associated with warm rain leads to more energetic Madden and Julian oscillations in the tropics, with well-defined eastward propagation. While reducing the autoconversion leads to an abundant mix of westward and eastward tropical disturbance on daily to weekly time scales. The causes of the sensitivity of the dynamical regimes to the microphysics parameterization in the GCM will be discussed.

  8. The Influence of Stratospheric Sulphate Aerosol Deployment on the Surface Air Temperature and the Risk of an Abrupt Global Warming

    Directory of Open Access Journals (Sweden)

    Roland von Glasow

    2010-12-01

    Full Text Available We used the ‘Radiative-Convective Model of the Earth-atmosphere system’ (OGIM to investigate the cooling effects induced by sulphur injections into the stratosphere. The ensemble of numerical calculations was based on the A1B scenario from the IPCC Special Report on Emissions Scenarios (SRES. Several geoengineered scenarios were analysed, including the abrupt interruption of these injections in different scenarios and at different dates. We focused on the surface air temperature (SAT anomalies induced by stratospheric sulphate aerosol generated in order to compensate future warming. Results show that continuous deployment of sulphur into the stratosphere could induce a lasting decrease in SAT. Retaining a constant aerosol loading equivalent to 6 TgS would delay the expected global warming by 53 years. Keeping the SAT constant in a context of increasing greenhouse gases (GHGs means that the aerosol loading needs to be increased by 1.9% annually. This would offset the effect of increasing GHG under the A1B scenario. A major focus of this study was on the heating rates of SAT that would arise in different scenarios in case of an abrupt cessation of sulphur injections into the stratosphere. Our model results show that heating rates after geoengineering interruption would be 15–28 times higher than in a case without geoengineering, with likely important consequences for life on Earth. Larger initial sulphate loadings induced more intense warming rates when the geoengineering was stopped at the same time. This implies that, if sulphate loading was increased to maintain constant SAT in the light of increasing GHG concentrations, the later the geoengineering interruption was to occur, the higher the heating rates would be. Consequently, geoengineering techniques like this should only be regarded as last-resort measures and require intense further research should they ever become necessary.

  9. The Hydrological Sensitivity to Global Warming and Solar Geoengineering Derived from Thermodynamic Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Kleidon, Alex; Kravitz, Benjamin S.; Renner, Maik

    2015-01-16

    We derive analytic expressions of the transient response of the hydrological cycle to surface warming from an extremely simple energy balance model in which turbulent heat fluxes are constrained by the thermodynamic limit of maximum power. For a given magnitude of steady-state temperature change, this approach predicts the transient response as well as the steady-state change in surface energy partitioning and the hydrologic cycle. We show that the transient behavior of the simple model as well as the steady state hydrological sensitivities to greenhouse warming and solar geoengineering are comparable to results from simulations using highly complex models. Many of the global-scale hydrological cycle changes can be understood from a surface energy balance perspective, and our thermodynamically-constrained approach provides a physically robust way of estimating global hydrological changes in response to altered radiative forcing.

  10. Impacts of day versus night warming on soil microclimate: results from a semiarid temperate steppe.

    Science.gov (United States)

    Xia, Jianyang; Chen, Shiping; Wan, Shiqiang

    2010-06-15

    One feature of climate warming is that increases in daily minimum temperature are greater than those in daily maximum temperature. Changes in soil microclimate in response to the asymmetrically diurnal warming scenarios can help to explain responses of ecosystem processes. In the present study, we examined the impacts of day, night, and continuous warming on soil microclimate in a temperate steppe in northern China. Our results showed that day, night, and continuous warming (approximately 13Wm(-2) with constant power mode) significantly increased daily mean soil temperature at 10cm depth by 0.71, 0.78, and 1.71 degrees C, respectively. Night warming caused greater increases in nighttime mean and daily minimum soil temperatures (0.74 and 0.99 degrees C) than day warming did (0.60 and 0.66 degrees C). However, there were no differences in the increases in daytime mean and daily maximum soil temperature between day (0.81 and 1.13 degrees C) and night (0.81 and 1.10 degrees C) warming. The differential effects of day and night warming on soil temperature varied with environmental factors, including photosynthetic active radiation, vapor-pressure deficit, and wind speed. When compared with the effect of continuous warming on soil temperature, the summed effects of day and night warming were lower during daytime, but greater at night, thus leading to equality at daily scale. Mean volumetric soil moisture at the depth of 0-40cm significantly decreased under continuous warming in both 2006 (1.44 V/V%) and 2007 (0.76 V/V%). Day warming significantly reduced volumetric soil moisture only in 2006, whereas night warming had no effect on volumetric soil moisture in both 2006 and 2007. Given the different diurnal warming patterns and variability of environmental factors among ecosystems, these results highlight the importance of incorporating the differential impacts of day and night warming on soil microclimate into the predictions of terrestrial ecosystem responses to climate

  11. Impacts of day versus night warming on soil microclimate: Results from a semiarid temperate steppe

    International Nuclear Information System (INIS)

    Xia, Jianyang; Chen, Shiping; Wan, Shiqiang

    2010-01-01

    One feature of climate warming is that increases in daily minimum temperature are greater than those in daily maximum temperature. Changes in soil microclimate in response to the asymmetrically diurnal warming scenarios can help to explain responses of ecosystem processes. In the present study, we examined the impacts of day, night, and continuous warming on soil microclimate in a temperate steppe in northern China. Our results showed that day, night, and continuous warming (approximately 13 W m -2 with constant power mode) significantly increased daily mean soil temperature at 10 cm depth by 0.71, 0.78, and 1.71 o C, respectively. Night warming caused greater increases in nighttime mean and daily minimum soil temperatures (0.74 and 0.99 o C) than day warming did (0.60 and 0.66 o C). However, there were no differences in the increases in daytime mean and daily maximum soil temperature between day (0.81 and 1.13 o C) and night (0.81 and 1.10 o C) warming. The differential effects of day and night warming on soil temperature varied with environmental factors, including photosynthetic active radiation, vapor-pressure deficit, and wind speed. When compared with the effect of continuous warming on soil temperature, the summed effects of day and night warming were lower during daytime, but greater at night, thus leading to equality at daily scale. Mean volumetric soil moisture at the depth of 0-40 cm significantly decreased under continuous warming in both 2006 (1.44 V/V%) and 2007 (0.76 V/V%). Day warming significantly reduced volumetric soil moisture only in 2006, whereas night warming had no effect on volumetric soil moisture in both 2006 and 2007. Given the different diurnal warming patterns and variability of environmental factors among ecosystems, these results highlight the importance of incorporating the differential impacts of day and night warming on soil microclimate into the predictions of terrestrial ecosystem responses to climate warming.

  12. Forests tend to cool the land surface in the temperate zone: An analysis of the mechanisms controlling radiometric surface temperature change in managed temperate ecosystems

    Science.gov (United States)

    Stoy, P. C.; Katul, G. G.; Juang, J.; Siqueira, M. B.; Novick, K. A.; Essery, R.; Dore, S.; Kolb, T. E.; Montes-Helu, M. C.; Scott, R. L.

    2010-12-01

    Vegetation is an important control on the surface energy balance and thereby surface temperature. Boreal forests and arctic shrubs are thought to warm the land surface by absorbing more radiation than the vegetation they replace. The surface temperatures of tropical forests tend to be cooler than deforested landscapes due to enhanced evapotranspiration. The effects of reforestation on surface temperature change in the temperate zone is less-certain, but recent modeling efforts suggest forests have a global warming effect. We quantified the mechanisms driving radiometric surface changes following landcover changes using paired ecosystem case studies from the Ameriflux database with energy balance models of varying complexity. Results confirm previous findings that deciduous and coniferous forests in the southeastern U.S. are ca. 1 °C cooler than an adjacent field on an annual basis because aerodynamic/ecophysiological cooling of 2-3 °C outweighs an albedo-related warming of stand-replacing ponderosa pine fire was ca. 1 °C warmer than unburned stands because a 1.5 °C aerodynamic warming offset a slight surface cooling due to greater albedo and soil heat flux. An ecosystem dominated by mesquite shrub encroachment was nearly 2 °C warmer than a native grassland ecosystem as aerodynamic and albedo-related warming outweighed a small cooling effect due to changes in soil heat flux. The forested ecosystems in these case studies are documented to have higher carbon uptake than the non-forested systems. Results suggest that temperate forests tend to cool the land surface and suggest that previous model-based findings that forests warm the Earth’s surface globally should be reconsidered.Changes to radiometric surface temperature (K) following changes in vegetation using paired ecosystem case studies C4 grassland and shrub ecosystem surface temperatures were adjusted for differences in air temperature across sites.

  13. Longitudinal Changes in Tear Evaporation Rates After Eyelid Warming Therapies in Meibomian Gland Dysfunction.

    Science.gov (United States)

    Yeo, Sharon; Tan, Jen Hong; Acharya, U Rajendra; Sudarshan, Vidya K; Tong, Louis

    2016-04-01

    Lid warming is the major treatment for meibomian gland dysfunction (MGD). The purpose of the study was to determine the longitudinal changes of tear evaporation after lid warming in patients with MGD. Ninety patients with MGD were enrolled from a dry eye clinic at Singapore National Eye Center in an interventional trial. Participants were treated with hot towel (n = 22), EyeGiene (n = 22), or Blephasteam (n = 22) twice daily or a single 12-minute session of Lipiflow (n = 24). Ocular surface infrared thermography was performed at baseline and 4 and 12 weeks after the treatment, and image features were extracted from the captured images. The baseline of conjunctival tear evaporation (TE) rate (n = 90) was 66.1 ± 21.1 W/min. The rates were not significantly different between sexes, ages, symptom severities, tear breakup times, Schirmer test, corneal fluorescein staining, or treatment groups. Using a general linear model (repeat measures), the conjunctival TE rate was reduced with time after treatment. A higher baseline evaporation rate (≥ 66 W/min) was associated with greater reduction of evaporation rate after treatment. Seven of 10 thermography features at baseline were predictive of reduction in irritative symptoms after treatment. Conjunctival TE rates can be effectively reduced by lid warming treatment in some MGD patients. Individual baseline thermography image features can be predictive of the response to lid warming therapy. For patients that do not have excessive TE, additional therapy, for example, anti-inflammatory therapy, may be required.

  14. Global warming hiatus contributed to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia.

    Science.gov (United States)

    Zhao, Jiuwei; Zhan, Ruifen; Wang, Yuqing

    2018-04-16

    The recent global warming hiatus (GWH) was characterized by a La Niña-like cooling in the tropical Eastern Pacific accompanied with the Indian Ocean and the tropical Atlantic Ocean warming. Here we show that the recent GWH contributed significantly to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia since 1998. The GWH associated sea surface temperature anomalies triggered a pair of anomalous cyclonic and anticyclonic circulations and equatorial easterly anomalies over the Northwest Pacific, which favored TC genesis and intensification over the western Northwest Pacific but suppressed TC genesis and intensification over the southeastern Northwest Pacific due to increased vertical wind shear and anticyclonic circulation anomalies. Results from atmospheric general circulation model experiments demonstrate that the Pacific La Niña-like cooling dominated the Indian Ocean and the tropical Atlantic Ocean warming in contributing to the observed GWH-related anomalous atmospheric circulation over the Northwest Pacific.

  15. Effect of various practical warm-up protocols on acute lower-body power.

    Science.gov (United States)

    Buttifant, David; Hrysomallis, Con

    2015-03-01

    The purpose of this study was to compare the acute effect of box squats with barbell (BBSquat), box squats with elastic resistance bands (BandSquat), and static stretches (SStretch) on external power during a 20-kg weighted jump squat. Twelve male athletes performed each of the 3 warm-up protocols on separate occasions in a randomized order. Weighted jump squat power was assessed using a linear position transducer attached to the bar of a Smith machine. Jump power was measured pre-warm-up and 5 and 10 minutes post-warm-up protocol. The BBSquat protocol involved 3 sets of 3RM, BandSquat involved 3 sets of 3 repetitions using highest resistance elastic bands, and the SStretch protocol comprises two 30-second stretches for muscles of the lower limbs. Jump power significantly increased from pre-warm-up to 5 and 10 minutes post-warm-up for both the BandSquat and BBSquat protocols. There was no statistical difference in power values between BandSquat and BBSquat. Power output significantly decreased from pre-warm-up to 5 and 10 minutes post-warm-up for the SStretch protocol. The BandSquat was just as effective as BBSquat in augmenting acute jump power. The SStretch was detrimental to jump performance. A practical warm-up using relatively inexpensive and portable equipment such as elastic resistance bands was just as effective as a warm-up protocol that requires more substantial and less transportable equipment such as a squat rack and associated free weights. The BandSquat warm-up may be considered more accessible for athletes at various competition levels.

  16. Warm-Up Exercises May Not Be So Important for Enhancing Submaximal Running Performance.

    Science.gov (United States)

    Takizawa, Kazuki; Yamaguchi, Taichi; Shibata, Keisuke

    2018-05-01

    Takizawa, K, Yamaguchi, T, and Shibata, K. Warm-up exercises may not be so important for enhancing submaximal running performance. J Strength Cond Res 32(5): 1383-1390, 2018-The purpose of this study was to determine an appropriate warm-up intensity for enhancing performance in submaximal running at 90% vV[Combining Dot Above]O2max (it assumes 3,000-5,000 m in track events). Seven trained male university athletes took part in this study (age: 21.3 ± 2.1 years, height: 169.3 ± 4.7 cm, body mass: 58.4 ± 5.6 kg, V[Combining Dot Above]O2max: 73.33 ± 5.46 ml·kg·min). Each subject ran on a treadmill at 90% vV[Combining Dot Above]O2max until exhaustion after 1 of 4 warm-up treatments. The 4 warm-up treatments were no warm-up, 15 minutes running at 60% vV[Combining Dot Above]O2max, at 70% vV[Combining Dot Above]O2max, and at 80% vV[Combining Dot Above]O2max. The running performance was evaluated by time to exhaustion (TTE). V[Combining Dot Above]O2, and vastus lateralis muscle temperature were also measured. There were no significant differences in TTE among the warm-up exercises (p > 0.05). V[Combining Dot Above]O2 in no warm-up showed slower reaction than the other warm-up exercises. Regarding, the vastus lateralis muscle temperature immediately after warm-up, no warm-up was significantly (p warm-up exercises. Our results suggested that submaximal running performance was not affected by the presence or absence of a warm-up or by warm-up intensity, although physiological changes occurred.

  17. Active Movement Warm-Up Routines

    Science.gov (United States)

    Walter, Teri; Quint, Ashleigh; Fischer, Kim; Kiger, Joy

    2011-01-01

    This article presents warm-ups that are designed to physiologically and psychologically prepare students for vigorous physical activity. An active movement warm-up routine is made up of three parts: (1) active warm-up movement exercises, (2) general preparation, and (3) the energy system. These warm-up routines can be used with all grade levels…

  18. Comparison of Distal Limb Warming With Fluidotherapy and Warm Water Immersion for Mild Hypothermia Rewarming.

    Science.gov (United States)

    Kumar, Parveen; McDonald, Gerren K; Chitkara, Radhika; Steinman, Alan M; Gardiner, Phillip F; Giesbrecht, Gordon G

    2015-09-01

    The purpose of the study was to determine the effectiveness of Fluidotherapy rewarming through the distal extremities for mildly hypothermic, vigorously shivering subjects. Fluidotherapy is a dry heat modality in which cellulose particles are suspended by warm air circulation. Seven subjects (2 female) were cooled on 3 occasions in 8˚C water for 60 minutes, or to a core temperature of 35°C. They were then dried and rewarmed in a seated position by 1) shivering only; 2) Fluidotherapy applied to the distal extremities (46 ± 1°C, mean ± SD); or 3) water immersion of the distal extremities (44 ± 1°C). The order of rewarming followed a balanced design. Esophageal temperature, skin temperature, heart rate, oxygen consumption, and heat flux were measured. The warm water produced the highest rewarming rate, 6.1°C·h(-1), 95% CI: 5.3-6.9, compared with Fluidotherapy, 2.2°C·h(-1), 95% CI: 1.4-3.0, and shivering only, 2.0°C·h(-1), 95% CI: 1.2-2.8. The Fluidotherapy and warm water conditions increased skin temperature and inhibited shivering heat production, thus reducing metabolic heat production (166 ± 42 W and 181 ± 45 W, respectively), compared with shivering only (322 ± 142 W). Warm water provided a significantly higher net heat gain (398.0 ± 52 W) than shivering only (288.4 ± 115 W). Fluidotherapy was not as effective as warm water for rewarming mildly hypothermic subjects. Although Fluidotherapy is more portable and technically simpler, it provides a lower rate of rewarming that is similar to shivering only. It does help decrease shivering heat production, lowering energy expenditure and cardiac work, and could be considered in a hospital setting, if convenient. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  19. Is the distribution of Prochlorococcus and Synechococcus ecotypes in the Mediterranean Sea affected by global warming?

    Science.gov (United States)

    Mella-Flores, D.; Mazard, S.; Humily, F.; Partensky, F.; Mahé, F.; Bariat, L.; Courties, C.; Marie, D.; Ras, J.; Mauriac, R.; Jeanthon, C.; Mahdi Bendif, E.; Ostrowski, M.; Scanlan, D. J.; Garczarek, L.

    2011-09-01

    Biological communities populating the Mediterranean Sea, which is situated at the northern boundary of the subtropics, are often claimed to be particularly affected by global warming. This is indicated, for instance, by the introduction of (sub)tropical species of fish or invertebrates that can displace local species. This raises the question of whether microbial communities are similarly affected, especially in the Levantine basin where sea surface temperatures have significantly risen over the last 25 years (0.50 ± 0.11 °C in average per decade, P Lions and by clade III and groups genetically related to clades WPC1 and VI in the rest of the Mediterranean Sea. In contrast, only a few sequences of clade II, a group typical of warm waters, were observed. These data indicate that local cyanobacterial populations have not yet been displaced by their (sub)tropical counterparts.

  20. Using global warming potential to compare methane and CO2 emissions

    International Nuclear Information System (INIS)

    Dufresne, J.L.

    2009-01-01

    Greenhouse gases affect the planetary heat budget. Any change of their concentration affects this budget and therefore the global mean surface temperature of the Earth. These gases have different radiative properties and different lifetimes in the atmosphere, which prevents any direct comparison of the consequences of their emissions on global warming. Almost twenty years ago, the Intergovernmental Panel on Climate Change (IPCC) proposed the global warming potential (GWP) as an index to compare the emissions of the various greenhouse gases. In a recent paper, it has been stated that the use of GWP leads to strongly underestimating the global warming due to constant methane emissions compared to that of constant CO 2 emissions. Here we show that it is not really the case. The GWP enables comparisons of global warming due to constant emissions for any prescribed period, 100 years being often used. But this comparison is not universal. For instance, the impact of methane is underestimated at the beginning of the chosen period while the impact of CO 2 is underestimated after this period

  1. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea:

    Directory of Open Access Journals (Sweden)

    Mohamed Shaltout

    2014-06-01

    Full Text Available We analyse recent Mediterranean Sea surface temperatures (SSTs and their response to global change using 1/4-degree gridded advanced very-high-resolution radiometer (AVHRR daily SST data, 1982-2012. These data indicate significant annual warming (from 0.24°C decade-1 west of the Strait of Gibraltar to 0.51°C decade-1 over the Black Sea and significant spatial variation in annual average SST (from 15ºC over the Black Sea to 21°C over the Levantine sub-basin. Ensemble mean scenarios indicate that the study area SST may experience significant warming, peaking at 2.6°C century-1 in the Representative Concentration Pathways 85 (RCP85 scenario.

  2. Amplified warming projections for high altitude regions of the northern hemisphere mid-latitudes from CMIP5 models

    International Nuclear Information System (INIS)

    Rangwala, Imtiaz; Sinsky, Eric; Miller, James R

    2013-01-01

    We use output from global climate models available from the Coupled Model Intercomparison Project Phase 5 (CMIP5) for three different greenhouse gas emission scenarios to investigate whether the projected warming in mountains by the end of the 21st century is significantly different from that in low elevation regions. To remove the effects of latitudinal variation in warming rates, we focus on seasonal changes in the mid-latitude band of the northern hemisphere between 27.5° N and 40° N, where the two major mountain systems are the Tibetan Plateau/Himalayas in Asia and the Rocky Mountains in the United States. Results from the multi-model ensemble indicate that warming rates in mountains will be enhanced relative to non-mountain regions at the same latitude, particularly during the cold season. The strongest correlations of enhanced warming with elevation are obtained for the daily minimum temperature during winter, with the largest increases found for the Tibetan Plateau/Himalayas. The model projections indicate that this occurs, in part, because of proportionally greater increases in downward longwave radiation at higher elevations in response to increases in water vapor. The mechanisms for enhanced increases in winter and spring maximum temperatures in the Rockies appear to be influenced more by increases in surface absorption of solar radiation owing to a reduced snow cover. Furthermore, the amplification of warming with elevation is greater for a higher greenhouse gas emission scenario. (letter)

  3. Preoperative warm-up the key to improved resident technique: a randomized study.

    Science.gov (United States)

    Moran-Atkin, Erin; Abdalla, Gamal; Chen, Grace; Magnuson, Thomas H; Lidor, Anne O; Schweitzer, Michael A; Steele, Kimberley E

    2015-05-01

    The ACGME has required that a skills lab be incorporated into the surgical residency curriculum. While the value of warm-up is generally accepted in other areas requiring complex motor skills, there is little evidence to support the benefits of warm-up prior to performing surgery. We are conducting this study in an attempt to identify whether a warm-up period prior to operating impacts operative technique. All general surgery residents and MIS fellows were included in this IRB-approved randomized study. Participants were randomized to either warm-up or no warm-up groups. Participants randomized to the warm-up group completed a 10 min practice session in the simulation lab within 1 h of starting the case, using an FLS training box. At the conclusion of the operation, the participant was evaluated by the attending surgeon using the validated global rating scales of Reznick and Vassiliou. The attending surgeons were blinded to the use of pre-procedure warm-up. The results of the questionnaire were analyzed using student's t test with p warm-up (19) or no warm-up (21). There was a statistically significant improvement in depth perception (p = 0.02), bimanual dexterity (p = 0.01), and efficiency of movements (p = 0.03) for those randomized to warm-up. There was statistical improvement when we preformed a composite scoring of the attending evaluations for each of the Reznick (p = 0.008) and the Vassiliou (p = 0.01) global rating scales. Preoperative warm-up significantly improves depth perception, bimanual dexterity, and efficiency of movements, as well as improvement in composite scores as judged by the attending surgeon. The lack of self-perceived improvement by the residents may be a reflection of the high standards and intense self-critique that is common among surgical trainees. We believe that our findings, while preliminary, reflect that surgical performance can be enhanced through structured warm-up activities.

  4. Urban warming and energy consumption in Tokyo metro area

    International Nuclear Information System (INIS)

    Saitoh, T.; Hisada, T.; Shimada, T.

    1992-01-01

    This paper reports the results of field observation and three-dimensional simulation of urban warming in Tokyo metropolitan area. The three-dimensional governing equations in an urban atmospheric boundary layer were formulated by virtue of vorticity-velocity vector potential method. Particular attention was focused on the representation of a buoyancy term in equation of motion in the vertical direction, thereby describing the crossover and stratification effects near the ground surface. The vorticity-velocity potential method is superior from the view point of numerical stability and suitable for the simulation of an urban heat island. The authors first made a survey on the energy consumption in Tokyo metropolitan area. Next, the three-dimensional simulations were carried out using these data. The simulation results were then compared with the data of field observation of the surface temperature by automobiles. Further future prediction of urban warming was performed when the energy consumption rate is increased five times as large as the present rate, which will correspond to the year 2030 if the present consumption rate were maintained until then

  5. Life on a warmer earth: possible climatic consequences of man made global warming

    Energy Technology Data Exchange (ETDEWEB)

    Flohn, H

    1981-01-01

    The interaction between energy and climate is explored, including the impact on global climate of three main energy sources: solar, nuclear and fossil fuels. The global warming problem is introduced. Comprehensive analogies with warmer times are made. From the best models available, the future global average surface temperature is found and modified, describing the global warming effects caused by greenhouse effect caused by gases other than carbon dioxide, released into the atmosphere by man, i.e. nitrous oxide, methane, ammonia, and the chlorofluoromethanes. Paleoclimatic scenarios are reviewed, showing possible effects of global warming. An 800 to 1100 ppm CO/sub 2/ concentration causes irreversible Arctic melting, leading to displacement of present climatic zones by 400 to 800 km.

  6. Warm Mix Asphalt

    Science.gov (United States)

    2009-04-17

    State of Alaska State of Alaska - Warm Mix Project Warm Mix Project: Location - Petersburg, Alaska which is Petersburg, Alaska which is located in the heart of Southeast Alaska located in the heart of Southeast Alaska's Inside Passage at the tip of M...

  7. The effect of warm-ups with stretching on the isokinetic moments of collegiate men.

    Science.gov (United States)

    Park, Hyoung-Kil; Jung, Min-Kyung; Park, Eunkyung; Lee, Chang-Young; Jee, Yong-Seok; Eun, Denny; Cha, Jun-Youl; Yoo, Jaehyun

    2018-02-01

    Performing warm-ups increases muscle temperature and blood flow, which contributes to improved exercise performance and reduced risk of injuries to muscles and tendons. Stretching increases the range of motion of the joints and is effective for the maintenance and enhancement of exercise performance and flexibility, as well as for injury prevention. However, stretching as a warm-up activity may temporarily decrease muscle strength, muscle power, and exercise performance. This study aimed to clarify the effect of stretching during warm-ups on muscle strength, muscle power, and muscle endurance in a nonathletic population. The subjects of this study consisted of 13 physically active male collegiate students with no medical conditions. A self-assessment questionnaire regarding how well the subjects felt about their physical abilities was administered to measure psychological readiness before and after the warm-up. Subjects performed a non-warm-up, warm-up, or warm-up regimen with stretching prior to the assessment of the isokinetic moments of knee joints. After the measurements, the respective variables were analyzed using nonparametric tests. First, no statistically significant intergroup differences were found in the flexor and extensor peak torques of the knee joints at 60°/sec, which were assessed to measure muscle strength. Second, no statistically significant intergroup differences were found in the flexor and extensor peak torques of the knee joints at 180°/sec, which were assessed to measure muscle power. Third, the total work of the knee joints at 240°/sec, intended to measure muscle endurance, was highest in the aerobic-stretch-warm-ups (ASW) group, but no statistically significant differences were found among the groups. Finally, the psychological readiness for physical activity according to the type of warm-up was significantly higher in ASW. Simple stretching during warm-ups appears to have no effect on variables of exercise physiology in nonathletes

  8. Level of functional capacities following soccer-specific warm-up methods among elite collegiate soccer players.

    Science.gov (United States)

    Vazini Taher, Amir; Parnow, Abdolhossein

    2017-05-01

    Different methods of warm-up may have implications in improving various aspects of soccer performance. The present study aimed to investigate acute effects of soccer specific warm-up protocols on functional performance tests. This study using randomized within-subject design, investigated the performance of 22 collegiate elite soccer player following soccer specific warm-ups using dynamic stretching, static stretching, and FIFA 11+ program. Post warm-up examinations consisted: 1) Illinois Agility Test; 2) vertical jump; 3) 30 meter sprint; 4) consecutive turns; 5) flexibility of knee. Vertical jump performance was significantly lower following static stretching, as compared to dynamic stretching (P=0.005). Sprint performance declined significantly following static stretching as compared to FIFA 11+ (P=0.023). Agility time was significantly faster following dynamic stretching as compared to FIFA 11+ (P=0.001) and static stretching (P=0.001). Knee flexibility scores were significantly improved following the static stretching as compared to dynamic stretching (P=016). No significant difference was observed for consecutive turns between three warm-up protocol. The present finding showed that a soccer specific warm-up protocol relied on dynamic stretching is preferable in enhancing performance as compared to protocols relying on static stretches and FIFA 11+ program. Investigators suggest that while different soccer specific warm-up protocols have varied types of effects on performance, acute effects of dynamic stretching on performance in elite soccer players are assured, however application of static stretching in reducing muscle stiffness is demonstrated.

  9. Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux

    Science.gov (United States)

    Christian P. Giardina; Creighton M. Litton; Susan E. Crow; Gregory P Asner

    2014-01-01

    The universally observed exponential increase in soil-surface CO2 effux (‘soil respiration’; FS) with increasing temperature has led to speculation that global warming will accelerate soil organic carbon (SOC) decomposition, reduce SOC storage, and drive a positive feedback to future warming. However, interpreting temperature–FS relationships,...

  10. More losers than winners in a century of future Southern Ocean seafloor warming

    Science.gov (United States)

    Griffiths, Huw J.; Meijers, Andrew J. S.; Bracegirdle, Thomas J.

    2017-10-01

    The waters of the Southern Ocean are projected to warm over the coming century, with potential adverse consequences for native cold-adapted organisms. Warming waters have caused temperate marine species to shift their ranges poleward. The seafloor animals of the Southern Ocean shelf have long been isolated by the deep ocean surrounding Antarctica and the Antarctic Circumpolar Current, with little scope for southward migration. How these largely endemic species will react to future projected warming is unknown. By considering 963 invertebrate species, we show that within the current century, warming temperatures alone are unlikely to result in wholesale extinction or invasion affecting Antarctic seafloor life. However, 79% of Antarctica's endemic species do face a significant reduction in suitable temperature habitat (an average 12% reduction). Our findings highlight the species and regions most likely to respond significantly (negatively and positively) to warming and have important implications for future management of the region.

  11. How warm days increase belief in global warming

    Science.gov (United States)

    Zaval, Lisa; Keenan, Elizabeth A.; Johnson, Eric J.; Weber, Elke U.

    2014-02-01

    Climate change judgements can depend on whether today seems warmer or colder than usual, termed the local warming effect. Although previous research has demonstrated that this effect occurs, studies have yet to explain why or how temperature abnormalities influence global warming attitudes. A better understanding of the underlying psychology of this effect can help explain the public's reaction to climate change and inform approaches used to communicate the phenomenon. Across five studies, we find evidence of attribute substitution, whereby individuals use less relevant but available information (for example, today's temperature) in place of more diagnostic but less accessible information (for example, global climate change patterns) when making judgements. Moreover, we rule out alternative hypotheses involving climate change labelling and lay mental models. Ultimately, we show that present temperature abnormalities are given undue weight and lead to an overestimation of the frequency of similar past events, thereby increasing belief in and concern for global warming.

  12. Understanding the causes of recent warming of mediterranean waters. How much could be attributed to climate change?

    Science.gov (United States)

    Macias, Diego; Garcia-Gorriz, Elisa; Stips, Adolf

    2013-01-01

    During the past two decades, Mediterranean waters have been warming at a rather high rate resulting in scientific and social concern. This warming trend is observed in satellite data, field data and model simulations, and affects both surface and deep waters throughout the Mediterranean basin. However, the warming rate is regionally different and seems to change with time, which has led to the question of what causes underlie the observed trends. Here, we analyze available satellite information on sea surface temperature (SST) from the last 25 years using spectral techniques and find that more than half of the warming tendency during this period is due to a non-linear, wave-like tendency. Using a state of the art hydrodynamic model, we perform a hindcast simulation and obtain the simulated SST evolution of the Mediterranean basin for the last 52 years. These SST results show a clear sinusoidal tendency that follows the Atlantic Multidecadal Oscillation (AMO) during the simulation period. Our results reveal that 58% of recent warming in Mediterranean waters could be attributed to this AMO-like oscillation, being anthropogenic-induced climate change only responsible for 42% of total trend. The observed acceleration of water warming during the 1990s therefore appears to be caused by a superimposition of anthropogenic-induced warming with the positive phase of the AMO, while the recent slowdown of this tendency is likely due to a shift in the AMO phase. It has been proposed that this change in the AMO phase will mask the effect of global warming in the forthcoming decades, and our results indicate that the same could also be applicable to the Mediterranean Sea. Henceforth, natural multidecadal temperature oscillations should be taken into account to avoid underestimation of the anthropogenic-induced warming of the Mediterranean basin in the future.

  13. Understanding the causes of recent warming of mediterranean waters. How much could be attributed to climate change?

    Directory of Open Access Journals (Sweden)

    Diego Macias

    Full Text Available During the past two decades, Mediterranean waters have been warming at a rather high rate resulting in scientific and social concern. This warming trend is observed in satellite data, field data and model simulations, and affects both surface and deep waters throughout the Mediterranean basin. However, the warming rate is regionally different and seems to change with time, which has led to the question of what causes underlie the observed trends. Here, we analyze available satellite information on sea surface temperature (SST from the last 25 years using spectral techniques and find that more than half of the warming tendency during this period is due to a non-linear, wave-like tendency. Using a state of the art hydrodynamic model, we perform a hindcast simulation and obtain the simulated SST evolution of the Mediterranean basin for the last 52 years. These SST results show a clear sinusoidal tendency that follows the Atlantic Multidecadal Oscillation (AMO during the simulation period. Our results reveal that 58% of recent warming in Mediterranean waters could be attributed to this AMO-like oscillation, being anthropogenic-induced climate change only responsible for 42% of total trend. The observed acceleration of water warming during the 1990s therefore appears to be caused by a superimposition of anthropogenic-induced warming with the positive phase of the AMO, while the recent slowdown of this tendency is likely due to a shift in the AMO phase. It has been proposed that this change in the AMO phase will mask the effect of global warming in the forthcoming decades, and our results indicate that the same could also be applicable to the Mediterranean Sea. Henceforth, natural multidecadal temperature oscillations should be taken into account to avoid underestimation of the anthropogenic-induced warming of the Mediterranean basin in the future.

  14. Refrigeration and global warming

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Some aspects of global warming in general, and the implications for refrigerants and refrigerator efficiency in particular, are briefly considered in a question and answer format. The concepts of Global Warming Potential (GWP) and Total Equivalent Warming Impact (TEWI) are explained. GWP is an index which allows a simple comparison to be make between the warming effects of different gases on a kg to kg basis relative to carbon. The GWP depends both on the lifetime of a substance in the atmosphere and its infra-red absorption capacity. The overall warming effect of operating a refrigeration system for its entire life is measured by its TEWI. Chloroflourocarbons (CFCs) which have been widely used as refrigerants are powerful greenhouse gases with high GWPs. Because of the bank of CFCs in refrigerating systems, their levels in the atmosphere are still increasing and it will be some time before refrigerant changes will be effective in reducing the warming effects of refrigerant releases. Hydrocarbons, hydroflourocarbons and ammonia all have a part to play as substitute refrigerants. Refrigerator efficiency is very important in terms of reducing CO 2 emissions. (UK)

  15. Soil Temperature Manipulation to Study Global Warming Effects in Arable Land

    DEFF Research Database (Denmark)

    Patil, R H; Laegdsmand, M; Olesen, Jørgen E

    2013-01-01

    in a plough layer. Temperature sensors were placed at 0.05, 0.1 and 0.25 m depths in soil, and 0.1 m above the soil surface in all plots, which were connected to an automated data logger. Soil-warming setup was able to maintain a mean seasonal temperature difference of 5.0 ± 0.005℃ between heated and control......-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies....

  16. Soil temperature manipulation to study global warming effects in arable land

    DEFF Research Database (Denmark)

    Patil, Raveendra H.; Laegdsmand, Mette; Olesen, Jørgen Eivind

    2013-01-01

    in a plough layer. Temperature sensors were placed at 0.05, 0.1 and 0.25 m depths in soil, and 0.1 m above the soil surface in all plots, which were connected to an automated data logger. Soil-warming setup was able to maintain a mean seasonal temperature difference of 5.0 ± 0.005 oC between heated...... that of above-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies....

  17. Impacts of the Tropical Pacific Cold Tongue Mode on ENSO Diversity Under Global Warming

    Science.gov (United States)

    Li, Yang; Li, Jianping; Zhang, Wenjun; Chen, Quanliang; Feng, Juan; Zheng, Fei; Wang, Wei; Zhou, Xin

    2017-11-01

    The causes of ENSO diversity, although being of great interest in recent research, do not have a consistent explanation. This study provides a possible mechanism focused on the background change of the tropical Pacific as a response to global warming. The second empirical orthogonal function mode of the sea surface temperature anomalies (SSTA) in the tropical Pacific, namely the cold tongue mode (CTM), represents the background change of the tropical Pacific under global warming. Using composite analysis with surface observations and subsurface ocean assimilation data sets, we find ENSO spatial structure diversity is closely associated with the CTM. A positive CTM tends to cool the SST in the eastern equatorial Pacific and warm the SST outside, as well as widen (narrow) zonal and meridional scales for El Niño (La Niña), and vice versa. Particularly in the positive CTM phase, the air-sea action center of El Niño moves west, resembling the spatial pattern of CP-El Niño. This westward shift of center is related to the weakened Bjerknes feedback (BF) intensity by the CTM. By suppressing the SSTA growth of El Niño in the eastern equatorial Pacific, the CTM contributes to more frequent occurrence of CP-El Niño under global warming.

  18. The European climate under a 2 °C global warming

    International Nuclear Information System (INIS)

    Vautard, Robert; Stegehuis, Annemiek; Gobiet, Andreas; Mendlik, Thomas; Sobolowski, Stefan; Kjellström, Erik; Nikulin, Grigory; Watkiss, Paul; Landgren, Oskar; Teichmann, Claas; Jacob, Daniela

    2014-01-01

    A global warming of 2 °C relative to pre-industrial climate has been considered as a threshold which society should endeavor to remain below, in order to limit the dangerous effects of anthropogenic climate change. The possible changes in regional climate under this target level of global warming have so far not been investigated in detail. Using an ensemble of 15 regional climate simulations downscaling six transient global climate simulations, we identify the respective time periods corresponding to 2 °C global warming, describe the range of projected changes for the European climate for this level of global warming, and investigate the uncertainty across the multi-model ensemble. Robust changes in mean and extreme temperature, precipitation, winds and surface energy budgets are found based on the ensemble of simulations. The results indicate that most of Europe will experience higher warming than the global average. They also reveal strong distributional patterns across Europe, which will be important in subsequent impact assessments and adaptation responses in different countries and regions. For instance, a North–South (West–East) warming gradient is found for summer (winter) along with a general increase in heavy precipitation and summer extreme temperatures. Tying the ensemble analysis to time periods with a prescribed global temperature change rather than fixed time periods allows for the identification of more robust regional patterns of temperature changes due to removal of some of the uncertainty related to the global models’ climate sensitivity. (paper)

  19. Habitats at Risk. Global Warming and Species Loss in Globally Significant Terrestrial Ecosystems

    International Nuclear Information System (INIS)

    Malcolm, J.R.; Liu, Canran; Miller, L.B.; Allnutt, T.; Hansen, L.

    2002-02-01

    In this study, a suite of models of global climate and vegetation change is used to investigate three important global warming-induced threats to the terrestrial Global 200 ecoregions: (1) Invasions by new habitat types (and corresponding loss of original habitat types); (2) Local changes of habitat types; (3) High rates of required species migration. Seven climate models (general circulation models or GCMs) and two vegetation models (BIOME3 and MAPSS) were used to produce 14 impact scenarios under the climate associated with a doubling of atmospheric CO2 concentrations, which is expected to occur in less than 100 years. Previous analyses indicated that most of the variation among the impact scenarios was attributable to the particular vegetation model used, hence the authors provide results separately for the two models. The models do not provide information on biodiversity per se, but instead simulate current and future potential distributions of major vegetation types (biomes) such as tundra and broadleaf tropical rain forest

  20. The 15th century Arctic warming in coupled model simulations with data assimilation

    Directory of Open Access Journals (Sweden)

    E. Crespin

    2009-07-01

    Full Text Available An ensemble of simulations of the climate of the past millennium conducted with a three-dimensional climate model of intermediate complexity are constrained to follow temperature histories obtained from a recent compilation of well-calibrated surface temperature proxies using a simple data assimilation technique. Those simulations provide a reconstruction of the climate of the Arctic that is compatible with the model physics, the forcing applied and the proxy records. Available observational data, proxy-based reconstructions and our model results suggest that the Arctic climate is characterized by substantial variations in surface temperature over the past millennium. Though the most recent decades are likely to be the warmest of the past millennium, we find evidence for substantial past warming episodes in the Arctic. In particular, our model reconstructions show a prominent warm event during the period 1470–1520. This warm period is likely related to the internal variability of the climate system, that is the variability present in the absence of any change in external forcing. We examine the roles of competing mechanisms that could potentially produce this anomaly. This study leads us to conclude that changes in atmospheric circulation, through enhanced southwesterly winds towards northern Europe, Siberia and Canada, are likely the main cause of the late 15th/early 16th century Arctic warming.

  1. Plant movements and climate warming

    DEFF Research Database (Denmark)

    De Frenne, Pieter; Coomes, David A.; De Schrijver, An

    2014-01-01

    environments can establish in nonlocal sites. •We assess the intraspecific variation in growth responses to nonlocal soils by planting a widespread grass of deciduous forests (Milium effusum) into an experimental common garden using combinations of seeds and soil sampled in 22 sites across its distributional...... range, and reflecting movement scenarios of up to 1600 km. Furthermore, to determine temperature and forest-structural effects, the plants and soils were experimentally warmed and shaded. •We found significantly positive effects of the difference between the temperature of the sites of seed and soil...... collection on growth and seedling emergence rates. Migrant plants might thus encounter increasingly favourable soil conditions while tracking the isotherms towards currently ‘colder’ soils. These effects persisted under experimental warming. Rising temperatures and light availability generally enhanced plant...

  2. The 2014-2015 Warming Anomaly in the Southern California Current System: Glider Observations

    Science.gov (United States)

    Zaba, K. D.; Rudnick, D. L.

    2016-02-01

    During 2014-2015, basin-wide patterns of oceanic and atmospheric anomalies affected surface waters throughout the North Pacific Ocean. We present regional physical and biological effects of the warming, as observed by our autonomous underwater gliders in the southern California Current System (SCCS). Established in 2006, the California Glider Network provides sustained subsurface observations for monitoring the coastal effects of large-scale climate variability. Along repeat sections that extend to 350-500 km in offshore distance and 500 m in depth, Spray gliders have continuously occupied CalCOFI lines 66.7, 80, and 90 for nearly nine years. Following a sawtooth trajectory, the gliders complete each dive in approximately 3 hours and over 3 km. Measured variables include pressure, temperature, salinity, chlorophyll fluorescence, and velocity. For each of the three lines, a comprehensive climatology has been constructed from the multiyear timeseries. The ongoing surface-intensified warming anomaly, which began locally in early 2014 and persists through present, is unprecedented in the glider climatology. Reaching up to 5°C, positive temperature anomalies have been generally confined to the upper 50 m and persistent for over 20 months. The timing of the warming was in phase along each glider line but out of phase with equatorial SST anomalies, suggesting a decoupling of tropical and mid-latitude dynamics. Concurrent physical oceanographic anomalies included a depressed thermocline and high stratification. An induced biological response was apparent in the deepening of the subsurface chlorophyll fluorescence maximum. Ancillary atmospheric data from the NCEP North American Mesoscale (NAM) model indicate that a combination of surface forcing anomalies, namely high downward heat flux and weak wind stress magnitude, caused the unusual warm, downwelling conditions. With a strong El Niño event in the forecast for winter 2015-2016, our sustained glider network will

  3. The Atmospheric Response to a Future Warming Deficit in North Atlantic SSTs

    Science.gov (United States)

    Gervais, M.; Shaman, J. L.; Kushnir, Y.

    2017-12-01

    As SSTs increase globally over the 21st century, global climate models project a significant deficit in warming within the subpolar gyre of the North Atlantic Ocean. This study investigates the impact of this warming deficit on atmosphere circulation. A series of large ensemble experiments are conducted using the Community Atmosphere Model 5 forced with specified sea ice and SSTs for the early (2010-2019), mid (2050-2059), and late (2090-2099) 21stcentury. SST and sea ice fields from the Community Earth System Model Large Ensemble experiment are used as boundary conditions for the control simulations. Experiments with either a filled or deepened warming hole are conducted by adding a SST perturbation field to these time-varying SST boundary conditions. Results from these experiments demonstrate that the warming hole has significant local and remote impacts on the atmosphere. Filling (deepening) the warming hole results in a local increase (decrease) in turbulent heat fluxes relative to the control run and consequentially an increase (decrease) in temperature in the overlying lower troposphere that spreads over Europe. There are significant impacts on the location and strength of both the North Atlantic and North Pacific jets as well as on the North Atlantic Oscillation. These impacts of the warming hole on both the mean state and variability of the atmosphere have important implications for sensible weather in the Northern Hemisphere and in particular over Europe.

  4. Persisting and strong warming hiatus over eastern China during the past two decades

    Science.gov (United States)

    Chen, Yang; Zhai, Panmao

    2017-10-01

    During the past two decades since 1997, eastern China has experienced a warming hiatus punctuated by significant cooling in daily-minimum temperature (Tmin), particularly during early-mid winter. By arbitrarily configuring start and end years, a ‘vantage hiatus period’ in eastern China is detected over 1998-2013, during when the domain-averaged Tmin exhibited the strongest cooling trend and the number of significant cooling stations peaked. Regions most susceptible to the warming hiatus are located in North China, the Yangtze-Huai River Valley and South China, where significant cooling in Tmin persisted through 2016. This sustained hiatus gave rise to increasingly frequent and severe cold extremes there. Concerning its prolonged persistency and great cooling rate, the recent warming hiatus over eastern China deviates much from most historical short-term trends during the past five decades, and thus could be viewed as an outlier against the prevalent warming context.

  5. Big Jump of Record Warm Global Mean Surface Temperature in 2014-2016 Related to Unusually Large Oceanic Heat Releases

    Science.gov (United States)

    Yin, Jianjun; Overpeck, Jonathan; Peyser, Cheryl; Stouffer, Ronald

    2018-01-01

    A 0.24°C jump of record warm global mean surface temperature (GMST) over the past three consecutive record-breaking years (2014-2016) was highly unusual and largely a consequence of an El Niño that released unusually large amounts of ocean heat from the subsurface layer of the northwestern tropical Pacific. This heat had built up since the 1990s mainly due to greenhouse-gas (GHG) forcing and possible remote oceanic effects. Model simulations and projections suggest that the fundamental cause, and robust predictor of large record-breaking events of GMST in the 21st century, is GHG forcing rather than internal climate variability alone. Such events will increase in frequency, magnitude, and duration, as well as impact, in the future unless GHG forcing is reduced.

  6. Effects of in situ climate warming on monarch caterpillar (Danaus plexippus development

    Directory of Open Access Journals (Sweden)

    Nathan P. Lemoine

    2015-10-01

    Full Text Available Climate warming will fundamentally alter basic life history strategies of many ectothermic insects. In the lab, rising temperatures increase growth rates of lepidopteran larvae but also reduce final pupal mass and increase mortality. Using in situ field warming experiments on their natural host plants, we assessed the impact of climate warming on development of monarch (Danaus plexippus larvae. Monarchs were reared on Asclepias tuberosa grown under ‘Ambient’ and ‘Warmed’ conditions. We quantified time to pupation, final pupal mass, and survivorship. Warming significantly decreased time to pupation, such that an increase of 1 °C corresponded to a 0.5 day decrease in pupation time. In contrast, survivorship and pupal mass were not affected by warming. Our results indicate that climate warming will speed the developmental rate of monarchs, influencing their ecological and evolutionary dynamics. However, the effects of climate warming on larval development in other monarch populations and at different times of year should be investigated.

  7. New evidence on the sequence of deglacial warming in the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.; Govil, P.

    . Quat. Sci., vol.25(7); 2010; 1138-1143 A New Evidence on Sequence of Deglacial Warming in the Tropical Indian Ocean P. Divakar Naidu 1 , Pawan Govil 1,2 1 National Institute of Oceanography, Dona Paula 403 004, Goa, India 2 National Centre... relative timing of abrupt climate warming in the tropics versus the high latitudes should be known. Therefore, the present communication is aimed to address the start of deglaciation in the Indian Ocean based on sea surface temperature (SST) derived from...

  8. Research on trend of warm-humid climate in Central Asia

    Science.gov (United States)

    Gong, Zhi; Peng, Dailiang; Wen, Jingyi; Cai, Zhanqing; Wang, Tiantian; Hu, Yuekai; Ma, Yaxin; Xu, Junfeng

    2017-07-01

    Central Asia is a typical arid area, which is sensitive and vulnerable part of climate changes, at the same time, Central Asia is the Silk Road Economic Belt of the core district, the warm-humid climate change will affect the production and economic development of neighboring countries. The average annual precipitation, average anneal temperature and evapotranspiration are the important indexes to weigh the climate change. In this paper, the annual precipitation, annual average temperature and evapotranspiration data of every pixel point in Central Asia are analyzed by using long-time series remote sensing data to analyze the trend of warm and humid conditions. Finally, using the model to analyzed the distribution of warm-dry trend, the warm-wet trend, the cold-dry trend and the cold-wet trend in Central Asia and Xinjiang area. The results showed that most of the regions of Central Asia were warm-humid and warm-dry trends, but only a small number of regions showed warm-dry and cold-dry trends. It is of great significance to study the climatic change discipline and guarantee the ecological safety and improve the ability to cope with climate change in the region. It also provide scientific basis for the formulation of regional climate change program. The first section in your paper

  9. An increase in aerosol burden due to the land-sea warming contrast

    Science.gov (United States)

    Hassan, T.; Allen, R.; Randles, C. A.

    2017-12-01

    Climate models simulate an increase in most aerosol species in response to warming, particularly over the tropics and Northern Hemisphere midlatitudes. This increase in aerosol burden is related to a decrease in wet removal, primarily due to reduced large-scale precipitation. Here, we show that the increase in aerosol burden, and the decrease in large-scale precipitation, is related to a robust climate change phenomenon—the land/sea warming contrast. Idealized simulations with two state of the art climate models, the National Center for Atmospheric Research Community Atmosphere Model version 5 (NCAR CAM5) and the Geophysical Fluid Dynamics Laboratory Atmospheric Model 3 (GFDL AM3), show that muting the land-sea warming contrast negates the increase in aerosol burden under warming. This is related to smaller decreases in near-surface relative humidity over land, and in turn, smaller decreases in large-scale precipitation over land—especially in the NH midlatitudes. Furthermore, additional idealized simulations with an enhanced land/sea warming contrast lead to the opposite result—larger decreases in relative humidity over land, larger decreases in large-scale precipitation, and larger increases in aerosol burden. Our results, which relate the increase in aerosol burden to the robust climate projection of enhanced land warming, adds confidence that a warmer world will be associated with a larger aerosol burden.

  10. Plants, birds and butterflies: short-term responses of species communities to climate warming vary by taxon and with altitude.

    Science.gov (United States)

    Roth, Tobias; Plattner, Matthias; Amrhein, Valentin

    2014-01-01

    As a consequence of climate warming, species usually shift their distribution towards higher latitudes or altitudes. Yet, it is unclear how different taxonomic groups may respond to climate warming over larger altitudinal ranges. Here, we used data from the national biodiversity monitoring program of Switzerland, collected over an altitudinal range of 2500 m. Within the short period of eight years (2003-2010), we found significant shifts in communities of vascular plants, butterflies and birds. At low altitudes, communities of all species groups changed towards warm-dwelling species, corresponding to an average uphill shift of 8 m, 38 m and 42 m in plant, butterfly and bird communities, respectively. However, rates of community changes decreased with altitude in plants and butterflies, while bird communities changed towards warm-dwelling species at all altitudes. We found no decrease in community variation with respect to temperature niches of species, suggesting that climate warming has not led to more homogenous communities. The different community changes depending on altitude could not be explained by different changes of air temperatures, since during the 16 years between 1995 and 2010, summer temperatures in Switzerland rose by about 0.07°C per year at all altitudes. We discuss that land-use changes or increased disturbances may have prevented alpine plant and butterfly communities from changing towards warm-dwelling species. However, the findings are also consistent with the hypothesis that unlike birds, many alpine plant species in a warming climate could find suitable habitats within just a few metres, due to the highly varied surface of alpine landscapes. Our results may thus support the idea that for plants and butterflies and on a short temporal scale, alpine landscapes are safer places than lowlands in a warming world.

  11. Peranan Environmental Accounting Terhadap Global Warming

    OpenAIRE

    Martusa, Riki

    2009-01-01

    This article explores about is global warming. The distortion of nature causes global warming. Industrial sector is one of global warming incurred. Some nations create a group to cope this matter. They try to reduce carbon emission as one of global warming causes by controlling industrial carbon emission through financial reporting. This article explores normatively roles of environmental accounting in cope with global warming.  

  12. The interdecadal worsening of weather conditions affecting aerosol pollution in the Beijing area in relation to climate warming

    Science.gov (United States)

    Zhang, Xiaoye; Zhong, Junting; Wang, Jizhi; Wang, Yaqiang; Liu, Yanju

    2018-04-01

    The weather conditions affecting aerosol pollution in Beijing and its vicinity (BIV) in wintertime have worsened in recent years, particularly after 2010. The relation between interdecadal changes in weather conditions and climate warming is uncertain. Here, we analyze long-term variations of an integrated pollution-linked meteorological index (which is approximately and linearly related to aerosol pollution), the extent of changes in vertical temperature differences in the boundary layer (BL) in BIV, and northerly surface winds from Lake Baikal during wintertime to evaluate the potential contribution of climate warming to changes in meteorological conditions directly related to aerosol pollution in this area; this is accomplished using NCEP reanalysis data, surface observations, and long-term vertical balloon sounding observations since 1960. The weather conditions affecting BIV aerosol pollution are found to have worsened since the 1960s as a whole. This worsening is more significant after 2010, with PM2.5 reaching unprecedented high levels in many cities in China, particularly in BIV. The decadal worsening of meteorological conditions in BIV can partly be attributed to climate warming, which is defined by more warming in the higher layers of the boundary layer (BL) than the lower layers. This worsening can also be influenced by the accumulation of aerosol pollution, to a certain extent (particularly after 2010), because the increase in aerosol pollution from the ground leads to surface cooling by aerosol-radiation interactions, which facilitates temperature inversions, increases moisture accumulations, and results in the extra deterioration of meteorological conditions. If analyzed as a linear trend, weather conditions have worsened by ˜ 4 % each year from 2010 to 2017. Given such a deterioration rate, the worsening of weather conditions may lead to a corresponding amplitude increase in PM2.5 in BIV during wintertime in the next 5 years (i.e., 2018 to 2022

  13. Global warming considerations in northern Boreal forest ecosystems

    International Nuclear Information System (INIS)

    Slaughter, C.W.

    1993-01-01

    The northern boreal forests of circumpolar lands are of special significance to questions of global climate change. Throughout its range, these forests are characterized by a relatively few tree species, although they may exhibit great spatial heterogeneity. Their ecosystems are simpler than temperate systems, and ecosystem processes are strongly affected by interactions between water, the landscape, and the biota. Northern boreal forest vegetation patterns are strongly influenced by forest fires, and distribution of forest generally coincides with occurrence of permafrost. Boreal forest landscapes are extremely sensitive to thermal disruption; global warming may result in lasting thermal and physical degradation of soils, altered rates and patterns of vegetation succession, and damage to engineered structures. A change in fire severity and frequency is also a significant concern. The total carbon pool of boreal forests and their associated peatlands is significant on a global scale; this carbon may amount to 10-20% of the global carbon pool. A change in latitudinal or elevational treeline has been suggested as a probable consequence of global warming. More subtle aspects of boreal forest ecosystems which may be affected by global warming include the depth of the active soil layer, the hydrologic cycle, and biological attributes of boreal stream systems. 48 refs., 2 figs

  14. Prediction on global warming-up. Chikyu ondanka wo yosokusuru

    Energy Technology Data Exchange (ETDEWEB)

    Noda, A [Meteorological Research Institute, Tsukuba (Japan)

    1993-05-01

    This paper introduces models to predict global warming-up caused by greenhouse effect of the earth and increase in greenhouse effect gases, and the prediction results. As a result of CO2 doubling experiments using three-dimensional climate models in predicting the global warming-up, a model that predicted a sharp rise in annual average ground temperatures on the entire earth showed a larger increase in precipitation. According to the result of the CO2 doubling experiments using atmosphere-ocean coupling models, it was learned that the temperature rises higher in high latitude regions rather than rising uniformly over the earth on the whole. The fact that the temperature rise when CO2 has been doubled in a CO2 gradually increasing experiment is smaller than in the doubling experiment can be understood as a delaying effect of oceans generated from their thermal inertia. The former experiment showed a remarkable non-symmetry between the Southern and Northern hemispheres, reflecting the effect of the great oceanic circulation. Increase in cloud amount has an effect of either cooling or warming the earth, but the cooling effect surpasses the warming effect reportedly. Sulfuric acid aerosol in the troposphere is thought to influence the process of solar radiation transmitting through the atmosphere and have an effect to cool down the ground surface. 12 refs., 6 figs.

  15. Causes of the large warm bias in the Angola-Benguela Frontal Zone in the Norwegian Earth System Model

    Science.gov (United States)

    Koseki, Shunya; Keenlyside, Noel; Demissie, Teferi; Toniazzo, Thomas; Counillon, Francois; Bethke, Ingo; Ilicak, Mehmet; Shen, Mao-Lin

    2018-06-01

    We have investigated the causes of the sea surface temperature (SST) bias in the Angola-Benguela Frontal Zone (ABFZ) of the southeastern Atlantic Ocean simulated by the Norwegian Earth System Model (NorESM). Similar to other coupled-models, NorESM has a warm SST bias in the ABFZ of up to 8 °C in the annual mean. Our analysis of NorESM reveals that a cyclonic surface wind bias over the ABFZ drives a locally excessively strong southward (0.05 m/s (relative to observation)) Angola Current displacing the ABFZ southward. A series of uncoupled stand-alone atmosphere and ocean model simulations are performed to investigate the cause of the coupled model bias. The stand-alone atmosphere model driven with observed SST exhibits a similar cyclonic surface circulation bias; while the stand-alone ocean model forced with the reanalysis data produces a warm SST in the ABFZ with a magnitude approximately half of that in the coupled NorESM simulation. An additional uncoupled sensitivity experiment shows that the atmospheric model's local negative surface wind curl generates anomalously strong Angola Current at the ocean surface. Consequently, this contributes to the warm SST bias in the ABFZ by 2 °C (compared to the reanalysis forced simulation). There is no evidence that local air-sea feedbacks among wind stress curl, SST, and sea level pressure (SLP) affect the ABFZ SST bias. Turbulent surface heat flux differences between coupled and uncoupled experiments explain the remaining 2 °C warm SST bias in NorESM. Ocean circulation, upwelling and turbulent heat flux errors all modulate the intensity and the seasonality of the ABFZ errors.

  16. Causes of the large warm bias in the Angola-Benguela Frontal Zone in the Norwegian Earth System Model

    Science.gov (United States)

    Koseki, Shunya; Keenlyside, Noel; Demissie, Teferi; Toniazzo, Thomas; Counillon, Francois; Bethke, Ingo; Ilicak, Mehmet; Shen, Mao-Lin

    2017-09-01

    We have investigated the causes of the sea surface temperature (SST) bias in the Angola-Benguela Frontal Zone (ABFZ) of the southeastern Atlantic Ocean simulated by the Norwegian Earth System Model (NorESM). Similar to other coupled-models, NorESM has a warm SST bias in the ABFZ of up to 8 °C in the annual mean. Our analysis of NorESM reveals that a cyclonic surface wind bias over the ABFZ drives a locally excessively strong southward (0.05 m/s (relative to observation)) Angola Current displacing the ABFZ southward. A series of uncoupled stand-alone atmosphere and ocean model simulations are performed to investigate the cause of the coupled model bias. The stand-alone atmosphere model driven with observed SST exhibits a similar cyclonic surface circulation bias; while the stand-alone ocean model forced with the reanalysis data produces a warm SST in the ABFZ with a magnitude approximately half of that in the coupled NorESM simulation. An additional uncoupled sensitivity experiment shows that the atmospheric model's local negative surface wind curl generates anomalously strong Angola Current at the ocean surface. Consequently, this contributes to the warm SST bias in the ABFZ by 2 °C (compared to the reanalysis forced simulation). There is no evidence that local air-sea feedbacks among wind stress curl, SST, and sea level pressure (SLP) affect the ABFZ SST bias. Turbulent surface heat flux differences between coupled and uncoupled experiments explain the remaining 2 °C warm SST bias in NorESM. Ocean circulation, upwelling and turbulent heat flux errors all modulate the intensity and the seasonality of the ABFZ errors.

  17. Conservation Planning for Coral Reefs Accounting for Climate Warming Disturbances.

    Directory of Open Access Journals (Sweden)

    Rafael A Magris

    Full Text Available Incorporating warming disturbances into the design of marine protected areas (MPAs is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST data, integrating both observed (1985-2009 and projected (2010-2099 time-series. We derived indices of acute (time under reduced ecosystem function following short-term events and chronic thermal stress (rate of warming and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii by strategically allocating different forms of spatial management (MPA types intended to mitigate warming impacts and also enhance future resistance to climate warming.

  18. The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects.

    LENUS (Irish Health Repository)

    O'Sullivan, Kieran

    2009-01-01

    BACKGROUND: Warm-up and stretching are suggested to increase hamstring flexibility and reduce the risk of injury. This study examined the short-term effects of warm-up, static stretching and dynamic stretching on hamstring flexibility in individuals with previous hamstring injury and uninjured controls. METHODS: A randomised crossover study design, over 2 separate days. Hamstring flexibility was assessed using passive knee extension range of motion (PKE ROM). 18 previously injured individuals and 18 uninjured controls participated. On both days, four measurements of PKE ROM were recorded: (1) at baseline; (2) after warm-up; (3) after stretch (static or dynamic) and (4) after a 15-minute rest. Participants carried out both static and dynamic stretches, but on different days. Data were analysed using Anova. RESULTS: Across both groups, there was a significant main effect for time (p < 0.001). PKE ROM significantly increased with warm-up (p < 0.001). From warm-up, PKE ROM further increased with static stretching (p = 0.04) but significantly decreased after dynamic stretching (p = 0.013). The increased flexibility after warm-up and static stretching reduced significantly (p < 0.001) after 15 minutes of rest, but remained significantly greater than at baseline (p < 0.001). Between groups, there was no main effect for group (p = 0.462), with no difference in mean PKE ROM values at any individual stage of the protocol (p > 0.05). Using ANCOVA to adjust for the non-significant (p = 0.141) baseline difference between groups, the previously injured group demonstrated a greater response to warm-up and static stretching, however this was not statistically significant (p = 0.05). CONCLUSION: Warm-up significantly increased hamstring flexibility. Static stretching also increased hamstring flexibility, whereas dynamic did not, in agreement with previous findings on uninjured controls. The effect of warm-up and static stretching on flexibility was greater in those with reduced

  19. Anthropogenic warming exacerbates European soil moisture droughts

    Science.gov (United States)

    Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E. F.; Marx, A.

    2018-05-01

    Anthropogenic warming is anticipated to increase soil moisture drought in the future. However, projections are accompanied by large uncertainty due to varying estimates of future warming. Here, using an ensemble of hydrological and land-surface models, forced with bias-corrected downscaled general circulation model output, we estimate the impacts of 1-3 K global mean temperature increases on soil moisture droughts in Europe. Compared to the 1.5 K Paris target, an increase of 3 K—which represents current projected temperature change—is found to increase drought area by 40% (±24%), affecting up to 42% (±22%) more of the population. Furthermore, an event similar to the 2003 drought is shown to become twice as frequent; thus, due to their increased occurrence, events of this magnitude will no longer be classified as extreme. In the absence of effective mitigation, Europe will therefore face unprecedented increases in soil moisture drought, presenting new challenges for adaptation across the continent.

  20. Temperature response of soil respiration largely unaltered with experimental warming

    DEFF Research Database (Denmark)

    Carey, Joanna C; Tang, Jianwu; Templer, Pamela H

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific...... attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies......, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation...

  1. Artificial Warming of Arctic Meadow under Pollution Stress: Experimental design

    Science.gov (United States)

    Moni, Christophe; Silvennoinen, Hanna; Fjelldal, Erling; Brenden, Marius; Kimball, Bruce; Rasse, Daniel

    2014-05-01

    split plots (diameter: 3.65 m & surface area: 10.5 m2) composed of one half amended with biochar and one control half not amended were prepared. Five of these plots are equipped with a warming system, while the other five were equipped with dummies. Each warmed plot is collocated with a control plot within one block. While split plots are all oriented in the same direction the position of blocks is randomized to eliminate the effect of the spatial variability. Biochar was incorporated in the first 20 cm of the soil with a rototiller. Warming system is provided by hexagonal arrays of infrared heaters. The temperature of the plots is monitored with infrared cameras. The 3oC increase of temperature is obtained by dynamically monitoring the temperature difference between warmed and control plots within blocks via improved software. Each plot is further equipped with a soil temperature and moisture sensor.

  2. Long-term changes of South China Sea surface temperatures in winter and summer

    Science.gov (United States)

    Park, Young-Gyu; Choi, Ara

    2017-07-01

    Utilizing available atmospheric and oceanographic reanalysis data sets, the long-term trend in South China Sea (SCS) sea surface temperature (SST) between 1950 and 2008 and the governing processes are investigated. Both winter and summer SST increased by comparable amounts, but the warming patterns and the governing processes were different. Strong warming in winter occurred in a deep central area, and during summer in the southern region. In winter the net heat flux into the sea increased, contributing to the warming. The spatial pattern of the heat flux, however, was different from that of the warming. Heat flux increased over the coastal area where warming was weaker, but decreased over the deeper area where warming was stronger. The northeasterly monsoon wind weakened lowering the shoreward Ekman transport and the sea surface height gradient. The cyclonic gyre which transports cold northern water to the south weakened, thereby warming the ocean. The effect was manifested more strongly along the southward western boundary current inducing warming in the deep central part. In summer however, the net surface heat flux decreased and could not contribute to the warming. Over the southern part of the SCS, the weakening of the southwesterly summer monsoon reduced southeastward Ekman transport, which is parallel to the mean SST gradient. Southeastward cold advection due to Ekman transport was reduced, thereby warming the surface near the southeastern boundary of the SCS. Upwelling southeast of Vietnam was also weakened, raising the SST east of Vietnam contributing to the southern summer warming secondarily. The weakening of the winds in each season was the ultimate cause of the warming, but the responses of the ocean that lead to the warming were different in winter and summer.

  3. Simulative testing of friction in warm/hot forging

    DEFF Research Database (Denmark)

    Henningsen, Poul; Lindegren, Maria

    The objective of sub-task 3.2 is to determine the friction values for different work piece materials, tool materials and lubricants as a function of the main process parameters under conditions reflecting those which are present in typical warm/hot forming operations i.e. surface expansion, work...... piece and tool temperature. Based on this experimental work establish mathematical formulations of friction as a function of the basic parameters....

  4. Surface-temperature trends and variability in the low-latitude North Atlantic since 1552

    KAUST Repository

    Saenger, Casey

    2009-06-21

    Sea surface temperature variability in the North Atlantic Ocean recorded since about 1850 has been ascribed to a natural multidecadal oscillation superimposed on a background warming trend1-6. It has been suggested that the multidecadal variability may be a persistent feature6-8, raising the possibility that the associated climate impacts may be predictable7,8. owever, our understanding of the multidecadal ocean variability before the instrumental record is based on interpretations of high-latitude terrestrial proxy records. Here we present an absolutely dated and annually resolved record of sea surface temperature from the Bahamas, based on a 440-year time series of coral growth rates. The reconstruction indicates that temperatures were as warm as today from about 1552 to 1570, then cooled by about 1° C from 1650 to 1730 before warming until the present. Our estimates of background variability suggest that much of the warming since 1900 was driven by anthropogenic forcing. Interdecadal variability with a period of 15-25 years is superimposed on most of the record, but multidecadal variability becomes significant only after 1730. We conclude that the multidecadal variability in sea surface temperatures in the low-latitude western Atlantic Ocean may not be persistent, potentially making accurate decadal climate forecasts more difficult to achieve. © 2009 Macmillan Publishers Limited. All rights reserved.

  5. Surface-temperature trends and variability in the low-latitude North Atlantic since 1552

    KAUST Repository

    Saenger, Casey; Cohen, Anne L.; Oppo, Delia W.; Halley, Robert B.; Carilli, Jessica E.

    2009-01-01

    Sea surface temperature variability in the North Atlantic Ocean recorded since about 1850 has been ascribed to a natural multidecadal oscillation superimposed on a background warming trend1-6. It has been suggested that the multidecadal variability may be a persistent feature6-8, raising the possibility that the associated climate impacts may be predictable7,8. owever, our understanding of the multidecadal ocean variability before the instrumental record is based on interpretations of high-latitude terrestrial proxy records. Here we present an absolutely dated and annually resolved record of sea surface temperature from the Bahamas, based on a 440-year time series of coral growth rates. The reconstruction indicates that temperatures were as warm as today from about 1552 to 1570, then cooled by about 1° C from 1650 to 1730 before warming until the present. Our estimates of background variability suggest that much of the warming since 1900 was driven by anthropogenic forcing. Interdecadal variability with a period of 15-25 years is superimposed on most of the record, but multidecadal variability becomes significant only after 1730. We conclude that the multidecadal variability in sea surface temperatures in the low-latitude western Atlantic Ocean may not be persistent, potentially making accurate decadal climate forecasts more difficult to achieve. © 2009 Macmillan Publishers Limited. All rights reserved.

  6. Tundra permafrost thaw causes significant shifts in energy partitioning

    Directory of Open Access Journals (Sweden)

    Christian Stiegler

    2016-04-01

    Full Text Available Permafrost, a key component of the arctic and global climate system, is highly sensitive to climate change. Observed and ongoing permafrost degradation influences arctic hydrology, ecology and biogeochemistry, and models predict that rapid warming is expected to significantly reduce near-surface permafrost and seasonally frozen ground during the 21st century. These changes raise concern of how permafrost thaw affects the exchange of water and energy with the atmosphere. However, associated impacts of permafrost thaw on the surface energy balance and possible feedbacks on the climate system are largely unknown. In this study, we show that in northern subarctic Sweden, permafrost thaw and related degradation of peat plateaus significantly change the surface energy balance of three peatland complexes by enhancing latent heat flux and, to less degree, also ground heat flux at the cost of sensible heat flux. This effect is valid at all radiation levels but more pronounced at higher radiation levels. The observed differences in flux partitioning mainly result from the strong coupling between soil moisture availability, vegetation composition, albedo and surface structure. Our results suggest that ongoing and predicted permafrost degradation in northern subarctic Sweden ultimately result in changes in land–atmosphere coupling due to changes in the partitioning between latent and sensible heat fluxes. This in turn has crucial implications for how predictive climate models for the Arctic are further developed.

  7. Responses of plant community composition and biomass production to warming and nitrogen deposition in a temperate meadow ecosystem.

    Science.gov (United States)

    Zhang, Tao; Guo, Rui; Gao, Song; Guo, Jixun; Sun, Wei

    2015-01-01

    Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.

  8. Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland

    Energy Technology Data Exchange (ETDEWEB)

    Rillig, M.C.; Wright, S.F.; Shaw, M.R.; Field, C.B.

    2002-04-01

    Despite the importance of arbuscular mycorrhizae to the functioning of terrestrial ecosystems (e.g. nutrient uptake, soil aggregation), and the increasing evidence of global warming, responses of arbuscular mycorrhizal fungi (AMF) to climate warming are poorly understood. In a field experiment using infrared heaters, we found effects of warming on AMF after one growing season in an annual grassland, in the absence of any effects on measured root parameters (weight, length, average diameter). AMF soil hyphal length was increased by over 40% in the warmed plots, accompanied by a strong trend for AMF root colonization increase. In the following year, root weight was again not significantly changed, and AMF root colonization increased significantly in the warmed plots. Concentration of the soil protein glomalin, a glycoprotein produced by AMF hyphae with importance in soil aggregation, was decreased in the warmed plots. Soil aggregate water stability, measured for five diameter size classes, was also decreased significantly. In the following year, soil aggregate weight in two size classes was decreased significantly, but the effect size was very small. These results indicate that ecosystem warming may have stimulated carbon allocation to AMF. Other factors either influenced glomalin decomposition or production, hence influencing the role of these symbionts in soil aggregation. The observed small changes in soil aggregation, if widespread among terrestrial ecosystems, could have important consequences for soil carbon storage and erosion in a warmed climate, especially if there are cumulative effects of warming. (au)

  9. Responses of microbial biomass carbon and nitrogen to experimental warming: a meta-analysis

    Science.gov (United States)

    Xu, W.; Yuan, W.

    2017-12-01

    Soil microbes play important roles in regulating terrestrial carbon and nitrogen cycling and strongly influence feedbacks of ecosystem to global warming. However, the inconsistent responses of microbial biomass carbon (MBC) and nitrogen (MBN) to experimental warming have been observed, and the response on ratio between MBC and MBN (MBC:MBN) has not been identified. This meta-analysis synthesized the warming experiments at 58 sites globally to investigate the responses of MBC:MBN to climate warming. Our results showed that warming significantly increased MBC by 3.61 ± 0.80% and MBN by 5.85 ± 0.90% and thus decreased the MBC:MBN by 3.34 ± 0.66%. MBC showed positive responses to warming but MBN exhibited negative responses to warming at low warming magnitude (2°C) the results were inverted. The different effects of warming magnitude on microbial biomass resulted from the warming-induced decline in soil moisture and substrate supply. Moreover, MBC and MBN had strong positive responses to warming at the mid-term (3-4 years) or short-term (1-2 years) duration, but the responses tended to decrease at long-term (≥ 5 years) warming duration. This study fills the knowledge gap on the responses of MBC:MBN to warming and may benefit the development of coupled carbon and nitrogen models.

  10. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Mohamed Shaltout

    2014-06-01

    Full Text Available We analyse recent Mediterranean Sea surface temperatures (SSTs and their response to global change using 1/4-degree gridded advanced very-high-resolution radiometer (AVHRR daily SST data, 1982–2012. These data indicate significant annual warming (from 0.24 °C decade−1 west of the Strait of Gibraltar to 0.51 °C decade−1 over the Black Sea and significant spatial variation in annual average SST (from 15 °C over the Black Sea to 21 °C over the Levantine sub-basin. Ensemble mean scenarios indicate that the study area SST may experience significant warming, peaking at 2.6 °C century−1 in the Representative Concentration Pathways 85 (RCP85 scenario.

  11. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.

    Science.gov (United States)

    Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B

    2017-05-01

    Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.

  12. The influence of global warming in Earth rotation speed

    Directory of Open Access Journals (Sweden)

    R. Abarca del Rio

    1999-06-01

    Full Text Available The tendency of the atmospheric angular momentum (AAM is investigated using a 49-year set of monthly AAM data for the period January 1949-December 1997. This data set is constructed with zonal wind values from the reanalyses of NCEP/NCAR, used in conjunction with a variety of operationally produced AAM time series with different independent sources and lengths over 1976-1997. In all the analyzed AAM series the linear trend is found to be positive. Since the angular momentum of the atmosphere-earth system is conserved this corresponds to a net loss of angular momentum by the solid earth, therefore decreasing the Earth rotation speed and increasing the length of day (LOD. The AAM rise is significant to the budget of angular momentum of the global atmosphere-earth system; its value in milliseconds/century (ms/cy is +0.56 ms/cy, corresponding to one-third of the estimated increase in LOD (+1.7 ms/cy. The major contribution to this secular trend in AAM comes from the equatorial Tropopause. This is consistent with results from a previous study using a simplified aqua-planet model to investigate the AAM variations due to near equatorial warming conditions. During the same time interval, 1949-1997, the global marine + land-surface temperature increases by about 0.79 °C/cy, showing a linear correspondence between surface temperature increase and global AAM of about 0.07 ms per 0.1 °C. These results imply that atmospheric angular momentum may be used as an independent index of the global atmosphere's dynamical response to the greenhouse forcing, and as such, the length of day may be used as an indirect indicator of global warming.Key words. Meteorology and atmospheric dynamics (general circulation · Geodesy

  13. The influence of global warming in Earth rotation speed

    Directory of Open Access Journals (Sweden)

    R. Abarca del Rio

    Full Text Available The tendency of the atmospheric angular momentum (AAM is investigated using a 49-year set of monthly AAM data for the period January 1949-December 1997. This data set is constructed with zonal wind values from the reanalyses of NCEP/NCAR, used in conjunction with a variety of operationally produced AAM time series with different independent sources and lengths over 1976-1997. In all the analyzed AAM series the linear trend is found to be positive. Since the angular momentum of the atmosphere-earth system is conserved this corresponds to a net loss of angular momentum by the solid earth, therefore decreasing the Earth rotation speed and increasing the length of day (LOD. The AAM rise is significant to the budget of angular momentum of the global atmosphere-earth system; its value in milliseconds/century (ms/cy is +0.56 ms/cy, corresponding to one-third of the estimated increase in LOD (+1.7 ms/cy. The major contribution to this secular trend in AAM comes from the equatorial Tropopause. This is consistent with results from a previous study using a simplified aqua-planet model to investigate the AAM variations due to near equatorial warming conditions. During the same time interval, 1949-1997, the global marine + land-surface temperature increases by about 0.79 °C/cy, showing a linear correspondence between surface temperature increase and global AAM of about 0.07 ms per 0.1 °C. These results imply that atmospheric angular momentum may be used as an independent index of the global atmosphere's dynamical response to the greenhouse forcing, and as such, the length of day may be used as an indirect indicator of global warming.

    Key words. Meteorology and atmospheric dynamics (general circulation · Geodesy

  14. A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations

    Science.gov (United States)

    Dai, Aiguo; Rasmussen, Roy M.; Liu, Changhai; Ikeda, Kyoko; Prein, Andreas F.

    2017-08-01

    Climate models project increasing precipitation intensity but decreasing frequency as greenhouse gases increase. However, the exact mechanism for the frequency decrease remains unclear. Here we investigate this by analyzing hourly data from regional climate change simulations with 4 km grid spacing covering most of North America using the Weather Research and Forecasting model. The model was forced with present and future boundary conditions, with the latter being derived by adding the CMIP5 19-model ensemble mean changes to the ERA-interim reanalysis. The model reproduces well the observed seasonal and spatial variations in precipitation frequency and histograms, and the dry interval between rain events over the contiguous US. Results show that overall precipitation frequency indeed decreases during the warm season mainly due to fewer light-moderate precipitation (0.1 2.0 mm/h) events, while heavy (2 10 mm/h) events increase. Dry spells become longer and more frequent, together with a reduction in time-mean relative humidity (RH) in the lower troposphere during the warm season. The increased dry hours and decreased RH lead to a reduction in overall precipitation frequency and also for light-moderate precipitation events, while water vapor-induced increases in precipitation intensity and the positive latent heating feedback in intense storms may be responsible for the large increase in intense precipitation. The size of intense storms increases while their number decreases in the future climate, which helps explain the increase in local frequency of heavy precipitation. The results generally support a new hypothesis for future warm-season precipitation: each rainstorm removes ≥7% more moisture from the air per 1 K local warming, and surface evaporation and moisture advection take slightly longer than currently to replenish the depleted moisture before the next storm forms, leading to longer dry spells and a reduction in precipitation frequency, as well as

  15. The impacts and costs of global warming

    International Nuclear Information System (INIS)

    Eyre, N.J.

    1991-01-01

    There is now a scientific consensus that current rates of accumulation of greenhouses gases in the atmosphere will result in significant global warming and climate change. These changes are likely to have important impacts on a wide range of human activities and the natural environment. There has now been a considerable weight of literature published on the impacts of global warming, much of it very recent. This report seeks to summarise the important results, to analyse the uncertainties and to make a preliminary analysis of the feasibility of monetarising these environmental costs. The impacts of global warming are divided into ten major categories: agriculture, forests and forestry, terrestrial ecosystems and biodiversity, hydrology and water resources, sea level rise and coastal zones, energy, infrastructure/transport/industry, human health and air quality, oceans, and cryospheric impacts. The results of major summary reports are analysed, notably the report of Working Group II of the Intergovernmental Panel on Climate Change (the IPCC). (author)

  16. Military Implications of Global Warming.

    Science.gov (United States)

    1999-05-20

    U.S. environmental issues also have important global implications. This paper analyzes current U.S. Policy as it pertains to global warming and climate...for military involvement to reduce global warming . Global warming and other environmental issues are important to the U.S. military. As the United

  17. Responses of lichen communities to 18 years of natural and experimental warming.

    Science.gov (United States)

    Alatalo, Juha M; Jägerbrand, Annika K; Chen, Shengbin; Molau, Ulf

    2017-07-01

    Climate change is expected to have major impacts on high alpine and arctic ecosystems in the future, but empirical data on the impact of long-term warming on lichen diversity and richness are sparse. This study report the effects of 18 years of ambient and experimental warming on lichens and vascular plant cover in two alpine plant communities, a dry heath with sparse canopy cover (54 %) and a mesic meadow with a more developed (67 %) canopy cover, in sub-arctic Sweden. The effects of long-term passive experimental warming using open top chambers (OTCs) on lichens and total vascular plant cover, and the impact of plant cover on lichen community parameters, were analysed. Between 1993 and 2013, mean annual temperature increased about 2 °C. Both site and experimental warming had a significant effect on cover, species richness, effective number of species evenness of lichens, and total plant canopy cover. Lichen cover increased in the heath under ambient conditions, and remained more stable under experimental warming. The negative effect on species richness and effective number of species was driven by a decrease in lichens under experimental warming in the meadow. Lichen cover, species richness, effective number of species evenness were negatively correlated with plant canopy cover. There was a significant negative impact on one species and a non-significant tendency of lower abundance of the most common species in response to experimental warming. The results from the long-term warming study imply that arctic and high alpine lichen communities are likely to be negatively affected by climate change and an increase in plant canopy cover. Both biotic and abiotic factors are thus important for future impacts of climate change on lichens. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Sea Surface Temperatures in the Indo-Pacific Warm Pool During the Early Pliocene Warm Period

    Science.gov (United States)

    Dekens, P. S.; Ravelo, A. C.; Griffith, E. M.

    2010-12-01

    The Indo-Pacific warm pool (IPWP) plays an important role in both regional and global climate, but the response of this region to anthropogenic climate change is not well understood. While the early Pliocene is not a perfect analogue for anthropogenic climate change, it is the most recent time in Earth history when global temperatures were warmer than they are today for a sustained period of time. SST in the eastern equatorial Pacific was 2-4○C warmer in the early Pliocene compared to today. A Mg/Ca SST at ODP site 806 in the western equatorial Pacific indicates that SST were stable through the last 5Ma (Wara et al., 2005). We generated a G. sacculifer Mg/Ca record in the Indian Ocean (ODP sit 758) for the last 5 Ma, which also shows that IPWP SST has remained relatively stable through the last 5 Ma and was not warmer in the early Pliocene compared today. A recent paper suggests that the Mg/Ca of seawater may have varied through the last 5 Ma and significantly affected Mg/Ca SST estimates (Medina-Elizalde et al., 2008). However, there is considerable uncertainty in the estimates of seawater Mg/Ca variations through time. We will present a detailed examination of these uncertainties to examine the possible range of seawater Mg/Ca through the last 5 Ma. Due to the lack of culturing work of foraminifera at different Mg/Ca ratios in the growth water there is also uncertainty in how changes in seawater Mg/Ca will affect the temperatures signal in the proxy. We will explore how uncertainties in the record of seawater Mg/Ca variations through time and its effect on the Mg/Ca SST proxy potentially influence the interpretation of the Mg/Ca SST records at ODP sites 806 and 758 in the IPWP, and ODP site 847 in the eastern equatorial Pacific. We will also explore how adjustment of the Mg/Ca SST estimates (due to reconstructed Mg/Ca seawater variations) affects the δ18O of water when adjusted Mg/Ca SST estimates are paired with δ18O measurements of the same samples.

  19. Warm measurements of CBA superconducting magnets

    International Nuclear Information System (INIS)

    Engelmann, R.; Herrera, J.; Kahn, S.; Kirk, H.; Willen, E.; Yamin, P.

    1983-01-01

    We present results on magnetic field measurements of CBA dipole magnets in the warm (normal conductor) and cryogenic (superconducting) states. We apply two methods for the warm measurements, a dc and ac method. We find a good correlation between warm and cryogenic measurements which lends itself to a reliable diagnosis of magnet field errors using warm measurements early in the magnet assembly process. We further find good agreement between the two warm measurement methods, both done at low currents

  20. Different ecophysiological responses of freshwater fish to warming and acidification.

    Science.gov (United States)

    Jesus, Tiago F; Rosa, Inês C; Repolho, Tiago; Lopes, Ana R; Pimentel, Marta S; Almeida-Val, Vera M F; Coelho, Maria M; Rosa, Rui

    2018-02-01

    Future climate change scenarios predict threatening outcomes to biodiversity. Available empirical data concerning biological response of freshwater fish to climate change remains scarce. In this study, we investigated the physiological and biochemical responses of two Iberian freshwater fish species (Squalius carolitertii and the endangered S. torgalensis), inhabiting different climatic conditions, to projected future scenarios of warming (+3°C) and acidification (ΔpH=-0.4). Herein, metabolic enzyme activities of glycolytic (citrate synthase - CS, lactate dehydrogenase - LDH) and antioxidant (glutathione S-transferase, catalase and superoxide dismutase) pathways, as well as the heat shock response (HSR) and lipid peroxidation were determined. Our results show that, under current water pH, warming causes differential interspecific changes on LDH activity, increasing and decreasing its activity in S. carolitertii and in S. torgalensis, respectively. Furthermore, the synergistic effect of warming and acidification caused an increase in LDH activity of S. torgalensis, comparing with the warming condition. As for CS activity, acidification significantly decreased its activity in S. carolitertii whereas in S. torgalensis no significant effect was observed. These results suggest that S. carolitertii is more vulnerable to climate change, possibly as the result of its evolutionary acclimatization to milder climatic condition, while S. torgalensis evolved in the warmer Mediterranean climate. However, significant changes in HSR were observed under the combined warming and acidification (S. carolitertii) or under acidification (S. torgalensis). Our results underlie the importance of conducting experimental studies and address species endpoint responses under projected climate change scenarios to improve conservation strategies, and to safeguard endangered freshwater fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Recent warming trend in the coastal region of Qatar

    Science.gov (United States)

    Cheng, Way Lee; Saleem, Ayman; Sadr, Reza

    2017-04-01

    The objective of this study was to analyze long-term temperature-related phenomena in the eastern portion of the Middle East, focusing on the coastal region of Qatar. Extreme temperature indices were examined, which were defined by the Expert Team on Climate Change Detection and Indices, for Doha, Qatar; these indices were then compared with those from neighboring countries. The trends were calculated for a 30-year period (1983-2012), using hourly data obtained from the National Climatic Data Center. The results showed spatially consistent warming trends throughout the region. For Doha, 11 of the 12 indices studied showed significant warming trends. In particular, the warming trends were represented by an increase in the number of warm days and nights and a decrease in the number of cool nights and days. The high-temperature extremes during the night have risen at more than twice the rate of their corresponding daytime extremes. The intensity and frequency of hot days have increased, and the minimum temperature indices exhibited a higher rate of warming. The climatic changes in Doha are consistent with the region-wide heat-up in recent decades across the Middle East. However, the rapid economic expansion, increase of population since the 1990s, and urban effects in the region are thought to have intensified the rapidly warming climate pattern observed in Doha since the turn of the century.

  2. An assessment of global warming stress on Caribbean coral reef ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, D.K.; Hendec, J.C.; Mendez, A. (NOAA, Miami, FL (USA). Atlantic Oceanography and Meteorology Laboratory)

    1992-07-01

    There is evidence that stress on coral reef ecosystems in the Caribbean region is increasing. Recently numerous authors have stated that the major stress results from 'abnormally high' seasonal sea surface temperatures (SST) and have implicated global warming as a cause, stating that recent episodes of coral bleaching result therefrom. However, an analysis of available SST data sets shows no discernible warming trend that could cause an increase in coral bleaching. Given the lack of long-term records synoptic with observations of coral ecosystem health, there is insufficient evidence available to label temperatures observed in coincidence with recent regional bleaching events as 'abnormally' high.

  3. An assessment of global warming stress on Caribbean coral reef ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, D K; Hendec, J C; Mendez, A [NOAA, Miami, FL (USA). Atlantic Oceanography and Meteorology Laboratory

    1992-07-01

    There is evidence that stress on coral reef ecosystems in the Caribbean region is increasing. Recently numerous authors have stated that the major stress results from 'abnormally high' seasonal sea surface temperatures (SST) and have implicated global warming as a cause, stating that recent episodes of coral bleaching result therefrom. However, an analysis of available SST data sets shows no discernible warming trend that could cause an increase in coral bleaching. Given the lack of long-term records synoptic with observations of coral ecosystem health, there is insufficient evidence available to label temperatures observed in coincidence with recent regional bleaching events as 'abnormally' high.

  4. Comparison of Effects Produced by Physiological Versus Traditional Vocal Warm-up in Contemporary Commercial Music Singers.

    Science.gov (United States)

    Portillo, María Priscilla; Rojas, Sandra; Guzman, Marco; Quezada, Camilo

    2018-03-01

    The present study aimed to observe whether physiological warm-up and traditional singing warm-up differently affect aerodynamic, electroglottographic, acoustic, and self-perceived parameters of voice in Contemporary Commercial Music singers. Thirty subjects were asked to perform a 15-minute session of vocal warm-up. They were randomly assigned to one of two types of vocal warm-up: physiological (based on semi-occluded exercises) or traditional (singing warm-up based on open vowel [a:]). Aerodynamic, electroglottographic, acoustic, and self-perceived voice quality assessments were carried out before (pre) and after (post) warm-up. No significant differences were found when comparing both types of vocal warm-up methods, either in subjective or in objective measures. Furthermore, the main positive effect observed in both groups when comparing pre and post conditions was a better self-reported quality of voice. Additionally, significant differences were observed for sound pressure level (decrease), glottal airflow (increase), and aerodynamic efficiency (decrease) in the traditional warm-up group. Both traditional and physiological warm-ups produce favorable voice sensations. Moreover, there are no evident differences in aerodynamic and electroglottographic variables when comparing both types of vocal warm-ups. Some changes after traditional warm-up (decreased intensity, increased airflow, and decreased aerodynamic efficiency) could imply an early stage of vocal fatigue. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  5. The effects of global warming on allergic diseases.

    Science.gov (United States)

    Chan, A W; Hon, K L; Leung, T F; Ho, M H; Rosa Duque, J S; Lee, T H

    2018-05-29

    Global warming is a public health emergency. Substantial scientific evidence indicates an unequivocal rising trend in global surface temperature that has caused higher atmospheric levels of moisture retention leading to more frequent extreme weather conditions, shrinking ice volume, and gradually rising sea levels. The concomitant rise in the prevalence of allergic diseases is closely related to these environmental changes because warm and moist environments favour the proliferation of common allergens such as pollens, dust mites, molds, and fungi. Global warming also stresses ecosystems, further accelerating critical biodiversity loss. Excessive carbon dioxide, together with the warming of seawater, promotes ocean acidification and oxygen depletion. This results in a progressive decline of phytoplankton and fish growth that in turn promotes the formation of larger oceanic dead zones, disrupting the food chain and biodiversity. Poor environmental biodiversity and a reduction in the microbiome spectrum are risk factors for allergic diseases in human populations. While climate change and the existence of an allergy epidemic are closely linked according to robust international research, efforts to mitigate these have encountered strong resistance because of vested economic and political concerns in different countries. International collaboration to establish legally binding regulations should be mandatory for forest protection and energy saving. Lifestyle and behavioural changes should also be advocated at the individual level by focusing on low carbon living; avoiding food wastage; and implementing the 4Rs: reduce, reuse, recycle, and replace principles. These lifestyle measures are entirely consistent with the current recommendations for allergy prevention. Efforts to mitigate climate change, preserve biodiversity, and prevent chronic diseases are interdependent disciplines.

  6. Intra-operative warming with a forced-air warmer in preventing hypothermia after tourniquet deflation in elderly patients.

    Science.gov (United States)

    Kim, Y-S; Jeon, Y-S; Lee, J-A; Park, W-K; Koh, H-S; Joo, J-D; In, J-H; Seo, K-W

    2009-01-01

    This randomized, single-blind study aimed to explore the effects of intra-operative warming with a forced-air warmer in the prevention of hypothermia after tourniquet deflation in elderly patients undergoing unilateral total knee replacement arthroplasty under general anaesthesia. Patients were randomized to receive either intra-operative warming using a forced-air warmer with an upper body blanket (warming group; n = 12) or no intra-operative warming (nonwarming group; n = 12). Oesophageal temperature was measured as core body temperature. At 30 min following tourniquet inflation, the core body temperature started to increase in the warming group whereas it continued to drop in the non-warming group. This difference was statistically significant. The final core body temperature after tourniquet deflation was significantly higher in the warming group (mean +/- SD 36.1 +/- 0.2 degrees C) than in the non-warming group (35.4 +/- 0.3 degrees C). Intra-operative forced-air warming increased the core body temperature before tourniquet deflation and prevented subsequent hypothermia in elderly patients under general anaesthesia.

  7. Are Simulated and Observed Twentieth Century Tropical Pacific Sea Surface Temperature Trends Significant Relative to Internal Variability?

    Science.gov (United States)

    Coats, S.; Karnauskas, K. B.

    2017-10-01

    Historical trends in the tropical Pacific zonal sea surface temperature gradient (SST gradient) are analyzed herein using 41 climate models (83 simulations) and 5 observational data sets. A linear inverse model is trained on each simulation and observational data set to assess if trends in the SST gradient are significant relative to the stationary statistics of internal variability, as would suggest an important role for external forcings such as anthropogenic greenhouse gasses. None of the 83 simulations have a positive trend in the SST gradient, a strengthening of the climatological SST gradient with more warming in the western than eastern tropical Pacific, as large as the mean trend across the five observational data sets. If the observed trends are anthropogenically forced, this discrepancy suggests that state-of-the-art climate models are not capturing the observed response of the tropical Pacific to anthropogenic forcing, with serious implications for confidence in future climate projections. There are caveats to this interpretation, however, as some climate models have a significant strengthening of the SST gradient between 1900 and 2013 Common Era, though smaller in magnitude than the observational data sets, and the strengthening in three out of five observational data sets is insignificant. When combined with observational uncertainties and the possibility of centennial time scale internal variability not sampled by the linear inverse model, this suggests that confident validation of anthropogenic SST gradient trends in climate models will require further emergence of anthropogenic trends. Regardless, the differences in SST gradient trends between climate models and observational data sets are concerning and motivate the need for process-level validation of the atmosphere-ocean dynamics relevant to climate change in the tropical Pacific.

  8. Striking Seasonality in the Secular Warming of the Northern Continents: Structure and Mechanisms

    Science.gov (United States)

    Nigam, S.; Thomas, N. P.

    2017-12-01

    The linear trend in twentieth-century surface air temperature (SAT)—a key secular warming signal— exhibits striking seasonal variations over Northern Hemisphere continents; SAT trends are pronounced in winter and spring but notably weaker in summer and fall. The SAT trends in historical twentieth-century climate simulations informing the Intergovernmental Panel for Climate Change's Fifth Assessment show varied (and often unrealistic) strength and structure, and markedly weaker seasonal variation. The large intra-ensemble spread of winter SAT trends in some historical simulations was surprising, especially in the context of century-long linear trends, with implications for the detection of the secular warming signal. The striking seasonality of observed secular warming over northern continents warrants an explanation and the representation of related processes in climate models. Here, the seasonality of SAT trends over North America is shown to result from land surface-hydroclimate interactions and, to an extent, also from the secular change in low-level atmospheric circulation and related thermal advection. It is argued that the winter dormancy and summer vigor of the hydrologic cycle over middle- to high-latitude continents permit different responses to the additional incident radiative energy from increasing greenhouse gas concentrations. The seasonal cycle of climate, despite its monotony, provides an expanded phase space for the exposition of the dynamical and thermodynamical processes generating secular warming, and an exceptional cost-effective opportunity for benchmarking climate projection models.

  9. TOPEX/El Nino Watch - Warm Water Pool is Thinning, Feb, 5, 1998

    Science.gov (United States)

    1998-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Feb. 5, 1998 and sea surface height is an indicator of the heat content of the ocean. The area and volume of the El Nino warm water pool that is affecting global weather patterns remains extremely large, but the pool has thinned along the equator and near the coast of South America. This 'thinning' means that the warm water is not as deep as it was a few months ago. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition that they would expect to see during the ocean's gradual transition back to normal sea level. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather conditions that have impacted much of the United States and the world are expected to remain through

  10. The relationship of telluric currents to the corrosion of warm arctic pipelines

    International Nuclear Information System (INIS)

    Sackinger, W.M.

    1991-01-01

    Warm pipelines may be elevated above ice-rich permafrost, but buried in unfrozen ground or in ice-containing permafrost which is regarded as mechanically thaw-stable. In norther regions, the concentration of ionospheric electrical currents causes not only aurora borealis but also a time-variable magnetic field at the earth's surface, and the induction of electrical currents in the soil and in pipelines. This paper presents a model for electrical current flow in a typical warm pipeline segment, including both buried and elevated sections, soil resistances, corrosion protection sacrificial anodes, and regions of damaged pipeline coatings

  11. Effect of the tropical Pacific and Indian Ocean warming since the late 1970s on wintertime Northern Hemispheric atmospheric circulation and East Asian climate interdecadal changes

    Science.gov (United States)

    Chu, Cuijiao; Yang, Xiu-Qun; Sun, Xuguang; Yang, Dejian; Jiang, Yiquan; Feng, Tao; Liang, Jin

    2018-04-01

    Observation reveals that the tropical Pacific-Indian Ocean (TPIO) has experienced a pronounced interdecadal warming since the end of the 1970s. Meanwhile, the wintertime midlatitude Northern Hemispheric atmospheric circulation and East Asian climate have also undergone substantial interdecadal changes. The effect of the TPIO warming on these interdecadal changes are identified by a suite of AMIP-type atmospheric general circulation model experiments in which the model is integrated from September 1948 to December 1999 with prescribed historical, observed realistic sea surface temperature (SST) in a specific region and climatological SST elsewhere. Results show that the TPIO warming reproduces quite well the observed Northern Hemispheric wintertime interdecadal changes, suggesting that these interdecadal changes primarily originate from the TPIO warming. However, each sub-region of TPIO has its own distinct contribution. Comparatively, the tropical central-eastern Pacific (TCEP) and tropical western Pacific (TWP) warming makes dominant contributions to the observed positive-phase PNA-like interdecadal anomaly over the North Pacific sector, while the tropical Indian Ocean (TIO) warming tends to cancel these contributions. Meanwhile, the TIO and TWP warming makes dominant contributions to the observed positive NAO-like interdecadal anomaly over the North Atlantic sector as well as the interdecadal anomalies over the Eurasian sector, although the TWP warming's contribution is relatively small. These remote responses are directly attributed to the TPIO warming-induced tropical convection, rainfall and diabatic heating increases, in which the TIO warming has the most significant effect. Moreover, the TPIO warming excites a Gill-type pattern anomaly over the tropical western Pacific, with a low-level anticyclonic circulation anomaly over the Philippine Sea. Of three sub-regions, the TIO warming dominates such a pattern, although the TWP warming tends to cancel this effect

  12. Can biomass responses to warming at plant to ecosystem levels be predicted by leaf-level responses?

    Science.gov (United States)

    Xia, J.; Shao, J.; Zhou, X.; Yan, W.; Lu, M.

    2015-12-01

    Global warming has the profound impacts on terrestrial C processes from leaf to ecosystem scales, potentially feeding back to climate dynamics. Although numerous studies had investigated the effects of warming on C processes from leaf to plant and ecosystem levels, how leaf-level responses to warming scale up to biomass responses at plant, population, and community levels are largely unknown. In this study, we compiled a dataset from 468 papers at 300 experimental sites and synthesized the warming effects on leaf-level parameters, and plant, population and ecosystem biomass. Our results showed that responses of plant biomass to warming mainly resulted from the changed leaf area rather than the altered photosynthetic capacity. The response of ecosystem biomass to warming was weaker than those of leaf area and plant biomass. However, the scaling functions from responses of leaf area to plant biomass to warming were different in diverse forest types, but functions were similar in non-forested biomes. In addition, it is challenging to scale the biomass responses from plant up to ecosystem. These results indicated that leaf area might be the appropriate index for plant biomass response to warming, and the interspecific competition might hamper the scaling of the warming effects on plant and ecosystem levels, suggesting that the acclimation capacity of plant community should be incorporated into land surface models to improve the prediction of climate-C cycle feedback.

  13. On the impact of the resolution on the surface and subsurface Eastern Tropical Atlantic warm bias

    Science.gov (United States)

    Martín-Rey, Marta; Lazar, Alban

    2016-04-01

    The tropical variability has a great importance for the climate of adjacent areas. Its sea surface temperature anomalies (SSTA) affect in particular the Brazilian Nordeste and the Sahelian region, as well as the tropical Pacific or the Euro-Atlantic sector. Nevertheless, the state-of the art climate models exhibits very large systematic errors in reproducing the seasonal cycle and inter-annual variability in the equatorial and coastal Africa upwelling zones (up to several °C for SST). Theses biases exist already, in smaller proportions though, in forced ocean models (several 1/10th of °C), and affect not only the mixed layer but also the whole thermocline. Here, we present an analysis of the impact of horizontal and vertical resolution changes on these biases. Three different DRAKKAR NEMO OGCM simulations have been analysed, associated to the same forcing set (DFS4.4) with different grid resolutions: "REF" for reference (1/4°, 46 vertical levels), "HH" with a finer horizontal grid (1/12°, 46 v.l.) and "HV" with a finer vertical grid (1/4°, 75 v.l.). At the surface, a more realistic seasonal SST cycle is produced in HH in the three upwellings, where the warm bias decreases (by 10% - 20%) during boreal spring and summer. A notable result is that increasing vertical resolution in HV causes a shift (in advance) of the upwelling SST seasonal cycles. In order to better understand these results, we estimate the three upwelling subsurface temperature errors, using various in-situ datasets, and provide thus a three-dimensional view of the biases.

  14. The Effect of Urban Heat Island on Climate Warming in the Yangtze River Delta Urban Agglomeration in China

    Directory of Open Access Journals (Sweden)

    Qunfang Huang

    2015-07-01

    Full Text Available The Yangtze River Delta (YRD has experienced rapid urbanization and dramatic economic development since 1978 and the Yangtze River Delta urban agglomeration (YRDUA has been one of the three largest urban agglomerations in China. We present evidence of a significant urban heat island (UHI effect on climate warming based on an analysis of the impacts of the urbanization rate, urban population, and land use changes on the warming rate of the daily average, minimal (nighttime and maximal (daytime air temperature in the YRDUA using 41 meteorological stations observation data. The effect of the UHI on climate warming shows a large spatial variability. The average warming rates of average air temperature of huge cities, megalopolises, large cities, medium-sized cities, and small cities are 0.483, 0.314 ± 0.030, 0.282 ± 0.042, 0.225 ± 0.044 and 0.179 ± 0.046 °C/decade during the period of 1957–2013, respectively. The average warming rates of huge cities and megalopolises are significantly higher than those of medium-sized cities and small cities, indicating that the UHI has a significant effect on climate warming (t-test, p < 0.05. Significantly positive correlations are found between the urbanization rate, population, built-up area and warming rate of average air temperature (p < 0.001. The average warming rate of average air temperature attributable to urbanization is 0.124 ± 0.074 °C/decade in the YRDUA. Urbanization has a measurable effect on the observed climate warming in the YRD aggravating the global climate warming.

  15. G-warm inflation

    Science.gov (United States)

    Herrera, Ramón

    2017-05-01

    A warm inflationary universe in the context of Galileon model or G-model is studied. Under a general formalism we study the inflationary dynamics and the cosmological perturbations considering a coupling of the form G(phi,X)=g(phi) X. As a concrete example, we consider an exponential potential together with the cases in which the dissipation and Galilean coefficients are constants. Also, we study the weak regime given by the condition RR+3gHdot phi. Additionally, we obtain constraints on the parameters during the evolution of G-warm inflation, assuming the condition for warm inflation in which the temperature T>H, the conditions or the weak and strong regimes, together with the consistency relation r=r(ns) from Planck data.

  16. Impact and prevention on global warming

    International Nuclear Information System (INIS)

    Park, Heon Ryeol

    2003-11-01

    This book deals with impact and prevention on global warming with eight chapters, which introduce the change after the earth was born and natural environment, how is global atmospheric environment under the control of radiant energy? What does global warming look with the earth history like? What's the status of global warming so far? How does climate change happen? What is the impact by global warming and climate change and for preservation of global environment of 21 century with consumption of energy, measure and prospect on global warming. It has reference, index and three appendixes.

  17. Comparison of resistive heating and forced-air warming to prevent inadvertent perioperative hypothermia.

    Science.gov (United States)

    John, M; Crook, D; Dasari, K; Eljelani, F; El-Haboby, A; Harper, C M

    2016-02-01

    Forced-air warming is a commonly used warming modality, which has been shown to reduce the incidence of inadvertent perioperative hypothermia (heating mattresses offer a potentially cheaper alternative, however, and one of the research recommendations from the National Institute for Health and Care Excellence was to evaluate such devices formally. We conducted a randomized single-blinded study comparing perioperative hypothermia in patients receiving resistive heating or forced-air warming. A total of 160 patients undergoing non-emergency surgery were recruited and randomly allocated to receive either forced-air warming (n=78) or resistive heating (n=82) in the perioperative period. Patient core temperatures were monitored after induction of anaesthesia until the end of surgery and in the recovery room. Our primary outcome measures included the final intraoperative temperature and incidence of hypothermia at the end of surgery. There was a significantly higher rate of hypothermia at the end of surgery in the resistive heating group compared with the forced-air warming group (P=0.017). Final intraoperative temperatures were also significantly lower in the resistive heating group (35.9 compared with 36.1°C, P=0.029). Hypothermia at the end of surgery in both warming groups was common (36% forced air warming, 54% resistive heating). Our results suggest that forced-air warming is more effective than resistive heating in preventing postoperative hypothermia. NCT01056991. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. INTERACTIONS BETWEEN OCEAN ACIDIFICATION AND WARMING ON THE MORTALITY AND DISSOLUTION OF CORALLINE ALGAE(1).

    Science.gov (United States)

    Diaz-Pulido, Guillermo; Anthony, Kenneth R N; Kline, David I; Dove, Sophie; Hoegh-Guldberg, Ove

    2012-02-01

    Coralline algae are among the most sensitive calcifying organisms to ocean acidification as a result of increased atmospheric carbon dioxide (pCO2 ). Little is known, however, about the combined impacts of increased pCO2 , ocean acidification, and sea surface temperature on tissue mortality and skeletal dissolution of coralline algae. To address this issue, we conducted factorial manipulative experiments of elevated CO2 and temperature and examined the consequences on tissue survival and skeletal dissolution of the crustose coralline alga (CCA) Porolithon (=Hydrolithon) onkodes (Heydr.) Foslie (Corallinaceae, Rhodophyta) on the southern Great Barrier Reef (GBR), Australia. We observed that warming amplified the negative effects of high pCO2 on the health of the algae: rates of advanced partial mortality of CCA increased from warming conditions (from 26°C to 29°C). Furthermore, the effect of pCO2 on skeletal dissolution strongly depended on temperature. Dissolution of P. onkodes only occurred in the high-pCO2 treatment and was greater in the warm treatment. Enhanced skeletal dissolution was also associated with a significant increase in the abundance of endolithic algae. Our results demonstrate that P. onkodes is particularly sensitive to ocean acidification under warm conditions, suggesting that previous experiments focused on ocean acidification alone have underestimated the impact of future conditions on coralline algae. Given the central role that coralline algae play within coral reefs, these conclusions have serious ramifications for the integrity of coral-reef ecosystems. © 2011 Phycological Society of America.

  19. Long range global warming

    International Nuclear Information System (INIS)

    Rolle, K.C.; Pulkrabek, W.W.; Fiedler, R.A.

    1995-01-01

    This paper explores one of the causes of global warming that is often overlooked, the direct heating of the environment by engineering systems. Most research and studies of global warming concentrate on the modification that is occurring to atmospheric air as a result of pollution gases being added by various systems; i.e., refrigerants, nitrogen oxides, ozone, hydrocarbons, halon, and others. This modification affects the thermal radiation balance between earth, sun and space, resulting in a decrease of radiation outflow and a slow rise in the earth's steady state temperature. For this reason the solution to the problem is perceived as one of cleaning up the processes and effluents that are discharged into the environment. In this paper arguments are presented that suggest, that there is a far more serious cause for global warming that will manifest itself in the next two or three centuries; direct heating from the exponential growth of energy usage by humankind. Because this is a minor contributor to the global warming problem at present, it is overlooked or ignored. Energy use from the combustion of fuels and from the output of nuclear reactions eventually is manifest as warming of the surroundings. Thus, as energy is used at an ever increasing rate the consequent global warming also increases at an ever increasing rate. Eventually this rate will become equal to a few percent of solar radiation. When this happens the earth's temperature will have risen by several degrees with catastrophic results. The trends in world energy use are reviewed and some mathematical models are presented to suggest future scenarios. These models can be used to predict when the global warming problem will become undeniably apparent, when it will become critical, and when it will become catastrophic

  20. Global warming on trial

    International Nuclear Information System (INIS)

    Broeker, W.S.

    1992-01-01

    Jim Hansen, a climatologist at NASA's Goddard Space Institute, is convinced that the earth's temperature is rising and places the blame on the buildup of greenhouse gases in the atmosphere. Unconvinced, John Sununu, former White House chief of staff, doubts that the warming will be great enough to produce serious threat and fears that measures to reduce the emissions would throw a wrench into the gears that drive the Unites States' troubled economy. During his three years at the White House, Sununu's view prevailed, and although his role in the debate has diminished, others continue to cast doubt on the reality of global warming. A new lobbying group called the Climate Council has been created to do just this. Burning fossil fuels is not the only problem; a fifth of emissions of carbon dioxide now come from clearing and burning forests. Scientists are also tracking a host of other greenhouse gases that emanate from a variety of human activities; the warming effect of methane, chlorofluorocarbons and nitrous oxide combined equals that of carbon dioxide. Although the current warming from these gases may be difficult to detect against the background noise of natural climate variation, most climatologists are certain that as the gases continue to accumulate, increases in the earth's temperature will become evident even to skeptics. If the reality of global warming were put on trial, each side would have trouble making its case. Jim Hansen's side could not prove beyond a reasonable doubt that carbon dioxide and other greenhouse gases have warmed the planet. But neither could John Sununu's side prove beyond a reasonable doubt that the warming expected from greenhouse gases has not occurred. To see why each side would have difficulty proving its case, this article reviews the arguments that might be presented in such a hearing

  1. Effect of active warm-up duration on morning short-term maximal performance during Ramadan.

    Science.gov (United States)

    Baklouti, Hana; Chtourou, Hamdi; Aloui, Asma; Chaouachi, Anis; Souissi, Nizar

    2015-01-01

    To examine the effect of active warm-up duration on short-term maximal performance assessed during Ramadan in the morning. Twelve healthy active men performed four Wingate tests for measurement of peak power and mean power before and during Ramadan at 09:00 a.m. The tests were performed on separate days, after either a 5-min or a 15-min warm-up. The warm-up consisted in pedaling at 50% of the power output obtained at the last stage of a submaximal multistage cycling test. Oral temperature was measured at rest and after warming-up. Furthermore, ratings of perceived exertion were obtained immediately after the Wingate test. Oral temperature was higher after the 15-min warm-up than the 5-min warm-up throughout the study. Moreover, peak power and mean power were higher after the 15-min warm-up than the 5-min warm-up before Ramadan. However, during Ramadan, there was no significant difference between the two warm-up durations. In addition, ratings of perceived exertion were higher after the 15-min warm-up than the 5-min warm-up only during Ramadan. There is no need to prolong the warm-up period before short-term maximal exercise performed during Ramadan in the morning.

  2. Warm-up and performance in competitive swimming.

    Science.gov (United States)

    Neiva, Henrique P; Marques, Mário C; Barbosa, Tiago M; Izquierdo, Mikel; Marinho, Daniel A

    2014-03-01

    Warm-up before physical activity is commonly accepted to be fundamental, and any priming practices are usually thought to optimize performance. However, specifically in swimming, studies on the effects of warm-up are scarce, which may be due to the swimming pool environment, which has a high temperature and humidity, and to the complexity of warm-up procedures. The purpose of this study is to review and summarize the different studies on how warming up affects swimming performance, and to develop recommendations for improving the efficiency of warm-up before competition. Most of the main proposed effects of warm-up, such as elevated core and muscular temperatures, increased blood flow and oxygen delivery to muscle cells and higher efficiency of muscle contractions, support the hypothesis that warm-up enhances performance. However, while many researchers have reported improvements in performance after warm-up, others have found no benefits to warm-up. This lack of consensus emphasizes the need to evaluate the real effects of warm-up and optimize its design. Little is known about the effectiveness of warm-up in competitive swimming, and the variety of warm-up methods and swimming events studied makes it difficult to compare the published conclusions about the role of warm-up in swimming. Recent findings have shown that warm-up has a positive effect on the swimmer's performance, especially for distances greater than 200 m. We recommend that swimmers warm-up for a relatively moderate distance (between 1,000 and 1,500 m) with a proper intensity (a brief approach to race pace velocity) and recovery time sufficient to prevent the early onset of fatigue and to allow the restoration of energy reserves (8-20 min).

  3. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming.

    Science.gov (United States)

    Thirumalai, Kaustubh; DiNezio, Pedro N; Okumura, Yuko; Deser, Clara

    2017-06-06

    In April 2016, southeast Asia experienced surface air temperatures (SATs) that surpassed national records, exacerbated energy consumption, disrupted agriculture and caused severe human discomfort. Here we show using observations and an ensemble of global warming simulations the combined impact of the El Niño/Southern Oscillation (ENSO) phenomenon and long-term warming on regional SAT extremes. We find a robust relationship between ENSO and southeast Asian SATs wherein virtually all April extremes occur during El Niño years. We then quantify the relative contributions of long-term warming and the 2015-16 El Niño to the extreme April 2016 SATs. The results indicate that global warming increases the likelihood of record-breaking April extremes where we estimate that 29% of the 2016 anomaly was caused by warming and 49% by El Niño. These post-Niño Aprils can potentially be anticipated a few months in advance, and thus, help societies prepare for the projected continued increases in extremes.

  4. Atmospheric summer teleconnections and Greenland Ice Sheet surface mass variations: insights from MERRA-2

    International Nuclear Information System (INIS)

    Lim, Young-Kwon; Schubert, Siegfried D; Molod, Andrea M; Cullather, Richard I; Zhao, Bin; Nowicki, Sophie M J; Lee, Jae N; Velicogna, Isabella

    2016-01-01

    The relationship between leading atmospheric teleconnection patterns and Greenland Ice Sheet (GrIS) temperature, precipitation, and surface mass balance (SMB) are investigated for the last 36 summers (1979–2014) based on Modern-Era Retrospective analysis for Research and Applications version 2 reanalyses. The results indicate that the negative phase of both the North Atlantic Oscillation (NAO) and Arctic Oscillation, associated with warm and dry conditions for the GrIS, lead to SMB decreases within 0–1 months. Furthermore, the positive phase of the East Atlantic (EA) pattern often lags the negative NAO, reflecting a dynamical linkage between these modes that acts to further enhance the warm and dry conditions over the GrIS, leading to a favorable environment for enhanced surface mass loss. The development of a strong negative NAO in combination with a strong positive EA in recent years leads to significantly larger GrIS warming compared to when the negative NAO occurs in combination with a negative or weak positive EA (0.69 K versus 0.13 K anomaly). During 2009 and 2011, weakened (as compared to conditions during the severe surface melt cases of 2010 and 2012) local high pressure blocking produced colder northerly flow over the GrIS inhibiting warming despite the occurrence of a strong negative NAO, reflecting an important role for the EA during those years. In particular, the EA acts with the NAO to enhance warming in 2010 and 2012, and weaken high pressure blocking in 2009 and 2011. In general, high pressure blocking primarily impacts the western areas of the GrIS via advective temperature increases, while changes in net surface radiative fluxes account for both western and eastern GrIS temperature changes. (letter)

  5. Establishing native warm season grasses on Eastern Kentucky strip mines

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Forestry

    1998-12-31

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat.

  6. Establishing native warm season grasses on Eastern Kentucky strip mines

    International Nuclear Information System (INIS)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B.

    1998-01-01

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat

  7. Evaluation of surface air temperature trend and climate change in the north - east of I. R. of Iran

    International Nuclear Information System (INIS)

    Alireza, Shahabfar

    2004-01-01

    In this paper maximum, minimum and mean surface air temperature recorded, analysed to reveal spatial and temporal patterns of long-term trends, change points, significant warming (cooling) periods and linear trend per decade. According to this research summer minimum temperatures have generally increased at a larger rate than in spring and autumn minimum temperatures. On the other hand, nighttime warming rates of spring and summer are generally stronger than those that exist in spring and summer daytime temperatures. Considering the significant increasing trends in annual, spring and summer temperatures, it is seen that night-time warming rates are stronger in the northern regions, which are characterized by the Khorasan Province macro climate type: a very hot summer, a relatively hot and late spring and early autumn, and a moderate winter. We have seriously considered the strong warming trends in spring and summer and thus likely in annual minimum air temperatures. It is very likely that significant and very rapid night-time warming trends over much of the province can be related to the widespread, rapid and increased urbanization in Khorasan Province, in addition to long-term and global effects of the human-induced climate change on air temperatures. (Author)

  8. What if mankind warms the earth

    International Nuclear Information System (INIS)

    Kellogg, W.W.

    1977-01-01

    There are a variety of human activities that are being pursued on such a large scale that they may influence regional and global climate. Virtually all of these activities, including the addition of carbon dioxide and particles to the atmosphere, are expected on theoretical grounds to cause an increase in mean surface temperature in the decades ahead, and by 2000 AD the total warming effect will probably be larger than any of the natural climate fluctuations during the past 1,000 years or more. It is therefore pertinent ot inquire what a warmer earth might be like; and to obtain a first rough answer we turn to our mathematical models of the atmosphere, and also to the conditions that have been deduced for the period about 4,000 to 8,000 years ago when the earth was apparently several degress warmer the now. Atan now. At that time some areas that are now subtropical deserts received more rainfall, and there were other areas in the middle latitudes that were drier. There are several important implications for society if mankind does succeed in warming the earth - and a number of still unanswered questions as well. (orig.) [de

  9. Experimental winter warming modifies thermal performance and primes acorn ants for warm weather

    DEFF Research Database (Denmark)

    MacLean, Heidi J.; Penick, Clint A.; Dunn, Robert R.

    2017-01-01

    The frequency of warm winter days is increasing under global climate change, but how organisms respond to warmer winters is not well understood. Most studies focus on growing season responses to warming. Locomotor performance is often highly sensitive to temperature, and can determine fitness...... outcomes through a variety of mechanisms including resource acquisition and predator escape. As a consequence, locomotor performance, and its impacts on fitness, may be strongly affected by winter warming in winter-active species. Here we use the acorn ant, Temnothorax curvispinosus, to explore how thermal...... performance (temperature-driven plasticity) in running speed is influenced by experimental winter warming of 3–5 °C above ambient in a field setting. We used running speed as a measure of performance as it is a common locomotor trait that influences acquisition of nest sites and food in acorn ants...

  10. Can warming particles enter global climate discussions?

    International Nuclear Information System (INIS)

    Bond, Tami C

    2007-01-01

    'Soot' or 'black carbon', which comes from incomplete combustion, absorbs light and warms the atmosphere. Although there have been repeated suggestions that reduction of black carbon could be a viable part of decreasing global warming, it has not yet been considered when choosing actions to reduce climatic impact. In this paper, I examine four conceptual barriers to the consideration of aerosols in global agreements. I conclude that some of the major objections to considering aerosols under hemispheric or global agreements are illusory because: (1) a few major sources will be addressed by local regulations, but the remainder may not be addressed by traditional air quality management; (2) climate forcing by carbon particles is not limited to 'hot spots'-about 90% of it occurs at relatively low concentrations; (3) while aerosol science is complex, the most salient characteristics of aerosol behavior can be condensed into tractable metrics including, but not limited to, the global warming potential; (4) despite scientific uncertainties, reducing all aerosols from major sources of black carbon will reduce direct climate warming with a very high probability. This change in climate forcing accounts for at least 25% of the accompanying CO 2 forcing with significant probability (25% for modern diesel engines, 90% for superemitting diesels, and 55% for cooking with biofuels). Thus, this fraction of radiative forcing should not be ignored

  11. The acoustic and perceptual differences to the non-singer's singing voice before and after a singing vocal warm-up

    Science.gov (United States)

    DeRosa, Angela

    The present study analyzed the acoustic and perceptual differences in non-singer's singing voice before and after a vocal warm-up. Experiments were conducted with 12 females who had no singing experience and considered themselves to be non-singers. Participants were recorded performing 3 tasks: a musical scale stretching to their most comfortable high and low pitches, sustained productions of the vowels /a/ and /i/, and singing performance of the "Star Spangled Banner." Participants were recorded performing these three tasks before a vocal warm-up, after a vocal warm-up, and then again 2-3 weeks later after 2-3 weeks of practice. Acoustical analysis consisted of formant frequency analysis, singer's formant/singing power ratio analysis, maximum phonation frequency range analysis, and an analysis of jitter, noise to harmonic ratio (NHR), relative average perturbation (RAP), and voice turbulence index (VTI). A perceptual analysis was also conducted with 12 listeners rating comparison performances of before vs. after the vocal warm-up, before vs. after the second vocal warm-up, and after both vocal warm-ups. There were no significant findings for the formant frequency analysis of the vowel /a/, but there was significance for the 1st formant frequency analysis of the vowel /i/. Singer's formant analyzed via Singing Power Ratio analysis showed significance only for the vowel /i/. Maximum phonation frequency range analysis showed a significant increase after the vocal warm-ups. There were no significant findings for the acoustic measures of jitter, NHR, RAP, and VTI. Perceptual analysis showed a significant difference after a vocal warm-up. The results indicate that a singing vocal warm-up can have a significant positive influence on the singing voice of non-singers.

  12. An accurate analytical solution of a zero-dimensional greenhouse model for global warming

    International Nuclear Information System (INIS)

    Foong, S K

    2006-01-01

    In introducing the complex subject of global warming, books and papers usually use the zero-dimensional greenhouse model. When the ratio of the infrared radiation energy of the Earth's surface that is lost to outer space to the non-reflected average solar radiation energy is small, the model admits an accurate approximate analytical solution-the resulting energy balance equation of the model is a quartic equation that can be solved analytically-and thus provides an alternative solution and instructional strategy. A search through the literature fails to find an analytical solution, suggesting that the solution may be new. In this paper, we review the model, derive the approximation and obtain its solution. The dependence of the temperature of the surface of the Earth and the temperature of the atmosphere on seven parameters is made explicit. A simple and convenient formula for global warming (or cooling) in terms of the percentage change of the parameters is derived. The dependence of the surface temperature on the parameters is illustrated by several representative graphs

  13. Non-climatic thermal adaptation: implications for species' responses to climate warming.

    Science.gov (United States)

    Marshall, David J; McQuaid, Christopher D; Williams, Gray A

    2010-10-23

    There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky-eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail's body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail's upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models.

  14. A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Sedlar, Joseph; Tjernstroem, Michael; Leck, Caroline [Stockholm University, Department of Meteorology, Stockholm (Sweden); Mauritsen, Thorsten [Max-Planck-Institute for Meteorology, Hamburg (Germany); Shupe, Matthew D.; Persson, P.O.G. [University of Colorado, NOAA-ESRL-PSD, Boulder, CO (United States); Brooks, Ian M.; Birch, Cathryn E. [University of Leeds, School of Earth and Environment, Leeds (United Kingdom); Sirevaag, Anders [University of Bergen, Bjerknes Center for Climate Research, Bergen (Norway); Nicolaus, Marcel [Norwegian Polar Institute, Tromsoe (Norway); Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany)

    2011-10-15

    Snow surface and sea-ice energy budgets were measured near 87.5 N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to -7 C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between -50 W m{sup -2} and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m{sup -2}, except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area. (orig.)

  15. Warmed local anesthetic reduces pain of infiltration.

    Science.gov (United States)

    Fialkov, J A; McDougall, E P

    1996-01-01

    The effect of warming local anesthetic on the amount of pain experienced during local infiltration was tested by comparing equal volumes of 40 degrees C- and 21 degrees C-infiltrates in each of 26 subjects. Six subjects were patients undergoing excision of two benign asymptomatic nevi in separate locations, and 20 subjects were healthy adult volunteers who were injected in bilateral antebrachial sites. The warmed and room temperature solutions were randomized to each side, so that each subject received both temperature injections in random order. All subjects and the injector were blinded. The rate of injection was time-controlled (0.05 ml/sec). Following both injections, subjects were asked to rate the pain experienced at each site. In addition, the subject was asked if there was no difference, a slight difference, or a substantial difference between the two sites. A two-tailed paired t-test was used to analyze the mean difference in pain scores for all subjects. Paired analysis of the pain scores for each subject eliminated intersubject variance of pain tolerance. The mean difference in pain score between the room temperature and warmed solutions was +1.5 (p < 0.0001). Of the 21 subjects (81%) who found the warmed solution less painful, 11 (52%) found the difference to be significant, while 10 (48%) found the difference to be slight. Two subjects (8%) found no difference between the two, while 3 subjects (11%) found the colder solution slightly less painful. We conclude that warming local anesthetic to 40 degrees C prior to subcutaneous injection is a simple, inexpensive means of reducing the pain of local infiltration.

  16. Modeling studies of the Indo-Pacific warm pool

    International Nuclear Information System (INIS)

    Barnett, T.P.; Schneider N.; Tyree, M.; Ritchie, J.; Ramanathan, V.; Sherwood, S.; Zhang, G.; Flatau, M.

    1994-01-01

    A wide variety of modeling studies are being conducted, aimed at understanding the interactions of clouds, radiation, and the ocean in the region of the Indo-Pacific warm pool, the flywheel of the global climate system. These studies are designed to understand the important physical processes operating in the ocean and atmosphere in the region. A stand alone Atmospheric GCM, forced by observed sea surface temperature, has been used for several purposes. One study with the AGCM shows the high sensitivity of the tropical circulation to variations in mid- to high-level clouds. A stand-alone ocean general circulation model (OGCM) is being used to study the relative role of shortwave radiation changes in the buoyancy flux forcing of the upper ocean. Complete studies of the warm pool can only be conducted with a full coupled ocean/atmosphere model. The latest version of the Hamburg CGCM produces realistic simulations of the ocean/atmosphere system in the Indo-Pacific without use of a flux correction scheme

  17. Increased Ocean Heat Convergence Into the High Latitudes With CO 2 Doubling Enhances Polar-Amplified Warming: OCEAN HEAT AND POLAR WARMING

    Energy Technology Data Exchange (ETDEWEB)

    Singh, H. A. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, U.S. DOE Office of Science, Richland WA USA; Rasch, P. J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, U.S. DOE Office of Science, Richland WA USA; Rose, B. E. J. [Department of Atmospheric and Environmental Sciences, State University of New York at Albany, Albany NY USA

    2017-10-18

    We isolate the role of the ocean in polar climate change by directly evaluating how changes in ocean dynamics with quasi-equilibrium CO2-doubling impact high-latitude climate. With CO2-doubling, the ocean heat flux convergence (OHFC) shifts poleward in winter in both hemispheres. Imposing this pattern of perturbed OHFC in a global climate model results in a poleward shift in ocean-to-atmosphere turbulent heat fluxes (both sensible and latent) and sea ice retreat; the high-latitudes warm while the midlatitudes cool, thereby amplifying polar warming. Furthermore, midlatitude cooling is propagated to the polar mid-troposphere on isentropic surfaces, augmenting the (positive) lapse rate feedback at high latitudes. These results highlight the key role played by the partitioning of meridional energy transport changes between the atmosphere and ocean in high-latitude climate change.

  18. Global warming and economic growth

    International Nuclear Information System (INIS)

    Gonand, Frederic

    2015-01-01

    The macro-economic impacts of climate change and of policies to reduce carbon content should be moderate on a global basis for the planet - a few hundredths of a % of world GDP on an annual basis, but significant for some regions (Asia-Pacific notably). The probability of extreme climatic events justifies with effect from today the implementation of measures that will carry a cost in order to limit global warming. (author)

  19. Global warming and obesity: a systematic review.

    Science.gov (United States)

    An, R; Ji, M; Zhang, S

    2018-02-01

    Global warming and the obesity epidemic are two unprecedented challenges mankind faces today. A literature search was conducted in the PubMed, Web of Science, EBSCO and Scopus for articles published until July 2017 that reported findings on the relationship between global warming and the obesity epidemic. Fifty studies were identified. Topic-wise, articles were classified into four relationships - global warming and the obesity epidemic are correlated because of common drivers (n = 21); global warming influences the obesity epidemic (n = 13); the obesity epidemic influences global warming (n = 13); and global warming and the obesity epidemic influence each other (n = 3). We constructed a conceptual model linking global warming and the obesity epidemic - the fossil fuel economy, population growth and industrialization impact land use and urbanization, motorized transportation and agricultural productivity and consequently influences global warming by excess greenhouse gas emission and the obesity epidemic by nutrition transition and physical inactivity; global warming also directly impacts obesity by food supply/price shock and adaptive thermogenesis, and the obesity epidemic impacts global warming by the elevated energy consumption. Policies that endorse deployment of clean and sustainable energy sources, and urban designs that promote active lifestyles, are likely to alleviate the societal burden of global warming and obesity. © 2017 World Obesity Federation.

  20. Uncertain impacts on economic growth when stabilizing global temperatures at 1.5°C or 2°C warming

    Science.gov (United States)

    Pretis, Felix; Schwarz, Moritz; Tang, Kevin; Haustein, Karsten; Allen, Myles R.

    2018-05-01

    Empirical evidence suggests that variations in climate affect economic growth across countries over time. However, little is known about the relative impacts of climate change on economic outcomes when global mean surface temperature (GMST) is stabilized at 1.5°C or 2°C warming relative to pre-industrial levels. Here we use a new set of climate simulations under 1.5°C and 2°C warming from the `Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) project to assess changes in economic growth using empirical estimates of climate impacts in a global panel dataset. Panel estimation results that are robust to outliers and breaks suggest that within-year variability of monthly temperatures and precipitation has little effect on economic growth beyond global nonlinear temperature effects. While expected temperature changes under a GMST increase of 1.5°C lead to proportionally higher warming in the Northern Hemisphere, the projected impact on economic growth is larger in the Tropics and Southern Hemisphere. Accounting for econometric estimation and climate uncertainty, the projected impacts on economic growth of 1.5°C warming are close to indistinguishable from current climate conditions, while 2°C warming suggests statistically lower economic growth for a large set of countries (median projected annual growth up to 2% lower). Level projections of gross domestic product (GDP) per capita exhibit high uncertainties, with median projected global average GDP per capita approximately 5% lower at the end of the century under 2°C warming relative to 1.5°C. The correlation between climate-induced reductions in per capita GDP growth and national income levels is significant at the p economic inequality between countries and is relevant to discussions of loss and damage under the United Nations Framework Convention on Climate Change. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a

  1. Uncertain impacts on economic growth when stabilizing global temperatures at 1.5°C or 2°C warming

    Science.gov (United States)

    Schwarz, Moritz; Tang, Kevin; Haustein, Karsten; Allen, Myles R.

    2018-01-01

    Empirical evidence suggests that variations in climate affect economic growth across countries over time. However, little is known about the relative impacts of climate change on economic outcomes when global mean surface temperature (GMST) is stabilized at 1.5°C or 2°C warming relative to pre-industrial levels. Here we use a new set of climate simulations under 1.5°C and 2°C warming from the ‘Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) project to assess changes in economic growth using empirical estimates of climate impacts in a global panel dataset. Panel estimation results that are robust to outliers and breaks suggest that within-year variability of monthly temperatures and precipitation has little effect on economic growth beyond global nonlinear temperature effects. While expected temperature changes under a GMST increase of 1.5°C lead to proportionally higher warming in the Northern Hemisphere, the projected impact on economic growth is larger in the Tropics and Southern Hemisphere. Accounting for econometric estimation and climate uncertainty, the projected impacts on economic growth of 1.5°C warming are close to indistinguishable from current climate conditions, while 2°C warming suggests statistically lower economic growth for a large set of countries (median projected annual growth up to 2% lower). Level projections of gross domestic product (GDP) per capita exhibit high uncertainties, with median projected global average GDP per capita approximately 5% lower at the end of the century under 2°C warming relative to 1.5°C. The correlation between climate-induced reductions in per capita GDP growth and national income levels is significant at the p economic inequality between countries and is relevant to discussions of loss and damage under the United Nations Framework Convention on Climate Change. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for

  2. The role of dynamically induced variability in the recent warming trend slowdown over the Northern Hemisphere

    OpenAIRE

    Guan, Xiaodan; Huang, Jianping; Guo, Ruixia; Lin, Pu

    2015-01-01

    Since the slowing of the trend of increasing surface air temperature (SAT) in the late 1990?s, intense interest and debate have arisen concerning the contribution of human activities to the warming observed in previous decades. Although several explanations have been proposed for the warming-trend slowdown (WTS), none has been generally accepted. We investigate the WTS using a recently developed methodology that can successfully identify and separate the dynamically induced and radiatively fo...

  3. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content.

    Science.gov (United States)

    Garzke, Jessica; Hansen, Thomas; Ismar, Stefanie M H; Sommer, Ulrich

    2016-01-01

    Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1-5) and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA) and arachidonic acid (ARA) to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts.

  4. Genetic variation and significance of hepatitis B surface antigen

    Directory of Open Access Journals (Sweden)

    ZHANG Zhenhua

    2013-11-01

    Full Text Available Hepatitis B virus (HBV is prone to genetic variation because there is reverse transcription in the process of HBV replication. The gene mutation of hepatitis B surface antigen may affect clinical diagnosis of HBV infection, viral replication, and vaccine effect. The current research and existing problems are discussed from the following aspects: the mechanism and biological and clinical significance of S gene mutation. Most previous studies focused on S gene alone, so S gene should be considered as part of HBV DNA in the future research on S gene mutation.

  5. ACUTE EFFECTS OF A RESISTED DYNAMIC WARM-UP PROTOCOL ON JUMPING PERFORMANCE

    Science.gov (United States)

    Cilli, M; Yildiz, S; Saglam, T; Camur, MH

    2014-01-01

    This study aimed to investigate the kinematic and kinetic changes when resistance is applied in horizontal and vertical directions, produced by using different percentages of body weight, caused by jumping movements during a dynamic warm-up. The group of subjects consisted of 35 voluntary male athletes (19 basketball and 16 volleyball players; age: 23.4 ± 1.4 years, training experience: 9.6 ± 2.7 years; height: 177.2 ± 5.7 cm, body weight: 69.9 ± 6.9 kg) studying Physical Education, who had a jump training background and who were training for 2 hours, on 4 days in a week. A dynamic warm-up protocol containing seven specific resistance movements with specific resistance corresponding to different percentages of body weight (2%, 4%, 6%, 8%, 10%) was applied randomly on non consecutive days. Effects of different warm-up protocols were assessed by pre-/post- exercise changes in jump height in the countermovement jump (CMJ) and the squat jump (SJ) measured using a force platform and changes in hip and knee joint angles at the end of the eccentric phase measured using a video camera. A significant increase in jump height was observed in the dynamic resistance warm-up conducted with different percentages of body weight (p 0.05). In jump movements before and after the warm-up, while no significant difference between the vertical ground reaction forces applied by athletes was observed (p > 0.05), in some cases of resistance, a significant reduction was observed in hip and knee joint angles (p jumping movements, as well as an increase in jump height values. As a result, dynamic warm-up exercises could be applicable in cases of resistance corresponding to 6-10% of body weight applied in horizontal and vertical directions in order to increase the jump performance acutely. PMID:25435670

  6. Effects of short-term warming and nitrogen addition on the quantity and quality of dissolved organic matter in a subtropical Cunninghamia lanceolata plantation

    Science.gov (United States)

    Yuan, Xiaochun; Si, Youtao; Lin, Weisheng; Yang, Jingqing; Wang, Zheng; Zhang, Qiufang; Qian, Wei; Yang, Yusheng

    2018-01-01

    Increasing temperature and nitrogen (N) deposition are two large-scale changes projected to occur over the coming decades. The effects of these changes on dissolved organic matter (DOM) are largely unknown. This study aimed to assess the effects of warming and N addition on the quantity and quality of DOM from a subtropical Cunninghamia lanceolata plantation. Between 2014 and 2016, soil solutions were collected from 0–15, 15–30, and 30–60 cm depths by using a negative pressure sampling method. The quantity and quality of DOM were measured under six different treatments. The spectra showed that the DOM of the forest soil solution mainly consisted of aromatic protein-like components, microbial degradation products, and negligible amounts of humic-like substances. Warming, N addition, and warming + N addition significantly inhibited the concentration of dissolved organic carbon (DOC) in the surface (0–15 cm) soil solution. Our results suggested that warming reduced the amount of DOM originating from microbes. The decrease in protein and carboxylic acid contents was mostly attributed to the reduction of DOC following N addition. The warming + N addition treatment showed an interactive effect rather than an additive effect. Thus, short-term warming and warming + N addition decreased the quantity of DOM and facilitated the migration of nutrients to deeper soils. Further, N addition increased the complexity of the DOM structure. Hence, the loss of soil nutrients and the rational application of N need to be considered in order to prevent the accumulation of N compounds in soil. PMID:29360853

  7. Introduction of nuclear power plant for mitigating the impact of global warming

    International Nuclear Information System (INIS)

    Ida Nuryatin Finahari

    2008-01-01

    Energy utilization for power plants in Indonesia is still highly depending on the burning of fossil fuel like coal, oil, and gas. From the combustion of fossil fuel, greenhouse gases such as CO 2 and N 2 O are produced. An increase of CO 2 gas emission to the atmosphere can block the heat loss from the earth surface and will increase the greenhouse effect that results in the temperature increase of the earth surface (global warming). Global warming can cause a very extreme climate change on earth. One of the solutions to reduce CO 2 gas emission produced by fossil fuel power plants is to utilize the plants with flue gas treatment facility. At such facility, CO 2 gas is reacted with certain mineral based substances thus can be used as base material in food-, pharmaceutical-, construction-, and cosmetic industry. Another alternative to reduce CO 2 gas emission is by replacing fossil fuel power plants with nuclear power plants. Considering the environmental and economic aspects, the nuclear power plant does not emit CO 2 gas, so that the use of nuclear power plant can mitigate the impact of global warming. Based on the operational experience of nuclear power plants in advanced countries, the cost of generating electricity from nuclear power plants is more competitive than that of fossil fuel power plant. (author)

  8. G-warm inflation

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Ramón, E-mail: ramon.herrera@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Casilla 4059, Valparaíso (Chile)

    2017-05-01

    A warm inflationary universe in the context of Galileon model or G-model is studied. Under a general formalism we study the inflationary dynamics and the cosmological perturbations considering a coupling of the form G (φ, X )= g (φ) X . As a concrete example, we consider an exponential potential together with the cases in which the dissipation and Galilean coefficients are constants. Also, we study the weak regime given by the condition R <1+3 gH φ-dot , and the strong regime in which 1< R +3 gH φ-dot . Additionally, we obtain constraints on the parameters during the evolution of G-warm inflation, assuming the condition for warm inflation in which the temperature T > H , the conditions or the weak and strong regimes, together with the consistency relation r = r ( n {sub s} ) from Planck data.

  9. Australia's Unprecedented Future Temperature Extremes Under Paris Limits to Warming

    Science.gov (United States)

    Lewis, Sophie C.; King, Andrew D.; Mitchell, Daniel M.

    2017-10-01

    Record-breaking temperatures can detrimentally impact ecosystems, infrastructure, and human health. Previous studies show that climate change has influenced some observed extremes, which are expected to become more frequent under enhanced future warming. Understanding the magnitude, as a well as frequency, of such future extremes is critical for limiting detrimental impacts. We focus on temperature changes in Australian regions, including over a major coral reef-building area, and assess the potential magnitude of future extreme temperatures under Paris Agreement global warming targets (1.5°C and 2°C). Under these limits to global mean warming, we determine a set of projected high-magnitude unprecedented Australian temperature extremes. These include extremes unexpected based on observational temperatures, including current record-breaking events. For example, while the difference in global-average warming during the hottest Australian summer and the 2°C Paris target is 1.1°C, extremes of 2.4°C above the observed summer record are simulated. This example represents a more than doubling of the magnitude of extremes, compared with global mean change, and such temperatures are unexpected based on the observed record alone. Projected extremes do not necessarily scale linearly with mean global warming, and this effect demonstrates the significant potential benefits of limiting warming to 1.5°C, compared to 2°C or warmer.

  10. Effects of Warming up with Music on Moods and Training Motivation among Athletes

    Directory of Open Access Journals (Sweden)

    Golnaz Khazdozi

    2017-02-01

    Full Text Available The purpose of the present study is to review the effects of warming up with music on moods and training motivation among Kurdistan province’s female handball players0 for this purpose, 24 handball players of premier league of Kurdistan province were selected as the research subjects through a random sampling method. In this study a pretest-posttest design is applied by which 12 subjects have been selected as control group and 12 as experimental group. The latter group performed warm ups free from music. For the purpose of estimation of motivation of subjects, the questionnaire of sports motivation was made use of. In addition, for investigation of the moods variable, the questionnaire of athletes’ moods was used. Research results using the statistical test of Mann-Whitney showed that no significant difference existed between the experimental and control groups’ motivation and moods after performance of the warming up program (P: 0.124. This was while there was a statistically significant difference between the experimental and control groups’ moods prior and post to execution of Training program (P= 0.003. In general, it may be concluded that playing music doesn’t have any significant effects on athletes’ motivation while their moods can undergo significant changes through listening to music during warming up.

  11. Effects of Warming Up With Music on Moods and Training Motivation among Athletes

    Directory of Open Access Journals (Sweden)

    Golnaz Khazdozi

    2017-04-01

    Full Text Available The purpose of the present study is to review the effects of warming up with music on moods and training motivation among Kurdistan province’s female handball players0 for this purpose, 24 handball players of premier league of Kurdistan province were selected as the research subjects through a random sampling method. In this study a pretest-posttest design is applied by which 12 subjects have been selected as control group and 12 as experimental group. The latter group performed warm ups free from music. For the purpose of estimation of motivation of subjects, the questionnaire of sports motivation was made use of. In addition, for investigation of the moods variable, the questionnaire of athletes’ moods was used. Research results using the statistical test of Mann-Whitney showed that no significant difference existed between the experimental and control groups’ motivation and moods after performance of the warming up program (P: 0.124. This was while there was a statistically significant difference between the experimental and control groups’ moods prior and post to execution of Training program (P= 0.003. In general, it may be concluded that playing music doesn’t have any significant effects on athletes’ motivation while their moods can undergo significant changes through listening to music during warming up.

  12. Utilization of Screw Piles in High Seismicity Areas of Cold and Warm Permafrost

    Science.gov (United States)

    2010-07-01

    This work was performed in support of the AUTC project Utilization of Screw Piles in : High Seismicity Areas of Cold and Warm Permafrost under the direction of PI Dr. Kenan : Hazirbaba. Surface wave testing was performed at 30 sites in the City...

  13. Turbulence effects on warm-rain formation in precipitating shallow convection revisited

    Directory of Open Access Journals (Sweden)

    A. Seifert

    2016-09-01

    Full Text Available Two different collection kernels which include turbulence effects on the collision rate of liquid droplets are used as a basis to develop a parameterization of the warm-rain processes autoconversion, accretion, and self-collection. The new parameterization is tested and validated with the help of a 1-D bin microphysics model. Large-eddy simulations of the rain formation in shallow cumulus clouds confirm previous results that turbulence effects can significantly enhance the development of rainwater in clouds and the occurrence and amount of surface precipitation. The detailed behavior differs significantly for the two turbulence models, revealing a considerable uncertainty in our understanding of such effects. In addition, the large-eddy simulations show a pronounced sensitivity to grid resolution, which suggests that besides the effect of sub-grid small-scale isotropic turbulence which is parameterized as part of the collection kernel also the larger turbulent eddies play an important role for the formation of rain in shallow clouds.

  14. Impact of postglacial warming on borehole reconstructions of last millennium temperatures

    Directory of Open Access Journals (Sweden)

    V. Rath

    2012-06-01

    Full Text Available The investigation of observed borehole temperatures has proved to be a valuable tool for the reconstruction of ground surface temperature histories. However, there are still many open questions concerning the significance and accuracy of the reconstructions from these data. In particular, the temperature signal of the warming after the Last Glacial Maximum is still present in borehole temperature profiles. It is shown here that this signal also influences the relatively shallow boreholes used in current paleoclimate inversions to estimate temperature changes in the last centuries by producing errors in the determination of the steady state geothermal gradient. However, the impact on estimates of past temperature changes is weaker. For deeper boreholes, the curvature of the long-term signal is significant. A correction based on simple assumptions about glacial–interglacial temperature changes shows promising results, improving the extraction of millennial scale signals. The same procedure may help when comparing observed borehole temperature profiles with the results from numerical climate models.

  15. Temperature response of soil respiration largely unaltered with experimental warming

    Science.gov (United States)

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; Collins, Scott L.; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Steenberg Larsen, Klaus; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Penuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward B.; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  16. The impact of boreal forest fire on climate warming

    Science.gov (United States)

    Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; Chapin, F.S.; Harden, J.W.; Goulden, M.L.; Lyons, E.; Neff, J.C.; Schuur, E.A.G.; Zender, C.S.

    2006-01-01

    We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 ?? 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 ?? 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.

  17. The impact of boreal forest fire on climate warming.

    Science.gov (United States)

    Randerson, J T; Liu, H; Flanner, M G; Chambers, S D; Jin, Y; Hess, P G; Pfister, G; Mack, M C; Treseder, K K; Welp, L R; Chapin, F S; Harden, J W; Goulden, M L; Lyons, E; Neff, J C; Schuur, E A G; Zender, C S

    2006-11-17

    We report measurements and analysis of a boreal forest fire, integrating the effects of greenhouse gases, aerosols, black carbon deposition on snow and sea ice, and postfire changes in surface albedo. The net effect of all agents was to increase radiative forcing during the first year (34 +/- 31 Watts per square meter of burned area), but to decrease radiative forcing when averaged over an 80-year fire cycle (-2.3 +/- 2.2 Watts per square meter) because multidecadal increases in surface albedo had a larger impact than fire-emitted greenhouse gases. This result implies that future increases in boreal fire may not accelerate climate warming.

  18. Comparing the sensitivity of permafrost and marine gas hydrate to climate warming

    International Nuclear Information System (INIS)

    Taylor, A.E.; Dallimore, S.R.; Hyndman, R.D.; Wright, F.

    2005-01-01

    The sensitivity of Arctic subpermafrost gas hydrate at the Mallik borehole was compared to temperate marine gas hydrate located offshore southwestern Canada. In particular, a finite element geothermal model was used to determine the sensitivity to the end of the ice age, and contemporary climate warming of a 30 m thick methane hydrate layer lying at the base of a gas hydrate stability zone prior to 13.5 kiloannum (ka) before present (BP). It was suggested that the 30 m gas-hydrate-bearing layer would have disappeared by now, according to the thermal signal alone. However, the same gas-hydrate-bearing layer underlying permafrost would persist until at least 4 ka after present, even with contemporary climate warming. The longer time for subpermafrost gas hydrate comes from the thawing pore ice at the base of permafrost, at the expense of dissociation of the deeper gas hydrate. The dissociation of underlying gas hydrate from climate surface warming is buffered by the overlying permafrost

  19. Dynamics behind warming of the southeastern Arabian Sea and its interruption based on in situ measurements

    Science.gov (United States)

    Mathew, Simi; Natesan, Usha; Latha, Ganesan; Venkatesan, Ramasamy

    2018-05-01

    A study of the inter-annual variability of the warming of the southeastern Arabian Sea (SEAS) during the spring transition months was carried out from 2013 to 2015 based on in situ data from moored buoys. An attempt was made to identify the roles of the different variables in the warming of the SEAS (e.g., net heat flux, advection, entrainment, and thickness of the barrier layer during the previous northeast monsoon season). The intense freshening of the SEAS (approximately 2 PSU) occurring in each December, together with the presence of a downwelling Rossby wave, supports the formation of a thick barrier layer during the northeast monsoon season. It is known that the barrier layer thickness, varying each year, plays a major role in the spring warming of the SEAS. Interestingly, an anomalously thick barrier layer occurred during the northeast monsoon season of 2012-2013. However, the highest sea surface temperature (31 °C) was recorded during the last week of April 2015, while the lowest sea surface temperature (29.7 °C) was recorded during the last week of May 2013. The mixed layer heat budget analysis during the spring transition months proved that the intense warming has been mainly supported by the net heat flux, not by other factors like advection and entrainment. The inter-annual variability analysis of the net heat flux and its components, averaged over a box region of the SEAS, showed a substantial latent heat flux release and a reduction in net shortwave radiation in 2013. Both factors contributed to the negative net heat flux. Strong breaks in the warming were also observed in May due to the entrainment of cold sub-surface waters. These events are associated with the cyclonic eddy persisting over the SEAS during the same time. The entrainment term, favoring the cooling, was stronger in 2015 than that in 2013 and 2014. The surface temperatures measured in 2013 were lower than those in 2014 and 2015 despite the presence of a thick barrier layer. The

  20. Physiological responses to ocean acidification and warming synergistically reduce condition of the common cockle Cerastoderma edule.

    Science.gov (United States)

    Ong, E Z; Briffa, M; Moens, T; Van Colen, C

    2017-09-01

    The combined effect of ocean acidification and warming on the common cockle Cerastoderma edule was investigated in a fully crossed laboratory experiment. Survival of the examined adult organisms remained high and was not affected by elevated temperature (+3 °C) or lowered pH (-0.3 units). However, the morphometric condition index of the cockles incubated under high pCO 2 conditions (i.e. combined warming and acidification) was significantly reduced after six weeks of incubation. Respiration rates increased significantly under low pH, with highest rates measured under combined warm and low pH conditions. Calcification decreased significantly under low pH while clearance rates increased significantly under warm conditions and were generally lower in low pH treatments. The observed physiological responses suggest that the reduced food intake under hypercapnia is insufficient to support the higher energy requirements to compensate for the higher costs for basal maintenance and growth in future high pCO 2 waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The Effect of Different Warm-up Protocols on young Soccer Players' Explosive Power

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Mohamadi

    2012-12-01

    Full Text Available Objective: To investigating the effect of different Warm-up Protocols on young Soccer Players' Explosive Power. Methods: Twenty male soccer players (17.4 0.685 years volunteered to participate in this study. The participants were randomly selected, and in order to remove the effects of transmission and to observe the sequence of warm-up methods, they were cross-matched randomly e.g. 20 players in four categories; that is, 5 players in each category. The participants in each category experienced the 4 warm-up ways in four consecutive so that at the end 20 players performed each method of warm-up. Warm-up methods: 1. Static warm-up; 2. Dynamic warm-up plus 2 min active rest; 3. Dynamic warm-up plus 5 min passive rest and finally Dynamic warm-up plus 15 min passive rest. Participants in each category performed different warm-up methods which had been designed based on scientific and research-based sources in 48 hours intervals After performing each warm-up method, they were given a Long Jump. Results: Based on the results of analysis of variance between the effect of different warm-up methods on Explosive Power participants, significant difference was observed (p?0/05 so that Dynamic warm-up plus 5 min passive rest was more effective in Explosive Power performance than other methods(p?0/05. Discussion: The results of this study are in line with those of Roger (2008 and Faigenbaum et al (2006 who indicated in their studies that Dynamic or mixed method of warm-up are more effective than static ones. Conclusion: Therefore, with regard to the results of the study presented here and also the nature of football enjoying explosive power than the air blows, it is recommended that these types of protocols during warm-up program be employed.   Keywords: Warm up, Explosive Power , Soccer Players', Young  

  2. Mean-state SST Response to global warming caused by the ENSO Nonlinearity

    Science.gov (United States)

    Kohyama, T.; Hartmann, D. L.

    2017-12-01

    The majority of the models that participated in the Coupled Model Intercomparison Project phase 5 (CMIP5) exhibit El Niño-like trends under global warming. GFDL-ESM2M, however, is an exception that exhibits a La Niña-like response with strengthened trade winds. Our previous studies have shown that this La Niña-like trend could be a physically consistent warming response, and we proposed the Nonlinear ENSO Warming Suppression (NEWS) mechanism to explain this La Niña-like response to global warming. The most important necessary condition of NEWS is the ENSO skewness (El Niños are stronger than La Niñas). Most CMIP5 models do not reproduce the observed ENSO skewness, while GFDL-ESM2M exhibits the realistic ENSO skewness, which suggests that, despite being in the minority, the La Niña-like trend of GFDL-ESM2M could be a plausible equatorial Pacific response to warming. In this study, we introduce another interesting outlier, MIROC5, which reproduces the observed skewness, yet exhibits an El Niño-like response. By decomposing the source of the ENSO nonlinearity into the following three components: "SST anomalies modulate winds", "winds excite oceanic waves", and "oceanic waves modulate the subsurface temperature", we show that the large inter-model spread of the third component appears to explain the most important cause of the poor reproducibility of the ENSO nonlinearity in CMIP5 models. It is concluded that the change in the response of subsurface temperature to oceanic waves is the primary explanation for the different warming response of GFDL-ESM2M and MIROC5. Our analyses suggest that the difference of the warming response are caused by difference in the climatological thermal stratification. This study may shed new light on the fundamental question of why observed ENSO has a strong skewness and on the implications of this skewed ENSO for the mean-state sea surface temperature response to global warming.

  3. Ocean ventilation and deoxygenation in a warming world: introduction and overview

    Science.gov (United States)

    Shepherd, John G.; Brewer, Peter G.; Oschlies, Andreas; Watson, Andrew J.

    2017-08-01

    Changes of ocean ventilation rates and deoxygenation are two of the less obvious but important indirect impacts expected as a result of climate change on the oceans. They are expected to occur because of (i) the effects of increased stratification on ocean circulation and hence its ventilation, due to reduced upwelling, deep-water formation and turbulent mixing, (ii) reduced oxygenation through decreased oxygen solubility at higher surface temperature, and (iii) the effects of warming on biological production, respiration and remineralization. The potential socio-economic consequences of reduced oxygen levels on fisheries and ecosystems may be far-reaching and significant. At a Royal Society Discussion Meeting convened to discuss these matters, 12 oral presentations and 23 posters were presented, covering a wide range of the physical, chemical and biological aspects of the issue. Overall, it appears that there are still considerable discrepancies between the observations and model simulations of the relevant processes. Our current understanding of both the causes and consequences of reduced oxygen in the ocean, and our ability to represent them in models are therefore inadequate, and the reasons for this remain unclear. It is too early to say whether or not the socio-economic consequences are likely to be serious. However, the consequences are ecologically, biogeochemically and climatically potentially very significant, and further research on these indirect impacts of climate change via reduced ventilation and oxygenation of the oceans should be accorded a high priority. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  4. Ocean ventilation and deoxygenation in a warming world: introduction and overview.

    Science.gov (United States)

    Shepherd, John G; Brewer, Peter G; Oschlies, Andreas; Watson, Andrew J

    2017-09-13

    Changes of ocean ventilation rates and deoxygenation are two of the less obvious but important indirect impacts expected as a result of climate change on the oceans. They are expected to occur because of (i) the effects of increased stratification on ocean circulation and hence its ventilation, due to reduced upwelling, deep-water formation and turbulent mixing, (ii) reduced oxygenation through decreased oxygen solubility at higher surface temperature, and (iii) the effects of warming on biological production, respiration and remineralization. The potential socio-economic consequences of reduced oxygen levels on fisheries and ecosystems may be far-reaching and significant. At a Royal Society Discussion Meeting convened to discuss these matters, 12 oral presentations and 23 posters were presented, covering a wide range of the physical, chemical and biological aspects of the issue. Overall, it appears that there are still considerable discrepancies between the observations and model simulations of the relevant processes. Our current understanding of both the causes and consequences of reduced oxygen in the ocean, and our ability to represent them in models are therefore inadequate, and the reasons for this remain unclear. It is too early to say whether or not the socio-economic consequences are likely to be serious. However, the consequences are ecologically, biogeochemically and climatically potentially very significant, and further research on these indirect impacts of climate change via reduced ventilation and oxygenation of the oceans should be accorded a high priority.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).

  5. The effect of video game "warm-up" on performance of laparoscopic surgery tasks.

    Science.gov (United States)

    Rosser, James C; Gentile, Douglas A; Hanigan, Kevin; Danner, Omar K

    2012-01-01

    Performing laparoscopic procedures requires special training and has been documented as a significant source of surgical errors. "Warming up" before performing a task has been shown to enhance performance. This study investigates whether surgeons benefit from "warming up" using select video games immediately before performing laparoscopic partial tasks and clinical tasks. This study included 303 surgeons (249 men and 54 women). Participants were split into a control (n=180) and an experimental group (n=123). The experimental group played 3 previously validated video games for 6 minutes before task sessions. The Cobra Rope partial task and suturing exercises were performed immediately after the warm-up sessions. Surgeons who played video games prior to the Cobra Rope drill were significantly faster on their first attempt and across all 10 trials. The experimental and control groups were significantly different in their total suturing scores (t=2.28, df=288, Pvideo games prior to performing laparoscopic partial and clinical tasks (intracorporeal suturing) were faster and had fewer errors than participants not engaging in "warm-up." More study is needed to determine whether this translates into superior procedural execution in the clinical setting.

  6. Deep oceans may acidify faster than anticipated due to global warming

    Science.gov (United States)

    Chen, Chen-Tung Arthur; Lui, Hon-Kit; Hsieh, Chia-Han; Yanagi, Tetsuo; Kosugi, Naohiro; Ishii, Masao; Gong, Gwo-Ching

    2017-12-01

    Oceans worldwide are undergoing acidification due to the penetration of anthropogenic CO2 from the atmosphere1-4. The rate of acidification generally diminishes with increasing depth. Yet, slowing down of the thermohaline circulation due to global warming could reduce the pH in the deep oceans, as more organic material would decompose with a longer residence time. To elucidate this process, a time-series study at a climatically sensitive region with sufficient duration and resolution is needed. Here we show that deep waters in the Sea of Japan are undergoing reduced ventilation, reducing the pH of seawater. As a result, the acidification rate near the bottom of the Sea of Japan is 27% higher than the rate at the surface, which is the same as that predicted assuming an air-sea CO2 equilibrium. This reduced ventilation may be due to global warming and, as an oceanic microcosm with its own deep- and bottom-water formations, the Sea of Japan provides an insight into how future warming might alter the deep-ocean acidification.

  7. Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice.

    Science.gov (United States)

    Liu, Jiping; Curry, Judith A

    2010-08-24

    The observed sea surface temperature in the Southern Ocean shows a substantial warming trend for the second half of the 20th century. Associated with the warming, there has been an enhanced atmospheric hydrological cycle in the Southern Ocean that results in an increase of the Antarctic sea ice for the past three decades through the reduced upward ocean heat transport and increased snowfall. The simulated sea surface temperature variability from two global coupled climate models for the second half of the 20th century is dominated by natural internal variability associated with the Antarctic Oscillation, suggesting that the models' internal variability is too strong, leading to a response to anthropogenic forcing that is too weak. With increased loading of greenhouse gases in the atmosphere through the 21st century, the models show an accelerated warming in the Southern Ocean, and indicate that anthropogenic forcing exceeds natural internal variability. The increased heating from below (ocean) and above (atmosphere) and increased liquid precipitation associated with the enhanced hydrological cycle results in a projected decline of the Antarctic sea ice.

  8. Global warming related transient albedo feedback in the Arctic and its relation to the seasonality of sea ice

    Science.gov (United States)

    Andry, Olivier; Bintanja, Richard; Hazeleger, Wilco

    2015-04-01

    The Arctic is warming two to three times faster than the global average. Arctic sea ice cover is very sensitive to this warming and has reached historic minima in late summer in recent years (i.e. 2007, 2012). Considering that the Arctic Ocean is mainly ice-covered and that the albedo of sea ice is very high compared to that of open water, the change in sea ice cover is very likely to have a strong impact on the local surface albedo feedback. Here we quantify the temporal changes in surface albedo feedback in response to global warming. Usually feedbacks are evaluated as being representative and constant for long time periods, but we show here that the strength of climate feedbacks in fact varies strongly with time. For instance, time series of the amplitude of the surface albedo feedback, derived from future climate simulations (CIMP5, RCP8.5 up to year 2300) using a kernel method, peaks around the year 2100. This maximum is likely caused by an increased seasonality in sea-ice cover that is inherently associated with sea ice retreat. We demonstrate that the Arctic average surface albedo has a strong seasonal signature with a maximum in spring and a minimum in late summer/autumn. In winter when incoming solar radiation is minimal the surface albedo doesn't have an important effect on the energy balance of the climate system. The annual mean surface albedo is thus determined by the seasonality of both downwelling shortwave radiation and sea ice cover. As sea ice cover reduces the seasonal signature is modified, the transient part from maximum sea ice cover to its minimum is shortened and sharpened. The sea ice cover is reduced when downwelling shortwave radiation is maximum and thus the annual surface albedo is drastically smaller. Consequently the change in annual surface albedo with time will become larger and so will the surface albedo feedback. We conclude that a stronger seasonality in sea ice leads to a stronger surface albedo feedback, which accelerates

  9. TOPEX/El Nino Watch - El Nino Warm Water Pool Returns to Near Normal State, Mar, 14, 1998

    Science.gov (United States)

    1998-01-01

    This image of the Pacific Ocean was produced using sea surface height measurements taken by the U.S.-French TOPEX/Poseidon satellite. The image shows sea surface height relative to normal ocean conditions on Mar. 14, 1998 and sea surface height is an indicator of the heat content of the ocean. The image shows that the sea surface height along the central equatorial Pacific has returned to a near normal state. Oceanographers indicate this is a classic pattern, typical of a mature El Nino condition. Remnants of the El Nino warm water pool, shown in red and white, are situated to the north and south of the equator. These sea surface height measurements have provided scientists with a detailed view of how the 1997-98 El Nino's warm pool behaves because the TOPEX/Poseidon satellite measures the changing sea surface height with unprecedented precision. In this image, the white and red areas indicate unusual patterns of heat storage; in the white areas, the sea surface is between 14 and 32 centimeters (6 to 13 inches) above normal; in the red areas, it's about 10 centimeters (4 inches) above normal. The green areas indicate normal conditions, while purple (the western Pacific) means at least 18 centimeters (7 inches) below normal sea level. The El Nino phenomenon is thought to be triggered when the steady westward blowing trade winds weaken and even reverse direction. This change in the winds allows a large mass of warm water (the red and white area) that is normally located near Australia to move eastward along the equator until it reaches the coast of South America. The displacement of so much warm water affects evaporation, where rain clouds form and, consequently, alters the typical atmospheric jet stream patterns around the world. Using satellite imagery, buoy and ship data, and a forecasting model of the ocean-atmosphere system, the National Oceanic and Atmospheric Administration, (NOAA), has continued to issue an advisory indicating the so-called El Nino weather

  10. Radionuclides in ornithogenic sediments as evidence for recent warming in the Ross Sea region, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Yaguang [Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei, Anhui 230031 (China); Xu, Liqiang [School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009 (China); Liu, Xiaodong, E-mail: ycx@ustc.edu.cn [Institute of Polar Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 (China); Emslie, Steven D. [Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403 (United States)

    2016-07-01

    Radionuclides including {sup 210}Pb, {sup 226}Ra and {sup 137}Cs were analyzed in eight ornithogenic sediment profiles from McMurdo Sound, Ross Sea region, East Antarctica. Equilibration between {sup 210}Pb and {sup 226}Ra were reached in all eight profiles, enabling the determination of chronology within the past two centuries through the Constant Rate of Supply (CRS) model. Calculated fluxes of both {sup 210}Pb and {sup 137}Cs varied drastically among four of the profiles (MB4, MB6, CC and CL2), probably due to differences in their sedimentary environments. In addition, we found the flux data exhibiting a clear decreasing gradient in accordance with their average deposition rate, which was in turn related to the specific location of the profiles. We believe this phenomenon may correspond to global warming of the last century, since warming-induced surface runoff would bring more inflow water and detritus to the coring sites, thus enhancing the difference among the profiles. To verify this hypothesis, the deposition rate against age of the sediments was calculated based on their determined chronology, which showed ascending trends in all four profiles. The significant increase in deposition rates over the last century is probably attributable to recent warming, implying a potential utilization of radionuclides as environmental indicators in this region. - Highlights: • {sup 210}Pb, {sup 226}Ra and {sup 137}Cs were measured in ornithogenic sediment profiles. • Chronology within 200 years was determined through Constant Rate of Supply model. • Calculated nuclide fluxes decreased with average deposition rate and locations. • Deposition rate over time indicated warming which caused the flux gradient.

  11. Atlantic Warm Pool Trigger for the Younger Dryas Climate Event

    Science.gov (United States)

    Abdul, N. A.; Mortlock, R. A.; Wright, J. D.; Fairbanks, R. G.; Teneva, L. T.

    2011-12-01

    There is growing evidence that variability in the size and heat content of the tropical Atlantic Warm Pool impacts circum-North Atlantic climate via the Atlantic Multi-decadal Oscillation mode (Wang et al., 2008). The Atlantic Warm Pool spans the Gulf of Mexico, Caribbean Sea and the western tropical North Atlantic. Barbados is located near the center of the tropical Atlantic Warm Pool and coupled ocean models suggest that Barbados remains near the center of the tropical Atlantic Warm Pool under varying wind stress simulations. Measurements of the oxygen isotope paleothermometer in Acropora palmata coral species recovered from cores offshore Barbados, show a 3oC monotonic decrease in sea surface temperature from 13106 ± 83 to 12744 ± 61 years before present (errors given as 2 sigma). This interval corresponds to a sea level rise from 71.4 meters to 67.1 meters below present levels at Barbados. The 3oC temperature decrease is captured in eight A. palmata specimens that are in stratigraphic sequence, 230Th/234U dated, and analyzed for oxygen isotopes. All measurements are replicated. We are confident that this is the warm pool equivalent of the Younger Dryas climate event. The initiation of this temperature drop in the Atlantic Warm Pool predates the Younger Dryas start in Greenland ice cores, reported to start at 12896 ± 138 years (relative to AD 2000) (Rasmussen et al., 2006), while few other Younger Dryas climate records are dated with similar accuracy to make the comparison. Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard-Andersen, M.L., Johnsen, S.J., Larsen, L.B., Dahl-Jensen, D., Bigler, M., Röthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M.E., and Ruth, U., 2006, A new Greenland ice core chronology for the last glacial termination: J. Geophys. Res., v. 111, p. D06102. Wang, C., Lee, S.-K., and Enfield, D.B., 2008, Atlantic Warm Pool acting as a link between Atlantic Multidecadal

  12. A zero-power warming chamber for investigating plant responses to rising temperature

    Directory of Open Access Journals (Sweden)

    K. F. Lewin

    2017-09-01

    Full Text Available Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. However, current passive warming approaches are only able to elevate the mean daily air temperature by  ∼  1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be  ∼  2–3 °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. The approach we describe is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming

  13. A zero-power warming chamber for investigating plant responses to rising temperature

    Science.gov (United States)

    Lewin, Keith F.; McMahon, Andrew M.; Ely, Kim S.; Serbin, Shawn P.; Rogers, Alistair

    2017-09-01

    Advances in understanding and model representation of plant and ecosystem responses to rising temperature have typically required temperature manipulation of research plots, particularly when considering warming scenarios that exceed current climate envelopes. In remote or logistically challenging locations, passive warming using solar radiation is often the only viable approach for temperature manipulation. However, current passive warming approaches are only able to elevate the mean daily air temperature by ˜ 1.5 °C. Motivated by our need to understand temperature acclimation in the Arctic, where warming has been markedly greater than the global average and where future warming is projected to be ˜ 2-3 °C by the middle of the century; we have developed an alternative approach to passive warming. Our zero-power warming (ZPW) chamber requires no electrical power for fully autonomous operation. It uses a novel system of internal and external heat exchangers that allow differential actuation of pistons in coupled cylinders to control chamber venting. This enables the ZPW chamber venting to respond to the difference between the external and internal air temperatures, thereby increasing the potential for warming and eliminating the risk of overheating. During the thaw season on the coastal tundra of northern Alaska our ZPW chamber was able to elevate the mean daily air temperature 2.6 °C above ambient, double the warming achieved by an adjacent passively warmed control chamber that lacked our hydraulic system. We describe the construction, evaluation and performance of our ZPW chamber and discuss the impact of potential artefacts associated with the design and its operation on the Arctic tundra. The approach we describe is highly flexible and tunable, enabling customization for use in many different environments where significantly greater temperature manipulation than that possible with existing passive warming approaches is desired.

  14. Fewer bacteria in warm water

    International Nuclear Information System (INIS)

    Bagh, Lene

    1999-01-01

    There has been many suggestions to how the ideal warm water system should be. Particularly whether warm water containers or heat exchangers in larger houses are the best solutions in order to maintain a water quality with low levels of bacteria. In an investigation made by Statens Byggeforskningsinstitutt (Denmark) regarding ''Bacterial growth in warm water installations with heat exchangers'' there were used several heat exchangers made by Gjelsted and Lund of three of which had HWAT heating cables. The bacterial content was low from these exchangers compared to exchangers with circulation. The article presents promising results from a study where the method was investigated over a longer period in two new larger warm water systems. Some energy conservation aspects are discussed

  15. Global warming: it's not only size that matters

    Science.gov (United States)

    Hegerl, Gabriele C.

    2011-09-01

    ecosystems and society more than slow, gradual ones. Also, is it really the mean seasonal temperature that counts, or should the focus change to extremes (see Hegerl et al 2011b)? Is seasonal mean exceedance of the prior temperature envelope a good and robust measure that also reflects these other, more complex diagnostics? Lots of food for thought and research! References Allen M R and Tett S F B 1999 Checking for model consistency in optimal finger printing Clim. Dyn. 15 419-34 Hall A 2004 The role of surface albedo feedback in climate J. Clim. 17 1550-68 Hasselmann K 1979 On the signal-to-noise problem in atmospheric response studies Meteorology of Tropical Oceans ed D B Shaw (Bracknell: Royal Meteorological Society) pp 251-9 Hegerl G C, Luterbacher J, Gonzalez-Ruoco F, Tett S F B and Xoplaki E 2011a Influence of human and natural forcing on European seasonal temperatures Nature Geoscience 4 99-103 Hegerl G, Hanlon H and Beierkuhnlein C 2011b Climate science: elusive extremes Nature Geoscience 4 142-3 IPCC 2007 Climate Change 2007: Impacts, Adaption and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed M L Parry, O F Canziani, J P Palutikof, P J van der Linden and C E Hanson (Cambridge: Cambridge University Press) Jansen E et al 2007 Palaeoclimate Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed S Solomon et al (Cambridge: Cambridge University Press) Luterbacher J et al 2004 European seasonal and annual temperature variability, trends, and extremes since 1500 Science 303 1499-503 Mahlstein I, Knutti R, Solomon S and Portmann R W 2011 Early onset of significant local warming in low latitude countries Environ. Res. Lett. 6 034009

  16. Public perception of global warming and related environmental issues in Kano city, Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Iliyasu, Z.; Abubakar, I.; Gajida, A.U.

    2010-07-01

    Sub-Saharan African countries are at an increased risk of the effects of global warming. Unfortunately they have the least capacity to adapt to its untoward effects. We studied public awareness of global warming, its perceived causes, effects and prevention in Kano city, northern Nigeria. Structured questionnaires were administered on a cross section of 181 adults in Kano eliciting their awareness of global warming, as well as perceived causes, effects and ways of prevention. Of the 181 respondents, 132 (72.9%) were aware of global warming mainly from electronic media (44.4%), the Internet (20.5%) and schools (18.7%). They mostly attributed it to air pollution (99.2%), use of fossil fuels (97.7%), toxic waste (78.0%) and chlorofluorocarbons (73.5%). Perceived effects of global warming include extremes of ambient temperature (97.7%), increased disease outbreaks (92.4%), floods (68.2%), droughts (51.5%) and loss of species (50.0%). Respondents opined that global warming could be prevented by using renewable sources of energy such as the sun (53.8%), massive tree planting (44.7%) and phasing out of old automobiles (43.2%). A significantly higher proportion of males, younger and educated respondents were aware of global warming. The high awareness about global warming needs to be reinforced through use of media to encourage advocacy and community action towards preventing global warming and ensuring environmental sustainability.

  17. Role of snow-albedo feedback in higher elevation warming over the Himalayas, Tibetan Plateau and Central Asia

    International Nuclear Information System (INIS)

    Ghatak, Debjani; Sinsky, Eric; Miller, James

    2014-01-01

    Recent literature has shown that surface air temperature (SAT) in many high elevation regions, including the Tibetan Plateau (TP) has been increasing at a faster rate than at their lower elevation counterparts. We investigate projected future changes in SAT in the TP and the surrounding high elevation regions (between 25°–45°N and 50°–120°E) and the potential role snow-albedo feedback may have on amplified warming there. We use the Community Climate System Model version 4 (CCSM4) and Geophysical Fluid Dynamics Laboratory (GFDL) model which have different spatial resolutions as well as different climate sensitivities. We find that surface albedo (SA) decreases more at higher elevations than at lower elevations owing to the retreat of the 0 °C isotherm and the associated retreat of the snow line. Both models clearly show amplified warming over Central Asian mountains, the Himalayas, the Karakoram and Pamir during spring. Our results suggest that the decrease of SA and the associated increase in absorbed solar radiation (ASR) owing to the loss of snowpack play a significant role in triggering the warming over the same regions. Decreasing cloud cover in spring also contributes to an increase in ASR over some of these regions in CCSM4. Although the increase in SAT and the decrease in SA are greater in GFDL than CCSM4, the sensitivity of SAT to changes in SA is the same at the highest elevations for both models during spring; this suggests that the climate sensitivity between models may differ, in part, owing to their corresponding treatments of snow cover, snow melt and the associated snow/albedo feedback. (letter)

  18. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content.

    Directory of Open Access Journals (Sweden)

    Jessica Garzke

    Full Text Available Concerns about increasing atmospheric CO2 concentrations and global warming have initiated studies on the consequences of multiple-stressor interactions on marine organisms and ecosystems. We present a fully-crossed factorial mesocosm study and assess how warming and acidification affect the abundance, body size, and fatty acid composition of copepods as a measure of nutritional quality. The experimental set-up allowed us to determine whether the effects of warming and acidification act additively, synergistically, or antagonistically on the abundance, body size, and fatty acid content of copepods, a major group of lower level consumers in marine food webs. Copepodite (developmental stages 1-5 and nauplii abundance were antagonistically affected by warming and acidification. Higher temperature decreased copepodite and nauplii abundance, while acidification partially compensated for the temperature effect. The abundance of adult copepods was negatively affected by warming. The prosome length of copepods was significantly reduced by warming, and the interaction of warming and CO2 antagonistically affected prosome length. Fatty acid composition was also significantly affected by warming. The content of saturated fatty acids increased, and the ratios of the polyunsaturated essential fatty acids docosahexaenoic- (DHA and arachidonic acid (ARA to total fatty acid content increased with higher temperatures. Additionally, here was a significant additive interaction effect of both parameters on arachidonic acid. Our results indicate that in a future ocean scenario, acidification might partially counteract some observed effects of increased temperature on zooplankton, while adding to others. These may be results of a fertilizing effect on phytoplankton as a copepod food source. In summary, copepod populations will be more strongly affected by warming rather than by acidifying oceans, but ocean acidification effects can modify some temperature impacts.

  19. Functional Trait Changes, Productivity Shifts and Vegetation Stability in Mountain Grasslands during a Short-Term Warming.

    Science.gov (United States)

    Debouk, Haifa; de Bello, Francesco; Sebastià, Maria-Teresa

    2015-01-01

    Plant functional traits underlie vegetation responses to environmental changes such as global warming, and consequently influence ecosystem processes. While most of the existing studies focus on the effect of warming only on species diversity and productivity, we further investigated (i) how the structure of community plant functional traits in temperate grasslands respond to experimental warming, and (ii) whether species and functional diversity contribute to a greater stability of grasslands, in terms of vegetation composition and productivity. Intact vegetation turves were extracted from temperate subalpine grassland (highland) in the Eastern Pyrenees and transplanted into a warm continental, experimental site in Lleida, in Western Catalonia (lowland). The impacts of simulated warming on plant production and diversity, functional trait structure, and vegetation compositional stability were assessed. We observed an increase in biomass and a reduction in species and functional diversity under short-term warming. The functional structure of the grassland communities changed significantly, in terms of functional diversity and community-weighted means (CWM) for several traits. Acquisitive and fast-growing species with higher SLA, early flowering, erect growth habit, and rhizomatous strategy became dominant in the lowland. Productivity was significantly positively related to species, and to a lower extent, functional diversity, but productivity and stability after warming were more dependent on trait composition (CWM) than on diversity. The turves with more acquisitive species before warming changed less in composition after warming. Results suggest that (i) the short-term warming can lead to the dominance of acquisitive fast growing species over conservative species, thus reducing species richness, and (ii) the functional traits structure in grassland communities had a greater influence on the productivity and stability of the community under short-term warming

  20. Functional Trait Changes, Productivity Shifts and Vegetation Stability in Mountain Grasslands during a Short-Term Warming.

    Directory of Open Access Journals (Sweden)

    Haifa Debouk

    Full Text Available Plant functional traits underlie vegetation responses to environmental changes such as global warming, and consequently influence ecosystem processes. While most of the existing studies focus on the effect of warming only on species diversity and productivity, we further investigated (i how the structure of community plant functional traits in temperate grasslands respond to experimental warming, and (ii whether species and functional diversity contribute to a greater stability of grasslands, in terms of vegetation composition and productivity. Intact vegetation turves were extracted from temperate subalpine grassland (highland in the Eastern Pyrenees and transplanted into a warm continental, experimental site in Lleida, in Western Catalonia (lowland. The impacts of simulated warming on plant production and diversity, functional trait structure, and vegetation compositional stability were assessed. We observed an increase in biomass and a reduction in species and functional diversity under short-term warming. The functional structure of the grassland communities changed significantly, in terms of functional diversity and community-weighted means (CWM for several traits. Acquisitive and fast-growing species with higher SLA, early flowering, erect growth habit, and rhizomatous strategy became dominant in the lowland. Productivity was significantly positively related to species, and to a lower extent, functional diversity, but productivity and stability after warming were more dependent on trait composition (CWM than on diversity. The turves with more acquisitive species before warming changed less in composition after warming. Results suggest that (i the short-term warming can lead to the dominance of acquisitive fast growing species over conservative species, thus reducing species richness, and (ii the functional traits structure in grassland communities had a greater influence on the productivity and stability of the community under short

  1. Non-additive effects of ocean acidification in combination with warming on the larval proteome of the Pacific oyster, Crassostrea gigas.

    Science.gov (United States)

    Harney, Ewan; Artigaud, Sébastien; Le Souchu, Pierrick; Miner, Philippe; Corporeau, Charlotte; Essid, Hafida; Pichereau, Vianney; Nunes, Flavia L D

    2016-03-01

    Increasing atmospheric carbon dioxide results in ocean acidification and warming, significantly impacting marine invertebrate larvae development. We investigated how ocean acidification in combination with warming affected D-veliger larvae of the Pacific oyster Crassostrea gigas. Larvae were reared for 40h under either control (pH8.1, 20 °C), acidified (pH7.9, 20 °C), warm (pH8.1, 22 °C) or warm acidified (pH7.9, 22 °C) conditions. Larvae in acidified conditions were significantly smaller than in the control, but warm acidified conditions mitigated negative effects on size, and increased calcification. A proteomic approach employing two-dimensional electrophoresis (2-DE) was used to quantify proteins and relate their abundance to phenotypic traits. In total 12 differentially abundant spots were identified by nano-liquid chromatography-tandem mass spectrometry. These proteins had roles in metabolism, intra- and extra-cellular matrix formations, stress response, and as molecular chaperones. Seven spots responded to reduced pH, four to increased temperature, and six to acidification and warming. Reduced abundance of proteins such as ATP synthase and GAPDH, and increased abundance of superoxide dismutase, occurred when both pH and temperature changes were imposed, suggesting altered metabolism and enhanced oxidative stress. These results identify key proteins that may be involved in the acclimation of C. gigas larvae to ocean acidification and warming. Increasing atmospheric CO2 raises sea surface temperatures and results in ocean acidification, two climatic variables known to impact marine organisms. Larvae of calcifying species may be particularly at risk to such changing environmental conditions. The Pacific oyster Crassostrea gigas is ecologically and commercially important, and understanding its ability to acclimate to climate change will help to predict how aquaculture of this species is likely to be impacted. Modest, yet realistic changes in pH and

  2. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming

    Science.gov (United States)

    Thirumalai, Kaustubh; DiNezio, Pedro N.; Okumura, Yuko; Deser, Clara

    2017-01-01

    In April 2016, southeast Asia experienced surface air temperatures (SATs) that surpassed national records, exacerbated energy consumption, disrupted agriculture and caused severe human discomfort. Here we show using observations and an ensemble of global warming simulations the combined impact of the El Niño/Southern Oscillation (ENSO) phenomenon and long-term warming on regional SAT extremes. We find a robust relationship between ENSO and southeast Asian SATs wherein virtually all April extremes occur during El Niño years. We then quantify the relative contributions of long-term warming and the 2015–16 El Niño to the extreme April 2016 SATs. The results indicate that global warming increases the likelihood of record-breaking April extremes where we estimate that 29% of the 2016 anomaly was caused by warming and 49% by El Niño. These post-Niño Aprils can potentially be anticipated a few months in advance, and thus, help societies prepare for the projected continued increases in extremes. PMID:28585927

  3. Who decides who has won the bet? Total and Anthropogenic Warming Indices

    Science.gov (United States)

    Haustein, K.; Allen, M. R.; Otto, F. E. L.; Schmidt, A.; Frame, D. J.; Forster, P.; Matthews, D.

    2016-12-01

    An extension of the idea of betting markets as a means of revealing opinions about future climate are climate policies indexed to geophysical indicators: for example, to ensure net zero global carbon dioxide emissions by the time anthropogenic warming reaches 1.5 degrees above pre-industrial, given about 1 degree of warming already, emissions must fall, on average, by 20% of their current value for every tenth of a degree of anthropogenic warming from now on. In principle, policies conditioned on some measure of attributable warming are robust to uncertainty in the global climate response: the risk of a higher or lower response than expected is borne by those affected by climate change mitigation policy rather than those affected by climate change impacts, as is the case with emission targets for specific years based on "current understanding" of the response. To implement any indexed policy, or to agree payout terms for any bet on future climate, requires consensus on the definition of the index: how is it calculated, and who is responsible for releasing it? The global mean surface temperature of the current decade relative to pre-industrial may vary by 0.1 degree or more depending on precisely what is measured, what is defined as pre-industrial, and the treatment of regions with sparse data coverage in earlier years. Indices defined using different conventions, however, are all expected to evolve very similarly over the coming decades, so agreeing on a conservative, traceable index such as HadCRUT is more important than debating the "true" global temperature. A more important question is whether indexed policies and betting markets should focus on total warming, including natural and anthropogenic drivers and internal variability, or an Anthropogenic Warming Index (AWI) representing an unbiased estimate of warming attributable to human influence to date. We propose a simple AWI based solely on observed temperatures and global natural and anthropogenic forcing

  4. Warming by immersion or exercise affects initial cooling rate during subsequent cold water immersion.

    Science.gov (United States)

    Scott, Chris G; Ducharme, Michel B; Haman, François; Kenny, Glen P

    2004-11-01

    We examined the effect of prior heating, by exercise and warm-water immersion, on core cooling rates in individuals rendered mildly hypothermic by immersion in cold water. There were seven male subjects who were randomly assigned to one of three groups: 1) seated rest for 15 min (control); 2) cycling ergometry for 15 min at 70% Vo2 peak (active warming); or 3) immersion in a circulated bath at 40 degrees C to an esophageal temperature (Tes) similar to that at the end of exercise (passive warming). Subjects were then immersed in 7 degrees C water to a Tes of 34.5 degrees C. Initial Tes cooling rates (initial approximately 6 min cooling) differed significantly among the treatment conditions (0.074 +/- 0.045, 0.129 +/- 0.076, and 0.348 +/- 0.117 degrees C x min(-1) for control, active, and passive warming conditions, respectively); however, secondary cooling rates (rates following initial approximately 6 min cooling to the end of immersion) were not different between treatments (average of 0.102 +/- 0.085 degrees C x min(-1)). Overall Tes cooling rates during the full immersion period differed significantly and were 0.067 +/- 0.047, 0.085 +/- 0.045, and 0.209 +/- 0.131 degrees C x min(-1) for control, active, and passive warming, respectively. These results suggest that prior warming by both active and, to a greater extent, passive warming, may predispose a person to greater heat loss and to experience a larger decline in core temperature when subsequently exposed to cold water. Thus, functional time and possibly survival time could be reduced when cold water immersion is preceded by whole-body passive warming, and to a lesser degree by active warming.

  5. Significant increase of surface ozone at a rural site, north of eastern China

    Directory of Open Access Journals (Sweden)

    Z. Ma

    2016-03-01

    Full Text Available Ozone pollution in eastern China has become one of the top environmental issues. Quantifying the temporal trend of surface ozone helps to assess the impacts of the anthropogenic precursor reductions and the likely effects of emission control strategies implemented. In this paper, ozone data collected at the Shangdianzi (SDZ regional atmospheric background station from 2003 to 2015 are presented and analyzed to obtain the variation in the trend of surface ozone in the most polluted region of China, north of eastern China or the North China Plain. A modified Kolmogorov–Zurbenko (KZ filter method was performed on the maximum daily average 8 h (MDA8 concentrations of ozone to separate the contributions of different factors from the variation of surface ozone and remove the influence of meteorological fluctuations on surface ozone. Results reveal that the short-term, seasonal and long-term components of ozone account for 36.4, 57.6 and 2.2 % of the total variance, respectively. The long-term trend indicates that the MDA8 has undergone a significant increase in the period of 2003–2015, with an average rate of 1.13 ± 0.01 ppb year−1 (R2 = 0.92. It is found that meteorological factors did not significantly influence the long-term variation of ozone and the increase may be completely attributed to changes in emissions. Furthermore, there is no significant correlation between the long-term O3 and NO2 trends. This study suggests that emission changes in VOCs might have played a more important role in the observed increase of surface ozone at SDZ.

  6. Acute effects of various weighted bat warm-up protocols on bat velocity.

    Science.gov (United States)

    Reyes, G Francis; Dolny, Dennis

    2009-10-01

    Although research has provided evidence of increased muscular performance following a facilitation set of resistance exercise, this has not been established for use prior to measuring baseball bat velocity. The purpose of this study was to determine the effectiveness of selected weighted bat warm-up protocols to enhance bat velocity in collegiate baseball players. Nineteen collegiate baseball players (age = 20.15 +/- 1.46 years) were tested for upper-body strength by a 3-repetition maximum (RM) bench press (mean = 97.98 +/- 14.54 kg) and mean bat velocity. Nine weighted bat warm-up protocols, utilizing 3 weighted bats (light = 794 g; standard = 850 g; heavy = 1,531 g) were swung in 3 sets of 6 repetitions in different orders. A control trial involved the warm-up protocol utilizing only the standard bat. Pearson product correlation revealed a significant relationship between 3RM strength and pretest bat velocity (r = 0.51, p = 0.01). Repeated measures analysis of variance (ANOVA) revealed no significant treatment effects of warm-up protocol on bat velocity. However, the order of standard, light, heavy bat sequence resulted in the greatest increase in bat velocity (+6.03%). These results suggest that upper-body muscle strength influences bat velocity. It appears that the standard, light, heavy warm-up order may provide the greatest benefit to increase subsequent bat velocity and may warrant use in game situations.

  7. Urgent need for warming experiments in tropical forests

    Science.gov (United States)

    Calaveri, Molly A.; Reed, Sasha C.; Smith, W. Kolby; Wood, Tana E.

    2015-01-01

    Although tropical forests account for only a fraction of the planet's terrestrial surface, they exchange more carbon dioxide with the atmosphere than any other biome on Earth, and thus play a disproportionate role in the global climate. In the next 20 years, the tropics will experience unprecedented warming, yet there is exceedingly high uncertainty about their potential responses to this imminent climatic change. Here, we prioritize research approaches given both funding and logistical constraints in order to resolve major uncertainties about how tropical forests function and also to improve predictive capacity of earth system models. We investigate overall model uncertainty of tropical latitudes and explore the scientific benefits and inevitable trade-offs inherent in large-scale manipulative field experiments. With a Coupled Model Intercomparison Project Phase 5 analysis, we found that model variability in projected net ecosystem production was nearly 3 times greater in the tropics than for any other latitude. Through a review of the most current literature, we concluded that manipulative warming experiments are vital to accurately predict future tropical forest carbon balance, and we further recommend the establishment of a network of comparable studies spanning gradients of precipitation, edaphic qualities, plant types, and/or land use change. We provide arguments for long-term, single-factor warming experiments that incorporate warming of the most biogeochemically active ecosystem components (i.e. leaves, roots, soil microbes). Hypothesis testing of underlying mechanisms should be a priority, along with improving model parameterization and constraints. No single tropical forest is representative of all tropical forests; therefore logistical feasibility should be the most important consideration for locating large-scale manipulative experiments. Above all, we advocate for multi-faceted research programs, and we offer arguments for what we consider the most

  8. Atmospheric Circulation Patterns over East Asia and Their Connection with Summer Precipitation and Surface Air Temperature in Eastern China during 1961-2013

    Science.gov (United States)

    Li, Shuping; Hou, Wei; Feng, Guolin

    2018-04-01

    Based on the NCEP/NCAR reanalysis data and Chinese observational data during 1961-2013, atmospheric circulation patterns over East Asia in summer and their connection with precipitation and surface air temperature in eastern China as well as associated external forcing are investigated. Three patterns of the atmospheric circulation are identified, all with quasi-barotropic structures: (1) the East Asia/Pacific (EAP) pattern, (2) the Baikal Lake/Okhotsk Sea (BLOS) pattern, and (3) the eastern China/northern Okhotsk Sea (ECNOS) pattern. The positive EAP pattern significantly increases precipitation over the Yangtze River valley and favors cooling north of the Yangtze River and warming south of the Yangtze River in summer. The warm sea surface temperature anomalies over the tropical Indian Ocean suppress convection over the northwestern subtropical Pacific through the Ekman divergence induced by a Kelvin wave and excite the EAP pattern. The positive BLOS pattern is associated with below-average precipitation south of the Yangtze River and robust cooling over northeastern China. This pattern is triggered by anomalous spring sea ice concentration in the northern Barents Sea. The anomalous sea ice concentration contributes to a Rossby wave activity flux originating from the Greenland Sea, which propagates eastward to North Pacific. The positive ECNOS pattern leads to below-average precipitation and significant warming over northeastern China in summer. The reduced soil moisture associated with the earlier spring snowmelt enhances surface warming over Mongolia and northeastern China and the later spring snowmelt leads to surface cooling over Far East in summer, both of which are responsible for the formation of the ECNOS pattern.

  9. Contrasting growth responses of dominant peatland plants to warming and vegetation composition.

    Science.gov (United States)

    Walker, Tom N; Ward, Susan E; Ostle, Nicholas J; Bardgett, Richard D

    2015-05-01

    There is growing recognition that changes in vegetation composition can strongly influence peatland carbon cycling, with potential feedbacks to future climate. Nevertheless, despite accelerated climate and vegetation change in this ecosystem, the growth responses of peatland plant species to combined warming and vegetation change are unknown. Here, we used a field warming and vegetation removal experiment to test the hypothesis that dominant species from the three plant functional types present (dwarf-shrubs: Calluna vulgaris; graminoids: Eriophorum vaginatum; bryophytes: Sphagnum capillifolium) contrast in their growth responses to warming and the presence or absence of other plant functional types. Warming was accomplished using open top chambers, which raised air temperature by approximately 0.35 °C, and we measured air and soil microclimate as potential mechanisms through which both experimental factors could influence growth. We found that only Calluna growth increased with experimental warming (by 20%), whereas the presence of dwarf-shrubs and bryophytes increased growth of Sphagnum (46%) and Eriophorum (20%), respectively. Sphagnum growth was also negatively related to soil temperature, which was lower when dwarf-shrubs were present. Dwarf-shrubs may therefore promote Sphagnum growth by cooling the peat surface. Conversely, the effect of bryophyte presence on Eriophorum growth was not related to any change in microclimate, suggesting other factors play a role. In conclusion, our findings reveal contrasting abiotic and biotic controls over dominant peatland plant growth, suggesting that community composition and carbon cycling could be modified by simultaneous climate and vegetation change.

  10. Specificity Responses of Grasshoppers in Temperate Grasslands to Diel Asymmetric Warming

    Science.gov (United States)

    Wu, Tingjuan; Hao, Shuguang; Sun, Osbert Jianxin; Kang, Le

    2012-01-01

    Background Global warming is characterized by not only an increase in the daily mean temperature, but also a diel asymmetric pattern. However, most of the current studies on climate change have only concerned with the mean values of the warming trend. Although many studies have been conducted concerning the responses of insects to climate change, studies that address the issue of diel asymmetric warming under field conditions are not found in the literature. Methodology/Principal Findings We conducted a field climate manipulative experiment and investigated developmental and demographic responses to diel asymmetric warming in three grasshopper species (an early-season species Dasyhippus barbipes, a mid-season species Oedaleus asiaticus, and a late-season species Chorthippus fallax). It was found that warming generally advanced the development of eggs and nymphs, but had no apparent impacts on the hatching rate of eggs, the emergence rate of nymphs and the survival and fecundity of adults in all the three species. Nighttime warming was more effective in advancing egg development than the daytime warming. The emergence time of adults was differentially advanced by warming in the three species; it was advanced by 5.64 days in C. fallax, 3.55 days in O. asiaticus, and 1.96 days in D. barbipes. This phenological advancement was associated with increases in the effective GDDs accumulation. Conclusions/Significance Results in this study indicate that the responses of the three grasshopper species to warming are influenced by several factors, including species traits, developmental stage, and the thermal sensitivity of the species. Moreover, species with diapausing eggs are less responsive to changes in temperature regimes, suggesting that development of diapausing eggs is a protective mechanism in early-season grasshopper for avoiding the risk of pre-winter hatching. Our results highlight the need to consider the complex relationships between climate change and

  11. Warm-up Practices in Elite Boxing Athletes: Impact on Power Output.

    Science.gov (United States)

    Cunniffe, Brian; Ellison, Mark; Loosemore, Mike; Cardinale, Marco

    2017-01-01

    Cunniffe, B, Ellison, M, Loosemore, M, and Cardinale, M. Warm-up practices in elite boxing athletes: Iimpact on power output. J Strength Cond Res 31(1): 95-105, 2017-This study evaluated the performance impact of routine warm-up strategies in elite Olympic amateur boxing athletes and physiological implications of the time gap (GAP) between warm-up and boxing activity. Six male boxers were assessed while performing standardized prefight warm-up routines. Core and skin temperature measurements (Tcore and Tskin), heart rate, and upper- and lower-body power output (PO) were assessed before and after warm-up, during a 25-minutes GAP and after 3 × 2 minutes rounds of sparring. Reflected temperature (Tc) was also determined using high-resolution thermal images at fixed time-points to explore avenues for heat loss. Despite individual differences in warm-up duration (range 7.4-18.5 minutes), increases in Tcore and Tskin occurred (p ≤ 0.05). Corresponding increases (4.8%; p ≤ 0.05) in countermovement jump (CMJ) height and upward-rightward shifts in upper-body force-velocity and power-velocity curves were observed. Athletes remained inactive during the 25-minutes GAP with a gradual and significant increase in Tc occurring by the end of GAP suggesting the likelihood of heat loss. Decreases in CMJ height and upper-body PO were observed after 15 minutes and 25 minutes GAP (p ≤ 0.05). By the end of GAP period, all performance variables had returned to pre-warm-up values. Results suggest routine warm-ups undertaken by elite boxers have acute effects on power-generating capacity. Gradual decreases in performance variables are evident with inactivity and seem related to alterations in body temperature. Considering the constraints of major competitions and time spent in air conditioned holding areas before fights, practitioners should be aware of the potential of nullifying the warm-up effects.

  12. Peatland Woody Plant Growth Responses to Warming and Elevated CO2 in a Southern-boreal Raised Bog Ecosystem

    Science.gov (United States)

    Phillips, J. R.; Hanson, P. J.; Warren, J.; Ward, E. J.; Brice, D. J.; Graham, J.

    2017-12-01

    Spruce and Peatland Responses Under Changing Environments (SPRUCE) is an in situ warming by elevated CO2 manipulation located in a high-carbon, spruce peatland in northern Minnesota. Warming treatments combined a 12-m diameter open topped chamber with internally recirculating warm air and soil deep heating to simulate a broad range of future warming treatments. Deep below ground soil warming rates are 0, +2.25, +4.5, +6.75, and +9 °C. Deep belowground warming was initiated in June 2014 followed by air warming in August 2015. In June 2016, elevated CO2 atmospheres (eCO2 at + 500 ppm) were added to half of the warming treatments in a regression design. Our objective was to track long-term vegetation responses to warming and eCO2. Annual tree growth is based on winter measurement of circumference of all Picea mariana and Larix laricina trees within each 113 m2 plot, automated dendrometers, terrestrial LIDAR scanning of tree heights and canopy volumes, and destructive allometry. Annual shrub growth is measured in late summer by destructive clipping in two 0.25 m2 sub-plots and separation of the current year tissues. During the first year of warming, tree basal area growth was reduced for Picea, but not Larix trees. Growth responses for the woody shrub vegetation remains highly variable with a trend towards increasing growth with warming. Elevated CO2 enhancements of growth are not yet evident in the data. Second-year results will also be reported. Long-term hypotheses for increased woody plant growth under warming include potential enhancements driven by increased nutrient availability from warming induced decomposition of surface peats.

  13. Isotopic composition of ice core air reveals abrupt Antarctic warming during and after Heinrich Event 1a

    Science.gov (United States)

    Morgan, J. D.; Bereiter, B.; Baggenstos, D.; Kawamura, K.; Shackleton, S. A.; Severinghaus, J. P.

    2017-12-01

    Antarctic temperature variations during Heinrich events, as recorded by δ18O­ice­, generally show more gradual changes than the abrupt warmings seen in Greenland ice. However, quantitative temperature interpretation of the water isotope temperature proxy is difficult as the relationship between δ18Oice and temperature is not constant through time. Fortunately, ice cores offer a second temperature proxy based on trapped gases. During times of surface warming, thermal fractionation of gases in the column of unconsolidated snow (firn) on top of the ice sheet results in isotopically heavier nitrogen (N2) and argon (Ar) being trapped in the ice core bubbles. During times of surface cooling, isotopically lighter gases are trapped. Measurements of δ15N and δ40Ar can therefore be used, in combination with a model for the height of the column of firn, to quantitatively reconstruct surface temperatures. In the WAIS Divide Ice Core, the two temperature proxies show a brief disagreement during Heinrich Stadial 1. Despite δ18Oice recording relatively constant temperature, the nitrogen and argon isotopes imply an abrupt warming between 16 and 15.8 kyr BP, manifest as an abrupt 1.25oC increase in the firn temperature gradient. To our knowledge, this would be the first evidence that such abrupt climate change has been recorded in an Antarctic climate proxy. If confirmed by more detailed studies, this event may represent warming due to an extreme southward shift of the Earth's thermal equator (and the southern hemisphere westerly wind belt), caused by the 16.1 ka Heinrich Event.

  14. Developmental and physiological challenges of octopus (Octopus vulgaris) early life stages under ocean warming.

    Science.gov (United States)

    Repolho, Tiago; Baptista, Miguel; Pimentel, Marta S; Dionísio, Gisela; Trübenbach, Katja; Lopes, Vanessa M; Lopes, Ana Rita; Calado, Ricardo; Diniz, Mário; Rosa, Rui

    2014-01-01

    The ability to understand and predict the effects of ocean warming (under realistic scenarios) on marine biota is of paramount importance, especially at the most vulnerable early life stages. Here we investigated the impact of predicted environmental warming (+3 °C) on the development, metabolism, heat shock response and antioxidant defense mechanisms of the early stages of the common octopus, Octopus vulgaris. As expected, warming shortened embryonic developmental time by 13 days, from 38 days at 18 °C to 25 days at 21 °C. Concomitantly, survival decreased significantly (~29.9 %). Size at hatching varied inversely with temperature, and the percentage of smaller premature paralarvae increased drastically, from 0 % at 18 °C to 17.8 % at 21 °C. The metabolic costs of the transition from an encapsulated embryo to a free planktonic form increased significantly with warming, and HSP70 concentrations and glutathione S-transferase activity levels were significantly magnified from late embryonic to paralarval stages. Yet, despite the presence of effective antioxidant defense mechanisms, ocean warming led to an augmentation of malondialdehyde levels (an indicative of enhanced ROS action), a process considered to be one of the most frequent cellular injury mechanisms. Thus, the present study provides clues about how the magnitude and rate of ocean warming will challenge the buffering capacities of octopus embryos and hatchlings' physiology. The prediction and understanding of the biochemical and physiological responses to warmer temperatures (under realistic scenarios) is crucial for the management of highly commercial and ecologically important species, such as O. vulgaris.

  15. Evaluation of the Committed Carbon Emissions and Global Warming due to the Permafrost Carbon Feedback

    Science.gov (United States)

    Elshorbany, Y. F.; Schaefer, K. M.; Jafarov, E. E.; Yumashev, D.; Hope, C.

    2017-12-01

    We quantify the increase in carbon emissions and temperature due to Permafrost Carbon feedback (PCF), defined as the amplification of anthropogenic warming due to carbon emissions from thawing permafrost (i.e., of near-surface layers to 3 m depth). We simulate the Committed PCF emissions, the cumulative total emissions from thawing permafrost by 2300 for a given global temperature increase by 2100, and investigate the resulting global warming using the Simple Biosphere/Carnegie-Ames-Stanford Approach SiBCASA model. We estimate the committed PCF emissions and warming for the Fifth Assessment Report, Representative Concentration Pathway scenarios 4.5 and 8.5 using two ensembles of five projections. For the 2 °C warming target of the global climate change treaty, committed PCF emissions increase to 24 Gt C by 2100 and 76 Gt C by 2300 and the committed PCF warming is 0.23 °C by 2300. Our calculations show that as the global temperature increase by 2100 approaches 5.8 °C, the entire stock of frozen carbon thaws out, resulting in maximum committed PCF emissions of 560 Gt C by 2300.

  16. The Great Warming Brian Fagan

    Science.gov (United States)

    Fagan, B. M.

    2010-12-01

    The Great Warming is a journey back to the world of a thousand years ago, to the Medieval Warm Period. Five centuries of irregular warming from 800 to 1250 had beneficial effects in Europe and the North Atlantic, but brought prolonged droughts to much of the Americas and lands affected by the South Asian monsoon. The book describes these impacts of warming on medieval European societies, as well as the Norse and the Inuit of the far north, then analyzes the impact of harsh, lengthy droughts on hunting societies in western North America and the Ancestral Pueblo farmers of Chaco Canyon, New Mexico. These peoples reacted to drought by relocating entire communities. The Maya civilization was much more vulnerable that small-scale hunter-gatherer societies and subsistence farmers in North America. Maya rulers created huge water storage facilities, but their civilization partially collapsed under the stress of repeated multiyear droughts, while the Chimu lords of coastal Peru adapted with sophisticated irrigation works. The climatic villain was prolonged, cool La Niñalike conditions in the Pacific, which caused droughts from Venezuela to East Asia, and as far west as East Africa. The Great Warming argues that the warm centuries brought savage drought to much of humanity, from China to Peru. It also argues that drought is one of the most dangerous elements in today’s humanly created global warming, often ignored by preoccupied commentators, but with the potential to cause over a billion people to starve. Finally, I use the book to discuss the issues and problems of communicating multidisciplinary science to the general public.

  17. Climatic warming destabilizes forest ant communities.

    Science.gov (United States)

    Diamond, Sarah E; Nichols, Lauren M; Pelini, Shannon L; Penick, Clint A; Barber, Grace W; Cahan, Sara Helms; Dunn, Robert R; Ellison, Aaron M; Sanders, Nathan J; Gotelli, Nicholas J

    2016-10-01

    How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable.

  18. Global Trend Analysis of Multi-decade Soil Temperature Records Show Soils Resistant to Warming

    Science.gov (United States)

    Frey, S. D.; Jennings, K.

    2017-12-01

    Soil temperature is an important determinant of many subterranean ecological processes including plant growth, nutrient cycling, and carbon sequestration. Soils are expected to warm in response to increasing global surface temperatures; however, despite the importance of soil temperature to ecosystem processes, less attention has been given to examining changes in soil temperature over time. We collected long-term (> 20 years) soil temperature records from approximately 50 sites globally, many with multiple depths (5 - 100 cm), and examined temperature trends over the last few decades. For each site and depth we calculated annual summer means and conducted non-parametric Mann Kendall trend and Sen slope analysis to assess changes in summer soil temperature over the length of each time series. The mean summer soil temperature trend across all sites and depths was not significantly different than zero (mean = 0.004 °C year-1 ± 0.033 SD), suggesting that soils have not warmed over the observation period. Of the subset of sites that exhibit significant increases in temperature over time, site location, depth of measurement, time series length, and neither start nor end date seem to be related to trend strength. These results provide evidence that the thermal regime of soils may have a stronger buffering capacity than expected, having important implications for the global carbon cycle and feedbacks to climate change.

  19. Soil warming for utilization and dissipation of waste heat in Pennsylvania

    International Nuclear Information System (INIS)

    DeWalle, D.R.; Chapura, A.M. Jr.

    1978-01-01

    The feasibility of using soil warming for utilization and dissipation of reject heat from power plants was demonstrated in a year-long test operation of a field prototype in Pennsylvania. A parallel network of 5-mm-diam polyethylene pipes was buried at a 0.3-m depth and with 0.6-m spacing in the soil covering a 15- x 60-m area to convey hot water simulating condenser cooling water from a power plant. Crop response to the heated soil varied: Snap beans and warm season forage crops such as sudangrass responded with increased yields, while cool season forage crops experienced decreased yields. Winter wheat yields were also increased, but winter barley was winter-killed due to delayed development of cold tolerance in the warm soil. Heat dissipation from the buried pipes was primarily by thermal conduction to the soil surface. Rates of heat loss from the buried pipes were most accurately predicted using an equation that included an explicit term for heat conduction below the pipes. Estimated soil warming land area necessary to dissipate all the reject heat from a 33% efficiency, 1500-MW electrical power plant based on minimum measured summer heat loss rates was 76 km 2 compared to the economic optimum of 18.2 km 2 determined as the least-cost system

  20. Effects of experimental warming and nitrogen addition on soil respiration and CH4 fluxes from crop rotations of winter wheat–soybean/fallow

    DEFF Research Database (Denmark)

    Liu, L; Hu, C; Yang, P

    2015-01-01

    Soil respiration and CH4 emissions play a significant role in the global carbon balance. However, in situ studies in agricultural soils on responses of soil respiration and CH4 fluxes to climate warming are still sparse, especially from long-term studies with year-round heating. A warming...... by affecting soil NH4 concentration. Across years, CH4 emissions were negatively correlated with soil temperature in N1 treatment. Soil respiration showed clear seasonal fluctuations, with the largest emissions during summer and smallest in winter. Warming and nitrogen fertilization had no significant effects...... on total cumulative soil CO2 fluxes. Soil respiration was positively correlated with microbial biomass C, and microbial biomass C was not affected significantly by warming or nitrogen addition. The lack of significant effects of warming on soil respiration may have resulted from: (1) warming-induced soil...

  1. Climate change, global warming and coral reefs: modelling the effects of temperature.

    Science.gov (United States)

    Crabbe, M James C

    2008-10-01

    Climate change and global warming have severe consequences for the survival of scleractinian (reef-building) corals and their associated ecosystems. This review summarizes recent literature on the influence of temperature on coral growth, coral bleaching, and modelling the effects of high temperature on corals. Satellite-based sea surface temperature (SST) and coral bleaching information available on the internet is an important tool in monitoring and modelling coral responses to temperature. Within the narrow temperature range for coral growth, corals can respond to rate of temperature change as well as to temperature per se. We need to continue to develop models of how non-steady-state processes such as global warming and climate change will affect coral reefs.

  2. Warm natural inflation

    International Nuclear Information System (INIS)

    Mishra, Hiranmaya; Mohanty, Subhendra; Nautiyal, Akhilesh

    2013-01-01

    In warm inflation models there is the requirement of generating large dissipative couplings of the inflation with radiation, while at the same Âătime, not de-stabilising the flatness of the inflation potential due to radiative corrections. One way to achieve this without fine tuning unrelated couplings is by supersymmetry. In this talk we will discuss warm inflation with Pseudo-Nambu-Goldstone Bosons (PNGB). In this case inflation and other light fields are PNGB. So, the radiative corrections to the potential are suppressed and the thermal Âăcorrections are small as long as the temperature is below the symmetry breaking scale. In such models it is possible to fulfill the contrary requirements of an inflation potential which is stable under radiative corrections and the generation of a large dissipative coupling of the inflation field with other light fields. This warm inflation model with PNGB gives the observed CMB-anisotropy amplitude and spectral index having the symmetry breaking scale at the GUT scale. (author)

  3. ON THE PAUSED WARMING CONTROVERSY BASED ON IPCC AR5 AND BEYOND

    Directory of Open Access Journals (Sweden)

    MIKA J.

    2014-03-01

    Full Text Available The paused warming since ca. 2002 (maybe, 1998 is not satisfactorily reflected by the IPCC WGI (2013 Report. The aim of the present study is to collect, present and discuss the key arguments of the issue, selected strictly from this valuable Report. Our study tackles three aspects: (i Symptoms of pausing, including atmospheric changes, near-surface oceans, cryosphere and geographical differences. (ii Possible reasons of the paused warming, including external forcing factors, playing rather minor role, and the enhanced ocean heat uptake. Though missing warming is 0.2 K/decade compared to the model expectations, the whole climate system integrates continuously increasing amount of heat, 95 % of which is locked in the oceans. (iii Consequences of the pausing for the three main branches of the IPCC activity. For climate science, correct simulation of the enhanced heat uptake is a challenge. Since characteristic time scale of most adaptation measures is 1-2 decades, or shorter, near-term projections may not drive adaptation until climate models become able meet this challenge. On the other hand, pausing warming does not question the need for mitigation, since it is physically unlikely, that oceans can uptake endless amount of heat. Vertical temperature gradients of the upper ocean layers already show stagnation.

  4. The Response of a Branch of Puget Sound, Washington to the 2014 North Pacific Warm Anomaly

    Science.gov (United States)

    Mickett, J.; Newton, J.; Devol, A.; Krembs, C.; Ruef, W.

    2016-02-01

    The flow of the unprecedentedly-warm upper-ocean North Pacific "Blob" water into Puget Sound, Washington, caused local extreme water property anomalies that extended from the arrival of the water inshore in the fall of 2014 through 2015. Here we report on moored and seaplane observations from Hood Canal, a branch of Puget Sound, where temperature was more than 2σ above climatology for much of the year with maximum temperature anomalies at depth and at the surface +2.5 °C and +7 °C respectively. The low density of the oceanic warm "Blob" water resulted in weak deep water flushing in Hood Canal in the fall of 2014, which combined with a lack of wintertime flushing to result in anomalously-low dissolved oxygen (DO) concentrations at depth. Late-summer 2015 DO values were the lowest in a decade of mooring observations and more than 2σ below climatology. The anomalously low density of the deep basin water allowed a very early onset of the annually-occurring, late-summer intrusion, which first entered Hood Canal at the end of July compared to the usual arrival in early to mid-September. In late August this intrusion conspired with an early fall storm to lift the very low DO deep water to surface at the south end of Hood Canal, causing a significant fish kill event.

  5. Tropical sea surface temperatures and the earth's orbital eccentricity cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Fernandes, A.A.; Mohan, R.

    The tropical oceanic warm pools are climatologically important regions because their sea surface temperatures (SSTs) are positively related to atmospheric greenhouse effect and the cumulonimbus-cirrus cloud anvil. Such a warm pool is also present...

  6. Disentangling Global Warming, Multidecadal Variability, and El Niño in Pacific Temperatures

    Science.gov (United States)

    Wills, Robert C.; Schneider, Tapio; Wallace, John M.; Battisti, David S.; Hartmann, Dennis L.

    2018-03-01

    A key challenge in climate science is to separate observed temperature changes into components due to internal variability and responses to external forcing. Extended integrations of forced and unforced climate models are often used for this purpose. Here we demonstrate a novel method to separate modes of internal variability from global warming based on differences in time scale and spatial pattern, without relying on climate models. We identify uncorrelated components of Pacific sea surface temperature variability due to global warming, the Pacific Decadal Oscillation (PDO), and the El Niño-Southern Oscillation (ENSO). Our results give statistical representations of PDO and ENSO that are consistent with their being separate processes, operating on different time scales, but are otherwise consistent with canonical definitions. We isolate the multidecadal variability of the PDO and find that it is confined to midlatitudes; tropical sea surface temperatures and their teleconnections mix in higher-frequency variability. This implies that midlatitude PDO anomalies are more persistent than previously thought.

  7. Impacts of warming on phytoplankton abundance and phenology in a typical tropical marine ecosystem

    KAUST Repository

    Gittings, John; Raitsos, Dionysios E.; Krokos, George; Hoteit, Ibrahim

    2018-01-01

    In the tropics, thermal stratification (during warm conditions) may contribute to a shallowing of the mixed layer above the nutricline and a reduction in the transfer of nutrients to the surface lit-layer, ultimately limiting phytoplankton growth. Using remotely sensed observations and modelled datasets, we study such linkages in the northern Red Sea (NRS) - a typical tropical marine ecosystem. We assess the interannual variability (1998-2015) of both phytoplankton biomass and phenological indices (timing of bloom initiation, duration and termination) in relation to regional warming. We demonstrate that warmer conditions in the NRS are associated with substantially weaker winter phytoplankton blooms, which initiate later, terminate earlier and are shorter in their overall duration (~ 4 weeks). These alterations are directly linked with the strength of atmospheric forcing (air-sea heat fluxes) and vertical stratification (mixed layer depth [MLD]). The interannual variability of sea surface temperature (SST) is found to be a good indicator of phytoplankton abundance, but appears to be less important for predicting bloom timing. These findings suggest that future climate warming scenarios may have a two-fold impact on phytoplankton growth in tropical marine ecosystems: 1) a reduction in phytoplankton abundance and 2) alterations in the timing of seasonal phytoplankton blooms.

  8. Impacts of warming on phytoplankton abundance and phenology in a typical tropical marine ecosystem

    KAUST Repository

    Gittings, John

    2018-01-29

    In the tropics, thermal stratification (during warm conditions) may contribute to a shallowing of the mixed layer above the nutricline and a reduction in the transfer of nutrients to the surface lit-layer, ultimately limiting phytoplankton growth. Using remotely sensed observations and modelled datasets, we study such linkages in the northern Red Sea (NRS) - a typical tropical marine ecosystem. We assess the interannual variability (1998-2015) of both phytoplankton biomass and phenological indices (timing of bloom initiation, duration and termination) in relation to regional warming. We demonstrate that warmer conditions in the NRS are associated with substantially weaker winter phytoplankton blooms, which initiate later, terminate earlier and are shorter in their overall duration (~ 4 weeks). These alterations are directly linked with the strength of atmospheric forcing (air-sea heat fluxes) and vertical stratification (mixed layer depth [MLD]). The interannual variability of sea surface temperature (SST) is found to be a good indicator of phytoplankton abundance, but appears to be less important for predicting bloom timing. These findings suggest that future climate warming scenarios may have a two-fold impact on phytoplankton growth in tropical marine ecosystems: 1) a reduction in phytoplankton abundance and 2) alterations in the timing of seasonal phytoplankton blooms.

  9. How much do direct livestock emissions actually contribute to global warming?

    Science.gov (United States)

    Reisinger, Andy; Clark, Harry

    2018-04-01

    Agriculture directly contributes about 10%-12% of current global anthropogenic greenhouse gas emissions, mostly from livestock. However, such percentage estimates are based on global warming potentials (GWPs), which do not measure the actual warming caused by emissions and ignore the fact that methane does not accumulate in the atmosphere in the same way as CO 2 . Here, we employ a simple carbon cycle-climate model, historical estimates and future projections of livestock emissions to infer the fraction of actual warming that is attributable to direct livestock non-CO 2 emissions now and in future, and to CO 2 from pasture conversions, without relying on GWPs. We find that direct livestock non-CO 2 emissions caused about 19% of the total modelled warming of 0.81°C from all anthropogenic sources in 2010. CO 2 from pasture conversions contributed at least another 0.03°C, bringing the warming directly attributable to livestock to 23% of the total warming in 2010. The significance of direct livestock emissions to future warming depends strongly on global actions to reduce emissions from other sectors. Direct non-CO 2 livestock emissions would contribute only about 5% of the warming in 2100 if emissions from other sectors increase unabated, but could constitute as much as 18% (0.27°C) of the warming in 2100 if global CO 2 emissions from other sectors are reduced to near or below zero by 2100, consistent with the goal of limiting warming to well below 2°C. These estimates constitute a lower bound since indirect emissions linked to livestock feed production and supply chains were not included. Our estimates demonstrate that expanding the mitigation potential and realizing substantial reductions of direct livestock non-CO 2 emissions through demand and supply side measures can make an important contribution to achieve the stringent mitigation goals set out in the Paris Agreement, including by increasing the carbon budget consistent with the 1.5°C goal. © 2017 John

  10. Warming of intravenous and irrigation fluids for preventing inadvertent perioperative hypothermia.

    Science.gov (United States)

    Campbell, Gillian; Alderson, Phil; Smith, Andrew F; Warttig, Sheryl

    2015-04-13

    Inadvertent perioperative hypothermia (a drop in core temperature to below 36°C) occurs because of interference with normal temperature regulation by anaesthetic drugs, exposure of skin for prolonged periods and receipt of large volumes of intravenous and irrigation fluids. If the temperature of these fluids is below core body temperature, they can cause significant heat loss. Warming intravenous and irrigation fluids to core body temperature or above might prevent some of this heat loss and subsequent hypothermia. To estimate the effectiveness of preoperative or intraoperative warming, or both, of intravenous and irrigation fluids in preventing perioperative hypothermia and its complications during surgery in adults. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (2014, Issue 2), MEDLINE Ovid SP (1956 to 4 February 2014), EMBASE Ovid SP (1982 to 4 February 2014), the Institute for Scientific Information (ISI) Web of Science (1950 to 4 February 2014), Cumulative Index to Nursing and Allied Health Literature (CINAHL) EBSCOhost (1980 to 4 February 2014) and reference lists of identified articles. We also searched the Current Controlled Trials website and ClinicalTrials.gov. We included randomized controlled trials or quasi-randomized controlled trials comparing fluid warming methods versus standard care or versus other warming methods used to maintain normothermia. Two review authors independently extracted data from eligible trials and settled disputes with a third review author. We contacted study authors to ask for additional details when needed. We collected data on adverse events only if they were reported in the trials. We included in this review 24 studies with a total of 1250 participants. The trials included various numbers and types of participants. Investigators used a range of methods to warm fluids to temperatures between 37°C and 41°C. We found that evidence was of moderate quality because descriptions of trial design were

  11. Slowing global warming biotically - Options for the United States

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Each of the five biotic approaches introduced in Chapter 2 is applicable to some extent in the US. Taking US land-use characteristics into account, a menu of policy options tailored to US carbon storage opportunities is presented. Several of the options are capable of significantly reducing net US carbon emissions; several offer corollary benefits in areas other than global warming mitigation. The time frame and costs of the different options vary widely, although in most cases some level of implementation appears economically justified even without considering global warming. The approach, projected costs, and advantages of seven different policy options are profiled

  12. A warm-season comparison of WRF coupled to the CLM4.0, Noah-MP, and Bucket hydrology land surface schemes over the central USA

    Science.gov (United States)

    Van Den Broeke, Matthew S.; Kalin, Andrew; Alavez, Jose Abraham Torres; Oglesby, Robert; Hu, Qi

    2017-11-01

    In climate modeling studies, there is a need to choose a suitable land surface model (LSM) while adhering to available resources. In this study, the viability of three LSM options (Community Land Model version 4.0 [CLM4.0], Noah-MP, and the five-layer thermal diffusion [Bucket] scheme) in the Weather Research and Forecasting model version 3.6 (WRF3.6) was examined for the warm season in a domain centered on the central USA. Model output was compared to Parameter-elevation Relationships on Independent Slopes Model (PRISM) data, a gridded observational dataset including mean monthly temperature and total monthly precipitation. Model output temperature, precipitation, latent heat (LH) flux, sensible heat (SH) flux, and soil water content (SWC) were compared to observations from sites in the Central and Southern Great Plains region. An overall warm bias was found in CLM4.0 and Noah-MP, with a cool bias of larger magnitude in the Bucket model. These three LSMs produced similar patterns of wet and dry biases. Model output of SWC and LH/SH fluxes were compared to observations, and did not show a consistent bias. Both sophisticated LSMs appear to be viable options for simulating the effects of land use change in the central USA.

  13. Combining observations and models to reduce uncertainty in the cloud response to global warming

    Science.gov (United States)

    Norris, J. R.; Myers, T.; Chellappan, S.

    2017-12-01

    Currently there is large uncertainty on how subtropical low-level clouds will respond to global warming and whether they will act as a positive feedback or negative feedback. Global climate models substantially agree on what changes in atmospheric structure and circulation will occur with global warming but greatly disagree over how clouds will respond to these changes in structure and circulation. An examination of models with the most realistic simulations of low-level cloudiness indicates that the model cloud response to atmospheric changes associated with global warming is quantitatively similar to the model cloud response to atmospheric changes at interannual time scales. For these models, the cloud response to global warming predicted by multilinear regression using coefficients derived from interannual time scales is quantitatively similar to the cloud response to global warming directly simulated by the model. Since there is a large spread among cloud response coefficients even among models with the most realistic cloud simulations, substitution of coefficients derived from satellite observations reduces the uncertainty range of the low-level cloud feedback. Increased sea surface temperature associated with global warming acts to reduce low-level cloudiness, which is partially offset by increased lower tropospheric stratification that acts to enhance low-level cloudiness. Changes in free-tropospheric relative humidity, subsidence, and horizontal advection have only a small impact on low-level cloud. The net reduction in subtropical low-level cloudiness increases absorption of solar radiation by the climate system, thus resulting in a weak positive feedback.

  14. Effect of Submaximal Warm-up Exercise on Exercise-induced Asthma in African School Children.

    Science.gov (United States)

    Mtshali, B F; Mokwena, K; Oguntibeju, O O

    2015-03-01

    and chest pain was significant (p warm-up was 4.43 L/min. The mean PEFR after exercise (warm-up) was 4.98. The mean percentage change in PEFR between exercise without warm-up and exercise with warm-up was 14.83%. The paired t-test showed a significant difference between PEFR with warm-up and PEFR without warm-up (p warm-up was significant in reducing EIA. This study reports the effect of warm-up exercise on EIA and highlights the need to screen school children for EIA.

  15. Comparative Evaluation of Effect of Water Absorption on the Surface Properties of Heat Cure Acrylic: An in vitro Study

    Science.gov (United States)

    Chandu, G S; Asnani, Pooja; Gupta, Siddarth; Faisal Khan, Mohd.

    2015-01-01

    Background: Use of alkaline peroxide denture cleanser with different temperature of water could cause a change in surface hardness of the acrylic denture and also has a bleaching effect. The purpose of the study was to determine the effect of increased water content during thermal cycling of hot water-treated acrylic on the surface hardness of acrylic denture base when compared to warm water treated acrylic. And to compare the bleaching effect of alkaline peroxide solution on the acrylic denture base on hot water and warm water treated acrylic. Materials and Methods: Forty samples (10 mm × 10 mm × 2.5 mm) were prepared. After the calculation of the initial hardness 40 samples, each was randomly assigned to two groups. Group A: 20 samples were immersed in 250 ml of warm distilled water at 40°C with alkaline peroxide tablet. Group B: 20 samples were immersed in 250 ml of hot distilled water at 100°C with alkaline peroxide tablet. The surface hardness of each test sample was obtained using the digital hardness testing machine recording the Rockwell hardness number before the beginning of the soaking cycles and after completion of 30 soak cycles and compared. Values were analyzed using paired t-test. Five samples from the Group A and five samples from Group B were put side by side and photographed using a Nikon D 40 digital SLR Camera and the photographs were examined visually to assess the change in color. Results: Acrylic samples immersed in hot water showed a statistically significant decrease of 5.8% in surface hardness. And those immersed in warm water showed a statistically insignificant increase of 0.67% in surface hardness. Samples from the two groups showed clinically insignificant difference in color when compared to each other on examination of the photographs. Conclusion: Thermocycling of the acrylic resin at different water bath temperature at 40°C and 100°C showed significant changes in the surface hardness. PMID:25954074

  16. Experimental and natural warming elevates mercury concentrations in estuarine fish.

    Directory of Open Access Journals (Sweden)

    Jennifer A Dijkstra

    Full Text Available Marine food webs are the most important link between the global contaminant, methylmercury (MeHg, and human exposure through consumption of seafood. Warming temperatures may increase human exposure to MeHg, a potent neurotoxin, by increasing MeHg production as well as bioaccumulation and trophic transfer through marine food webs. Studies of the effects of temperature on MeHg bioaccumulation are rare and no study has specifically related temperature to MeHg fate by linking laboratory experiments with natural field manipulations in coastal ecosystems. We performed laboratory and field experiments on MeHg accumulation under varying temperature regimes using the killifish, Fundulus heteroclitus. Temperature treatments were established in salt pools on a coastal salt marsh using a natural temperature gradient where killifish fed on natural food sources. Temperatures were manipulated across a wider range in laboratory experiments with killifish exposed to MeHg enriched food. In both laboratory microcosms and field mesocosms, MeHg concentrations in killifish significantly increased at elevated temperatures. Moreover, in field experiments, other ancillary variables (salinity, MeHg in sediment, etc. did not relate to MeHg bioaccumulation. Modeling of laboratory experimental results suggested increases in metabolic rate as a driving factor. The elevated temperatures we tested are consistent with predicted trends in climate warming, and indicate that in the absence of confounding factors, warmer sea surface temperatures could result in greater in bioaccumulation of MeHg in fish, and consequently, increased human exposure.

  17. Warm water upwelling in the Cenozoic Era

    Science.gov (United States)

    Zhang, Y.

    2017-12-01

    Modern observations show that the occurrence of wind-driven upwelling is often tied to cold sea surface temperatures (SSTs). However, SST reconstructions indicate that globally, the upwelling regions were much warmer in the Miocene and Pliocene. This questions the overall strength of deep-water upwelling in the geological past, with important implications for the associated atmospheric, climatic and biogeochemical processes, and the fate of upwelling regions in a high-CO2 world. We recently showed that the eastern equatorial Pacific (EEP) was characterized by strong air-sea disequilibrium of CO2 during the late Miocene - Pliocene. Combined with export productivity proxies, we interpreted these as signs of vigorous upwelling. The upwelled waters were nutrient- and CO2-rich, but warm. The cause of the "excess" warming in the upwelling regions is linked to the source waters which originated from the higher latitudes. In other words, the reduced east (upwelling) to west (non-upwelling) temperature gradients along the equator in major ocean basins are rooted in the reduced meridional temperature gradients. To further test this hypothesis, we examine the history of the EEP and temperature gradients during the even-warmer Eocene - middle Miocene.

  18. Experimental soil warming shifts the fungal community composition at the alpine treeline.

    Science.gov (United States)

    Solly, Emily F; Lindahl, Björn D; Dawes, Melissa A; Peter, Martina; Souza, Rômulo C; Rixen, Christian; Hagedorn, Frank

    2017-07-01

    Increased CO 2 emissions and global warming may alter the composition of fungal communities through the removal of temperature limitation in the plant-soil system, faster nitrogen (N) cycling and changes in the carbon (C) allocation of host plants to the rhizosphere. At a Swiss treeline featuring Larix decidua and Pinus uncinata, the effects of multiple years of CO 2 enrichment and experimental soil warming on the fungal community composition in the organic horizons were analysed using 454-pyrosequencing of ITS2 amplicons. Sporocarp production and colonization of ectomycorrhizal root tips were investigated in parallel. Fungal community composition was significantly altered by soil warming, whereas CO 2 enrichment had little effect. Tree species influenced fungal community composition and the magnitude of the warming responses. The abundance of ectomycorrhizal fungal taxa was positively correlated with N availability, and ectomycorrhizal taxa specialized for conditions of high N availability proliferated with warming, corresponding to considerable increases in inorganic N in warmed soils. Traits related to N utilization are important in determining the responses of ectomycorrhizal fungi to warming in N-poor cold ecosystems. Shifts in the overall fungal community composition in response to higher temperatures may alter fungal-driven processes with potential feedbacks on ecosystem N cycling and C storage at the alpine treeline. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. The global warming problem

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this chapter, a discussion is presented of the global warming problem and activities contributing to the formation of acid rain, urban smog and to the depletion of the ozone layer. Globally, about two-thirds of anthropogenic carbon dioxide emissions arise from fossil-fuel burning; the rest arise primarily from deforestation. Chlorofluorocarbons are the second largest contributor to global warming, accounting for about 20% of the total. The third largest contributor is methane, followed by ozone and nitrous oxide. A study of current activities in the US that contribute to global warming shows the following: electric power plants account for about 33% of carbon dioxide emissions; motor vehicles, planes and ships (31%); industrial plants (24%); commercial and residential buildings (11%)

  20. Shrinkage of body size of small insects: A possible link to global warming?

    International Nuclear Information System (INIS)

    He Jihuan

    2007-01-01

    The increase of global mean surface temperature leads to the increase of metabolic rate. This might lead to an unexpected threat from the small insect world. Global warming shrinks cell size, shorten lifespan, and accelerate evolution. The present note speculates on possible connections between allometry and E-infinity theory

  1. Effects of bedtime periocular and posterior cervical cutaneous warming on sleep status in adult male subjects: a preliminary study.

    Science.gov (United States)

    Igaki, Michihito; Suzuki, Masahiro; Sakamoto, Ichiro; Ichiba, Tomohisa; Kuriyama, Kenichi; Uchiyama, Makoto

    2018-01-01

    Appropriate warming of the periocular or posterior cervical skin has been reported to induce autonomic or mental relaxation in humans. To clarify the effects of cutaneous warming on human sleep, eight male subjects with mild sleep difficulties were asked to try three experimental conditions at home, each lasting for 5 days, in a cross-over manner: warming of the periocular skin with a warming device for 10 min before habitual bedtime, warming of the posterior cervical skin with a warming device for 30 min before habitual bedtime, and no treatment as a control. The warming device had a heat- and steam-generating sheet that allowed warming of the skin to 40 °C through a chemical reaction with iron. Electroencephalograms (EEGs) were recorded during nocturnal sleep using an ambulatory EEG device and subjected to spectral analysis. All the participants reported their sleep status using a visual analog scale. We found that warming of the periocular or posterior cervical skin significantly improved subjective sleep status relative to the control. The EEG delta power density in the first 90 min of the sleep episode was significantly increased under both warming of the periocular or posterior cervical skin relative to the control. These results suggest that warming of appropriate skin regions may have favorable effects on subjective and objective sleep quality.

  2. Warming alters energetic structure and function but not resilience of soil food webs

    Science.gov (United States)

    Schwarz, Benjamin; Barnes, Andrew D.; Thakur, Madhav P.; Brose, Ulrich; Ciobanu, Marcel; Reich, Peter B.; Rich, Roy L.; Rosenbaum, Benjamin; Stefanski, Artur; Eisenhauer, Nico

    2017-12-01

    Climate warming is predicted to alter the structure, stability, and functioning of food webs1-5. Yet, despite the importance of soil food webs for energy and nutrient turnover in terrestrial ecosystems, the effects of warming on these food webs—particularly in combination with other global change drivers—are largely unknown. Here, we present results from two complementary field experiments that test the interactive effects of warming with forest canopy disturbance and drought on energy flux in boreal-temperate ecotonal forest soil food webs. The first experiment applied a simultaneous above- and belowground warming treatment (ambient, +1.7 °C, +3.4 °C) to closed-canopy and recently clear-cut forest, simulating common forest disturbance6. The second experiment crossed warming with a summer drought treatment (-40% rainfall) in the clear-cut habitats. We show that warming reduces energy flux to microbes, while forest canopy disturbance and drought facilitates warming-induced increases in energy flux to higher trophic levels and exacerbates the reduction in energy flux to microbes, respectively. Contrary to expectations, we find no change in whole-network resilience to perturbations, but significant losses in ecosystem functioning. Warming thus interacts with forest disturbance and drought, shaping the energetic structure of soil food webs and threatening the provisioning of multiple ecosystem functions in boreal-temperate ecotonal forests.

  3. Carbon dioxide flux and net primary production of a boreal treed bog: Responses to warming and water-table-lowering simulations of climate change

    Science.gov (United States)

    Munir, T. M.; Perkins, M.; Kaing, E.; Strack, M.

    2015-02-01

    Midlatitude treed bogs represent significant carbon (C) stocks and are highly sensitive to global climate change. In a dry continental treed bog, we compared three sites: control, recent (1-3 years; experimental) and older drained (10-13 years), with water levels at 38, 74 and 120 cm below the surface, respectively. At each site we measured carbon dioxide (CO2) fluxes and estimated tree root respiration (Rr; across hummock-hollow microtopography of the forest floor) and net primary production (NPP) of trees during the growing seasons (May to October) of 2011-2013. The CO2-C balance was calculated by adding the net CO2 exchange of the forest floor (NEff-Rr) to the NPP of the trees. From cooler and wetter 2011 to the driest and the warmest 2013, the control site was a CO2-C sink of 92, 70 and 76 g m-2, the experimental site was a CO2-C source of 14, 57 and 135 g m-2, and the drained site was a progressively smaller source of 26, 23 and 13 g CO2-C m-2. The short-term drainage at the experimental site resulted in small changes in vegetation coverage and large net CO2 emissions at the microforms. In contrast, the longer-term drainage and deeper water level at the drained site resulted in the replacement of mosses with vascular plants (shrubs) on the hummocks and lichen in the hollows leading to the highest CO2 uptake at the drained hummocks and significant losses in the hollows. The tree NPP (including above- and below-ground growth and litter fall) in 2011 and 2012 was significantly higher at the drained site (92 and 83 g C m-2) than at the experimental (58 and 55 g C m-2) and control (52 and 46 g C m-2) sites. We also quantified the impact of climatic warming at all water table treatments by equipping additional plots with open-top chambers (OTCs) that caused a passive warming on average of ~ 1 °C and differential air warming of ~ 6 °C at midday full sun over the study years. Warming significantly enhanced shrub growth and the CO2 sink function of the drained

  4. Nitrogen Addition and Understory Removal but Not Soil Warming Increased Radial Growth of Pinus cembra at Treeline in the Central Austrian Alps

    Directory of Open Access Journals (Sweden)

    Andreas Gruber

    2018-05-01

    Full Text Available Beside low temperatures, limited tree growth at the alpine treeline may also be attributed to a lack of available soil nutrients and competition with understory vegetation. Although intra-annual stem growth of Pinus cembra has been studied intensively at the alpine treeline, the responses of radial growth to soil warming, soil fertilization, and below ground competition awaits clarification. In this study we quantified the effects of nitrogen (N fertilization, soil warming, and understory removal on stem radial growth of P. cembra at treeline. Soil warming was achieved by roofing the forest floor with a transparent polyvinyl skin, while understory competition was prevented by shading the forest floor with a non-transparent foil around six trees each. Six trees received N- fertilization and six other trees served as controls. Stem growth was monitored with band dendrometers during the growing seasons 2012–2014. Our 3 years experiment showed that soil warming had no considerable effect on radial growth. Though understory removal through shading was accompanied by root-zone cooling, understory removal as well as N fertilization led to a significant increase in radial growth. Hardly affected was tree root biomass, while N-fertilization and understory removal significantly increased in 100-needle surface area and 100-needle dry mass, implying a higher amount of N stored in needles. Overall, our results demonstrate that beside low temperatures, tree growth at cold-climate boundaries may also be limited by root competition for nutrients between trees and understory vegetation. We conclude that tree understory interactions may also control treeline dynamics in a future changing environment.

  5. Enhanced Global Monsoon in Present Warm Period Due to Natural and Anthropogenic Forcings

    Directory of Open Access Journals (Sweden)

    Jing Chai

    2018-04-01

    Full Text Available In this study, we investigate global monsoon precipitation (GMP changes between the Present Warm Period (PWP, 1900–2000 and the Little Ice Age (LIA, 1250–1850 by performing millennium sensitivity simulations using the Community Earth System Model version 1.0 (CESM1. Three millennium simulations are carried out under time-varying solar, volcanic and greenhouse gas (GHG forcing, respectively, from 501 to 2000 AD. Compared to the global-mean surface temperature of the cold LIA, the global warming in the PWP caused by high GHG concentration is about 0.42 °C, by strong solar radiation is 0.14 °C, and by decreased volcanic activity is 0.07 °C. The GMP increases in these three types of global warming are comparable, being 0.12, 0.058, and 0.055 mm day−1, respectively. For one degree of global warming, the GMP increase induced by strong GHG forcing is 2.2% °C−1, by strong solar radiation is 2.8% °C−1, and by decreased volcanic forcing is 5.5% °C−1, which means that volcanic forcing is most effective in terms of changing the GMP among these three external forcing factors. Under volcanic inactivity-related global warming, both monsoon moisture and circulation are enhanced, and the enhanced circulation mainly occurs in the Northern Hemisphere (NH. The circulation, however, is weakened in the other two cases, and the GMP intensification is mainly caused by increased moisture. Due to large NH volcanic aerosol concentration in the LIA, the inter-hemispheric thermal contrast of PWP global warming tends to enhance NH monsoon circulation. Compared to the GHG forcing, solar radiation tends to warm low-latitude regions and cause a greater monsoon moisture increase, resulting in a stronger GMP increase. The finding in this study is important for predicting the GMP in future anthropogenic global warming when a change in natural solar or volcanic activity occurs.

  6. The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects

    Directory of Open Access Journals (Sweden)

    Murray Elaine

    2009-04-01

    Full Text Available Abstract Background Warm-up and stretching are suggested to increase hamstring flexibility and reduce the risk of injury. This study examined the short-term effects of warm-up, static stretching and dynamic stretching on hamstring flexibility in individuals with previous hamstring injury and uninjured controls. Methods A randomised crossover study design, over 2 separate days. Hamstring flexibility was assessed using passive knee extension range of motion (PKE ROM. 18 previously injured individuals and 18 uninjured controls participated. On both days, four measurements of PKE ROM were recorded: (1 at baseline; (2 after warm-up; (3 after stretch (static or dynamic and (4 after a 15-minute rest. Participants carried out both static and dynamic stretches, but on different days. Data were analysed using Anova. Results Across both groups, there was a significant main effect for time (p 0.05. Using ANCOVA to adjust for the non-significant (p = 0.141 baseline difference between groups, the previously injured group demonstrated a greater response to warm-up and static stretching, however this was not statistically significant (p = 0.05. Conclusion Warm-up significantly increased hamstring flexibility. Static stretching also increased hamstring flexibility, whereas dynamic did not, in agreement with previous findings on uninjured controls. The effect of warm-up and static stretching on flexibility was greater in those with reduced flexibility post-injury, but this did not reach statistical significance. Further prospective research is required to validate the hypothesis that increased flexibility improves outcomes. Trial Registration ACTRN12608000638336

  7. Do mitigation strategies reduce global warming potential in the northern U.S. corn belt?

    Science.gov (United States)

    Johnson, Jane M-F; Archer, David W; Weyers, Sharon L; Barbour, Nancy W

    2011-01-01

    Agricultural management practices that enhance C sequestration, reduce greenhouse gas emission (nitrous oxide [N₂O], methane [CH₄], and carbon dioxide [CO₂]), and promote productivity are needed to mitigate global warming without sacrificing food production. The objectives of the study were to compare productivity, greenhouse gas emission, and change in soil C over time and to assess whether global warming potential and global warming potential per unit biomass produced were reduced through combined mitigation strategies when implemented in the northern U.S. Corn Belt. The systems compared were (i) business as usual (BAU); (ii) maximum C sequestration (MAXC); and (iii) optimum greenhouse gas benefit (OGGB). Biomass production, greenhouse gas flux change in total and organic soil C, and global warming potential were compared among the three systems. Soil organic C accumulated only in the surface 0 to 5 cm. Three-year average emission of N₂O and CH was similar among all management systems. When integrated from planting to planting, N₂O emission was similar for MAXC and OGGB systems, although only MAXC was fertilized. Overall, the three systems had similar global warming potential based on 4-yr changes in soil organic C, but average rotation biomass was less in the OGGB systems. Global warming potential per dry crop yield was the least for the MAXC system and the most for OGGB system. This suggests management practices designed to reduce global warming potential can be achieved without a loss of productivity. For example, MAXC systems over time may provide sufficient soil C sequestration to offset associated greenhouse gas emission. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Warm-up Optimizes Postural Control but Requires Some Minutes of Recovery.

    Science.gov (United States)

    Paillard, Thierry; Kadri, Mohamed Abdelhafid; Nouar, Merbouha Boulahbel; Noé, Frederic

    2018-05-02

    Paillard, T, Kadri, MA, Nouar, MB, and Noé, F. Warm-up optimizes postural control but requires some minutes of recovery. J Strength Cond Res XX(X): 000-000, 2018-The aim was to compare monopedal postural control between the dominant leg (D-Leg) and the nondominant leg (ND-Leg) in pre- and post-warm-up conditions. Thirty healthy male sports science students were evaluated before and after a warm-up exercise (12 minutes of pedaling with an incremental effort on a cycle ergometer with a controlled workload). Monopodal postural control was assessed for the D- and ND-Legs before and immediately, 2, 5, 10, and 15 minutes after the warm-up exercise, using a force platform and calculating the displacement velocity of the center of foot pressure on the mediolateral (COPML velocity) and anteroposterior (COPAP velocity) axes. No significant difference was observed between the D-Leg and ND-Leg for both COPML and COPAP velocity in all the periods. In comparison with pre-warm-up, COPML decreased after 15-minute and 10-minute recovery periods for the D-Leg and the ND-Leg, respectively (p warm-up optimized monopedal postural control but did not make it possible to distinguish a difference between the D-Leg and the ND-Leg. Some minutes of recovery are required between the end of the whole-body warm-up exercise and the beginning of the postural test to optimize postural control. The optimal duration of recovery turns out to be about 10-15 minutes.

  9. Global warming: knowledge and views of Iranian students.

    Science.gov (United States)

    Yazdanparast, Taraneh; Salehpour, Sousan; Masjedi, Mohammad Reza; Seyedmehdi, Seyed Mohammad; Boyes, Eddie; Stanisstreet, Martin; Attarchi, Mirsaeed

    2013-04-06

    Study of students' knowledge about global warming can help authorities to have better imagination of this critical environmental problem. This research examines high school students' ideas about greenhouse effect and the results may be useful for the respective authorities to improve cultural and educational aspects of next generation. In this cross-sectional study, a 42 question questionnaire with mix of open and closed questions was used to evaluate high school students' view about the mechanism, consequences, causes and cures of global warming. To assess students' knowledge, cognitive score was also calculated. 1035 students were randomly selected from 19 educational districts of Tehran. Sampling method was multi stage. Only 5.1% of the students could explain greenhouse effect correctly and completely. 88.8% and 71.2% respectively believed "if the greenhouse effect gets bigger the Earth will get hotter" and "incidence of more skin cancers is a consequence of global warming". 69.6% and 68.8% respectively thought "the greenhouse effect is made worse by too much carbon dioxide" and "presence of ozone holes is a cause of greenhouse effect". 68.4% believed "not using cars so much is a cure for global warming". While a student's 'cognitive score' could range from -36 to +36, Students' mean cognitive score was equal to +1.64. Mean cognitive score of male students and grade 2 & 3 students was respectively higher than female ones (P<0.01) and grade 1 students (P<0.001) but there was no statistically significant difference between students of different regions (P>0.05). In general, students' knowledge about global warming was not acceptable and there were some misconceptions in the students' mind, such as supposing ozone holes as a cause and more skin cancer as a consequence of global warming. The Findings of this survey indicate that, this important stratum of society have been received no sufficient and efficient education and sensitization on this matter.

  10. The effects of warming and nitrogen addition on soil nitrogen cycling in a temperate grassland, northeastern China.

    Directory of Open Access Journals (Sweden)

    Lin-Na Ma

    Full Text Available Both climate warming and atmospheric nitrogen (N deposition are predicted to affect soil N cycling in terrestrial biomes over the next century. However, the interactive effects of warming and N deposition on soil N mineralization in temperate grasslands are poorly understood.A field manipulation experiment was conducted to examine the effects of warming and N addition on soil N cycling in a temperate grassland of northeastern China from 2007 to 2009. Soil samples were incubated at a constant temperature and moisture, from samples collected in the field. The results showed that both warming and N addition significantly stimulated soil net N mineralization rate and net nitrification rate. Combined warming and N addition caused an interactive effect on N mineralization, which could be explained by the relative shift of soil microbial community structure because of fungal biomass increase and strong plant uptake of added N due to warming. Irrespective of strong intra- and inter-annual variations in soil N mineralization, the responses of N mineralization to warming and N addition did not change during the three growing seasons, suggesting independence of warming and N responses of N mineralization from precipitation variations in the temperate grassland.Interactions between climate warming and N deposition on soil N cycling were significant. These findings will improve our understanding on the response of soil N cycling to the simultaneous climate change drivers in temperate grassland ecosystem.

  11. [Effects of Warming and Straw Application on Soil Respiration and Enzyme Activity in a Winter Wheat Cropland].

    Science.gov (United States)

    Chen, Shu-tao; Sang, Lin; Zhang, Xu; Hu, Zheng-hua

    2016-02-15

    In order to investigate the effects of warming and straw application on soil respiration and enzyme activity, a field experiment was performed from November 2014 to May 2015. Four treatments, which were control (CK), warming, straw application, and warming and straw application, were arranged in field. Seasonal variability in soil respiration, soil temperature and soil moisture for different treatments were measured. Urease, invertase, and catalase activities for different treatments were measured at the elongation, booting, and anthesis stages. The results showed that soil respiration in different treatments had similar seasonal variation patterns. Seasonal mean soil respiration rates for the CK, warming, straw application, and warming and straw application treatments were 1.46, 1.96, 1.92, and 2.45 micromol x (m2 x s)(-1), respectively. ANOVA indicated that both warming and straw applications significantly (P soil respiration compared to the control treatment. The relationship between soil respiration and soil temperature in different treatments fitted with the exponential regression function. The exponential regression functions explained 34.3%, 28.1%, 24.6%, and 32.0% variations of soil respiration for CK, warming, straw application, and warming and straw application treatments, respectively. Warming and straw applications significantly (P soil respiration and urease activity fitted with a linear regression function, with the P value of 0.061. The relationship between soil respiration and invertase (P = 0.013), and between soil respiration and catalase activity (P = 0.002) fitted well with linear regression functions.

  12. Global warming combat policies in energy sector of Iran

    International Nuclear Information System (INIS)

    Rahimi, N.; Karbassi, A. R.; Abbaspour, M.

    2002-01-01

    Among the efforts to slow the potential for climate change are measures to reduce emissions of CO 2 from energy use, and promote long-term storage of carbon in forests and soils. Important environmental changes due to climate change and global warming pose potentially significant risks to humans, social systems, and natural world. Many uncertainties remain regarding precise timing,magnitude, and regional patterns of climate change and the extent to which mankind and nature can adapt to any changes. Estimating technical / economical / environmental potentials for reducing CO 2 emission in energy sector and preventing of global warming is one of the main activities, which have been performed for the first time in Iran. By use of 26 factors, model on global warming combat policies in energy sector of Iran in long-medium and short term determine decreasing amount of CO 2 emission. The results and also method of providing this model will be described in this paper

  13. Designing connected marine reserves in the face of global warming.

    Science.gov (United States)

    Álvarez-Romero, Jorge G; Munguía-Vega, Adrián; Beger, Maria; Del Mar Mancha-Cisneros, Maria; Suárez-Castillo, Alvin N; Gurney, Georgina G; Pressey, Robert L; Gerber, Leah R; Morzaria-Luna, Hem Nalini; Reyes-Bonilla, Héctor; Adams, Vanessa M; Kolb, Melanie; Graham, Erin M; VanDerWal, Jeremy; Castillo-López, Alejandro; Hinojosa-Arango, Gustavo; Petatán-Ramírez, David; Moreno-Baez, Marcia; Godínez-Reyes, Carlos R; Torre, Jorge

    2018-02-01

    Marine reserves are widely used to protect species important for conservation and fisheries and to help maintain ecological processes that sustain their populations, including recruitment and dispersal. Achieving these goals requires well-connected networks of marine reserves that maximize larval connectivity, thus allowing exchanges between populations and recolonization after local disturbances. However, global warming can disrupt connectivity by shortening potential dispersal pathways through changes in larval physiology. These changes can compromise the performance of marine reserve networks, thus requiring adjusting their design to account for ocean warming. To date, empirical approaches to marine prioritization have not considered larval connectivity as affected by global warming. Here, we develop a framework for designing marine reserve networks that integrates graph theory and changes in larval connectivity due to potential reductions in planktonic larval duration (PLD) associated with ocean warming, given current socioeconomic constraints. Using the Gulf of California as case study, we assess the benefits and costs of adjusting networks to account for connectivity, with and without ocean warming. We compare reserve networks designed to achieve representation of species and ecosystems with networks designed to also maximize connectivity under current and future ocean-warming scenarios. Our results indicate that current larval connectivity could be reduced significantly under ocean warming because of shortened PLDs. Given the potential changes in connectivity, we show that our graph-theoretical approach based on centrality (eigenvector and distance-weighted fragmentation) of habitat patches can help design better-connected marine reserve networks for the future with equivalent costs. We found that maintaining dispersal connectivity incidentally through representation-only reserve design is unlikely, particularly in regions with strong asymmetric patterns of

  14. Uncertain impacts on economic growth when stabilizing global temperatures at 1.5°C or 2°C warming.

    Science.gov (United States)

    Pretis, Felix; Schwarz, Moritz; Tang, Kevin; Haustein, Karsten; Allen, Myles R

    2018-05-13

    Empirical evidence suggests that variations in climate affect economic growth across countries over time. However, little is known about the relative impacts of climate change on economic outcomes when global mean surface temperature (GMST) is stabilized at 1.5°C or 2°C warming relative to pre-industrial levels. Here we use a new set of climate simulations under 1.5°C and 2°C warming from the 'Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) project to assess changes in economic growth using empirical estimates of climate impacts in a global panel dataset. Panel estimation results that are robust to outliers and breaks suggest that within-year variability of monthly temperatures and precipitation has little effect on economic growth beyond global nonlinear temperature effects. While expected temperature changes under a GMST increase of 1.5°C lead to proportionally higher warming in the Northern Hemisphere, the projected impact on economic growth is larger in the Tropics and Southern Hemisphere. Accounting for econometric estimation and climate uncertainty, the projected impacts on economic growth of 1.5°C warming are close to indistinguishable from current climate conditions, while 2°C warming suggests statistically lower economic growth for a large set of countries (median projected annual growth up to 2% lower). Level projections of gross domestic product (GDP) per capita exhibit high uncertainties, with median projected global average GDP per capita approximately 5% lower at the end of the century under 2°C warming relative to 1.5°C. The correlation between climate-induced reductions in per capita GDP growth and national income levels is significant at the p  < 0.001 level, with lower-income countries experiencing greater losses, which may increase economic inequality between countries and is relevant to discussions of loss and damage under the United Nations Framework Convention on Climate Change.This article is part of

  15. Effect of warm compress application on tissue temperature in healthy dogs.

    Science.gov (United States)

    Millard, Ralph P; Towle-Millard, Heather A; Rankin, David C; Roush, James K

    2013-03-01

    To measure the effect of warm compress application on tissue temperature in healthy dogs. 10 healthy mixed-breed dogs. Dogs were sedated with hydromorphone (0.1 mg/kg, IV) and diazepam (0.25 mg/kg, IV). Three 24-gauge thermocouple needles were inserted to a depth of 0.5 cm (superficial), 1.0 cm (middle), and 1.5 cm (deep) into a shaved, lumbar, epaxial region to measure tissue temperature. Warm (47°C) compresses were applied with gravity dependence for periods of 5, 10, and 20 minutes. Tissue temperature was recorded before compress application and at intervals for up to 80 minutes after application. Control data were collected while dogs received identical sedation but with no warm compress. Mean temperature associated with 5 minutes of heat application at the superficial, middle, and deep depths was significantly increased, compared with the control temperature. Application for 10 minutes significantly increased the temperature at all depths, compared with 5 minutes of application. Mean temperature associated with 20 minutes of application was not different at the superficial or middle depths, compared with 10 minutes of application. Temperature at the deep depth associated with 10 minutes of application was significantly higher, compared with 20 minutes of application, but all temperature increases at this depth were minimal. Results suggested that application of a warm compress should be performed for 10 minutes. Changes in temperature at a tissue depth of 1.5 cm were minimal or not detected. The optimal compress temperature to achieve therapeutic benefits was not determined.

  16. Surface water change as a significant contributor to global evapotranspiration change

    Science.gov (United States)

    Zhan, S.; Song, C.

    2017-12-01

    Water comprises a critical component of global/regional hydrological and biogeochemical cycles and is essential to all organisms including humans. In the past several decades, climate change has intensified the hydrological cycle, with significant implications for ecosystem services and feedback to regional and global climate. Evapotranspiration (ET) as a linking mechanism between land surface and atmosphere is central to the water cycle and an excellent indicator of the intensity of water cycle. Knowledge of the temporal changes of ET is crucial for accurately estimating global or regional water budgets and better understanding climate and hydrological interactions. While studies have examined changes in global ET, they were conducted using a constant land and surface water (SW) area. However, as many studies have found that global SW is very dynamic and their surface areas have generally been increasing since the 1980s. The conversion from land to water and vice versa significantly changes the local ET since water bodies evaporate at a rate that can be much higher than that of the land. Here, we quantify the global changes in ET caused by such land-water conversion using remotely-sensed SW area and various ET and potential ET products. New SW and lost SW between circa-1985 and circa-2015 were derived from remote sensing and were used to modify the local ET estimates. We found an increase in ET in all continents as consistent with the net increase in SW area. The increasing SW area lead to a global increase in ET by 30.38 ± 5.28 km3/yr. This is a significant contribution when compared to the 92.95 km3/yr/yr increase in ET between 1982-1997 and 103.43 km3/yr/yr decrease between 1998-2008 by Jung et al., (2010) assuming a constant SW. The results enhance our understanding of the water fluxes between the land and atmosphere and supplement land water budget estimates. We conclude that changes in SW lead to a significant change in global ET that cannot be neglected in

  17. Frequency of Deep Convective Clouds and Global Warming

    Science.gov (United States)

    Aumann, Hartmut H.; Teixeira, Joao

    2008-01-01

    This slide presentation reviews the effect of global warming on the formation of Deep Convective Clouds (DCC). It concludes that nature responds to global warming with an increase in strong convective activity. The frequency of DCC increases with global warming at the rate of 6%/decade. The increased frequency of DCC with global warming alone increases precipitation by 1.7%/decade. It compares the state of the art climate models' response to global warming, and concludes that the parametrization of climate models need to be tuned to more closely emulate the way nature responds to global warming.

  18. Uses of warmed water in agriculture. Final report

    International Nuclear Information System (INIS)

    Garrett, R.E.

    1978-11-01

    Energy in the form of warmed water is available from condenser cooling water from fossil fuel or nuclear-electric power-generating facilities, geothermal power plants, geothermal fluids, or spent steam and cooling water from industrial processes. A re-analysis of the characteristics of possible agricultural uses of warmed water has revealed the need to decouple considerations of warmed water sources from those of warmed water users. Conflicting objectives and managerial requirements seem to preclude an integrated system approach. Rather an interface must be established with separate costs and benefits identified for a reliable warmed water source and for its various potential uses. These costs and benefits can be utilized as a basis for decisions separately by the energy supplier and the prospective energy users. A method of classifying uses of warmed water according to need, volume, objective, temperature, and quality is presented and preliminary classifications are discussed for several potential agricultural uses of warmed water. Specific uses for soil warming, space heating in greenhouses, and irrigation are noted. Specific uses in aquaculture for catfish, lobster, and prawn production are discussed. Warmed water use in animal shelters is mentioned. Low-quality heat is required for methane generation from biomass and warmed water heating could be utilized in this industry. 53 references

  19. The efficacy and characteristics of warm-up and re-warm-up practices in soccer players: a systematic review.

    Science.gov (United States)

    Hammami, Amri; Zois, James; Slimani, Maamer; Russel, Mark; Bouhlel, Ezdine

    2018-01-01

    This review aimed 1) to evaluate the current research that examines the efficacy of warm-up (WU) and re-warm-up (RWU) on physical performance; and 2) to highlight the WU and RWU characteristics that optimise subsequent performance in soccer players. A computerized search was performed in the PubMed, ScienceDirect and Google Scholar (from 1995 to December 2015) for English-language, peer-reviewed investigations using the terms "soccer" OR "football" AND "warm-up" OR "stretching" OR "post-activation potentiation" OR "pre-activity" OR "re-warm-up" AND "performance" OR "jump" OR "sprint" OR "running". Twenty seven articles were retrieved. Particularly, 22 articles examined the effects of WU on soccer performance and 5 articles focused on the effects of RWU. Clear evidence exists supporting the inclusion of dynamic stretching or postactivation potentiation-based exercises within a WU as acute performance enhancements were reported (pooled estimate changes of +3.46% and +4.21%, respectively). The FIFA 11+ WU also significantly increases strength, jump, speed and explosive performances (changes from 1% to 20%). At half-time, active RWU protocols including postactivation potentiation practices and multidirectional speed drills attenuate temperature and performance reductions induced by habitual practice. The data obtained in the present review showed that the level of play did not moderate the effectiveness of WU and RWU on soccer performance. This review demonstrated that a static stretching WU reduced acute subsequent performance, while WU activities that include dynamic stretching, PAP-based exercises, and the FIFA 11+ can elicit positive effects in soccer players. The efficacy of an active RWU during half-time is also justified.

  20. Observed and simulated temperature extremes during the recent warming hiatus

    International Nuclear Information System (INIS)

    Sillmann, Jana; Donat, Markus G; Fyfe, John C; Zwiers, Francis W

    2014-01-01

    The discrepancy between recent observed and simulated trends in global mean surface temperature has provoked a debate about possible causes and implications for future climate change projections. However, little has been said in this discussion about observed and simulated trends in global temperature extremes. Here we assess trend patterns in temperature extremes and evaluate the consistency between observed and simulated temperature extremes over the past four decades (1971–2010) in comparison to the recent 15 years (1996–2010). We consider the coldest night and warmest day in a year in the observational dataset HadEX2 and in the current generation of global climate models (CMIP5). In general, the observed trends fall within the simulated range of trends, with better consistency for the longer period. Spatial trend patterns differ for the warm and cold extremes, with the warm extremes showing continuous positive trends across the globe and the cold extremes exhibiting a coherent cooling pattern across the Northern Hemisphere mid-latitudes that has emerged in the recent 15 years and is not reproduced by the models. This regional inconsistency between models and observations might be a key to understanding the recent hiatus in global mean temperature warming. (letters)

  1. Experimental Studies of the Transport Parameters of Warm Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Chouffani, Khalid [Idaho State Univ., Pocatello, ID (United States)

    2014-12-01

    There is a need to establish fundamental properties of matter and energy under extreme physical conditions. Although high energy density physics (HEDP) research spans a wide range of plasma conditions, there is one unifying regime that is of particular importance and complexity: that of warm dense matter, the transitional state between solid state condensed matter and energetic plasmas. Most laboratory experimental conditions, including inertial confinement implosion, fall into this regime. Because all aspects of laboratory-created high-energy-density plasmas transition through the warm dense matter regime, understanding the fundamental properties to determine how matter and energy interact in this regime is an important aspect of major research efforts in HEDP. Improved understanding of warm dense matter would have significant and wide-ranging impact on HEDP science, from helping to explain wire initiation studies on the Sandia Z machine to increasing the predictive power of inertial confinement fusion modeling. The central goal or objective of our proposed research is to experimentally determine the electrical resistivity, temperature, density, and average ionization state of a variety of materials in the warm dense matter regime, without the use of theoretical calculations. Since the lack of an accurate energy of state (EOS) model is primarily due to the lack of experimental data, we propose an experimental study of the transport coefficients of warm dense matter.

  2. Antarctica: Cooling or Warming?

    Science.gov (United States)

    Bunde, Armin; Ludescher, Josef; Franzke, Christian

    2013-04-01

    We consider the 14 longest instrumental monthly mean temperature records from the Antarctica and analyse their correlation properties by wavelet and detrended fluctuation analysis. We show that the stations in the western and the eastern part of the Antarctica show significant long-term memory governed by Hurst exponents close to 0.8 and 0.65, respectively. In contrast, the temperature records at the inner part of the continent (South Pole and Vostok), resemble white noise. We use linear regression to estimate the respective temperature differences in the records per decade (i) for the annual data, (ii) for the summer and (iii) for the winter season. Using a recent approach by Lennartz and Bunde [1] we estimate the respective probabilities that these temperature differences can be exceeded naturally without inferring an external (anthropogenic) trend. We find that the warming in the western part of the continent and the cooling at the South Pole is due to a gradually changes in the cold extremes. For the winter months, both cooling and warming are well outside the 95 percent confidence interval, pointing to an anthropogenic origin. In the eastern Antarctica, the temperature increases and decreases are modest and well within the 95 percent confidence interval. [1] S. Lennartz and A. Bunde, Phys. Rev. E 84, 021129 (2011)

  3. The carbon cycle and global warming

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Five land-use-based approaches can be used to slow the buildup of CO 2 in the atmosphere: slowing or stopping the loss of existing forests, thus preserving current carbon reservoirs; adding to the planet's vegetative cover through reforestation or other means, thus enlarging living terrestrial carbon reservoirs; increasing the carbon stored in nonliving carbon reservoirs such as agricultural soils; increasing the carbon stored in artificial reservoirs, including timber products; and substituting sustainable biomass energy sources for fossil fuel consumption, thus reducing energy-related carbon emissions. These approaches are all based on the same basic premise: adding to the planet's net carbon stores in vegetative cover or soil, or preventing any net loss, will help moderate global warming by keeping atmospheric CO 2 levels lower than they would otherwise be. Because biotic policy options appear capable of contributing significantly to the mitigation of global warming while also furthering many other public policy objectives, their role deserves careful consideration on a country-by-country basis

  4. Projected Changes in the Asian-Australian Monsoon Region in 1.5°C and 2.0°C Global-Warming Scenarios

    Science.gov (United States)

    Chevuturi, Amulya; Klingaman, Nicholas P.; Turner, Andrew G.; Hannah, Shaun

    2018-03-01

    In light of the Paris Agreement, it is essential to identify regional impacts of half a degree additional global warming to inform climate adaptation and mitigation strategies. We investigate the effects of 1.5°C and 2.0°C global warming above preindustrial conditions, relative to present day (2006-2015), over the Asian-Australian monsoon region (AAMR) using five models from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project. There is considerable intermodel variability in projected changes to mean climate and extreme events in 2.0°C and 1.5°C scenarios. There is high confidence in projected increases to mean and extreme surface temperatures over AAMR, as well as more-frequent persistent daily temperature extremes over East Asia, Australia, and northern India with an additional 0.5°C warming, which are likely to occur. Mean and extreme monsoon precipitation amplify over AAMR, except over Australia at 1.5°C where there is uncertainty in the sign of the change. Persistent daily extreme precipitation events are likely to become more frequent over parts of East Asia and India with an additional 0.5°C warming. There is lower confidence in projections of precipitation change than in projections of surface temperature change. These results highlight the benefits of limiting the global-mean temperature change to 1.5°C above preindustrial, as the severity of the above effects increases with an extra 0.5°C warming.

  5. Effects of simulated warming on soil respiration to XiaoPo lake

    Science.gov (United States)

    Zhao, Shuangkai; Chen, Kelong; Wu, Chengyong; Mao, Yahui

    2018-02-01

    The main flux of carbon cycling in terrestrial and atmospheric ecosystems is soil respiration, and soil respiration is one of the main ways of soil carbon output. This is of great significance to explore the dynamic changes of soil respiration rate and its effect on temperature rise, and the correlation between environmental factors and soil respiration. In this study, we used the open soil carbon flux measurement system (LI-8100, LI-COR, NE) in the experimental area of the XiaoPo Lake wetland in the Qinghai Lake Basin, and the Kobresia (Rs) were measured, and the soil respiration was simulated by simulated temperature (OTC) and natural state. The results showed that the temperature of 5 cm soil was 1.37 °C higher than that of the control during the experiment, and the effect of warming was obvious. The respiration rate of soil under warming and natural conditions showed obvious diurnal variation and monthly variation. The effect of warming on soil respiration rate was promoted and the effect of precipitation on soil respiration rate was inhibited. Further studies have shown that the relationship between soil respiration and 5 cm soil temperature under the control and warming treatments can be described by the exponential equation, and the correlation analysis between the two plots shows a very significant exponential relationship (p main influencing factor of soil respiration in this region.

  6. The influence of global warming on natural disasters and their public health outcomes.

    Science.gov (United States)

    Diaz, James H

    2007-01-01

    With a documented increase in average global surface temperatures of 0.6 degrees C since 1975, Earth now appears to be warming due to a variety of climatic effects, most notably the cascading effects of greenhouse gas emissions resulting from human activities. There remains, however, no universal agreement on how rapidly, regionally, or asymmetrically the planet will warm or on the true impact of global warming on natural disasters and public health outcomes. Most reports to date of the public health impact of global warming have been anecdotal and retrospective in design and have focused on the increase in heat-stroke deaths following heat waves and on outbreaks of airborne and arthropod-borne diseases following tropical rains and flooding that resulted from fluctuations in ocean temperatures. The effects of global warming on rainfall and drought, tropical cyclone and tsunami activity, and tectonic and volcanic activity will have far-reaching public health effects not only on environmentally associated disease outbreaks but also on global food supplies and population movements. As a result of these and other recognized associations between climate change and public health consequences, many of which have been confounded by deficiencies in public health infrastructure and scientific debates over whether climate changes are spawned by atmospheric cycles or anthropogenic influences, the active responses to progressive climate change must include combinations of economic, environmental, legal, regulatory, and, most importantly, public health measures.

  7. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming.

    Science.gov (United States)

    Xu, Xia; Shi, Zheng; Li, Dejun; Zhou, Xuhui; Sherry, Rebecca A; Luo, Yiqi

    2015-10-01

    Soil respiration is recognized to be influenced by temperature, moisture, and ecosystem production. However, little is known about how plant community structure regulates responses of soil respiration to climate change. Here, we used a 13-year field warming experiment to explore the mechanisms underlying plant community regulation on feedbacks of soil respiration to climate change in a tallgrass prairie in Oklahoma, USA. Infrared heaters were used to elevate temperature about 2 °C since November 1999. Annual clipping was used to mimic hay harvest. Our results showed that experimental warming significantly increased soil respiration approximately from 10% in the first 7 years (2000-2006) to 30% in the next 6 years (2007-2012). The two-stage warming stimulation of soil respiration was closely related to warming-induced increases in ecosystem production over the years. Moreover, we found that across the 13 years, warming-induced increases in soil respiration were positively affected by the proportion of aboveground net primary production (ANPP) contributed by C3 forbs. Functional composition of the plant community regulated warming-induced increases in soil respiration through the quantity and quality of organic matter inputs to soil and the amount of photosynthetic carbon (C) allocated belowground. Clipping, the interaction of clipping with warming, and warming-induced changes in soil temperature and moisture all had little effect on soil respiration over the years (all P > 0.05). Our results suggest that climate warming may drive an increase in soil respiration through altering composition of plant communities in grassland ecosystems. © 2015 John Wiley & Sons Ltd.

  8. Early warm-rewarding parenting moderates the genetic contributions to callous-unemotional traits in childhood.

    Science.gov (United States)

    Henry, Jeffrey; Dionne, Ginette; Viding, Essi; Vitaro, Frank; Brendgen, Mara; Tremblay, Richard E; Boivin, Michel

    2018-04-23

    Previous gene-environment interaction studies of CU traits have relied on the candidate gene approach, which does not account for the entire genetic load of complex phenotypes. Moreover, these studies have not examined the role of positive environmental factors such as warm/rewarding parenting. The aim of the present study was to determine whether early warm/rewarding parenting moderates the genetic contributions (i.e., heritability) to callous-unemotional (CU) traits at school age. Data were collected in a population sample of 662 twin pairs (Quebec Newborn Twin Study - QNTS). Mothers reported on their warm/rewarding parenting. Teachers assessed children's CU traits. These reports were subjected to twin modeling. Callous-unemotional traits were highly heritable, with the remaining variance accounted for by nonshared environmental factors. Warm/rewarding parenting significantly moderated the role of genes in CU traits; heritability was lower when children received high warm/rewarding parenting than when they were exposed to low warm/rewarding parenting. High warm/rewarding parenting may partly impede the genetic expression of CU traits. Developmental models of CU traits need to account for such gene-environment processes. © 2018 Association for Child and Adolescent Mental Health.

  9. Anticyclonic atmospheric circulation as an analogue for the warm and dry mid-Holocene summer climate in central Scandinavia

    Directory of Open Access Journals (Sweden)

    K. Antonsson

    2008-10-01

    Full Text Available Climate reconstructions from central Scandinavia suggest that annual and summer temperatures were rising during the early Holocene and reached their maximum after 8000 cal yr BP. The period with highest temperatures was characterized by increasingly low lake-levels and dry climate, with driest and warmest conditions at about 7000 to 5000 cal yr BP. We compare the reconstructed climate pattern with simulations of a climate model for the last 9000 years and show that the model, which is predominantly driven by solar insolation patterns, suggests less prominent mid-Holocene dry and warm period in Scandinavia than the reconstructions. As an additional explanation for the reconstructed climate, we argue that the trend from the moist early Holocene towards dry and warm mid-Holocene was caused by a changing atmospheric circulation pattern with a mid-Holocene dominance of summer-time anticyclonic circulation. An extreme case of the anticyclonic conditions is the persistent blocking high, an atmospheric pressure pattern that at present often causes long spells of particularly dry and warm summer weather, or "Indian summers". The argument is tested with daily instrumental temperature and precipitation records in central Sweden and an objective circulation classification based on surface air pressure over the period 1900–2002. We conclude that the differences between the precipitation and temperature climates under anticyclonic and non-anticyclonic conditions are significant. Further, warm and dry combination, as indicated by mid-Holocene reconstructions, is a typical pattern under anticyclonic conditions. These results indicate that the presented hypothesis for the mid-Holocene climate is likely valid.

  10. Water runoff vs modern climatic warming in mountainous cryolithic zone in North-East Russia

    Science.gov (United States)

    Glotov, V. E.; Glotova, L. P.

    2018-01-01

    The article presents the results of studying the effects of current climatic warming for both surface and subsurface water runoffs in North-East Russia, where the Main Watershed of the Earth separates it into the Arctic and Pacific continental slopes. The process of climatic warming is testified by continuous weather records during 80-100 years and longer periods. Over the Arctic slope and in the northern areas of the Pacific slope, climatic warming results in a decline in a total runoff of rivers whereas the ground-water recharge becomes greater in winter low-level conditions. In the southern Pacific slope and in the Sea of Okhotsk basin, the effect of climatic warming is an overall increase in total runoff including its subsurface constituents. We believe these peculiar characters of river runoff there to be related to the cryolithic zone environments. Over the Arctic slope and the northern Pacific slope, where cryolithic zone is continuous, the total runoff has its subsurface constituent as basically resulting from discharge of ground waters hosted in seasonally thawing rocks. Warmer climatic conditions favor growth of vegetation that needs more water for the processes of evapotranspiration and evaporation from rocky surfaces in summer seasons. In the Sea of Okhotsk basin, where the cryolithic zone is discontinuous, not only ground waters in seasonally thawing layers, but also continuous taliks and subpermafrost waters participate in processes of river recharges. As a result, a greater biological productivity of vegetation cover does not have any effect on ground-water supply and river recharge processes. If a steady climate warming is provided, a continuous cryolithic zone can presumably degrade into a discontinuous and then into an island-type permafrost layer. Under such a scenario, there will be a general increase in the total runoff and its subsurface constituent. From geoecological viewpoints, a greater runoff will have quite positive effects, whereas some

  11. Shifting Foliar N:P Ratios with Experimental Soil Warming in Tussock Tundra

    Science.gov (United States)

    Jasinski, B.; Mack, M. C.; Schuur, E.; Mauritz, M.; Walker, X. J.

    2017-12-01

    Warming temperatures in the Arctic and boreal ecosystems are currently driving widespread permafrost thaw. Thermokarst is one form of thaw, in which a deepening active soil layer and associated hydrologic changes can lead to increased nutrient availability and shifts in plant community composition. Individual plant species often differ in their ability to access nutrients and adapt to new environmental conditions. While nitrogen (N) is often the nutrient most limiting to Arctic plant communities, the extent to which plant available phosphorus (P) from previously frozen mineral soil may increase as the active layer deepens is still uncertain. To understand the changing relationship between species' uptake of N and P in a thermokarst environment, we assessed foliar N:P ratios from 2015 in two species, a tussock sedge (Eriophorum vaginatum) and a dwarf shrub (Rubus chamaemorus), at a moist acidic tussock tundra experimental passive soil warming site. The passive soil warming treatment increased active layer depth in warmed plots by 35.4 cm (+/- 1.1 cm), an 80% increase over the control plots. E.vaginatum demonstrated a 16.9% decrease (p=0.012, 95% CI [-27.99%, -5.94%]) in foliar N:P ratios in warmed plots, driven mostly by an increase in foliar phosphorus. Foliar N:P ratios of R.chamaemorus showed no significant change. However, foliar samples of R.chamaemorus were significantly enriched in the isotope 15N in soil warming plots (9.9% increase (p=0.002, 95% CI [4.45%, 15.39%])), while the sedge E.vaginatum was slightly depleted. These results suggest that (1) in environments with thawing mineral soil plant available phosphorus may increase more quickly than nitrogen, and (2) that species' uptake strategies and responses to increasing N and P will vary, which has implications for future ecological shifts in thawing ecosystems.

  12. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise

    Science.gov (United States)

    Brown, Patrick T.; Li, Wenhong; Cordero, Eugene C.; Mauget, Steven A.

    2015-01-01

    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20th century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal. PMID:25898351

  13. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise.

    Science.gov (United States)

    Brown, Patrick T; Li, Wenhong; Cordero, Eugene C; Mauget, Steven A

    2015-04-21

    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20(th) century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal.

  14. Amplification of global warming through pH dependence of DMS production simulated with a fully coupled Earth system model

    Science.gov (United States)

    Schwinger, Jörg; Tjiputra, Jerry; Goris, Nadine; Six, Katharina D.; Kirkevåg, Alf; Seland, Øyvind; Heinze, Christoph; Ilyina, Tatiana

    2017-08-01

    We estimate the additional transient surface warming ΔTs caused by a potential reduction of marine dimethyl sulfide (DMS) production due to ocean acidification under the high-emission scenario RCP8.5 until the year 2200. Since we use a fully coupled Earth system model, our results include a range of feedbacks, such as the response of marine DMS production to the additional changes in temperature and sea ice cover. Our results are broadly consistent with the findings of a previous study that employed an offline model set-up. Assuming a medium (strong) sensitivity of DMS production to pH, we find an additional transient global warming of 0.30 K (0.47 K) towards the end of the 22nd century when DMS emissions are reduced by 7.3 Tg S yr-1 or 31 % (11.5 Tg S yr-1 or 48 %). The main mechanism behind the additional warming is a reduction of cloud albedo, but a change in shortwave radiative fluxes under clear-sky conditions due to reduced sulfate aerosol load also contributes significantly. We find an approximately linear relationship between reduction of DMS emissions and changes in top of the atmosphere radiative fluxes as well as changes in surface temperature for the range of DMS emissions considered here. For example, global average Ts changes by -0. 041 K per 1 Tg S yr-1 change in sea-air DMS fluxes. The additional warming in our model has a pronounced asymmetry between northern and southern high latitudes. It is largest over the Antarctic continent, where the additional temperature increase of 0.56 K (0.89 K) is almost twice the global average. We find that feedbacks are small on the global scale due to opposing regional contributions. The most pronounced feedback is found for the Southern Ocean, where we estimate that the additional climate change enhances sea-air DMS fluxes by about 9 % (15 %), which counteracts the reduction due to ocean acidification.

  15. Amplification of global warming through pH dependence of DMS production simulated with a fully coupled Earth system model

    Directory of Open Access Journals (Sweden)

    J. Schwinger

    2017-08-01

    Full Text Available We estimate the additional transient surface warming ΔTs caused by a potential reduction of marine dimethyl sulfide (DMS production due to ocean acidification under the high-emission scenario RCP8.5 until the year 2200. Since we use a fully coupled Earth system model, our results include a range of feedbacks, such as the response of marine DMS production to the additional changes in temperature and sea ice cover. Our results are broadly consistent with the findings of a previous study that employed an offline model set-up. Assuming a medium (strong sensitivity of DMS production to pH, we find an additional transient global warming of 0.30 K (0.47 K towards the end of the 22nd century when DMS emissions are reduced by 7.3 Tg S yr−1 or 31 % (11.5 Tg S yr−1 or 48 %. The main mechanism behind the additional warming is a reduction of cloud albedo, but a change in shortwave radiative fluxes under clear-sky conditions due to reduced sulfate aerosol load also contributes significantly. We find an approximately linear relationship between reduction of DMS emissions and changes in top of the atmosphere radiative fluxes as well as changes in surface temperature for the range of DMS emissions considered here. For example, global average Ts changes by −0. 041 K per 1 Tg S yr−1 change in sea–air DMS fluxes. The additional warming in our model has a pronounced asymmetry between northern and southern high latitudes. It is largest over the Antarctic continent, where the additional temperature increase of 0.56 K (0.89 K is almost twice the global average. We find that feedbacks are small on the global scale due to opposing regional contributions. The most pronounced feedback is found for the Southern Ocean, where we estimate that the additional climate change enhances sea–air DMS fluxes by about 9 % (15 %, which counteracts the reduction due to ocean acidification.

  16. Inter-Relationship Between Subtropical Pacific Sea Surface Temperature, Arctic Sea Ice Concentration, and the North Atlantic Oscillation in Recent Summers and Winters

    Science.gov (United States)

    Lim, Young-Kwon; Cullather, Richard I.; Nowicki, Sophie M.; Kim, Kyu-Myong

    2017-01-01

    The inter-relationship between subtropical western-central Pacific sea surface temperatures (STWCPSST), sea ice concentration in the Beaufort Sea (SICBS), and the North Atlantic Oscillation (NAO) are investigated for the last 37 summers and winters (1980-2016). Lag-correlation of the STWCPSST×(-1) in spring with the NAO phase and SICBS in summer increases over the last two decades, reaching r = 0.4-0.5 with significance at 5 percent, while winter has strong correlations in approximately 1985-2005. Observational analysis and the atmospheric general circulation model experiments both suggest that STWCPSST warming acts to increase the Arctic geopotential height and temperature in the following season. This atmospheric response extends to Greenland, providing favorable conditions for developing the negative phase of the NAO. SIC and surface albedo tend to decrease over the Beaufort Sea in summer, linked to the positive surface net shortwave flux. Energy balance considering radiative and turbulent fluxes reveal that available energy that can heat surface is larger over the Arctic and Greenland and smaller over the south of Greenland, in response to the STWCPSST warming in spring. XXXX Arctic & Atlantic: Positive upper-level height/T anomaly over the Arctic and Greenland, and a negative anomaly over the central-eastern Atlantic, resembling the (-) phase of the NAO. Pacific: The negative height/T anomaly over the mid-latitudes, along with the positive anomaly over the STWCP, where 1degC warming above climatology is prescribed. Discussion: It is likely that the Arctic gets warm and the NAO is in the negative phase in response to the STWCP warming. But, there are other factors (e.g., internal variability) that contribute to determination of the NAO phase: not always the negative phase of the NAO in the event of STWCP warming (e.g.: recent winters and near neutral NAO in 2017 summer).

  17. A new international environmental order? An assessment of the impact of the global warming epistemic community

    International Nuclear Information System (INIS)

    Smith, H.A.

    1993-12-01

    Global warming is a problem which ignores national boundaries, making international cooperation essential. The role of epistemic communities, or those composed of professionals who share a commitment to a common causal model and a set of political values, in affecting the international response to the global warming problem is examined. It is claimed that the epistemic global warming community can affect the policy process, both domestically and internationally, and facilitate cooperation in an era of ecological interdependence. This claim is explored and eventually supported through the examination of two case studies: the responses of Canada and Britain to the issue of global warming between 1988 and November 1990. The case studies are supplemented with a more general discussion of the issues surrounding the international politics of global warming through the same period. Through these studies, it is found that a global warming community can be identified and that its efforts have played a significant role in framing the global warming issue. 121 refs

  18. Impact of the Atlantic Warm Pool on precipitation and temperature in Florida during North Atlantic cold spells

    Energy Technology Data Exchange (ETDEWEB)

    Donders, Timme H. [Utrecht University, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht (Netherlands); TNO Geological Survey of the Netherlands, Utrecht (Netherlands); Boer, Hugo Jan de; Dekker, Stefan C. [Utrecht University, Department of Environmental Sciences, Faculty of Geosciences, P.O. Box 80115, Utrecht (Netherlands); Finsinger, Walter; Wagner-Cremer, Friederike [Utrecht University, Laboratory of Palaeobotany and Palynology, Institute of Environmental Biology, Utrecht (Netherlands); Grimm, Eric C. [Research and Collections Center, Illinois State Museum, Springfield, IL (United States); Reichart, Gert Jan [Utrecht University, Geochemistry, Department of Earth Sciences, Faculty of Geosciences, P.O. Box 80021, Utrecht (Netherlands)

    2011-01-15

    Recurrent phases of increased pine at Lake Tulane, Florida have previously been related to strong stadials terminated by so-called Heinrich events. The climatic significance of these pine phases has been interpreted in different ways. Using a pollen-climate inference model, we quantified the climate changes and consistently found that mean summer precipitation (P{sub JJA}) increased (0.5-0.9 mm/day) and mean November temperature increased (2.0-3.0 C) during pine phases coeval with Heinrich events and the Younger Dryas. Marine sea surface temperature records indicate that potential sources for these moisture and heat anomalies are in the Gulf of Mexico and the western tropical Atlantic. We explain this low latitude warming by an increased Loop Current facilitated by persistence of the Atlantic Warm Pool during summer. This hypothesis is supported by a climate model sensitivity analysis. A positive heat anomaly in the Gulf of Mexico and equatorial Atlantic best approximates the pollen-inferred climate reconstructions from Lake Tulane during the (stadials around) Heinrich events and the Younger Dryas. (orig.)

  19. Keeping global warming within 1.5 °C constrains emergence of aridification

    Science.gov (United States)

    Park, Chang-Eui; Jeong, Su-Jong; Joshi, Manoj; Osborn, Timothy J.; Ho, Chang-Hoi; Piao, Shilong; Chen, Deliang; Liu, Junguo; Yang, Hong; Park, Hoonyoung; Kim, Baek-Min; Feng, Song

    2018-01-01

    Aridity—the ratio of atmospheric water supply (precipitation; P) to demand (potential evapotranspiration; PET)—is projected to decrease (that is, areas will become drier) as a consequence of anthropogenic climate change, exacerbating land degradation and desertification1-6. However, the timing of significant aridification relative to natural variability—defined here as the time of emergence for aridification (ToEA)—is unknown, despite its importance in designing and implementing mitigation policies7-10. Here we estimate ToEA from projections of 27 global climate models (GCMs) under representative concentration pathways (RCPs) RCP4.5 and RCP8.5, and in doing so, identify where emergence occurs before global mean warming reaches 1.5 °C and 2 °C above the pre-industrial level. On the basis of the ensemble median ToEA for each grid cell, aridification emerges over 32% (RCP4.5) and 24% (RCP8.5) of the total land surface before the ensemble median of global mean temperature change reaches 2 °C in each scenario. Moreover, ToEA is avoided in about two-thirds of the above regions if the maximum global warming level is limited to 1.5 °C. Early action for accomplishing the 1.5 °C temperature goal can therefore markedly reduce the likelihood that large regions will face substantial aridification and related impacts.

  20. Albedo control as an effective strategy to tackle Global Warming: A case study

    International Nuclear Information System (INIS)

    Cotana, Franco; Rossi, Federico; Filipponi, Mirko; Coccia, Valentina; Pisello, Anna Laura; Bonamente, Emanuele; Petrozzi, Alessandro; Cavalaglio, Gianluca

    2014-01-01

    Highlights: • We modeled the energy exchanges for the system Earth–Atmosphere–Outer space. • We proposed a method quantifying the CO 2eq offset potential of high-albedo surfaces. • We presented the application of the method to a case study in Tunis. • The CO 2eq offsetting potential depends on the geometry-orientation of the surfaces. • An economic value was attributed to the Albedo control compensation mechanism. - Abstract: Recent research developments focused on Climate Change issue aimed at achieving Kyoto targets. In this context, an innovative methodology (officially recognized by WEC in 2009) is proposed to mitigate Global Warming by artificially enhancing earth’s Albedo. Such a methodology allows to quantify the maximum environmental benefit achievable through the installation of Albedo control technologies, as a function of the geographical features of the installation site, local meteorological conditions, radiative properties, tilt angle, and orientation of the surfaces. This benefit is directly quantified in terms of CO 2eq offset. Albedo control can be an effective mitigation strategy by means of three synergistic effects: a direct contribution towards Global Warming mitigation produced by an enhanced reflection to the space of the shortwave incident radiation; the indirect contribution from energy saving in buildings with high Albedo envelopes; the indirect contribution from the mitigation of Urban Heat Island phenomenon. Since the effectiveness of Albedo control is mostly relevant in Mediterranean area, for both climate conditions and historical-architectural heritage, this work presents procedures and findings of the ABCD project (Albedo, Building green, Control of Global Warming and Desertification) concluded in 2012, funded by the Italian Ministry for the Environment. A description of the analytic model is also presented. The paper focuses on the application of the methodology to a Tunisian factory site, showing that approximately