WorldWideScience

Sample records for significant seasonal variability

  1. Seasonal Variability in European Radon Measurements

    Science.gov (United States)

    Groves-Kirkby, C. J.; Denman, A. R.; Phillips, P. S.; Crockett, R. G. M.; Sinclair, J. M.

    2009-04-01

    In temperate climates, domestic radon concentration levels are generally seasonally dependent, the level in the home reflecting the convolution of two time-dependent functions. These are the source soil-gas radon concentration itself, and the principal force driving radon into the building from the soil, namely the pressure-difference between interior and exterior environment. While the meteorological influence can be regarded as relatively uniform on a European scale, its variability being defined largely by the influence of North-Atlantic weather systems, soil-gas radon is generally more variable as it is essentially geologically dependent. Seasonal variability of domestic radon concentration can therefore be expected to exhibit geographical variability, as is indeed the case. To compensate for the variability of domestic radon levels when assessing the long term radon health risks, the results of individual short-term measurements are generally converted to equivalent mean annual levels by application of a Seasonal Correction Factor (SCF). This is a multiplying factor, typically derived from measurements of a large number of homes, applied to the measured short-term radon concentration to provide a meaningful annual mean concentration for dose-estimation purposes. Following concern as to the universal applicability of a single SCF set, detailed studies in both the UK and France have reported location-specific SCF sets for different regions of each country. Further results indicate that SCFs applicable to the UK differ significantly from those applicable elsewhere in Europe and North America in both amplitude and phase, supporting the thesis that seasonal variability in indoor radon concentration cannot realistically be compensated for by a single national or international SCF scheme. Published data characterising the seasonal variability of European national domestic radon concentrations, has been collated and analysed, with the objective of identifying

  2. Seasonal unit roots in trade variables

    OpenAIRE

    Carol Alexander; Manuel Cantavella Jordá

    1997-01-01

    In this paper we examine the presence of seasonal unit roots in trade variables for Germany, France, the United Kingdom, and Italy, using the procedure developed by Hylleberg, Engle, Granger, and Yoo (1990) [HEGY]. Both quarterly and monthly data reject the presence of unit roots at most seasonal frequencies, more frequently in quarterly than in monthly data. This has important implications for econometric modeling of trade balance, exchange rates and income in European Union (EU) countries. ...

  3. Seasonal variability of soil aggregate stability

    Czech Academy of Sciences Publication Activity Database

    Rohošková, M.; Kodešová, R.; Jirků, V.; Žigová, Anna; Kozák, J.

    2009-01-01

    Roč. 11, - (2009), , , EGU2009-6341-3-EGU2009-6341-3 ISSN 1029-7006. [European Geosciences Union General Assembly. 19.04.2009-24.04.2009, Vienna] R&D Projects: GA ČR GA526/08/0434 Institutional research plan: CEZ:AV0Z30130516 Keywords : seasonal variability * soil aggregate stability * soil types Subject RIV: DF - Soil Science

  4. Comparison of seasonal variability in European domestic radon measurements

    Science.gov (United States)

    Groves-Kirkby, C. J.; Denman, A. R.; Phillips, P. S.; Crockett, R. G. M.; Sinclair, J. M.

    2010-03-01

    Analysis of published data characterising seasonal variability of domestic radon concentrations in Europe and elsewhere shows significant variability between different countries and between regions where regional data is available. Comparison is facilitated by application of the Gini Coefficient methodology to reported seasonal variation data. Overall, radon-rich sedimentary strata, particularly high-porosity limestones, exhibit high seasonal variation, while radon-rich igneous lithologies demonstrate relatively constant, but somewhat higher, radon concentrations. High-variability regions include the Pennines and South Downs in England, Languedoc and Brittany in France, and especially Switzerland. Low-variability high-radon regions include the granite-rich Cornwall/Devon peninsula in England, and Auvergne and Ardennes in France, all components of the Devonian-Carboniferous Hercynian belt.

  5. Comparison of seasonal variability in European domestic radon measurements

    Directory of Open Access Journals (Sweden)

    C. J. Groves-Kirkby

    2010-03-01

    Full Text Available Analysis of published data characterising seasonal variability of domestic radon concentrations in Europe and elsewhere shows significant variability between different countries and between regions where regional data is available. Comparison is facilitated by application of the Gini Coefficient methodology to reported seasonal variation data. Overall, radon-rich sedimentary strata, particularly high-porosity limestones, exhibit high seasonal variation, while radon-rich igneous lithologies demonstrate relatively constant, but somewhat higher, radon concentrations. High-variability regions include the Pennines and South Downs in England, Languedoc and Brittany in France, and especially Switzerland. Low-variability high-radon regions include the granite-rich Cornwall/Devon peninsula in England, and Auvergne and Ardennes in France, all components of the Devonian-Carboniferous Hercynian belt.

  6. Seasonal variability of microbial biomass phosphorus in urban soils.

    Science.gov (United States)

    Halecki, W; Gąsiorek, M

    2015-01-01

    Urban soils have been formed through human activities. Seasonal evaluation with time-control procedure are essential for plant, and activity of microorganisms. Therefore, these processes are crucial in the urban area due to geochemical changes in the past years. The purpose of this study was to investigate the changes of content of microbial biomass phosphorus (P) in the top layer of soils throughout the season. In this research, the concentration of microbial biomass P ranged from 0.01 to 6.29 mg·kg(-1). We used single-factor repeated-measure analysis of variance to test the effect of season on microbial biomass P content of selected urban soils. We found no statistically significant differences between the concentration of microbial biomass P in the investigated urban and sub-urban soils during the growing season. This analysis explicitly recognised that environmental urban conditions are steady. Specifically, we have studied how vegetation seasonality and ability of microbial biomass P are useful for detecting quality deviations, which affect the equilibrium of urban soil. In conclusion, seasonal variability of the stringency of assurance across the different compounds of soil reveals, as expected, the stable condition of the urban soils. Seasonal responses in microbial biomass P under urban soil use should establish a framework as a reference to the activity of the microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Seasonal Climatologies and Variability of Eastern Tropical Pacific Surface Waters

    OpenAIRE

    Fiedler, Paul C.

    1992-01-01

    Interannual variability caused by the El Nino-Southern Oscillation in the eastern tropical Pacific Ocean (ETP) is analogous to seasonal variability of comparable magnitude. Climatological spatial patterns and seasonal variability of physical variables that may affect the ETP ecosystem are presented and discussed. Surface temperature, surface salinity, mixed layer depth, thermocline depth, thermocline strength, and surface dynamic height were derived from bathythermograph, hydrocast, and...

  8. Seasonal dimethylsulfoniopropionate (DMSP) variability in Dona Paula Bay

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, S.S.; Chinchkar, U.; Nair, S.; LokaBharathi, P.A.; Chandramohan, D.

    as producers of DMSP in Dona Paula bay. Dinoflagellates also contributed during the non-monsoon seasons. Another factor involved in the variability of DMSPt was DMSP utilizing bacteria, which ranged from 1 to 10% of the total heterotrophic count...

  9. Seasonal and Non-Seasonal Generalized Pareto Distribution to Estimate Extreme Significant Wave Height in The Banda Sea

    Science.gov (United States)

    Nursamsiah; Nugroho Sugianto, Denny; Suprijanto, Jusup; Munasik; Yulianto, Bambang

    2018-02-01

    The information of extreme wave height return level was required for maritime planning and management. The recommendation methods in analyzing extreme wave were better distributed by Generalized Pareto Distribution (GPD). Seasonal variation was often considered in the extreme wave model. This research aims to identify the best model of GPD by considering a seasonal variation of the extreme wave. By using percentile 95 % as the threshold of extreme significant wave height, the seasonal GPD and non-seasonal GPD fitted. The Kolmogorov-Smirnov test was applied to identify the goodness of fit of the GPD model. The return value from seasonal and non-seasonal GPD was compared with the definition of return value as criteria. The Kolmogorov-Smirnov test result shows that GPD fits data very well both seasonal and non-seasonal model. The seasonal return value gives better information about the wave height characteristics.

  10. Seasonal Variability of Phytoplankton Population in the Brahmani ...

    African Journals Online (AJOL)

    Seasonal Variability of Phytoplankton Population in the Brahmani Estuary of Orissa, India. S Palleyi, RN Kar, CR Panda. Abstract. The dynamic relationship of water physico-chemical characteristics with phytoplankton has long been of great interest in both experimental ecology and environmental management. This study ...

  11. Seasonal Scale Convective-Stratiform Pricipitation Variabilities at Tropics

    Science.gov (United States)

    S, Sreekanth T.

    begin{center} Large Seasonal Scale Convective-Stratiform Pricipitation Variabilities at Tropics Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) and V Sasi Kumar (2) *Centre for Earth Science Studies, Akkulam, Thiruvananthapuram (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) 32. NCC Nagar Peroorkada, Thiruvananthapuram ABSTRACT This study investigates the variabilities of convective and stratiform rainfall from 2011 to 2013 at a tropical coastal station in three seasons viz Pre-Monsoon (March-May), Monsoon (June-September) and Post-Monsoon (October-December). Understanding the climatological variability of these two dominant forms of precipitation and their implications in the total rainfall were the main objectives of this investigation. Variabilities in the frequency & duration of events, rain rate & total number of rain drops distribution in different events and the accumulated amount of rain water were analysed. Based on the ground & radar observations from optical & impact disdrometers, Micro Rain Radar and Atmospheric Electric Field Mill, precipitation events were classified into convective and stratiform in three seasons. Classification was done by the method followed by Testud et al (2001) and as an additional information electrical behaviour of clouds from Atmospheric Electric Field Mill is also used. Events which could not be included in both types were termed as 'mixed precipitation' and were included separately. Diurnal variability of the total rainfall in each seasons were also examined. For both convective and stratiform rainfall there exist distinct day-night differences. During nocturnal hours convective rain draged more attention. In all seasons almost 70% of rain duration and 60% of rain events of convective origin were confined to nocturnal hours. But stratiform rain was not affected by diurnal variations greatly because night time occurrences of stratiform duration and events were less than 50%. Also in Monsoon above 35% of

  12. Seasonal variability of salinity and circulation in a silled estuarine fjord: A numerical model study

    Science.gov (United States)

    Kawase, Mitsuhiro; Bang, Bohyun

    2013-12-01

    A three-dimensional hydrodynamic model is used to study seasonal variability of circulation and hydrography in Hood Canal, Washington, United States, an estuarine fjord that develops seasonally hypoxic conditions. The model is validated with data from year 2006, and is shown to be capable of quantitatively realistic simulation of hydrographic variability. Sensitivity experiments show the largest cause of seasonal variability to be that of salinity at the mouth of the fjord, which drives an annual deep water renewal in late summer-early autumn. Variability of fresh water input from the watershed also causes significant but secondary changes, especially in winter. Local wind stress has little effect over the seasonal timescale. Further experiments, in which one forcing parameter is abruptly altered while others are kept constant, show that outside salinity change induces an immediate response in the exchange circulation that, however, decays as a transient as the system equilibrates. In contrast, a change in the river input initiates gradual adjustment towards a new equilibrium value for the exchange transport. It is hypothesized that the spectral character of the system response to river variability will be redder than to salinity variability. This is demonstrated with a stochastically forced, semi-analytical model of fjord exchange circulation. While the exchange circulation in Hood Canal appears less sensitive to the river variability than to the outside hydrography at seasonal timescales, at decadal and longer timescales both could become significant factors in affecting the exchange circulation.

  13. Seasonality in trauma admissions - Are daylight and weather variables better predictors than general cyclic effects?

    Science.gov (United States)

    Røislien, Jo; Søvik, Signe; Eken, Torsten

    2018-01-01

    Trauma is a leading global cause of death, and predicting the burden of trauma admissions is vital for good planning of trauma care. Seasonality in trauma admissions has been found in several studies. Seasonal fluctuations in daylight hours, temperature and weather affect social and cultural practices but also individual neuroendocrine rhythms that may ultimately modify behaviour and potentially predispose to trauma. The aim of the present study was to explore to what extent the observed seasonality in daily trauma admissions could be explained by changes in daylight and weather variables throughout the year. Retrospective registry study on trauma admissions in the 10-year period 2001-2010 at Oslo University Hospital, Ullevål, Norway, where the amount of daylight varies from less than 6 hours to almost 19 hours per day throughout the year. Daily number of admissions was analysed by fitting non-linear Poisson time series regression models, simultaneously adjusting for several layers of temporal patterns, including a non-linear long-term trend and both seasonal and weekly cyclic effects. Five daylight and weather variables were explored, including hours of daylight and amount of precipitation. Models were compared using Akaike's Information Criterion (AIC). A regression model including daylight and weather variables significantly outperformed a traditional seasonality model in terms of AIC. A cyclic week effect was significant in all models. Daylight and weather variables are better predictors of seasonality in daily trauma admissions than mere information on day-of-year.

  14. Seasonality in trauma admissions – Are daylight and weather variables better predictors than general cyclic effects?

    Science.gov (United States)

    Søvik, Signe; Eken, Torsten

    2018-01-01

    Background Trauma is a leading global cause of death, and predicting the burden of trauma admissions is vital for good planning of trauma care. Seasonality in trauma admissions has been found in several studies. Seasonal fluctuations in daylight hours, temperature and weather affect social and cultural practices but also individual neuroendocrine rhythms that may ultimately modify behaviour and potentially predispose to trauma. The aim of the present study was to explore to what extent the observed seasonality in daily trauma admissions could be explained by changes in daylight and weather variables throughout the year. Methods Retrospective registry study on trauma admissions in the 10-year period 2001–2010 at Oslo University Hospital, Ullevål, Norway, where the amount of daylight varies from less than 6 hours to almost 19 hours per day throughout the year. Daily number of admissions was analysed by fitting non-linear Poisson time series regression models, simultaneously adjusting for several layers of temporal patterns, including a non-linear long-term trend and both seasonal and weekly cyclic effects. Five daylight and weather variables were explored, including hours of daylight and amount of precipitation. Models were compared using Akaike’s Information Criterion (AIC). Results A regression model including daylight and weather variables significantly outperformed a traditional seasonality model in terms of AIC. A cyclic week effect was significant in all models. Conclusion Daylight and weather variables are better predictors of seasonality in daily trauma admissions than mere information on day-of-year. PMID:29425210

  15. Seasonal variability of the hydrogen exosphere of Mars

    Science.gov (United States)

    Halekas, J. S.

    2017-05-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission measures both the upstream solar wind and collisional products from energetic neutral hydrogen atoms that precipitate into the upper atmosphere after their initial formation by charge exchange with exospheric hydrogen. By computing the ratio between the densities of these populations, we derive a robust measurement of the column density of exospheric hydrogen upstream of the Martian bow shock. By comparing with Chamberlain-type model exospheres, we place new constraints on the structure and escape rates of exospheric hydrogen, derived from observations sensitive to a different and potentially complementary column from most scattered sunlight observations. Our observations provide quantitative estimates of the hydrogen exosphere with nearly complete temporal coverage, revealing order of magnitude seasonal changes in column density and a peak slightly after perihelion, approximately at southern summer solstice. The timing of this peak suggests either a lag in the response of the Martian atmosphere to solar inputs or a seasonal effect driven by lower atmosphere dynamics. The high degree of seasonal variability implied by our observations suggests that the Martian atmosphere and the thermal escape of light elements depend sensitively on solar inputs.

  16. Seasonal Variability of Salt Transports in the Northern Indian Ocean

    Science.gov (United States)

    D'Addezio, J. M.; Bulusu, S.

    2016-02-01

    Due to limited observational data in the Indian Ocean compared to other regions of the global ocean, past work on the Northern Indian Ocean (NIO) has relied heavily upon model analysis to study the variability of regional salinity advection caused by the monsoon seasons. With the launch of the Soil Moisture and Ocean Salinity (SMOS) satellite in 2009 and the Aquarius SAC-D mission in 2011 (ended on June 7, 2011), remotely sensed, synoptic scale sea surface salinity (SSS) data is now readily available to study this dynamic region. The new observational data has allowed us to revisit the region to analyze seasonal variability of salinity advection in the NIO using several modeled products, the Aquarius and SMOS satellites, and Argo floats data. The model simulations include the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO2), European Centre for Medium-Range Weather Forecasts - Ocean Reanalysis System 4 (ECMWF-ORSA4), Simple Ocean Data Assimilation (SODA) Reanalysis, and HYbrid Coordinate Ocean Model (HYCOM). Our analyses of salinity at the surface and at depths up to 200 m, surface salt transport in the top 5 m layer, and depth-integrated salt transports revealed different salinity processes in the NIO that are dominantly related to the semi-annual monsoons. Aquarius and SMOS prove useful tools for observing this dynamic region, and reveal some aspects of SSS that Argo cannot resolve. Meridional depth-integrated salt transports using the modeled products along 6°N revealed dominant advective processes from the surface towards near-bottom depths. Finally, a difference in subsurface salinity stratification causes many of the modeled products to incorrectly estimate the magnitude and seasonality of NIO barrier layer thickness (BLT) when compared to the Argo solution. This problem is also evident in model output from the Seychelles-Chagos Thermocline Ridge (SCTR), a region with strong air-sea teleconnections with the Arabian Sea.

  17. Atmospheric forcing on the seasonal variability of sea level at Cochin, southwest coast of India

    Science.gov (United States)

    Srinivas, K.; Dinesh Kumar, P. K.

    2006-07-01

    The seasonal cycles of some atmospheric parameters at Cochin (southwest coast of India) have been studied with a specific emphasis on the role played by them in forcing the seasonal sea level. Equatorward along-shore wind stress as well as equatorward volume transport by coastal currents along the Indian peninsula could play an important role in the sea level low during the premonsoon and southwest monsoon seasons. During postmonsoon season, along-shore wind stress plays no major role in the high sea level whereas this could be due to the poleward volume transport by the coastal along-shore currents. Atmospheric pressure and river discharge do not seem to influence much the sea level during the southwest monsoon period, even though the river discharge during that period is considerable. The sea level was minimal during the southwest monsoon season, when the river discharge was at its annual maximum. The difference between the seasonal march of observed and pressure corrected sea level (CSL) was not significant for the study region. Harmonic analysis of the climatological data on the various parameters revealed that air temperature is the only parameter with a dominance of the semi-annual over the annual cycle. Cross-shore wind stress indicated strong interannual variability whereas relative density showed strong seasonal variability. The climatological seasonal cycles of CSL at eight other tide gauge stations along the west coast of the Indian subcontinent are also examined, to assess the role of various forcings on the seasonal sea level cycle. The signatures of El Nino-Southern Oscillation (ENSO) phenomenon could be seen in some of the parameters (SST, air temperature, atmospheric pressure, along-shore wind stress, relative density and sea level). The signature of ENSO was particularly strong in the case of atmospheric pressure followed by relative density, the variance accounted by the relationship being 47% and 16%, respectively.

  18. What controls the atmospheric methane seasonal variability over India?

    KAUST Repository

    Guha, Tania; Tiwari, Yogesh K.; Valsala, Vinu; Lin, Xin; Ramonet, Michel; Mahajan, Anoop; Datye, Amey; Kumar, K. Ravi

    2017-01-01

    Atmospheric CH4 observations from two ground-based stations within Indian subcontinent, namely, Sinhagad (SNG) and Cape Rama station (CRI) showed a strong seasonality with a minima (∼1800 ± 20 ppb) during southwest monsoon (SWM; i.e. June–September, JJAS) and a maxima (2000 ± 30 ppb) during northeast monsoon (NEM i.e. December–February, DJF) with a peak-to-peak seasonality close to 200 ppb. The Indian summer (winter) monsoon is characterized with strong southwesterly (northeasterly) winds of oceanic origin at the surface level and strong easterly (westerly) jet streams aloft. The monsoon dynamics has pronounced impact on CH4 variability over India and is analyzed with winds, Lagrangian trajectories, and 3-dimentional distributions of CH4 simulated by a general circulation model. The model simulations suggest a consistent annual vertical structure (mean and sub-seasonal uncertainty) of CH4 over India with a stark contrast in concentration from summer to winter at surface levels (below 750 mb) in confirmation with what is identified by the ground-based observations. During SWM (NEM) the air with comparatively lower (higher) CH4 concentrations from southern (northern) hemisphere reduces the CH4 over India by 1814 ± 26 ppb (enhances by 1950 ± 51 ppb). The contribution of local fluxes to this seasonality appears to be albeit weak as the synthesized CH4 fluxes (from EDGAR dataset) of the Indian peninsula itself show a peak in summer and a dip in winter. Similar property of CH4 is also common to nearby oceanic region (i.e. over Arabian Sea, 1765 ± 10 ppb during summer) suggesting the role of monsoon dynamics as the controlling factor. Further the mixing and convection carries the CH4 to the upper atmosphere and advect inward or outward aloft according the seasonal monsoon dynamics.

  19. What controls the atmospheric methane seasonal variability over India?

    KAUST Repository

    Guha, Tania

    2017-11-28

    Atmospheric CH4 observations from two ground-based stations within Indian subcontinent, namely, Sinhagad (SNG) and Cape Rama station (CRI) showed a strong seasonality with a minima (∼1800 ± 20 ppb) during southwest monsoon (SWM; i.e. June–September, JJAS) and a maxima (2000 ± 30 ppb) during northeast monsoon (NEM i.e. December–February, DJF) with a peak-to-peak seasonality close to 200 ppb. The Indian summer (winter) monsoon is characterized with strong southwesterly (northeasterly) winds of oceanic origin at the surface level and strong easterly (westerly) jet streams aloft. The monsoon dynamics has pronounced impact on CH4 variability over India and is analyzed with winds, Lagrangian trajectories, and 3-dimentional distributions of CH4 simulated by a general circulation model. The model simulations suggest a consistent annual vertical structure (mean and sub-seasonal uncertainty) of CH4 over India with a stark contrast in concentration from summer to winter at surface levels (below 750 mb) in confirmation with what is identified by the ground-based observations. During SWM (NEM) the air with comparatively lower (higher) CH4 concentrations from southern (northern) hemisphere reduces the CH4 over India by 1814 ± 26 ppb (enhances by 1950 ± 51 ppb). The contribution of local fluxes to this seasonality appears to be albeit weak as the synthesized CH4 fluxes (from EDGAR dataset) of the Indian peninsula itself show a peak in summer and a dip in winter. Similar property of CH4 is also common to nearby oceanic region (i.e. over Arabian Sea, 1765 ± 10 ppb during summer) suggesting the role of monsoon dynamics as the controlling factor. Further the mixing and convection carries the CH4 to the upper atmosphere and advect inward or outward aloft according the seasonal monsoon dynamics.

  20. Seasonal water chemistry variability in the Pangani River basin, Tanzania.

    Science.gov (United States)

    Selemani, Juma R; Zhang, Jing; Muzuka, Alfred N N; Njau, Karoli N; Zhang, Guosen; Maggid, Arafa; Mzuza, Maureen K; Jin, Jie; Pradhan, Sonali

    2017-11-01

    The stable isotopes of δ 18 O, δ 2 H, and 87 Sr/ 86 Sr and dissolved major ions were used to assess spatial and seasonal water chemistry variability, chemical weathering, and hydrological cycle in the Pangani River Basin (PRB), Tanzania. Water in PRB was NaHCO 3 type dominated by carbonate weathering with moderate total dissolved solids. Major ions varied greatly, increasing from upstream to downstream. In some stations, content of fluoride and sodium was higher than the recommended drinking water standards. Natural and anthropogenic factors contributed to the lowering rate of chemical weathering; the rate was lower than most of tropical rivers. The rate of weathering was higher in Precambrian than volcanic rocks. 87 Sr/ 86 Sr was lower than global average whereas concentration of strontium was higher than global average with mean annual flux of 0.13 × 10 6  mol year -1 . Evaporation and altitude effects have caused enrichment of δ 18 O and δ 2 H in dry season and downstream of the river. Higher d-excess value than global average suggests that most of the stations were supplied by recycled moisture. Rainfall and groundwater were the major sources of surface flowing water in PRB; nevertheless, glacier from Mt. Kilimanjaro has insignificant contribution to the surface water. We recommend measures to be taken to reduce the level of fluoride and sodium before domestic use.

  1. Variability of aerobic abilities of football players during competition season

    Directory of Open Access Journals (Sweden)

    Novaković P.

    2012-01-01

    Full Text Available The purpose of this study is to determine whether there are differences in VO2max during one season in a team of semi-professional football players. This study will also determine the differences between groups, in relation to their position in the team, as well as in relation between the first team and the reserves. This study was conducted on a male football team, between 16 and 28 years of age and with no health problems, competing in a third-tier league. The technique employed is testing and the instrument is the Shuttle Run test that estimated their aerobic capacity. The testing was conducted indirectly during field tests at the beginning of the preparatory period, at the beginning of the competing period and at the end of the season. After a statistical analysis, it can be concluded that there are significant differences between the initial testing, control testing, and final testing. The initial testing was done at the beginning of the preparatory period and the results of the test ranged from 41.50 to 58.10 ml/kg/min. Then after six weeks, which was also right before the start of the competitive part of the season, the control testing was conducted and the results ranged from 46.90 to 62.30 ml/kg/min. Finally, at the end of the season, after all league matches had been played, the final testing was carried out and the results were obtained ranging from 43.80 to 62.00 ml/kg/min. All the testing was conducted on a sample of 31 players, where no relation was discovered between the status of the players at any of the three time points. However, there were some statistically significant differences from the aspect of the players' position but that is due to the goalkeepers being statistically different from the rest of the team. The cause of the differences in the obtained results are differences in intensity, volume and type of training depending on the stage of the season, as well as the specificity of training for the various positions in

  2. Seasonal variability of morphospaces in a subtropical fish assemblage

    Directory of Open Access Journals (Sweden)

    Carolina Correia Siliprandi

    2015-11-01

    Full Text Available Morphological characters of fishes are essential to evaluate the functional structure of assemblages, being morphological differences indicative of distinct ecological and adaptive strategies. The ecomorphology using morphospaces analyzes the structure of a fish assemblage through the values of intervals between homologous points positioned in anatomical structures of organisms phylogenetically related. These intervals can be quantified by morphogeometric and multivariate analyses. Seasonally during 2013-2014, standardized images were obtained from fishes sampled in Araça Bay, São Sebastião District, Brazil, using nine fishing gears which were grouped to verify the species occurrence variation. Qualitative approach (presence/absence data was used to carry out morphological analyses. A total of 27 landmarks and semilandmarks with anatomical, ecological and taxonomical meaning were positioned in species images of the left profile. Consensus figures were made embedding the intraspecific variability. Uniform components of the shape variation (RWs were generated. To build morphospaces, the first eight RWs were considered (explain more than 95% of the total morphological variability and were defined using Convex Hull. The RWs were also used to calculate the Morphological Richness (MR, Morphological Disparity (MD and Morphogeometric Index (EMI. The MD indicates the morphospace size and showed greater values in summer (0.051 and winter (0.047 as MR, related to the higher number of species (MRsummer=7.93; MRwinter=8.65. During all the year, the Araça Bay presents high diversity of fishes. Nevertheless, winter and summer seasons reached the highest diversity, periods when horizontal mobile fishes with elongated shapes arrive to the region, implying an increase of morphological diversity and shape’s redundancy (represented by the lowest values of EMI: winter=0.120; summer=0.123.

  3. Seasonal Variability of Airborne Particulate Matter and Bacterial Concentrations in Colorado Homes

    Directory of Open Access Journals (Sweden)

    Nicholas Clements

    2018-04-01

    Full Text Available Aerosol measurements were collected at fifteen homes over the course of one year in Colorado (USA to understand the temporal variability of indoor air particulate matter and bacterial concentrations and their relationship with home characteristics, inhabitant activities, and outdoor air particulate matter (PM. Indoor and outdoor PM2.5 concentrations averaged (±st. dev. 8.1 ± 8.1 μg/m3 and 6.8 ± 4.5 μg/m3, respectively. Indoor PM2.5 was statistically significantly higher during summer compared to spring and winter; outdoor PM2.5 was significantly higher for summer compared to spring and fall. The PM2.5 I/O ratio was 1.6 ± 2.4 averaged across all homes and seasons and was not statistically significantly different across the seasons. Average indoor PM10 was 15.4 ± 18.3 μg/m3 and was significantly higher during summer compared to all other seasons. Total suspended particulate bacterial biomass, as determined by qPCR, revealed very little seasonal differences across and within the homes. The qPCR I/O ratio was statistically different across seasons, with the highest I/O ratio in the spring and lowest in the summer. Using one-minute indoor PM10 data and activity logs, it was observed that elevated particulate concentrations commonly occurred when inhabitants were cooking and during periods with elevated outdoor concentrations.

  4. Seasonal and annual variability of coastal sulphur plumes in the northern Benguela upwelling system.

    Science.gov (United States)

    Ohde, Thomas; Dadou, Isabelle

    2018-01-01

    We investigated the seasonal and annual variability of surface sulphur plumes in the northern Benguela upwelling system off Namibia because of their significant impacts on the marine ecosystem, fishing industry, aquaculture farming and tourism due to their toxic properties. We identified the sulphur plumes in ocean colour satellite data of the medium resolution imaging spectrometer (MERIS) for the 2002-2012 time period using the differences in the spectral properties of Namibian Benguela optical water types. The sulphur events have a strong seasonal cycle with pronounced main and off-seasons forced by local and remote-driven processes. The main peak season is in late austral summer and early austral autumn at the beginning of the annual upwelling cycle caused by increasing equatorwards alongshore winds. The sulphur plume activity is high between February and April during the seasonal oxygen minimum associated with the seasonal reduction of cross-shore ventilation of the bottom waters, the seasonal southernmost position of the Angola Benguela Frontal Zone, the seasonal maximum of water mass fractions of South Atlantic and Angola Gyre Central Waters as well as the seasonal arrival of the downwelling coastal trapped waves. The off-season is in austral spring and early austral summer during increased upwelling intensity and enhanced oxygen supply. The annual variability of sulphur events is characterized by very high activities in years 2004, 2005 and 2010 interrupted by periods of lower activity in years 2002 to 2003, 2006 to 2009 and 2011 to 2012. This result can be explained by the relative contributions or adding effects of local and remote-driven forces (from the equatorial area). The probability for the occurrence of sulphur plumes is enhanced in years with a lower annual mean of upwelling intensity, decreased oxygen supply associated with decreased lateral ventilation of bottom waters, more southern position of the Angola Benguela Frontal Zone, increased mass

  5. Seasonal and annual variability of coastal sulphur plumes in the northern Benguela upwelling system.

    Directory of Open Access Journals (Sweden)

    Thomas Ohde

    Full Text Available We investigated the seasonal and annual variability of surface sulphur plumes in the northern Benguela upwelling system off Namibia because of their significant impacts on the marine ecosystem, fishing industry, aquaculture farming and tourism due to their toxic properties. We identified the sulphur plumes in ocean colour satellite data of the medium resolution imaging spectrometer (MERIS for the 2002-2012 time period using the differences in the spectral properties of Namibian Benguela optical water types. The sulphur events have a strong seasonal cycle with pronounced main and off-seasons forced by local and remote-driven processes. The main peak season is in late austral summer and early austral autumn at the beginning of the annual upwelling cycle caused by increasing equatorwards alongshore winds. The sulphur plume activity is high between February and April during the seasonal oxygen minimum associated with the seasonal reduction of cross-shore ventilation of the bottom waters, the seasonal southernmost position of the Angola Benguela Frontal Zone, the seasonal maximum of water mass fractions of South Atlantic and Angola Gyre Central Waters as well as the seasonal arrival of the downwelling coastal trapped waves. The off-season is in austral spring and early austral summer during increased upwelling intensity and enhanced oxygen supply. The annual variability of sulphur events is characterized by very high activities in years 2004, 2005 and 2010 interrupted by periods of lower activity in years 2002 to 2003, 2006 to 2009 and 2011 to 2012. This result can be explained by the relative contributions or adding effects of local and remote-driven forces (from the equatorial area. The probability for the occurrence of sulphur plumes is enhanced in years with a lower annual mean of upwelling intensity, decreased oxygen supply associated with decreased lateral ventilation of bottom waters, more southern position of the Angola Benguela Frontal Zone

  6. Photosynthetic responses of C3 and C4 species to seasonal water variability and competition.

    Science.gov (United States)

    Niu, Shuli; Yuan, Zhiyou; Zhang, Yanfang; Liu, Weixing; Zhang, Lei; Huang, Jianhui; Wan, Shiqiang

    2005-11-01

    This study examined the impacts of seasonal water variability and interspecific competition on the photosynthetic characteristics of a C3 (Leymus chinensis) and a C4 (Chloris virgata) grass species. Plants received the same amount of water but in three seasonal patterns, i.e. the one-peak model (more water in the summer than in the spring and autumn), the two-peak model (more water in the spring and autumn than in the summer), and the average model (water evenly distributed over the growing season). The effects of water variability on the photosynthetic characteristics of the C3 and C4 species were dependent on season. There were significant differences in the photosynthetic characteristics of the C4 species in the summer and the C3 species in the autumn among the three water treatments. Interspecific competition exerted negative impacts on the C3 species in August and September but had no effects on the C4 species in any of the four measuring dates. The relative competitive capability of the two species was not altered by water availability. The assimilation rate, the maximum quantum yield of net CO2 assimilation, and the maximum rate of carboxylation of the C3 species were 13-56%, 5-11%, and 11-48% greater, respectively, in a monoculture than in a mixture in August and September. The results demonstrated that the photosynthetic characteristics of the C3 and C4 species were affected by water availability, but the effects varied considerably with season.

  7. About the seasonal variability of the Alboran Sea circulation

    Science.gov (United States)

    Vargas-Yáñez, M.; Plaza, F.; García-Lafuente, J.; Sarhan, T.; Vargas, J. M.; Vélez-Belchi, P.

    2002-07-01

    Data from a mooring line deployed midway between the Alboran Island and Cape Tres Forcas are used to study the time variability of the Alboran Sea from May 1997 to May 1998. The upper layer salinity and zonal velocity present annual and semiannual cycles characterised by a minimum in spring and autumn and a maximum in summer and winter. Temperature has the opposite behaviour to that of salinity indicating changes in the presence of the Atlantic water within the Alboran Passage. A large set of SST images is used to study these cycles. The decrease of salinity and velocity in our mooring location in spring and autumn seems to be related to the eastward drifting of the Western Alboran Gyre (WAG). The increase of salinity and velocity is caused by the Atlantic current flowing south of the Alboran Island and its associated thermohaline front. Conductivity-temperature-depth (CTD) data from two cruises along the 3°W are coherent with current meters and SST interpretations. During the period analysed, summer months are characterised by the stability of the two-gyre system, while in winter, the circulation is characterised by a coastal jet flowing close to the African shore. We use sea level differences across the Strait of Gibraltar for studying the variability of the Atlantic inflow. We discuss the changes in the Alboran Sea circulation and its relation with the variability of the inertial radius of the Atlantic inflow. Though our results are speculative, we find a possible relation between the disappearance of the two-gyre system and a reversal of the circulation in Gibraltar. Longer time series are needed to conclude, but comparison with previous works makes us think that the seasonal cycle described from May 1997 to May 1998 could be the most likely one for the Alboran Sea upper layer.

  8. Impact of Seasonal Variability in Water, Plant and Soil Nutrient Dynamics in Agroecosystems

    Science.gov (United States)

    Pelak, N. F., III; Revelli, R.; Porporato, A. M.

    2017-12-01

    Agroecosystems cover a significant fraction of the Earth's surface, making their water and nutrient cycles a major component of global cycles across spatial and temporal scales. Most agroecosystems experience seasonality via variations in precipitation, temperature, and radiation, in addition to human activities which also occur seasonally, such as fertilization, irrigation, and harvesting. These seasonal drivers interact with the system in complex ways which are often poorly characterized. Crop models, which are widely used for research, decision support, and prediction of crop yields, are among the best tools available to analyze these systems. Though normally constructed as a set of dynamical equations forced by hydroclimatic variability, they are not often analyzed using dynamical systems theory and methods from stochastic ecohydrology. With the goal of developing this viewpoint and thus elucidating the roles of key feedbacks and forcings on system stability and on optimal fertilization and irrigation strategies, we develop a minimal dynamical system which contains the key components of a crop model, coupled to a carbon and nitrogen cycling model, driven by seasonal fluctuations in water and nutrient availability, temperature, and radiation. External drivers include seasonally varying climatic conditions and random rainfall forcing, irrigation and fertilization as well as harvesting. The model is used to analyze the magnitudes and interactions of the effects of seasonality on carbon and nutrient cycles, crop productivity, nutrient export of agroecosystems, and optimal management strategies with reference to productivity, sustainability and profitability. The impact of likely future climate scenarios on these systems is also discussed.

  9. Seasonal forecasts: communicating current climate variability in southern Africa

    CSIR Research Space (South Africa)

    Landman, WA

    2011-11-01

    Full Text Available seasonal time scale. Seasonal climate forecasts are defined as probabilistic predictions of how much rain is expected during the season and how warm or cool it will be, based primarily on the principle that the ocean (sea-surface temperatures) influences...

  10. The application of seasonal latent variable in forecasting electricity demand as an alternative method

    International Nuclear Information System (INIS)

    Sumer, Kutluk Kagan; Goktas, Ozlem; Hepsag, Aycan

    2009-01-01

    In this study, we used ARIMA, seasonal ARIMA (SARIMA) and alternatively the regression model with seasonal latent variable in forecasting electricity demand by using data that belongs to 'Kayseri and Vicinity Electricity Joint-Stock Company' over the 1997:1-2005:12 periods. This study tries to examine the advantages of forecasting with ARIMA, SARIMA methods and with the model has seasonal latent variable to each other. The results support that ARIMA and SARIMA models are unsuccessful in forecasting electricity demand. The regression model with seasonal latent variable used in this study gives more successful results than ARIMA and SARIMA models because also this model can consider seasonal fluctuations and structural breaks

  11. Seasonal precipitation extreme indices in mainland Portugal: trends and variability in the period 1941-2007

    Science.gov (United States)

    Santo, Fátima E.; Ramos, Alexandre M.; de Lima, M. Isabel P.; Trigo, Ricardo M.

    2013-04-01

    Changes in the precipitation regimes are expected to be accompanied by variations in the occurrence of extreme events, which in turn could be related to low frequency variability. The impact on the society and environment requires that the regional specificities are understood. For mainland Portugal, this work reports the results of the analysis of trends in selected precipitation indices calculated from daily precipitation data from 57 meteorological stations, recorded in the period 1941-2007; additionally we have also investigated the correlations between these indices and several modes of low frequency variability over the area. We focus on exploring regional differences and seasonal variations in the intensity, frequency and duration of extreme precipitation events. The precipitation indices were assessed at the seasonal scale and calculated at both the station and regional scales. Results sometimes highlight marked changes in seasonal precipitation and show that: i) trends in spring and autumn have opposite signals: statistically significant drying trends in the spring are accompanied by a reduction in precipitation extremes; in autumn, wetting trends are detected for all precipitation indices, although overall they are not significant at the 5% level; ii) there seems to be a tendency for a reduction in the duration of the rainy season; iii) the North Atlantic Oscillation (NAO) is the mode of variability that has the highest influence on precipitation extremes over mainland Portugal, particularly in the winter and autumn, and is one of the most important teleconnection patterns in all seasons. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) through project STORMEx FCOMP-01-0124-FEDER-019524 (PTDC/AAC-CLI/121339/2010).

  12. Observing Seasonal and Diurnal Hydrometeorological Variability Within a Tropical Alpine Valley: Implications for Evapotranspiration

    Science.gov (United States)

    Hellstrom, R. A.; Mark, B. G.

    2007-12-01

    Conditions of glacier recession in the seasonally dry tropical Peruvian Andes motivate research to better constrain the hydrological balance in alpine valleys. There is an outstanding need to better understand the impact of the pronounced tropical hygric seasonality on energy and water budgets within pro-glacial valleys that channel glacier runoff to stream flow. This paper presents a novel embedded network installed in the glacierized Llanganuco valley of the Cordillera Blanca (9°S) comprising eight low-cost, discrete temperature and humidity microloggers ranging from 3470 to 4740 masl and an automatic weather station at 3850 masl. Data are aggregated into distinct dry and wet periods sampled from two full annual cycles (2004-2006) to explore patterns of diurnal and seasonal variability. The magnitude of diurnal solar radiation varies little within the valley between the dry and wet periods, while wet season near-surface air temperatures are cooler. Seasonally characteristic diurnal fluctuations in lapse rate partially regulate convection and humidity. Steep lapse rates during the wet season afternoon promote up-slope convection of warm, moist air and nocturnal rainfall events. Standardized grass reference evapotranspiration (ET0) was estimated using the FAO-56 algorithm of the United Nations Food and Agriculture Organization and compared with estimates of actual ET from the process-based BROOK90 model that incorporates more realistic vegetation parameters. Comparisons of composite diurnal cycles of ET for the wet and dry periods suggest about twice the daily ET0 during the dry period, attributed primarily to the 500% higher vapor pressure deficit and 20% higher daily total solar irradiance. Conversely, the near absence of rainfall during the dry season diminishes actual ET below that of the wet season by two orders of magnitude. Nearly cloud-free daylight conditions are critical for ET during the wet season. We found significant variability of ET with elevation

  13. Significance of cold-season respiration and photosynthesis in a subarctic heath ecosystem in Northern Sweden

    DEFF Research Database (Denmark)

    Larsen, Klaus Steenberg; Ibrom, Andreas; Jonasson, S.

    2007-01-01

    While substantial cold-season respiration has been documented in most arctic and alpine ecosystems in recent years, the significance of cold-season photosynthesis in these biomes is still believed to be small. In a mesic, subartic heath during both the cold and warm season, we measured in situ...... ecosystem respiration and photosynthesis with a chamber technique at ambient conditions and at artificially, increased frequency of freeze-thaw (FT) cycles during fall and spring. We fitted the measured ecosystem exchange rates to respiration and photosynthesis models with R-2-values ranging from 0.81 to 0.......85. As expected, estimated cold-season (October, November, April and May) respiration was significant and accounted for at least 22% of the annual respiratory CO2 flux. More surprisingly, estimated photosynthesis during this period accounted for up to 19% of the annual gross CO2 uptake, suggesting that cold...

  14. The Karakoram/Western Tibetan vortex: seasonal and year-to-year variability

    Science.gov (United States)

    Li, Xiao-Feng; Fowler, Hayley J.; Forsythe, Nathan; Blenkinsop, Stephen; Pritchard, David

    2018-02-01

    The "Karakoram Vortex" (KV), hereafter also referred to as the "Western Tibetan Vortex" (WTV), has recently been recognized as a large-scale atmospheric circulation system related to warmer (cooler) near-surface and mid-lower troposphere temperatures above the Karakoram in the western Tibetan Plateau (TP). It is characterized by a deep, anti-cyclonic (cyclonic) wind anomaly associated with higher (lower) geopotential height in the troposphere, during winter and summer seasons. In this study, we further investigate the seasonality and basic features of the WTV in all four seasons, and explore its year-to-year variability and influence on regional climate. We find the WTV accounts for the majority of year-to-year circulation variability over the WTP as it can explain over 50% ({R^2} ≥slant 0.5 ) variance of the WTP circulation on multiple levels throughout the troposphere, which declines towards the eastern side of the TP in most seasons. The WTV is not only more (less) active but also has a bigger (smaller) domain area, with a deeper (shallower) structure, in winter and spring (summer and autumn). We find that the WTV is sensitive to both the location and intensity of the Subtropical Westerly Jet (SWJ), but the relationship is highly dependent on the climatological mean location of SWJ axes relative to the TP in different seasons. We also show that the WTV significantly modulates surface and stratospheric air temperatures, north-south precipitation patterns and total column ozone surrounding the western TP. As such, the WTV has important implications for the understanding of atmospheric, hydrological and glaciological variability over the TP.

  15. Droughts in Amazonia: Spatiotemporal Variability, Teleconnections, and Seasonal Predictions

    Science.gov (United States)

    Lima, Carlos H. R.; AghaKouchak, Amir

    2017-12-01

    Most Amazonia drought studies have focused on rainfall deficits and their impact on river discharges, while the analysis of other important driver variables, such as temperature and soil moisture, has attracted less attention. Here we try to better understand the spatiotemporal dynamics of Amazonia droughts and associated climate teleconnections as characterized by the Palmer Drought Severity Index (PDSI), which integrates information from rainfall deficit, temperature anomalies, and soil moisture capacity. The results reveal that Amazonia droughts are most related to one dominant pattern across the entire region, followed by two seesaw kind of patterns: north-south and east-west. The main two modes are correlated with sea surface temperature (SST) anomalies in the tropical Pacific and Atlantic oceans. The teleconnections associated with global SST are then used to build a seasonal forecast model for PDSI over Amazonia based on predictors obtained from a sparse canonical correlation analysis approach. A unique feature of the presented drought prediction method is using only a few number of predictors to avoid excessive noise in the predictor space. Cross-validated results show correlations between observed and predicted spatial average PDSI up to 0.60 and 0.45 for lead times of 5 and 9 months, respectively. To the best of our knowledge, this is the first study in the region that, based on cross-validation results, leads to appreciable forecast skills for lead times beyond 4 months. This is a step forward in better understanding the dynamics of Amazonia droughts and improving risk assessment and management, through improved drought forecasting.

  16. The forcing of monthly precipitation variability over Southwest Asia during the Boreal cold season

    Science.gov (United States)

    Hoell, Andrew; Shukla, Shraddhanand; Barlow, Mathew; Cannon, Forest; Kelley, Colin; Funk, Christopher C.

    2015-01-01

    Southwest Asia, deemed as the region containing the countries of Afghanistan, Iran, Iraq and Pakistan, is water scarce and receives nearly 75% of its annual rainfall during8 the boreal cold season of November-April. The forcing of Southwest Asia precipitation has been previously examined for the entire boreal cold season from the perspective of climate variability originating over the Atlantic and tropical Indo-Pacific Oceans. Here, we examine the inter-monthly differences in precipitation variability over Southwest Asia and the atmospheric conditions directly responsible in forcing monthly November-April precipitation. Seasonally averaged November-April precipitation over Southwest Asia is significantly correlated with sea surface temperature (SST) patterns consistent with Pacific Decadal Variability (PDV), the El Nino-Southern Oscillation (ENSO) and the warming trend of SST (Trend). On the contrary, the precipitation variability during individual months of November-April are unrelated and are correlated with SST signatures that include PDV, ENSO and Trend in different combinations. Despite strong inter-monthly differences in precipitation variability during November- April over Southwest Asia, similar atmospheric circulations, highlighted by a stationary equivalent barotropic Rossby wave centered over Iraq, force the monthly spatial distributions of precipitation. Tropospheric waves on the eastern side of the equivalent barotropic Rossby wave modifies the flux of moisture and advects the mean temperature gradient, resulting in temperature advection that is balanced by vertical motions over Southwest Asia. The forcing of monthly Southwest Asia precipitation by equivalent barotropic Rossby waves is different than the forcing by baroclinic Rossby waves associated with tropically-forced-only modes of climate variability.

  17. Seasonal temperature variability and emergency hospital admissions for respiratory diseases: a population-based cohort study.

    Science.gov (United States)

    Sun, Shengzhi; Laden, Francine; Hart, Jaime E; Qiu, Hong; Wang, Yan; Wong, Chit Ming; Lee, Ruby Siu-Yin; Tian, Linwei

    2018-04-05

    Climate change increases global mean temperature and changes short-term (eg, diurnal) and long-term (eg, intraseasonal) temperature variability. Numerous studies have shown that mean temperature and short-term temperature variability are both associated with increased respiratory morbidity or mortality. However, data on the impact of long-term temperature variability are sparse. We aimed to assess the association of intraseasonal temperature variability with respiratory disease hospitalisations among elders. We ascertained the first occurrence of emergency hospital admissions for respiratory diseases in a prospective Chinese elderly cohort of 66 820 older people (≥65 years) with 10-13 years of follow-up. We used an ordinary kriging method based on 22 weather monitoring stations in Hong Kong to spatially interpolate daily ambient temperature for each participant's residential address. Seasonal temperature variability was defined as the SD of daily mean summer (June-August) or winter (December-February) temperatures. We applied Cox proportional hazards regression with time-varying exposure of seasonal temperature variability to respiratory admissions. During the follow-up time, we ascertained 12 689 cases of incident respiratory diseases, of which 6672 were pneumonia and 3075 were COPD. The HRs per 1°C increase in wintertime temperature variability were 1.20 (95% CI 1.08 to 1.32), 1.15 (1.01 to 1.31) and 1.41 (1.15 to 1.71) for total respiratory diseases, pneumonia and COPD, respectively. The associations were not statistically significant for summertime temperature variability. Wintertime temperature variability was associated with higher risk of incident respiratory diseases. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Seasonal variability in 7Be depositional fluxes at Granada, Spain

    International Nuclear Information System (INIS)

    Gonzalez-Gomez, C.; Azahra, M.; Lopez-Penalver, J.J.; Camacho-Garcia, A.; Bardouni, T.El.; Boukhal, H.

    2006-01-01

    Measurement of 7 Be depositional fluxes at Granada, Spain (37 o 10'50''N-3 o 35'44''W, altitude 670 m) in the period 1995 through 1998 indicates substantial variations between the four seasons and also between corresponding seasons in different years, ranging from 23.6 to 242 Bq m -2 per season. A strongly positive correlation with precipitation is shown, which explains about 70% of the variations in the 7 Be depositional fluxes over the 16 seasons studied. The depositional 7 Be flux is on the average highest in the fall and lowest in the summer. The study shows that precipitation primarily controls the 7 Be depositional flux and plays a dominant role in the removal of 7 Be from the troposphere. The average annual 7 Be depositional flux at Granada amounts to 469+145 Bq m -2

  19. Spatial and temporal variability in seasonal snow density

    KAUST Repository

    Bormann, Kathryn J.

    2013-03-01

    Snow density is a fundamental physical property of snowpacks used in many aspects of snow research. As an integral component in the remote sensing of snow water equivalent and parameterisation of snow models, snow density may be used to describe many important features of snowpack behaviour. The present study draws on a significant dataset of snow density and climate observations from the United States, Australia and the former Soviet Union and uses regression-based techniques to identify the dominant climatological drivers for snow densification rates, characterise densification rate variability and estimate spring snow densities from more readily available climate data. Total winter precipitation was shown to be the most prominent driver of snow densification rates, with mean air temperature and melt-refreeze events also found to be locally significant. Densification rate variance is very high at Australian sites, very low throughout the former Soviet Union and between these extremes throughout much of the US. Spring snow densities were estimated using a statistical model with climate variable inputs and best results were achieved when snow types were treated differently. Given the importance of snow density information in many snow-related research disciplines, this work has implications for current methods of converting snow depths to snow water equivalent, the representation of snow dynamics in snow models and remote sensing applications globally. © 2013 Elsevier B.V.

  20. Spatial and temporal variability in seasonal snow density

    KAUST Repository

    Bormann, Kathryn J.; Westra, Seth; Evans, Jason P.; McCabe, Matthew

    2013-01-01

    Snow density is a fundamental physical property of snowpacks used in many aspects of snow research. As an integral component in the remote sensing of snow water equivalent and parameterisation of snow models, snow density may be used to describe many important features of snowpack behaviour. The present study draws on a significant dataset of snow density and climate observations from the United States, Australia and the former Soviet Union and uses regression-based techniques to identify the dominant climatological drivers for snow densification rates, characterise densification rate variability and estimate spring snow densities from more readily available climate data. Total winter precipitation was shown to be the most prominent driver of snow densification rates, with mean air temperature and melt-refreeze events also found to be locally significant. Densification rate variance is very high at Australian sites, very low throughout the former Soviet Union and between these extremes throughout much of the US. Spring snow densities were estimated using a statistical model with climate variable inputs and best results were achieved when snow types were treated differently. Given the importance of snow density information in many snow-related research disciplines, this work has implications for current methods of converting snow depths to snow water equivalent, the representation of snow dynamics in snow models and remote sensing applications globally. © 2013 Elsevier B.V.

  1. Significance of blood pressure variability in patients with sepsis.

    Science.gov (United States)

    Pandey, Nishant Raj; Bian, Yu-Yao; Shou, Song-Tao

    2014-01-01

    This study was undertaken to observe the characteristics of blood pressure variability (BPV) and sepsis and to investigate changes in blood pressure and its value on the severity of illness in patients with sepsis. Blood parameters, APACHE II score, and 24-hour ambulatory BP were analyzed in 89 patients with sepsis. In patients with APACHE II score>19, the values of systolic blood pressure (SBPV), diasystolic blood pressure (DBPV), non-dipper percentage, cortisol (COR), lactate (LAC), platelet count (PLT) and glucose (GLU) were significantly higher than in those with APACHE II score ≤19 (Pblood cell (WBC), creatinine (Cr), PaO2, C-reactive protein (CRP), adrenocorticotropic hormone (ACTH) and tumor necrosis factor α (TNF-α) were not statistically significant (P>0.05). Correlation analysis showed that APACHE II scores correlated significantly with SBPV and DBPV (P0.05). Logistic regression analysis of SBPV, DBPV, APACHE II score, and LAC was used to predict prognosis in terms of survival and non-survival rates. Receiver operating characteristics curve (ROC) showed that DBPV was a better predictor of survival rate with an AUC value of 0.890. However, AUC of SBPV, APACHE II score, and LAC was 0.746, 0.831 and 0.915, respectively. The values of SBPV, DBPV and non-dipper percentage are higher in patients with sepsis. DBPV and SBPV can be used to predict the survival rate of patients with sepsis.

  2. Is there a clinically significant seasonal component to hospital admissions for atrial fibrillation?

    Directory of Open Access Journals (Sweden)

    Moineddin Rahim

    2004-03-01

    Full Text Available Abstract Background Atrial fibrillation is a common cardiac dysrhythmia, particularly in the elderly. Recent studies have indicated a statistically significant seasonal component to atrial fibrillation hospitalizations. Methods We conducted a retrospective population cohort study using time series analysis to evaluate seasonal patterns of atrial fibrillation hospitalizations for the province of Ontario for the years 1988 to 2001. Five different series methods were used to analyze the data, including spectral analysis, X11, R-Squared, autocorrelation function and monthly aggregation. Results This study found evidence of weak seasonality, most apparent at aggregate levels including both ages and sexes. There was dramatic increase in hospitalizations for atrial fibrillation over the years studied and an age dependent increase in rates per 100,000. Overall, the magnitude of seasonal difference between peak and trough months is in the order of 1.4 admissions per 100,000 population. The peaks for hospitalizations were predominantly in April, and the troughs in August. Conclusions Our study confirms statistical evidence of seasonality for atrial fibrillation hospitalizations. This effect is small in absolute terms and likely not significant for policy or etiological research purposes.

  3. Seasonal variability of physico–chemical characteristics of the ...

    Indian Academy of Sciences (India)

    Salinity varied spatially and temporally and seasonally during ebb and flood tide conditions. ... The tidal varia- tion at the mouth is from 6.1 m at springs to 0.22 m at neaps. The fresh water discharge ranges from a peak value of 4250m3 s−1 to almost zero in the ...... National Conference on Harbour and Ocean Engineer-.

  4. Evaluation of climate model aerosol seasonal and spatial variability

    CSIR Research Space (South Africa)

    Horowitz, HM

    2017-11-01

    Full Text Available , regional circulation transports dust from deserts in Iraq and southern Iran during summer and a mixture of fine pollution aerosols from the Persian Gulf throughout the year (Eck et al., 2008; Basart et al., 2009). The Izaña site has a different seasonal...

  5. Consistent seasonal snow cover depth and duration variability over ...

    Indian Academy of Sciences (India)

    Decline in consistent seasonal snow cover depth, duration and changing snow cover build- up pattern over the WH in recent decades indicate that WH has undergone considerable climate change and winter weather patterns are changing in the WH. 1. Introduction. Mountainous regions around the globe are storehouses.

  6. Seasonal variability in somatic and reproductive investment of the bivalve

    NARCIS (Netherlands)

    Santos, S.; Cardoso, J.F.M.F.; Carvalho, C.; Luttikhuizen, P.C.; van der Veer, H.W.

    2011-01-01

    Monthly investment in soma and gonads in the bivalve Scrobicularia plana is described for three populations along its distributional range: Minho estuary, Portugal; Westerschelde estuary, The Netherlands and Buvika estuary, Norway. Seasonal cycles in body mass (BMI), somatic mass (SMI) and

  7. SEASONAL ASSESSMENT OF HYDROGRAPHIC VARIABLES AND PHYTOPLANKTON COMMUNITY IN THE ARABIAN SEA WATERS OF KERALA, SOUTHWEST COAST OF INDIA

    Directory of Open Access Journals (Sweden)

    Sushanth Vishwanath Rai

    2014-12-01

    Full Text Available The seasonal variation of the hydrographic variables and phytoplankton species in the Arabian Sea waters of the Kerala coast, Southern India was investigated during different seasons. The variables such as pH, temperature, salinity, turbidity and chlorophyll-a contents of water were found to be high during pre-monsoon season and the dissolved oxygen content was minimal. The concentration of nutrients viz., nitrate, phosphate, silicate varied independently. In the study a total of 53 species of phytoplankton were recorded. Their density was higher during the post-monsoon season than during other seasons and the diatoms were found to be the dominant species. The major phytoplankton in terms of frequency and abundance were the species namely, Biddulphia mobiliensis, Chaetoceros curvisetus, Licmophora abbreviata, Skeletonema costatum, Prorocentrum micans and Oscillatoria sp. They showed significant positive correlation with pH, temperature, salinity, nitrate, phosphate and chlorophyll-a contents, whereas turbidity, dissolved oxygen and silicate exhibited significant negative correlation. The Principal Component Analysis (PCA developed two principal components with 84.74% of total variability in the water quality which separated pre- and post-monsoon periods from the monsoon season on axis I, and pre-monsoon and monsoon periods from post-monsoon on axis II.

  8. Theory of planned behaviour variables and objective walking behaviour do not show seasonal variation in a randomised controlled trial.

    Science.gov (United States)

    Williams, Stefanie L; French, David P

    2014-02-05

    Longitudinal studies have shown that objectively measured walking behaviour is subject to seasonal variation, with people walking more in summer compared to winter. Seasonality therefore may have the potential to bias the results of randomised controlled trials if there are not adequate statistical or design controls. Despite this there are no studies that assess the impact of seasonality on walking behaviour in a randomised controlled trial, to quantify the extent of such bias. Further there have been no studies assessing how season impacts on the psychological predictors of walking behaviour to date. The aim of the present study was to assess seasonal differences in a) objective walking behaviour and b) Theory of Planned Behaviour (TPB) variables during a randomised controlled trial of an intervention to promote walking. 315 patients were recruited to a two-arm cluster randomised controlled trial of an intervention to promote walking in primary care. A series of repeated measures ANCOVAs were conducted to examine the effect of season on pedometer measures of walking behaviour and TPB measures, assessed immediately post-intervention and six months later. Hierarchical regression analyses were conducted to assess whether season moderated the prediction of intention and behaviour by TPB measures. There were no significant differences in time spent walking in spring/summer compared to autumn/winter. There was no significant seasonal variation in most TPB variables, although the belief that there will be good weather was significantly higher in spring/summer (F = 19.46, p behaviour, or moderate the effects of TPB variables on intention or behaviour. Seasonality does not influence objectively measured walking behaviour or psychological variables during a randomised controlled trial. Consequently physical activity behaviour outcomes in trials will not be biased by the season in which they are measured. Previous studies may have overestimated the extent of

  9. Late Cretaceous seasonal ocean variability from the Arctic.

    Science.gov (United States)

    Davies, Andrew; Kemp, Alan E S; Pike, Jennifer

    2009-07-09

    The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized. Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre, or those indicated for the Mediterranean sapropels. With increased CO(2) levels and warming currently driving increased stratification in the global ocean, this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean, rather than recent suggestions of a 15 degrees C mean annual temperature at this time.

  10. Seasonality and Interannual Variability of Carbon Uptake and Respiration in a California Oak Savanna

    Science.gov (United States)

    Ma, S.; Baldocchi, D.; Xu, L.

    2005-12-01

    Estimating terrestrial carbon sink with large-scale modeling research requires understanding the physiological and ecological processes associated with the carbon uptake and respiration of ecosystems and their variability in seasons and years. This study was conducted in an oak/grass savanna ecosystem in California, USA. The savanna ecosystem consists of blue oak trees ( Quercus douglasii) in the overstory and annual C3 grasses in the understory. Fluxes of CO2 were measured above the canopy (overstory) and the grasses (understory) from 2001 to 2005 with two eddy covariance systems. Under typical Mediterranean Climate, net ecosystem exchange of CO2 (NEE), ecosystem respiration (Reco), and gross primary production (GPP) in this savanna ecosystem had a distinctive dry-wet seasonal pattern. Leaf area index, leaf nitrogen concentration, and leaf carbon stable isotope discrimination reflected the responses of leaf to the seasonality and interannual variability. Light- use efficiency, the ratio of GPP to absorbed photosynthetically active radiation (aPAR), was not consistent within a year or from year to year, indicating that photosynthesis process was constrained with low temperature during the beginning of the wet season and limited by precipitation during the summer drought. Annual NEE, Reco, and GPP above the canopy varied significantly between years, varying from -108 - 133 gC m-2, 780 - 988 gC m-2, and 646 - 963 gC m-2, respectively. The difference of interannual Reco was 1.2 times of that of interannual GPP. There was a tight relationship between annual NEE and the precipitation during the period with daily mean temperature varying between 10 - 20°C, equivalent to precipitation during March and April. The longer the period lasted, the higher carbon uptake occurred. Estimated annual NEE from 1949 - 2005 in the savanna ecosystem varied between ~-400 - 200 gC m-2.

  11. Nongrowing season methane emissions-a significant component of annual emissions across northern ecosystems.

    Science.gov (United States)

    Treat, Claire C; Bloom, A Anthony; Marushchak, Maija E

    2018-03-22

    Wetlands are the single largest natural source of atmospheric methane (CH 4 ), a greenhouse gas, and occur extensively in the northern hemisphere. Large discrepancies remain between "bottom-up" and "top-down" estimates of northern CH 4 emissions. To explore whether these discrepancies are due to poor representation of nongrowing season CH 4 emissions, we synthesized nongrowing season and annual CH 4 flux measurements from temperate, boreal, and tundra wetlands and uplands. Median nongrowing season wetland emissions ranged from 0.9 g/m 2 in bogs to 5.2 g/m 2 in marshes and were dependent on moisture, vegetation, and permafrost. Annual wetland emissions ranged from 0.9 g m -2  year -1 in tundra bogs to 78 g m -2  year -1 in temperate marshes. Uplands varied from CH 4 sinks to CH 4 sources with a median annual flux of 0.0 ± 0.2 g m -2  year -1 . The measured fraction of annual CH 4 emissions during the nongrowing season (observed: 13% to 47%) was significantly larger than that was predicted by two process-based model ensembles, especially between 40° and 60°N (modeled: 4% to 17%). Constraining the model ensembles with the measured nongrowing fraction increased total nongrowing season and annual CH 4 emissions. Using this constraint, the modeled nongrowing season wetland CH 4 flux from >40° north was 6.1 ± 1.5 Tg/year, three times greater than the nongrowing season emissions of the unconstrained model ensemble. The annual wetland CH 4 flux was 37 ± 7 Tg/year from the data-constrained model ensemble, 25% larger than the unconstrained ensemble. Considering nongrowing season processes is critical for accurately estimating CH 4 emissions from high-latitude ecosystems, and necessary for constraining the role of wetland emissions in a warming climate. © 2018 John Wiley & Sons Ltd.

  12. Seasonal variability of oxidative stress markers in city bus drivers. Part I. Oxidative damage to DNA.

    Science.gov (United States)

    Rossner, Pavel; Svecova, Vlasta; Milcova, Alena; Lnenickova, Zdena; Solansky, Ivo; Sram, Radim J

    2008-07-03

    We investigated the seasonal variability of 8-oxodeoxyguanosine (8-oxodG), a marker of oxidative damage to DNA, in urine of 50 bus drivers and 50 controls in Prague, Czech Republic, in three seasons with different levels of air pollution: winter 2005, summer 2006 and winter 2006. The exposure to environmental pollutants (carcinogenic polycyclic aromatic hydrocarbons, c-PAHs, particulate matter (PM), and volatile organic compounds (VOC)) was monitored by personal and/or stationary monitors. For the analysis of 8-oxodG levels, the ELISA technique was used. Bus drivers were exposed to significantly higher levels of c-PAHs in winter 2006, while in the other two seasons the exposure of controls was unexpectedly higher than that of bus drivers. We did not see any difference in VOC exposure between both groups in summer 2006 and in winter 2006; VOC were not monitored in winter 2005. 8-OxodG levels were higher in bus drivers than in controls in all seasons. The median levels of 8-oxodG (nmol/mmol creatinine) in bus drivers vs. controls were as follows: winter 2005: 7.79 vs. 6.12 (p=0.01); summer 2006: 6.91 vs. 5.11 (p<0.01); winter 2006: 5.73 vs. 3.94 (p<0.001). Multivariate logistic regression analysis identified PM2.5 and PM10 levels, measured by stationary monitors during a 3-day period before urine collection, as the only factors significantly affecting 8-oxodG levels, while the levels of c-PAHs had no significant influence.

  13. Reanalysis data underestimate significant changes in growing season weather in Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C K; Henebry, G M [Geographic Information Science Center of Excellence (GIScCE), South Dakota State University, Brookings, SD (United States); De Beurs, K M [Department of Geography, Virginia Polytechnic Institute and State University, Blacksburg, VA (United States); Akhmadieva, Z K [Kazakhstan Scientific Research Institute of Ecology and Climate, Ministry of Environment Protection of the Republic of Kazakhstan, Astana (Kazakhstan); Groisman, P Y, E-mail: Geoffrey.Henebry@sdstate.ed [National Climatic Data Center, University Corporation for Atmospheric Research, Asheville, NC (United States)

    2009-10-15

    We present time series analyses of recently compiled climate station data which allowed us to assess contemporary trends in growing season weather across Kazakhstan as drivers of a significant decline in growing season normalized difference vegetation index (NDVI) recently observed by satellite remote sensing across much of Central Asia. We used a robust nonparametric time series analysis method, the seasonal Kendall trend test to analyze georeferenced time series of accumulated growing season precipitation (APPT) and accumulated growing degree-days (AGDD). Over the period 2000-2006 we found geographically extensive, statistically significant (p<0.05) decreasing trends in APPT and increasing trends in AGDD. The temperature trends were especially apparent during the warm season and coincided with precipitation decreases in northwest Kazakhstan, indicating that pervasive drought conditions and higher temperature excursions were the likely drivers of NDVI declines observed in Kazakhstan over the same period. We also compared the APPT and AGDD trends at individual stations with results from trend analysis of gridded monthly precipitation data from the Global Precipitation Climatology Centre (GPCC) Full Data Reanalysis v4 and gridded daily near surface air temperature from the National Centers for Climate Prediction Reanalysis v2 (NCEP R2). We found substantial deviation between the station and the reanalysis trends, suggesting that GPCC and NCEP data substantially underestimate the geographic extent of recent drought in Kazakhstan. Although gridded climate products offer many advantages in ease of use and complete coverage, our findings for Kazakhstan should serve as a caveat against uncritical use of GPCC and NCEP reanalysis data and demonstrate the importance of compiling and standardizing daily climate data from data-sparse regions like Central Asia.

  14. Reanalysis data underestimate significant changes in growing season weather in Kazakhstan

    International Nuclear Information System (INIS)

    Wright, C K; Henebry, G M; De Beurs, K M; Akhmadieva, Z K; Groisman, P Y

    2009-01-01

    We present time series analyses of recently compiled climate station data which allowed us to assess contemporary trends in growing season weather across Kazakhstan as drivers of a significant decline in growing season normalized difference vegetation index (NDVI) recently observed by satellite remote sensing across much of Central Asia. We used a robust nonparametric time series analysis method, the seasonal Kendall trend test to analyze georeferenced time series of accumulated growing season precipitation (APPT) and accumulated growing degree-days (AGDD). Over the period 2000-2006 we found geographically extensive, statistically significant (p<0.05) decreasing trends in APPT and increasing trends in AGDD. The temperature trends were especially apparent during the warm season and coincided with precipitation decreases in northwest Kazakhstan, indicating that pervasive drought conditions and higher temperature excursions were the likely drivers of NDVI declines observed in Kazakhstan over the same period. We also compared the APPT and AGDD trends at individual stations with results from trend analysis of gridded monthly precipitation data from the Global Precipitation Climatology Centre (GPCC) Full Data Reanalysis v4 and gridded daily near surface air temperature from the National Centers for Climate Prediction Reanalysis v2 (NCEP R2). We found substantial deviation between the station and the reanalysis trends, suggesting that GPCC and NCEP data substantially underestimate the geographic extent of recent drought in Kazakhstan. Although gridded climate products offer many advantages in ease of use and complete coverage, our findings for Kazakhstan should serve as a caveat against uncritical use of GPCC and NCEP reanalysis data and demonstrate the importance of compiling and standardizing daily climate data from data-sparse regions like Central Asia.

  15. Weather variability influences color and phenolic content of pigmented baby leaf lettuces throughout the season.

    Science.gov (United States)

    Marin, Alicia; Ferreres, Federico; Barberá, Gonzalo G; Gil, María I

    2015-02-18

    The lack of consistency in homogeneous color throughout the season of pigmented baby leaf lettuce is a problem for growers because of the rejection of the product and consequently the economic loss. Changes in color as well as individual and total phenolic composition and content as a response to the climatic variables were studied following the analysis of three pigmented baby leaf lettuces over 16 consecutive weeks from February to May, which corresponded to the most important production season in winter in Europe. Color and phenolic content were significantly (P ≤ 0.001) affected by cultivar, harvest week, and climatic variables that occurred in the last week before harvest. Radiation and temperature showed positive correlations with the content of phenolic acids and flavonoids that increased in all three cultivars as the season progressed. Cyanidin-3-O-(6''-O-malonyl)-glucoside content showed positive correlations with temperature and radiation but only in Batavia cultivars whereas in red oak leaf the correlation was with cold temperatures. Regarding hue angle, a positive correlation was shown with the number of hours at temperatures lower than 7 °C. A relationship between hue angle and the content of anthocyanins was not possible to establish. These results suggest that the colorimetric measurement of color cannot be used as a good indicator of anthocyanin accumulation because other pigments such as chlorophylls and carotenoids may contribute as well to the leaf color of pigmented lettuce. This study provides information about the impact of genotype and environment interactions on the biosynthesis of phenolic compounds to explain the variability in the leaf color and product appearance.

  16. Sea surface temperature variability over North Indian Ocean - A study of two contrasting monsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sathyendranath, S.; Viswambharan, N.K.; Rao, L.V.G.

    Using the satellite derived sea surface temperature (SST) data for 1979 (bad monsoon) and 1983 (good monsoon), the SST variability for two contrasting monsoon seasons is studied. The study indicates that large negative anomalies off the Somali...

  17. Significant Variables in the Combustion Process of Natural Gas

    OpenAIRE

    Villaflor, Gloria; Morales, Graciela V; Velasco, Jorge

    2008-01-01

    Se determinan las variables significativas del proceso de combustión de gas natural, aquellas más sensibles para producir cambios importantes desde punto de vista económico y medioambiental. Con este fin se realiza la simulación del proceso de combustión de gas natural, utilizando el simulador comercial HYSYS. Se determina que las variables de operación más sensibles para este proceso son la temperatura del aire, la temperatura de los gases de combustión y el exceso de aire usado en la combus...

  18. Coastal upwelling seasonality and variability of temperature and chlorophyll in a small coastal embayment

    Science.gov (United States)

    Walter, Ryan K.; Armenta, Kevin J.; Shearer, Brandon; Robbins, Ian; Steinbeck, John

    2018-02-01

    While the seasonality of wind-driven coastal upwelling in eastern boundary upwelling systems has long been established, many studies describe two distinct seasons (upwelling and non-upwelling), a generalized framework that does not capture details relevant to marine ecosystems. In this contribution, we present a more detailed description of the annual cycle and upwelling seasonality for an understudied location along the central California coast. Using both the mean monthly upwelling favorable wind stress and the monthly standard deviation, we define the following seasons (contiguous months) and a transitional period (non-contiguous months): "Winter Storms" season (Dec-Jan-Feb), "Upwelling Transition" period (Mar and Jun), "Peak Upwelling" season (Apr-May), "Upwelling Relaxation" season (Jul-Aug-Sep), and "Winter Transition" season (Oct-Nov). In order to describe the oceanic response to this upwelling wind seasonality, we take advantage of nearly a decade of full water-column measurements of temperature and chlorophyll made using an automated profiling system at the end of the California Polytechnic State University Pier in San Luis Obispo Bay, a small ( 2 km wide near study site) and shallow ( 10 m average bay depth) coastal embayment. Variability and average-year patterns are described inside the bay during the various upwelling seasons. Moreover, the role of the local coastline orientation and topography on bay dynamics is also assessed using long-term measurements collected outside of the bay. The formation of a seasonally variable upwelling shadow system and potential nearshore retention zone is discussed. The observations presented provide a framework on which to study interannual changes to the average-year seasonal cycle, assess the contribution of higher-frequency features to nearshore variability, and better predict dynamically and ecologically important events.

  19. Seasonal and spatial variability of surface ozone over China: contributions from background and domestic pollution

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2011-04-01

    Full Text Available Both observations and a 3-D chemical transport model suggest that surface ozone over populated eastern China features a summertime trough and that the month when surface ozone peaks differs by latitude and region. Source-receptor analysis is used to quantify the contributions of background ozone and Chinese anthropogenic emissions on this variability. Annual mean background ozone over China shows a spatial gradient from 55 ppbv in the northwest to 20 ppbv in the southeast, corresponding with changes in topography and ozone lifetime. Pollution background ozone (annual mean of 12.6 ppbv shows a minimum in the summer and maximum in the spring. On the monthly-mean basis, Chinese pollution ozone (CPO has a peak of 20–25 ppbv in June north of the Yangtze River and in October south of it, which explains the peaks of surface ozone in these months. The summertime trough in surface ozone over eastern China can be explained by the decrease of background ozone from spring to summer (by −15 ppbv regionally averaged over eastern China. Tagged simulations suggest that long-range transport of ozone from northern mid-latitude continents (including Europe and North America reaches a minimum in the summer, whereas ozone from Southeast Asia exhibits a maximum in the summer over eastern China. This contrast in seasonality provides clear evidence that the seasonal switch in monsoonal wind patterns plays a significant role in determining the seasonality of background ozone over China.

  20. Pyrosequencing of bacterial symbionts within Axinella corrugata sponges: diversity and seasonal variability.

    Directory of Open Access Journals (Sweden)

    James R White

    Full Text Available BACKGROUND: Marine sponge species are of significant interest to many scientific fields including marine ecology, conservation biology, genetics, host-microbe symbiosis and pharmacology. One of the most intriguing aspects of the sponge "holobiont" system is the unique physiology, interaction with microbes from the marine environment and the development of a complex commensal microbial community. However, intraspecific variability and temporal stability of sponge-associated bacterial symbionts remain relatively unknown. METHODOLOGY/PRINCIPAL FINDINGS: We have characterized the bacterial symbiont community biodiversity of seven different individuals of the Caribbean reef sponge Axinella corrugata, from two different Florida reef locations during variable seasons using multiplex 454 pyrosequencing of 16 S rRNA amplicons. Over 265,512 high-quality 16 S rRNA sequences were generated and analyzed. Utilizing versatile bioinformatics methods and analytical software such as the QIIME and CloVR packages, we have identified 9,444 distinct bacterial operational taxonomic units (OTUs. Approximately 65,550 rRNA sequences (24% could not be matched to bacteria at the class level, and may therefore represent novel taxa. Differentially abundant classes between seasonal Axinella communities included Gammaproteobacteria, Flavobacteria, Alphaproteobacteria, Cyanobacteria, Acidobacter and Nitrospira. Comparisons with a proximal outgroup sponge species (Amphimedon compressa, and the growing sponge symbiont literature, indicate that this study has identified approximately 330 A. corrugata-specific symbiotic OTUs, many of which are related to the sulfur-oxidizing Ectothiorhodospiraceae. This family appeared exclusively within A. corrugata, comprising >34.5% of all sequenced amplicons. Other A. corrugata symbionts such as Deltaproteobacteria, Bdellovibrio, and Thiocystis among many others are described. CONCLUSIONS/SIGNIFICANCE: Slight shifts in several bacterial taxa

  1. Indoor radon seasonal variability at different floors of buildings

    International Nuclear Information System (INIS)

    De Francesco, S.; Tommasone, F. Pascale; Cuoco, E.; Tedesco, D.

    2010-01-01

    Indoor radon concentrations have been measured with the α track etch integrated method in public buildings in the town of Pietramelara, north-western Campania, Southern Italy. In particular, our measurements were part of an environmental monitoring program originally aimed at assessing the range of seasonal fluctuations in indoor radon concentrations, at various floors of the studied buildings. However, subsequent analysis of the data and its comparison with the meteorological data recorded in the same period has shown an unexpected pattern at the different floors. In this report we present data suggesting that, besides the well-known medium and longterm periodicity, there could also be a differentiation in major meteorological controlling factors at the different floors of the buildings, a fact that does not appear to have been reported previously. While the lower floors proved to be markedly affected by rainfall, for the upper floors, instead, a different behaviour has been detected, which could possibly be related to global solar radiation.

  2. Value of Construction Company and its Dependence on Significant Variables

    Science.gov (United States)

    Vítková, E.; Hromádka, V.; Ondrušková, E.

    2017-10-01

    The paper deals with the value of the construction company assessment respecting usable approaches and determinable variables. The reasons of the value of the construction company assessment are different, but the most important reasons are the sale or the purchase of the company, the liquidation of the company, the fusion of the company with another subject or the others. According the reason of the value assessment it is possible to determine theoretically different approaches for valuation, mainly it concerns about the yield method of valuation and the proprietary method of valuation. Both approaches are dependant of detailed input variables, which quality will influence the final assessment of the company´s value. The main objective of the paper is to suggest, according to the analysis, possible ways of input variables, mainly in the form of expected cash-flows or the profit, determination. The paper is focused mainly on methods of time series analysis, regression analysis and mathematical simulation utilization. As the output, the results of the analysis on the case study will be demonstrated.

  3. Seasonal and interannual variability in phytoplankton biomass on ...

    African Journals Online (AJOL)

    The most probable causative mechanism is suggested to be anomalous advective fluxes of warm surface water into areas typically of high biomass deriving from the Agulhas Current retroflection in the south. Studying variability in phytoplankton biomass on the continental shelf in the context of large-scale oceanic ...

  4. Seasonal variability in aerosol optical and physical characteristics ...

    Indian Academy of Sciences (India)

    B. Pant Institute of Himalayan Environment and Development, Himachal Unit, Mohal-Kullu 175 126, India. 2G.B. Pant Institute of Himalayan ... ing and transport which result in a large variability in their size distribution (Meszaros 1981; ... dust aerosol due to its transport from the western deserts. The understanding of the ...

  5. Cold-season atmospheric response to the natural variability of the Atlantic meridional overturning circulation

    Energy Technology Data Exchange (ETDEWEB)

    Gastineau, Guillaume; Frankignoul, Claude [LOCEAN/IPSL, Universite Pierre et Marie Curie, 4 place Jussieu, BP100, Paris Cedex 05 (France)

    2012-07-15

    The influence of the natural variability of the Atlantic meridional overturning circulation (AMOC) on the atmosphere is studied in multi-centennial simulations of six global climate models, using Maximum Covariance Analysis (MCA). In all models, a significant but weak influence of the AMOC changes is found during the Northern Hemisphere cold-season, when the ocean leads the atmosphere by a few years. Although the oceanic pattern slightly varies, an intensification of the AMOC is followed in all models by a weak sea level pressure response that resembles a negative phase of the North Atlantic Oscillation (NAO). The signal amplitude is typically 0.5 hPa and explains about 10% of the yearly variability of the NAO in all models. The atmospheric response seems to be due primarily due to an increase of the heat loss along the North Atlantic Current and the subpolar gyre, associated with an AMOC-driven warming. Sea-ice changes appear to be less important. The stronger heating is associated to a southward shift of the lower-tropospheric baroclinicity and a decrease of the eddy activity in the North Atlantic storm track, which is consistent with the equivalent barotropic perturbation resembling the negative phase of the NAO. This study thus provides some evidence of an atmospheric signature of the AMOC in the cold-season, which may have some implications for the decadal predictability of climate in the North Atlantic region. (orig.)

  6. Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon basin

    Directory of Open Access Journals (Sweden)

    Y. A. Teh

    2017-08-01

    Full Text Available The Amazon plays a critical role in global atmospheric budgets of methane (CH4 and nitrous oxide (N2O. However, while we have a relatively good understanding of the continental-scale flux of these greenhouse gases (GHGs, one of the key gaps in knowledge is the specific contribution of peatland ecosystems to the regional budgets of these GHGs. Here we report CH4 and N2O fluxes from lowland tropical peatlands in the Pastaza–Marañón foreland basin (PMFB in Peru, one of the largest peatland complexes in the Amazon basin. The goal of this research was to quantify the range and magnitude of CH4 and N2O fluxes from this region, assess seasonal trends in trace gas exchange, and determine the role of different environmental variables in driving GHG flux. Trace gas fluxes were determined from the most numerically dominant peatland vegetation types in the region: forested vegetation, forested (short pole vegetation, Mauritia flexuosa-dominated palm swamp, and mixed palm swamp. Data were collected in both wet and dry seasons over the course of four field campaigns from 2012 to 2014. Diffusive CH4 emissions averaged 36.05 ± 3.09 mg CH4–C m−2 day−1 across the entire dataset, with diffusive CH4 flux varying significantly among vegetation types and between seasons. Net ebullition of CH4 averaged 973.3 ± 161.4 mg CH4–C m−2 day−1 and did not vary significantly among vegetation types or between seasons. Diffusive CH4 flux was greatest for mixed palm swamp (52.0 ± 16.0 mg CH4–C m−2 day−1, followed by M. flexuosa palm swamp (36.7 ± 3.9 mg CH4–C m−2 day−1, forested (short pole vegetation (31.6 ± 6.6 mg CH4–C m−2 day−1, and forested vegetation (29.8 ± 10.0 mg CH4–C m−2 day−1. Diffusive CH4 flux also showed marked seasonality, with divergent seasonal patterns among ecosystems. Forested vegetation and mixed palm swamp showed significantly higher

  7. Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon basin

    Science.gov (United States)

    Arn Teh, Yit; Murphy, Wayne A.; Berrio, Juan-Carlos; Boom, Arnoud; Page, Susan E.

    2017-08-01

    The Amazon plays a critical role in global atmospheric budgets of methane (CH4) and nitrous oxide (N2O). However, while we have a relatively good understanding of the continental-scale flux of these greenhouse gases (GHGs), one of the key gaps in knowledge is the specific contribution of peatland ecosystems to the regional budgets of these GHGs. Here we report CH4 and N2O fluxes from lowland tropical peatlands in the Pastaza-Marañón foreland basin (PMFB) in Peru, one of the largest peatland complexes in the Amazon basin. The goal of this research was to quantify the range and magnitude of CH4 and N2O fluxes from this region, assess seasonal trends in trace gas exchange, and determine the role of different environmental variables in driving GHG flux. Trace gas fluxes were determined from the most numerically dominant peatland vegetation types in the region: forested vegetation, forested (short pole) vegetation, Mauritia flexuosa-dominated palm swamp, and mixed palm swamp. Data were collected in both wet and dry seasons over the course of four field campaigns from 2012 to 2014. Diffusive CH4 emissions averaged 36.05 ± 3.09 mg CH4-C m-2 day-1 across the entire dataset, with diffusive CH4 flux varying significantly among vegetation types and between seasons. Net ebullition of CH4 averaged 973.3 ± 161.4 mg CH4-C m-2 day-1 and did not vary significantly among vegetation types or between seasons. Diffusive CH4 flux was greatest for mixed palm swamp (52.0 ± 16.0 mg CH4-C m-2 day-1), followed by M. flexuosa palm swamp (36.7 ± 3.9 mg CH4-C m-2 day-1), forested (short pole) vegetation (31.6 ± 6.6 mg CH4-C m-2 day-1), and forested vegetation (29.8 ± 10.0 mg CH4-C m-2 day-1). Diffusive CH4 flux also showed marked seasonality, with divergent seasonal patterns among ecosystems. Forested vegetation and mixed palm swamp showed significantly higher dry season (47.2 ± 5.4 mg CH4-C m-2 day-1 and 85.5 ± 26.4 mg CH4-C m-2 day-1, respectively) compared to wet season emissions

  8. Spatial variability and trends of seasonal snowmelt processes over Antarctic sea ice observed by satellite scatterometers

    Science.gov (United States)

    Arndt, S.; Haas, C.

    2017-12-01

    Snow is one of the key drivers determining the seasonal energy and mass budgets of sea ice in the Southern Ocean. Here, we analyze radar backscatter time series from the European Remote Sensing Satellites (ERS)-1 and-2 scatterometers, from the Quick Scatterometer (QSCAT), and from the Advanced Scatterometer (ASCAT) in order to observe the regional and inter-annual variability of Antarctic snowmelt processes from 1992 to 2014. On perennial ice, seasonal backscatter changes show two different snowmelt stages: A weak backscatter rise indicating the initial warming and metamorphosis of the snowpack (pre-melt), followed by a rapid rise indicating the onset of internal snowmelt and thaw-freeze cycles (snowmelt). In contrast, similar seasonal backscatter cycles are absent on seasonal ice, preventing the periodic retrieval of spring/summer transitions. This may be due to the dominance of ice bottom melt over snowmelt, leading to flooding and ice disintegration before strong snowmelt sets in. Resulting snowmelt onset dates on perennial sea ice show the expected latitudinal gradient from early melt onsets (mid-November) in the northern Weddell Sea towards late (end-December) or even absent snowmelt conditions further south. This result is likely related to seasonal variations in solar shortwave radiation (absorption). In addition, observations with different microwave frequencies allow to detect changing snow properties at different depths. We show that short wavelengths of passive microwave observations indicate earlier pre-melt and snowmelt onset dates than longer wavelength scatterometer observations, in response to earlier warming of upper snow layers compared to lower snow layers. Similarly, pre-melt and snowmelt onset dates retrieved from Ku-Band radars were earlier by an average of 11 and 23 days, respectively, than those retrieved from C-Band. This time difference was used to correct melt onset dates retrieved from Ku-Band to compile a consistent time series from

  9. On the intra-seasonal variability within the extratropics in the ECHAM3 general circulation model

    International Nuclear Information System (INIS)

    May, W.

    1994-01-01

    First we consider the GCM's capability to reproduce the midlatitude variability on intra-seasonal time scales by a comparison with observational data (ECMWF analyses). Secondly we assess the possible influence of Sea Surface Temperatures on the intra-seasonal variability by comparing estimates obtained from different simulations performed with ECHAM3 with varying and fixed SST as boundary forcing. The intra-seasonal variability as simulated by ECHAM3 is underestimated over most of the Northern Hemisphere. While the contributions of the high-frequency transient fluctuations are reasonably well captured by the model, ECHAM3 fails to reproduce the observed level of low-frequency intra-seasonal variability. This is mainly due to the underestimation of the variability caused by the ultra-long planetary waves in the Northern Hemisphere midlatitudes by the model. In the Southern Hemisphere midlatitudes, on the other hand, the intra-seasonal variability as simulated by ECHAM3 is generally underestimated in the area north of about 50 southern latitude, but overestimated at higher latitudes. This is the case for the contributions of the high-frequency and the low-frequency transient fluctuations as well. Further, the model indicates a strong tendency for zonal symmetry, in particular with respect to the high-frequency transient fluctuations. While the two sets of simulations with varying and fixed Sea Surface Temepratures as boundary forcing reveal only small regional differences in the Southern Hemisphere, there is a strong response to be found in the Northern Hemisphere. The contributions of the high-frequency transient fluctuations to the intra-seasonal variability are generally stronger in the simulations with fixed SST. Further, the Pacific storm track is shifted slightly poleward in this set of simulations. For the low-frequency intra-seasonal variability the model gives a strong, but regional response to the interannual variations of the SST. (orig.)

  10. Seasonal and inter-annual temperature variability in the bottom waters over the Black Sea shelf

    Science.gov (United States)

    Shapiro, G. I.; Wobus, F.; Aleynik, D. L.

    2011-02-01

    convection events is well preserved over the following months in the deep sea, the signal of winter cooling in the Bottom Shelf Waters significantly reduces during the warm season. The time series of temperature in the BSW is highly correlated with the temperature of Cold Intermediate Waters in the deep sea thus indicating that the isopycnal exchanges with the deep sea are more important for inter-annual/inter-decadal variability of the BSW on the Western Black Sea shelf than winter convection on the shelf itself.

  11. Seasonal variability in clinical care of COPD outpatients: results from the Andalusian COPD audit

    Directory of Open Access Journals (Sweden)

    López-Campos JL

    2017-03-01

    , astronomical seasons in the Northern Hemisphere were used as reference. Bivariate associations between the different COPD guidelines and the clinical practice changes over the seasons were explored by using binomial multivariate logistic regression analysis with age, sex, Charlson comorbidity index, type of hospital, and COPD severity by forced expiratory volume in 1 second as covariates, and were expressed as odds ratio (OR with 95% confidence intervals (CIs.Results: The Andalusian COPD audit included 621 clinical records from 9 hospitals. After adjusting for covariates, only inhaler device satisfaction evaluation was found to significantly differ according to the seasons with an increase in winter (OR, 3.460; 95% CI, 1.469–8.151, spring (OR, 4.215; 95% CI, 1.814–9.793, and summer (OR, 3.371; 95% CI, 1.391–8.169 compared to that in autumn. The rest of the observed differences were not significant after adjusting for covariates. However, compliance with evaluating inhaler satisfaction was low.Conclusion: The various aspects of clinical practice for COPD care were found to be quite homogeneous throughout the year for the variables evaluated. Inhaler satisfaction evaluation, however, presented some significant variation during the year. Inhaler device satisfaction should be evaluated during all clinical visits throughout the year for improved COPD management. Keywords: COPD, seasons, clinical practice, quality of care

  12. Seasonal variability in Arctic temperatures during the early Eocene

    Science.gov (United States)

    Eberle, J. J.; Fricke, H. C.; Humphrey, J.; Hackett, L.; Newbrey, M.; Hutchison, H.

    2009-12-01

    As a deep time analog for today’s rapidly warming Arctic region, early Eocene (~53 Ma) rocks on Ellesmere Island, Arctic Canada (~79° N.) preserve evidence of lush swamp forests inhabited by turtles, alligators, primates, tapirs, and hippo-like Coryphodon. Although the rich flora and fauna of the early Eocene Arctic imply warmer, wetter conditions that at present, quantitative estimates of Eocene Arctic climate are rare. By analyzing oxygen isotope ratios of biogenic phosphate from mammal, fish, and turtle fossils from a single locality on central Ellesmere Island, we provide estimates of early Eocene Arctic temperature, including mean annual temperature (MAT) of ~ 8° C, mean annual range in temperature (MART) of ~ 16.5° C, warm month mean temperature (WMMT) of 16 - 19° C, and cold month mean temperature (CMMT) of 0 - 1° C. Our seasonal range in temperature is similar to the range in estimated MAT obtained using different proxies. In particular, unusually high estimates of early Eocene Arctic MAT and sea surface temperature (SST) by others that are based upon the distribution of branched glycerol dialkyl glycerol tetraether (GDGT) membrane lipids in terrestrial soil bacteria and marine Crenarchaeota fall within our range of WMMT, suggesting a bias towards summer values. Consequently, caution should be taken when using these methods to infer MAT and SST that, in turn, are used to constrain climate models. From a paleontologic perspective, our temperature estimates verify that alligators and tortoises, by way of nearest living relative-based climatic inference, are viable paleoclimate proxies for mild, above-freezing year-round temperatures. Although in both of these reptiles, past temperature tolerances were greater than in their living descendants.

  13. Seasonal variability of rocky reef fish assemblages: Detecting functional and structural changes due to fishing effects

    Science.gov (United States)

    Henriques, Sofia; Pais, Miguel Pessanha; Costa, Maria José; Cabral, Henrique Nogueira

    2013-05-01

    The present study analyzed the effects of seasonal variation on the stability of fish-based metrics and their capability to detect changes in fish assemblages, which is yet poorly understood despite the general idea that guilds are more resilient to natural variability than species abundances. Three zones subject to different levels of fishing pressure inside the Arrábida Marine Protected Area (MPA) were sampled seasonally. The results showed differences between warm (summer and autumn) and cold (winter and spring) seasons, with the autumn clearly standing out. In general, the values of the metrics density of juveniles, density of invertebrate feeders and density of omnivores increased in warm seasons, which can be attributed to differences in recruitment patterns, spawning migrations and feeding activity among seasons. The density of generalist/opportunistic individuals was sensitive to the effect of fishing, with higher values at zones with the lowest level of protection, while the density of individuals with high commercial value only responded to fishing in the autumn, due to a cumulative result of both juveniles and adults abundances during this season. Overall, this study showed that seasonal variability affects structural and functional features of the fish assemblage and that might influence the detection of changes as a result of anthropogenic pressures. The choice of a specific season, during warm sea conditions after the spawning period (July-October), seems to be more adequate to assess changes on rocky-reef fish assemblages.

  14. Comparing daily temperature averaging methods: the role of surface and atmosphere variables in determining spatial and seasonal variability

    Science.gov (United States)

    Bernhardt, Jase; Carleton, Andrew M.

    2018-05-01

    The two main methods for determining the average daily near-surface air temperature, twice-daily averaging (i.e., [Tmax+Tmin]/2) and hourly averaging (i.e., the average of 24 hourly temperature measurements), typically show differences associated with the asymmetry of the daily temperature curve. To quantify the relative influence of several land surface and atmosphere variables on the two temperature averaging methods, we correlate data for 215 weather stations across the Contiguous United States (CONUS) for the period 1981-2010 with the differences between the two temperature-averaging methods. The variables are land use-land cover (LULC) type, soil moisture, snow cover, cloud cover, atmospheric moisture (i.e., specific humidity, dew point temperature), and precipitation. Multiple linear regression models explain the spatial and monthly variations in the difference between the two temperature-averaging methods. We find statistically significant correlations between both the land surface and atmosphere variables studied with the difference between temperature-averaging methods, especially for the extreme (i.e., summer, winter) seasons (adjusted R2 > 0.50). Models considering stations with certain LULC types, particularly forest and developed land, have adjusted R2 values > 0.70, indicating that both surface and atmosphere variables control the daily temperature curve and its asymmetry. This study improves our understanding of the role of surface and near-surface conditions in modifying thermal climates of the CONUS for a wide range of environments, and their likely importance as anthropogenic forcings—notably LULC changes and greenhouse gas emissions—continues.

  15. Seasonal variability in bio-optical properties along the coastal waters off Cochin

    KAUST Repository

    Vishnu, P.S.; Shaju, S.S.; Tiwari, Surya Prakash; Menon, Nandini; Nashad, M.; Joseph, C. Ajith; Raman, Mini; Hatha, Mohamed; Prabhakaran, M.P.; Mohandas, A.

    2017-01-01

    Strong seasonal upwelling, downwelling, changes in current patterns and the volume of freshwater discharge from Cochin Estuary defines the coastal waters off Cochin. These coastal waters were investigated through monthly sampling efforts during March 2015 to February 2016 to study the seasonal and spatial variability in bio-optical properties for the four different seasons mainly Spring Inter Monsoon (SIM), South West Monsoon (SWM), Fall Inter Monsoon (FIM) and Winter Monsoon (WM). The Barmouth region is the meeting place where freshwater from Cochin Estuary directly enters to the sea through a single narrow outlet, was dominated by highly turbid waters during the entire period of study. Among the four seasons, chlorophyll a (Chl_a) concentration showed a high value during SWM, ranged from 2.90 to 11.66 mg m−3 with an average value of 6.56 ± 3.51 mg m−3. During SIM the distribution of coloured dissolved organic matter (CDOM) is controlled by decomposition of phytoplankton biomass and the river discharge, whereas during SWM the temporal distribution of CDOM is controlled only by river discharge. The highest value for CDOM spectral slope (SCDOM) was observed during SWM, ranged from 0.013 to 0.020 nm−1 with an average value of 0.015 ± 0.002 nm−1. During WM, the high SCDOM with lower aCDOM (443) indicates the photo-degradation affects the absorption characteristics of CDOM. The observed nonlinearity between Chl_a and the ratio of phytoplankton absorption aph (443)/aph (670) indicating the packaging effect and changes in the intercellular composition of pigments. During the study period, aph (670) was strongly correlated with Chl_a than aph (443), which explains the accessory pigment absorption dominating more than Chl_a in the blue part of the spectrum. Similarly, the results obtained from seasonal bio-optical data indicating that Chl_a significantly contributes light attenuation of the water column during SIM, whereas detritus (ad

  16. Seasonal variability in bio-optical properties along the coastal waters off Cochin

    Science.gov (United States)

    Vishnu, P. S.; Shaju, S. S.; Tiwari, S. P.; Menon, Nandini; Nashad, M.; Joseph, C. Ajith; Raman, Mini; Hatha, Mohamed; Prabhakaran, M. P.; Mohandas, A.

    2018-04-01

    Strong seasonal upwelling, downwelling, changes in current patterns and the volume of freshwater discharge from Cochin Estuary defines the coastal waters off Cochin. These coastal waters were investigated through monthly sampling efforts during March 2015 to February 2016 to study the seasonal and spatial variability in bio-optical properties for the four different seasons mainly Spring Inter Monsoon (SIM), South West Monsoon (SWM), Fall Inter Monsoon (FIM) and Winter Monsoon (WM). The Barmouth region is the meeting place where freshwater from Cochin Estuary directly enters to the sea through a single narrow outlet, was dominated by highly turbid waters during the entire period of study. Among the four seasons, chlorophyll a (Chl_a) concentration showed a high value during SWM, ranged from 2.90 to 11.66 mg m-3 with an average value of 6.56 ± 3.51 mg m-3. During SIM the distribution of coloured dissolved organic matter (CDOM) is controlled by decomposition of phytoplankton biomass and the river discharge, whereas during SWM the temporal distribution of CDOM is controlled only by river discharge. The highest value for CDOM spectral slope (SCDOM) was observed during SWM, ranged from 0.013 to 0.020 nm-1 with an average value of 0.015 ± 0.002 nm-1. During WM, the high SCDOM with lower aCDOM (443) indicates the photo-degradation affects the absorption characteristics of CDOM. The observed nonlinearity between Chl_a and the ratio of phytoplankton absorption aph (443)/aph (670) indicating the packaging effect and changes in the intercellular composition of pigments. During the study period, aph (670) was strongly correlated with Chl_a than aph (443), which explains the accessory pigment absorption dominating more than Chl_a in the blue part of the spectrum. Similarly, the results obtained from seasonal bio-optical data indicating that Chl_a significantly contributes light attenuation of the water column during SIM, whereas detritus (ad) significantly contributes light

  17. Seasonal variability in bio-optical properties along the coastal waters off Cochin

    KAUST Repository

    Vishnu, P.S.

    2017-12-15

    Strong seasonal upwelling, downwelling, changes in current patterns and the volume of freshwater discharge from Cochin Estuary defines the coastal waters off Cochin. These coastal waters were investigated through monthly sampling efforts during March 2015 to February 2016 to study the seasonal and spatial variability in bio-optical properties for the four different seasons mainly Spring Inter Monsoon (SIM), South West Monsoon (SWM), Fall Inter Monsoon (FIM) and Winter Monsoon (WM). The Barmouth region is the meeting place where freshwater from Cochin Estuary directly enters to the sea through a single narrow outlet, was dominated by highly turbid waters during the entire period of study. Among the four seasons, chlorophyll a (Chl_a) concentration showed a high value during SWM, ranged from 2.90 to 11.66 mg m−3 with an average value of 6.56 ± 3.51 mg m−3. During SIM the distribution of coloured dissolved organic matter (CDOM) is controlled by decomposition of phytoplankton biomass and the river discharge, whereas during SWM the temporal distribution of CDOM is controlled only by river discharge. The highest value for CDOM spectral slope (SCDOM) was observed during SWM, ranged from 0.013 to 0.020 nm−1 with an average value of 0.015 ± 0.002 nm−1. During WM, the high SCDOM with lower aCDOM (443) indicates the photo-degradation affects the absorption characteristics of CDOM. The observed nonlinearity between Chl_a and the ratio of phytoplankton absorption aph (443)/aph (670) indicating the packaging effect and changes in the intercellular composition of pigments. During the study period, aph (670) was strongly correlated with Chl_a than aph (443), which explains the accessory pigment absorption dominating more than Chl_a in the blue part of the spectrum. Similarly, the results obtained from seasonal bio-optical data indicating that Chl_a significantly contributes light attenuation of the water column during SIM, whereas detritus (ad

  18. Significance of Demographic Variables for Targeting of Internet Advertisements

    Directory of Open Access Journals (Sweden)

    Václav Stříteský

    2016-06-01

    Full Text Available Broad ad targeting options belong among the major advantages of internet advertising. Demographic targeting has become a standard option in most of on-line advertising systems. There are more ways how to target on-line advertisements by using demographic variables. In some cases, e.g., social media, we can use data from user registrations. Modern technologies enable to estimate the demographic profile of internet users using on behavioural data. The traditional approach to the demographic targeting of advertisements based on affinity targeting assumes the existence of internet servers with sufficient homogeneity of visits. The aim of this article is to identify the differences in the internet content consumption habits of Czech internet users based on gender and age. The analysis is based on the data from the extensive research which was carried out by the Netmonitor project, and which was provided for the purposes of this study by the Association for Internet Development (SPIR. The research results show that the traditional affinity-based method of targeting according to gender and age is still suitable on the Czech internet. On the other hand, in some cases, the traditional approach of ad targeting based on affinity leads to wasted ad impressions that miss defined target group.

  19. Seasonal-longitudinal variability of equatorial plasma bubbles

    Directory of Open Access Journals (Sweden)

    W. J. Burke

    2004-09-01

    Full Text Available We compare seasonal and longitudinal distributions of more than 8300 equatorial plasma bubbles (EPBs observed during a full solar cycle from 1989-2000 with predictions of two simple models. Both models are based on considerations of parameters that influence the linear growth rate, γRT, of the generalized Rayleigh-Taylor instability in the context of finite windows of opportunity available during the prereversal enhancement near sunset. These parameters are the strength of the equatorial magnetic field, Beq, and the angle, α, it makes with the dusk terminator line. The independence of α and Beq from the solar cycle phase justifies our comparisons.

    We have sorted data acquired during more than 75000 equatorial evening-sector passes of polar-orbiting Defense Meteorological Satellite Program (DMSP satellites into 24 longitude and 12 one-month bins, each containing ~250 samples. We show that: (1 in 44 out of 48 month-longitude bins EPB rates are largest within 30 days of when α=0°; (2 unpredicted phase shifts and asymmetries appear in occurrence rates at the two times per year when α≈0°; (3 While EPB occurrence rates vary inversely with Beq, the relationships are very different in regions where Beq is increasing and decreasing with longitude. Results (2 and (3 indicate that systematic forces not considered by the two models can become important. Damping by interhemispheric winds appears to be responsible for phase shifts in maximum rates of EPB occurrence from days when α=0°. Low EPB occurrence rates found at eastern Pacific longitudes suggest that radiation belt electrons in the drift loss cone reduce γRT by enhancing E-layer Pedersen conductances. Finally, we analyze an EPB event observed during a magnetic storm at a time and place where α≈-27°, to illustrate how electric-field penetration from

  20. Seasonal variability of the M2 tide in the seas adjacent to Korea

    Science.gov (United States)

    Kang, Sok Kuh; Chung, Jong-yul; Lee, Sang-Ryong; Yum, Ki-Dat

    1995-08-01

    Seasonal variability of the M2 tidal harmonic constants is revealed through analyses of monthly tidal data at 12 representative tidal stations in the seas adjacent to the Korean peninsula. The variability remain systematic over the 9 years (1965-1973) of data analysis with a range comparable to that of the 18.6 year nodal modulation. Spatial inhomogeneity of the seasonal variability in the observed harmonic constants is found to exist. The largest seasonal variability in M2 appears in the stations located along the Korea Strait. This variability is not explained by the equilibrium theory of tides, and such a variability or irregularities in the harmonic constants are considered as either a noise as done by Cartwright and Amin (1986), Deutsch Hydrography Zeitschrift, 39, 235-253, or a manifestation of frictional interaction as done by Godin and Gutierrez (1986) Continental Shelf Research, 5, 379-402 for the Bay of Fundy. Considering the opposite relation between monthly mean sea level differences in Izuhara-Pusan section and tidal characteristics in the Korea Strait, it is hypothesized that the interaction between the predominant tidal currents and oceanic currents varying with the seasons might be the main cause of the observed temporal variability in the M2 tide. The nonlinear effect of the Kuroshio is investigated along the shelf break region through scale analyses, which show that the presence of a mean current increases the non-linear terms in the momentum balance by about one order of magnitude. The seasonally different damping effect of the Tsushima Current to the M2 tide is also discussed to explain the process of dominant seasonal variability along the Korea Strait based on the actual current data, but further thorough investigation, considering the advection effect of the mean current, is required to investigate the associated dynamics more completely.

  1. Heart rate variability in workers of various professions in contrasting seasons of the year

    Directory of Open Access Journals (Sweden)

    Alexander Markov

    2016-10-01

    Full Text Available Objectives: It is known that professional occupation affects the heart rate variability (HRV. However, most studies have not taken into account seasonal features of the HRV. The aim of this study has been to evaluate the HRV differences in winter and in summer in the case of the Ministry of the Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters (EMERCOM workers and scientific workers from the Komi Science Center of the Ural Branch of the Russian Academy of Sciences. Material and Methods: The short-term HRV was examined for 13 EMERCOM workers and 13 scientific workers. The data was collected in winter (December and summer (July for the same groups of workers. The time domain and frequency domain HRV analyses were performed. The EMERCOM workers had more contact with the external environment than the scientific workers. Results: The two-way analysis of variance with repeated observations on a single factor has shown that “Season” and interaction of two factors “Season” and “Profession” significantly influenced the HRV among volunteers. The “Profession” factor did not influence the HRV parameters (except for the heart rate in winter, p = 0.042. Seasonal changes in the HRV parameters were not significant in the case of scientific workers. In contrast, the EMERCOM workers showed significantly decreased parameters of parasympathetic activity (the root-mean-square of successive differences in RR intervals, percentage of consecutive RR intervals differing by > 50 ms and the relative value high frequency power, p = 0.001, p = 0.014 and p = 0.009, respectively and increased parameters of sympathetic activity (the stress index and ratio of low-frequency power to high-frequency power, p = 0.012 and p = 0.006, respectively in winter as compared to summer. Conclusions: The results of our study indicate that, unlike the scientific workers, the EMERCOM workers showed significant changes in the

  2. TES ammonia retrieval strategy and global observations of the spatial and seasonal variability of ammonia

    Directory of Open Access Journals (Sweden)

    M. W. Shephard

    2011-10-01

    Full Text Available Presently only limited sets of tropospheric ammonia (NH3 measurements in the Earth's atmosphere have been reported from satellite and surface station measurements, despite the well-documented negative impact of NH3 on the environment and human health. Presented here is a detailed description of the satellite retrieval strategy and analysis for the Tropospheric Emission Spectrometer (TES using simulations and measurements. These results show that: (i the level of detectability for a representative boundary layer TES NH3 mixing ratio value is ~0.4 ppbv, which typically corresponds to a profile that contains a maximum level value of ~1 ppbv; (ii TES NH3 retrievals generally provide at most one degree of freedom for signal (DOFS, with peak sensitivity between 700 and 900 mbar; (iii TES NH3 retrievals show significant spatial and seasonal variability of NH3 globally; (iv initial comparisons of TES observations with GEOS-CHEM estimates show TES values being higher overall. Important differences and similarities between modeled and observed seasonal and spatial trends are noted, with discrepancies indicating areas where the timing and magnitude of modeled NH3 emissions from agricultural sources, and to lesser extent biomass burning sources, need further study.

  3. Exploring changes in rainfall intensity and seasonal variability in the Southeastern U.S.: Stakeholder engagement, observations, and adaptation

    Directory of Open Access Journals (Sweden)

    Daniel R. Dourte

    2015-01-01

    Full Text Available The distribution of rainfall has major impacts in agriculture, affecting the soil, hydrology, and plant health in agricultural systems. The goal of this study was to test for recent changes in rainfall intensity and seasonal rainfall variability in the Southeastern U.S. by exploring the data collaboratively with agricultural stakeholders. Daily rainfall records from the Global Historical Climatology Network were used to analyze changes in rain intensity and seasonal rainfall variability. During the last 30 years (1985–2014, there has been a significant change (53% increase in the number of extreme rainfall days (>152.4 mm/day and there have been significant decreases in the number of moderate intensity (12.7–25.4 mm/day and heavy (25.4–76.2 mm/day rainfall days in the Southeastern U.S., when compared to the previous 30-year period (1955–1984. There have also been significant decreases in the return period of months in which greater than half of the monthly total rain occurred in a single day; this is an original, stakeholder-developed rainfall intensity metric. The variability in spring and summer rainfall increased during the last 30 years, but winter and fall showed less variability in seasonal totals in the last 30 years. In agricultural systems, rainfall is one of the leading factors affecting yield variability; so it can be expected that more variable rainfall and more intense rain events could bring new challenges to agricultural production. However, these changes can also present opportunities for producers who are taking measures to adjust management strategies to make their systems more resilient to increased rain intensity and variability.

  4. The seasonal predictability of blocking frequency in two seasonal prediction systems (CMCC, Met-Office) and the associated representation of low-frequency variability.

    Science.gov (United States)

    Athanasiadis, Panos; Gualdi, Silvio; Scaife, Adam A.; Bellucci, Alessio; Hermanson, Leon; MacLachlan, Craig; Arribas, Alberto; Materia, Stefano; Borelli, Andrea

    2014-05-01

    Low-frequency variability is a fundamental component of the atmospheric circulation. Extratropical teleconnections, the occurrence of blocking and the slow modulation of the jet streams and storm tracks are all different aspects of low-frequency variability. Part of the latter is attributed to the chaotic nature of the atmosphere and is inherently unpredictable. On the other hand, primarily as a response to boundary forcings, tropospheric low-frequency variability includes components that are potentially predictable. Seasonal forecasting faces the difficult task of predicting these components. Particularly referring to the extratropics, the current generation of seasonal forecasting systems seem to be approaching this target by realistically initializing most components of the climate system, using higher resolution and utilizing large ensemble sizes. Two seasonal prediction systems (Met-Office GloSea and CMCC-SPS-v1.5) are analyzed in terms of their representation of different aspects of extratropical low-frequency variability. The current operational Met-Office system achieves unprecedented high scores in predicting the winter-mean phase of the North Atlantic Oscillation (NAO, corr. 0.74 at 500 hPa) and the Pacific-N. American pattern (PNA, corr. 0.82). The CMCC system, considering its small ensemble size and course resolution, also achieves good scores (0.42 for NAO, 0.51 for PNA). Despite these positive features, both models suffer from biases in low-frequency variance, particularly in the N. Atlantic. Consequently, it is found that their intrinsic variability patterns (sectoral EOFs) differ significantly from the observed, and the known teleconnections are underrepresented. Regarding the representation of N. hemisphere blocking, after bias correction both systems exhibit a realistic climatology of blocking frequency. In this assessment, instantaneous blocking and large-scale persistent blocking events are identified using daily geopotential height fields at

  5. Long-Term Trend and Seasonal Variability of Horizontal Visibility in Nigerian Troposphere

    Directory of Open Access Journals (Sweden)

    Mukhtar Balarabe

    2015-10-01

    Full Text Available A study of the long-term variability; trend and characteristics of visibility in four zones of Nigeria was carried out. Visibility and other meteorological data from NOAA-NCDC and aerosol index data over Nigeria during 1984–2013 are analyzed using time series and  simple regression model. There are significant decreasing trends for every region and season during the 30-years period; the fluctuations exhibited nearly similar pattern. The 30-year mean visibilities for the four zones (Sahel; North Central; Southern; and Coastal were 13.8 ± 3.9; 14.3 ± 4.2; 13.6 ± 3.5 and 12.8 ± 3.1 km with decreasing trends at the rates of 0.08; 0.06; 0.02 and 0.02 km/year. In all the zones; visibilities were better in summer while worse in Harmattan (dry season. During summer visibility was best in Sahel and North-central; however; in Harmattan visibility was best in southern and coastal zones. It was best between May and June (17.6; 18.9; 16.6 and 15.1 km with a second peak in September. The 30-year seasonal averages were 16.2 ± 2.1; 16.8 ± 2.4; 15.4 ± 1.8 and 14.0 ± 2.2 km in summer; and 10.2 ± 2.5; 10.9 ± 2.9; 11.0 ± 3.3 and 11.4 ± 3.0 km in Harmattan for the respective zones. Sahel and North Central had the worse visibility reduction during Harmattan compared with Southern and coastal areas. An analysis based on simple regression equation reveals a strong and negative relationship between visibility on one hand; AI; and AOD on the other hand. The analysis also discusses the variability regarding the frequency of occurrence of a dust storm; dust haze; and good visibility over the period of study.

  6. Seasonal variability in irradiance affects herbicide toxicity to the marine flagellate Dunaliella tertiolecta

    NARCIS (Netherlands)

    Sjollema, S.B.; Vavourakis, C.D.; van der Geest, H.G.; Vethaak, A.D.; Admiraal, W.

    2014-01-01

    Photosynthetically Active Radiation (PAR) and Ultraviolet Radiation (UVR) of the solar spectrum affect microalgae directly and modify the toxicity of phytotoxic compounds present in water. As a consequence seasonal variable PAR and UVR levels are likely to modulate the toxic pressure of contaminants

  7. Observed seasonal variability of barrier layer in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Muraleedharan, P.M.; Rao, R.R.; Somayajulu, Y.K.; Reddy, G.V.; Revichandran, C.

    The observed formation of Barrier Layer (BL) and the seasonal variability of BL thickness (BLT) in the Bay of Bengal are examined utilizing the most comprehensive data set. Thick BL (~50m) first appears in the coastal region of the northeastern bay...

  8. Modelling Seasonal GWR of Daily PM2.5 with Proper Auxiliary Variables for the Yangtze River Delta

    Directory of Open Access Journals (Sweden)

    Man Jiang

    2017-04-01

    Full Text Available Over the past decades, regional haze episodes have frequently occurred in eastern China, especially in the Yangtze River Delta (YRD. Satellite derived Aerosol Optical Depth (AOD has been used to retrieve the spatial coverage of PM2.5 concentrations. To improve the retrieval accuracy of the daily AOD-PM2.5 model, various auxiliary variables like meteorological or geographical factors have been adopted into the Geographically Weighted Regression (GWR model. However, these variables are always arbitrarily selected without deep consideration of their potentially varying temporal or spatial contributions in the model performance. In this manuscript, we put forward an automatic procedure to select proper auxiliary variables from meteorological and geographical factors and obtain their optimal combinations to construct four seasonal GWR models. We employ two different schemes to comprehensively test the performance of our proposed GWR models: (1 comparison with other regular GWR models by varying the number of auxiliary variables; and (2 comparison with observed ground-level PM2.5 concentrations. The result shows that our GWR models of “AOD + 3” with three common meteorological variables generally perform better than all the other GWR models involved. Our models also show powerful prediction capabilities in PM2.5 concentrations with only slight overfitting. The determination coefficients R2 of our seasonal models are 0.8259 in spring, 0.7818 in summer, 0.8407 in autumn, and 0.7689 in winter. Also, the seasonal models in summer and autumn behave better than those in spring and winter. The comparison between seasonal and yearly models further validates the specific seasonal pattern of auxiliary variables of the GWR model in the YRD. We also stress the importance of key variables and propose a selection process in the AOD-PM2.5 model. Our work validates the significance of proper auxiliary variables in modelling the AOD-PM2.5 relationships and

  9. Dynamic and Regression Modeling of Ocean Variability in the Tide-Gauge Record at Seasonal and Longer Periods

    Science.gov (United States)

    Hill, Emma M.; Ponte, Rui M.; Davis, James L.

    2007-01-01

    Comparison of monthly mean tide-gauge time series to corresponding model time series based on a static inverted barometer (IB) for pressure-driven fluctuations and a ocean general circulation model (OM) reveals that the combined model successfully reproduces seasonal and interannual changes in relative sea level at many stations. Removal of the OM and IB from the tide-gauge record produces residual time series with a mean global variance reduction of 53%. The OM is mis-scaled for certain regions, and 68% of the residual time series contain a significant seasonal variability after removal of the OM and IB from the tide-gauge data. Including OM admittance parameters and seasonal coefficients in a regression model for each station, with IB also removed, produces residual time series with mean global variance reduction of 71%. Examination of the regional improvement in variance caused by scaling the OM, including seasonal terms, or both, indicates weakness in the model at predicting sea-level variation for constricted ocean regions. The model is particularly effective at reproducing sea-level variation for stations in North America, Europe, and Japan. The RMS residual for many stations in these areas is 25-35 mm. The production of "cleaner" tide-gauge time series, with oceanographic variability removed, is important for future analysis of nonsecular and regionally differing sea-level variations. Understanding the ocean model's strengths and weaknesses will allow for future improvements of the model.

  10. Age and seasonal variability of polybrominated diphenyl ethers in free-ranging East Greenland polar bears (Ursus maritimus)

    International Nuclear Information System (INIS)

    Dietz, Rune; Riget, Frank F.; Sonne, Christian; Letcher, Robert J.; Backus, Sean; Born, Erik W.; Kirkegaard, Maja; Muir, Derek C.G.

    2007-01-01

    Polybrominated diphenyl ethers (PBDEs) were analysed in adipose tissue from 92 East Greenland polar bears (Ursus maritimus) sampled during 1999-2001. Mean ΣPBDE concentrations were 70 ng/g lipid weight (lw) (range: 22-192 ng/g lw) and showed no relationship with age or sex. Of the 32 analysed PBDE congeners; BDE47, BDE153, BDE99 and BDE100 dominated, and comprised 99.6% of the ΣPBDE concentration. The ΣPBDE concentration had a highly significant correlation with ΣPCB, ΣCHL, dieldrin, HCB and ΣHCH concentrations. We found a seasonal pattern of median ΣPBDE concentration with 1.2 to 1.8 times higher concentrations in March to July than the rest of the year. The seasonal variation also provides a clue to the seasonal exposure, bio-availability, toxic exposure and degradation. We suggest that future geographical PBDE data comparisons may not need corrections for sex or age, but such data sets should be corrected for seasonal variability, using the presented correctional trigonometric regression. - Mean ΣPBDE concentrations of East Greenland polar bears (Ursus maritimus) were 69.5 ng/g lw (range: 21.7-192 ng/g lw) and showed a seasonal pattern with no relationship with age and sex

  11. Arctic sea ice trends, variability and implications for seasonal ice forecasting.

    Science.gov (United States)

    Serreze, Mark C; Stroeve, Julienne

    2015-07-13

    September Arctic sea ice extent over the period of satellite observations has a strong downward trend, accompanied by pronounced interannual variability with a detrended 1 year lag autocorrelation of essentially zero. We argue that through a combination of thinning and associated processes related to a warming climate (a stronger albedo feedback, a longer melt season, the lack of especially cold winters) the downward trend itself is steepening. The lack of autocorrelation manifests both the inherent large variability in summer atmospheric circulation patterns and that oceanic heat loss in winter acts as a negative (stabilizing) feedback, albeit insufficient to counter the steepening trend. These findings have implications for seasonal ice forecasting. In particular, while advances in observing sea ice thickness and assimilating thickness into coupled forecast systems have improved forecast skill, there remains an inherent limit to predictability owing to the largely chaotic nature of atmospheric variability. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Nutrient characteristics of the water masses and their seasonal variability in the eastern equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; Shetye, S.; Maya, M.V.; Mangala, K.R.; PrasannaKumar, S.

    . (Position of Fig 1.) 3. Results and Discussion 3.1. Water masses in the area of observation You and Tomczak (1993) has reviewed the water masses in the Indian Ocean identified by the earlier workers ( Sverdrup et al. 1942; Mamalev, 1975; and Shcherbinin... at 200 m at 5° S in the meridional region of our observations and flows down to 800 m to the north and termed as Indian central water (ICW) (You and Tomczak, 1993). (position of Fig.2) 3.2. Seasonal variability of water masses The seasonal...

  13. Seasonal variability of thermal fronts in the northern South China Sea from satellite data

    Science.gov (United States)

    Wang, Dongxiao; Liu, Yun; Qi, Yiquan; Shi, Ping

    The 8-year (1991-1998) Pathfinder sea surface temperature data have been applied here to produce the objectively derived seasonality of the oceanic thermal fronts in the northern South China Sea from 17°N to 25°N. Several fronts have been clearly distinguished, namely, Fujian and Guangdong Coastal Water, Pear River Estuary Coastal, Taiwan Bank, Kuroshio Intrusion, Hainan Island East Coast and Tonkin Gulf Coastal fronts. The frontal patterns in winter, spring and summer are quite similar, whereas individual fronts display different modes of seasonal variability due to different mechanisms favoring those fronts.

  14. Seasonal variability of planktonic copepods (Copepoda: Crustacea in a tropical estuarine region in Brazil

    Directory of Open Access Journals (Sweden)

    Cristina de Oliveira Dias

    2009-12-01

    Full Text Available The Caravelas River estuary and adjacent coastal region were studied during the rainy and dry seasons of 2003-2004 to assess the copepod community structure. Abiotic and biotic parameters were measured, and the total density, frequency and percentage of copepod taxa were determined for each sampling period. Copepod densities showed significant differences between sampling periods, with higher densities in the rainy seasons (Mean: 90,941.80 ind.m-3; S.D.: 26,364.79. The sampling stations located to the north and south, in the coastal region adjacent to the Caravelas River estuary presented the lowest copepod density values. The copepod assemblage was composed mainly of estuarine and estuarine/coastal copepods. The seasonal variations in temperature and salinity influenced the abundance of species during the rainy and dry seasons, with the following dominant species alternating: Paracalanus quasimodo Bowman, 1971 in the rainy season of 2003, Parvocalanus crassirostris Dahl, 1894 in the dry season of 2003 and Acartia lilljeborgii Giesbrecht, 1892 in the rainy and dry seasons of 2004. Non-parametric multidimensional scaling indicated differences in copepod assemblages between sampling periods, but not between sampling stations.

  15. Seasonal Evolution and Interannual Variability of the Local Solar Energy Absorbed by the Arctic Sea Ice-Ocean System

    Science.gov (United States)

    Perovich, Donald K.; Nghiem, Son V.; Markus, Thorsten; Schwieger, Axel

    2007-01-01

    The melt season of the Arctic sea ice cover is greatly affected by the partitioning of the incident solar radiation between reflection to the atmosphere and absorption in the ice and ocean. This partitioning exhibits a strong seasonal cycle and significant interannual variability. Data in the period 1998, 2000-2004 were analyzed in this study. Observations made during the 1997-1998 SHEBA (Surface HEat Budget of the Arctic Ocean) field experiment showed a strong seasonal dependence of the partitioning, dominated by a five-phase albedo evolution. QuikSCAT scatterometer data from the SHEBA region in 1999-2004 were used to further investigate solar partitioning in summer. The time series of scatterometer data were used to determine the onset of melt and the beginning of freezeup. This information was combined with SSM/I-derived ice concentration, TOVS-based estimates of incident solar irradiance, and SHEBA results to estimate the amount of solar energy absorbed in the ice-ocean system for these years. The average total solar energy absorbed in the ice-ocean system from April through September was 900 MJ m(sup -2). There was considerable interannual variability, with a range of 826 to 1044 MJ m(sup -2). The total amount of solar energy absorbed by the ice and ocean was strongly related to the date of melt onset, but only weakly related to the total duration of the melt season or the onset of freezeup. The timing of melt onset is significant because the incident solar energy is large and a change at this time propagates through the entire melt season, affecting the albedo every day throughout melt and freezeup.

  16. Historical and future seasonal rainfall variability in Nusa Tenggara Barat Province, Indonesia: Implications for the agriculture and water sectors

    Directory of Open Access Journals (Sweden)

    Dewi G.C. Kirono

    2016-01-01

    Full Text Available Climate change impacts are most likely to be felt by resource-dependent communities, and consequently locally-relevant data are necessary to inform livelihood adaptation planning. This paper presents information for historical and future seasonal rainfall variability in Nusa Tenggara Barat (NTB Province, Indonesia, where rural livelihoods are highly vulnerable to current climate variability and future change. Historical rainfall variability is investigated using observational data from two stations located on the islands of Lombok and Sumbawa. Future rainfall is examined using an ensemble of six downscaled climate model simulations at a spatial resolution of 14 km for 1971–2100, applying the IPCC SRES-A2 ‘Business as Usual’ emissions scenario, and the six original global climate models (GCMs. Analyses of the observed seasonal rainfall data highlight cyclical variability and long-term declines. The observed periodicities are of about 2–4, 5, 8, 11, and 40–50 years. Furthermore, dry season rainfall is significantly correlated with the El Niño Southern Oscillation (ENSO, while wet season rainfall is weakly correlated with ENSO. The simulated rainfall data reproduce the observed seasonal cycle very well, but overestimate the magnitude of rainfall and underestimate inter-annual rainfall variability. The models also show that the observed rainfall periodicities will continue throughout the 21st century. The models project that rainfall will decline, although with wide ranges of uncertainty, depending on season and location. Crop water demand estimates show that the projected changes will potentially impact the first growing period for rice during November–March. Rainfall may also be insufficient to meet water demand for many crops in the second growing period of March–June, when high value commodities such as chillies and tobacco are produced. The results reinforce the importance to consider all uncertainties when utilizing climate

  17. Seasonal variability of the Red Sea, from GRACE time-variable gravity and altimeter sea surface height measurements

    Science.gov (United States)

    Wahr, John; Smeed, David; Leuliette, Eric; Swenson, Sean

    2014-05-01

    Seasonal variability of sea surface height and mass within the Red Sea, occurs mostly through the exchange of heat with the atmosphere and wind-driven inflow and outflow of water through the strait of Bab el Mandab that opens into the Gulf of Aden to the south. The seasonal effects of precipitation and evaporation, of water exchange through the Suez Canal to the north, and of runoff from the adjacent land, are all small. The flow through the Bab el Mandab involves a net mass transfer into the Red Sea during the winter and a net transfer out during the summer. But that flow has a multi-layer pattern, so that in the summer there is actually an influx of cool water at intermediate (~100 m) depths. Thus, summer water in the southern Red Sea is warmer near the surface due to higher air temperatures, but cooler at intermediate depths (especially in the far south). Summer water in the northern Red Sea experiences warming by air-sea exchange only. The temperature profile affects the water density, which impacts the sea surface height but has no effect on vertically integrated mass. Here, we study this seasonal cycle by combining GRACE time-variable mass estimates, altimeter (Jason-1, Jason-2, and Envisat) measurements of sea surface height, and steric sea surface height contributions derived from depth-dependent, climatological values of temperature and salinity obtained from the World Ocean Atlas. We find good consistency, particularly in the northern Red Sea, between these three data types. Among the general characteristics of our results are: (1) the mass contributions to seasonal SSHT variations are much larger than the steric contributions; (2) the mass signal is largest in winter, consistent with winds pushing water into the Red Sea through the Strait of Bab el Mandab in winter, and out during the summer; and (3) the steric signal is largest in summer, consistent with summer sea surface warming.

  18. On the seasonal cycles and variability of Florida Straits, Ekman and Sverdrup transports at 26° N in the Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    C. P. Atkinson

    2010-10-01

    Full Text Available Since April 2004 the RAPID array has made continuous measurements of the Atlantic Meridional Overturning Circulation (AMOC at 26° N. Two key components of this system are Ekman transport zonally integrated across 26° N and western boundary current transport in the Florida Straits. Whilst measurements of the AMOC as a whole are somewhat in their infancy, this study investigates what useful information can be extracted on the variability of the Ekman and Florida Straits transports using the decadal timeseries already available. Analysis is also presented for Sverdrup transports zonally integrated across 26° N.

    The seasonal cycles of Florida Straits, Ekman and Sverdrup transports are quantified at 26° N using harmonic analysis of annual and semi-annual constituents. Whilst Sverdrup transport shows clear semi-annual periodicity, calculations of seasonal Florida Straits and Ekman transports show substantial interannual variability due to contamination by variability at non-seasonal frequencies; the mean seasonal cycle for these transports only emerges from decadal length observations. The Florida Straits and Ekman mean seasonal cycles project on the AMOC with a combined peak-to-peak seasonal range of 3.5 Sv. The combined seasonal range for heat transport is 0.40 PW.

    The Florida Straits seasonal cycle possesses a smooth annual periodicity in contrast with previous studies suggesting a more asymmetric structure. No clear evidence is found to support significant changes in the Florida Straits seasonal cycle at sub-decadal periods. Whilst evidence of wind driven Florida Straits transport variability is seen at sub-seasonal and annual periods, a model run from the 1/4° eddy-permitting ocean model NEMO is used to identify an important contribution from internal oceanic variability at sub-annual and interannual periods. The Ekman transport seasonal cycle possesses less symmetric structure, due in part to different seasonal transport

  19. Seasonal Variability of Aragonite Saturation State in the North Pacific Ocean Predicted by Multiple Linear Regression

    Science.gov (United States)

    Kim, T. W.; Park, G. H.

    2014-12-01

    Seasonal variation of aragonite saturation state (Ωarag) in the North Pacific Ocean (NPO) was investigated, using multiple linear regression (MLR) models produced from the PACIFICA (Pacific Ocean interior carbon) dataset. Data within depth ranges of 50-1200m were used to derive MLR models, and three parameters (potential temperature, nitrate, and apparent oxygen utilization (AOU)) were chosen as predictor variables because these parameters are associated with vertical mixing, DIC (dissolved inorganic carbon) removal and release which all affect Ωarag in water column directly or indirectly. The PACIFICA dataset was divided into 5° × 5° grids, and a MLR model was produced in each grid, giving total 145 independent MLR models over the NPO. Mean RMSE (root mean square error) and r2 (coefficient of determination) of all derived MLR models were approximately 0.09 and 0.96, respectively. Then the obtained MLR coefficients for each of predictor variables and an intercept were interpolated over the study area, thereby making possible to allocate MLR coefficients to data-sparse ocean regions. Predictability from the interpolated coefficients was evaluated using Hawaiian time-series data, and as a result mean residual between measured and predicted Ωarag values was approximately 0.08, which is less than the mean RMSE of our MLR models. The interpolated MLR coefficients were combined with seasonal climatology of World Ocean Atlas 2013 (1° × 1°) to produce seasonal Ωarag distributions over various depths. Large seasonal variability in Ωarag was manifested in the mid-latitude Western NPO (24-40°N, 130-180°E) and low-latitude Eastern NPO (0-12°N, 115-150°W). In the Western NPO, seasonal fluctuations of water column stratification appeared to be responsible for the seasonal variation in Ωarag (~ 0.5 at 50 m) because it closely followed temperature variations in a layer of 0-75 m. In contrast, remineralization of organic matter was the main cause for the seasonal

  20. Effects of seasonal meteorological variables on E. coli persistence in livestock faeces and implications for environmental and human health.

    Science.gov (United States)

    Oliver, David M; Page, Trevor

    2016-11-15

    Agriculture contributes significant volumes of livestock faeces to land. Understanding how faecal microbes respond to shifts in meteorological patterns of contrasting seasons is important in order to gauge how environmental (and human health) risks may alter under a changing climate. The aim of this study was to: (i) quantify the temporal pattern of E. coli growth within dairy faeces post defecation; and (ii) derive E. coli seasonal population change profiles associated with contrasting environmental drivers. Evaluation of the die-off dynamics of E. coli revealed that a treatment mimicking drought and warming conditions significantly enhanced persistence relative to E. coli in faeces that were exposed to field conditions, and that this pattern was consistent across consecutive years. The internal temperature of faeces was important in driving the rate of change in the E. coli population in the immediate period post defecation, with most E. coli activity (as either die-off or growth) occurring at low dry matter content. This study highlighted that the use of seasonal E. coli persistence profiles should be approached with caution when modelling environmental and human health risks given the increased likelihood of atypical seasonal meteorological variables impacting on E. coli growth and die-off.

  1. The Effect of Seasonal Variability of Atlantic Water on the Arctic Sea Ice Cover

    Science.gov (United States)

    Ivanov, V. V.; Repina, I. A.

    2018-01-01

    Under the influence of global warming, the sea ice in the Arctic Ocean (AO) is expected to reduce with a transition toward a seasonal ice cover by the end of this century. A comparison of climate-model predictions with measurements shows that the actual rate of ice cover decay in the AO is higher than the predicted one. This paper argues that the rapid shrinking of the Arctic summer ice cover is due to its increased seasonality, while seasonal oscillations of the Atlantic origin water temperature create favorable conditions for the formation of negative anomalies in the ice-cover area in winter. The basis for this hypothesis is the fundamental possibility of the activation of positive feedback provided by a specific feature of the seasonal cycle of the inflowing Atlantic origin water and the peaking of temperature in the Nansen Basin in midwinter. The recently accelerated reduction in the summer ice cover in the AO leads to an increased accumulation of heat in the upper ocean layer during the summer season. The extra heat content of the upper ocean layer favors prerequisite conditions for winter thermohaline convection and the transfer of heat from the Atlantic water (AW) layer to the ice cover. This, in turn, contributes to further ice thinning and a decrease in ice concentration, accelerated melting in summer, and a greater accumulation of heat in the ocean by the end of the following summer. An important role is played by the seasonal variability of the temperature of AW, which forms on the border between the North European and Arctic basins. The phase of seasonal oscillation changes while the AW is moving through the Nansen Basin. As a result, the timing of temperature peak shifts from summer to winter, additionally contributing to enhanced ice melting in winter. The formulated theoretical concept is substantiated by a simplified mathematical model and comparison with observations.

  2. Climatology of extreme daily precipitation in Colorado and its diverse spatial and seasonal variability

    Science.gov (United States)

    Mahoney, Kelly M.; Ralph, F. Martin; Walter, Klaus; Doesken, Nolan; Dettinger, Michael; Gottas, Daniel; Coleman, Timothy; White, Allen

    2015-01-01

    The climatology of Colorado’s historical extreme precipitation events shows a remarkable degree of seasonal and regional variability. Analysis of the largest historical daily precipitation totals at COOP stations across Colorado by season indicates that the largest recorded daily precipitation totals have ranged from less than 60 mm day−1 in some areas to more than 250 mm day−1 in others. East of the Continental Divide, winter events are rarely among the top 10 events at a given site, but spring events dominate in and near the foothills; summer events are most common across the lower-elevation eastern plains, while fall events are most typical for the lower elevations west of the Divide. The seasonal signal in Colorado’s central mountains is complex; high-elevation intense precipitation events have occurred in all months of the year, including summer, when precipitation is more likely to be liquid (as opposed to snow), which poses more of an instantaneous flood risk. Notably, the historic Colorado Front Range daily rainfall totals that contributed to the damaging floods in September 2013 occurred outside of that region’s typical season for most extreme precipitation (spring–summer). That event and many others highlight the fact that extreme precipitation in Colorado has occurred historically during all seasons and at all elevations, emphasizing a year-round statewide risk.

  3. Within-season variability of fighting behaviour in an Australian alpine grasshopper.

    Science.gov (United States)

    Muschett, Giselle; Umbers, Kate D L; Herberstein, Marie E

    2017-01-01

    Throughout the breeding season, changing environmental and biological conditions can lead to variation in the reproductive landscape of many species. In alpine environments temperature is a key driver of behaviour for small ectotherms such as insects, but variable biotic factors such as mate quality and availability can also influence behaviour. Kosicuscola tristis is a small semelparous grasshopper of the Australian alpine region. In a rare behaviour among grasshoppers, K. tristis males engage in vigorous fights over access to females, involving mandible displays, kicking, biting and grappling. In this study we describe the variation in fighting behaviour of K. tristis throughout the breeding season and test several hypotheses related to temperature, body size, mating behaviour, and female quality. We show that K. tristis males are more aggressive toward each other at the end of the breeding season than at the beginning. This increased aggression is associated with decreased daily average temperatures (from ~20°C to ~9°C), decreased mating activity, increased female fecundity, and an unexpected trend toward an increase in female-to-male aggression. These results suggest that K. tristis is likely under increased selective pressure to time key life cycle events with favourable biological and climatic conditions. The stochastic nature of alpine environments combined with a relatively short life span and breeding season, as well as limited mating opportunities toward the end of the season may have contributed to the evolution of this extraordinary mating system.

  4. Climate variables as predictors for seasonal forecast of dengue occurrence in Chennai, Tamil Nadu

    Science.gov (United States)

    Subash Kumar, D. D.; Andimuthu, R.

    2013-12-01

    Background Dengue is a recently emerging vector borne diseases in Chennai. As per the WHO report in 2011 dengue is one of eight climate sensitive disease of this century. Objective Therefore an attempt has been made to explore the influence of climate parameters on dengue occurrence and use for forecasting. Methodology Time series analysis has been applied to predict the number of dengue cases in Chennai, a metropolitan city which is the capital of Tamil Nadu, India. Cross correlation of the climate variables with dengue cases revealed that the most influential parameters were monthly relative humidity, minimum temperature at 4 months lag and rainfall at one month lag (Table 1). However due to intercorrelation of relative humidity and rainfall was high and therefore for predictive purpose the rainfall at one month lag was used for the model development. Autoregressive Integrated Moving Average (ARIMA) models have been applied to forecast the occurrence of dengue. Results and Discussion The best fit model was ARIMA (1,0,1). It was seen that the monthly minimum temperature at four months lag (β= 3.612, p = 0.02) and rainfall at one month lag (β= 0.032, p = 0.017) were associated with dengue occurrence and they had a very significant effect. Mean Relative Humidity had a directly significant positive correlation at 99% confidence level, but the lagged effect was not prominent. The model predicted dengue cases showed significantly high correlation of 0.814(Figure 1) with the observed cases. The RMSE of the model was 18.564 and MAE was 12.114. The model is limited by the scarcity of the dataset. Inclusion of socioeconomic conditions and population offset are further needed to be incorporated for effective results. Conclusion Thus it could be claimed that the change in climatic parameters is definitely influential in increasing the number of dengue occurrence in Chennai. The climate variables therefore can be used for seasonal forecasting of dengue with rise in minimum

  5. The transfer of seasonal isotopic variability between precipitation and drip water at eight caves in the monsoon regions of China

    Science.gov (United States)

    Duan, Wuhui; Ruan, Jiaoyang; Luo, Weijun; Li, Tingyong; Tian, Lijun; Zeng, Guangneng; Zhang, Dezhong; Bai, Yijun; Li, Jilong; Tao, Tao; Zhang, Pingzhong; Baker, Andy; Tan, Ming

    2016-06-01

    This study presents new stable isotope data for precipitation (δ18Op) and drip water (δ18Od) from eight cave sites in the monsoon regions of China (MRC), with monthly to bi-monthly sampling intervals from May-2011 to April-2014, to investigate the regional-scale climate forcing on δ18Op and how the isotopic signals are transmitted to various drip sites. The monthly δ18Op values show negative correlation with surface air temperature at all the cave sites except Shihua Cave, which is opposite to that expected from the temperature effect. In addition, although the monthly δ18Op values are negatively correlated with precipitation at all the cave sites, only three sites are significant at the 95% level. These indicate that, due to the various vapor sources, a large portion of variability in δ18Op in the MRC cannot be explained simply by either temperature or precipitation alone. All the thirty-four drip sites are classified into three types based on the δ18Od variability. About 82% of them are static drips with little discernable variation in δ18Od through the whole study period, but the drip rates of these drips are not necessary constant. Their discharge modes are site-specific and the oxygen isotopic composition of the stalagmites growing from them may record the average of multi-year climatic signals, which are modulated by the seasonality of recharge and potential effects of evaporation, and in some cases infiltration from large rainfall events. About 12% of the thirty-four drip sites are seasonal drips, although the amplitude of δ18Od is narrower than that of δ18Op, the monthly response of δ18Od to coeval precipitation is not completely damped, and some of them follow the seasonal trend of δ18Op very well. These drips may be mainly recharged by present-day precipitation, mixing with some stored water. Thus, the stalagmites growing under them may record portions of the seasonal climatic signals embedded in δ18Op. About 6% of the thirty-four drip sites

  6. Seasonal and interannual variability of solar radiation at Spirit, Opportunity and Curiosity landing sites

    International Nuclear Information System (INIS)

    Vicente-Retortillo, A.; Lemmon, M.T.; Martinez, G.; Valero, F.; Vazquez, L.; Martin, M.L.

    2016-01-01

    In this article we characterize the radiative environment at the landing sites of NASA's Mars Exploration Rover (MER) and Mars Science Laboratory (MSL) missions. We use opacity values obtained at the surface from direct imaging of the Sun and our radiative transfer model COMIMART to analyze the seasonal and interannual variability of the daily irradiation at the MER and MSL landing sites. In addition, we analyze the behavior of the direct and diffuse components of the solar radiation at these landing sites. (Author)

  7. Seasonal variability of salinity and salt transport in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    D’Addezio, J.M.; Subrahmanyam, B.; Nyadjro, E.S.; Murty, V.S.N.

    , University of South Carolina, Columbia, SC 29208 2Department of Earth and Ocean Sciences, University of South Carolina, Columbia, SC 29208 3 Department of Physics, University of New Orleans, New Orleans, LA 70148 4Council of Scientific and Industrial... are underrepresented in the literature. The almost 3 year record provided by Aquarius gives us reason to reexamine this seasonally variable region with the aid of this new observational dataset as well as analyze how the satellite-derived SSS compares with the Argo...

  8. Seasonal and spatial variability of major organic contaminants in solution and suspension of the Pomeranian Bight

    OpenAIRE

    Graeve, Martin; Wodarg, Dirk

    2003-01-01

    Studies of hexachlorocyclohexane-isomers (HCHs) and selected triazine herbicides in solution and suspension were carried out in the Pomeranian Bight in 1995. The concentrations of HCHs and triazines were determined by gas-liquid chromatography (GC) or by GC in connection with quadrupole mass spectrometry(GC/MS). Particulate and dissolved material were separated by means of an in-situ filtration/extraction system. The seasonal variability and regional distribution of the various component...

  9. The Variability of Atmospheric Deuterium Brightness at Mars: Evidence for Seasonal Dependence

    Science.gov (United States)

    Mayyasi, Majd; Clarke, John; Bhattacharyya, Dolon; Deighan, Justin; Jain, Sonal; Chaffin, Michael; Thiemann, Edward; Schneider, Nick; Jakosky, Bruce

    2017-10-01

    The enhanced ratio of deuterium to hydrogen on Mars has been widely interpreted as indicating the loss of a large column of water into space, and the hydrogen content of the upper atmosphere is now known to be highly variable. The variation in the properties of both deuterium and hydrogen in the upper atmosphere of Mars is indicative of the dynamical processes that produce these species and propagate them to altitudes where they can escape the planet. Understanding the seasonal variability of D is key to understanding the variability of the escape rate of water from Mars. Data from a 15 month observing campaign, made by the Mars Atmosphere and Volatile Evolution Imaging Ultraviolet Spectrograph high-resolution echelle channel, are used to determine the brightness of deuterium as observed at the limb of Mars. The D emission is highly variable, with a peak in brightness just after southern summer solstice. The trends of D brightness are examined against extrinsic as well as intrinsic sources. It is found that the fluctuations in deuterium brightness in the upper atmosphere of Mars (up to 400 km), corrected for periodic solar variations, vary on timescales that are similar to those of water vapor fluctuations lower in the atmosphere (20-80 km). The observed variability in deuterium may be attributed to seasonal factors such as regional dust storm activity and subsequent circulation lower in the atmosphere.

  10. Seasonal changes in reproductive activity, sperm variables and sperm freezability in Blanca Andaluza bucks

    Directory of Open Access Journals (Sweden)

    Lourdes Gallego-Calvo

    2015-12-01

    Full Text Available Interest in the preservation of endangered breeds such as the Blanca Andaluza goat, has increased and some steps should be therefore taken to ensure it. The study was designed to determine the seasonal reproductive pattern of Blanca Andaluza bucks, and whether this affects the quality of their semen and its freezability over the year. Seven bucks were used and their body weight, testicular weight, plasma testosterone concentration and fresh sperm quality determined every week. The collected sperm was cryopreserved and stored; it was then thawed and the same sperm quality variables measured every fortnight. High plasma testosterone concentrations were recorded during the summer and autumn, and low concentrations were recorded during winter and spring (p<0.001. No differences were seen between seasons in terms of the percentage of bucks ejaculating, the percentage of active bucks, or ejaculate volume. However, the sperm concentration, the total number of sperm per ejaculate, and the values for most fresh sperm variables were lower during the winter period (at least p<0.05. After freezing-thawing, the quality of winter-collected sperm was better, in some respects, than that of summer-collected sperm (at least p<0.05. These results reveal that Blanca Andaluza bucks show seasonal reproductive activity in terms of their plasma testosterone concentration, but no clear change in their sexual behaviour between seasons was observed. The values of fresh sperm variables also vary over the year, reaching their lowest during winter. However, after freezing-thawing, winter-collected sperm is of overall better quality than sperm collected during the summer.

  11. Seasonal changes in reproductive activity, sperm variables and sperm freezability in Blanca Andaluza bucks

    Energy Technology Data Exchange (ETDEWEB)

    Gallego-Calvo, L.; Gatica, M.C.; Santiago-Moreno, J.; Guzmán, J.L.; Zarazaga, L.

    2015-07-01

    Interest in the preservation of endangered breeds such as the Blanca Andaluza goat, has increased and some steps should be therefore taken to ensure it. The study was designed to determine the seasonal reproductive pattern of Blanca Andaluza bucks, and whether this affects the quality of their semen and its freezability over the year. Seven bucks were used and their body weight, testicular weight, plasma testosterone concentration and fresh sperm quality determined every week. The collected sperm was cryopreserved and stored; it was then thawed and the same sperm quality variables measured every fortnight. High plasma testosterone concentrations were recorded during the summer and autumn, and low concentrations were recorded during winter and spring (p<0.001). No differences were seen between seasons in terms of the percentage of bucks ejaculating, the percentage of active bucks, or ejaculate volume. However, the sperm concentration, the total number of sperm per ejaculate, and the values for most fresh sperm variables were lower during the winter period (at least p<0.05). After freezing-thawing, the quality of winter-collected sperm was better, in some respects, than that of summer-collected sperm (at least p<0.05). These results reveal that Blanca Andaluza bucks show seasonal reproductive activity in terms of their plasma testosterone concentration, but no clear change in their sexual behaviour between seasons was observed. The values of fresh sperm variables also vary over the year, reaching their lowest during winter. However, after freezing-thawing, winter-collected sperm is of overall better quality than sperm collected during the summer. (Author)

  12. Seasonal and diurnal variability of the meteor flux at high latitudes observed using PFISR

    Science.gov (United States)

    Sparks, J. J.; Janches, D.; Nicolls, M. J.; Heinselman, C. J.

    2009-05-01

    We report in this and a companion paper [Fentzke, J.T., Janches, D., Sparks, J.J., 2008. Latitudinal and seasonal variability of the micrometeor input function: A study using model predictions and observations from Arecibo and PFISR. Journal of Atmospheric and Solar-Terrestrial Physics, this issue, doi:10.1016/j.jastp.2008.07.015] a complete seasonal study of the micrometeor input function (MIF) at high latitudes using meteor head-echo radar observations performed with the Poker Flat Incoherent Scatter Radar (PFISR). This flux is responsible for a number of atmospheric phenomena; for example, it could be the source of meteoric smoke that is thought to act as condensation nuclei in the formation of ice particles in the polar mesosphere. The observations presented here were performed for full 24-h periods near the summer and winter solstices and spring and autumn equinoxes, times at which the seasonal variability of the MIF is predicted to be large at high latitudes [Janches, D., Heinselman, C.J., Chau, J.L., Chandran, A., Woodman, R., 2006. Modeling of the micrometeor input function in the upper atmosphere observed by High Power and Large Aperture Radars, JGR, 11, A07317, doi:10.1029/2006JA011628]. Precise altitude and radar instantaneous line-of-sight (radial) Doppler velocity information are obtained for each of the hundreds of events detected every day. We show that meteor rates, altitude, and radial velocity distributions have a large seasonal dependence. This seasonal variability can be explained by a change in the relative location of the meteoroid sources with respect to the observer. Our results show that the meteor flux into the upper atmosphere is strongly anisotropic and its characteristics must be accounted for when including this flux into models attempting to explain related aeronomical phenomena. In addition, the measured acceleration and received signal strength distribution do not seem to depend on season; which may suggest that these observed

  13. Seasonal and interannual variability in grey seal diets on Sable Island, eastern Scotian Shelf

    Directory of Open Access Journals (Sweden)

    W D Bowen

    2007-01-01

    Full Text Available We studied seasonal and interannual variability in the diet of grey seals (Halichoerus grypus using faecal samples collected from Sable Island, Nova Scotia between 1991 and 1998. More than 28,000 prey from at least 28 taxa were identified from 1,245 faecal samples collect mainly in spring, fall and winter. Sand lance (Ammodytes dubius dominated the diet in all seasons and years, but the importance of this and other species varied over time. There was also evidence of seasonal and interannual variation in the size of prey consumed both within and among species. We compared diet composition with estimates of prey numbers and biomass from annual researchtrawl surveys conducted in March and July. Species-specific numerical corrections were applied to otolith counts to account for the complete digestion of otoliths, and fish catchability correction factors applied to trawl survey catches to account for trawl selectivity. Based on an odds ratio index of prey selectivity, grey seals positively selected sand lance in both seasons. Other species were either relatively avoided or eaten roughly in proportion to their estimated abundance.

  14. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog

    Science.gov (United States)

    Walker, Anthony P.; Carter, Kelsey R.; Gu, Lianhong; Hanson, Paul J.; Malhotra, Avni; Norby, Richard J.; Sebestyen, Stephen D.; Wullschleger, Stan D.; Weston, David J.

    2017-05-01

    Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum gross primary production (GPP)—the entry point of carbon into wetland ecosystems. Continuous flux measurements and flux partitioning show a seasonal cycle of Sphagnum GPP that peaked in the late summer, well after the peak in photosynthetically active radiation. Wavelet analysis showed that water table height was the key driver of weekly variation in Sphagnum GPP in the early summer and that temperature was the primary driver of GPP in the late summer and autumn. Flux partitioning and a process-based model of Sphagnum photosynthesis demonstrated the likelihood of seasonally dynamic maximum rates of photosynthesis and a logistic relationship between the water table and photosynthesizing tissue area when the water table was at the Sphagnum surface. The model also suggested that variability in internal resistance to CO2 transport, a function of Sphagnum water content, had minimal effect on GPP. To accurately model Sphagnum GPP, we recommend the following: (1) understanding seasonal photosynthetic trait variation and its triggers in Sphagnum; (2) characterizing the interaction of Sphagnum photosynthesizing tissue area with water table height; (3) modeling Sphagnum as a "soil" layer for consistent simulation of water dynamics; and (4) measurement of Sphagnum "canopy" properties: extinction coefficient (k), clumping (Ω), and maximum stem area index (SAI).

  15. Mechanism of seasonal eddy kinetic energy variability in the eastern equatorial Pacific Ocean

    Science.gov (United States)

    Wang, Minyang; Du, Yan; Qiu, Bo; Cheng, Xuhua; Luo, Yiyong; Chen, Xiao; Feng, Ming

    2017-04-01

    Enhanced mesoscale eddy activities or tropical instability waves (TIWs) exist along the northern front of the cold tongue in the eastern equatorial Pacific Ocean. In this study, we investigate seasonal variability of eddy kinetic energy (EKE) over this region and its associated dynamic mechanism using a global, eddy-resolving ocean general circulation model (OGCM) simulation, the equatorial mooring data, and satellite altimeter observations. The seasonal-varying enhanced EKE signals are found to expand westward from 100°W in June to 180°W in December between 0°N and 6°N. This westward expansion in EKE is closely connected to the barotropically-baroclinically unstable zonal flows that are in thermal-wind balance with the seasonal-varying thermocline trough along 4°N. By adopting an 1½-layer reduced-gravity model, we confirm that the seasonal perturbation of the thermocline trough is dominated by the anticyclonic wind stress curl forcing, which develops due to southerly winds along 4°N from June to December.

  16. Seasonal variability and source apportionment of volatile organic compounds (VOCs in the Paris megacity (France

    Directory of Open Access Journals (Sweden)

    A. Baudic

    2016-09-01

    Full Text Available Within the framework of air quality studies at the megacity scale, highly time-resolved volatile organic compound (C2–C8 measurements were performed in downtown Paris (urban background sites from January to November 2010. This unique dataset included non-methane hydrocarbons (NMHCs and aromatic/oxygenated species (OVOCs measured by a GC-FID (gas chromatograph with a flame ionization detector and a PTR-MS (proton transfer reaction – mass spectrometer, respectively. This study presents the seasonal variability of atmospheric VOCs being monitored in the French megacity and their various associated emission sources. Clear seasonal and diurnal patterns differed from one VOC to another as the result of their different origins and the influence of environmental parameters (solar radiation, temperature. Source apportionment (SA was comprehensively conducted using a multivariate mathematical receptor modeling. The United States Environmental Protection Agency's positive matrix factorization tool (US EPA, PMF was used to apportion and quantify ambient VOC concentrations into six different sources. The modeled source profiles were identified from near-field observations (measurements from three distinct emission sources: inside a highway tunnel, at a fireplace and from a domestic gas flue, hence with a specific focus on road traffic, wood-burning activities and natural gas emissions and hydrocarbon profiles reported in the literature. The reconstructed VOC sources were cross validated using independent tracers such as inorganic gases (NO, NO2, CO, black carbon (BC and meteorological data (temperature. The largest contributors to the predicted VOC concentrations were traffic-related activities (including motor vehicle exhaust, 15 % of the total mass on the annual average, and evaporative sources, 10 %, with the remaining emissions from natural gas and background (23 %, solvent use (20 %, wood-burning (18 % and a biogenic source (15 %. An

  17. Benthic assemblages of rock pools in northern Portugal: seasonal and between-pool variability

    Directory of Open Access Journals (Sweden)

    Iacopo Bertocci

    2012-11-01

    Full Text Available We investigated the seasonal (winter vs summer and within season and spatial (between-pool variability of benthic assemblages of rock pools at mid-intertidal level along the shore of Viana do Castelo (North Portugal. Physical traits of rock pools, including size, depth and position along the shore, were also compared between pools. While pools did not differ for any of the examined physical traits, results indicated a clear seasonal difference in the structure of assemblages, including a total of 49 macroalgal and 13 animal taxa. This finding was driven by six taxa that are more abundant in winter (the reef-forming polychaete Sabellaria alveolata, the articulated coralline algae Corallina spp., the brown alga Bifurcaria bifurcata, the encrusting coralline alga Lithophyllum incrustans, the red alga Chondracanthus acicularis and the grazing snails Gibbula spp. and four algal taxa that are more abundant in summer (the invasive brown Sargassum muticum, the green Ulva spp., the kelp Laminaria ochroleuca and the filamentous red Ceramium spp.. These data provide a new contribution to the knowledge of rock pool systems and have potential implications for monitoring programmes aimed at assessing ecological modifications related to natural and anthropogenic disturbances and for identifying processes responsible for the variability of rock pool assemblages.

  18. Seasonal variability in irradiance affects herbicide toxicity to the marine flagellate Dunaliella tertiolecta

    Directory of Open Access Journals (Sweden)

    Sascha eSjollema

    2014-06-01

    Full Text Available Photosynthetically Active Radiation (PAR and Ultraviolet Radiation (UVR of the solar spectrum affect microalgae directly and modify the toxicity of phytotoxic compounds present in water. As a consequence seasonal variable PAR and UVR levels are likely to modulate the toxic pressure of contaminants in the field. Therefore the present study aimed to determine the toxicity of two model contaminants, the herbicides diuron and Irgarol®1051, under simulated irradiance conditions mimicking different seasons. Irradiance conditions of spring and autumn were simulated with a set of Light Emitting Diodes (LEDs. Toxicity of both herbicides was measured individually and in a mixture by determining the inhibition of photosystem II efficiency (ΦPSII of the marine flagellate Dunaliella teriolecta using Pulse Amplitude Modulation (PAM fluorometry. Toxicity of the single herbicides was higher under simulated spring irradiance than under autumn irradiance and this effect was also observed for mixtures of the herbicides. This irradiance dependent toxicity indicates that herbicide toxicity in the field is seasonally variable. Consequently toxicity tests under standard light conditions may overestimate or underestimate the toxic effect of phytotoxic compounds.

  19. Seasonal and mesoscale variability of oceanic transport of anthropogenic CO2

    Directory of Open Access Journals (Sweden)

    J.-C. Dutay

    2009-11-01

    Full Text Available Estimates of the ocean's large-scale transport of anthropogenic CO2 are based on one-time hydrographic sections, but the temporal variability of this transport has not been investigated. The aim of this study is to evaluate how the seasonal and mesoscale variability affect data-based estimates of anthropogenic CO2 transport. To diagnose this variability, we made a global anthropogenic CO2 simulation using an eddy-permitting version of the coupled ocean sea-ice model ORCA-LIM. As for heat transport, the seasonally varying transport of anthropogenic CO2 is largest within 20° of the equator and shows secondary maxima in the subtropics. Ekman transport generally drives most of the seasonal variability, but the contribution of the vertical shear becomes important near the equator and in the Southern Ocean. Mesoscale variabilty contributes to the annual-mean transport of both heat and anthropogenic CO2 with strong poleward transport in the Southern Ocean and equatorward transport in the tropics. This "rectified" eddy transport is largely baroclinic in the tropics and barotropic in the Southern Ocean due to a larger contribution from standing eddies. Our analysis revealed that most previous hydrographic estimates of meridional transport of anthropogenic CO2 are severely biased because they neglect temporal fluctuations due to non-Ekman velocity variations. In each of the three major ocean basins, this bias is largest near the equator and in the high southern latitudes. In the subtropical North Atlantic, where most of the hydrographic-based estimates have been focused, this uncertainty represents up to 20% and 30% of total meridional transport of heat and CO2. Generally though, outside the tropics and Southern Ocean, there are only small variations in meridional transport due to seasonal variations in tracer fields and time variations in eddy transport. For the North Atlantic, eddy variability accounts for up to 10% and 15% of the total transport of

  20. Seasonal, Spatial, and Long-term Variability of Fine Mineral Dust in the United States

    Science.gov (United States)

    Hand, J. L.; White, W. H.; Gebhart, K. A.; Hyslop, N. P.; Gill, T. E.; Schichtel, B. A.

    2017-12-01

    Characterizing the seasonal, spatial, and long-term variability of fine mineral dust (FD) is important to assess its environmental and climate impacts. FD concentrations (mineral particles with aerodynamic diameters less than 2.5 µm) were estimated using ambient, ground-based PM2.5 elemental chemistry data from over 160 remote and rural Interagency Monitoring of Protected Visual Environments (IMPROVE) sites from 2011 through 2015. FD concentrations were highest and contributed over 50% of PM2.5 mass at southwestern sites in spring and across the central and southeastern United States in summer (20-30% of PM2.5). The highest seasonal variability in FD occurred at sites in the Southeast during summer, likely associated with impacts from North African transport, which was also evidenced in the elemental ratios of calcium, iron, and aluminum. Long-term trend analyses (2000-2015) indicated widespread, regional increases in FD concentrations during spring in the West, especially in March in the Southwest. This increase was associated with an early onset of the spring dust season and correlated with the Pacific Decadal Oscillation and the El Niño Southern Oscillation. The Southeast and central United States also experienced increased FD concentrations during summer and fall, respectively. Contributions of FD to PM2.5 mass have increased in regions across the United States during all seasons, in part due to increased FD concentrations but also as a result of reductions in secondary aerosols (e.g., sulfates, nitrates, and organic carbon). Increased levels of FD have important implications for its environmental and climate impacts; mitigating these impacts will require identifying and characterizing source regions and underlying mechanisms for dust episodes.

  1. Measurement of the 36Cl deposition flux in central Japan: natural background levels and seasonal variability

    International Nuclear Information System (INIS)

    Tosaki, Yuki; Tase, Norio; Sasa, Kimikazu; Takahashi, Tsutomu; Nagashima, Yasuo

    2012-01-01

    Essential parameters for the applications of 36 Cl as a tracer in groundwater studies include the initial 36 Cl/Cl ratio, at the time of recharge, and/or the natural background deposition flux of 36 Cl in the recharge area. To facilitate the hydrological use of 36 Cl in central Japan, this study aimed to obtain a precise estimate of the long-term average local 36 Cl flux and to characterize its seasonal variability. The 36 Cl in precipitation was continuously monitored in Tsukuba, central Japan over a period of >5 years. The 36 Cl flux showed a clear seasonal variation with an annual peak during the spring, which was attributed to the seasonal variability of tropopause height. The long-term average 36 Cl flux (32 ± 2 atoms m −2 s −1 ), estimated from the measured data, was consistent with the prediction from the 36 Cl latitudinal fallout model scaled using the global mean production rate of 20 atoms m −2 s −1 . The initial 36 Cl/Cl ratio was estimated to be (41 ± 6) × 10 −15 , which is similar to that of pre-bomb groundwater in the Tsukuba Upland. An observation period covering an 11-year solar cycle would yield more accurate estimates of the values, given the increased 36 Cl flux during the solar minimum. - Highlights: ► We monitored 36 Cl in precipitation in central Japan over a period of >5 years. ► The 36 Cl flux varied seasonally, with a peak in spring. ► The long-term average 36 Cl flux and the initial 36 Cl/Cl ratio were 32 ± 2 atoms m −2 s −1 and (41 ± 6) × 10 −15 , respectively. ► An observation period covering an 11-year solar cycle would yield more accurate estimates of the values, given the increased 36 Cl flux during the solar minimum.

  2. The influence of the bottom cold water on the seasonal variability of the Tsushima warm current

    Science.gov (United States)

    Isobe, Atsuhiko

    1995-06-01

    Previous studies have concluded that the volume transport and surface current velocity of the Tsushima Warm Current are at a maximum between summer and autumn and at a minimum between winter and spring. Each study has obtained these results indirectly, using the sea level difference across the Tsushima-Korea Strait or dynamic calculation. Numerical experiments are performed to estimate the seasonal variability in the sea level difference caused by the Bottom Cold Water (BCW), which intrudes from the Sea of Japan along the Korean coast in the bottom layer. These experiments basically treat the baroclinic adjustment problem of the BCW in a rectangular cross section perpendicular to the axis (northeast-southwest direction) of the Tsushima-Korea Strait. It is a five-layer model for summer and a two-layer model for winter. The initial conditions and parameters in models are chosen so as to match the calculated velocity-density fields with the observed velocity-density fields [Isobe A., S. Tawara, A. Kaneko and M. Kawano (1994) Continental Shelf Research, 14, 23-35.]. Consequently, the experiments prove that the observed seasonal variability in the sea level difference across the Tsushima-Korea Strait largely contains the baroclinic motion caused by the BCW. It should be noted that the position of the BCW also plays an important role in producing a considerable seasonal variation of the sea level difference. It is critical to remove the baroclinic contribution from the observed sea level differences across the Tsushima-Korea Strait in order to estimate the seasonal variation in the volume transport of the Tsushima Warm Current.

  3. Intra-seasonal and Inter-annual variability of Bowen Ratio over rain-shadow region of North peninsular India

    Science.gov (United States)

    Morwal, S. B.; Narkhedkar, S. G.; Padmakumari, B.; Maheskumar, R. S.; Deshpande, C. G.; Kulkarni, J. R.

    2017-05-01

    Intra-seasonal and inter-annual variability of Bowen Ratio (BR) have been studied over the rain-shadow region of north peninsular India during summer monsoon season. Daily grid point data of latent heat flux (LHF), sensible heat flux (SHF) from NCEP/NCAR Reanalysis for the period 1970-2014 have been used to compute daily area-mean BR. Daily grid point rainfall data at a resolution of 0.25° × 0.25° from APHRODITE's Water Resources for the available period 1970-2007 have been used to study the association between rainfall and BR. The study revealed that BR rapidly decreases from 4.1 to 0.29 in the month of June and then remains nearly constant at the same value (≤0.1) in the rest of the season. High values of BR in the first half of June are indicative of intense thermals and convective clouds with higher bases. Low values of BR from July to September period are indicative of weak thermals and convective clouds with lower bases. Intra-seasonal and inter-annual variability of BR is found to be inversely related to precipitation over the region. BR analysis indicates that the land surface characteristics of the study region during July-September are similar to that over oceanic regions as far as intensity of thermals and associated cloud microphysical properties are concerned. Similar variation of BR is found in El Nino and La Nina years. During June, an increasing trend is observed in SHF and BR and decreasing trend in LHF from 1976 to 2014. Increasing trend in the SHF is statistically significant.

  4. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain)

    International Nuclear Information System (INIS)

    Peña-Fernández, A.; Lobo-Bedmar, M.C.; González-Muñoz, M.J.

    2015-01-01

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. - Highlights: • Anthropogenic activities may affect the seasonal metal variation in Alcalá's soils. • Weather characteristics may also influence the seasonal metal variation in soils. • Alcalá's continual urban growth may have increased the levels of metals in its soils. • Metal variability in Alcalá's industrial soils might be dependent on their sources. • High soil metal content might make it difficult to identify temporal variation

  5. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Peña-Fernández, A. [Departamento de Ciencias Biomédicas, Unidad de Toxicología, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871 Alcalá de Henares, Madrid (Spain); Lobo-Bedmar, M.C. [Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario (IMIDRA), Finca el Encín, Crta. Madrid-Barcelona Km, 38.2, 28800 Alcalá de Henares, Madrid (Spain); González-Muñoz, M.J., E-mail: mariajose.gonzalez@uah.es [Departamento de Ciencias Biomédicas, Unidad de Toxicología, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871 Alcalá de Henares, Madrid (Spain)

    2015-01-15

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. - Highlights: • Anthropogenic activities may affect the seasonal metal variation in Alcalá's soils. • Weather characteristics may also influence the seasonal metal variation in soils. • Alcalá's continual urban growth may have increased the levels of metals in its soils. • Metal variability in Alcalá's industrial soils might be dependent on their sources. • High soil metal content might make it difficult to identify temporal variation.

  6. Seasonal and inter-annual temperature variability in the bottom waters over the western Black Sea shelf

    Directory of Open Access Journals (Sweden)

    G. I. Shapiro

    2011-09-01

    Full Text Available Long-term changes in the state of the Bottom Shelf Water (BSW on the Western shelf of the Black Sea are assessed using analysis of intra-seasonal and inter-annual temperature variations. For the purpose of this study the BSW is defined as such shelf water mass between the seabed and the upper mixed layer (bounded by the σθ = 14.2 isopycnal which has limited ability to mix vertically with oxygen-rich surface waters during the warm season due to formation of a seasonal pycnocline. A long-term time series of temperature anomalies in the BSW is constructed from in-situ observations taken over the 2nd half of the 20th century. The BSW is shown to occupy nearly half of the shelf area during the summer stratification period (May–November.The results reveal a warm phase in the 1960s/70s, followed by a cold phase between 1985 and 1995 and a further warming after 1995. The transition between the warm and cold periods coincides with a regime shift in the Black Sea ecosystem. While it was confirmed that the memory of winter convection is well preserved over the following months in the deep sea, the signal of winter cooling in the BSW significantly reduces during the warm season. The potential of the BSW to ventilate horizontally during the warm season with the deep-sea waters is assessed using isopycnic analysis of temperature variations. It is shown that temperature in the BSW is stronger correlated with the temperature of Cold Intermediate Waters (CIW in the deep sea than with the severity of the previous winters, thus indicating that the isopycnal exchanges with the deep sea are more important for inter-annual/inter-decadal variability of the BSW on the western Black Sea shelf than effects of winter convection on the shelf itself.

  7. Effect of Weather Variability on Seasonal Influenza Among Different Age Groups in Queensland, Australia: A Bayesian Spatiotemporal Analysis.

    Science.gov (United States)

    Huang, Xiaodong; Mengersen, Kerrie; Milinovich, Gabriel; Hu, Wenbiao

    2017-06-01

    The effects of weather variability on seasonal influenza among different age groups remain unclear. The comparative study aims to explore the differences in the associations between weather variability and seasonal influenza, and growth rates of seasonal influenza epidemics among different age groups in Queensland, Australia. Three Bayesian spatiotemporal conditional autoregressive models were fitted at the postal area level to quantify the relationships between seasonal influenza and monthly minimum temperature (MIT), monthly vapor pressure, school calendar pattern, and Index of Relative Socio-Economic Advantage and Disadvantage for 3 age groups (Weather variability appears to be more influential on seasonal influenza transmission in younger (0-14) age groups. The growth rates of influenza at postal area level were relatively small for older (≥65) age groups in Queensland, Australia. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  8. Seasonal and interannual variability of solar radiation at Spirit, Opportunity and Curiosity landing sites

    Energy Technology Data Exchange (ETDEWEB)

    Vicente-Retortillo, A.; Lemmon, M.T.; Martinez, G.; Valero, F.; Vazquez, L.; Martin, M.L.

    2016-07-01

    In this article we characterize the radiative environment at the landing sites of NASA's Mars Exploration Rover (MER) and Mars Science Laboratory (MSL) missions. We use opacity values obtained at the surface from direct imaging of the Sun and our radiative transfer model COMIMART to analyze the seasonal and interannual variability of the daily irradiation at the MER and MSL landing sites. In addition, we analyze the behavior of the direct and diffuse components of the solar radiation at these landing sites. (Author)

  9. Seasonal variability of PM2.5 composition and sources in the Klang Valley urban-industrial environment

    Science.gov (United States)

    Amil, Norhaniza; Talib Latif, Mohd; Firoz Khan, Md; Mohamad, Maznorizan

    2016-04-01

    This study investigates the fine particulate matter (PM2.5) variability in the Klang Valley urban-industrial environment. In total, 94 daily PM2.5 samples were collected during a 1-year campaign from August 2011 to July 2012. This is the first paper on PM2.5 mass, chemical composition and sources in the tropical environment of Southeast Asia, covering all four seasons (distinguished by the wind flow patterns) including haze events. The samples were analysed for various inorganic components and black carbon (BC). The chemical compositions were statistically analysed and the temporal aerosol pattern (seasonal) was characterised using descriptive analysis, correlation matrices, enrichment factor (EF), stoichiometric analysis and chemical mass closure (CMC). For source apportionment purposes, a combination of positive matrix factorisation (PMF) and multi-linear regression (MLR) was employed. Further, meteorological-gaseous parameters were incorporated into each analysis for improved assessment. In addition, secondary data of total suspended particulate (TSP) and coarse particulate matter (PM10) sampled at the same location and time with this study (collected by Malaysian Meteorological Department) were used for PM ratio assessment. The results showed that PM2.5 mass averaged at 28 ± 18 µg m-3, 2.8-fold higher than the World Health Organisation (WHO) annual guideline. On a daily basis, the PM2.5 mass ranged between 6 and 118 µg m-3 with the daily WHO guideline exceeded 43 % of the time. The north-east (NE) monsoon was the only season with less than 50 % sample exceedance of the daily WHO guideline. On an annual scale, PM2.5 mass correlated positively with temperature (T) and wind speed (WS) but negatively with relative humidity (RH). With the exception of NOx, the gases analysed (CO, NO2, NO and SO2) were found to significantly influence the PM2.5 mass. Seasonal variability unexpectedly showed that rainfall, WS and wind direction (WD) did not significantly correlate

  10. Interannual variability of seasonal rainfall over the Cape south coast of South Africa and synoptic type association

    CSIR Research Space (South Africa)

    Engelbrecht, CJ

    2015-09-01

    Full Text Available The link between interannual variability of seasonal rainfall over the Cape south coast of South Africa and different synoptic types as well as selected teleconnections is explored. Synoptic circulation over the region is classified into different...

  11. European seasonal mortality and influenza incidence due to winter temperature variability

    Science.gov (United States)

    Rodó, X.; Ballester, J.; Robine, J. M.; Herrmann, F. R.

    2017-12-01

    Recent studies have vividly emphasized the lack of consensus on the degree of vulnerability (sensu IPCC) of European societies to current and future winter temperatures. Here we consider several climate factors, influenza incidence and daily numbers of deaths to characterize the relationship between winter temperature and mortality in a very large ensemble of European regions representing more than 400 million people. Analyses highlight the strong association between the year-to-year fluctuations in winter mean temperature and mortality, with higher seasonal cases during harsh winters, in all of the countries except the United Kingdom, the Netherlands and Belgium. This spatial distribution contrasts with the well-documented latitudinal orientation of the dependency between daily temperature and mortality within the season. A theoretical framework is proposed to reconcile the apparent contradictions between recent studies, offering an interpretation to regional differences in the vulnerability to daily, seasonal and long-term winter temperature variability. Despite the lack of a strong year-to-year association between winter mean values in some countries, it can be concluded that warmer winters will contribute to the decrease in winter mortality everywhere in Europe. More information in Ballester J, et al. (2016) Nature Climate Change 6, 927-930, doi:10.1038/NCLIMATE3070.

  12. Diurnal and seasonal DOC and POC variability in the land-locked sea

    Directory of Open Access Journals (Sweden)

    Beata Szymczycha

    2017-07-01

    Full Text Available Organic matter is a minor yet important component of the marine environment. The aim of this study was to investigate the diurnal and seasonal changes in dissolved and particulate organic carbon (DOC and POC, respectively. Thus, DOC and POC as well as chlorophyll a (Chl a, δ13C, NO3−, NO2−, NH4+, PO43−, salinity, pH, and temperature were regularly measured in samples collected for 24 h (2-h resolution in the Gdańsk Deep (54°44.730′N, 19°08.531′E at three water depths (1, 10, and 40 m during sampling campaigns in 2011 (May, 2014 (May, and 2015 (January, March, May, July, September, November. Seasonal variations in DOC and POC followed the seasonality of Chl a (proportional trend and nutrients (reverse trend concentrations. Diurnal oscillations were detected in six out of the eight measurement series. The strongest diurnal variability in both POC and DOC occurred in May 2011 and March 2015, when phytoplankton activity was highest (high Chl a. The surprisingly low δ13C values (range: −28‰ to −24‰ measured over the course of the study revealed the gaps in our knowledge of the isotopic characteristics of terrestrial- vs. marine-derived particulate organic matter.

  13. Performance of the WRF model to simulate the seasonal and interannual variability of hydrometeorological variables in East Africa: a case study for the Tana River basin in Kenya

    Science.gov (United States)

    Kerandi, Noah Misati; Laux, Patrick; Arnault, Joel; Kunstmann, Harald

    2017-10-01

    This study investigates the ability of the regional climate model Weather Research and Forecasting (WRF) in simulating the seasonal and interannual variability of hydrometeorological variables in the Tana River basin (TRB) in Kenya, East Africa. The impact of two different land use classifications, i.e., the Moderate Resolution Imaging Spectroradiometer (MODIS) and the US Geological Survey (USGS) at two horizontal resolutions (50 and 25 km) is investigated. Simulated precipitation and temperature for the period 2011-2014 are compared with Tropical Rainfall Measuring Mission (TRMM), Climate Research Unit (CRU), and station data. The ability of Tropical Rainfall Measuring Mission (TRMM) and Climate Research Unit (CRU) data in reproducing in situ observation in the TRB is analyzed. All considered WRF simulations capture well the annual as well as the interannual and spatial distribution of precipitation in the TRB according to station data and the TRMM estimates. Our results demonstrate that the increase of horizontal resolution from 50 to 25 km, together with the use of the MODIS land use classification, significantly improves the precipitation results. In the case of temperature, spatial patterns and seasonal cycle are well reproduced, although there is a systematic cold bias with respect to both station and CRU data. Our results contribute to the identification of suitable and regionally adapted regional climate models (RCMs) for East Africa.

  14. Variability of cold season surface air temperature over northeastern China and its linkage with large-scale atmospheric circulations

    Science.gov (United States)

    Zhuang, Yuanhuang; Zhang, Jingyong; Wang, Lin

    2018-05-01

    Cold temperature anomalies and extremes have profound effects on the society, the economy, and the environment of northeastern China (NEC). In this study, we define the cold season as the months from October to April, and investigate the variability of cold season surface air temperature (CSAT) over NEC and its relationships with large-scale atmospheric circulation patterns for the period 1981-2014. The empirical orthogonal function (EOF) analysis shows that the first EOF mode of the CSAT over NEC is characterized by a homogeneous structure that describes 92.2% of the total variance. The regionally averaged CSAT over NEC is closely linked with the Arctic Oscillation ( r = 0.62, 99% confidence level) and also has a statistically significant relation with the Polar/Eurasian pattern in the cold season. The positive phases of the Arctic Oscillation and the Polar/Eurasian pattern tend to result in a positive geopotential height anomaly over NEC and a weakened East Asian winter monsoon, which subsequently increase the CSAT over NEC by enhancing the downward solar radiation, strengthening the subsidence warming and warm air advection. Conversely, the negative phases of these two climate indices result in opposite regional atmospheric circulation anomalies and decrease the CSAT over NEC.

  15. Impact of selected personal factors on seasonal variability of recreationist weather perceptions and preferences in Warsaw (Poland)

    Science.gov (United States)

    Lindner-Cendrowska, Katarzyna; Błażejczyk, Krzysztof

    2018-01-01

    Weather and climate are important natural resources for tourism and recreation, although sometimes they can make outdoor leisure activities less satisfying or even impossible. The aim of this work was to determine weather perception seasonal variability of people staying outdoors in urban environment for tourism and recreation, as well as to determine if personal factors influence estimation of recreationist actual biometeorological conditions and personal expectations towards weather elements. To investigate how human thermal sensations vary upon meteorological conditions typical for temperate climate, weather perception field researches were conducted in Warsaw (Poland) in all seasons. Urban recreationists' preference for slightly warm thermal conditions, sunny, windless and cloudless weather, were identified as well as PET values considered to be optimal for sightseeing were defined between 27.3 and 31.7 °C. The results confirmed existence of phenomena called alliesthesia, which manifested in divergent thermal perception of comparable biometeorological conditions in transitional seasons. The results suggest that recreationist thermal sensations differed from other interviewees' responses and were affected not only by physiological processes but they were also conditioned by psychological factors (i.e. attitude, expectations). Significant impact of respondents' place of origin and its climate on creating thermal sensations and preferences was observed. Sex and age influence thermal preferences, whereas state of acclimatization is related with thermal sensations to some point.

  16. Decreasing but still significant facilitation effect of cold-season macrophytes on wetlands purification function during cold winter.

    Science.gov (United States)

    Zou, Xiangxu; Zhang, Hui; Zuo, Jie; Wang, Penghe; Zhao, Dehua; An, Shuqing

    2016-06-01

    To identify the facilitation effect of a cool-season aquatic macrophyte (FEam) for use in effluent purification via constructed floating wetlands (CFWs) and to determine the possible pathways used during a winter period with an average temperature of less than 5 °C, pilot-scale CFWs were planted with the cold-season macrophyte Oenanthe clecumbens and were operated as batch systems. Although some leaves withered, the roots retained relatively high levels of activity during the winter, which had average air and water temperatures of 3.63 and 5.04 °C, respectively. The N and P removal efficiencies in CFWs decreased significantly in winter relative to those in late autumn. The presence of cool-season plants resulted in significant improvements in N and P removal, with a FEam of 15.23-25.86% in winter. Microbial N removal accounted for 71.57% of the total N removed in winter, and the decrease in plant uptake was the dominant factor in the wintertime decrease in N removal relative to that in late autumn. These results demonstrate the importance of cold-season plants in CFWs for the treatment of secondary effluent during cold winters.

  17. Statistical Significance of the Contribution of Variables to the PCA Solution: An Alternative Permutation Strategy

    Science.gov (United States)

    Linting, Marielle; van Os, Bart Jan; Meulman, Jacqueline J.

    2011-01-01

    In this paper, the statistical significance of the contribution of variables to the principal components in principal components analysis (PCA) is assessed nonparametrically by the use of permutation tests. We compare a new strategy to a strategy used in previous research consisting of permuting the columns (variables) of a data matrix…

  18. Seasonal and tidal influence on the variability of nitrous oxide in the Tagus estuary, Portugal

    Directory of Open Access Journals (Sweden)

    Célia Gonçalves

    2010-11-01

    Full Text Available In order to evaluate seasonal and tidal influence on the variability of dissolved nitrous oxide (N2O in the Tagus estuary, Portugal, water sampling was carried out along the salinity gradient (May and November 2006 and during several tidal cycles (February and April 2007 at a fixed site. N2O and other relevant environmental parameters, temperature, salinity, dissolved oxygen and inorganic nitrogen forms (nitrate, nitrite and ammonium were measured. Dissolved N2O concentrations showed strong tidal and seasonal variability, with the highest values occurring in February 2007 (13.7 nM, spring tide and November 2006 (18.4 nM, upper estuary, apparently related to major Tagus river discharge. The existence of N2O sources was noticed in middle estuary. During spring tide, the input from external sources may be augmented by water column nitrification, making this process a contributor to the enhancement of N2O concentration in the estuary. Estimated N2O air-sea fluxes to the atmosphere reached a maximum value of ~10.4 μmol m-2 d-1 in February 2007 during spring tide and in May 2006 in the upper and lower (left bank estuary. Although the Tagus estuary behaves predominantly as a source of atmospheric N2O, it appears to be a weaker source than other, more eutrophic estuaries.

  19. Applicability of API ZYM to capture seasonal and spatial variabilities in lake and river sediments.

    Science.gov (United States)

    Patel, Drashti; Gismondi, Renee; Alsaffar, Ali; Tiquia-Arashiro, Sonia M

    2018-05-02

    Waters draining into a lake carry with them much of the suspended sediment that is transported by rivers and streams from the local drainage basin. The organic matter processing in the sediments is executed by heterotrophic microbial communities, whose activities may vary spatially and temporally. Thus, to capture and evaluate some of these variabilities in the sediments, we sampled six sites: three from the St. Clair River and three from Lake St. Clair in spring, summer, fall, and winter of 2016. At all sites and dates, we investigated the spatial and temporal variations in 19 extracellular enzyme activities using API ZYM. Our results indicated that a broad range of enzymes were found to be active in the sediments. Phosphatases, lipases, and esterases were synthesized most intensively by the sediment microbial communities. No consistent difference was found between the lake and sediment samples. Differences were more obvious between sites and seasons. Sites with the highest metabolic (enzyme) diversity reflected the capacity of the sediment microbial communities to breakdown a broader range of substrates and may be linked to differences in river and lake water quality. The seasonal variability of the enzymes activities was governed by the variations of environmental factors caused by anthropogenic and terrestrial inputs, and provides information for a better understanding of the dynamics of sediment organic matter of the river and lake ecosystems. The experimental results suggest that API ZYM is a simple and rapid enzyme assay procedure to evaluate natural processes in ecosystems and their changes.

  20. Seasonal to Mesoscale Variability of Water Masses in Barrow Canyon,Chukchi Sea

    Science.gov (United States)

    Nobre, C.; Pickart, R. S.; Moore, K.; Ashjian, C. J.; Arrigo, K. R.; Grebmeier, J. M.; Vagle, S.; Itoh, M.; Berchok, C.; Stabeno, P. J.; Kikuchi, T.; Cooper, L. W.; Hartwell, I.; He, J.

    2016-02-01

    Barrow Canyon is one of the primary conduits by which Pacific-origin water exits the Chukchi Sea into the Canada Basin. As such, it is an ideal location to monitor the different water masses through the year. At the same time, the canyon is an energetic environment where mixing and entrainment can occur, modifying the pacific-origin waters. As part of the Distributed Biological Observatory (DBO) program, a transect across the canyon was occupied 24 times between 2010-2013 by international ships of opportunity passing through the region during summer and early-fall. Here we present results from an analysis of these sections to determine the seasonal evolution of the water masses and to investigate the nature of the mesoscale variability. The mean state shows the clear presence of six water masses present at various times through the summer. The seasonal evolution of these summer water masses is characterized both in depth space and in temperature-salinity (T-S) space. Clear patterns emerge, including the arrival of Alaskan coastal water and its modification in early-fall. The primary mesoscale variability is associated with wind-driven upwelling events which occur predominantly in September. The atmospheric forcing of these events is investigated as is the oceanic response.

  1. Seasonal and interannual variability of the water exchange in the Turkish Straits System estimated by modelling

    Directory of Open Access Journals (Sweden)

    V. MADERICH

    2015-07-01

    Full Text Available A chain of simple linked models is used to simulate the seasonal and interannual variability of the Turkish Straits System. This chain includes two-layer hydraulic models of the Bosphorus and Dardanelles straits simulating the exchange in terms of level and density difference along each strait, and a one-dimensional area averaged layered model of the Marmara Sea. The chain of models is complemented also by the similar layered model of the Black Sea proper and by a one-layer Azov Sea model with the Kerch Strait. This linked chain of models is used to study the seasonal and interannual variability of the system in the period 1970-2009. The salinity of the Black Sea water flowing into the Aegean Sea increases by approximately 1.7 times through entrainment from the lower layer. The flow entering into the lower layer of the Dardanelles Strait from the Aegean Sea is reduced by nearly 80% when it reaches the Black Sea. In the seasonal scale, a maximal transport in the upper layer and minimal transport in the bottom layer are during winter/spring for the Bosphorus and in spring for the Dardanelles Strait, whereas minimal transport in upper layer and maximal undercurrent are during the summer for the Bosphorus Strait and autumn for the Dardanelles Strait. The increase of freshwater flux into the Black Sea in interannual time scales (41 m3s-1 per year is accompanied by a more than twofold growth of the Dardanelles outflow to the North Aegean (102 m3s-1 per year.

  2. Seasonal variability and descent of mid-latitude sporadic E layers at Arecibo

    Directory of Open Access Journals (Sweden)

    N. Christakis

    2009-03-01

    Full Text Available Sporadic E layers (Es follow regular daily patterns in variability and altitude descent, which are determined primarily by the vertical tidal wind shears in the lower thermosphere. In the present study a large set of sporadic E layer incoherent scatter radar (ISR measurements are analyzed. These were made at Arecibo (Geog. Lat. ~18° N; Magnetic Dip ~50° over many years with ISR runs lasting from several hours to several days, covering evenly all seasons. A new methodology is applied, in which both weak and strong layers are clearly traced by using the vertical electron density gradient as a function of altitude and time. Taking a time base equal to the 24-h local day, statistics were obtained on the seasonal behavior of the diurnal and semidiurnal tidal variability and altitude descent patterns of sporadic E at Arecibo. The diurnal tide, most likely the S(1,1 tide with a vertical wavelength around 25 km, controls fully the formation and descent of the metallic Es layers at low altitudes below 110 km. At higher altitudes, there are two prevailing layers formed presumably by vertical wind shears associated mainly with semidiurnal tides. These include: 1 a daytime layer starting at ~130 km around midday and descending down to 105 km by local midnight, and 2 a less frequent and weaker nighttime layer which starts prior to midnight at ~130 km, descending downwards at somewhat faster rate to reach 110 km by sunrise. The diurnal and semidiurnal-like pattern prevails, with some differences, in all seasons. The differences in occurrence, strength and descending speeds between the daytime and nighttime upper layers are not well understood from the present data alone and require further study.

  3. Heavy metals seasonal variability and distribution in Lake Qaroun sediments, El-Fayoum, Egypt

    Science.gov (United States)

    Redwan, Mostafa; Elhaddad, Engy

    2017-10-01

    This study was carried out to investigate the seasonal variability and distribution of heavy metals ;HMs; (Fe, Mn, Co, Cr, Cu, Ni, Pb, Zn and V) in the bottom sediments of Lake Qaroun, in Egypt. The samples were collected from 10 sites in summer and winter seasons in 2015. Total metals concentrations were measured using inductively coupled plasma spectrometer. Multivariate techniques were applied to analyse the distribution and potential source of heavy metals. The mean seasonal concentrations follow a descending order of Fe > Mn > V > Zn > Cr > Ni > Cu > Co > Pb. The mean concentrations of HMs in sediments during summer were higher than the concentrations during winter and above the average world shale values, except for Pb, suggesting potential adverse toxicity to aquatic organisms. All metals showed enrichment during summer and winter at sites S3 and S5 in the southeastern parts of the lake due to the heavy discharge of contaminants from El-Bats and El-Wadi drains. Principal component analysis results suggested two principal components controlling HMs variability in sediments, which accounted for 63.9% (factor 1: Co, Cr, Cu, Ni, Zn, Pb and V), 15.9% (factor 2: Mn and Fe) during summer, and 76.7% (factor 1: Fe, Co, Cr, Cu, Ni, Zn, Pb and V), 13.8% (factor 2: Mn) during winter of the total variance. Geo-accumulation index (Igeo) showed some pollution risk at the southeastern and southern parts (sites S3 and S5). Dilution during winter, concentration during summer, impact of non-point sources from different agricultural, industrial, municipal sewage and fish farms in the southern part of Lake Qaroun, adsorption and salt dissolution reactions and lithogenic sources are the main controlling factors for HMs in the study area. Monitoring of contaminant discharge at Lake Qaroun should be introduced for future remediation and management strategies.

  4. Growing season temperature and precipitation variability and extremes in the U.S. Corn Belt from 1981 to 2012

    Science.gov (United States)

    Dai, S.; Shulski, M.

    2013-12-01

    Climate warming and changes in rainfall patterns and increases in extreme events are resulting in higher risks of crop failures. A greater sense of urgency has been induced to understand the impacts of past climate on crop production in the U.S. As one of the most predominant sources of feed grains, corn is also the main source of U.S. ethanol. In the U.S. Corn Belt, region-scale evaluation on temperature and precipitation variability and extremes during the growing season is not well-documented yet. This study is part of the USDA-funded project 'Useful to Usable: Transforming climate variability and change information for cereal crop producers'. The overall goal of our work is to study the characteristics of average growing season conditions and changes in growing season temperature- and precipitation-based indices that are closely correlated with corn grain yield in the U.S. Corn Belt. The research area is the twelve major Corn Belt states, including IL, IN, IA, KS, MI, MN, MO, NE, OH, SD, ND, and WI. Climate data during 1981-2010 from 132 meteorological stations (elevation ranges from 122 m to 1,202 m) are used in this study, including daily minimum, maximum, and mean temperature, and daily precipitation. From 1981 to 2012, beginning date (BD), ending date (ED), and growing season length (GSL) in the climatological corn growing season are studied. Especially, during the agronomic corn growing season, from Apr to Oct, temperature- and precipitation-based indices are analyzed. The temperature-based indices include: number of days with daily mean temperature below 10°C, number of days with daily mean temperature above 30°C, the sum of growing degree days (GDD) between 10°C to 30°C (GDD10,30, growth range for corn), the sum of growing degree days above 30°C (GDD30+, exposure to harmful warming for corn), the sum of growing degree days between 0°C and 44°C (GDD0,44, survival range limits for corn), the sum of growing degree days between 5°C and 35°C (GDD5

  5. Further influence of the eastern boundary on the seasonal variability of the Atlantic Meridional Overturning Circulation at 26N

    Science.gov (United States)

    Baehr, Johanna; Schmidt, Christian

    2016-04-01

    The seasonal cycle of the Atlantic Meridional Overturning Circulation (AMOC) at 26.5 N has been shown to arise predominantly from sub-surface density variations at the Eastern boundary. Here, we suggest that these sub-surface density variations have their origin in the seasonal variability of the Canary Current system, in particular the Poleward Undercurrent (PUC). We use a high-resolution ocean model (STORM) for which we show that the seasonal variability resembles observations for both sub-surface density variability and meridional transports. In particular, the STORM model simulation density variations at the eastern boundary show seasonal variations reaching down to well over 1000m, a pattern that most model simulations systematically underestimate. We find that positive wind stress curl anomalies in late summer and already within one degree off the eastern boundary result -through water column stretching- in strong transport anomlies in PUC in fall, coherent down to 1000m depth. Simultaneously with a westward propagation of these transport anomalies, we find in winter a weak PUC between 200 m and 500m, and southward transports between 600m and 1300m. This variability is in agreement with the observationally-based suggestion of a seasonal reversal of the meridional transports at intermediate depths. Our findings extend earlier studies which suggested that the seasonal variability at of the meridional transports across 26N is created by changes in the basin-wide thermocline through wind-driven upwelling at the eastern boundary analyzing wind stress curl anomalies 2 degrees off the eastern boundary. Our results suggest that the investigation of AMOC variability and particular its seasonal cycle modulations require the analysis of boundary wind stress curl and the upper ocean transports within 1 degree off the eastern boundary. These findings also implicate that without high-resolution coverage of the eastern boundary, coarser model simulation might not fully

  6. Seasonal Precipitation Variability Effects on Carbon Exchange in a Tropical Dry Forest of Northwest Mexico

    Science.gov (United States)

    Verduzco, V.; Garatuza-Payan, J.; Yépez, E. A.; Watts, C. J.; Rodriguez, J. C.; Robles-Morua, A.; Vivoni, E. R.

    2015-12-01

    The Tropical Dry Forest (TDF) cover a large area in tropical and subtropical regions in the Americas and its productivity is thought to have an important contribution to the atmospheric carbon fluxes. However, due to this ecosystem complex dynamics, our understanding about the mechanisms controlling net ecosystem exchange is limited. In this study, five years of continue water and carbon fluxes measurements from eddy covariance complemented with remotely sensed vegetation greenness were used to investigate the ecosystem carbon balance of a TDF in the North American Monsoon region under different hydro climatic conditions. We identified a large CO2 efflux at the start of the summer season that is strongly related to the preceding winter precipitation and greenness. Since this CO2 efflux occurs prior to vegetation green-up, we infer a predominant heterotrophic control owed to high decomposition of accumulated labile soil organic matter from prior growing season. Overall, ecosystem respiration has an important effect on the net ecosystem production over the year, but can be overwhelmed by the strength of the primary productivity during the monsoon season. Precipitation characteristics during the monsoon have significant controls on sustaining carbon fixation in the TDF ecosystem into the fall season. A threshold of ~350 to 400 mm of summer precipitation was identify to switch the annual carbon balance in the TDF ecosystem from a net source (+102 g C/m2/yr) to a net sink (-249 g C/m2/yr). This research points at the needs for understanding the potential effects of changing seasonal precipitation patterns on ecosystem dynamics and carbon sequestration in subtropical regions.

  7. The Angola Current and its seasonal variability as observed at 11°S

    Science.gov (United States)

    Kopte, Robert; Brandt, Peter; Dengler, Marcus; Claus, Martin; Greatbatch, Richard J.

    2016-04-01

    The eastern boundary circulation off the coast of Angola has been described only sparsely to date. The region off Angola, which connects the equatorial Atlantic and the Angola-Benguela upwelling regime, is of particular interest to understand the relative importance of transient equatorial versus local forcing of the observed variability in the coastal upwelling region. For the first time multi-year velocity observations of the Angola Current at 11°S are available. From July 2013 to November 2015 a bottom shield equipped with an ADCP had been deployed at 500m water depth, accompanied by a mooring sitting on the 1200m-isobath with an ADCP being installed at 500m depth. Both upward-looking instruments measured the current speed up to about 50m below the sea surface. During the deployment period the Angola Current was characterized by a weak southward mean flow of 5-8 cm/s at 50m depth (slightly stronger at the in-shore mooring position), with the southward current penetrating down to about 200m depth. The alongshore velocity component reveals a pronounced seasonal variability. It is dominated by 120-day, semi-annual, and annual oscillations with distinct baroclinic structures. Here we apply a reduced gravity model of the tropical Atlantic for the first five baroclinic modes forced with interannually varying wind stress to investigate the seasonal variability along the equatorial and coastal waveguides. In the equatorial Atlantic the 120-day, semi-annual, and annual oscillations are associated with resonant basin modes of the 1st, 2nd, and 4th baroclinic mode, respectively. These basin modes are composed of equatorial Kelvin and Rossby waves as well as coastally trapped waves. The reduced gravity model is further used to study the respective role of the remote equatorial forcing, more specifically the influence of equatorial basin modes via coastally trapped waves, and the local forcing for the observed seasonal variability and associated baroclinic structure of the

  8. Prediction of Indian Summer-Monsoon Onset Variability: A Season in Advance.

    Science.gov (United States)

    Pradhan, Maheswar; Rao, A Suryachandra; Srivastava, Ankur; Dakate, Ashish; Salunke, Kiran; Shameera, K S

    2017-10-27

    Monsoon onset is an inherent transient phenomenon of Indian Summer Monsoon and it was never envisaged that this transience can be predicted at long lead times. Though onset is precipitous, its variability exhibits strong teleconnections with large scale forcing such as ENSO and IOD and hence may be predictable. Despite of the tremendous skill achieved by the state-of-the-art models in predicting such large scale processes, the prediction of monsoon onset variability by the models is still limited to just 2-3 weeks in advance. Using an objective definition of onset in a global coupled ocean-atmosphere model, it is shown that the skillful prediction of onset variability is feasible under seasonal prediction framework. The better representations/simulations of not only the large scale processes but also the synoptic and intraseasonal features during the evolution of monsoon onset are the comprehensions behind skillful simulation of monsoon onset variability. The changes observed in convection, tropospheric circulation and moisture availability prior to and after the onset are evidenced in model simulations, which resulted in high hit rate of early/delay in monsoon onset in the high resolution model.

  9. Variability in cold front activities modulating cool-season evaporation from a southern inland water in the USA

    International Nuclear Information System (INIS)

    Liu Heping; Blanken, Peter D; Weidinger, Tamas; Nordbo, Annika; Vesala, Timo

    2011-01-01

    Understanding seasonal variations in the evaporation of inland waters (e.g., lakes and reservoirs) is important for water resource management as well as the prediction of the hydrological cycles in response to climate change. We analyzed eddy covariance-based evaporation measurements from the Ross Barnett Reservoir (32 deg. 26'N, 90 0 02'W; which is always ice-free) in central Mississippi during the cool months (i.e., September-March) of 2007 and 2008, and found that the variability in cold front activities (i.e., passages of cold fronts and cold/dry air masses behind cold fronts) played an important role in modulating the exchange of sensible (H) and latent (λE) heat fluxes. Our analysis showed that 2007's warmer cool season had smaller mean H and λE than 2008's cooler cool season. This implies that the warmer cool season did not accelerate evaporation and heat exchange between the water surface and the atmosphere. Instead, more frequent cold fronts and longer periods of cold/dry air masses behind the cold fronts in 2008 resulted in overall larger H and λE as compared with 2007, this primarily taking the form of sporadic short-term rapid 'pulses' of H and λE losses from the water's surface. These results suggest that future climate-induced changes in frequency of cold fronts and the meteorological properties of the air masses behind cold fronts (e.g., wind speeds, temperature, and humidity), rather than other factors of climate change, would produce significant variations in the water surface's energy fluxes and subsequent evaporation rates.

  10. Drivers of Seasonal Variability in Marine Boundary Layer Aerosol Number Concentration Investigated Using a Steady State Approach

    Science.gov (United States)

    Mohrmann, Johannes; Wood, Robert; McGibbon, Jeremy; Eastman, Ryan; Luke, Edward

    2018-01-01

    Marine boundary layer (MBL) aerosol particles affect the climate through their interaction with MBL clouds. Although both MBL clouds and aerosol particles have pronounced seasonal cycles, the factors controlling seasonal variability of MBL aerosol particle concentration are not well constrained. In this paper an aerosol budget is constructed representing the effects of wet deposition, free-tropospheric entrainment, primary surface sources, and advection on the MBL accumulation mode aerosol number concentration (Na). These terms are then parameterized, and by assuming that on seasonal time scales Na is in steady state, the budget equation is rearranged to form a diagnostic equation for Na based on observable variables. Using data primarily collected in the subtropical northeast Pacific during the MAGIC campaign (Marine ARM (Atmospheric Radiation Measurement) GPCI (GCSS Pacific Cross-Section Intercomparison) Investigation of Clouds), estimates of both mean summer and winter Na concentrations are made using the simplified steady state model and seasonal mean observed variables. These are found to match well with the observed Na. To attribute the modeled difference between summer and winter aerosol concentrations to individual observed variables (e.g., precipitation rate and free-tropospheric aerosol number concentration), a local sensitivity analysis is combined with the seasonal difference in observed variables. This analysis shows that despite wintertime precipitation frequency being lower than summer, the higher winter precipitation rate accounted for approximately 60% of the modeled seasonal difference in Na, which emphasizes the importance of marine stratocumulus precipitation in determining MBL aerosol concentrations on longer time scales.

  11. Seasonal variability of foliar photosynthetic and morphological traits and drought impacts in a Mediterranean mixed forest.

    Science.gov (United States)

    Sperlich, D; Chang, C T; Peñuelas, J; Gracia, C; Sabaté, S

    2015-05-01

    The Mediterranean region is a hot spot of climate change vulnerable to increased droughts and heat waves. Scaling carbon fluxes from leaf to landscape levels is particularly challenging under drought conditions. We aimed to improve the mechanistic understanding of the seasonal acclimation of photosynthesis and morphology in sunlit and shaded leaves of four Mediterranean trees (Quercus ilex L., Pinus halepensis Mill., Arbutus unedo L. and Quercus pubescens Willd.) under natural conditions. Vc,max and Jmax were not constant, and mesophyll conductance was not infinite, as assumed in most terrestrial biosphere models, but varied significantly between seasons, tree species and leaf position. Favourable conditions in winter led to photosynthetic recovery and growth in the evergreens. Under moderate drought, adjustments in the photo/biochemistry and stomatal/mesophyllic diffusion behaviour effectively protected the photosynthetic machineries. Severe drought, however, induced early leaf senescence mostly in A. unedo and Q. pubescens, and significantly increased leaf mass per area in Q. ilex and P. halepensis. Shaded leaves had lower photosynthetic potentials but cushioned negative effects during stress periods. Species-specificity, seasonal variations and leaf position are key factors to explain vegetation responses to abiotic stress and hold great potential to reduce uncertainties in terrestrial biosphere models especially under drought conditions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Seasonal variability of Internal tide energetics in the western Bay of Bengal

    Science.gov (United States)

    Mohanty, S.; Rao, A. D.

    2017-12-01

    The Internal Waves (IWs) are generated by the flow of barotropic tide over the rapidly varying and steep topographic features like continental shelf slope, seamounts, etc. These waves are an important phenomena in the ocean due to their influence on the density structure and energy transfer into the region. Such waves are also important in submarine acoustics, underwater navigation, offshore structures, ocean mixing and biogeochemical processes, etc. over the shelf-slope region. The seasonal variability of internal tides in the western Bay of Bengal is examined by using three-dimensional MITgcm model. The numerical simulations are performed for different periods covering August-September, 2013; November-December, 2013 and March-April, 2014 representing monsoon, post-monsoon and pre-monsoon seasons respectively during which high temporal resolution observed data sets are available. The model is initially validated through the spectral estimate of density and the baroclinic velocities. From the estimate, it is found that its peak is associated with the semi-diurnal frequency at all the depths in both observations and model simulations for November-December and March-April. However in August, the estimate is found to be maximum near the inertial frequency at all available depths. EOF analysis suggests that about 70-80% of the total variance comes from Mode-1 semi-diurnal internal tide in both observations as well as in the model simulations. The phase speed, group speed and wavelength are found to be maximum for post-monsoon season compared to other two seasons. To understand the generation and propagation of internal tides over this region, barotropic-to-baroclinic M2 tidal energy conversion and energy flux are examined. The barotropic-to-baroclinic conversion occurs intensively along the shelf-slope regions and propagate towards the coast. The model simulated energy dissipation rate infers that its maximum occurs at the generation sites and hence the local mixing

  13. Temporal variability of the NPP-GPP ratio at seasonal and interannual time scales in a temperate beech forest

    Directory of Open Access Journals (Sweden)

    M. Campioli

    2011-09-01

    Full Text Available The allocation of carbon (C taken up by the tree canopy for respiration and production of tree organs with different construction and maintenance costs, life span and decomposition rate, crucially affects the residence time of C in forests and their C cycling rate. The carbon-use efficiency, or ratio between net primary production (NPP and gross primary production (GPP, represents a convenient way to analyse the C allocation at the stand level. In this study, we extend the current knowledge on the NPP-GPP ratio in forests by assessing the temporal variability of the NPP-GPP ratio at interannual (for 8 years and seasonal (for 1 year scales for a young temperate beech stand, reporting dynamics for both leaves and woody organs, in particular stems. NPP was determined with biometric methods/litter traps, whereas the GPP was estimated via the eddy covariance micrometeorological technique.

    The interannual variability of the proportion of C allocated to leaf NPP, wood NPP and leaf plus wood NPP (on average 11% yr−1, 29% yr−1 and 39% yr−1, respectively was significant among years with up to 12% yr−1 variation in NPP-GPP ratio. Studies focusing on the comparison of NPP-GPP ratio among forests and models using fixed allocation schemes should take into account the possibility of such relevant interannual variability. Multiple linear regressions indicated that the NPP-GPP ratio of leaves and wood significantly correlated with environmental conditions. Previous year drought and air temperature explained about half of the NPP-GPP variability of leaves and wood, respectively, whereas the NPP-GPP ratio was not decreased by severe drought, with large NPP-GPP ratio on 2003 due mainly to low GPP. During the period between early May and mid June, the majority of GPP was allocated to leaf and stem NPP, whereas these sinks were of little importance later on. Improved estimation of seasonal GPP and of the

  14. Variability of Neuronal Responses: Types and Functional Significance in Neuroplasticity and Neural Darwinism.

    Science.gov (United States)

    Chervyakov, Alexander V; Sinitsyn, Dmitry O; Piradov, Michael A

    2016-01-01

    HIGHLIGHTS We suggest classifying variability of neuronal responses as follows: false (associated with a lack of knowledge about the influential factors), "genuine harmful" (noise), "genuine neutral" (synonyms, repeats), and "genuine useful" (the basis of neuroplasticity and learning).The genuine neutral variability is considered in terms of the phenomenon of degeneracy.Of particular importance is the genuine useful variability that is considered as a potential basis for neuroplasticity and learning. This type of variability is considered in terms of the neural Darwinism theory. In many cases, neural signals detected under the same external experimental conditions significantly change from trial to trial. The variability phenomenon, which complicates extraction of reproducible results and is ignored in many studies by averaging, has attracted attention of researchers in recent years. In this paper, we classify possible types of variability based on its functional significance and describe features of each type. We describe the key adaptive significance of variability at the neural network level and the degeneracy phenomenon that may be important for learning processes in connection with the principle of neuronal group selection.

  15. Trends and Variability of the Outdoor Skating Season in Canada during 1951-2005

    Science.gov (United States)

    Damyanov, Nikolay Nikolaev

    Climate change affects a range of human activities, including one of Canada's prime sources of entertainment: ice skating. Whether done recreationally or as hockey, its outdoor component is heavily dependent on weather and climate. Based on information obtained from public works officials from various Canadian cities, I have established a meteorological criterion for the initiation of an outdoor skating season (OSS) as the last day in a sequence of the first three consecutive fall/winter days with a maximum temperature below -5 °C. In addition, I derive a proxy of the OSS length, defined as the total number of days with a maximum temperature below -5 °C after the OSS start date and before the start of March. Using these filters, I have extracted the start dates and the lengths of the OSS for each year during the fifty-five year period 1951-2005 from a comprehensive daily temperature dataset (Vincent et al., 2002). For each station, I created time series of both the OSS start dates and OSS lengths, and calculated the magnitude, sign and statistical significance of the slopes of the best-fit lines to each time series. In order to establish a relationship of the OSS with large-scale climate patterns, I grouped stations into six climatic regions. Depending on location, I then tested each region for correlation with the Pacific North-American teleconnection pattern (PNA) or the North Atlantic Oscillation (NAO), using a composite analysis method. Lastly, I removed the signal due to these climate fluctuations from the OSS start date and length trends in order to determine how much of the variability was caused by these interannual climate oscillations. The results of the study indicate that most stations in British Columbia and southwest Alberta, as well as these in the southern Ontario/Quebc region have witnessed a progressively later onset of the OSS over time. The Prairies, northwest Canada, and some Maritime locales show the opposite trend, although the magnitudes

  16. The value of using seasonality and meteorological variables to model intra-urban PM2.5 variation

    Science.gov (United States)

    Olvera Alvarez, Hector A.; Myers, Orrin B.; Weigel, Margaret; Armijos, Rodrigo X.

    2018-06-01

    A yearlong air monitoring campaign was conducted to assess the impact of local temperature, relative humidity, and wind speed on the temporal and spatial variability of PM2.5 in El Paso, Texas. Monitoring was conducted at four sites purposely selected to capture the local traffic variability. Effects of meteorological events on seasonal PM2.5 variability were identified. For instance, in winter low-wind and low-temperature conditions were associated with high PM2.5 events that contributed to elevated seasonal PM2.5 levels. Similarly, in spring, high PM2.5 events were associated with high-wind and low-relative humidity conditions. Correlation coefficients between meteorological variables and PM2.5 fluctuated drastically across seasons. Specifically, it was observed that for most sites correlations between PM2.5 and meteorological variables either changed from positive to negative or dissolved depending on the season. Overall, the results suggest that mixed effects analysis with season and site as fixed factors and meteorological variables as covariates could increase the explanatory value of LUR models for PM2.5.

  17. Drivers of Intra-Summer Seasonality and Daily Variability of Coastal Low Cloudiness in California Subregions

    Science.gov (United States)

    Schwartz, R. E.; Iacobellis, S.; Gershunov, A.; Williams, P.; Cayan, D. R.

    2014-12-01

    Summertime low cloud intrusion into the terrestrial west coast of North America impacts human, ecological, and logistical systems. Over a broad region of the West Coast, summer (May - September) coastal low cloudiness (CLC) varies coherently on interannual to interdecadal timescales and has been found to be organized by North Pacific sea surface temperature. Broad-scale studies of low stratiform cloudiness over ocean basins also find that the season of maximum low stratus corresponds to the season of maximum lower tropospheric stability (LTS) or estimated inversion strength. We utilize a 18-summer record of CLC derived from NASA/NOAA Geostationary Operational Environmental Satellite (GOES) at 4km resolution over California (CA) to make a more nuanced spatial and temporal examination of intra-summer variability in CLC and its drivers. We find that uniform spatial coherency over CA is not apparent for intra-summer variability in CLC. On monthly to daily timescales, at least two distinct subregions of coastal California (CA) can be identified, where relationships between meteorology and stratus variability appear to change throughout summer in each subregion. While north of Point Conception and offshore the timing of maximum CLC is closely coincident with maximum LTS, in the Southern CA Bight and northern Baja region, maximum CLC occurs up to about a month before maximum LTS. It appears that summertime CLC in this southern region is not as strongly related as in the northern region to LTS. In particular, although the relationship is strong in May and June, starting in July the daily relationship between LTS and CLC in the south begins to deteriorate. Preliminary results indicate a moderate association between decreased CLC in the south and increased precipitable water content above 850 hPa on daily time scales beginning in July. Relationships between daily CLC variability and meteorological variables including winds, inland temperatures, relative humidity, and

  18. Improving seasonal forecasts of hydroclimatic variables through the state of multiple large-scale climate signals

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.; Block, P. J.

    2017-12-01

    Increasingly uncertain hydrologic regimes combined with more frequent and intense extreme events are challenging water systems management worldwide, emphasizing the need of accurate medium- to long-term predictions to timely prompt anticipatory operations. Despite modern forecasts are skillful over short lead time (from hours to days), predictability generally tends to decrease on longer lead times. Global climate teleconnection, such as El Niño Southern Oscillation (ENSO), may contribute in extending forecast lead times. However, ENSO teleconnection is well defined in some locations, such as Western USA and Australia, while there is no consensus on how it can be detected and used in other regions, particularly in Europe, Africa, and Asia. In this work, we generalize the Niño Index Phase Analysis (NIPA) framework by contributing the Multi Variate Niño Index Phase Analysis (MV-NIPA), which allows capturing the state of multiple large-scale climate signals (i.e. ENSO, North Atlantic Oscillation, Pacific Decadal Oscillation, Atlantic Multi-decadal Oscillation, Indian Ocean Dipole) to forecast hydroclimatic variables on a seasonal time scale. Specifically, our approach distinguishes the different phases of the considered climate signals and, for each phase, identifies relevant anomalies in Sea Surface Temperature (SST) that influence the local hydrologic conditions. The potential of the MV-NIPA framework is demonstrated through an application to the Lake Como system, a regulated lake in northern Italy which is mainly operated for flood control and irrigation supply. Numerical results show high correlations between seasonal SST values and one season-ahead precipitation in the Lake Como basin. The skill of the resulting MV-NIPA forecast outperforms the one of ECMWF products. This information represents a valuable contribution to partially anticipate the summer water availability, especially during drought events, ultimately supporting the improvement of the Lake Como

  19. Survey of French spine surgeons reveals significant variability in spine trauma practices in 2013.

    Science.gov (United States)

    Lonjon, G; Grelat, M; Dhenin, A; Dauzac, C; Lonjon, N; Kepler, C K; Vaccaro, A R

    2015-02-01

    In France, attempts to define common ground during spine surgery meetings have revealed significant variability in clinical practices across different schools of surgery and the two specialities involved in spine surgery, namely, neurosurgery and orthopaedic surgery. To objectively characterise this variability by performing a survey based on a fictitious spine trauma case. Our working hypothesis was that significant variability existed in trauma practices and that this variability was related to a lack of strong scientific evidence in spine trauma care. We performed a cross-sectional survey based on a clinical vignette describing a 31-year-old male with an L1 burst fracture and neurologic symptoms (numbness). Surgeons received the vignette and a 14-item questionnaire on the management of this patient. For each question, surgeons had to choose among five possible answers. Differences in answers across surgeons were assessed using the Index of Qualitative Variability (IQV), in which 0 indicates no variability and 1 maximal variability. Surgeons also received a questionnaire about their demographics and surgical experience. Of 405 invited spine surgeons, 200 responded to the survey. Five questions had an IQV greater than 0.9, seven an IQV between 0.5 and 0.9, and two an IQV lower than 0.5. Variability was greatest about the need for MRI (IQV=0.93), degree of urgency (IQV=0.93), need for fusion (IQV=0.92), need for post-operative bracing (IQV=0.91), and routine removal of instrumentation (IQV=0.94). Variability was lowest for questions about the need for surgery (IQV=0.42) and use of the posterior approach (IQV=0.36). Answers were influenced by surgeon specialty, age, experience level, and type of centre. Clinical practice regarding spine trauma varies widely in France. Little published evidence is available on which to base recommendations that would diminish this variability. Copyright © 2015. Published by Elsevier Masson SAS.

  20. Seasonal and interannual variability of the eastern boundary circulation and hydrography off Angola

    Science.gov (United States)

    Tchipalanga, Pedro; Macuéria, Marissa; Dengler, Marcus; Ostrowski, Marek; Kopte, Robert; Brandt, Peter

    2016-04-01

    Coastal countries of southwest Africa strongly depend upon their ocean: societal development, fisheries, and tourism face important changes associated with climate variability and global change. As an example, Angolan fisheries are currently reporting reduced catches that may be associated to variability of the eastern boundary circulation and water masses along the Angolan continental margin. In an effort to enhance understanding of the seasonal and interannual variability of the boundary circulation and thermocline water masses and their relation to warm and cold events in South East Atlantic, existing in-situ observations from a multi-cruise program were analyzed. Repeated hydrography and ship-board ADCP measurements from the EAF - Nansen Project collected during the Austral summer and winter period between 1995 and 2014 are used. From the ship-board velocity measurements, the average eastern boundary circulation at 6°S, 9°S, 12°S, 15°S and 17°S is presented for the summer and winter period. CTD data collected during the 24 cruises along the Angolan continental margin exhibit elevated interannual variability of heat and salt content in the upper thermocline between 50 and 150m depth. Warm and cold anomalies in the upper thermocline are strongly correlated to the Angola-Benguela area index and precede the respective sea surface temperature signal. The known warm events in 2001 and 2011 are well represented in the subsurface data. This suggests that thermocline heat anomalies serve as a preconditioning for the occurrences of Benguela Niños/Niñas. The processes responsible for the interannual variability of thermocline heat and salt contend are discussed.

  1. On the intra-seasonal variability within the extratropics in a general circulation model and observational data

    International Nuclear Information System (INIS)

    May, W.; Bengtsson, L.

    1994-01-01

    There are various phenomena on different spatial and temporal scales contributing to the intra-seasonal variability within the extratropics. One may notice higher-frequency baroclinic disturbances affecting the day-to-day variability of the atmosphere. But one finds also low-frequency fluctuations on a typical time scale of a few weeks. Blocking anticyclones are probably the most prominent example of such features. These fluctuations on different scales, however, are influencing each other, in particular the temporal evolution and spatial distribution. There has been observational work on various phenomena contributing to the intra-seasonal variability for a long time. In the last decade or so, however, with the increasing importance of General Circulation Models there have been some studies dealing with the intra-seasonal variability as simulated by these models

  2. A Survey of Spatial and Seasonal Water Isotope Variability on the Juneau Icefield, Alaksa

    Science.gov (United States)

    Dennis, D.; Carter, A.; Clinger, A. E.; Eads, O. L.; Gotwals, S.; Gunderson, J.; Hollyday, A. E.; Klein, E. S.; Markle, B. R.; Timms, J. R.

    2015-12-01

    The depletion of stable oxygen-hydrogen isotopes (δ18O and δH) is well correlated with temperature change, which is driven by variation in topography, climate, and atmospheric circulation. This study presents a survey of the spatial and seasonal variability of isotopic signatures on the Juneau Icefield (JI), Alaska, USA which spans over 3,000 square-kilometers. To examine small scale variability in the previous year's accumulation, samples were taken at regular intervals from snow pits and a one square-kilometer surficial grid. Surface snow samples were collected across the icefield to evaluate large scale variability, ranging approximately 1,000 meters in elevation and 100 kilometers in distance. Individual precipitation events were also sampled to track percolation throughout the snowpack and temperature correlations. A survey of this extent has never been undertaken on the JI. Samples were analyzed in the field using a Los Gatos laser isotope analyzer. This survey helps us better understand isotope fractionation on temperate glaciers in coastal environments and provides preliminary information on the suitability of the JI for a future ice core drilling project.

  3. Global assessment of surfing conditions: seasonal, interannual and long-term variability

    Science.gov (United States)

    Espejo, A.; Losada, I.; Mendez, F.

    2012-12-01

    International surfing destinations owe a great debt to specific combinations of wind-wave, thermal conditions and local bathymetry. As surf quality depends on a vast number of geophysical variables, a multivariable standardized index on the basis of expert judgment is proposed to analyze surf resource in a worldwide domain. Data needed is obtained by combining several datasets (reanalyses): 60-year satellite-calibrated spectral wave hindcast (GOW, WaveWatchIII), wind fields from NCEP/NCAR, global sea surface temperature from ERSST.v3b, and global tides from TPXO7.1. A summary of the global surf resource is presented, which highlights the high degree of variability in surfable events. According to general atmospheric circulation, results show that west facing low to middle latitude coasts are more suitable for surfing, especially those in Southern Hemisphere. Month to month analysis reveals strong seasonal changes in the occurrence of surfable events, enhancing those in North Atlantic or North Pacific. Interannual variability is investigated by comparing occurrence values with global and regional climate patterns showing a great influence at both, global and regional scales. Analysis of long term trends shows an increase in the probability of surfable events over the west facing coasts on the planet (i.e. + 30 hours/year in California). The resulting maps provide useful information for surfers and surf related stakeholders, coastal planning, education, and basic research.; Figure 1. Global distribution of medium quality (a) and high quality surf conditions probability (b).

  4. Seasonal variability of cohesive sediment aggregation in the Bach Dang-Cam Estuary, Haiphong (Vietnam)

    Science.gov (United States)

    Lefebvre, Jean-Pierre; Ouillon, Sylvain; Vinh, Vu Duy; Arfi, Robert; Panché, Jean-Yves; Mari, Xavier; Van Thuoc, Chu; Torréton, Jean-Pascal

    2012-04-01

    In the Bach Dang-Cam Estuary, northern Vietnam, mechanisms governing cohesive sediment aggregation were investigated in situ in 2008-2009. As part of the Red River delta, this estuary exhibits a marked contrast in hydrological conditions between the monsoon and dry seasons. The impact on flocculation processes was assessed by means of surveys of water discharge, suspended particulate matter concentration and floc size distributions (FSDs) conducted during a tidal cycle at three selected sites along the estuary. A method was developed for calculating the relative volume concentration for the modes of various size classes from FSDs provided by the LISST 100X (Sequoia Scientific Inc.). It was found that all FSDs comprised four modes identified as particles/flocculi, fine and coarse microflocs, and macroflocs. Under the influence of the instantaneous turbulent kinetic energy, their proportions varied but without significant modification of their median diameters. In particular, when the turbulence level corresponded to a Kolmogorov microscale of less than ˜235 μm, a major breakup of flocs resulted in the formation of particles/flocculi and fine microflocs. Fluctuations in turbulence level were governed by seasonal variations in freshwater discharge and by the tidal cycle. During the wet season, strong freshwater input induced a high turbulent energy level that tended to generate sediment transfer from the coarser size classes (macroflocs, coarse microflocs) to finer ones (particles/flocculi and fine microflocs), and to promote a transport of sediment seawards. During the dry season, the influence of tides predominated. The turbulent energy level was then only episodically sufficiently high to generate transfer of sediment between floc size classes. At low turbulent energy, modifications in the proportions of floc size classes were due to differential settling. Tidal pumping produced a net upstream transport of sediment. Associated with the settling of sediment

  5. Seasonal variability of the diapycnal mixing in the Canary Islands channels

    Science.gov (United States)

    Rodríguez-Santana, Angel; Marrero-Díaz, Angeles; Machín, Francisco Jose; García-Weil, Luis; Sangrà, Pablo; Vélez-Belchí, Pedro; Fraile-Nuez, Eugenio; Estrada-Allis, Sheila

    2014-05-01

    Trimonthly surveys of XBT and XCTD (Expandable Bathytermograph and Conductivity-Temperature-Depth) crossing the whole Canary Islands channels were carried out (projects TRAMIC and PROMECA) from November 2012 until September 2013 using opportunity ships (Naviera Armas Ferries). With this data set and using salinity analytical relationships (Machín et al, 2010), vertical sections of temperature and potential density were obtained for each channel and season. In order to estimate the intensity of the diapycnal mixing in the first 500 m of the pycnocline, vertical sections of Thorpe length scale, Turner angle and gradient Richardson number (from the geostrophic vertical shear) were calculated for all the cases. The first results show how the diapycnal mixing due to the vertical shear instabilities is more intense close to the islands and in summer when the seasonal pycnocline is present. Mixing due to double diffusion processes (salt fingers) was found without sizable changes in the permanent pycnocline. Net turbulence diffusivities and diapycnal diffusive fluxes with their variability spatial and temporal will be estimate for each channel taking into account that processes of double diffusion and turbulence induced by vertical shear are present at the same time. Additionally the results obtained from hydrographic data from the cruise RAPROCAN-2013 (IEO) (October 2013) around Canary Islands will be used to compare them with the channels results. This work was co-funded by Canary Government (TRAMIC project: PROID20100092), European Union (FEDER) and Spanish Government (PROMECA: CTM2008-04057/MAR and CTM2009-06993-E/MAR)

  6. PHOTOMETRY OF VARIABLE STARS FROM DOME A, ANTARCTICA: RESULTS FROM THE 2010 OBSERVING SEASON

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingzhi; Zhu, Zonghong [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Macri, Lucas M.; Wang, Lifan [Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Ashley, Michael C. B.; Lawrence, Jon S.; Luong-Van, Daniel; Storey, John W. V. [School of Physics, University of New South Wales, NSW 2052 (Australia); Cui, Xiangqun; Feng, Long-Long; Gong, Xuefei; Liu, Qiang; Shang, Zhaohui; Yang, Huigen; Yang, Ji; Yuan, Xiangyan; Zhou, Xu; Zhu, Zhenxi [Chinese Center for Antarctic Astronomy, Nanjing 210008 (China); Pennypacker, Carl R. [Center for Astrophysics, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); York, Donald G., E-mail: wanglingzhi@bao.ac.cn [Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States)

    2013-12-01

    We present results from a season of observations with the Chinese Small Telescope ARray, obtained over 183 days of the 2010 Antarctic winter. We carried out high-cadence time-series aperture photometry of 9125 stars with i ∼< 15.3 mag located in a 23 deg{sup 2} region centered on the south celestial pole. We identified 188 variable stars, including 67 new objects relative to our 2008 observations, thanks to broader synoptic coverage, a deeper magnitude limit, and a larger field of view. We used the photometric data set to derive site statistics from Dome A. Based on two years of observations, we find that extinction due to clouds at this site is less than 0.1 and 0.4 mag during 45% and 75% of the dark time, respectively.

  7. Diurnal and seasonal variability of outdoor radon concentration in the area of the NRPI Prague.

    Science.gov (United States)

    Jilek, K; Slezákova, M; Thomas, J

    2014-07-01

    In autumn 2010, an outdoor measuring station for measurement of atmospheric radon, gamma equivalent dose rate in the range of 100 nSv h(-1)-1 Sv h(-1) and proper meteorological parameters such as thermal air gradient, relative air humidity, wind speed and direction and solar radiation intensity was built in the area of the National Radiation Protection Institute vvi. The station was designed to be independent of an electrical network and enables on-line wireless transfer of all data. After introduction of the station, illustrations of its measurement properties and the results of measured diurnal and seasonal variability of atmospheric radon, based on annual continuous measurement using a high-volume scintillation cell at a height of 2.5 m above the ground, are presented. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Variability, trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea

    Science.gov (United States)

    Serreze, Mark C.; Crawford, Alex D.; Stroeve, Julienne C.; Barrett, Andrew P.; Woodgate, Rebecca A.

    2016-10-01

    As assessed over the period 1979-2014, the date that sea ice retreats to the shelf break (150 m contour) of the Chukchi Sea has a linear trend of -0.7 days per year. The date of seasonal ice advance back to the shelf break has a steeper trend of about +1.5 days per year, together yielding an increase in the open water period of 80 days. Based on detrended time series, we ask how interannual variability in advance and retreat dates relate to various forcing parameters including radiation fluxes, temperature and wind (from numerical reanalyses), and the oceanic heat inflow through the Bering Strait (from in situ moorings). Of all variables considered, the retreat date is most strongly correlated (r ˜ 0.8) with the April through June Bering Strait heat inflow. After testing a suite of statistical linear models using several potential predictors, the best model for predicting the date of retreat includes only the April through June Bering Strait heat inflow, which explains 68% of retreat date variance. The best model predicting the ice advance date includes the July through September inflow and the date of retreat, explaining 67% of advance date variance. We address these relationships by discussing heat balances within the Chukchi Sea, and the hypothesis of oceanic heat transport triggering ocean heat uptake and ice-albedo feedback. Developing an operational prediction scheme for seasonal retreat and advance would require timely acquisition of Bering Strait heat inflow data. Predictability will likely always be limited by the chaotic nature of atmospheric circulation patterns.

  9. Temporal and spatial variability of frost-free seasons in the Great Lakes region of the United States

    Science.gov (United States)

    Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman; Jeffrey A. Andresen

    2014-01-01

    The frequency and timing of frost events and the length of the growing season are critical limiting factors in many human and natural ecosystems. This study investigates the temporal and spatial variability of the date of last spring frost (LSF), the date of first fall frost (FFF), and the length of the frost-free season (FFS) in the Great Lakes region of the United...

  10. Seasonal changes in environmental variables, biomass, production and nutrient contents in two contrasting tropical intertidal seagrass beds in South Sulawesi, Indonesia.

    Science.gov (United States)

    Erftemeijer, Paul L A; Herman, Peter M J

    1994-09-01

    Seasonal dynamics were studied by monthly monitoring of biological and environmental variables in permanent quadrats in two contrasting intertidal seagrass beds in South Sulawesi, Indonesia, from February 1991 to January 1992. Datasets were analysed with canonical correlation analysis for correlations between environmental and biological variables. Considerable variation in biomass, production and plant tissue nutrient contents in a monospecific seagrass bed of Enhalus acoroides, growing on a coastal terrigenous mudbank (Gusung Tallang), was assumed to be related to riverine influences of the nearby Tallo River. The variation in seagrass variables at this site could, however, not be significantly correlated to seasonal patterns in rainfall, salinity, tides, nutrient availability, water motion or turbidity. A seasonal cycle in biomass, production and nutrient contents in a mixed seagrass bed of Thalassia hemprichii and E. acoroides, growing on carbonate sand on the reef flat of an offshore coral island (Barang Lompo), was found to be largely determined by tidal exposure and water motion. Exposure of the intertidal seagrass bed during hours of low water during spring tides showed a gradual shift from exposure during the night (January-June) to exposure during daylight (July-December). Daylight exposure resulted in a significant loss of above-ground plant biomass through desiccation and 'burning' of leaves. The observed seasonal dynamics of the seagrass bed on reef sediment contrast with reports from the Caribbean, where the effect of tidal exposure on comparable shallow-water seagrass communities is relatively insignificant due to a small tidal amplitude.

  11. European Randomized Study of Screening for Prostate Cancer Risk Calculator: External Validation, Variability, and Clinical Significance.

    Science.gov (United States)

    Gómez-Gómez, Enrique; Carrasco-Valiente, Julia; Blanca-Pedregosa, Ana; Barco-Sánchez, Beatriz; Fernandez-Rueda, Jose Luis; Molina-Abril, Helena; Valero-Rosa, Jose; Font-Ugalde, Pilar; Requena-Tapia, Maria José

    2017-04-01

    To externally validate the European Randomized Study of Screening for Prostate Cancer (ERSPC) risk calculator (RC) and to evaluate its variability between 2 consecutive prostate-specific antigen (PSA) values. We prospectively catalogued 1021 consecutive patients before prostate biopsy for suspicion of prostate cancer (PCa). The risk of PCa and significant PCa (Gleason score ≥7) from 749 patients was calculated according to ERSPC-RC (digital rectal examination-based version 3 of 4) for 2 consecutive PSA tests per patient. The calculators' predictions were analyzed using calibration plots and the area under the receiver operating characteristic curve (area under the curve). Cohen kappa coefficient was used to compare the ability and variability. Of 749 patients, PCa was detected in 251 (33.5%) and significant PCa was detected in 133 (17.8%). Calibration plots showed an acceptable parallelism and similar discrimination ability for both PSA levels with an area under the curve of 0.69 for PCa and 0.74 for significant PCa. The ERSPC showed 226 (30.2%) unnecessary biopsies with the loss of 10 significant PCa. The variability of the RC was 16% for PCa and 20% for significant PCa, and a higher variability was associated with a reduced risk of significant PCa. We can conclude that the performance of the ERSPC-RC in the present cohort shows a high similitude between the 2 PSA levels; however, the RC variability value is associated with a decreased risk of significant PCa. The use of the ERSPC in our cohort detects a high number of unnecessary biopsies. Thus, the incorporation of ERSPC-RC could help the clinical decision to carry out a prostate biopsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Association of Seasonal Climate Variability and Age-Specific Mortality in Northern Sweden before the Onset of Industrialization

    Directory of Open Access Journals (Sweden)

    Joacim Rocklöv

    2014-07-01

    Full Text Available Background and aims: Little is known about health impacts of climate in pre-industrial societies. We used historical data to investigate the association of temperature and precipitation with total and age-specific mortality in Skellefteå, northern Sweden, between 1749 and 1859. Methods: We retrieved digitized aggregated population data of the Skellefteå parish, and monthly temperature and precipitation measures. A generalized linear model was established for year to year variability in deaths by annual and seasonal average temperature and cumulative precipitation using a negative binomial function, accounting for long-term trends in population size. The final full model included temperature and precipitation of all four seasons simultaneously. Relative risks (RR with 95% confidence intervals (CI were calculated for total, sex- and age-specific mortality. Results: In the full model, only autumn precipitation proved statistically significant (RR 1.02; CI 1.00–1.03, per 1cm increase of autumn precipitation, while winter temperature (RR 0.98; CI 0.95–1.00, per 1 °C increase in temperature and spring precipitation (RR 0.98; CI 0.97–1.00 per 1 cm increase in precipitation approached significance. Similar effects were observed for men and women. The impact of climate variability on mortality was strongest in children aged 3–9, and partly also in older children. Infants, on the other hand, appeared to be less affected by unfavourable climate conditions. Conclusions: In this pre-industrial rural region in northern Sweden, higher levels of rain during the autumn increased the annual number of deaths. Harvest quality might be one critical factor in the causal pathway, affecting nutritional status and susceptibility to infectious diseases. Autumn rain probably also contributed to the spread of air-borne diseases in crowded living conditions. Children beyond infancy appeared most vulnerable to climate impacts.

  13. Diurnal, synoptic and seasonal variability of atmospheric CO2 in the Paris megacity area

    Science.gov (United States)

    Xueref-Remy, Irène; Dieudonné, Elsa; Vuillemin, Cyrille; Lopez, Morgan; Lac, Christine; Schmidt, Martina; Delmotte, Marc; Chevallier, Frédéric; Ravetta, François; Perrussel, Olivier; Ciais, Philippe; Bréon, François-Marie; Broquet, Grégoire; Ramonet, Michel; Spain, T. Gerard; Ampe, Christophe

    2018-03-01

    Most of the global fossil fuel CO2 emissions arise from urbanized and industrialized areas. Bottom-up inventories quantify them but with large uncertainties. In 2010-2011, the first atmospheric in situ CO2 measurement network for Paris, the capital of France, began operating with the aim of monitoring the regional atmospheric impact of the emissions coming from this megacity. Five stations sampled air along a northeast-southwest axis that corresponds to the direction of the dominant winds. Two stations are classified as rural (Traînou - TRN; Montgé-en-Goële - MON), two are peri-urban (Gonesse - GON; Gif-sur-Yvette - GIF) and one is urban (EIF, located on top of the Eiffel Tower). In this study, we analyze the diurnal, synoptic and seasonal variability of the in situ CO2 measurements over nearly 1 year (8 August 2010-13 July 2011). We compare these datasets with remote CO2 measurements made at Mace Head (MHD) on the Atlantic coast of Ireland and support our analysis with atmospheric boundary layer height (ABLH) observations made in the center of Paris and with both modeled and observed meteorological fields. The average hourly CO2 diurnal cycles observed at the regional stations are mostly driven by the CO2 biospheric cycle, the ABLH cycle and the proximity to urban CO2 emissions. Differences of several µmol mol-1 (ppm) can be observed from one regional site to the other. The more the site is surrounded by urban sources (mostly residential and commercial heating, and traffic), the more the CO2 concentration is elevated, as is the associated variability which reflects the variability of the urban sources. Furthermore, two sites with inlets high above ground level (EIF and TRN) show a phase shift of the CO2 diurnal cycle of a few hours compared to lower sites due to a strong coupling with the boundary layer diurnal cycle. As a consequence, the existence of a CO2 vertical gradient above Paris can be inferred, whose amplitude depends on the time of the day and on

  14. Diurnal, synoptic and seasonal variability of atmospheric CO2 in the Paris megacity area

    Directory of Open Access Journals (Sweden)

    I. Xueref-Remy

    2018-03-01

    Full Text Available Most of the global fossil fuel CO2 emissions arise from urbanized and industrialized areas. Bottom-up inventories quantify them but with large uncertainties. In 2010–2011, the first atmospheric in situ CO2 measurement network for Paris, the capital of France, began operating with the aim of monitoring the regional atmospheric impact of the emissions coming from this megacity. Five stations sampled air along a northeast–southwest axis that corresponds to the direction of the dominant winds. Two stations are classified as rural (Traînou – TRN; Montgé-en-Goële – MON, two are peri-urban (Gonesse – GON; Gif-sur-Yvette – GIF and one is urban (EIF, located on top of the Eiffel Tower. In this study, we analyze the diurnal, synoptic and seasonal variability of the in situ CO2 measurements over nearly 1 year (8 August 2010–13 July 2011. We compare these datasets with remote CO2 measurements made at Mace Head (MHD on the Atlantic coast of Ireland and support our analysis with atmospheric boundary layer height (ABLH observations made in the center of Paris and with both modeled and observed meteorological fields. The average hourly CO2 diurnal cycles observed at the regional stations are mostly driven by the CO2 biospheric cycle, the ABLH cycle and the proximity to urban CO2 emissions. Differences of several µmol mol−1 (ppm can be observed from one regional site to the other. The more the site is surrounded by urban sources (mostly residential and commercial heating, and traffic, the more the CO2 concentration is elevated, as is the associated variability which reflects the variability of the urban sources. Furthermore, two sites with inlets high above ground level (EIF and TRN show a phase shift of the CO2 diurnal cycle of a few hours compared to lower sites due to a strong coupling with the boundary layer diurnal cycle. As a consequence, the existence of a CO2 vertical gradient above Paris can be inferred, whose amplitude depends

  15. Seasonal and interannual variability of carbon dioxide and water balances of a grassland

    International Nuclear Information System (INIS)

    Jacobs, A.F.G.; Heusinkveld, B.G.; Holtslag, A.A.M.

    2007-01-01

    There is great international concern over the increase of atmospheric carbon dioxide and its effect on vegetation and climate, and vice versa. Many studies on this issue are based on climate model calculations or indirect satellite observations. In contrast we present a 12-year study (1994-2005) on the net ecosystem exchange of carbon dioxide (NEE) and precipitation surplus (i.e., precipitation-evaporation) of a grassland area in the centre of the Netherlands. On basis of direct flux observations and a process-based model we study and quantify the carbon uptake via assimilation and carbon release via soil and plant respiration. It appears that nearly year-round the assimilation term dominates, which indicates an accumulation of carbon dioxide. The mean net carbon uptake for the 12-year period is about 3 tonnes C per hectare, but with a strong seasonal and interannual variability depending on the weather and water budget. This variability may severely hamper the accurate quantification of carbon storage by vegetation in our present climates and its projection for future climates

  16. Upper-Level Mediterranean Oscillation index and seasonal variability of rainfall and temperature

    Science.gov (United States)

    Redolat, Dario; Monjo, Robert; Lopez-Bustins, Joan A.; Martin-Vide, Javier

    2018-02-01

    The need for early seasonal forecasts stimulates continuous research in climate teleconnections. The large variability of the Mediterranean climate presents a greater difficulty in predicting climate anomalies. This article reviews teleconnection indices commonly used for the Mediterranean basin and explores possible extensions of one of them, the Mediterranean Oscillation index (MOi). In particular, the anomalies of the geopotential height field at 500 hPa are analyzed using segmentation of the Mediterranean basin in seven spatial windows: three at eastern and four at western. That is, different versions of an Upper-Level Mediterranean Oscillation index (ULMOi) were calculated, and monthly and annual variability of precipitation and temperature were analyzed for 53 observatories from 1951 to 2015. Best versions were selected according to the Pearson correlation, its related p value, and two measures of standardized error. The combination of the Balearic Sea and Libya/Egypt windows was the best for precipitation and temperature, respectively. The ULMOi showed the highest predictive ability in combination with the Atlantic Multidecadal Oscillation index (AMOi) for the annual temperature throughout the Mediterranean basin. The best model built from the indices presented a final mean error between 15 and 25% in annual precipitation for most of the studied area.

  17. Seasonal variation in haematological and biochemical variables in free-ranging subadult brown bears (Ursus arctos) in Sweden.

    Science.gov (United States)

    Græsli, Anne Randi; Evans, Alina L; Fahlman, Åsa; Bertelsen, Mads F; Blanc, Stéphane; Arnemo, Jon M

    2015-12-08

    Free-ranging brown bears exhibit highly contrasting physiological states throughout the year. They hibernate 6 months of the year, experiencing a decrease in body temperature, heart rate, respiratory rate and metabolism. An increase in food consumption and the resulting weight gain (mostly through fat storage) prior to hibernation are also part of the brown bear's annual cycle. Due to these physiological changes, haematological and biochemical variables vary dramatically throughout the year. Seasonal changes in 12 haematological and 34 biochemical variables were evaluated in blood samples collected from 40 free-ranging subadult brown bears (22 females, 18 males) immobilised in Sweden in winter (February-March), spring (April-May), and summer (June). Higher levels of haemoglobin, haematocrit and red blood cell count, and a lower white blood cell count and mean cell volume was found during hibernation than in spring and summer. Lower values of the enzymes; aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (AP), γ-glutamyl transpeptidase (GGT), glutamate dehydrogenase (GD) and amylase, and increased values of β-hydroxybutyrate (β-HBA) and blood lipids; triglycerides, cholesterol and free fatty acids, were present during hibernation compared to spring and summer. This study documents significant shifts in haematological and biochemical variables in samples collected from brown bears anaesthetised in winter (February-March) compared to in spring and summer (April-June), reflecting the lowered metabolic, renal and hepatic activity during hibernation. Lower values of enzymes and higher values of blood lipids during hibernation, likely reflect a lipid-based metabolism.

  18. Variability of wind stress and currents at selected locations over the north Indian Ocean during 1977 and 1979 summer monsoon seasons

    Digital Repository Service at National Institute of Oceanography (India)

    Gopalakrishna, V.V.; Sadhuram, Y.; RameshBabu, V.; Rao, M.V.

    Intra-seasonal variability of wind stress, wind stress curl and currents at different locations over the northern Indian Ocean during two contrasting monsoon seasons has been investigated making use of the time series data collected during MONSOON...

  19. Cold season Africa-Asia multidecadal teleconnection pattern and its relation to the Atlantic multidecadal variability

    Science.gov (United States)

    Sun, Cheng; Li, Jianping; Ding, Ruiqiang; Jin, Ze

    2017-06-01

    A prominent teleconnection pattern of multidecadal variability of cold season (November to April) upper-level atmospheric circulation over North Africa and Eurasia (NA-EA) is revealed by empirical orthogonal function analysis of the Twentieth Century Reanalysis data. This teleconnection pattern is characterized by an eastward propagating wave train with a zonal wavenumber of 5-6 between 20° and 40°N, extending from the northwest coast of Africa to East Asia, and thus is referred to as the Africa-Asia multidecadal teleconnection pattern (AAMT). One-point correlation maps show that the teleconnectivity of AAMT is strong and further demonstrate the existence of the AAMT. The AAMT shapes the spatial structure of multidecadal change in atmospheric circulation over the NA-EA region, and in particular the AAMT pattern and associated fields show similar structures to the change occurring around the early 1960s. A strong in-phase relationship is observed between the AAMT and Atlantic multidecadal variability (AMV) and this connection is mainly due to Rossby wave dynamics. Barotropic modeling results suggest that the upper-level Rossby wave source generated by the AMV can excite the AAMT wave train, and Rossby wave ray tracing analysis further highlights the role of the Asian jet stream in guiding the wave train to East Asia. The AAMT acts as an atmospheric bridge conveying the influence of AMV onto the downstream multidecadal climate variability. The AMV is closely related to the coordinated change in surface and tropospheric air temperatures over Northwest Africa, the Arabian Peninsula and Central China, which may result from the adiabatic expansion/compression of air associated with the AAMT.

  20. Seasonal and interannual variability of mesozooplankton in two contrasting estuaries of the Bay of Biscay: Relationship to environmental factors

    Science.gov (United States)

    Villate, Fernando; Iriarte, Arantza; Uriarte, Ibon; Sanchez, Iraide

    2017-12-01

    Seasonal and interannual variations of total mesozooplankton abundance and community variability were assessed for the period 1998-2005 at 3 salinity sites (35, 33 and 30) of the estuaries of Bilbao and Urdaibai (southeast Bay of Biscay). Spatial differences in mesozooplankton seasonality were recognized, both within and between estuaries, related to differences between sites in hydrodynamic features and anthropogenic nutrient enrichment that drive phytoplankton biomass seasonal cycles. The within estuary seasonal differences in mesozooplankton community were mainly shown through seaward time-advances in the seasonal peak from summer to spring along the salinity gradient, linked to differences in phytoplankton availability during the summer, in turn, related to nutrient availability. These differences were most marked in the estuary of Urdaibai, where zooplankton seasonal pattern at 35 salinity (high tidal flushing) resembled that of shelf waters, while at 35 of the estuary of Bilbao zooplankton showed an estuarine seasonal pattern due to the influence of the estuarine plume. Cirripede larvae contributed most to the mesozooplankton seasonal variability, except at the outer estuary of Bilbao, where cladocerans and fish eggs and larvae were the major contributors, and the inner estuary of Urdaibai, where gastropod larvae contributed most. Total mesozooplankton increased at 30 salinity of the estuary of Bilbao and 35 salinity of the estuary of Urdaibai. Interannual variability of mesozooplankton at the lowest salinity of the estuary of Bilbao was mainly accounted for by copepods due to the introduction of non-indigenous species during estuarine rehabilitation from intense pollution. However, bivalve larvae and gastropod larvae showed the highest contributions at 35 salinity of the estuary of Urdaibai. At the rest of sites, the opposite interannual trends of polychaete larvae and hydromedusae generally made the highest contribution.

  1. Seasonal and Intraseasonal Variability of Mesoscale Convective Systems over the South Asian Monsoon Region

    Energy Technology Data Exchange (ETDEWEB)

    Virts, Katrina S.; Houze, Robert A.

    2016-12-01

    Seasonal and intraseasonal differences in mesoscale convective systems (MCSs) over South Asia are examined using A-Train satellites, a ground-based lightning network, and reanalysis fields. Pre-monsoon (April-May) MCSs occur primarily over Bangladesh and the eastern Bay of Bengal. During the monsoon (June-September), small MCSs occur over the Meghalaya Plateau and northeast Himalayan notch, while large and connected MCSs are most widespread over the Bay of Bengal. Monsoon MCSs produce less lightning and exhibit more extensive stratiform and anvil reflectivity structures in CloudSat observations than do pre-monsoon MCSs. During the monsoon season, Bay of Bengal and Meghalaya Plateau MCSs vary with the 30-60 day northward-propagating intraseasonal oscillation, while northeast Himalayan notch MCSs are associated with weak large-scale anomalies but locally enhanced CAPE. During intraseasonal active periods, a zone of enhanced large and connected MCSs, precipitation, and lightning extends from the northeastern Arabian Sea southeast over India and the Bay of Bengal, flanked by suppressed anomalies. Spatial variability is observed within this enhancement zone: lightning is most enhanced where MCSs are less enhanced, and vice versa. Reanalysis composites indicate that Bay of Bengal MCSs are associated with monsoon depressions, which are frequent during active monsoon periods, while Meghalaya Plateau MCSs are most frequent at the end of break periods, as anomalous southwesterly winds strengthen moist advection toward the terrain. Over both regions, MCSs exhibit more extensive stratiform and anvil regions and less lightning when the large-scale environment is moister, and vice versa.

  2. Seasonal and high-resolution variability in hydrochemistry of the Andes-Amazon

    Science.gov (United States)

    Burt, E.; West, A. J.

    2017-12-01

    Stream hydrochemistry acts as a record of integrated catchment processes such as the amount of time it takes precipitation to flow through the subsurface and become streamflow (water transit times), water-rock interaction and biogeochemical cycling. Although it is understood that sampling interval affects observed patterns in hydrochemistry, most studies collect samples on a weekly, bi-weekly or monthly schedule due to lack of resources or the difficulty of maintaining automated sampling devices. Here, we attempt to combine information from two sampling time scales, comparing a year-long hydrochemical time series to data from a recent sub-daily sampling campaign. Starting in April 2016, river, soil and rain waters have been collected every two weeks at five small catchments spanning the tropical Andes and Amazon - a natural laboratory for its gradients in topography, erosion rates, precipitation, temperature and flora. Between January and March, 2017, we conducted high frequency sampling for approximately one week at each catchment, sampling at least every four hours including overnight. We will constrain young water fractions (Kirchner, 2016) and storm water fluxes for the experimental catchments using stable isotopes of water as conservative tracers. Major element data will provide the opportunity to make initial constraints on geochemical and hydrologic coupling. Preliminary results suggest that in the Amazon, hydrochemistry patterns are dependent on sampling frequency: the seasonal cycle in stable isotopes of water is highly damped, while the high resolution sampling displays large variability. This suggests that a two-week sampling interval is not frequent enough to capture rapid transport of water, perhaps through preferential flow networks. In the Andes, stable isotopes of water are highly damped in both the seasonal and high resolution cycle, suggesting that the catchment behaves as a "well-mixed" system.

  3. Seasonal variability of organic matter composition in an Alaskan glacier outflow: insights into glacier carbon sources

    International Nuclear Information System (INIS)

    Spencer, Robert G M; Vermilyea, Andrew; Fellman, Jason; Hood, Eran; Raymond, Peter; Stubbins, Aron; Scott, Durelle

    2014-01-01

    Glacier ecosystems are a significant source of bioavailable, yet ancient dissolved organic carbon (DOC). Characterizing DOC in Mendenhall Glacier outflow (southeast Alaska) we document a seasonal persistence to the radiocarbon-depleted signature of DOC, highlighting ancient DOC as a ubiquitous feature of glacier outflow. We observed no systematic depletion in Δ 14 C-DOC with increasing discharge during the melt season that would suggest mobilization of an aged subglacial carbon store. However, DOC concentration, δ 13 C-DOC, Δ 14 C-DOC and fluorescence signatures appear to have been influenced by runoff from vegetated hillslopes above the glacier during onset and senescence of melt. In the peak glacier melt period, the Δ 14 C-DOC of stream samples at the outflow (−181.7 to −355.3‰) was comparable to the Δ 14 C-DOC for snow samples from the accumulation zone (−207.2 to −390.9‰), suggesting that ancient DOC from the glacier surface is exported in glacier runoff. The pre-aged DOC in glacier snow and runoff is consistent with contributions from fossil fuel combustion sources similar to those documented previously in ice cores and thus provides evidence for anthropogenic perturbation of the carbon cycle. Overall, our results emphasize the need to further characterize DOC inputs to glacier ecosystems, particularly in light of predicted changes in glacier mass and runoff in the coming century. (papers)

  4. Normal Variability of Weekly Musculoskeletal Screening Scores and the Influence of Training Load across an Australian Football League Season.

    Science.gov (United States)

    Esmaeili, Alireza; Stewart, Andrew M; Hopkins, William G; Elias, George P; Lazarus, Brendan H; Rowell, Amber E; Aughey, Robert J

    2018-01-01

    Aim: The sit and reach test (S&R), dorsiflexion lunge test (DLT), and adductor squeeze test (AST) are commonly used in weekly musculoskeletal screening for athlete monitoring and injury prevention purposes. The aim of this study was to determine the normal week to week variability of the test scores, individual differences in variability, and the effects of training load on the scores. Methods: Forty-four elite Australian rules footballers from one club completed the weekly screening tests on day 2 or 3 post-main training (pre-season) or post-match (in-season) over a 10 month season. Ratings of perceived exertion and session duration for all training sessions were used to derive various measures of training load via both simple summations and exponentially weighted moving averages. Data were analyzed via linear and quadratic mixed modeling and interpreted using magnitude-based inference. Results: Substantial small to moderate variability was found for the tests at both season phases; for example over the in-season, the normal variability ±90% confidence limits were as follows: S&R ±1.01 cm, ±0.12; DLT ±0.48 cm, ±0.06; AST ±7.4%, ±0.6%. Small individual differences in variability existed for the S&R and AST (factor standard deviations between 1.31 and 1.66). All measures of training load had trivial effects on the screening scores. Conclusion: A change in a test score larger than the normal variability is required to be considered a true change. Athlete monitoring and flagging systems need to account for the individual differences in variability. The tests are not sensitive to internal training load when conducted 2 or 3 days post-training or post-match, and the scores should be interpreted cautiously when used as measures of recovery.

  5. Seasonal and diurnal variability of N{sub 2}O emissions from a full-scale municipal wastewater treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Daelman, Matthijs R.J., E-mail: m.r.j.daelman@tudelft.nl [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands); Department of Biosystems engineering, Ghent University, Coupure links 653, 9000 Gent (Belgium); Voorthuizen, Ellen M. van [Royal HaskoningDHV, P.O. Box 151, 6500AD Nijmegen (Netherlands); Dongen, Udo G.J.M. van [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands); Volcke, Eveline I.P. [Department of Biosystems engineering, Ghent University, Coupure links 653, 9000 Gent (Belgium); Loosdrecht, Mark C.M. van [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2015-12-01

    During nitrogen removal in conventional activated sludge processes, nitrous oxide can be emitted. With a global warming potential of 298 CO{sub 2}-equivalents it is an important greenhouse gas that affects the sustainability of wastewater treatment. The present study reports nitrous oxide emission data from a 16 month monitoring campaign on a full-scale municipal wastewater treatment. The emission demonstrated a pronounced diurnal and seasonal variability. This variability was compared with the variability of a number of process variables that are commonly available on a municipal wastewater treatment plant. On a seasonal timescale, the occurrence of peaks in the nitrite concentration correlated strongly with the emission. The diurnal trend of the emission coincided with the diurnal trend of the nitrite and nitrate concentrations in the tank, suggesting that suboptimal oxygen concentrations may induce the production of nitrous oxide during both nitrification and denitrification. This study documents an unprecedented dataset that could serve as a reference for further research. - Highlights: • Unique dataset of long-term nitrous oxide emission from activated sludge tanks • Emission exhibited pronounced diurnal variability, superimposed on seasonal trend • Seasonal nitrous oxide emission trend correlated with daily nitrite peaks • Emission’s diurnal trend suggests suboptimal oxygen concentrations as cause.

  6. Understanding the significance variables for fabrication of fish gelatin nanoparticles by Plackett-Burman design

    Science.gov (United States)

    Subara, Deni; Jaswir, Irwandi; Alkhatib, Maan Fahmi Rashid; Noorbatcha, Ibrahim Ali

    2018-01-01

    The aim of this experiment is to screen and to understand the process variables on the fabrication of fish gelatin nanoparticles by using quality-design approach. The most influencing process variables were screened by using Plackett-Burman design. Mean particles size, size distribution, and zeta potential were found in the range 240±9.76 nm, 0.3, and -9 mV, respectively. Statistical results explained that concentration of acetone, pH of solution during precipitation step and volume of cross linker had a most significant effect on particles size of fish gelatin nanoparticles. It was found that, time and chemical consuming is lower than previous research. This study revealed the potential of quality-by design in understanding the effects of process variables on the fish gelatin nanoparticles production.

  7. Seasonal variability in physiological and anatomical traits contributes to invasion success of Prosopis juliflora in tropical dry forest.

    Science.gov (United States)

    Oliveira, Marciel T; Souza, Gustavo M; Pereira, Silvia; Oliveira, Deborah A S; Figueiredo-Lima, Karla V; Arruda, Emília; Santos, Mauro G

    2017-03-01

    We investigated whether there were consistent differences in the physiological and anatomical traits and phenotypic variability of an invasive (Prosopis juliflora (Sw.) DC.) and native species (Anadenanthera colubrina (Vell.) Brenan) in response to seasonality in a tropical dry forest. The water potential, organic solutes, gas exchange, enzymes of the antioxidant system, products of oxidative stress and anatomical parameters were evaluated in both species in response to seasonality. An analysis of physiological responses indicated that the invasive P. juliflora exhibited higher response in net photosynthetic rate to that of the native species between seasons. Higher values of water potential of the invasive species than those of the native species in the dry season indicate a more efficient mechanism for water regulation in the invasive species. The invasive species exhibits a thicker cuticle and trichomes, which can reduce transpiration. In combination, the increased epidermal thickness and the decreased thickness of the parenchyma in the dry season may contribute to water saving. Our data suggest a higher variability in anatomical traits in the invasive species as a response to seasonality, whereas physiological traits did not present a clear pattern of response. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Predictions of Tropospheric Zenithal Delay for South America : Seasonal Variability and Quality Evaluation

    Directory of Open Access Journals (Sweden)

    Luiz Augusto Toledo Machado

    2006-12-01

    Full Text Available The Zenithal Tropospheric Delay (Z TD is an important error source in the observable involved in the positioning methods using artificial satellite. Frequently, the Z TD influence in the positioning is minimized by applying empirical models. However, such models are not able to supply the precision required to some real time applications, such as navigation and steak out. In 2010 it will be implanted the new navigation and administration system of the air traffic, denominated CNS-ATM (Communication Navigation Surveillance - Air Traffic Management. In this new system the application of positioning techniques by satellites in the air traffic will be quite explored because they provide good precision in real time. The predictions of Z TD values from Numeric Weather Prediction (NWP, denominated dynamic modeling, is an alternative to model the atmospheric gases effects in the radio-frequency signals in real time. The Center for Weather Forecasting and Climate Studies (CPTEC has generated operationally prediction of Z TD values to South American Continent since March, 2004. The aims of the present paper are to investigate the Z TD seasonal variability and evaluate the quality of predicted Z TD values. One year of GPS data from Brazilian Continuous GPS Network (RBMC was used in this evaluation. The RMS values resulting from this evaluation were in the range of 4 to 11 cm. Considering the Z TDtemporal variability, the advantages provide by this modeling, the results obtained in this evaluation and the future improvements, this work shows that the dynamic modeling has great potential to become the most appropriate alternative to model Z TD in real time.

  9. Seasonal and interannual variability of dissolved oxygen around the Balearic Islands from hydrographic data

    Science.gov (United States)

    Balbín, R.; López-Jurado, J. L.; Aparicio-González, A.; Serra, M.

    2014-10-01

    Oceanographic data obtained between 2001 and 2011 by the Spanish Institute of Oceanography (IEO, Spain) have been used to characterise the spatial distribution and the temporal variability of the dissolved oxygen around the Balearic Islands (Mediterranean Sea). The study area includes most of the Western Mediterranean Sea, from the Alboran Sea to Cape Creus, at the border between France and Spain. Dissolved oxygen (DO) at the water surface is found to be in a state of equilibrium exchange with the atmosphere. In the spring and summer a subsurface oxygen supersaturation is observed due to the biological activity, above the subsurface fluorescence maximum. Minimum observed values of dissolved oxygen are related to the Levantine Intermediate Waters (LIW). An unusual minimum of dissolved oxygen concentrations was also recorded in the Alboran Sea Oxygen Minimum Zone. The Western Mediterranean Deep Waters (WMDW) and the Western Intermediate Waters (WIW) show higher values of dissolved oxygen than the Levantine Intermediate Waters due to their more recent formation. Using these dissolved oxygen concentrations it is possible to show that the Western Intermediate Waters move southwards across the Ibiza Channel and the deep water circulates around the Balearic Islands. It has also been possible to characterise the seasonal evolution of the different water masses and their dissolved oxygen content in a station in the Algerian sub-basin.

  10. Seasonal Variability of Ground Water Levels in the Puszcza Zielonka Forest

    Directory of Open Access Journals (Sweden)

    Grajewski Sylwester

    2014-07-01

    Full Text Available The paper presents results of studies on seasonal variability of ground water tables recorded in long-term observations of water levels in the Puszcza Zielonka forest complex. The Puszcza Zielonka Forest is located in the middle part of the Warta basin in the central part of the Wielkopolska region. Its western boundary is located approx. 6 km north-east of Poznań. The area is situated in the western part of the Wielkopolska-Mazovian climatic region. The natural landscape is of young glacial type of Pleistocene and Holocene formation. For this reason parent materials for soils in this area were mainly postglacial drifts, deposits coming from the Poznań stage of the Würm glaciation. In terms of granulometric composition these were mainly low clayey sands deposited on loose sands with an admixture of gravel and eroded sandy clay. Scots pine is the dominant species. Oaks, alders, larches and scarce spruces are also found in this area. Predominant sites include fresh mixed forest, fresh mixed coniferous forest, fresh broadleaved forest and alder swamp forest.

  11. Spatial and Seasonal Variability of Temperature in CO2 Emission from Mars' Mesosphere

    Science.gov (United States)

    Livengood, Timothy A.; Kostiuk, Theodor; Hewagama, Tilak; Kolasinski, John R.; Henning, Wade; Fast, Kelly Elizabeth; Sonnabend, Guido; Sornig, Manuela

    2017-10-01

    We have observed non-local thermodynamic equilibrium (non-LTE) emission of carbon dioxide that probes Mars’ mesosphere in 2001, 2003, 2007, 2012, 2014, and 2016. These measurements were conducted at 10.6 μm wavelength using the Goddard Space Flight Center Heterodyne Instrument for Planetary Winds and Composition (HIPWAC) from the NASA Infrared Telescope Facility (IRTF) at resolving power (1-33)×106. The Maxwellian broadening of the emission line can be measured at this resolution, providing a direct determination of temperature in the mesosphere. The nonLTE line appears as a narrow emission core within a broad absorption formed by tropospheric CO2, which provides temperature information reaching down to the martian surface, while the mesospheric line probes temperature at about 60-80 km altitude. We will report on the spatial distribution of temperature and emission line strength with local solar time on Mars, with latitude, as well as long-term variability including seasonal effects that modify the overall thermal structure of the atmosphere. These remote measurements complement results from orbital spacecraft through access to a broad range of local solar time on each occasion.This work has been supported by the NASA Planetary Astronomy and Solar Systems Observations Programs

  12. Significance of the impact of motion compensation on the variability of PET image features

    Science.gov (United States)

    Carles, M.; Bach, T.; Torres-Espallardo, I.; Baltas, D.; Nestle, U.; Martí-Bonmatí, L.

    2018-03-01

    In lung cancer, quantification by positron emission tomography/computed tomography (PET/CT) imaging presents challenges due to respiratory movement. Our primary aim was to study the impact of motion compensation implied by retrospectively gated (4D)-PET/CT on the variability of PET quantitative parameters. Its significance was evaluated by comparison with the variability due to (i) the voxel size in image reconstruction and (ii) the voxel size in image post-resampling. The method employed for feature extraction was chosen based on the analysis of (i) the effect of discretization of the standardized uptake value (SUV) on complementarity between texture features (TF) and conventional indices, (ii) the impact of the segmentation method on the variability of image features, and (iii) the variability of image features across the time-frame of 4D-PET. Thirty-one PET-features were involved. Three SUV discretization methods were applied: a constant width (SUV resolution) of the resampling bin (method RW), a constant number of bins (method RN) and RN on the image obtained after histogram equalization (method EqRN). The segmentation approaches evaluated were 40% of SUVmax and the contrast oriented algorithm (COA). Parameters derived from 4D-PET images were compared with values derived from the PET image obtained for (i) the static protocol used in our clinical routine (3D) and (ii) the 3D image post-resampled to the voxel size of the 4D image and PET image derived after modifying the reconstruction of the 3D image to comprise the voxel size of the 4D image. Results showed that TF complementarity with conventional indices was sensitive to the SUV discretization method. In the comparison of COA and 40% contours, despite the values not being interchangeable, all image features showed strong linear correlations (r  >  0.91, p\\ll 0.001 ). Across the time-frames of 4D-PET, all image features followed a normal distribution in most patients. For our patient cohort, the

  13. Seasonal variability of PM2.5 composition and sources in the Klang Valley urban-industrial environment

    Directory of Open Access Journals (Sweden)

    N. Amil

    2016-04-01

    Full Text Available This study investigates the fine particulate matter (PM2.5 variability in the Klang Valley urban-industrial environment. In total, 94 daily PM2.5 samples were collected during a 1-year campaign from August 2011 to July 2012. This is the first paper on PM2.5 mass, chemical composition and sources in the tropical environment of Southeast Asia, covering all four seasons (distinguished by the wind flow patterns including haze events. The samples were analysed for various inorganic components and black carbon (BC. The chemical compositions were statistically analysed and the temporal aerosol pattern (seasonal was characterised using descriptive analysis, correlation matrices, enrichment factor (EF, stoichiometric analysis and chemical mass closure (CMC. For source apportionment purposes, a combination of positive matrix factorisation (PMF and multi-linear regression (MLR was employed. Further, meteorological–gaseous parameters were incorporated into each analysis for improved assessment. In addition, secondary data of total suspended particulate (TSP and coarse particulate matter (PM10 sampled at the same location and time with this study (collected by Malaysian Meteorological Department were used for PM ratio assessment. The results showed that PM2.5 mass averaged at 28 ± 18 µg m−3, 2.8-fold higher than the World Health Organisation (WHO annual guideline. On a daily basis, the PM2.5 mass ranged between 6 and 118 µg m−3 with the daily WHO guideline exceeded 43 % of the time. The north-east (NE monsoon was the only season with less than 50 % sample exceedance of the daily WHO guideline. On an annual scale, PM2.5 mass correlated positively with temperature (T and wind speed (WS but negatively with relative humidity (RH. With the exception of NOx, the gases analysed (CO, NO2, NO and SO2 were found to significantly influence the PM2.5 mass. Seasonal variability unexpectedly showed that rainfall, WS and wind direction (WD did not

  14. Short-term to seasonal variability in factors driving primary productivity in a shallow estuary: Implications for modeling production

    Science.gov (United States)

    Canion, Andy; MacIntyre, Hugh L.; Phipps, Scott

    2013-10-01

    The inputs of primary productivity models may be highly variable on short timescales (hourly to daily) in turbid estuaries, but modeling of productivity in these environments is often implemented with data collected over longer timescales. Daily, seasonal, and spatial variability in primary productivity model parameters: chlorophyll a concentration (Chla), the downwelling light attenuation coefficient (kd), and photosynthesis-irradiance response parameters (Pmchl, αChl) were characterized in Weeks Bay, a nitrogen-impacted shallow estuary in the northern Gulf of Mexico. Variability in primary productivity model parameters in response to environmental forcing, nutrients, and microalgal taxonomic marker pigments were analysed in monthly and short-term datasets. Microalgal biomass (as Chla) was strongly related to total phosphorus concentration on seasonal scales. Hourly data support wind-driven resuspension as a major source of short-term variability in Chla and light attenuation (kd). The empirical relationship between areal primary productivity and a combined variable of biomass and light attenuation showed that variability in the photosynthesis-irradiance response contributed little to the overall variability in primary productivity, and Chla alone could account for 53-86% of the variability in primary productivity. Efforts to model productivity in similar shallow systems with highly variable microalgal biomass may benefit the most by investing resources in improving spatial and temporal resolution of chlorophyll a measurements before increasing the complexity of models used in productivity modeling.

  15. Bacterial communities from Arctic seasonal sea ice are more compositionally variable than those from multi-year sea ice.

    Science.gov (United States)

    Hatam, Ido; Lange, Benjamin; Beckers, Justin; Haas, Christian; Lanoil, Brian

    2016-10-01

    Arctic sea ice can be classified into two types: seasonal ice (first-year ice, FYI) and multi-year ice (MYI). Despite striking differences in the physical and chemical characteristics of FYI and MYI, and the key role sea ice bacteria play in biogeochemical cycles of the Arctic Ocean, there are a limited number of studies comparing the bacterial communities from these two ice types. Here, we compare the membership and composition of bacterial communities from FYI and MYI sampled north of Ellesmere Island, Canada. Our results show that communities from both ice types were dominated by similar class-level phylogenetic groups. However, at the operational taxonomic unit (OTU) level, communities from MYI and FYI differed in both membership and composition. Communities from MYI sites had consistent structure, with similar membership (presence/absence) and composition (OTU abundance) independent of location and year of sample. By contrast, communities from FYI were more variable. Although FYI bacterial communities from different locations and different years shared similar membership, they varied significantly in composition. Should these findings apply to sea ice across the Arctic, we predict increased compositional variability in sea ice bacterial communities resulting from the ongoing transition from predominantly MYI to FYI, which may impact nutrient dynamics in the Arctic Ocean.

  16. Inter-seasonal variability in baseflow recession rates: The role of aquifer antecedent storage in central California watersheds

    Science.gov (United States)

    Bart, Ryan; Hope, Allen

    2014-11-01

    Baseflow recession rates vary inter-seasonally in many watersheds. This variability is generally associated with changes in evapotranspiration; however, an additional and less studied control over inter-seasonal baseflow recession rates is the effect of aquifer antecedent storage. Understanding the role of aquifer antecedent storage on baseflow recession rates is crucial for Mediterranean-climate regions, where seasonal asynchronicity of precipitation and energy levels produces large inter-seasonal differences in aquifer storage. The primary objective of this study was to elucidate the relation between aquifer antecedent storage and baseflow recession rates in four central California watersheds using antecedent streamflow as a surrogate for watershed storage. In addition, a parsimonious storage-discharge model consisting of two nonlinear stores in parallel was developed as a heuristic tool for interpreting the empirical results and providing insight into how inter-seasonal changes in aquifer antecedent storage may affect baseflow recession rates. Antecedent streamflow cumulated from the beginning of the wateryear was found to be the strongest predictor of baseflow recession rates, indicating that inter-seasonal differences in aquifer storage are a key control on baseflow recession rates in California watersheds. Baseflow recession rates and antecedent streamflow exhibited a negative power-law relation, with baseflow recession rates decreasing by up to two orders of magnitude as antecedent streamflow levels increased. Inference based on the storage-discharge model indicated that the dominant source of recession flow shifted from small, rapid response aquifers at the beginning of the wet season to large, seasonal aquifers as the wet season progressed. Aquifer antecedent storage in California watersheds should be accounted for along with evapotranspiration when characterizing baseflow recession rates.

  17. Greenland Ice Sheet seasonal and spatial mass variability from model simulations and GRACE (2003-2012)

    Science.gov (United States)

    Alexander, Patrick M.; Tedesco, Marco; Schlegel, Nicole-Jeanne; Luthcke, Scott B.; Fettweis, Xavier; Larour, Eric

    2016-06-01

    Improving the ability of regional climate models (RCMs) and ice sheet models (ISMs) to simulate spatiotemporal variations in the mass of the Greenland Ice Sheet (GrIS) is crucial for prediction of future sea level rise. While several studies have examined recent trends in GrIS mass loss, studies focusing on mass variations at sub-annual and sub-basin-wide scales are still lacking. At these scales, processes responsible for mass change are less well understood and modeled, and could potentially play an important role in future GrIS mass change. Here, we examine spatiotemporal variations in mass over the GrIS derived from the Gravity Recovery and Climate Experiment (GRACE) satellites for the January 2003-December 2012 period using a "mascon" approach, with a nominal spatial resolution of 100 km, and a temporal resolution of 10 days. We compare GRACE-estimated mass variations against those simulated by the Modèle Atmosphérique Régionale (MAR) RCM and the Ice Sheet System Model (ISSM). In order to properly compare spatial and temporal variations in GrIS mass from GRACE with model outputs, we find it necessary to spatially and temporally filter model results to reproduce leakage of mass inherent in the GRACE solution. Both modeled and satellite-derived results point to a decline (of -178.9 ± 4.4 and -239.4 ± 7.7 Gt yr-1 respectively) in GrIS mass over the period examined, but the models appear to underestimate the rate of mass loss, especially in areas below 2000 m in elevation, where the majority of recent GrIS mass loss is occurring. On an ice-sheet-wide scale, the timing of the modeled seasonal cycle of cumulative mass (driven by summer mass loss) agrees with the GRACE-derived seasonal cycle, within limits of uncertainty from the GRACE solution. However, on sub-ice-sheet-wide scales, some areas exhibit significant differences in the timing of peaks in the annual cycle of mass change. At these scales, model biases, or processes not accounted for by models related

  18. The Seasonal and Intraseasonal Variability of Diurnal Cloud Activity over the Tibetan Plateau

    OpenAIRE

    Hatsuki, Fujinami; Tetsuzo, Yasunari; Institute of Geoscience, University of Tsukuba; Institute of Geoscience, University of Tsukuba

    2001-01-01

    Seasonal variation of diurnal cloud activity(abbreviated DCA)over the Tibetan Plateau throughout the year is examined using 3-hourly geostationary meteorological satellite(GMS)data for 6-years(1989-1994). The DCA shows two distinct variance maxima in the seasonal cycle. One is in spring(pre-monsoon season), and the other is in the summer monsoon season. The DCA begins in late January, and reaches its maximum from March through April. The active DCA extends over almost the whole of the plateau...

  19. Predictability of the intra-seasonal rainfall characteristics variables over South Africa

    CSIR Research Space (South Africa)

    Phakula, S

    2015-09-01

    Full Text Available for the homogeneous rainfall regions. Keywords: Retro-active validation, Forecast skill, Area-averaged ROC scores, Reliability diagrams. Introduction Southern Africa is a region of significant rainfall variability on a range of temporal and spacial scales... are evaluated using retro-actively generated hindcasts through canonical correlation analysis (CCA). Retro-active forecast validation is a robust method to assess forecast model performance and give unbiased skill levels (Landman et al., 2001). Two...

  20. Performance Assessment of Full-Scale Wastewater Treatment Plants Based on Seasonal Variability of Microbial Communities via High-Throughput Sequencing.

    Directory of Open Access Journals (Sweden)

    Tang Liu

    Full Text Available Microbial communities of activated sludge (AS play a key role in the performance of wastewater treatment processes. However, seasonal variability of microbial population in varying AS-based processes has been poorly correlated with operation of full-scale wastewater treatment systems (WWTSs. In this paper, significant seasonal variability of AS microbial communities in eight WWTSs located in the city of Guangzhou were revealed in terms of 16S rRNA-based Miseq sequencing. Furthermore, variation redundancy analysis (RDA demonstrated that the microbial community compositions closely correlated with WWTS operation parameters such as temperature, BOD, NH4+-N and TN. Consequently, support vector regression models which reasonably predicted effluent BOD, SS and TN in WWTSs were established based on microbial community compositions. This work provided an alternative tool for rapid assessment on performance of full-scale wastewater treatment plants.

  1. Sub-seasonal temperature variability in the tropical upper troposphere and lower stratosphere observed with GPS radio occultation

    Science.gov (United States)

    Scherllin-Pirscher, Barbara; Randel, William J.; Kim, Joowan

    2017-04-01

    We investigate sub-seasonal temperature variability in the tropical upper troposphere and lower stratosphere (UTLS) region using daily gridded fields of GPS radio occultation measurements. The unprecedented vertical resolution (from about 100 m in the troposphere to about 1.5 km in the stratosphere) and high accuracy and precision (0.7 K to 1 K between 8 km and 25 km) make these data ideal for characterizing temperature oscillations with short vertical wavelengths. Long-term behavior of sub-seasonal temperature variability is investigated using the entire RO record from January 2002 to December 2014 (13 years of data). Transient sub-seasonal waves including eastward-propagating Kelvin waves (isolated with space-time spectral analysis) dominate large-scale zonal temperature variability in the tropical tropopause region and in the lower stratosphere. Above 20 km, Kelvin waves are strongly modulated by the quasi-biennial oscillation (QBO). Enhanced wave activity can be found during the westerly shear phase of the QBO. In the tropical tropopause region, however, sub-seasonal waves are highly transient in time. Several peaks of Kelvin-wave activity coincide with short-term fluctuations in tropospheric deep convection, but other episodes are not evidently related. Also, there are no obvious relationships with zonal winds or stability fields near the tropical tropopause. Further investigations of convective forcing and atmospheric background conditions along the waves' trajectories are needed to better understand sub-seasonal temperature variability near the tropopause. For more details, see Scherllin-Pirscher, B., Randel, W. J., and Kim, J.: Tropical temperature variability and Kelvin-wave activity in the UTLS from GPS RO measurements, Atmos. Chem. Phys., 17, 793-806, doi:10.5194/acp-17-793-2017, 2017. http://www.atmos-chem-phys.net/17/793/2017/acp-17-793-2017.html

  2. The response of archaeal species to seasonal variables in a subtropical aerated soil: insight into the low abundant methanogens.

    Science.gov (United States)

    Xie, Wei; Jiao, Na; Ma, Cenling; Fang, Sa; Phelps, Tommy J; Zhu, Ruixin; Zhang, Chuanlun

    2017-08-01

    Archaea are cosmopolitan in aerated soils around the world. While the dominance of Thaumarchaeota has been reported in most soils, the methanogens are recently found to be ubiquitous but with low abundances in the aerated soil globally. However, the seasonal changes of Archaea community in the aerated soils are still in the mist. In this study, we investigated the change of Archaea in the context of environmental variables over a period of 12 months in a subtropical soil on the Chongming Island, China. The results showed that Nitrososphaera spp. were the dominant archaeal population while the methanogens were in low proportions but highly diverse (including five genera: Methanobacterium, Methanocella, Methanosaeta, Methanosarcina, and Methanomassiliicoccus) in the aerated soil samples determined by high throughput sequencing. A total of 126 LSA correlations were found in the dataset including all the 72 archaeal OTUs and 8 environmental factors. A significance index defined as the pagerank score of each OTU divided by its relative abundance was used to evaluate the significance of each OTU. The results showed that five out of 17 methanogen OTUs were significantly positively correlated with temperature, suggesting those methanogens might increase with temperature rather than being dormant in the aerated soils. Given the metabolic response of methanogens to temperature under aerated soil conditions, their contribution to the global methane cycle warrants evaluation.

  3. Seasonal variability of interception and water wettability of common oak leaves

    Directory of Open Access Journals (Sweden)

    Anna Klamerus-Iwan

    2017-07-01

    Full Text Available Wettability of leaves and the resulting amount of interception loss of tree crowns is an important component of the atmosphere-tree stand-soil system balance. In the study, we hypothesized that changes occurring in leaves during the vegetation period can significantly affect the amount of rainwater retained by plants and wettability of leaves which is expressed by the contact angle between drops and leaves. We evaluated the hypothesis based on measurement series, which combined direct spraying of leaves with water at different stages of development at a constant temperature with observations made with an electron scanner which was used to determine changes occurring within a leaf, while the photographic method was used to analyze the contact angle of drops. The study involved common oak (Quercus robur. Samples of twigs derived from this species were collected in the area of Przedbórz (Poland forest district, in particular from the trees with well-developed crowns. Twigs were collected from 10 trees of similar age (35–40 years. The resulting database contained experimental data on changes of raindrop adhesion on oak leaves throughout the growing season. The internal contact angle of drops was within the range of 150° on the upper side of the leaf and 160° on the underside in May, up to 15° and 35° in November on the upper and underside of the leaves. Loss of interception was established at 6% at the beginning of the growing season up to 22% in autumn. It was concluded that the wettability and the level of interception increases in line with the age of a leaf.

  4. Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia.

    Science.gov (United States)

    Bhardwaj, P; Naja, M; Kumar, R; Chandola, H C

    2016-03-01

    The seasonal, interannual, and long-term variations in biomass burning activity and related emissions are not well studied over South Asia. In this regard, active fire location retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), the retrievals of aerosol optical depth (AOD) from MODIS Terra, and tropospheric column NO2 from Ozone Monitoring Instrument (OMI) are used to understand the effects of biomass burning on the tropospheric pollution loadings over South Asia during 2003-2013. Biomass burning emission estimates from Global Fire Emission Database (GFED) and Global Fire Assimilation System (GFAS) are also used to quantify uncertainties and regional discrepancies in the emissions of carbon monoxide (CO), nitrogen oxide (NOx), and black carbon (BC) due to biomass burning in South Asia. In the Asian continent, the frequency of fire activity is highest over Southeast Asia, followed by South Asia and East Asia. The biomass burning activity in South Asia shows a distinct seasonal cycle that peaks during February-May with some differences among four (north, central, northeast, and south) regions in India. The annual biomass burning activity in north, central, and south regions shows an increasing tendency, particularly after 2008, while a decrease is seen in northeast region during 2003-2013. The increase in fire counts over the north and central regions contributes 24 % of the net enhancement in fire counts over South Asia. MODIS AOD and OMI tropospheric column NO2 retrievals are classified into high and low fire activity periods and show that biomass burning leads to significant enhancement in tropospheric pollution loading over both the cropland and forest regions. The enhancement is much higher (110-176 %) over the forest region compared to the cropland (34-62 %) region. Further efforts are required to understand the implications of biomass burning on the regional air quality and climate of South Asia.

  5. Seasonal variability of carbonaceous aerosols in an urban background area in Southern Italy

    Science.gov (United States)

    Cesari, D.; Merico, E.; Dinoi, A.; Marinoni, A.; Bonasoni, P.; Contini, D.

    2018-02-01

    Organic (OC) and Elemental Carbon (EC) are important components of atmospheric aerosol particles, playing a key role in climate system and potentially affecting human health. There is a lack of data reported for Southern Italy and this work aims to fill this gap, focusing the attention on the long-term trends of OC and EC concentrations in PM2.5 and PM10, and on atmospheric processes and sources influencing seasonal variability. Measurements were taken at the Environmental-Climate Observatory of Lecce (SE Italy, 40°20‧8″N-18°07‧28″E, 37 m a.s.l.), regional station of the Global Atmosphere Watch program (GAW-WMO). Daily PM10 and PM2.5 samples were collected between July 2013 and July 2016. In addition, starting in December 2014, simultaneous equivalent Black Carbon (eBC) concentrations in PM10 were measured using a Multi Angle Absorption Photometer. A subset of 722 PM samples (361 for each size fraction) was analysed by using a thermo-optical method with a Sunset Laboratory OC/EC analyser, to determine elemental and organic carbon concentrations. The average PM10 and PM2.5 concentrations were 28.8 μg/m3 and 17.5 μg/m3. The average OC and EC concentrations in PM10 were 5.4 μg/m3 and 0.8 μg/m3, in PM2.5 these were 4.7 μg/m3 and 0.6 μg/m3. Carbonaceous content was larger during cold season with respect to warm season as well as secondary organic carbon (SOC) that was evaluated using the OC/EC minimum ratio method. SOC was mainly segregated in PM2.5 and represented 53% - 75% of the total OC. A subset of EC data was compared with eBC measurements, showing a good correlation (R2 = 0.80), however, eBC concentrations were higher than EC concentrations of an average factor of 1.95 (+/- 0.55 standard deviation). This could be explained by the presence of a contribution of Brown Carbon (BrC), for example from biomass burning, in eBC measurements. Weekly patterns showed a slight decrease of carbon content during weekends with respect to weekdays especially

  6. LASR-Guided Variability Subtraction: The Linear Algorithm for Significance Reduction of Stellar Seismic Activity

    Science.gov (United States)

    Horvath, Sarah; Myers, Sam; Ahlers, Johnathon; Barnes, Jason W.

    2017-10-01

    Stellar seismic activity produces variations in brightness that introduce oscillations into transit light curves, which can create challenges for traditional fitting models. These oscillations disrupt baseline stellar flux values and potentially mask transits. We develop a model that removes these oscillations from transit light curves by minimizing the significance of each oscillation in frequency space. By removing stellar variability, we prepare each light curve for traditional fitting techniques. We apply our model to $\\delta$-Scuti KOI-976 and demonstrate that our variability subtraction routine successfully allows for measuring bulk system characteristics using traditional light curve fitting. These results open a new window for characterizing bulk system parameters of planets orbiting seismically active stars.

  7. Variability of thermal and precipitation conditions in the growing season in Poland in the years 1966-2015

    Science.gov (United States)

    Tomczyk, Arkadiusz M.; Szyga-Pluta, Katarzyna

    2018-03-01

    The aim of the study was to identify the thermal and precipitation conditions and their changes in the growing season in Poland in the years 1966-2015. Data on average daily air temperature and daily precipitation totals for 30 stations from the period of 1966-2015 were used. The data were obtained from the collections of the Institute of Meteorology and Water Management—National Research Institute. The growing season was defined as the period of average daily air temperature ≥ 5 °C. The mathematical formulas proposed by Gumiński (1948) were used to determine its start and end dates. In the growing season in Poland in the years 1966-2015, there were more significant changes in the thermal conditions than there were in the precipitation conditions. In terms of long-term trends over the study period, thermal conditions during the growing season are characterised by an increase in mean air temperature, an increase in the sum of air temperatures and an increasing occurrence of seasons classified as above-normal seasons. Precipitation conditions of the growing season show large temporal and spatial variations in precipitation and a predominance of normal conditions. The changes in precipitation were not statistically significant, except for Świnoujście.

  8. Seasonal variability of the carbonate system and coccolithophore Emiliania huxleyi at a Scottish Coastal Observatory monitoring site

    Science.gov (United States)

    León, Pablo; Walsham, Pam; Bresnan, Eileen; Hartman, Susan E.; Hughes, Sarah; Mackenzie, Kevin; Webster, Lynda

    2018-03-01

    Lack of information about carbonate chemistry in inshore waters is a 'knowledge gap' in assessing the impacts of changing carbonate chemistry on the marine environment. Assessing the response of calcifying phytoplankton to this changing carbonate chemistry requires a greater understanding of temporal variation. This study provides a description of the variability of carbonate parameters at a monitoring site in the eastern coast of Scotland. Four-years of monthly data were analysed to assess the diversity, abundance and morphometrics of coccolithophores in relation to carbonate chemistry and environmental variables. The seasonality in carbonate parameters reflected the seasonal cycle in phytoplankton activity, with higher total alkalinity concentrations and pH and lower dissolved inorganic carbon concentrations during the growing season. The dominant coccolithophore at the site was Emiliania huxleyi which showed a clear seasonal pattern, being more abundant in mid-summer when warmer and nutrient-depleted conditions restricted the annual diatom bloom. This study revealed the presence of three morphotypes of E. huxleyi, type A, type A overcalcified (type AO) and type B, which were seasonally distributed throughout the year. The less calcified form was mainly observed in spring while heavily calcified morphotypes overlapped during summer. Autumn and winter months were dominated by the most calcified form (type AO). These results indicate that the seasonal pattern of E. huxleyi morphotypes was not related to the carbonate concentration at the site. This study reflects the strong interannual variability in carbonate chemistry and the complexity associated with coccolithophore calcification, and highlights the need of long-term data to understand the potential impact of ocean acidification on calcifying phytoplankton.

  9. Seasonal Variations of Oceanographic Variables and Eastern Little Tuna (Euthynnus affinis) Catches in the North Indramayu Waters Java Sea

    Science.gov (United States)

    Syamsuddin, Mega; Sunarto; Yuliadi, Lintang

    2018-02-01

    The remotely derived oceanographic variables included sea surface temperature (SST), chlorophyll-a (Chl-a) and Eastern Little Tuna (Euthynnus affinis) catches are used as a combined dataset to understand the seasonal variation of oceanographic variables and Eastern Little Tuna catches in the north Indramayu waters, Java Sea. The fish catches and remotely sensed data were analysed for the 5 years datasets from 2010-2014. This study has shown the effect of monsoon inducing oceanographic condition in the study area. Seasonal change features were dominant for all the selected oceanographic parameters of SST and Chl-a, and also Eastern Little Tuna catches, respectively. The Eastern Little Tuna catch rates have the peak season from September to December (700 to 1000) ton that corresponded with the value of SST ranging from 29 °C to 30 °C following the decreasing of Chl-a concentrations in September to November (0.4 to 0.5) mg m-3. The monsoonal system plays a great role in determining the variability of oceanographic conditions and catch in the north Indramayu waters, Java Sea. The catches seemed higher during the northwest monsoon than in the southeast monsoon for all year observations except in 2010. The wavelet spectrum analysis results confirmed that Eastern Little Tuna catches had seasonal and inter-annual variations during 2012-2014. The SST had seasonal variations during 2010-2014. The Chl-a also showed seasonal variations during 2010-2011 and interannual variations during 2011-2014. Our results would benefit the fishermen and policy makers to have better management for sustainable catch in the study area.

  10. Caribbean Sea rainfall variability during the rainy season and relationship to the equatorial Pacific and tropical Atlantic SST

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Renguang [Institute of Global Environment and Society, Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); Kirtman, Ben P. [University of Miami, Rosenstiel School of Marine and Atmospheric Sciences, Miami, FL (United States)

    2011-10-15

    The present study investigates the Caribbean Sea rainfall variability during the early and late rainy seasons and its association with sea surface temperature (SST) and air-sea interaction based on observational estimates, the NCEP Climate Forecast System (CFS) and Global Forecast System (GFS) simulations, and the CFS retrospective forecasts. Analysis of the observational estimates indicates that air-sea interaction is important over the Caribbean Sea, whereas the atmospheric forcing of SST dominates over the Gulf of Mexico. The CFS simulation captures the basic elements of this observed air-sea relationship. The GFS simulation produces spurious SST forcing of the atmosphere over the Gulf of Mexico largely due to prescribing SST. The CFS forecasts capture the air-sea relationship in the late rainy season (August-October), but cannot reproduce the SST forcing of atmosphere over the Caribbean Sea in the early rainy season (May-July). An empirical orthogonal function (EOF) analysis indicates that the leading modes of percent anomalies of the rainy season precipitation have the largest loading in the southern Caribbean Sea in observations. The model simulations and forecasts skillfully reproduce the spatial pattern, but not the temporal evolution. The Caribbean Sea rainfall variability in the early rainy season is mainly due to the tropical North Atlantic (TNA) SST anomalies in observations, is contributed by both the TNA and eastern equatorial Pacific (EEP) SST anomalies in the CFS simulation, and has an overly large impact from the EEP SST anomalies in the GFS simulation and the CFS forecasts. The observed Caribbean Sea rainfall variability in the late rainy season has a leading impact from the EEP SST anomalies, with a secondary contribution from the TNA SST anomalies. In comparison, the model simulations and forecasts overestimate the impacts of the EEP SST anomalies due to an earlier development and longer duration of the El Nino-Southern Oscillation in the CFS

  11. Low-frequency variability of the atmospheric circulation: a comparison of statistical properties in both hemispheres and extreme seasons

    International Nuclear Information System (INIS)

    Buzzi, A.; Tosi, E.

    1988-01-01

    A statistical investigation is presented of the main variables characterizing the tropospheric general circulation in both hemispheres and extreme season, Winter and Summer. This gives up the opportunity of comparing four distinct realizations of the planetary circulation, as function of different orographic and thermal forcing conditions. Our approach is made possible by the availability of 6 years of global daily analyses prepared by ECMWF (European Centre for Medium-range Weather Forecast). The variables taken into account are the zonal geostrophic wind, the zonal thermal wind and various large-scala wave components, averaged over the tropospheric depth between 1000 and 200 hPa. The mean properties of the analysed quantities in each hemisphere and season are compared and their principal characteristics are discussed. The probability density estimates for the same variables, filtered in order to eliminate the seasonal cycle and the high frequency 'noise', are then presented. The distributions are examined, in particular, with respect of their unimodal or multimodal nature and with reference to the recent discussion in the literature on the bimodality which has been found for some indicators of planetary wave activity in the Nothern Hemisphere Winter. Our results indicate the presence of nonunimodally distributed wave and zonal flow components in both hemispheres and extreme season. The most frequent occurrence of nonunimodal behaviour is found for those wave components which exhibit an almost vanishing zonal phase speed and a larger 'response' to orographic forcing

  12. Phytoplankton dynamics in relation to seasonal variability and upwelling and relaxation patterns at the mouth of Ria de Aveiro (West Iberian Margin over a four-year period.

    Directory of Open Access Journals (Sweden)

    Tânia Vidal

    Full Text Available From June 2004 to December 2007, samples were weekly collected at a fixed station located at the mouth of Ria de Aveiro (West Iberian Margin. We examined the seasonal and inter-annual fluctuations in composition and community structure of the phytoplankton in relation to the main environmental drivers and assessed the influence of the oceanographic regime, namely changes in frequency and intensity of upwelling events, over the dynamics of the phytoplankton assemblage. The samples were consistently handled and a final subset of 136 OTUs (taxa with relative abundance > 0.01% was subsequently submitted to various multivariate analyses. The phytoplankton assemblage showed significant changes at all temporal scales but with an overriding importance of seasonality over longer- (inter-annual or shorter-term fluctuations (upwelling-related. Sea-surface temperature, salinity and maximum upwelling index were retrieved as the main driver of seasonal change. Seasonal signal was most evident in the fluctuations of chlorophyll a concentration and in the high turnover from the winter to spring phytoplankton assemblage. The seasonal cycle of production and succession was disturbed by upwelling events known to disrupt thermal stratification and induce changes in the phytoplankton assemblage. Our results indicate that both the frequency and intensity of physical forcing were important drivers of such variability, but the outcome in terms of species composition was highly dependent on the available local pool of species and the timing of those events in relation to the seasonal cycle. We conclude that duration, frequency and intensity of upwelling events, which vary seasonally and inter-annually, are paramount for maintaining long-term phytoplankton diversity likely by allowing unstable coexistence and incorporating species turnover at different scales. Our results contribute to the understanding of the complex mechanisms of coastal phytoplankton dynamics in

  13. Seasonal variability and geostrophic circulation in the eastern Mediterranean as revealed through a repeated XBT transect

    Directory of Open Access Journals (Sweden)

    V. Zervakis

    Full Text Available The evolution of the upper thermocline on a section across the eastern Mediterranean was recorded bi-weekly through a series of XBT transects from Piraeus, Greece to Alexandria, Egypt, extending from October 1999 to October 2000 on board Voluntary Observing Ships in the framework of the Mediterranean Forecasting System Pilot Project. The data acquired provided valuable information on the seasonal variability of the upper ocean thermal structure at three different regions of the eastern Mediterranean: the Myrtoan, Cretan and Levantine Seas. Furthermore, the horizontal distance (~12 miles between successive profiles provides enough spatial resolution to analyze mesoscale features, while the temporal distance between successive expeditions (2–4 weeks allows us to study their evolution. Sub-basin scale features are identified using contemporaneous sea surface temperature satellite images. The cross-transect geostrophic velocity field and corresponding volume fluxes for several sub-basin scale features of the Levantine Sea are estimated by exploiting monthly q / S diagrams from operational runs of the Princeton Ocean Model in use at NCMR. A southwestward transport in the proximity of the southeast tip of Crete was estimated between 1–3 Sv. The transport increases after the winter formation of dense intermediate water in the Cretan Sea strengthens the pressure gradient across the Cretan Straits. The Mersah-Matruh anticyclone was identified as a closed gyre carrying about 2–6 Sv. This feature was stable throughout the stratified period and disappeared from our records in March 2000. Finally, our data reveal the existence of an eastward-flowing coastal current along the North African coast, transporting a minimum of 1–2 Sv.

    Key words. Oceanography: physical (eddies and mesoscale processes; currents; marginal and semi-closed seas

  14. Estimating trans-seasonal variability in water column biomass for a highly migratory, deep diving predator.

    Directory of Open Access Journals (Sweden)

    Malcolm D O'Toole

    Full Text Available The deployment of animal-borne electronic tags is revolutionizing our understanding of how pelagic species respond to their environment by providing in situ oceanographic information such as temperature, salinity, and light measurements. These tags, deployed on pelagic animals, provide data that can be used to study the ecological context of their foraging behaviour and surrounding environment. Satellite-derived measures of ocean colour reveal temporal and spatial variability of surface chlorophyll-a (a useful proxy for phytoplankton distribution. However, this information can be patchy in space and time resulting in poor correspondence with marine animal behaviour. Alternatively, light data collected by animal-borne tag sensors can be used to estimate chlorophyll-a distribution. Here, we use light level and depth data to generate a phytoplankton index that matches daily seal movements. Time-depth-light recorders (TDLRs were deployed on 89 southern elephant seals (Mirounga leonina over a period of 6 years (1999-2005. TDLR data were used to calculate integrated light attenuation of the top 250 m of the water column (LA(250, which provided an index of phytoplankton density at the daily scale that was concurrent with the movement and behaviour of seals throughout their entire foraging trip. These index values were consistent with typical seasonal chl-a patterns as measured from 8-daySea-viewing Wide Field-of-view Sensor (SeaWiFs images. The availability of data recorded by the TDLRs was far greater than concurrent remotely sensed chl-a at higher latitudes and during winter months. Improving the spatial and temporal availability of phytoplankton information concurrent with animal behaviour has ecological implications for understanding the movement of deep diving predators in relation to lower trophic levels in the Southern Ocean. Light attenuation profiles recorded by animal-borne electronic tags can be used more broadly and routinely to estimate

  15. Diurnal and seasonal variability in size-dependent atmospheric deposition fluxes of polycyclic aromatic hydrocarbons in an urban center

    Science.gov (United States)

    Zhang, Kai; Zhang, Bao-Zhong; Li, Shao-Meng; Zhang, Lei-Ming; Staebler, Ralf; Zeng, Eddy Y.

    2012-09-01

    Atmospheric gaseous and size-segregated particle samples were collected from urban Guangzhou at the heights of 100 and 150 m above the ground in daytime and at night in August and December 2010, and were analyzed for polycyclic aromatic hydrocarbons (PAHs). Particulate PAHs were more abundant at night than in daytime, and significantly higher in winter than in summer. The observed vertical, diurnal, and seasonal variability in the occurrences of PAH were attributed to varying meteorological conditions and atmospheric boundary layers. More than 60% of the particulate PAHs were contained in particles in the accumulation mode with an aerodynamic diameter (Dp) in the range of 0.1-1.8 μm. Different mass transfer velocities by volatilization and condensation are considered the main causes for the different particle size distributions among individual PAHs, while combustion at different temperatures and atmospheric transport were probable causes of the observed seasonal variation in the size distribution of PAHs. Based on the modeled size-dependent dry deposition velocities, daily mean dry deposition fluxes of particulate PAHs ranged from 604 to 1190 ng m-2 d-1, with PAHs in coarse particles (Dp > 1.8 μm) accounting for 55-95% of the total fluxes. In addition, gaseous PAHs were estimated to contribute 0.6-3.1% to the total dry deposition fluxes if a conservative dry deposition velocity for gaseous species (2 × 10-4 m s-1) were used. Finally, disequilibrium phase partitioning, meteorological conditions and atmospheric transport were regarded as the main reasons for the variances in dry deposition velocities of individual PAHs.

  16. Seasonal patterns of activity and community structure in an amphibian assemblage at a pond network with variable hydrology

    Science.gov (United States)

    Vignoli, Leonardo; Bologna, Marco A.; Luiselli, Luca

    2007-03-01

    We studied community structure and seasonal activity patterns in a system of four ponds with seasonally-variable hydrology at a Mediterranean area in central Italy. We used a set of field methods to assess species presence and relative frequency of observation. The network of ponds was inhabited by six species of amphibians, two salamanders and four frogs. The breeding phenology of the six species did not vary remarkably among ponds, but there were significant differences among species in use of ponds. Factorial analysis of pond similarity drawn from percentage composition of the amphibian fauna, revealed that each of the four ponds was treatable as independent units, with no influence of relative inter-pond distance. PCA analysis allowed us to spatially arrange the amphibian species into three main groups: two were monospecific groups (i.e., Triturus vulgaris and Bufo bufo) and the third consisted of those species that selected not only the largest-deepest ponds, but also the ephemeral ones (i.e., Triturus carnifex, Hyla intermedia, the green frogs and Rana dalmatina). Our results suggest that the inter-pond differences in riparian vegetation, water depth, aquatic vegetation structure/abundance, and soil composition may produce differences among pond ecological characteristics (i.e., water turbidity and temperature, shelter availability, abundance of oviposition micro-sites), which may in turn influence different patterns of use by amphibians. To our knowledge, this is the first study emphasizing the potential role of heterochrony in the maintenance of a high species richness in Mediterranean amphibian communities. Preservation of freshwater vertebrate biodiversity requires management and protection not only of the main ponds and water bodies but also the temporary and ephemeral shallow ponds.

  17. Biological variability in biomechanical engineering research: Significance and meta-analysis of current modeling practices.

    Science.gov (United States)

    Cook, Douglas; Julias, Margaret; Nauman, Eric

    2014-04-11

    Biological systems are characterized by high levels of variability, which can affect the results of biomechanical analyses. As a review of this topic, we first surveyed levels of variation in materials relevant to biomechanics, and compared these values to standard engineered materials. As expected, we found significantly higher levels of variation in biological materials. A meta-analysis was then performed based on thorough reviews of 60 research studies from the field of biomechanics to assess the methods and manner in which biological variation is currently handled in our field. The results of our meta-analysis revealed interesting trends in modeling practices, and suggest a need for more biomechanical studies that fully incorporate biological variation in biomechanical models and analyses. Finally, we provide some case study example of how biological variability may provide valuable insights or lead to surprising results. The purpose of this study is to promote the advancement of biomechanics research by encouraging broader treatment of biological variability in biomechanical modeling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. On the seasonal variability of the Canary Current and the Atlantic Meridional Overturning Circulation

    Science.gov (United States)

    Vélez-Belchí, Pedro; Pérez-Hernández, M. Dolores; Casanova-Masjoan, María.; Cana, Luis; Hernández-Guerra, Alonso

    2017-06-01

    The Atlantic Meridional Overturning Circulation (AMOC) is continually monitored along 26°N by the RAPID-MOCHA array. Measurements from this array show a 6.7 Sv seasonal cycle for the AMOC, with a 5.9 Sv contribution from the upper mid-ocean. Recent studies argue that the dynamics of the eastern Atlantic is the main driver for this seasonal cycle; specifically, Rossby waves excited south of the Canary Islands. Using inverse modeling, hydrographic, mooring, and altimetry data, we describe the seasonal cycle of the ocean mass transport around the Canary Islands and at the eastern boundary, under the influence of the African slope, where eastern component of the RAPID-MOCHA array is situated. We find a seasonal cycle of -4.1 ± 0.5 Sv for the oceanic region of the Canary Current, and +3.7 ± 0.4 Sv at the eastern boundary. This seasonal cycle along the eastern boundary is in agreement with the seasonal cycle of the AMOC that requires the lowest contribution to the transport in the upper mid-ocean to occur in fall. However, we demonstrate that the linear Rossby wave model used previously to explain the seasonal cycle of the AMOC is not robust, since it is extremely sensitive to the choice of the zonal range of the wind stress curl and produces the same results with a Rossby wave speed of zero. We demonstrate that the seasonal cycle of the eastern boundary is due to the recirculation of the Canary Current and to the seasonal cycle of the poleward flow that characterizes the eastern boundaries of the oceans.

  19. Global distribution and seasonal variability of coastal low-level jets derived from ERA-Interim reanalysis

    Directory of Open Access Journals (Sweden)

    Raza Ranjha

    2013-08-01

    Full Text Available A low-level wind maximum is often found over the oceans near many coasts around the world. These Coastal Low-Level Jets (CLLJs play an important role in the coastal weather and have significant impacts on regional climate and ecology as well as on a number of human activities. The presence of CLLJs is related to various local circumstances such as land-sea temperature contrasts, upwelling, coastal terrain, orientation of the coast, and so on, but also to the large-scale atmospheric dynamics. This makes studies of CLLJs not only interesting but also challenging. In this study, based on ERA-Interim reanalysis data, the global distribution, spatio-temporal structure and the seasonal variability of CLLJs are documented. Seasonal data from 1980 to 2011 are used to identify areas where CLLJs are frequently found in the lowest 2 km, following criteria based on the vertical profiles of wind speed and temperature. The results are analysed to highlight the fundamental aspects and distinctive features of the CLLJs across the globe, including their occurrence rate, jet height, maximum wind speed and horizontal extent. Global maps of CLLJs are constructed for the summer and winter seasons. The west coasts of North America, the Iberian Peninsula, north-western Africa and the south-eastern coast of the Arabian Peninsula make up the Northern Hemispheric CLLJ regions, while the west coasts of South America, Australia, and southern Africa comprise the South Hemispheric equivalents. The existence and characteristics of CLLJs along the southern coast of Oman and the western coast of the Iberian Peninsula regions are also discussed, not fully envisaged before in the context of CLLJs. The highest occurrence of CLLJs is found during the summer in both hemispheres, and the coast of Oman has the globally highest CLLJ frequency, with also the highest maximum wind speeds. The most commonly found CLLJ has a maximum wind speed between 9 and 15 m s−1, and occurs at

  20. Assessing the Impact of Forest Change and Climate Variability on Dry Season Runoff by an Improved Single Watershed Approach: A Comparative Study in Two Large Watersheds, China

    Directory of Open Access Journals (Sweden)

    Yiping Hou

    2018-01-01

    Full Text Available Extensive studies on hydrological responses to forest change have been published for centuries, yet partitioning the hydrological effects of forest change, climate variability and other factors in a large watershed remains a challenge. In this study, we developed a single watershed approach combining the modified double mass curve (MDMC and the time series multivariate autoregressive integrated moving average model (ARIMAX to separate the impact of forest change, climate variability and other factors on dry season runoff variation in two large watersheds in China. The Zagunao watershed was examined for the deforestation effect, while the Meijiang watershed was examined to study the hydrological impact of reforestation. The key findings are: (1 both deforestation and reforestation led to significant reductions in dry season runoff, while climate variability yielded positive effects in the studied watersheds; (2 the hydrological response to forest change varied over time due to changes in soil infiltration and evapotranspiration after vegetation regeneration; (3 changes of subalpine natural forests produced greater impact on dry season runoff than alteration of planted forests. These findings are beneficial to water resource and forest management under climate change and highlight a better planning of forest operations and management incorporated trade-off between carbon and water in different forests.

  1. Identification of significant process variables for a flow-through supercritical water oxidation reactor

    International Nuclear Information System (INIS)

    Rossi, R.E.

    1992-05-01

    The effects of four process variables on the destruction efficiency of a flow-through supercritical water oxidation reactor were investigated. These process variables included: (1) reactor throughput (GPH), (2) concentration of the surrogate waste (% acetone), (3) maximum reactor tube-wall temperature (OC), and (4) applied stoichiometric oxygen. The analysis was conducted utilizing two-level factorial experiments, steepest ascent methods, and central composite designs. This experimental protocol assures efficient experimentation and allows for an empirical response surface model of the system to be developed. This experimentation identified a significant positive effect for stoichiometric oxygen applied and temperature variations between 400 to 500 degrees C. The increase in destruction efficiency due to stoichiometric 0 2 provides strong evidence that supercritical water oxidations are catalyzed by excess oxygen, and the strong temperature effect is a result of large increases in the kinetic rates for this temperature range. However, increasing temperature between 550 to 650 degrees C does not provide substantial increases in destruction efficiency. In addition, destruction efficiency is significantly unproved by increasing the Reynolds number and residence time. The destruction efficiency of the reactor is also dependent upon the initial concentration of surrogate waste. This concentration dependence may indicate first-order supercritical CO kinetics is inadequate for describing all waste types and reactor configurations. Alternatively, it may indicate reactant mixing, caused by local turbulence at the oxidation fronts of these higher concentration waste streams, results in higher destruction efficiencies

  2. Analysis of Seasonal Variability in Gulf of Alaska Glacier Mass Balance using GRACE

    Science.gov (United States)

    Arendt, A. A.; Luthcke, S. B.; Oneel, S.; Gardner, A. S.; Hill, D. F.

    2011-12-01

    Mass variations of glaciers in Alaska/northwestern Canada must be quantified in order to assess impacts on ecosystems, human infrastructure, and global sea level. Here we combine Gravity Recovery and Climate Experiment (GRACE) observations with a wide range of satellite and field data to investigate drivers of these recent changes, with a focus on seasonal variations. Our central focus will be the exceptionally high mass losses of 2009, which do not correlate with weather station temperature and precipitation data, but may be linked to ash fall from the March 31, 2009 eruption of Mt. Redoubt. The eruption resulted in a significant decrease in MODIS-derived surface albedo over many Alaska glacier regions, and likely contributed to some of the 2009 anomalous mass loss observed by GRACE. We also focus on the Juneau and Stikine Icefield regions that are far from the volcanic eruption but experienced the largest mass losses of any region in 2009. Although rapid drawdown of tidewater glaciers was occurring in southeast Alaska during 2009, we show these changes were probably not sufficiently widespread to explain all of the GRACE signal in those regions. We examine additional field and satellite datasets to quantify potential errors in the climate and GRACE fields that could result in the observed discrepancy.

  3. Use of color maps and wavelet coherence to discern seasonal and interannual climate influences on streamflow variability in northern catchments

    Science.gov (United States)

    Carey, Sean K.; Tetzlaff, Doerthe; Buttle, Jim; Laudon, Hjalmar; McDonnell, Jeff; McGuire, Kevin; Seibert, Jan; Soulsby, Chris; Shanley, Jamie

    2013-10-01

    The higher midlatitudes of the northern hemisphere are particularly sensitive to change due to the important role the 0°C isotherm plays in the phase of precipitation and intermediate storage as snow. An international intercatchment comparison program called North-Watch seeks to improve our understanding of the sensitivity of northern catchments to change by examining their hydrological and biogeochemical variability and response. Here eight North-Watch catchments located in Sweden (Krycklan), Scotland (Girnock and Strontian), the United States (Sleepers River, Hubbard Brook, and HJ Andrews), and Canada (Dorset and Wolf Creek) with 10 continuous years of daily precipitation and runoff data were selected to assess daily to seasonal coupling of precipitation (P) and runoff (Q) using wavelet coherency, and to explore the patterns and scales of variability in streamflow using color maps. Wavelet coherency revealed that P and Q were decoupled in catchments with cold winters, yet were strongly coupled during and immediately following the spring snowmelt freshet. In all catchments, coupling at shorter time scales occurred during wet periods when the catchment was responsive and storage deficits were small. At longer time scales, coupling reflected coherence between seasonal cycles, being enhanced at sites with enhanced seasonality in P. Color maps were applied as an alternative method to identify patterns and scales of flow variability. Seasonal versus transient flow variability was identified along with the persistence of that variability on influencing the flow regime. While exploratory in nature, this intercomparison exercise highlights the importance of climate and the 0°C isotherm on the functioning of northern catchments.

  4. Seasonal variability in distribution and fluxes of methane in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Patra, P.K.; Lal, S.; Venkataramani, S.; Gauns, M.; Sarma, V.V.S.S.

    Methane, a biogeochemically important gas in Earth's atmosphere was measured in the water column and air in the Arabian Sea in different seasons, viz., northeast monsoon, intermonsoon, and southwest monsoon, as part of the Joint Global Ocean Flux...

  5. Seasonal variability of tidal and non-tidal currents off Beypore, SW coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    DineshKumar, P.K.; Srinivas, K.; AnilKumar, N.

    and summer monsoon seasons of year 2000. Information on tidal signals contained in the currents were extracted using harmonic analysis - Least Squares Method and non-tidal component were analyzed using the Chi sub(o) filter. The study established...

  6. Seasonal variability of heat flux divergence in the coastal waters of Visakhapatnam

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, B.P.; Sadhuram, Y.

    Heat flux divergence (Qv) in the coastal waters of Visakhapatnam, Andhra, Pradesh, India during different seasons, was estimated for the period February 1980-January 1981. It is found that the water column (0-60 m) gains heat during winter...

  7. Seasonal variability in penaeid prawn larval abundance in the Mandovi and Zuari estuaries, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.; Goswami, U.

    more in the bottom samples. Based on larval density, M. dobsoni appeared to be a continuous breeder. The active spawning periods in other species were during the late postmonsoon and premonsoon seasons varying with the species. Peak recruitment...

  8. Seasonal variability of physico-chemical characteristics of the Haldia channel of Hooghly estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Sarma, V.V.; Murty, T.V.R.; Rao, B.P.

    . In spite of high concentrations of nutrients, seasonal variation of these parameters attributed to the bio- logical intake and replenishment of nutrients coin- ciding with phytoplankton blooms showing their involvement in the biogeochemical cycle. High val...

  9. SPATIAL AND SEASONAL VARIABILITY OF THALASSIA TESTUDINUM IN NUEVITAS BAY, CUBA

    Directory of Open Access Journals (Sweden)

    Beatriz Martínez-Daranas

    2011-07-01

    Full Text Available A study was carried out on biomass, shoot density and leaf production variability in three Thalassia testudinum meadows under different environmental characteristics in Nuevitas Bay, Cuba, in different seasons. The first site has muddy-sandy sediments and it is affected by bottom trawl fishing; the second has sandy sediments and it is affected by waste-water discharges, and the third has sandy-muddy sediments and no human impacts are present. Leaf, rhizome, and root biomass, daily production of leaves, density of short shoots, and length and width of leaves were estimated five times in a year. Seasonal variations were observed, with higher values of leaf and rhizome biomass, short shoot density, and daily production of leaves occurring in spring and summer. Spatial differences seem to be related to the environmental characteristics of each site: Leaf daily production, leaf biomass and leaf length were lower, and root biomass was higher in the site where sediments are impacted by fishing with bottom trawls; short shoot density and rhizome biomass were higher in the nonaffected site. Lower values of root biomass appeared where waste-water discharges occurred. Se realizó un estudio de la variación de la biomasa, la densidad de vástagos y la producción de hojas en tres praderas de Thalassia testudinum con diferentes características ambientales en la bahía de Nuevitas, Cuba, en diferentes épocas del año. El primer sitio tiene sedimentos fango-arenosos y está afectado por pesquería de arrastre; en el segundo, el sedimento es arenoso y se vierten aguas residuales en su cercanía, y el tercero, con sedimentos arenoso-fangosos, no está afectado por impactos antropogénicos. La biomasa de hojas, rizomas y raíces, la producción diaria de hojas, la densidad de vástagos, y el largo y ancho de las hojas fueron estimadas cinco veces en un año. Se observaron variaciones estacionales, con los valores más altos de biomasa de hojas y de rizomas

  10. Variability in anatomical features of human clavicle: Its forensic anthropological and clinical significance

    Directory of Open Access Journals (Sweden)

    Jagmahender Singh Sehrawat

    2016-06-01

    Full Text Available Bones can reflect the basic framework of human body and may provide valuable information about the biological identity of the deceased. They, often, survive the morphological alterations, taphonomic destructions, decay/mutilation and decomposition insults. In-depth knowledge of variations in clavicular shape, size and its dimensions is very important from both clinical (fixation of clavicular fractures using external or inter-medullary devices, designing orthopedic fixation devices as well as forensic anthropological perspectives. Human clavicle is the most frequently fractured bone of human skeleton, possessing high degree of variability in its anatomical, biomechanical and morphological features. Extended period of skeletal growth (up to third decade in clavicle imparts it an additional advantage for forensic identification purposes. In present study, five categories of clavicular features like lengths, diameters, angles, indices and robustness were examined to explore the suitability of collarbone for forensic and clinical purposes. For this purpose, 263 pairs of adult clavicles (195 Males and 68 Females were collected from autopsied cadavers and were studied for 13 anatomical features. Gender and occupational affiliations of cadavers were found to have significant influences on anatomical dimensions of their clavicles. Product index, weight and circumference of collarbone were found the best univariate variables, discriminating sex of more than 80% individuals. The best multivariate Function-I (DF: -17.315 + 0.054 CL-L+0.196 CC-R+0.184 DM-L could identify sex and occupation of 89.4% (89.2% Male and 89.7% Female and 65.4% individuals, respectively. All clavicular variables were found bilaterally asymmetric; left clavicles being significantly longer in length, lighter in weight, smooth in texture and less curved than the right side bones. Among non-metric traits, sub-clavian groove, nutrient foramina and ‘type’ of clavicle exhibited

  11. Seasonal morphological variability in an in situ Cyanobacteria monoculture: example from a persistent Cylindrospermopsis bloom in Lake Catemaco, Veracruz, Mexico

    Directory of Open Access Journals (Sweden)

    Owen Lind

    2016-03-01

    Full Text Available The phrase cyanobacteria bloom implies a transient condition in which one to few species dominates communities. In this paper we describe a condition in which the bloom is of multi-year duration consisting of different morphologies of a single cyanobacteria species. Lake Catemaco, Veracruz, México maintained a year-round massive (108 trichomes L-1 population of potentially toxin-producing cyanobacteria, Cylindrospermopsis spp. The trichomes are present as straight and coiled morphotypes.  The relative trichome morphology abundance varied with rainy (June – October and dry seasons (November – May, but total trichome abundance did not vary.  Coiled trichomes and heterocytes (occurring only on coiled trichomes were significantly more abundant, both absolutely and relatively, during the dry season. Both coiled trichome and heterocyte mean volumes were significantly smaller during the rainy season than during the dry season.  Biovolumes were largest in January when water temperature was 5º C cooler suggesting buoyancy as a morphology-determining factor. However, with a more than three-fold lower TIN concentration during the dry season, we hypothesized that the coiled morphotype became abundant primarily because it formed heterocytes, which the straight morphotype did not. Spatial trichome and heterocyte abundance differences were small among the 15 lake sites (average CV for all dates = 20%. However, there was a pattern of increased heterocyte and coiled trichome abundance from lake inflow, as a nitrogen source, to outflow during the rainy season. The total volume of heterocytes per litre of lake water increased progressively four-fold from a minimum early in the rainy season to a maximum at the end of the dry season. Morphological diversity, as seen in Lake Catemaco, can partially compensate for the lack of species diversity in determination of community structure.

  12. Leaf blade and petiole nutritional evolution and variability throughout the crop season for Vitis vinifera L. cv. Graciano

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, N.; García-Escudero, N.; Romero, I.; Benito, A.; Martín, I.

    2015-07-01

    An adequate nutritional state of a crop can be kept by means of a well-designed fertilization plan based on the assessment of the nutrient availability throughout the growing season. The objective of this study was to determine the reliability of leaf blade and petiole diagnosis and the period of validity of their references at both flowering and veraison by means of systematic monitoring throughout the complete growing season. The study was carried out in two plots planted with Vitis vinifera L. cv. Graciano within the AOC Rioja (Spain). Blades and petioles were collected throughout a growing season (2006) and total N, P, K, Ca, Mg, Fe, Mn, Zn, Cu and B concentrations were analyzed in both tissues. Results suggest, in general, that petioles have higher variability and lower analysis reproducibility than blades. Therefore, blade could be a more appropriate tissue to evaluate N, P, K, Ca, and Mg at both flowering and veraison in this variety. Micronutrients in blade and petiole showed different variability behaviour in each of the vineyards studied, therefore, based on our results, it was difficult to determine which one could be the best tissue for the nutritional diagnosis of the ‘Graciano’ variety. Seasonal changes of nutrient concentration in both tissues also confirmed the need for reference values for each tissue and each phenological stage. (Author)

  13. The value of seasonal forecasting and crop mix adaptation to climate variability for agriculture under climate change

    Science.gov (United States)

    Choi, H. S.; Schneider, U.; Schmid, E.; Held, H.

    2012-04-01

    Changes to climate variability and frequency of extreme weather events are expected to impose damages to the agricultural sector. Seasonal forecasting and long range prediction skills have received attention as an option to adapt to climate change because seasonal climate and yield predictions could improve farmers' management decisions. The value of seasonal forecasting skill is assessed with a crop mix adaptation option in Spain where drought conditions are prevalent. Yield impacts of climate are simulated for six crops (wheat, barely, cotton, potato, corn and rice) with the EPIC (Environmental Policy Integrated Climate) model. Daily weather data over the period 1961 to 1990 are used and are generated by the regional climate model REMO as reference period for climate projection. Climate information and its consequent yield variability information are given to the stochastic agricultural sector model to calculate the value of climate information in the agricultural market. Expected consumers' market surplus and producers' revenue is compared with and without employing climate forecast information. We find that seasonal forecasting benefits not only consumers but also producers if the latter adopt a strategic crop mix. This mix differs from historical crop mixes by having higher shares of crops which fare relatively well under climate change. The corresponding value of information is highly sensitive to farmers' crop mix choices.

  14. Minor methane emissions from an Alpine hydropower reservoir based on monitoring of diel and seasonal variability.

    Science.gov (United States)

    Sollberger, Sébastien; Wehrli, Bernhard; Schubert, Carsten J; DelSontro, Tonya; Eugster, Werner

    2017-10-18

    We monitored CH 4 emissions during the ice-free period of an Alpine hydropower reservoir in the Swiss Alps, Lake Klöntal, to investigate mechanisms responsible for CH 4 variability and to estimate overall emissions to the atmosphere. A floating eddy-covariance platform yielded total CH 4 and CO 2 emission rates at high temporal resolution, while hydroacoustic surveys provided no indication of CH 4 ebullition. Higher CH 4 fluxes (2.9 ± 0.1 mg CH 4 per m 2 per day) occurred during the day when surface water temperatures were warmer and wind speeds higher than at night. Piston velocity estimates (k 600 ) showed an upper limit at high wind speeds that may be more generally valid also for other lakes and reservoirs with limited CH 4 dissolved in the water body: above 2.0 m s -1 a further increase in wind speed did not lead to higher CH 4 fluxes, because under such conditions it is not the turbulent mixing and transport that limits effluxes, but the resupply of CH 4 to the lake surface. Increasing CH 4 fluxes during the warm season showed a clear spatial gradient once the reservoir started to fill up and flood additional surface area. The warm period contributed 27% of the total CH 4 emissions (2.6 t CH 4 per year) estimated for the full year and CH 4 accounted for 63% of carbonic greenhouse gas emissions. Overall, the average CH 4 emissions (1.7 to 2.2 mg CH 4 per m 2 per day determined independently from surface water samplings and eddy covariance, respectively) were small compared to most tropical and some temperate reservoirs. The resulting greenhouse gas (GHG) emissions in CO 2 -equivalents revealed that electricity produced in the Lake Klöntal power plant was relatively climate-friendly with a low GHG-to-power output ratio of 1.24 kg CO 2,eq per MW h compared to 6.5 and 8.1 kg CO 2,eq per MW h associated with the operation of solar photovoltaics and wind energy, respectively, or about 980 kg CO 2,eq per MW h for coal-fired power plants.

  15. Spatial variability of NDVI at different seasons in the Community of Madrid (Spain)

    Science.gov (United States)

    Sotoca, Juan J. Martin; Saa-Requejo, Antonio; Borondo, Javier; Tarquis, Ana M.

    2015-04-01

    Agricultural drought quantification is one of the most important tasks in the characterization process of this natural hazard and its implications in crop insurance. Recently, several vegetation indexes based on remote-sensing data (VI) has been applied to quantify it (Dalezios et al, 2012). VIs are obtained combining several frequency bands that represent the relationship between photosynthesis and absorbed/reflected radiation. The most widely used VI is the Normalized Difference Vegetation Index (NDVI). It is based on the principle that healthy vegetation mainly absorbs visible light and reflects the near-infrared frequency band. Drought can be highly localized, and several authors have recognized the critical role of soil moisture and its spatial variability in agricultural losses (Anderson et al., 2011). Therefore, it is important to delimit locations within a homogeneous area that will share main NDVI statistics and in which the same threshold value can be applied to define drought event. In order to do so, we have applied for the first time in this context the method of singularity maps (Cheng and Agterberg, 1996) commonly used in localization of mineral deposits. The NDVI singularity maps calculated in each season through 2011/2012 are showed and discussed (Martín-Sotoca, 2014). References Anderson, M:C:, C. R. Hain, B. Wardlow, J. R. Mecikalski and W. P. Kustas (2011) Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States. J. Climate, 24, 2025-2044. Dalezios, N.R., A. Blanta, N.V. Spyropoulos and A.M. Tarquis (2012) Risk identification of agricultural drought for sustainable Agroecosystems. Nat. Hazards Earth Syst. Sci., 14, 2435-2448. Cheng, Q. and F.P. Agterberg (1996) Multifractal modeling and spatial statistics. Math. Geol., 28, 1-16. Martín-Sotoca, J.J. (2014) Estructura Espacial de la Sequía en Pastos y sus Aplicaciones en el Seguro Agrario. Master Thesis, UPM (In Spanish

  16. Indo-Pacific Variability on Seasonal to Multidecadal Time Scales. Part I: Intrinsic SST Modes in Models and Observations

    Science.gov (United States)

    Slawinska, Joanna; Giannakis, Dimitrios

    2017-07-01

    The variability of Indo-Pacific SST on seasonal to multidecadal timescales is investigated using a recently introduced technique called nonlinear Laplacian spectral analysis (NLSA). Through this technique, drawbacks associated with ad hoc pre-filtering of the input data are avoided, enabling recovery of low-frequency and intermittent modes not previously accessible via classical approaches. Here, a multiscale hierarchy of spatiotemporal modes is identified for Indo-Pacific SST in millennial control runs of CCSM4 and CM3 and in HadISST data. On interannual timescales, a mode with spatiotemporal patterns corresponding to the fundamental component of ENSO emerges, along with ENSO-modulated annual modes consistent with combination mode theory. The ENSO combination modes also feature prominent activity in the Indian Ocean, explaining significant fraction of the SST variance in regions associated with the Indian Ocean dipole. A pattern resembling the tropospheric biennial oscillation emerges in addition to ENSO and the associated combination modes. On multidecadal timescales, the dominant NLSA mode in the model data is predominantly active in the western tropical Pacific. The interdecadal Pacific oscillation also emerges as a distinct NLSA mode, though with smaller explained variance than the western Pacific multidecadal mode. Analogous modes on interannual and decadal timescales are also identified in HadISST data for the industrial era, as well as in model data of comparable timespan, though decadal modes are either absent or of degraded quality in these datasets.

  17. Seasonal variability of mixed layer in the central Arabian Sea and its implication on nutrients and primary productivity

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Narvekar, J.

    -1 Seasonal variability of mixed layer in the central Arabian Sea and its implication on nutrients and primary productivity S. Prasanna Kumar and Jayu Narvekar National Institute of Oceanography, Dona Paula, Goa-403 004, India... on a 2? x 4? grids up to a depth of 500m. Monthly mean temperature and salinity data were used to calculate the sigma-t values (UNESCO, 1981). We also used nitrate, chlorophyll a and primary productivity data in the upper 120m water column...

  18. Seasonal and diurnal variability of pressure fluctuation in the infrasound frequency range observed in the Czech microbarograph network

    Czech Academy of Sciences Publication Activity Database

    Šindelářová, Tereza; Kozubek, Michal; Chum, Jaroslav; Potužníková, Kateřina

    2016-01-01

    Roč. 60, č. 2 (2016), s. 747-762 ISSN 0039-3169 R&D Projects: GA ČR GP13-09778P; GA ČR(CZ) GAP209/12/2440 Institutional support: RVO:68378289 Keywords : infrasound environments * Czech microbarograph network * seasonal and diurnal variability Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.764, year: 2016 http://link.springer.com/article/10.1007/s11200-015-0250-1

  19. Variability of onset and retreat of the rainy season in mainland China and associations with atmospheric circulation and sea surface temperature

    Science.gov (United States)

    Cao, Qing; Hao, Zhenchun; Shao, Quanxi; Hao, Jie; Nyima, Tsring

    2018-02-01

    Precipitation plays an important role in both environment and human society and is a significant factor in many scientific researches such as water resources, agriculture and climate impact studies. The onset and retreat of rainy season are useful features to understand the variability of precipitation under the influence of climate change. In this study, the characteristics of onset and retreat in mainland China are investigated. The multi-scale moving t-test was applied to determine rainy season and K-means cluster analysis was used to divide China into sub-regions to better investigate rainy season features. The possible linkage of changing characteristics of onset and retreat to climate factors were also explored. Results show that: (1) the onset started from middle March in the southeast of China to early June in the northwest and rainy season ended earliest in the northwest and southeast while the central China had the latest retreat; (2) Delayed onset and advanced retreat over time were observed in many parts of China, together with overall stable or increased rainy-season precipitation, would likely lead to higher probability of flooding; (3) The onset (retreat) was associated with the increased (decreased) number of cyclones in eastern China and anticyclone near the South China Sea. Delayed onset, and advanced retreat were likely related to cold and warm sea surface temperature (SST) in the conventional El Niño-Southern Oscillation (ENSO) regions, respectively. These results suggest that predictability of rainy season can be improved through the atmospheric circulation and SST, and help water resources management and agricultural planning.

  20. Seasonal Variability of Thermophilic Campylobacter Spp. in Raw Milk Sold by Automatic Vending Machines in Lombardy Region.

    Science.gov (United States)

    Bertasi, Barbara; Losio, Marina Nadia; Daminelli, Paolo; Finazzi, Guido; Serraino, Andrea; Piva, Silvia; Giacometti, Federica; Massella, Elisa; Ostanello, Fabio

    2016-06-03

    In temperate climates, a seasonal trend was observed in the incidence of human campylobacteriosis cases, with peaks reported in spring and autumn in some countries, or in summer in others; a similar trend was observed in Campylobacter spp. dairy cattle faecal shedding, suggesting that cattle may play a role in the seasonal peak of human infection. The objectives of this study were to assess if a seasonal trend in thermophilic Campylobacter spp. contamination of raw milk exists and to evaluate a possible relation between this and the increase of human campylobacteriosis incidence in summer months. The results showed a mean prevalence of 1.6% of milk samples positive for thermophilic Campylobacter spp. with a wide range (0.0-3.1%) in different months during the three years considered. The statistical analysis showed a significant difference (P<0.01) of the prevalence of positive samples for thermophilic Campylobacter spp. between warmer and cooler months (2.3 vs 0.6%). The evidence of a seasonal trend in thermophilic Campylobacter spp. contamination of raw milk sold for direct consumption, with an increase of the prevalence in warmer months, may represent one of the possible links between seasonal trend in cattle faecal shedding and seasonal trend in human campylobacteriosis.

  1. Seasonal variability of thermophilic Campylobacter spp. in raw milk sold by automatic vending machines in Lombardy Region

    Directory of Open Access Journals (Sweden)

    Barbara Bertasi

    2016-06-01

    Full Text Available In temperate climates, a seasonal trend was observed in the incidence of human campylobacteriosis cases, with peaks reported in spring and autumn in some countries, or in summer in others; a similar trend was observed in Campylobacter spp. dairy cattle faecal shedding, suggesting that cattle may play a role in the seasonal peak of human infection. The objectives of this study were to assess if a seasonal trend in thermophilic Campylobacter spp. contamination of raw milk exists and to evaluate a possible relation between this and the increase of human campylobacteriosis incidence in summer months. The results showed a mean prevalence of 1.6% of milk samples positive for thermophilic Campylobacter spp. with a wide range (0.0-3.1% in different months during the three years considered. The statistical analysis showed a significant difference (PCampylobacter spp. between warmer and cooler months (2.3 vs 0.6%. The evidence of a seasonal trend in thermophilic Campylobacter spp. contamination of raw milk sold for direct consumption, with an increase of the prevalence in warmer months, may represent one of the possible links between seasonal trend in cattle faecal shedding and seasonal trend in human campylobacteriosis.

  2. Variability and seasonality of active transportation in USA: evidence from the 2001 NHTS

    Science.gov (United States)

    2011-01-01

    Background Active transportation including walking and bicycling is an important source of physical activity. Promoting active transportation is a challenge for the fields of public health and transportation. Descriptive data on the predictors of active transportation, including seasonal patterns in active transportation in the US as a whole, is needed to inform interventions and policies. Methods This study analyzed monthly variation in active transportation for the US using National Household Travel Survey 2001 data. For each age group of children, adolescents, adults and elderly, logistic regression models were used to identify predictors of the odds of active transportation including gender, race/ethnicity, household income level, geographical region, urbanization level, and month. Results The probability of engaging in active transportation was generally higher for children and adolescents than for adults and the elderly. Active transportation was greater in the lower income groups (except in the elderly), was lower in the South than in other regions of the US, and was greater in areas with higher urbanization. The percentage of people using active transportation exhibited clear seasonal patterns: high during summer months and low during winter months. Children and adolescents were more sensitive to seasonality than other age groups. Women, non-Caucasians, persons with lower household income, who resided in the Midwest or Northeast, and who lived in more urbanized areas had greater seasonal variation. Conclusions These descriptive results suggest that interventions and policies that target the promotion of active transportation need to consider socio-demographic factors and seasonality. PMID:21917136

  3. Interaction between the tidal and seasonal variability of the Gulf of Maine and Scotian Shelf region

    Science.gov (United States)

    Katavouta, Anna; Thompson, Keith; Lu, Youyu; Loder, John

    2017-04-01

    In the Gulf of Maine and Scotian Shelf (off the northeastern coast of North America) tides are large and can alter the local hydrographic properties, circulation, and sea surface height through processes such as tidal rectification, mixing, and horizontal advection. Furthermore, the stratification of the water column can influence tidal elevation and currents over the shelves (e.g., baroclinic tides). To investigate this interaction, a newly developed high resolution (1/36 degree) regional circulation model is used (GoMSS model). First, numerical experiments with and without density stratification are used to demonstrate the influence of stratification on the tides. GoMSS model is then used to interpret the physical mechanisms responsible for the largest seasonal variations in the M2 surface current which occur over, and to the north of, Georges Bank. An alternating pattern of highs and lows in the summer maximum M2 surface speed in the Gulf of Maine is identified, for the first time, in both the model output and observations by a high frequency coastal radar system. This pattern consists of extended striations in tidal speed aligned with the northern flank of Georges Bank that separates the Gulf of Maine from the North Atlantic. The striations are explained in terms of a linear superposition of the barotropic tide flowing across the northern flank of Georges Bank and the reflected, phase-locked baroclinic tide. The striations have amplitudes of about 0.1 m/s and longitudinal length scales of order 100 km, and are thus of practical significance.

  4. Seasonal to Interannual Variability of Satellite-Based Precipitation Estimates in the Pacific Ocean Associated with ENSO from 1998 to 2014

    Directory of Open Access Journals (Sweden)

    Xueyan Hou

    2016-10-01

    Full Text Available Based on a widely used satellite precipitation product (TRMM Multi-satellite Precipitation Analysis 3B43, we analyzed the spatiotemporal variability of precipitation over the Pacific Ocean for 1998–2014 at seasonal and interannual timescales, separately, using the conventional empirical orthogonal function (EOF and investigated the seasonal patterns associated with El Niño–Southern Oscillation (ENSO cycles using season-reliant empirical orthogonal function (SEOF analysis. Lagged correlation analysis was also applied to derive the lead/lag correlations of the first two SEOF modes for precipitation with Pacific Decadal Oscillation (PDO and two types of El Niño, i.e., central Pacific (CP El Niño and eastern Pacific (EP El Niño. We found that: (1 The first two seasonal EOF modes for precipitation represent the annual cycle of precipitation variations for the Pacific Ocean and the first interannual EOF mode shows the spatiotemporal variability associated with ENSO; (2 The first SEOF mode for precipitation is simultaneously associated with the development of El Niño and most likely coincides with CP El Niño. The second SEOF mode lagged behind ENSO by one year and is associated with post-El Niño years. PDO modulates precipitation variability significantly only when ENSO occurs by strengthening and prolonging the impacts of ENSO; (3 Seasonally evolving patterns of the first two SEOF modes represent the consecutive precipitation patterns associated with the entire development of EP El Niño and the following recovery year. The most significant variation occurs over the tropical Pacific, especially in the Intertropical Convergence Zone (ITCZ and South Pacific Convergence Zone (SPCZ; (4 Dry conditions in the western basin of the warm pool and wet conditions along the ITCZ and SPCZ bands during the mature phase of El Niño are associated with warm sea surface temperatures in the central tropical Pacific, and a subtropical anticyclone dominating

  5. Seasonal Variability in Vadose zone biodegradation at a crude oil pipeline rupture site

    Science.gov (United States)

    Sihota, Natasha J.; Trost, Jared J.; Bekins, Barbara; Berg, Andrew M.; Delin, Geoffrey N.; Mason, Brent E.; Warren, Ean; Mayer, K. Ulrich

    2016-01-01

    Understanding seasonal changes in natural attenuation processes is critical for evaluating source-zone longevity and informing management decisions. The seasonal variations of natural attenuation were investigated through measurements of surficial CO2 effluxes, shallow soil CO2 radiocarbon contents, subsurface gas concentrations, soil temperature, and volumetric water contents during a 2-yr period. Surficial CO2 effluxes varied seasonally, with peak values of total soil respiration (TSR) occurring in the late spring and summer. Efflux and radiocarbon data indicated that the fractional contributions of natural soil respiration (NSR) and contaminant soil respiration (CSR) to TSR varied seasonally. The NSR dominated in the spring and summer, and CSR dominated in the fall and winter. Subsurface gas concentrations also varied seasonally, with peak values of CO2 and CH4 occurring in the fall and winter. Vadose zone temperatures and subsurface CO2 concentrations revealed a correlation between contaminant respiration and temperature. A time lag of 5 to 7 mo between peak subsurface CO2 concentrations and peak surface efflux is consistent with travel-time estimates for subsurface gas migration. Periods of frozen soils coincided with depressed surface CO2 effluxes and elevated CO2 concentrations, pointing to the temporary presence of an ice layer that inhibited gas transport. Quantitative reactive transport simulations demonstrated aspects of the conceptual model developed from field measurements. Overall, results indicated that source-zone natural attenuation (SZNA) rates and gas transport processes varied seasonally and that the average annual SZNA rate estimated from periodic surface efflux measurements is 60% lower than rates determined from measurements during the summer.

  6. Non-stationarities significantly distort short-term spectral, symbolic and entropy heart rate variability indices

    International Nuclear Information System (INIS)

    Magagnin, Valentina; Bassani, Tito; Bari, Vlasta; Turiel, Maurizio; Porta, Alberto; Maestri, Roberto; Pinna, Gian Domenico

    2011-01-01

    The autonomic regulation is non-invasively estimated from heart rate variability (HRV). Many methods utilized to assess autonomic regulation require stationarity of HRV recordings. However, non-stationarities are frequently present even during well-controlled experiments, thus potentially biasing HRV indices. The aim of our study is to quantify the potential bias of spectral, symbolic and entropy HRV indices due to non-stationarities. We analyzed HRV series recorded in healthy subjects during uncontrolled daily life activities typical of 24 h Holter recordings and during predetermined levels of robotic-assisted treadmill-based physical exercise. A stationarity test checking the stability of the mean and variance over short HRV series (about 300 cardiac beats) was utilized to distinguish stationary periods from non-stationary ones. Spectral, symbolic and entropy indices evaluated solely over stationary periods were contrasted with those derived from all the HRV segments. When indices were calculated solely over stationary series, we found that (i) during both uncontrolled daily life activities and controlled physical exercise, the entropy-based complexity indices were significantly larger; (ii) during uncontrolled daily life activities, the spectral and symbolic indices linked to sympathetic modulation were significantly smaller and those associated with vagal modulation were significantly larger; (iii) while during uncontrolled daily life activities, the variance of spectral, symbolic and entropy rate indices was significantly larger, during controlled physical exercise, it was smaller. The study suggests that non-stationarities increase the likelihood to overestimate the contribution of sympathetic control and affect the power of statistical tests utilized to discriminate conditions and/or groups

  7. Meteorological variables affect fertility rate after intrauterine artificial insemination in sheep in a seasonal-dependent manner: a 7-year study

    Science.gov (United States)

    Palacios, C.; Abecia, J. A.

    2015-05-01

    A total number of 48,088 artificial inseminations (AIs) have been controlled during seven consecutive years in 79 dairy sheep Spanish farms (41° N). Mean, maximum and minimum ambient temperatures ( Ts), temperature amplitude (TA), mean relative humidity (RH), mean solar radiation (SR) and total rainfall of each insemination day and 15 days later were recorded. Temperature-humidity index (THI) and effective temperature (ET) have been calculated. A binary logistic regression model to estimate the risk of not getting pregnant compared to getting pregnant, through the odds ratio (OR), was performed. Successful winter inseminations were carried out under higher SR ( P 1 (maximum T, ET and rainfall on AI day, and ET and rainfall on day 15), and two variables presented OR AI day and maximum T on day 15). However, the effect of meteorological factors affected fertility in opposite ways, so T becomes a protective or risk factor on fertility depending on season. In conclusion, the percentage of pregnancy after AI in sheep is significantly affected by meteorological variables in a seasonal-dependent manner, so the parameters such as temperature reverse their effects in the hot or cold seasons. A forecast of the meteorological conditions could be a useful tool when AI dates are being scheduled.

  8. Seasonal variability of leaf area index and foliar nitrogen in contrasting dry-mesic tundras

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Lemeur, Raoul

    2009-01-01

    Assimilation and exchange of carbon for arctic ecosystems depend strongly on leaf area index (LAI) and total foliar nitrogen (TFN). For dry-mesic tundras, the seasonality of these characteristics is unexplored. We addressed this knowledge gap by measuring variations of LAI and TFN at five contras...

  9. (abstract) Seasonal Variability in Coastal Upwelling: A Comparison of Four Coastal Upwelling Sites from Space

    Science.gov (United States)

    Carr, Mary-Elena

    1996-01-01

    Coastal upwelling of subsurface nutrient-rich water occurs along the eastern boundary of the ocean basins and leads to high primary production and fish catches. In this study satellite observations are used to compare the seasonal cycle in wind forcing and in the oceanic and biological response of the major coastal upwelling regions associated with the Canary, Benguela, California, and Humboldt Currents.

  10. Seasonal and Spatial Variability of Anthropogenic and Natural Factors Influencing Groundwater Quality Based on Source Apportionment

    Directory of Open Access Journals (Sweden)

    Xueru Guo

    2018-02-01

    Full Text Available Globally, groundwater resources are being deteriorated by rapid social development. Thus, there is an urgent need to assess the combined impacts of natural and enhanced anthropogenic sources on groundwater chemistry. The aim of this study was to identify seasonal characteristics and spatial variations in anthropogenic and natural effects, to improve the understanding of major hydrogeochemical processes based on source apportionment. 34 groundwater points located in a riverside groundwater resource area in northeast China were sampled during the wet and dry seasons in 2015. Using principal component analysis and factor analysis, 4 principal components (PCs were extracted from 16 groundwater parameters. Three of the PCs were water-rock interaction (PC1, geogenic Fe and Mn (PC2, and agricultural pollution (PC3. A remarkable difference (PC4 was organic pollution originating from negative anthropogenic effects during the wet season, and geogenic F enrichment during the dry season. Groundwater exploitation resulted in dramatic depression cone with higher hydraulic gradient around the water source area. It not only intensified dissolution of calcite, dolomite, gypsum, Fe, Mn and fluorine minerals, but also induced more surface water recharge for the water source area. The spatial distribution of the PCs also suggested the center of the study area was extremely vulnerable to contamination by Fe, Mn, COD, and F−.

  11. Observed seasonal and intraseasonal variability of the East India Coastal Current on the continental slope.

    Digital Repository Service at National Institute of Oceanography (India)

    Mukherjee, A; Shankar, D.; Fernando, V.; Amol, P.; Aparna, S.G.; Fernandes, R.; Michael, G.S.; Khalap, S.T.; Satelkar, N.P.; Agarvadekar, Y.; Gaonkar, M.G.; Tari, A; Kankonkar, A; Vernekar, S.

    of the northern bay (89 Degree E, 19 Degree N; referred to as being located at Paradip). The data were collected during May 2009 to March 2013 and the observations show that the seasonal cycle, which includes the annual cycle, the semi-annual cycle, and a peak...

  12. Biophysical drivers of seasonal variability in Sphagnum gross primary production in a northern temperate bog

    Science.gov (United States)

    Anthony P. Walker; Kelsey R. Carter; Lianhong Gu; Paul J. Hanson; Avni Malhotra; Richard J. Norby; Stephen D. Sebestyen; Stan D. Wullschleger; David J. Weston

    2017-01-01

    Sphagnum mosses are the keystone species of peatland ecosystems. With rapid rates of climate change occurring in high latitudes, vast reservoirs of carbon accumulated over millennia in peatland ecosystems are potentially vulnerable to rising temperature and changing precipitation. We investigate the seasonal drivers of Sphagnum...

  13. Amazon forest structure generates diurnal and seasonal variability in light utilization

    Science.gov (United States)

    Douglas C. Morton; Jeremy Rubio; Bruce D. Cook; Jean-Philippe Gastellu-Etchegorry; Marcos Longo; Hyeungu Choi; Maria Hunter; Michael Keller

    2016-01-01

    The complex three-dimensional (3-D) structure of tropical forests generates a diversity of light environments for canopy and understory trees. Understanding diurnal and seasonal changes in light availability is critical for interpreting measurements of net ecosystem exchange and improving ecosystem models. Here, we used the Discrete Anisotropic Radiative Transfer (DART...

  14. [Variability of vegetation growth season in different latitudinal zones of North China: a monitoring by NOAA NDVI and MSAVI].

    Science.gov (United States)

    Wang, Hong; Li, Xiaobing; Han, Ruibo; Ge, Yongqin

    2006-12-01

    In this study, North China was latitudinally divided into five zones, i.e., 32 degrees - 36 degrees N (Zone I), 36 degrees - 40 degrees N (Zone II), 40 degrees - 44 degrees N (Zone III), 44 degrees - 48 degrees N (Zone IV) and 48 degrees - 52 degrees N (Zone V), and the NOAA/ AVHRR NDVI and MSAVI time-series images from 1982 to 1999 were smoothed with Savitzky-Golay filter algorithm. Based on the EOF analysis, the principal components of NDVI and MSAVI for the vegetations in different latitudinal zones of North China were extracted, the annual beginning and ending dates and the length of growth season in 1982 - 1999 were estimated, and the related parameters were linearly fitted, aimed to analyze the variability of vegetation growth season. The results showed that the beginning date of the growth season in different zones tended to be advanced, while the ending date tended to be postponed with increasing latitude. The length of the growth season was also prolonged, with the prolonging time exceeded 10 days.

  15. Regression-based season-ahead drought prediction for southern Peru conditioned on large-scale climate variables

    Science.gov (United States)

    Mortensen, Eric; Wu, Shu; Notaro, Michael; Vavrus, Stephen; Montgomery, Rob; De Piérola, José; Sánchez, Carlos; Block, Paul

    2018-01-01

    Located at a complex topographic, climatic, and hydrologic crossroads, southern Peru is a semiarid region that exhibits high spatiotemporal variability in precipitation. The economic viability of the region hinges on this water, yet southern Peru is prone to water scarcity caused by seasonal meteorological drought. Meteorological droughts in this region are often triggered during El Niño episodes; however, other large-scale climate mechanisms also play a noteworthy role in controlling the region's hydrologic cycle. An extensive season-ahead precipitation prediction model is developed to help bolster the existing capacity of stakeholders to plan for and mitigate deleterious impacts of drought. In addition to existing climate indices, large-scale climatic variables, such as sea surface temperature, are investigated to identify potential drought predictors. A principal component regression framework is applied to 11 potential predictors to produce an ensemble forecast of regional January-March precipitation totals. Model hindcasts of 51 years, compared to climatology and another model conditioned solely on an El Niño-Southern Oscillation index, achieve notable skill and perform better for several metrics, including ranked probability skill score and a hit-miss statistic. The information provided by the developed model and ancillary modeling efforts, such as extending the lead time of and spatially disaggregating precipitation predictions to the local level as well as forecasting the number of wet-dry days per rainy season, may further assist regional stakeholders and policymakers in preparing for drought.

  16. Real-time monitoring of smallholder farmer responses to intra-seasonal climate variability in central Kenya

    Science.gov (United States)

    Krell, N.; Evans, T. P.; Estes, L. D.; Caylor, K. K.

    2017-12-01

    While international metrics of food security and water availability are generated as spatial averages at the regional to national levels, climate variability impacts are differentially felt at the household level. This project investigated scales of variability of climate impacts on smallholder farmers using social and environmental data in central Kenya. Using sub-daily real-time environmental measurements to monitor smallholder agriculture, we investigated how changes in seasonal precipitation affected food security around Laikipia county from September 2015 to present. We also conducted SMS-based surveys of over 700 farmers to understand farmers' decision-making within the growing season. Our results highlight field-scale heterogeneity in biophysical and social factors governing crop yields using locally sensed real-time environmental data and weekly farmer-reported information about planting, harvesting, irrigation, and crop yields. Our preliminary results show relationships between changes in seasonal precipitation, NDVI, and soil moisture related to crop yields and decision-making at several scales. These datasets present a unique opportunity to collect highly spatially and temporally resolved information from data-poor regions at the household level.

  17. Seasonal variability of primary production in a fjord ecosystem of the Chilean Patagonia: Implications for the transfer of carbon within pelagic food webs

    Science.gov (United States)

    Montero, Paulina; Daneri, Giovanni; González, Humberto E.; Iriarte, Jose Luis; Tapia, Fabián J.; Lizárraga, Lorena; Sanchez, Nicolas; Pizarro, Oscar

    2011-03-01

    We characterized the seasonal cycle of productivity in Reloncaví Fjord (41°30'S), Chilean Patagonia. Seasonal surveys that included measurements of gross primary production, community respiration, bacterioplankton secondary production, and sedimentation rates along the fjord were combined with continuous records of water-column temperature variability and wind forcing, as well as satellite-derived data on regional patterns of wind stress, sea surface temperatures, and surface chlorophyll concentrations. The hydrography and perhaps fjord productivity respond to the timing and intensity of wind forcing over a larger region. Seasonal changes in the direction and intensity of winds, along with a late-winter improvement in light conditions, may determine the timing of phytoplankton blooms and potentially modulate productivity cycles in the region. Depth-integrated gross primary production estimates were higher (0.4-3.8 g C m -2 d -1) in the productive season (October, February, and May), and lower (0.1-0.2 g C m -2 d -1) in the non-productive season (August). These seasonal changes were also reflected in community respiration and bacterioplankton production rates, which ranged, respectively, from 0.3 to 4.8 g C m -2 d -1 and 0.05 to 0.4 g C m -2 d -1 during the productive and non-productive seasons and from 0.05 to 0.6 g C m -2 d -1 and 0.05 to 0.2 g C m -2 d -1 during the same two periods. We found a strong, significant correlation between gross primary production and community respiration (Spearman, r=0.95; p100%, suggesting the use of allochthonous carbon sources by bacterioplankton when the levels of gross primary production are low. Low primary production rates were associated with a greater contribution of small cells to autotrophic biomass, highlighting the importance of small-sized plankton and bacteria for carbon cycling and fluxes during the less productive winter months. Fecal pellet sedimentation was minimal during this period, also suggesting that most of

  18. Spatial variability of primary organic sources regulates ichthyofauna distribution despite seasonal influence in Terminos lagoon and continental shelf of Campeche, Mexico

    Science.gov (United States)

    Romo Rios, J. A.; Aguíñiga-García, S.; Sanchez, A.; Zetina-Rejón, M.; Arreguín-Sánchez, F.; Tripp-Valdéz, A.; Galeana-Cortazár, A.

    2013-05-01

    Human activities have strong impacts on coastal ecosystems functioning through their effect on primary organic sources distributions and resulting biodiversity. Hence, it appears to be of utmost importance to quantify contribution of primary producers to sediment organic matter (SOM) spatial variability and its associated ichthyofauna. The Terminos lagoon (Gulf of Mexico) is a tropical estuary severely impacted by human activities even though of primary concern for its biodiversity, its habitats, and its resource supply. Stable isotope data (d13C, d15N) from mangrove, seaweed, seagrass, phytoplankton, ichthyofauna and SOM were sampled in four zones of the lagoon and the continental shelf through windy (November to February), dry (March to June) and rainy (July to October) seasons. Stable Isotope Analysis in R (SIAR) mixing model were used to determine relative contributions of the autotrophic sources to the ichthyofauna and SOM. Analysis of variance of ichthyofauna isotopic values showed significant differences (P < 0.001) in the four zones of lagoon despite the variability introduced by the windy, dry and rainy seasons. In lagoons rivers discharge zone, the mangrove contribution to ichthyofauna was 40% and 84% to SOM. Alternative use of habitat by ichthyofauna was evidenced since in the deep area of the lagoon (4 m), the contribution of mangrove to fish is 50%, and meanwhile contribution to SOM is only 77%. Although phytoplankton (43%) and seaweed (41%) contributions to the adjacent continental shelf ichthyofauna were the main organic sources, there was 37% mangrove contribution to SOM, demonstrating conspicuous terrigenous influence from lagoon ecosystem. Our results point toward organic sources spatial variations that regulate fish distribution. In Terminos lagoon, significant correlation (p-value = 0.2141 and r=0.79) of Ariopsis felis and Sphoeroides testudineus abundances and seaweed and seagrasses contributions (30-35%) during both dry and rainy seasons

  19. Seasonal variability in virtual height of ionospheric f/sub 2/ layer at the pakistan atmospheric region

    International Nuclear Information System (INIS)

    Jilani, A.A.; Afridi, F.A.K.; Mian, K.; Zai, M.A.K.Y.

    2013-01-01

    The aim of this study was to assess the seasonal variability in virtual height of ionospheric F/sub 2/ layer for Pakistan's atmospheric region (PAR). In this communication virtual height variations have been analyzed by the descriptive statistical techniques. These methodologies comprise an autoregressive strategy, linear regression and polynomial regression. The relevance of these models has been illuminated using predicted values of different parameters under the seasonal variation of ionospheric F/sub 2/ layer in virtual height that affect the radio wave propagation through the ionosphere. These techniques are implemented to theorize the physical process of varying the virtual heights that leads this study towards formulating the variations due to interaction of radio wave propagation with this ionospheric layer. (author)

  20. Western lowland gorillas (Gorilla gorilla gorilla) as seasonal frugivores: use of variable resources.

    Science.gov (United States)

    Remis, M J

    1997-01-01

    The gorillas studied at Bai Hokou, Central African Republic, between August 1990 and October 1992 consumed 239 kinds of foods from 138 species of plants and invertebrates, including the fruits of 77 species. Seeds were present in 99% of all fecal samples (n = 859). Although gorillas ate fleshy fruit whenever it was available, herbaceous plants and fibrous fruits were consumed year-round and were important during times of fleshy fruit scarcity. At Bai Hokou and across their range, resources are temporally discontinuous, and western gorilla diet exhibits marked seasonal and interannual variation. Although their large body size lends them dietary flexibility relative to chimpanzees, seasonal fruit-eating shapes the foraging and ranging patterns of western lowland gorillas.

  1. SEASONAL VARIABILITY OF SELECTED NUTRIENTS IN THE WATERS OF LAKES NIEPRUSZEWSKIE, PAMIATKOWSKIE AND STRYKOWSKIE

    Directory of Open Access Journals (Sweden)

    Anna Zbierska

    2016-09-01

    Full Text Available The paper presents the evaluation of seasonal and long-term changes in selected nutrients of three lakes of the Poznań Lakeland. The lakes were selected due to the high risk of pollution from agricultural and residential areas. Water samples were taken in 6 control points in the spring, summer and autumn, from 2004 to 2014. Trophic status of the lakes was evaluated based on the concentration of nutrients (nitrates, nitrites, ammonium, nitrogen and phosphorus and indicators of eutrophication. Studies have shown that the concentration of nutrients varied greatly both in individual years and seasons of the analyzed decades, especially in Lakes Niepruszewskie and Pamiątkowskie. The main problem is the high concentration of nitrates. In general, it showed an upward trend until 2013, especially in the spring. This may indicate that actions restricting runoff pollution from agricultural sources have not been fully effective. On the other hand, a marked downward trend in the concentrations of NH4 over the years from 2004 to 2014, especially after 2007, indicates a gradual improvement of wastewater management. Moreover, seasonal variation in NH4 concentrations differed from those of NO3 and NO2. The highest values were reported in the autumn season, the lowest in the summer. Concentrations of nutrients and eutrophication indexes reached high values in all analysed lakes, indicating a eutrophic or hypertrophic state of the lakes. The high value of the N:P ratio indicates that the lakes had a huge surplus of nitrogen, and phosphorus is a productivity limiting factor.

  2. Spatio-seasonal variability of chromophoric dissolved organic matter absorption and responses to photobleaching in a large shallow temperate lake

    Science.gov (United States)

    Encina Aulló-Maestro, María; Hunter, Peter; Spyrakos, Evangelos; Mercatoris, Pierre; Kovács, Attila; Horváth, Hajnalka; Preston, Tom; Présing, Mátyás; Torres Palenzuela, Jesús; Tyler, Andrew

    2017-03-01

    The development and validation of remote-sensing-based approaches for the retrieval of chromophoric dissolved organic matter (CDOM) concentrations requires a comprehensive understanding of the sources and magnitude of variability in the optical properties of dissolved material within lakes. In this study, spatial and seasonal variability in concentration and composition of CDOM and the origin of its variation was studied in Lake Balaton (Hungary), a large temperate shallow lake in central Europe. In addition, we investigated the effect of photobleaching on the optical properties of CDOM through in-lake incubation experiments. There was marked variability throughout the year in CDOM absorption in Lake Balaton (aCDOM(440) = 0. 06-9.01 m-1). The highest values were consistently observed at the mouth of the main inflow (Zala River), which drains humic-rich material from the adjoining Kis-Balaton wetland, but CDOM absorption decreased rapidly towards the east where it was consistently lower and less variable than in the westernmost lake basins. The spectral slope parameter for the interval of 350-500 nm (SCDOM(350-500)) was more variable with increasing distance from the inflow (observed range 0.0161-0.0181 nm-1 for the mouth of the main inflow and 0.0158-0.0300 nm-1 for waters closer to the outflow). However, spatial variation in SCDOM was more constant exhibiting a negative correlation with aCDOM(440). Dissolved organic carbon (DOC) was strongly positively correlated with aCDOM(440) and followed a similar seasonal trend but it demonstrated more variability than either aCDOM or SCDOM with distance through the system. Photobleaching resulting from a 7-day exposure to natural solar UV radiation resulted in a marked decrease in allochthonous CDOM absorption (7.04 to 3.36 m-1, 42 % decrease). Photodegradation also resulted in an increase in the spectral slope coefficient of dissolved material.

  3. Permafrost hydrology in changing climatic conditions: seasonal variability of stable isotope composition in rivers in discontinuous permafrost

    International Nuclear Information System (INIS)

    Streletskiy, Dmitry A; Shiklomanov, Nikolay I; Nyland, Kelsey E; Tananaev, Nikita I; Opel, Thomas; Streletskaya, Irina D; Tokarev, Igor’; Shiklomanov, Alexandr I

    2015-01-01

    Role of changing climatic conditions on permafrost degradation and hydrology was investigated in the transition zone between the tundra and forest ecotones at the boundary of continuous and discontinuous permafrost of the lower Yenisei River. Three watersheds of various sizes were chosen to represent the characteristics of the regional landscape conditions. Samples of river flow, precipitation, snow cover, and permafrost ground ice were collected over the watersheds to determine isotopic composition of potential sources of water in a river flow over a two year period. Increases in air temperature over the last forty years have resulted in permafrost degradation and a decrease in the seasonal frost which is evident from soil temperature measurements, permafrost and active-layer monitoring, and analysis of satellite imagery. The lowering of the permafrost table has led to an increased storage capacity of permafrost affected soils and a higher contribution of ground water to river discharge during winter months. A progressive decrease in the thickness of the layer of seasonal freezing allows more water storage and pathways for water during the winter low period making winter discharge dependent on the timing and amount of late summer precipitation. There is a substantial seasonal variability of stable isotopic composition of river flow. Spring flooding corresponds to the isotopic composition of snow cover prior to the snowmelt. Isotopic composition of river flow during the summer period follows the variability of precipitation in smaller creeks, while the water flow of larger watersheds is influenced by the secondary evaporation of water temporarily stored in thermokarst lakes and bogs. Late summer precipitation determines the isotopic composition of texture ice within the active layer in tundra landscapes and the seasonal freezing layer in forested landscapes as well as the composition of the water flow during winter months. (letter)

  4. Relationships between structure of the tree component and environmental variables in a subtropical seasonal forest in the upper Uruguay River valley, Brazil

    Directory of Open Access Journals (Sweden)

    Máida Ariane de Mélo

    2013-12-01

    Full Text Available This study aimed to analyze relationships among the structure of the tree component, edaphic variables and canopy discontinuity along a toposequence in a seasonal upland (hillside forest in southern Brazil. Soil and vegetation were sampled in 25 plots of 20 × 20 m each. We described the vegetation in terms of structure, richness and diversity, as well as by species distribution patterns. We evaluated canopy continuity, determined sloping and calculated spatial coordinates. We applied partial canonical correspondence analysis (pCCA to determine whether species distribution correlated with environmental and spatial variables. We identified 1201 individuals belonging to 76 species within 30 families. The species with highest density and frequency were Gymnanthes concolor Spreng., Calyptranthes tricona D.Legrand, Eugenia moraviana O.Berg and Trichilia claussenii DC. The pCCAs indicated significant correlations with environmental and spatial variables. Sand content, boron content and soil density collectively explained 36.17% of the species matrix variation (total inertia, whereas the spatial variables x, y and xy² collectively explained 14.27%. The interaction between environmental and spatial variables explained nearly 4.5%. However, 45.05% remained unexplained, attributed to stochastic variation or unmeasured variables. Terrain morphology and canopy discontinuity had no apparent influence on richness, and changes in species distribution were correlated with sloping, which affects soil features and determines the directional distribution of some species.

  5. Variability of breath condensate pH may contribute to the better understanding of non-allergic seasonal respiratory diseases

    Science.gov (United States)

    Kullmann, Tamás; Szipőcs, Annamária

    2017-09-01

    The seasonal variability of certain non-allergic respiratory diseases is not clearly understood. Analysis of the breath condensate, the liquid that can be collected by breathing into a cold tube, has been proposed to bring closer to the understanding of airway pathologies. It has been assumed, that (1) airway lining fluid was a stable body liquid and (2) the breath condensate samples were representative of the airway lining fluid. Research was focussed on the identification of biomarkers indicative of respiratory pathologies. Despite 30 years of extended investigations breath condensate analysis has not gained any clinical implementation so far. The pH of the condensate is the characteristic that can be determined with the highest reproducibility. The present paper shows, that contrary to the initial assumptions, breath condensate is not a representative of the airway lining fluid, and the airway lining fluid is not a stable body liquid. Condensate pH shows baseline variability and it is influenced by drinking and by the ambient temperature. The changes in condensate pH are linked to changes in airway lining fluid pH. The variability of airway lining fluid pH may explain seasonal incidence of certain non-allergic respiratory diseases such as the catching of a common cold and the increased incidence of COPD exacerbations and exercise-induced bronchoconstriction in cold periods.

  6. Chemical composition and seasonal variability of the essential oils of leaves and morphological analysis of Hyptis carpinifolia

    Directory of Open Access Journals (Sweden)

    Stone de Sá

    Full Text Available ABSTRACT Hyptis carpinifolia Benth., Lamiaceae, is a species known popularly as "rosmaninho" and "mata-pasto", and leaves are employed in Brazilian folk medicine to treat colds, flu, and rheumatism. The aim of this study was to perform a morphological description of H. carpinifolia and to evaluate the seasonal chemical variability of the leaf essential oils during 12 months. Macroscopic characterization of H. carpinifolia was carried out with the naked eye and with a stereoscopic microscope. Essential oils were isolated from leaves by hydrodistillation in Clevenger apparatus and analyzed by gas chromatography/mass spectrometry. Major compounds were found to be 1,8-cineole (39.6-61.8%, trans-cadina-1(6,4-diene (2.8-17.5%, β-caryophyllene (4.4-10.0%, prenopsan-8-ol (4.2-9.6% and β-pinene (2.9-5.3%. Results of essential oils compositions were processed by cluster analysis and principal component analysis. Data showed high variability in the concentration of the components. Besides, there was a seasonal variability of chemical composition, probably related mainly to the rainfall regime.

  7. On the significance of bell's inequality for hidden-variable theories

    International Nuclear Information System (INIS)

    De Baere, W.

    1984-01-01

    It is explicitly shown that Bell's derivation of the generalized Bell inequality and its subsequent interpretation depend on an implicit hypothesis concerning the reproducibility of some set of hidden variables in different runs of the same experiment

  8. Seasonal variability in the persistence of dissolved environmental DNA (eDNA in a marine system: The role of microbial nutrient limitation.

    Directory of Open Access Journals (Sweden)

    Ian Salter

    Full Text Available Environmental DNA (eDNA can be defined as the DNA pool recovered from an environmental sample that includes both extracellular and intracellular DNA. There has been a significant increase in the number of recent studies that have demonstrated the possibility to detect macroorganisms using eDNA. Despite the enormous potential of eDNA to serve as a biomonitoring and conservation tool in aquatic systems, there remain some important limitations concerning its application. One significant factor is the variable persistence of eDNA over natural environmental gradients, which imposes a critical constraint on the temporal and spatial scales of species detection. In the present study, a radiotracer bioassay approach was used to quantify the kinetic parameters of dissolved eDNA (d-eDNA, a component of extracellular DNA, over an annual cycle in the coastal Northwest Mediterranean. Significant seasonal variability in the biological uptake and turnover of d-eDNA was observed, the latter ranging from several hours to over one month. Maximum uptake rates of d-eDNA occurred in summer during a period of intense phosphate limitation (turnover <5 hrs. Corresponding increases in bacterial production and uptake of adenosine triphosphate (ATP demonstrated the microbial utilization of d-eDNA as an organic phosphorus substrate. Higher temperatures during summer may amplify this effect through a general enhancement of microbial metabolism. A partial least squares regression (PLSR model was able to reproduce the seasonal cycle in d-eDNA persistence and explained 60% of the variance in the observations. Rapid phosphate turnover and low concentrations of bioavailable phosphate, both indicative of phosphate limitation, were the most important parameters in the model. Abiotic factors such as pH, salinity and oxygen exerted minimal influence. The present study demonstrates significant seasonal variability in the persistence of d-eDNA in a natural marine environment that can

  9. Time series pCO2 at a coastal mooring: Internal consistency, seasonal cycles, and interannual variability

    Science.gov (United States)

    Reimer, Janet J.; Cai, Wei-Jun; Xue, Liang; Vargas, Rodrigo; Noakes, Scott; Hu, Xinping; Signorini, Sergio R.; Mathis, Jeremy T.; Feely, Richard A.; Sutton, Adrienne J.; Sabine, Christopher; Musielewicz, Sylvia; Chen, Baoshan; Wanninkhof, Rik

    2017-08-01

    Marine carbonate system monitoring programs often consist of multiple observational methods that include underway cruise data, moored autonomous time series, and discrete water bottle samples. Monitored parameters include all, or some of the following: partial pressure of CO2 of the water (pCO2w) and air, dissolved inorganic carbon (DIC), total alkalinity (TA), and pH. Any combination of at least two of the aforementioned parameters can be used to calculate the others. In this study at the Gray's Reef (GR) mooring in the South Atlantic Bight (SAB) we: examine the internal consistency of pCO2w from underway cruise, moored autonomous time series, and calculated from bottle samples (DIC-TA pairing); describe the seasonal to interannual pCO2w time series variability and air-sea flux (FCO2), as well as describe the potential sources of pCO2w variability; and determine the source/sink for atmospheric pCO2. Over the 8.5 years of GR mooring time series, mooring-underway and mooring-bottle calculated-pCO2w strongly correlate with r-values > 0.90. pCO2w and FCO2 time series follow seasonal thermal patterns; however, seasonal non-thermal processes, such as terrestrial export, net biological production, and air-sea exchange also influence variability. The linear slope of time series pCO2w increases by 5.2 ± 1.4 μatm y-1 with FCO2 increasing 51-70 mmol m-2 y-1. The net FCO2 sign can switch interannually with the magnitude varying greatly. Non-thermal pCO2w is also increasing over the time series, likely indicating that terrestrial export and net biological processes drive the long term pCO2w increase.

  10. Persistence of urban organic aerosols composition: Decoding their structural complexity and seasonal variability

    International Nuclear Information System (INIS)

    Matos, João T.V.; Duarte, Regina M.B.O.; Lopes, Sónia P.; Silva, Artur M.S.; Duarte, Armando C.

    2017-01-01

    Organic Aerosols (OAs) are typically defined as highly complex matrices whose composition changes in time and space. Focusing on time vector, this work uses two-dimensional nuclear magnetic resonance (2D NMR) techniques to examine the structural features of water-soluble (WSOM) and alkaline-soluble organic matter (ASOM) sequentially extracted from fine atmospheric aerosols collected in an urban setting during cold and warm seasons. This study reveals molecular signatures not previously decoded in NMR-related studies of OAs as meaningful source markers. Although the ASOM is less hydrophilic and structurally diverse than its WSOM counterpart, both fractions feature a core with heteroatom-rich branched aliphatics from both primary (natural and anthropogenic) and secondary origin, aromatic secondary organics originated from anthropogenic aromatic precursors, as well as primary saccharides and amino sugar derivatives from biogenic emissions. These common structures represent those 2D NMR spectral signatures that are present in both seasons and can thus be seen as an “annual background” profile of the structural composition of OAs at the urban location. Lignin-derived structures, nitroaromatics, disaccharides, and anhydrosaccharides signatures were also identified in the WSOM samples only from periods identified as smoke impacted, which reflects the influence of biomass-burning sources. The NMR dataset on the H–C molecules backbone was also used to propose a semi-quantitative structural model of urban WSOM, which will aid efforts for more realistic studies relating the chemical properties of OAs with their atmospheric behavior. - Highlights: • 2D NMR spectroscopy was used to decode urban organic aerosols. • Water and alkaline soluble components of urban organic aerosols have been compared. • Persistence of urban organic aerosols composition across different seasons. • Annual background profile of the structural features of urban organic aerosols. • Semi

  11. Mechanisms of Mixed-Layer Salinity Seasonal Variability in the Indian Ocean

    Science.gov (United States)

    Köhler, Julia; Serra, Nuno; Bryan, Frank O.; Johnson, Benjamin K.; Stammer, Detlef

    2018-01-01

    Based on a joint analysis of an ensemble mean of satellite sea surface salinity retrievals and the output of a high-resolution numerical ocean circulation simulation, physical processes are identified that control seasonal variations of mixed-layer salinity (MLS) in the Indian Ocean, a basin where salinity changes dominate changes in density. In the northern and near-equatorial Indian Ocean, annual salinity changes are mainly driven by respective changes of the horizontal advection. South of the equatorial region, between 45°E and 90°E, where evaporation minus precipitation has a strong seasonal cycle, surface freshwater fluxes control the seasonal MLS changes. The influence of entrainment on the salinity variance is enhanced in mid-ocean upwelling regions but remains small. The model and observational results reveal that vertical diffusion plays a major role in precipitation and river runoff dominated regions balancing the surface freshwater flux. Vertical diffusion is important as well in regions where the advection of low salinity leads to strong gradients across the mixed-layer base. There, vertical diffusion explains a large percentage of annual MLS variance. The simulation further reveals that (1) high-frequency small-scale eddy processes primarily determine the salinity tendency in coastal regions (in particular in the Bay of Bengal) and (2) shear horizontal advection, brought about by changes in the vertical structure of the mixed layer, acts against mean horizontal advection in the equatorial salinity frontal regions. Observing those latter features with the existing observational components remains a future challenge.

  12. Seasonal variability in oxygen and nutrients in the central and eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    De; DileepKumar, M.; Sardessai, S.; Sarma, V.V.S.S.; Shirodkar, P.V.

    5. Northhyphenminussouth variations in nitrate deficit (DELN, ?M), along 64?E. CURRENT SCIENCE, VOL. 71, NO. 11, 10 DECEMBER 1996 SPECIAL SECTION: JGOFS (INDIA) Figure 6. Dissolved oxygen (at <60 ?M) versus DELN (?M) during different seasons along 64.... This occurred to the east of 72?E where the surface temhyphenminus peratures were less than 28?C. The effect could also be Table 1. Average values of oxygen and nitrate deficit (DELN) in denitrification zone and surface Chlorophyll a in the Arabian Sea 850...

  13. Seasonal and Interannual variability of the Odden ice tongue and a study of environmental effects

    DEFF Research Database (Denmark)

    Comiso, Josefino C.; Wadhams, Peter; Pedersen, Leif Toudal

    2001-01-01

    quantified in terms of average concentration, standard deviation of ice concentrations, persistence, maximum extent, and anomalies in extent, and the results show vastly different formation characteristics and seasonalities during different years. The monthly average extents of the Odden are shown to have......, directly influencing size and shape and sometimes initiating the formation of Nordbukta. The Odden was most extensive in 1979, 1982, 1986 and 1997 and most persistent in 1988, 1989, and 1997 but did not appear in 1984, 1994. and 1995, suggesting decadal periodicity for the 20 year period. With the use...

  14. Fecal sterols, seasonal variability, and probable sources along the ring of cenotes, Yucatan, Mexico

    Science.gov (United States)

    Arcega-Cabrera, F.; Velázquez-Tavera, N.; Fargher, L.; Derrien, M.; Noreña-Barroso, E.

    2014-11-01

    Rapid development in Yucatan has had a dramatic impact on the environment, especially the water supply. Groundwater is the only source of water in Yucatan, since surface water is virtually absent due to the karstic nature of the soil. The ring of cenotes (RC) is a geological feature which functions as a source of water and as nodes in the underground river system that canalizes water towards the coast. Numerous productive and domestic activities take place around the RC in the absence of wastewater treatment or sewage systems. Consequently, a number of researchers have hypothesized that pollutants could migrate from the land surface to the underlying aquifer and, eventually, to the coast. Therefore, the present study investigates the relationship among sources of fecal sterols and their levels in cenotes, using the expected levels of fecal sterols obtained by a spatial analysis of the sources and a Pollution Source Index. Accordingly, expected levels are compared with the detected levels of fecal sterols in 5 areas around the RC. Regarding levels, observed during a sampling campaign carried out along the RC during September 2011 (rainy season) and May 2012 (dry season), varied from low to high concentrations of sterols (0.5-2396.42 μg g- 1) and fecal sterols (0.3-1690.18 μg g- 1). These concentrations showed no relationship between neighboring cenotes, where similar fecal sterol concentrations or gradients were expected. When comparing expected fecal sterols levels with the detected ones, only two of the five analyzed areas concur, suggesting that no clear relationship exists among sources and fecal sterols levels at the regional scale. Multivariate analysis showed that fecal sterols were associated with sterols and fine grain particulates during the rainy season, which suggests co-transport. During the dry season, fecal sterols associated with fine grain particulate and organic matter, which indicates a change to a deposition phenomenon. These findings indicate

  15. Seasonal hypoxia in eutrophic stratified coastal shelves: mechanisms, sensibilities and interannual variability from the North-Western Black Sea case

    Science.gov (United States)

    Capet, A.; Beckers, J.-M.; Grégoire, M.

    2012-12-01

    The Black Sea north-western shelf (NWS) is a~shallow eutrophic area in which seasonal stratification of the water column isolates bottom waters from the atmosphere and prevents ventilation to compensate for the large consumption of oxygen, due to respiration in the bottom waters and in the sediments. A 3-D coupled physical biogeochemical model is used to investigate the dynamics of bottom hypoxia in the Black Sea NWS at different temporal scales from seasonal to interannual (1981-2009) and to differentiate the driving factors (climatic versus eutrophication) of hypoxic conditions in bottom waters. Model skills are evaluated by comparison with 14 500 in-situ oxygen measurements available in the NOAA World Ocean Database and the Black Sea Commission data. The choice of skill metrics and data subselections orientate the validation procedure towards specific aspects of the oxygen dynamics, and prove the model's ability to resolve the seasonal cycle and interannual variability of oxygen concentration as well as the spatial location of the oxygen depleted waters and the specific threshold of hypoxia. During the period 1981-2009, each year exhibits seasonal bottom hypoxia at the end of summer. This phenomenon essentially covers the northern part of the NWS, receiving large inputs of nutrients from the Danube, Dniestr and Dniepr rivers, and extends, during the years of severe hypoxia, towards the Romanian Bay of Constanta. In order to explain the interannual variability of bottom hypoxia and to disentangle its drivers, a statistical model (multiple linear regression) is proposed using the long time series of model results as input variables. This statistical model gives a general relationship that links the intensity of hypoxia to eutrophication and climate related variables. The use of four predictors allows to reproduce 78% of hypoxia interannual variability: the annual nitrate discharge (N), the sea surface temperature in the month preceding stratification (T), the

  16. Clinical significance of mobile health assessed sleep duration and variability in bipolar disorder.

    Science.gov (United States)

    Kaufmann, Christopher N; Gershon, Anda; Eyler, Lisa T; Depp, Colin A

    2016-10-01

    Sleep disturbances are prevalent, persistent, and impairing features of bipolar disorder. However, the near-term and cumulative impact of the severity and variability of sleep disturbances on symptoms and functioning remains unclear. We examined self-reported daily sleep duration and variability in relation to mood symptoms, medication adherence, cognitive functioning, and concurrent daily affect. Forty-one outpatients diagnosed with bipolar disorder were asked to provide daily reports of sleep duration and affect collected via ecological momentary assessment with smartphones over eleven weeks. Measures of depressive and manic symptoms, medication adherence, and cognitive function were collected at baseline and concurrent assessment of affect were collected daily. Analyses examined whether sleep duration or variability were associated with baseline measures and changes in same-day or next-day affect. Greater sleep duration variability (but not average sleep duration) was associated with greater depressive and manic symptom severity, and lower medication adherence at baseline, and with lower and more variable ratings of positive affect and higher ratings of negative affect. Sleep durations shorter than 7-8 h were associated with lower same-day ratings of positive and higher same-day ratings of negative affect, however this did not extend to next-day affect. Greater cumulative day-to-day sleep duration variability, but not average sleep duration, was related to more severe mood symptoms, lower self-reported medication adherence and higher levels of negative affect. Bouts of short- or long-duration sleep had transient impact on affect. Day-to-day sleep variability may be important to incorporate into clinical assessment of sleep disturbances in bipolar disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Seasonal variability of 1-chloropyrene on atmospheric particles and photostability in toluene.

    Science.gov (United States)

    Ohura, Takeshi; Kitazawa, Atsushi; Amagai, Takashi

    2004-11-01

    The occurrence of a mutagenic compound, 1-chloropyrene (Cl-Py), in extracts of ambient particulate matter at an urban site in Japan has been investigated. Samples were collected with a high-volume air sampler for 24 h periods over the course of 1 week in winter (February), spring (May), summer (August), and autumn (November) 2002. The Cl-Py levels showed seasonal variation, ranging from 2.4 pg/m(3) (summer) to 18.9 pg/m(3) (winter). This variation would indicate that the lower temperatures in winter results in an increased distribution of Cl-Py from vapor phase to the particle phase. In addition, there is also the possibility that ambient Cl-Py is emitted from seasonal sources or is susceptible to photodegradation by sunlight, or both. The photodegradation of Cl-Py in a laboratory experiment was conducted to simulate the compound's fate on airborne particle surfaces. The degradation of Cl-Py proceeded by a first-order reaction with a rate constant of 0.72 h(-1). In the presence of a radical sensitizer, 9,10-anthraquinone (AQ), the photodegradation rate of Cl-Py was elevated in comparison with the rate in the absence of AQ. In addition, the dechlorination of Cl-Py (i.e., the formation of Py) occurred in the presence of AQ.

  18. Seasonal Canopy Temperatures for Normal and Okra Leaf Cotton under Variable Irrigation in the Field

    Directory of Open Access Journals (Sweden)

    James R. Mahan

    2016-11-01

    Full Text Available Temperature affects a number of physiological factors in plants and is related to water use, yield and quality in many crop species. Seasonal canopy temperature, measured with infrared thermometers, is often used in conjunction with environmental factors (e.g., air temperature, humidity, solar radiation to assess crop stress and management actions in cotton. Normal and okra leaf shapes in cotton have been associated with differences in water use and canopy temperature. The okra leaf shape in cotton is generally expected to result in lower water use and lower canopy temperatures, relative to normal leaf, under water deficits. In this study canopy temperatures were monitored in okra and normal leaf varieties for a growing season at four irrigation levels. Differences in canopy temperature (<2 °C were measured between the two leaf shapes. As irrigation levels increased, canopy temperature differences between the leaf shapes declined. At the lowest irrigation level, when differences in sensible energy exchanges due to the okra leaf shape would be enhanced, the canopy temperature of the okra leaf was warmer than the normal leaf. This suggests that varietal differences that are not related to leaf shape may have more than compensated for leaf shape differences in the canopy temperature.

  19. Seasonal and scale-dependent variability in nutrient- and allelopathy-mediated macrophyte–phytoplankton interactions

    Directory of Open Access Journals (Sweden)

    Lombardo P.

    2013-08-01

    Full Text Available macrophyte–phytoplankton interactions were investigated using a dual laboratory and field approach during a growing season, with responses quantified as changes in biomass. Short-term, close-range interactions in laboratory microcosms always led to mutual exclusion of macrophytes (Elodea canadensis or Ceratophyllum demersum and algae (Raphidocelis subcapitata, Fistulifera pelliculosa or cyanobacteria (Synechococcus leopoliensis, suggesting regulation by positive feedback mechanisms, progressively establishing and reinforcing a “stable state”. Laboratory results suggest that close-range regulation of R. subcapitata and F. pelliculosa by macrophytes was primarily via nutrient (N, P mediation. Sprig-produced allelochemicals may have contributed to inhibition of S. leopoliensis in C. demersum presence, while S. leopoliensis was apparently enhanced by nutrients leaked by subhealthy (discolored leaves; biomass loss E. canadensis. Seasonal changes in algal growth suppression were correlated with sprig growth. Marginal differences in in situ phytoplankton patterns inside and outside monospecific macrophyte stands suggest that the nutrient- and/or allelopathy-mediated close-range mechanisms observed in the laboratory did not propagate at the macrophyte-stand scale. Factors operating at a larger scale (e.g., lake trophic state, extent of submerged vegetation coverage appear to override in situ macrophyte–phytoplankton close-range interactions.

  20. Seasonal variability of the Red Sea, from satellite gravity, radar altimetry, and in situ observations

    Science.gov (United States)

    Wahr, John; Smeed, David A.; Leuliette, Eric; Swenson, Sean

    2014-08-01

    Seasonal variations of sea surface height (SSH) and mass within the Red Sea are caused mostly by exchange of heat with the atmosphere and by flow through the strait opening into the Gulf of Aden to the south. That flow involves a net mass transfer into the Red Sea during fall and out during spring, though in summer there is an influx of cool water at intermediate depths. Thus, summer water in the south is warmer near the surface due to higher air temperatures, but cooler at intermediate depths. Summer water in the north experiences warming by air-sea exchange only. The temperature affects water density, which impacts SSH but has no effect on mass. We study this seasonal cycle by combining GRACE mass estimates, altimeter SSH measurements, and steric contributions derived from the World Ocean Atlas temperature climatology. Among our conclusions are: mass contributions are much larger than steric contributions; the mass is largest in winter, consistent with winds pushing water into the Red Sea in fall and out during spring; the steric signal is largest in summer, consistent with surface warming; and the cool, intermediate-depth water flowing into the Red Sea in spring has little impact on the steric signal, because contributions from the lowered temperature are offset by effects of decreased salinity. The results suggest that the combined use of altimeter and GRACE measurements can provide a useful alternative to in situ data for monitoring the steric signal.

  1. Seasonal and local time variability of ripples from airglow imager observations in US and Japan

    Directory of Open Access Journals (Sweden)

    J. Yue

    2010-07-01

    Full Text Available Ripples as seen in airglow imagers are small wavy structures with short horizontal wavelengths (<15 km. Ripples are thought to form as the result of local instabilities, which are believed to occur when the amplitude of gravity waves becomes large enough. We have investigated ripple formation based on years of airglow imager observations located at Fort Collins, Colorado (41° N, 105° W and Misato Observatory, Japan (34° N, 135° E/Shigaraki MU Observatory (35° N, 136° E. Na temperature-wind lidar observations are employed to detect convective and dynamic instabilities in the mesosphere and lower thermosphere (MLT region over Fort Collins, Colorado. Seasonal variation of the ripple occurrence in Colorado is compared to that of the lidar-measured instability. The occurrence frequency of ripples varies semiannually, with maxima occurring during solstices and minima during equinoxes in both Colorado and Japan. However, the probability of convective and dynamic instabilities varies annually with a peak in Colorado winter. The seasonal variation of the occurrence frequency of ripples correlates with that of the gravity wave variances in the MLT. Ripple occurrence over Colorado also shows strong local time dependence, but it bears little resemblance to the local time dependence of instability probability.

  2. Seasonal variability of oxidative stress markers in city bus drivers. Part II. Oxidative damage to lipids and proteins.

    Science.gov (United States)

    Rossner, Pavel; Svecova, Vlasta; Milcova, Alena; Lnenickova, Zdena; Solansky, Ivo; Sram, Radim J

    2008-07-03

    The aim of the present study was to investigate the seasonal variability of markers of oxidative damage to lipids (15-F2t-isoprostane, 15-F2t-IsoP) and proteins (protein carbonyl levels) in 50 bus drivers and 50 controls from Prague, Czech Republic, and to identify factors affecting oxidative stress markers. The samples were collected in three seasons with different levels of air pollution. The exposure to environmental pollutants (carcinogenic polycyclic aromatic hydrocarbons, c-PAHs, particulate matter, PM2.5 and PM10, and volatile organic compounds, VOC) was monitored by personal and/or stationary monitors. For the analysis of both markers, ELISA techniques were used. The median levels of individual markers in bus drivers versus controls were as follows: 15-F2t-IsoP (nmol/mmol creatinine): winter 2005, 0.81 versus 0.68 (pbus drivers in winter seasons, but not in summer. Lipid peroxidation was positively correlated with c-PAHs and PM exposure; protein oxidation correlated negatively and was highest in summer suggesting another factor(s) affecting protein carbonyl levels.

  3. On the distributions of annual and seasonal daily rainfall extremes in central Arizona and their spatial variability

    Science.gov (United States)

    Mascaro, Giuseppe

    2018-04-01

    This study uses daily rainfall records of a dense network of 240 gauges in central Arizona to gain insights on (i) the variability of the seasonal distributions of rainfall extremes; (ii) how the seasonal distributions affect the shape of the annual distribution; and (iii) the presence of spatial patterns and orographic control for these distributions. For this aim, recent methodological advancements in peak-over-threshold analysis and application of the Generalized Pareto Distribution (GPD) were used to assess the suitability of the GPD hypothesis and improve the estimation of its parameters, while limiting the effect of short sample sizes. The distribution of daily rainfall extremes was found to be heavy-tailed (i.e., GPD shape parameter ξ > 0) during the summer season, dominated by convective monsoonal thunderstorms. The exponential distribution (a special case of GPD with ξ = 0) was instead showed to be appropriate for modeling wintertime daily rainfall extremes, mainly caused by cold fronts transported by westerly flow. The annual distribution exhibited a mixed behavior, with lighter upper tails than those found in summer. A hybrid model mixing the two seasonal distributions was demonstrated capable of reproducing the annual distribution. Organized spatial patterns, mainly controlled by elevation, were observed for the GPD scale parameter, while ξ did not show any clear control of location or orography. The quantiles returned by the GPD were found to be very similar to those provided by the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, which used the Generalized Extreme Value (GEV) distribution. Results of this work are useful to improve statistical modeling of daily rainfall extremes at high spatial resolution and provide diagnostic tools for assessing the ability of climate models to simulate extreme events.

  4. Warm Season Subseasonal Variability and Climate Extremes in the Northern Hemisphere: The Role of Stationary Rossby Waves

    Science.gov (United States)

    Schubert, Siegfried; Wang, Hailan; Suarez, Max

    2010-01-01

    This study examines the nature of boreal summer subseasonal atmospheric variability based on the new NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) for the period 1979-2010. An analysis of the June, July and August subseasonal 250hPa v-wind anomalies shows distinct Rossby wave-like structures that appear to be guided by the mean jets. On monthly subseasonal time scales, the leading waves (the first 10 rotated empirical orthogonal functions or REOFs of the 250hPa v-wind) explain about 50% of the Northern Hemisphere vwind variability, and account for more than 30% (60%) of the precipitation (surface temperature) variability over a number of regions of the northern middle and high latitudes, including the U.S. northern Great Plains, parts of Canada, Europe, and Russia. The first REOF in particular, consists of a Rossby wave that extends across northern Eurasia where it is a dominant contributor to monthly surface temperature and precipitation variability, and played an important role in the 2003 European and 2010 Russian heat waves. While primarily subseasonal in nature, the Rossby waves can at times have a substantial seasonal mean component. This is exemplified by REOF 4 which played a major role in the development of the most intense anomalies of the U.S. 1988 drought (during June) and the 1993 flooding (during July), though differed in the latter event by also making an important contribution to the seasonal mean anomalies. A stationary wave model (SWM) is used to reproduce some of the basic features of the observed waves and provide insight into the nature of the forcing. In particular, the responses to a set of idealized forcing functions are used to map the optimal forcing patterns of the leading waves. Also, experiments to reproduce the observed waves with the SWM using MERRA-based estimates of the forcing indicate that the wave forcing is dominated by sub-monthly vorticity transients.

  5. European seasonal and annual temperature variability, trends, and extremes since 1500.

    Science.gov (United States)

    Luterbacher, Jürg; Dietrich, Daniel; Xoplaki, Elena; Grosjean, Martin; Wanner, Heinz

    2004-03-05

    Multiproxy reconstructions of monthly and seasonal surface temperature fields for Europe back to 1500 show that the late 20th- and early 21st-century European climate is very likely (>95% confidence level) warmer than that of any time during the past 500 years. This agrees with findings for the entire Northern Hemisphere. European winter average temperatures during the period 1500 to 1900 were reduced by approximately 0.5 degrees C (0.25 degrees C for annual mean temperatures) compared to the 20th century. Summer temperatures did not experience systematic century-scale cooling relative to present conditions. The coldest European winter was 1708/1709; 2003 was by far the hottest summer.

  6. Persistence of urban organic aerosols composition: Decoding their structural complexity and seasonal variability.

    Science.gov (United States)

    Matos, João T V; Duarte, Regina M B O; Lopes, Sónia P; Silva, Artur M S; Duarte, Armando C

    2017-12-01

    Organic Aerosols (OAs) are typically defined as highly complex matrices whose composition changes in time and space. Focusing on time vector, this work uses two-dimensional nuclear magnetic resonance (2D NMR) techniques to examine the structural features of water-soluble (WSOM) and alkaline-soluble organic matter (ASOM) sequentially extracted from fine atmospheric aerosols collected in an urban setting during cold and warm seasons. This study reveals molecular signatures not previously decoded in NMR-related studies of OAs as meaningful source markers. Although the ASOM is less hydrophilic and structurally diverse than its WSOM counterpart, both fractions feature a core with heteroatom-rich branched aliphatics from both primary (natural and anthropogenic) and secondary origin, aromatic secondary organics originated from anthropogenic aromatic precursors, as well as primary saccharides and amino sugar derivatives from biogenic emissions. These common structures represent those 2D NMR spectral signatures that are present in both seasons and can thus be seen as an "annual background" profile of the structural composition of OAs at the urban location. Lignin-derived structures, nitroaromatics, disaccharides, and anhydrosaccharides signatures were also identified in the WSOM samples only from periods identified as smoke impacted, which reflects the influence of biomass-burning sources. The NMR dataset on the H-C molecules backbone was also used to propose a semi-quantitative structural model of urban WSOM, which will aid efforts for more realistic studies relating the chemical properties of OAs with their atmospheric behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Methanol from TES global observations: retrieval algorithm and seasonal and spatial variability

    Directory of Open Access Journals (Sweden)

    K. E. Cady-Pereira

    2012-09-01

    Full Text Available We present a detailed description of the TES methanol (CH3OH retrieval algorithm, along with initial global results showing the seasonal and spatial distribution of methanol in the lower troposphere. The full development of the TES methanol retrieval is described, including microwindow selection, error analysis, and the utilization of a priori and initial guess information provided by the GEOS-Chem chemical transport model. Retrieval simulations and a sensitivity analysis using the developed retrieval strategy show that TES: (i generally provides less than 1.0 piece of information, (ii is sensitive in the lower troposphere with peak sensitivity typically occurring between ~900–700 hPa (~1–3 km at a vertical resolution of ~5 km, (iii has a limit of detectability between 0.5 and 1.0 ppbv Representative Volume Mixing Ratio (RVMR depending on the atmospheric conditions, corresponding roughly to a profile with a maximum concentration of at least 1 to 2 ppbv, and (iv in a simulation environment has a mean bias of 0.16 ppbv with a standard deviation of 0.34 ppbv. Applying the newly derived TES retrieval globally and comparing the results with corresponding GEOS-Chem output, we find generally consistent large-scale patterns between the two. However, TES often reveals higher methanol concentrations than simulated in the Northern Hemisphere spring, summer and fall. In the Southern Hemisphere, the TES methanol observations indicate a model overestimate over the bulk of South America from December through July, and a model underestimate during the biomass burning season.

  8. Seasonal variability in CDOM absorption and fluorescence properties in the Barataria Basin, Louisiana, USA.

    Science.gov (United States)

    Singh, Shatrughan; D'Sa, Eurico; Swenson, Erick

    2010-01-01

    Absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) along a 124 km transect in the Barataria Basin, a large estuary located in Louisiana, USA, were investigated during high and low flow periods of the Mississippi River in the spring and winter of 2008-2009. Mean CDOM absorption at 355 nm from the marine to the freshwater end member stations ranged from (3.25 +/- 0.56) to (20.76 +/- 2.43) m(-1) for the three month high flow period whereas it varied from (1.48 +/- 1.08) to (25.45 +/- 7.03) m(-1) for the same stations during low flow period. Corresponding salinity values at these stations indicated the influence of river and shelf exchanges in the lower basin and precipitation and runoff in the upper basin. An inverse relationship of CDOM absorbance and fluorescence with salinity observed in the basin could be a useful indicator of salinity. CDOM fluorescence also varied over a large range showing an approximately 8 to 12-fold increase between the marine and freshwater end members for the two flow seasons. Excitation-emission matrix spectral plots indicated the presence of various fluorescence components with highest being the A-peak, lowest the T-peak, and the C and M-peaks showing similar trends along the transect. During low flow season the A/C ratio were well correlated with station locations indicating increased terrestrial influence towards the upper basin. CDOM absorption and fluorescence at 355 nm were highly correlated and independent of CDOM sources suggesting that fluorescence could be used to characterize CDOM in the basin.

  9. Seasonal and inter-annual turbidity variability in the Rio de la Plata from 15 years of MODIS: El Niño dilution effect

    OpenAIRE

    Dogliotti, A.I.; Ruddick, K.; Guerrero, R.

    2016-01-01

    Spatio-temporal variability of turbidity in the Río de la Plata (RdP) estuary (Argentina) at seasonal and inter-annual timescales is analyzed from 15 years (2000–2014) of MODIS data and explained in terms of river discharges and the El Niño Southern Oscillation (ENSO). Satellite estimates were first validated using in situ turbidity measurements and then the time series of monthly averages were analyzed to assess the seasonal and inter-annual variability of turbidity. A strong seasonal variab...

  10. Seasonal variability of faecal indicator bacteria numbers and die-off rates in the Red River basin, North Viet Nam

    Science.gov (United States)

    Nguyen, Huong Thi Mai; Le, Quynh Thi Phuong; Garnier, J.; Janeau, J.-L.; Rochelle-Newall, E.

    2016-02-01

    The Red River is the second largest river in Viet Nam and constitutes the main water source for a large percentage of the population of North Viet Nam. Here we present the results of an annual survey of Escherichia coli (EC) and Total Coliforms (TC) in the Red River basin, North Viet Nam. The objective of this work was to obtain information on faecal indicator bacteria (FIB) numbers over an annual cycle and, secondly, to determine the die-off rates of these bacterial indicators. Monthly observations at 10 stations from July 2013-June 2014 showed that TC and EC reached as high as 39100 cfu (colony forming units) 100 ml-1 and 15300 colonies 100 ml-1, respectively. We observed a significant seasonal difference for TC (p < 0.05) with numbers being higher during the wet season. In contrast, no significant seasonal difference was found for EC. The FIB die-off rates ranged from 0.01 d-1 to a maximum of 1.13 d-1 for EC and from 0.17 d-1 to 1.33 d-1 for TC. Die-off rates were significantly higher for free bacteria than for total (free + particle attached) bacteria, suggesting that particle attachment provided a certain level of protection to FIB in this system.

  11. Trends in seasonal warm anomalies across the contiguous United States: Contributions from natural climate variability

    Science.gov (United States)

    Lejiang Yu; Shiyuan Zhong; Warren E. Heilman; Xindi. Bian

    2018-01-01

    Many studies have shown the importance of anthropogenic greenhouse gas emissions in contributing to observed upward trends in the occurrences of temperature extremes over the U.S. However, few studies have investigated the contributions of internal variability in the climate system to these observed trends. Here we use daily maximum temperature time series from the...

  12. Estimating dew formation in rice, using seasonally averaged diel patterns of weather variables

    NARCIS (Netherlands)

    Luo, W.; Goudriaan, J.

    2004-01-01

    If dew formation cannot be measured it has to be estimated. Available simulation models for estimating dew formation require hourly weather data as input. However, such data are not available for places without an automatic weather station. In such cases the diel pattern of weather variables might

  13. Variable Origin of the Superior Laryngeal Artery and Its Clinical Significance

    OpenAIRE

    Soubhagya R. Nayak1*, Ashwin Krishnamurthy2, Latha V. Prabhu2, Bhagath Kumar Potu3, Ishwar B. Bagoji4, Jiji PJ2 and Ganesh Kumar Chettiar2

    2011-01-01

    The superior laryngeal artery (SLA) is the dominant arterial supply of the laryngeal muscles, mucosa and glands. The purpose of the present study was to document the variable origin of the SLA in the carotid triangle. Although the variation in the SLA origin and morphology is important during the partial laryngectomy and reconstruction surgery of the larynx, the description of the SLA in modern literature is vague. The anatomy of SLA was studied in 37 adult South Indian preserved cadavers age...

  14. Seasonal variability of surface and column carbon monoxide over the megacity Paris, high-altitude Jungfraujoch and Southern Hemispheric Wollongong stations

    Science.gov (United States)

    Té, Yao; Jeseck, Pascal; Franco, Bruno; Mahieu, Emmanuel; Jones, Nicholas; Paton-Walsh, Clare; Griffith, David W. T.; Buchholz, Rebecca R.; Hadji-Lazaro, Juliette; Hurtmans, Daniel; Janssen, Christof

    2016-09-01

    This paper studies the seasonal variation of surface and column CO at three different sites (Paris, Jungfraujoch and Wollongong), with an emphasis on establishing a link between the CO vertical distribution and the nature of CO emission sources. We find the first evidence of a time lag between surface and free tropospheric CO seasonal variations in the Northern Hemisphere. The CO seasonal variability obtained from the total columns and free tropospheric partial columns shows a maximum around March-April and a minimum around September-October in the Northern Hemisphere (Paris and Jungfraujoch). In the Southern Hemisphere (Wollongong) this seasonal variability is shifted by about 6 months. Satellite observations by the IASI-MetOp (Infrared Atmospheric Sounding Interferometer) and MOPITT (Measurements Of Pollution In The Troposphere) instruments confirm this seasonality. Ground-based FTIR (Fourier transform infrared) measurements provide useful complementary information due to good sensitivity in the boundary layer. In situ surface measurements of CO volume mixing ratios at the Paris and Jungfraujoch sites reveal a time lag of the near-surface seasonal variability of about 2 months with respect to the total column variability at the same sites. The chemical transport model GEOS-Chem (Goddard Earth Observing System chemical transport model) is employed to interpret our observations. GEOS-Chem sensitivity runs identify the emission sources influencing the seasonal variation of CO. At both Paris and Jungfraujoch, the surface seasonality is mainly driven by anthropogenic emissions, while the total column seasonality is also controlled by air masses transported from distant sources. At Wollongong, where the CO seasonality is mainly affected by biomass burning, no time shift is observed between surface measurements and total column data.

  15. Runoff Variability in the Scott River (SW Spitsbergen in Summer Seasons 2012–2013 in Comparison with the Period 1986–2009

    Directory of Open Access Journals (Sweden)

    Franczak Łukasz

    2016-09-01

    Full Text Available River runoff variability in the Scott River catchment in the summer seasons 2012 and 2013 has been presented in comparison to the multiannual river runoff in 1986–2009. Both in particular seasons and in the analysed multiannual, high variability of discharge rate was recorded. In the research periods 2012–2013, a total of 11 952 water stages and 20 flow rates were measured in the analysed cross-section for the determination of 83 daylong discharges. The mean multiannual discharge of the Scott River amounted to 0.96 m3·s−1. The value corresponds to a specific runoff of 94.6 dm3·s−1·km2, and the runoff layer 937 mm. The maximum values of daily discharge amounted to 5.07 m3·s−1, and the minimum values to 0.002 m3·s−1. The highest runoff occurs in the second and third decade of July, and in the first and second decade of August. The regime of the river is determined by a group of factors, and particularly meteorological conditions affecting the intensity of ablation, and consequently river runoff volume. We found a significant correlation (0.60 in 2012 and 0.67 in 2013 between the air temperature and the Scott River discharge related to the Scott Glacier ice melt.

  16. Seasonal and inter-annual variability of sea surface temperature at the east coast fishing area off Peninsular Malaysia

    Science.gov (United States)

    Nurul Ridani, S.; Mustapha, M. A.; Lihan, T.; Ku Kassim, K. Y.; Raja Bidin, R. H.

    2015-09-01

    Empirical orthogonal function (EOF) analysis was used to study a time-series of the aqua MODIS data imageries in the exclusive economic zone of east coast off Peninsular Malaysia. Temporal and spatial characteristics were examined to determine the dominant pattern of sea surface temperature (SST) variability from January 2003 to December 2011.The data were analysed from daily Level 1A (1km spatial resolution) to monthly composites Level 3 data using SeaDAS and ERDAS imagine software. Four modes was obtained from the analysis with the highest variance (7.9%) represented by mode 1 which explained the seasonal cycle. Mode 2 (5.11 % of total variance) showed positive and negative peak signal during March and April and in October and November with variability near the Kelantan and Pahang waters that indicated the inter monsoon. Mode 3 (3.8 % of variance) shows variability near the Terengganu, Kelantan and Johor waters to the open sea during July and August and in May and June representing the Southwest monsoon. Mode 4 (3.36 %) showed positive signal during November and December with strong signal near Pahang and Kelantan waters while weak signal was detected near Terengganu and Kelantan's open sea representing the Northeast monsoon. The SST variability was influenced by the monsoonal system which originated by the wind forcing condition that influences circulation in the study area.

  17. The global surface composition of 67P/Churyumov-Gerasimenko nucleus by Rosetta/VIRTIS. II) Diurnal and seasonal variability

    Science.gov (United States)

    Ciarniello, M.; Raponi, A.; Capaccioni, F.; Filacchione, G.; Tosi, F.; De Sanctis, M. C.; Kappel, D.; Rousseau, B.; Arnold, G.; Capria, M. T.; Barucci, M. A.; Quirico, E.; Longobardo, A.; Kuehrt, E.; Mottola, S.; Erard, S.; Bockelée-Morvan, D.; Leyrat, C.; Migliorini, A.; Zinzi, A.; Palomba, E.; Schmitt, B.; Piccioni, G.; Cerroni, P.; Ip, W.-H.; Rinaldi, G.; Salatti, M.

    2016-11-01

    VIRTIS-M observations of the nucleus of comet 67P/Churyumov-Gerasimenko acquired from 2014 August to 2015 May have been analysed to investigate surface temporal variability at both seasonal and diurnal scales. The measured reflectance spectra are studied by means of comet spectral indicators (CSI) such as slopes in the visible and infrared ranges, and 3.2 μm band area and band centre. CSI maps derived from data acquired at different heliocentric distances (from 3.62 to 1.72 au) along the inbound leg of the comet's orbit are used to infer surface water ice abundance. We measure a global scale enrichment of water ice from 2014 August to 2015 May across the body of the comet, along with variability at small spatial scale, possibly related with the local insolation conditions. Analysis of water ice diurnal variability is performed on 2014 August observations. Water ice appears at the border of receding shadows in the neck of the comet (Hapi), sublimating in less than 1 h, after exposure to sunlight. As similar variability is not observed in other regions of the comet, we interpreted this as the expression of a diurnal cycle of sublimation and re-condensation of water ice, triggered by sudden shadowing produced on the neck by the body and the head of the nucleus.

  18. Impact of inter-seasonal solar variability on the association of lower troposphere and cold point tropopause in the tropics: Observations using RO data from COSMIC

    Science.gov (United States)

    Kumar, V.; Dhaka, S. K.; Ho, Shu-Peng; Singh, Narendra; Singh, Vir; Reddy, K. K.; Chun, H.-Y.

    2017-12-01

    Association of lower tropospheric variations with the cold point tropopause (CPT) is examined on inter-seasonal basis over the tropical region (30°N-30°S) during 2007-2010 using COSMIC/FORMOST-3 Radio Occultation (RO) data. Temperature analyses for this association are shown over different regions of the globe having contrast topography namely over Western Pacific sector, Indian sector, and African sector. Correlation coefficient (r), taken as a measurement of association, show specific longitudinal differences between the lower troposphere (from 1 km to 5 km height) and the CPT. The northern and southern hemispheres show contrast coupling of temperature variation between lower tropospheric region and the CPT. Land and ocean effects are found to contribute in a different way to the correlation coefficient. Analyses show symmetrical structure of 'r' on both sides of the equator over the African region, as data include mostly land region on both side of equator. Data represent positive correlation (r 0.5) over 15°-20° latitudes on either side of the equator over the African region, suggesting strong hold of the inter-seasonal variation of solar diabatic heating influence over the tropic of Cancer and tropic of Capricorn. On the other hand, there is a contrast behaviour over the Indian region, 'r' is nearly negative ( - 1.0) each year in the southern hemisphere (SH) and positive ( 0.4) in the northern hemisphere (NH) with a maxima near tropic of Cancer. Western Pacific region is found to display a linear increase in 'r' from negative ( - 1.0) in SH to positive ( 0.8) in NH. In general, 'r' (positive) maximizes over the land region around 15°-20° latitudes, suggesting a control of in phase inter-seasonal solar heating on the coupling of boundary layer/lower troposphere and CPT region, whereas it turns negative over water body. Analyses suggest that variabilities in CPT over different regions of globe show significant inter-seasonal association with the lower

  19. Seasonal variability of the inorganic carbon system in a large coastal plain estuary

    Science.gov (United States)

    Joesoef, Andrew; Kirchman, David L.; Sommerfield, Christopher K.; Cai, Wei-Jun

    2017-11-01

    Carbonate geochemistry research in large estuarine systems is limited. More work is needed to understand how changes in land-use activity influence watershed export of organic and inorganic carbon, acids, and nutrients to the coastal ocean. To investigate the seasonal variation of the inorganic carbon system in the Delaware Estuary, one of the largest estuaries along the US east coast, dissolved inorganic carbon (DIC), total alkalinity (TA), and pH were measured along the estuary from June 2013 to April 2015. In addition, DIC, TA, and pH were periodically measured from March to October 2015 in the nontidal freshwater Delaware, Schuylkill, and Christina rivers over a range of discharge conditions. There were strong negative relationships between river TA and discharge, suggesting that changes in HCO3- concentrations reflect dilution of weathering products in the drainage basin. The ratio of DIC to TA, an understudied but important property, was high (1.11) during high discharge and low (0.94) during low discharge, reflecting additional DIC input in the form of carbon dioxide (CO2), most likely from terrestrial organic matter decomposition, rather than bicarbonate (HCO3-) inputs due to drainage basin weathering processes. This is also a result of CO2 loss to the atmosphere due to rapid water transit during the wet season. Our data further show that elevated DIC in the Schuylkill River is substantially different than that in the Delaware River. Thus, tributary contributions must be considered when attributing estuarine DIC sources to the internal carbon cycle versus external processes such as drainage basin mineralogy, weathering intensity, and discharge patterns. Long-term records in the Delaware and Schuylkill rivers indicate shifts toward higher alkalinity in estuarine waters over time, as has been found in other estuaries worldwide. Annual DIC input flux to the estuary and export flux to the coastal ocean are estimated to be 15.7 ± 8.2 × 109 mol C yr-1 and 16

  20. Evaluation of climate model aerosol seasonal and spatial variability over Africa using AERONET

    Science.gov (United States)

    Horowitz, Hannah M.; Garland, Rebecca M.; Thatcher, Marcus; Landman, Willem A.; Dedekind, Zane; van der Merwe, Jacobus; Engelbrecht, Francois A.

    2017-11-01

    The sensitivity of climate models to the characterization of African aerosol particles is poorly understood. Africa is a major source of dust and biomass burning aerosols and this represents an important research gap in understanding the impact of aerosols on radiative forcing of the climate system. Here we evaluate the current representation of aerosol particles in the Conformal Cubic Atmospheric Model (CCAM) with ground-based remote retrievals across Africa, and additionally provide an analysis of observed aerosol optical depth at 550 nm (AOD550 nm) and Ångström exponent data from 34 Aerosol Robotic Network (AERONET) sites. Analysis of the 34 long-term AERONET sites confirms the importance of dust and biomass burning emissions to the seasonal cycle and magnitude of AOD550 nm across the continent and the transport of these emissions to regions outside of the continent. In general, CCAM captures the seasonality of the AERONET data across the continent. The magnitude of modeled and observed multiyear monthly average AOD550 nm overlap within ±1 standard deviation of each other for at least 7 months at all sites except the Réunion St Denis Island site (Réunion St. Denis). The timing of modeled peak AOD550 nm in southern Africa occurs 1 month prior to the observed peak, which does not align with the timing of maximum fire counts in the region. For the western and northern African sites, it is evident that CCAM currently overestimates dust in some regions while others (e.g., the Arabian Peninsula) are better characterized. This may be due to overestimated dust lifetime, or that the characterization of the soil for these areas needs to be updated with local information. The CCAM simulated AOD550 nm for the global domain is within the spread of previously published results from CMIP5 and AeroCom experiments for black carbon, organic carbon, and sulfate aerosols. The model's performance provides confidence for using the model to estimate large-scale regional impacts

  1. Evaluation of climate model aerosol seasonal and spatial variability over Africa using AERONET

    Directory of Open Access Journals (Sweden)

    H. M. Horowitz

    2017-11-01

    Full Text Available The sensitivity of climate models to the characterization of African aerosol particles is poorly understood. Africa is a major source of dust and biomass burning aerosols and this represents an important research gap in understanding the impact of aerosols on radiative forcing of the climate system. Here we evaluate the current representation of aerosol particles in the Conformal Cubic Atmospheric Model (CCAM with ground-based remote retrievals across Africa, and additionally provide an analysis of observed aerosol optical depth at 550 nm (AOD550 nm and Ångström exponent data from 34 Aerosol Robotic Network (AERONET sites. Analysis of the 34 long-term AERONET sites confirms the importance of dust and biomass burning emissions to the seasonal cycle and magnitude of AOD550 nm across the continent and the transport of these emissions to regions outside of the continent. In general, CCAM captures the seasonality of the AERONET data across the continent. The magnitude of modeled and observed multiyear monthly average AOD550 nm overlap within ±1 standard deviation of each other for at least 7 months at all sites except the Réunion St Denis Island site (Réunion St. Denis. The timing of modeled peak AOD550 nm in southern Africa occurs 1 month prior to the observed peak, which does not align with the timing of maximum fire counts in the region. For the western and northern African sites, it is evident that CCAM currently overestimates dust in some regions while others (e.g., the Arabian Peninsula are better characterized. This may be due to overestimated dust lifetime, or that the characterization of the soil for these areas needs to be updated with local information. The CCAM simulated AOD550 nm for the global domain is within the spread of previously published results from CMIP5 and AeroCom experiments for black carbon, organic carbon, and sulfate aerosols. The model's performance provides confidence for using the model to estimate

  2. Seasonal and interannual variability of fast ice extent in the southeastern Laptev Sea between 1999 and 2013

    Science.gov (United States)

    Selyuzhenok, V.; Krumpen, T.; Mahoney, A.; Janout, M.; Gerdes, R.

    2015-12-01

    Along with changes in sea ice extent, thickness, and drift speed, Arctic sea ice regime is characterized by a decrease of fast ice season and reduction of fast ice extent. The most extensive fast ice cover in the Arctic develops in the southeastern Laptev Sea. Using weekly operational sea ice charts produced by Arctic and Antarctic Research Institute (AARI, Russia) from 1999 to 2013, we identified five main key events that characterize the annual evolution of fast ice in the southeastern Laptev Sea. Linking the occurrence of the key events with the atmospheric forcing, bathymetry, freezeup, and melt onset, we examined the processes driving annual fast ice cycle. The analysis revealed that fast ice in the region is sensitive to thermodynamic processes throughout a season, while the wind has a strong influence only on the first stages of fast ice development. The maximal fast ice extent is closely linked to the bathymetry and local topography and is primarily defined by the location of shoals, where fast ice is likely grounded. The annual fast ice cycle shows significant changes over the period of investigation, with tendencies toward later fast ice formation and earlier breakup. These tendencies result in an overall decrease of the fast ice season by 2.8 d/yr, which is significantly higher than previously reported trends.

  3. Seasonal and Interannual Variability in Gulf of Maine Hydrodynamics: 2002–2011

    OpenAIRE

    Li, Yizhen; He, Ruoying; McGillicuddy, Dennis J.

    2014-01-01

    In situ observations including long-term moored meteorological and oceanographic measurements and multi-year gulf-wide ship survey data are used to quantify interannual variability of surface wind, river runoff, and hydrographic conditions in the Gulf of Maine during summers 2002–2011. The cumulative upwelling index shows that upwelling (downwelling)-favorable wind conditions were most persistent in 2010 (2005) over the 10-year study period. River discharge was highest in 2005; peak runoff oc...

  4. Seasonal variability of beach characteristics between Candoliam and Colva coast, Goa, India.

    Digital Repository Service at National Institute of Oceanography (India)

    Wilson, J.S.J.; Sujitha, S.B.; Shruti, V.C.; Shaeema, Z.A.; PrasannaKumar, S.; Chandrasekar, N.

    and Aguada promontory and in the south by Cabo-da-Gama promontory, 3 locations were chosen to understand the temporal variability of beach morphology. 2.1. Physiography Physiographically, Goa can be broadly divided onto four distinct morphological.... Structural features like lineament, inselbergs, laterite mesas are also noticed in the study area. Near- shore morphological features like Shore Island and salt marsh are also seen around the study area. Fig. 1 Location map of the study area 35 3...

  5. The Roles of Climate Change and Climate Variability in the 2017 Atlantic Hurricane Season

    Science.gov (United States)

    Lim, Young-Kwon; Schubert, Siegfried D.; Kovach, Robin; Molod, Andrea M.; Pawson, Steven

    2018-01-01

    The 2017 hurricane season was extremely active with six major hurricanes, the third most on record. The sea-surface temperatures (SSTs) over the eastern Main Development Region (EMDR), where many tropical cyclones (TCs) developed during active months of August/September, were approximately 0.96 degrees Centigrade above the 1901-2017 average (warmest on record): about 0.42 degrees Centigrade from a long-term upward trend and the rest (around 80 percent) attributed to the Atlantic Meridional Mode (AMM). The contribution to the SST from the North Atlantic Oscillation over the EMDR was a weak warming, while that from ENSO was negligible. Nevertheless, ENSO, the NAO, and the AMM all contributed to favorable wind shear conditions, while the AMM also produced enhanced atmospheric instability. Compared with the strong hurricane years of 2005-2010, the ocean heat content (OHC) during 2017 was larger across the tropics, with higher SST anomalies over the EMDR and Caribbean Sea. On the other hand, the dynamical/thermodynamical atmospheric conditions, while favorable for enhanced TC activity, were less prominent than in 2005-2010 across the tropics. The results suggest that unusually warm SST in the EMDR together with the long fetch of the resulting storms in the presence of record-breaking OHC were key factors in driving the strong TC activity in 2017.

  6. Seasonal and interannual variability in the taxonomic composition and production dynamics of phytoplankton assemblages in Crater Lake, Oregon

    Science.gov (United States)

    C. David, McIntire; Larson, Gary L.; Truitt, Robert E.

    2007-01-01

    Taxonomic composition and production dynamics of phytoplankton assemblages in Crater Lake, Oregon, were examined during time periods between 1984 and 2000. The objectives of the study were (1) to investigate spatial and temporal patterns in species composition, chlorophyll concentration, and primary productivity relative to seasonal patterns of water circulation; (2) to explore relationships between water column chemistry and the taxonomic composition of the phytoplankton; and (3) to determine effects of primary and secondary consumers on the phytoplankton assemblage. An analysis of 690 samples obtained on 50 sampling dates from 14 depths in the water column found a total of 163 phytoplankton taxa, 134 of which were identified to genus and 101 were identified to the species or variety level of classification. Dominant species by density or biovolume included Nitzschia gracilis, Stephanodiscus hantzschii, Ankistrodesmus spiralis, Mougeotia parvula, Dinobryon sertularia, Tribonema affine, Aphanocapsa delicatissima, Synechocystis sp., Gymnodinium inversum, and Peridinium inconspicuum. When the lake was thermally stratified in late summer, some of these species exhibited a stratified vertical distribution in the water column. A cluster analysis of these data also revealed a vertical stratification of the flora from the middle of the summer through the early fall. Multivariate test statistics indicated that there was a significant relationship between the species composition of the phytoplankton and a corresponding set of chemical variables measured for samples from the water column. In this case, concentrations of total phosphorus, ammonia, total Kjeldahl nitrogen, and alkalinity were associated with interannual changes in the flora; whereas pH and concentrations of dissolved oxygen, orthophosphate, nitrate, and silicon were more closely related to spatial variation and thermal stratification. The maximum chlorophyll concentration when the lake was thermally stratified

  7. The Significance of the Spatial Variability of Rainfall on the Numerical Simulation of Urban Floods

    Directory of Open Access Journals (Sweden)

    Laurent Guillaume Courty

    2018-02-01

    Full Text Available The growth of urban population, combined with an increase of extreme events due to climate change call for a better understanding and representation of urban floods. The uncertainty in rainfall distribution is one of the most important factors that affects the watershed response to a given precipitation event. However, most of the investigations on this topic have considered theoretical scenarios, with little reference to case studies in the real world. This paper incorporates the use of spatially-variable precipitation data from a long-range radar in the simulation of the severe floods that impacted the city of Hull, U.K., in June 2007. This radar-based rainfall field is merged with rain gauge data using a Kriging with External Drift interpolation technique. The utility of this spatially-variable information is investigated through the comparison of computed flooded areas (uniform and radar against those registered by public authorities. Both results show similar skills at reproducing the real event, but differences in the total precipitated volumes, water depths and flooded areas are illustrated. It is envisaged that in urban areas and with the advent of higher resolution radars, these differences will be more important and call for further investigation.

  8. Seasonal variability of the inorganic carbon system in a large coastal plain estuary

    Directory of Open Access Journals (Sweden)

    A. Joesoef

    2017-11-01

    Full Text Available Carbonate geochemistry research in large estuarine systems is limited. More work is needed to understand how changes in land-use activity influence watershed export of organic and inorganic carbon, acids, and nutrients to the coastal ocean. To investigate the seasonal variation of the inorganic carbon system in the Delaware Estuary, one of the largest estuaries along the US east coast, dissolved inorganic carbon (DIC, total alkalinity (TA, and pH were measured along the estuary from June 2013 to April 2015. In addition, DIC, TA, and pH were periodically measured from March to October 2015 in the nontidal freshwater Delaware, Schuylkill, and Christina rivers over a range of discharge conditions. There were strong negative relationships between river TA and discharge, suggesting that changes in HCO3− concentrations reflect dilution of weathering products in the drainage basin. The ratio of DIC to TA, an understudied but important property, was high (1.11 during high discharge and low (0.94 during low discharge, reflecting additional DIC input in the form of carbon dioxide (CO2, most likely from terrestrial organic matter decomposition, rather than bicarbonate (HCO3− inputs due to drainage basin weathering processes. This is also a result of CO2 loss to the atmosphere due to rapid water transit during the wet season. Our data further show that elevated DIC in the Schuylkill River is substantially different than that in the Delaware River. Thus, tributary contributions must be considered when attributing estuarine DIC sources to the internal carbon cycle versus external processes such as drainage basin mineralogy, weathering intensity, and discharge patterns. Long-term records in the Delaware and Schuylkill rivers indicate shifts toward higher alkalinity in estuarine waters over time, as has been found in other estuaries worldwide. Annual DIC input flux to the estuary and export flux to the coastal ocean are estimated to be 15.7 ± 8.2

  9. Seasonal and Interannual Variability of Eddy Field and Surface Circulation in the Gulf of Aden

    Science.gov (United States)

    Al Saafani, M. A.; Shenoi, S. S. C.

    2006-07-01

    The circulation in the Gulf of Aden is inferred from three different data sets: h istorical sh ip drifts , hydrography , and satellite altimeter derived sea level (Topex/Poseidon, Jason and ERS) . The circulation in th is semi-enclosed basin is marked with strong seasonality with reversals in the direction of flows twice a year follow ing the reversal in mon soonal winds. During the win ter mon soon (November - February) there is an inflow from Arabian Sea; an extension of Arabian Coastal Current (ACC) . During sou thwest mon soon (June - August) the flow is generally towards east especially along the northern coast of Gulf of Aden. The geostrophic currents also show that the circulation in the gulf is embedded with mesoscale eddies. These westward propagating eddies appear to enter the Gulf of Aden from the western Arabian Sea in win ter. The relative contribu tion of mesoscale eddies to the circulation in the gulf were estimated using altimeter derived Sea level anomaly (SLA) for the years 1993 to 2003 . The effect of these mesoscale eddies extend over the entire water colu mn . The propagation speeds, of these eddies, estimated using weekly spaced altimeter derived SLA (2002 - 2003) is ~ 4 .0 - 5 .3 cm s . The sum of the speeds of second mode Ro ssby wave and the mean current (4.8 cm s ) matches with the propagation speeds of eddies estimated using SLA . Hence, second mode baroclin ic Rossby waves appear to be responsib le for the westward propagation of eddies in the Gulf of Aden. The presence of these eddies in the temperaturesalin ity climato logy confirms that they are no t transient features.

  10. Effects of seasonal and well construction variables on soil vapor extraction pilot tests

    International Nuclear Information System (INIS)

    Campbell, R.; Hudon, N.; Bass, D.

    1995-01-01

    The selection and design of an effective soil vapor extraction system is dependent upon data generated from pilot testing. Therefore, it is critical to understand factors that may affect the testing prior to selecting or designing a system. In Sebago Lake Village, Maine, two adjacent gasoline stations experienced a release. Gasoline migrated through fine sand into the groundwater and discharged to a small stream. Soil vapor extraction was investigated as a remedial alternative to reduce volatile organic compounds in the unsaturated soil. Three soil vapor extraction pilot tests were performed at one of the sites and one test at the other site. The results of the testing varied. Data collected during a summer test indicated soil vapor extraction was less likely to work. The wells tested were installed using an excavator. An adequate surface seal was not present in any of the tested wells. An additional test was performed in the winter using wells installed by a drill rig. Winter test results indicated that soil vapor extraction could be effective. Another test was performed after a horizontal soil vapor extraction system with a surface seal was installed. The results of this testing indicated that soil vapor extraction was more effective than predicted by the earlier tests. Tests performed on the other property indicated that the horizontal wells were more effective than the vertical wells. Testing results were affected by the well installation method, well construction, proximity to manmade structures, and the season in which testing was performed. Understanding factors that affect the testing is critical in selecting and designing the system

  11. Latitudinal and seasonal variability of the micrometeor input function: A study using model predictions and observations from Arecibo and PFISR

    Science.gov (United States)

    Fentzke, J. T.; Janches, D.; Sparks, J. J.

    2009-05-01

    In this work, we use a semi-empirical model of the micrometeor input function (MIF) together with meteor head-echo observations obtained with two high power and large aperture (HPLA) radars, the 430 MHz Arecibo Observatory (AO) radar in Puerto Rico (18°N, 67°W) and the 450 MHz Poker flat incoherent scatter radar (PFISR) in Alaska (65°N, 147°W), to study the seasonal and geographical dependence of the meteoric flux in the upper atmosphere. The model, recently developed by Janches et al. [2006a. Modeling the global micrometeor input function in the upper atmosphere observed by high power and large aperture radars. Journal of Geophysical Research 111] and Fentzke and Janches [2008. A semi-empirical model of the contribution from sporadic meteoroid sources on the meteor input function observed at arecibo. Journal of Geophysical Research (Space Physics) 113 (A03304)], includes an initial mass flux that is provided by the six known meteor sources (i.e. orbital families of dust) as well as detailed modeling of meteoroid atmospheric entry and ablation physics. In addition, we use a simple ionization model to treat radar sensitivity issues by defining minimum electron volume density production thresholds required in the meteor head-echo plasma for detection. This simplified approach works well because we use observations from two radars with similar frequencies, but different sensitivities and locations. This methodology allows us to explore the initial input of particles and how it manifests in different parts of the MLT as observed by these instruments without the need to invoke more sophisticated plasma models, which are under current development. The comparisons between model predictions and radar observations show excellent agreement between diurnal, seasonal, and latitudinal variability of the detected meteor rate and radial velocity distributions, allowing us to understand how individual meteoroid populations contribute to the overall flux at a particular

  12. Tropospheric ozone seasonal and long-term variability as seen by lidar and surface measurements at the JPL-Table Mountain Facility, California

    Directory of Open Access Journals (Sweden)

    M. J. Granados-Muñoz

    2016-07-01

    Full Text Available A combined surface and tropospheric ozone climatology and interannual variability study was performed for the first time using co-located ozone photometer measurements (2013–2015 and tropospheric ozone differential absorption lidar measurements (2000–2015 at the Jet Propulsion Laboratory Table Mountain Facility (TMF; elev. 2285 m, in California. The surface time series were investigated both in terms of seasonal and diurnal variability. The observed surface ozone is typical of high-elevation remote sites, with small amplitude of the seasonal and diurnal cycles, and high ozone values, compared to neighboring lower altitude stations representative of urban boundary layer conditions. The ozone mixing ratio ranges from 45 ppbv in the winter morning hours to 65 ppbv in the spring and summer afternoon hours. At the time of the lidar measurements (early night, the seasonal cycle observed at the surface is similar to that observed by lidar between 3.5 and 9 km. Above 9 km, the local tropopause height variation with time and season impacts significantly the ozone lidar observations. The frequent tropopause folds found in the vicinity of TMF (27 % of the time, mostly in winter and spring produce a dual-peak vertical structure in ozone within the fold layer, characterized by higher-than-average values in the bottom half of the fold (12–14 km, and lower-than-averaged values in the top half of the fold (14–18 km. This structure is consistent with the expected origin of the air parcels within the fold, i.e., mid-latitude stratospheric air folding down below the upper tropospheric sub-tropical air. The influence of the tropopause folds extends down to 5 km, increasing the ozone content in the troposphere. No significant signature of interannual variability could be observed on the 2000–2015 de-seasonalized lidar time series, with only a statistically non-significant positive anomaly during the years 2003–2007. Our trend analysis

  13. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain).

    Science.gov (United States)

    Peña-Fernández, A; Lobo-Bedmar, M C; González-Muñoz, M J

    2015-01-01

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Seasonal and interannual variability of the Mid-Holocene East Asian monsoon in coral δ18O records from the South China Sea

    Science.gov (United States)

    Sun, Donghuai; Gagan, Michael K.; Cheng, Hai; Scott-Gagan, Heather; Dykoski, Carolyn A.; Edwards, R. Lawrence; Su, Ruixia

    2005-08-01

    strong ENSO cycle at 6.7 y, which is significantly longer than the average 3.6 y cycle observed since 1970. The results suggest that the influence of ENSO on winter SSTs in the South China Sea was well established by ∼4400 yr ago. However, spectral analysis of summer SSS ∼4400 yr ago shows no significant ENSO cycle, suggesting that teleconnections between ENSO and summer monsoon rainfall were restricted. Taken together, the results indicate marked differences in ENSO-monsoon interactions during the winter and summer monsoon seasons in the past. The fossil coral δ18O record also shows that the amplitude of interannual SST and SSS variability was stronger ∼4400 yr ago, despite ENSO variability being significantly weaker in the Pacific region. Thus it appears that the strengthened Mid-Holocene monsoon was sensitive to forces, other than ENSO, that acted as alternative drivers of interannual monsoon variability. If this is the case, greater interannual climate variability could accompany the strengthening of the Asian monsoon predicted to occur during the 21st century as transient greenhouse warming preferentially warms Eurasia, even if ENSO perturbations remain relatively stable.

  15. Spatial and seasonal variability of fractionated phytoplankton biomass and primary production in the frontal region of the Northern Adriatic Sea

    Directory of Open Access Journals (Sweden)

    M.R. VADRUCCI

    2005-06-01

    Full Text Available Spatial and seasonal patterns of variation of fractionated phytoplankton biomass and primary production and their relationships with nutrient concentrations were analyzed along an inshore - offshore gradient and in relation to the presence of a frontal system in the Northern Adriatic Sea. Sampling was carried out in winter and summer during four oceanographic cruises (June 1996 and 1997, February 1997 and 1998 as part of the PRISMA II project. Water samples for determining nutrient concentrations, phytoplankton biomass (as Chla and primary production (as 14 C assimilation were collected at five optical depths. Sampling stations were located along 2 or 4 parallel transects arranged perpendicularly to the shoreline and the frontal system. The transects were located at such a distance from the coast that the frontal system crossed them at their halfway point. Total dissolved nitrogen (TDN and total dissolved phosphorus concentrations (TDP were 12.41 ± 3 .95 mM and 0.146 ± 0 .070 mM, respectively. The values in the two seasonal periods were similar, decreasing along the inshore-offshore gradient. Values for phytoplankton biomass and primary productionwere higher in the winter than the summer cruises, and decreased, in both seasonal periods, along the inshore / offshore gradient. Moreover, in both seasonal periods, picophytoplankton dominated both biomass and productivity, (56% and 44%, respectively at stations beyond the frontal system, while microphytoplankton was more important at stations inside it (44% and 44%, respectively. Total phytoplankton biomass and primary production were directly related to nutrient concentrations. Regarding size classes, significant patterns of variation with nutrients were observed particularly for biomass. The results indicate that the size structure and function of phytoplankton guilds seem to be mediated by nutrient inflow, as well as by competitive interaction among size fractions.

  16. Inter-annual rainfall variability in the eastern Antilles and coupling with the regional and intra-seasonal circulation

    Science.gov (United States)

    Jury, Mark R.

    2016-11-01

    Climate variability in the eastern Antilles island chain is analyzed via principal component analysis of high-resolution monthly rainfall in the period 1981-2013. The second mode reflecting higher rainfall in July-October season between Martinique and Grenada is the focus of this study. Higher rainfall corresponds with a weakened trade wind and boundary current along the southern edge of the Caribbean. This quells the coastal upwelling off Venezuela and builds the freshwater plume east of Trinidad. There is corresponding upper easterly wind flow that intensifies passing tropical waves. During a storm event over the Antilles on 4-5 October 2010, there was inflow from east of Guyana where low salinity and high sea temperatures enable surplus latent heat fluxes. A N-S convective rain band forms ˜500 km east of the cyclonic vortex. Many features at the weather timescale reflect the seasonal correlation and composite difference maps and El Nino Southern Oscillation (ENSO) modulation of oceanic inter-basin transfers.

  17. Cadmium, copper and lead in macroalgae from the Veracruz Reef System, Gulf of Mexico: Spatial distribution and rainy season variability

    International Nuclear Information System (INIS)

    Horta-Puga, Guillermo; Cházaro-Olvera, Sergio; Winfield, Ignacio; Avila-Romero, Marisol; Moreno-Ramírez, Margarita

    2013-01-01

    Highlights: ► Cd, Cu, and Pb were determined in macroalgae from Veracruz Reefs, Gulf of Mexico. ► Mean concentrations were lower or similar to those from other coastal areas. ► Cd and Pb levels are controlled by fluvial discharge. ► Sediment scavenging also controls environmental trace metal levels. ► Pb environmental concentrations have been decreasing in the lasts two decades. -- Abstract: This study focused on the spatial distribution of trace metals in the Veracruz Reef System in the Southern Gulf of Mexico, and its variability in the early (July) and late (September) rainy season of 2008, by analyzing the concentration of Cd, Cu and Pb in benthic macroalgae. Mean concentrations are lower (Pb 295 ± 347 ng g −1 , Cd 17.9 ± 15.0 ng g −1 ), or similar (Cu 3.4 ± 4.5 μg g −1 ) to those reported from other coastal areas. Cd and Pb concentrations are influenced by the discharge of the Jamapa River, evidencing a fluvial control on coastal trace metal levels. Also, Cd and Cu concentrations were lower in the late rainy season, when there is a high load of suspended sediments derived from fluvial discharge, which probably adsorb dissolved metals decreasing their bioavailability. Pb concentrations have been decreasing in the last two decades in the SGM, after the banning of leaded-gasoline in the late 20th century

  18. Holocene seasonal variability inferred from multiple proxy records from Crevice Lake, Yellowstone National Park, USA

    Science.gov (United States)

    Whitlock, Cathy; Dean, Walter E.; Fritz, Sherilyn C.; Stevens, Lora R.; Stone, Jeffery R.; Power, Mitchell J.; Rosenbaum, Joseph R.; Pierce, Kenneth L.; Bracht-Flyr, Brandi B.

    2012-01-01

    the Roman Warm Period (~ 2000 cal yr BP) and Medieval Climate Anomaly (1200–800 cal yr BP). Long springs and mild summers occurred during the Little Ice Age, and these conditions persist to the present. Although the proxy data indicate effectively wet summer conditions in the early Holocene and drier conditions in the middle and late Holocene, none point specifically to changes in summer precipitation as the cause. Instead, summer conditions were governed by multi-seasonal controls on effective moisture that operated over multiple time scales.

  19. Variability of Seasonal CO2 Ice Caps on Mars for Mars Years 26 through 29

    Science.gov (United States)

    Feldman, W. C.; Maurice, S.; Prettyman, T. H.

    2011-12-01

    We have developed an improved thermal, epithermal, and fast neutron counting-rate time series data of the Mars Odyssey Neutron Spectrometer (MONS), optimized to greatly reduce both statistical and systematic uncertainties. This new data set was applied to study temporal and spatial distributions of the growth, decay, and maximum amount of precipitated CO2 ice during Martian years (MY) 26, 27, 28, and 29. For this study, we concentrate on the epithermal counting rate detected using the down-looking prism (P1) of MONS, and a combination of the epithermal and thermal counting rate detected by the forward-looking sensor (P2) of MONS. Although the energy range of neutrons detected by P2 covers both the thermal and epithermal range, it is heavily weighted to the thermal range. We find that the variance of the maximum epithermal counting rate is remarkably small over both north and south seasonal caps, varying by less than 3% over the four-year period. In contrast, although the maximum P2 counting rate over both poles is sensibly the same within error bars (about 2%) during the first three years, it drops by 18% over the north pole and 8% over the south pole during MY 29. The most-likely explanation of this drop is that abundances of the non-condensable gases N2 and Ar, are unusually enhanced during MY 29. Movies were also made of maps of the growth and decay of P2 counting rates summed over the first three years of these data. Careful inspection shows that both the growth and decay in the north were cylindrically symmetric, centered near the geographic north pole. In contrast, both the growth and decay of CO2 buildup in the south were skewed off the geographic pole to the center of the CO2 residual cap, and contained a small, but definitely distinct ring-like annular enhancement centered at a latitude of about 83.5° S spread over a longitude range that extends between about -35° and +35° E. This arc runs parallel to, and overlays, the very steep drop in altitude from

  20. The possible significance of parallel changes in plasma lutein and retinol in Pakistani infants during the summer season.

    Science.gov (United States)

    Thurnham, D I; Northrop-Clewes, C A; Paracha, P I; McLoone, U J

    1997-11-01

    Recent evidence suggests that plasma lutein is better correlated than either beta-carotene or lycopene with its respective carotenoid intake and therefore may be a better marker of vegetable intake than either beta-carotene or lycopene. In the study reported in this paper, measurements of plasma carotenes and retinol were made in infants from two villages near Peshawar in the North West Frontier Province, Pakistan, in July and November 1993. The approximate age at the start was 14 months, and 101 boys and ninety girls completed the study. Of the usual plasma carotenes, only lutein was measurable in all samples and was correlated with retinol in both boys (r 0.38, P lutein was even more strongly correlated with the change in retinol in both boys (r 0.453, P lutein and retinol suggests that the increase in retinol over the summer season may be attributable to an increased availability of green vegetables to the families. The source of lutein to the infants is most likely to be the breast milk since such vegetables are unlikely to be given to infants except to suck as a weaning food. The results may indicate the potential usefulness of plasma lutein as a marker of changes in vegetable intake and changes in vitamin A status in Third World infants and children.

  1. Seasonal Variability in Regional Ice Flow Due to Meltwater Injection Into the Shear Margins of Jakobshavn Isbræ

    Science.gov (United States)

    Cavanagh, J. P.; Lampkin, D. J.; Moon, T.

    2017-12-01

    The impact of meltwater injection into the shear margins of Jakobshavn Isbræ via drainage from water-filled crevasses on ice flow is examined. We use Landsat-8 Operational Land Imager panchromatic, high-resolution imagery to monitor the spatiotemporal variability of seven water-filled crevasse ponds during the summers of 2013 to 2015. The timing of drainage from water-filled crevasses coincides with an increase of 2 to 20% in measured ice velocity beyond Jakobshavn Isbræ shear margins, which we define as extramarginal ice velocity. Some water-filled crevasse groups demonstrate multiple drainage events within a single melt season. Numerical simulations show that hydrologic shear weakening due to water-filled crevasse drainage can accelerate extramarginal flow by as much as 35% within 10 km of the margins and enhance mass flux through the shear margins by 12%. This work demonstrates a novel mechanism through which surface melt can influence regional ice flow.

  2. On the selection of significant variables in a model for the deteriorating process of facades

    Science.gov (United States)

    Serrat, C.; Gibert, V.; Casas, J. R.; Rapinski, J.

    2017-10-01

    In previous works the authors of this paper have introduced a predictive system that uses survival analysis techniques for the study of time-to-failure in the facades of a building stock. The approach is population based, in order to obtain information on the evolution of the stock across time, and to help the manager in the decision making process on global maintenance strategies. For the decision making it is crutial to determine those covariates -like materials, morphology and characteristics of the facade, orientation or environmental conditions- that play a significative role in the progression of different failures. The proposed platform also incorporates an open source GIS plugin that includes survival and test moduli that allow the investigator to model the time until a lesion taking into account the variables collected during the inspection process. The aim of this paper is double: a) to shortly introduce the predictive system, as well as the inspection and the analysis methodologies and b) to introduce and illustrate the modeling strategy for the deteriorating process of an urban front. The illustration will be focused on the city of L’Hospitalet de Llobregat (Barcelona, Spain) in which more than 14,000 facades have been inspected and analyzed.

  3. Distinct patterns in the diurnal and seasonal variability in four components of soil respiration in a temperate forest under free-air CO2 enrichment

    Directory of Open Access Journals (Sweden)

    M. A. Gonzalez-Meler

    2011-10-01

    Full Text Available Soil respiration (RS is a major flux in the global carbon (C cycle. Responses of RS to changing environmental conditions may exert a strong control on the residence time of C in terrestrial ecosystems and in turn influence the atmospheric concentration of greenhouse gases. Soil respiration consists of several components oxidizing soil C from different pools, age and chemistry. The mechanisms underlying the temporal variability of RS components are poorly understood. In this study, we used the long-term whole-ecosystem 13C tracer at the Duke Forest Free Air CO2 Enrichment site to separate forest RS into its autotrophic (RR and heterotrophic components (RH. The contribution of RH to RS was further partitioned into litter decomposition (RL, and decomposition of soil organic matter (RSOM of two age classes – up to 8 yr old and SOM older than 8 yr. Soil respiration was generally dominated by RSOM during the growing season (44% of daytime RS, especially at night. The contribution of heterotrophic respiration (RSOM and RL to RS was not constant, indicating that the seasonal variability in RR alone cannot explain seasonal variation in RS. Although there was no diurnal variability in RS, there were significant compensatory differences in the contribution of individual RS components to daytime and nighttime rates. The average contribution of RSOM to RS was greater at night (54% than during the day (44%. The average contribution of RR to total RS was ~30% during the day and ~34% during the night. In contrast, RL constituted 26% of RS during the day and only 12% at night. About 95% of the decomposition of soil C older than 8 yr (Rpre-tr originated from RSOM and showed more pronounced and consistent diurnal variability than any other RS component; nighttime rates were on average 29% higher than daytime rates. In contrast, the decomposition of more recent, post-treatment C (Rpre-tr did not vary diurnally. None of the diurnal variations in components of RH

  4. Processes driving sea ice variability in the Bering Sea in an eddying ocean/sea ice model: Mean seasonal cycle

    Science.gov (United States)

    Li, Linghan; McClean, Julie L.; Miller, Arthur J.; Eisenman, Ian; Hendershott, Myrl C.; Papadopoulos, Caroline A.

    2014-12-01

    The seasonal cycle of sea ice variability in the Bering Sea, together with the thermodynamic and dynamic processes that control it, are examined in a fine resolution (1/10°) global coupled ocean/sea-ice model configured in the Community Earth System Model (CESM) framework. The ocean/sea-ice model consists of the Los Alamos National Laboratory Parallel Ocean Program (POP) and the Los Alamos Sea Ice Model (CICE). The model was forced with time-varying reanalysis atmospheric forcing for the time period 1970-1989. This study focuses on the time period 1980-1989. The simulated seasonal-mean fields of sea ice concentration strongly resemble satellite-derived observations, as quantified by root-mean-square errors and pattern correlation coefficients. The sea ice energy budget reveals that the seasonal thermodynamic ice volume changes are dominated by the surface energy flux between the atmosphere and the ice in the northern region and by heat flux from the ocean to the ice along the southern ice edge, especially on the western side. The sea ice force balance analysis shows that sea ice motion is largely associated with wind stress. The force due to divergence of the internal ice stress tensor is large near the land boundaries in the north, and it is small in the central and southern ice-covered region. During winter, which dominates the annual mean, it is found that the simulated sea ice was mainly formed in the northern Bering Sea, with the maximum ice growth rate occurring along the coast due to cold air from northerly winds and ice motion away from the coast. South of St Lawrence Island, winds drive the model sea ice southwestward from the north to the southwestern part of the ice-covered region. Along the ice edge in the western Bering Sea, model sea ice is melted by warm ocean water, which is carried by the simulated Bering Slope Current flowing to the northwest, resulting in the S-shaped asymmetric ice edge. In spring and fall, similar thermodynamic and dynamic

  5. Significant and variable linear polarization during the prompt optical flash of GRB 160625B.

    Science.gov (United States)

    Troja, E.; Lipunov, V. M.; Mundell, C. G.; Butler, N. R.; Watson, A. M.; Kobayashi, S.; Cenko, S. B.; Marshall, F. E.; Ricci, R.; Fruchter, A.; Wieringa, M. H.; Gorbovskoy, E. S.; Kornilov, V.; Kutyrev, A.; Lee, W. H.; Toy, V.; Tyurina, N. V.; Budnev, N. M.; Buckley, D. A. H.; González, J.; Gress, O.; Horesh, A.; Panasyuk, M. I.; Prochaska, J. X.; Ramirez-Ruiz, E.; Rebolo Lopez, R.; Richer, M. G.; Roman-Zuniga, C.; Serra-Ricart, M.; Yurkov, V.; Gehrels, N.

    2017-07-01

    Newly formed black holes of stellar mass launch collimated outflows (jets) of ionized matter that approach the speed of light. These outflows power prompt, brief and intense flashes of γ-rays known as γ-ray bursts (GRBs), followed by longer-lived afterglow radiation that is detected across the electromagnetic spectrum. Measuring the polarization of the observed GRB radiation provides a direct probe of the magnetic fields in the collimated jets. Rapid-response polarimetric observations of newly discovered bursts have probed the initial afterglow phase, and show that, minutes after the prompt emission has ended, the degree of linear polarization can be as high as 30 per cent - consistent with the idea that a stable, globally ordered magnetic field permeates the jet at large distances from the central source. By contrast, optical and γ-ray observations during the prompt phase have led to discordant and often controversial results, and no definitive conclusions have been reached regarding the origin of the prompt radiation or the configuration of the magnetic field. Here we report the detection of substantial (8.3 ± 0.8 per cent from our most conservative simulation), variable linear polarization of a prompt optical flash that accompanied the extremely energetic and long-lived prompt γ-ray emission from GRB 160625B. Our measurements probe the structure of the magnetic field at an early stage of the jet, closer to its central black hole, and show that the prompt phase is produced via fast-cooling synchrotron radiation in a large-scale magnetic field that is advected from the black hole and distorted by dissipation processes within the jet.

  6. Reconstructing Past Seasonal to Multicentennial-Scale Variability in the NE Atlantic Ocean Using the Long-Lived Marine Bivalve Mollusk Glycymeris glycymeris

    Science.gov (United States)

    Reynolds, D. J.; Hall, I. R.; Slater, S. M.; Scourse, J. D.; Halloran, P. R.; Sayer, M. D. J.

    2017-11-01

    The lack of long-term, highly resolved (annual to subannual) and absolutely dated baseline records of marine variability extending beyond the instrumental period (last 50-100 years) hinders our ability to develop a comprehensive understanding of the role the ocean plays in the climate system. Specifically, without such records, it remains difficult to fully quantify the range of natural climate variability mediated by the ocean and to robustly attribute recent changes to anthropogenic or natural drivers. Here we present a 211 year (1799-2010 C.E.; all dates hereafter are Common Era) seawater temperature (SWT) reconstruction from the northeast Atlantic Ocean derived from absolutely dated, annually resolved, oxygen isotope ratios recorded in the shell carbonate (δ18Oshell) of the long-lived marine bivalve mollusk Glycymeris glycymeris. The annual record was calibrated using subannually resolved δ18Oshell values drilled from multiple shells covering the instrumental period. Calibration verification statistics and spatial correlation analyses indicate that the δ18Oshell record contains significant skill at reconstructing Northeast Atlantic Ocean mean summer SWT variability associated with changes in subpolar gyre dynamics and the North Atlantic Current. Reconciling differences between the δ18Oshell data and corresponding growth increment width chronology demonstrates that 68% of the variability in G. glycymeris shell growth can be explained by the combined influence of biological productivity and SWT variability. These data suggest that G. glycymeris can provide seasonal to multicentennial absolutely dated baseline records of past marine variability that will lead to the development of a quantitative understanding of the role the marine environment plays in the global climate system.

  7. Variability of Cenococcum colonization and its ecophysiological significance for young conifers at alpine-treeline.

    Science.gov (United States)

    Hasselquist, Niles; Germino, Matthew J; McGonigle, Terence; Smith, William K

    2005-03-01

    * Plants establishing in environments that are marginal for growth could be particularly sensitive to mycorrhizal associations. We investigated ectomycorrhizal colonization and its significance for young conifers growing at, or above, their normal limits for growth, in the alpine-treeline ecotone. * Colonization of seedlings (treeline may include a below-ground, mycorrhizal component that complements previously reported effects of trees on the microclimate and ecophysiology of seedlings.

  8. Predicting The Variability And The Severity Of The “Little Dry Season ...

    African Journals Online (AJOL)

    Linear regression algorithm and K-means cluster analyses were employed to generate the models. Results show that LDS rainfall amount and rainy days have significant positive relationship with SSTs of the Gulf Guinea and the source locations of the Guinea and Benguela currents. Very Cold, Cold, Average, Warm and ...

  9. Seasonal variability of stream water quality response to storm events captured using high-frequency and multi-parameter data

    Science.gov (United States)

    Fovet, O.; Humbert, G.; Dupas, R.; Gascuel-Odoux, C.; Gruau, G.; Jaffrezic, A.; Thelusma, G.; Faucheux, M.; Gilliet, N.; Hamon, Y.; Grimaldi, C.

    2018-04-01

    The response of stream chemistry to storm is of major interest for understanding the export of dissolved and particulate species from catchments. The related challenge is the identification of active hydrological flow paths during these events and of the sources of chemical elements for which these events are hot moments of exports. An original four-year data set that combines high frequency records of stream flow, turbidity, nitrate and dissolved organic carbon concentrations, and piezometric levels was used to characterize storm responses in a headwater agricultural catchment. The data set was used to test to which extend the shallow groundwater was impacting the variability of storm responses. A total of 177 events were described using a set of quantitative and functional descriptors related to precipitation, stream and groundwater pre-event status and event dynamics, and to the relative dynamics between water quality parameters and flow via hysteresis indices. This approach led to identify different types of response for each water quality parameter which occurrence can be quantified and related to the seasonal functioning of the catchment. This study demonstrates that high-frequency records of water quality are precious tools to study/unique in their ability to emphasize the variability of catchment storm responses.

  10. Seasonal Variability of Mesozooplankton Feeding Rates on Phytoplankton in Subtropical Coastal and Estuarine Waters

    Directory of Open Access Journals (Sweden)

    Mianrun Chen

    2017-06-01

    Full Text Available In order to understand how mesozooplankton assemblages influenced phytoplankton in coastal and estuarine waters, we carried out a monthly investigation on mesozooplankton composition at two contrasting stations of Hong Kong coastal and estuarine waters and simultaneously conducted bottle incubation feeding experiments. The assemblage of mesozooplankton was omnivorous at both stations with varying carnivory degree (the degree of feeding preference of protozoa and animal food to phytoplankton and the variations of carnivory degree were significantly associated with microzooplankton biomass (ciliates for the coastal station, both ciliates and dinoflagellates for the estuarine stations and physical environmental parameters (primarily salinity. High carnivory was primarily due to high composition of noctilucales, Corycaeus spp., Oithona spp. and Acartia spp. Results of feeding experiments showed that grazing impacts on phytoplankton ranged from −5.9 to 17.7%, while the mean impacts were just <4% at both stations. The impacts were size-dependent, by which mesozooplankton consumed around 9% of large-sized phytoplankton while indirectly caused an increase of 4% of small-sized phytoplankton. Mesozooplankton clearance rate on phytoplankton, calculated from the log response of chlorophyll a concentrations by the introduction of bulk grazers after 1-day incubation, was significantly reduced by increasing carnivory degree of the mesozooplankton assemblage. The mechanism for the reduction of mesozooplankton clearance rate with increasing carnivory degree was primarily due to less efficient of filtering feeding and stronger trophic cascades due to suppression of microzooplankton. The feeding rates of mesozooplankton on microzooplankton were not obtained in this study, but the trophic cascades indirectly induced by mesozooplankton carnivorous feeding can be observed by the negative clearance rate on small-sized phytoplankton. Overall, the main significance of

  11. Carbonaceous aerosol characteristics over Delhi in Northern India: Seasonal variability and possible sources

    Science.gov (United States)

    Srivastava, Atul Kumar; Bisht, Ds; Tiwari, S.

    Carbonaceous aerosols have been the focus of extensive studies during the last decade due to its significant impacts on human health, visibility and climate change. As per Asian regions are concerned, aerosols in south-Asia are gaining considerable importance because of their potential impacts on regional climate, yet their possible sources are poorly understood. Semi-continuous measurements of organic carbon (OC) and elemental carbon (EC) and continuous measurements of black carbon (BC) aerosols were conducted simultaneously at Delhi during the period from January 2011 to May 2012. Delhi is the capital city of India and one of the densely populated and industrialized urban megacities in Asia, located at the Ganga basin in the northern part of India. Being highly polluted region, mass concentrations of OC, EC and BC over Delhi were found to vary from about 6-92 mug m (-3) (mean: 23±16 mug m (-3) ), 3-38 mug m (-3) (mean: 11±7 mug m (-3) ) and 1-24 mug m (-3) (mean: 7±5 mug m (-3) ), respectively during the entire measurement period, with about two times higher concentration during winter as compared to summer. A significant correlation between OC and EC (R=0.95, n=232) and relatively lower OC/EC ratio (range: 1.0-3.6; mean: 2.2±0.5) suggest fossil fuel emission as a dominant source of carbonaceous aerosols over the station. The average mass concentration of EC was found about 38% higher than BC during the study period, which is interestingly different as reported at other locations over Ganga basin. We also determined the associated optical properties of carbonaceous species (e.g. absorption coefficient and mass absorption efficiency) over the station. Significant loading of carbonaceous species over such regions emphasize an urgent need to focus on air quality management and proper impact assessment on health perspective.

  12. Contextual Variability in Personality from Significant-Other Knowledge and Relational Selves

    Directory of Open Access Journals (Sweden)

    Susan M Andersen

    2016-01-01

    Full Text Available We argue that the self is intrinsically embedded in an interpersonal context such that it varies in IF-THEN terms, as the relational self. We have demonstrated that representations of the significant other and the relationship with that other are automatically activated by situational cues and that this activation affects both experienced and expressed aspects of the self and personality. Here, we expand on developments of the IF–THEN cognitive-affective framework of personality (CAPS, Mischel & Shoda, 1995, by extending it to the domain of interpersonal relationships at the dyadic level (Andersen & Chen, 2002. Going beyond Mischel’s early research (Mischel, 1968, our framework combines social cognition and learning theory with a learning-based psychodynamic approach, which provides the basis for extensive research on the social-cognitive process of transference and the relational self as it arises in everyday social interactions (Andersen & Cole, 1990, evidence from which contributes to a modern conceptualization of personality that emphasizes the centrality of the situation.

  13. Contextual Variability in Personality From Significant-Other Knowledge and Relational Selves.

    Science.gov (United States)

    Andersen, Susan M; Tuskeviciute, Rugile; Przybylinski, Elizabeth; Ahn, Janet N; Xu, Joy H

    2015-01-01

    We argue that the self is intrinsically embedded in an interpersonal context such that it varies in IF-THEN terms, as the relational self. We have demonstrated that representations of the significant other and the relationship with that other are automatically activated by situational cues and that this activation affects both experienced and expressed aspects of the self and personality. Here, we expand on developments of the IF-THEN cognitive-affective framework of personality system (Mischel and Shoda, 1995), by extending it to the domain of interpersonal relationships at the dyadic level (Andersen and Chen, 2002). Going beyond Mischel's early research (Mischel, 1968), our framework combines social cognition and learning theory with a learning-based psychodynamic approach, which provides the basis for extensive research on the social-cognitive process of transference and the relational self as it arises in everyday social interactions (Andersen and Cole, 1990), evidence from which contributes to a modern conceptualization of personality that emphasizes the centrality of the situation.

  14. Seasonal variability of the observed barrier layer in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Thoppil, P.; Rao, R.R.; Muraleedharan, P.M.; Somayajulu, Y.K.; Gopalakrishna, V.V.; Murthugudde, R.; Reddy, G.V.; Revichandran, C.

    significant part of the penetrating solar radia- tion, leading to temperature inversions (Jerlov 1968; Lewis et al. 1990; Anderson et al. 1996). Further, in the presence of the BL, the oceanic response to wind forc- ing also increases (Vialard and Delecluse... in the northern Indian Ocean during winter is the presence of temperature inversion within the BL [Thadathil and Gosh 1992 (SEAS); Thadathil et al. 2002; Thadathil et al. 2007 (BOB); Qu and Meyers 2005 (SETIO); Durand et al. 2004; and Shenoi et al. 2004 (SEAS...

  15. Seasonal radiogenic isotopic variability of the African dust outflow to the tropical Atlantic Ocean and across to the Caribbean

    Science.gov (United States)

    Kumar, Ashwini; Abouchami, W.; Galer, S. J. G.; Singh, Satinder Pal; Fomba, K. W.; Prospero, J. M.; Andreae, M. O.

    2018-04-01

    In order to assess the impact of mineral dust on climate and biogeochemistry, it is paramount to identify the sources of dust emission. In this regard, radiogenic isotopes have recently been used successfully for tracing North African dust provenance and its transport across the tropical Atlantic to the Caribbean. Here we present two time series of radiogenic isotopes (Pb, Sr and Nd) in dusts collected at the Cape Verde Islands and Barbados in order to determine the origin of the dust and examine the seasonality of westerly dust outflow from Northern Africa. Aerosol samples were collected daily during two campaigns - February 2012 (winter) and June-July 2013 (summer) - at the Cape Verde Atmospheric Observatory (CVAO) on the island of São Vicente (16.9°N, 24.9°W). A one-year-long time series of aerosols from Barbados (13.16°N, 59.43°W) - a receptor region in the Caribbean - was sampled at a lower, monthly resolution. Our results resolve a seasonal isotopic signal at Cape Verde shown by daily variations, with a larger radiogenic isotope variability in winter compared to that in summer. This summer signature is also observed over Barbados, indicating similar dust provenance at both locations, despite different sampling years. This constrains the isotope fingerprint of Saharan Air Layer (SAL) dust that is well-mixed during its transport. This result provides unequivocal evidence for a permanent, albeit of variable strength, long-range transport of African dust to the Caribbean and is in full agreement with atmospheric models of North African dust emission and transport across the tropical Atlantic in the SAL. The seasonal isotopic variability is related to changes in the dust source areas - mainly the Sahara and Sahel regions - that are active all-year-round, albeit with variable contributions in summer versus the winter months. Our results provide little support for much dust contributed from the Bodélé Depression in Chad - the "dustiest" place on Earth

  16. Spatial and seasonal variability of trace-element concentrations in sediments from the Santos-Cubatao estuarine system, Sao Paulo, Brazil

    International Nuclear Information System (INIS)

    Luiz-Silva, Wanilson; Matos, Rosa Helena Ribeiro; Kristosch, Giane Chaves; Machado, Wilson

    2006-01-01

    Multi-element analyses of sediment samples from the Santos-Cubatao Estuarine System were carried out to investigate the spatial and seasonal variability of trace-element concentrations. The study area contains a rich mangrove ecosystem that is a habitat for tens of thousands of resident and migratory birds, some of them endangered globally. Enrichments of metals in fine-grained surface sediments are, in decreasing order, Hg, Mn, La, Ca, Sr, Cd, Zn, Pb, Ba, Cu, Cr, Fe, Nb, Y, Ni and Ga, relative to pre-industrial background levels. The maximum enrichment ranged from 49 (Hg) to 3.1 (Ga). Mercury concentrations were greater in the Cubatao river than in other sites, while the other elements showed greater concentrations in the Morrao river. Concentrations of Mn were significantly greater in winter and autumn than in summer and spring. However, other elements (e.g. Cd and Pb) showed the opposite, with greater concentrations in summer and spring. This study suggests that seasonal changes in physical and chemical conditions may affect the degree of sediment enrichment and therefore make the assessment of contamination difficult. Consequently, these processes need to be considered when assessing water quality and the potential contamination of biota.(author)

  17. Characterization of the cytosolic distribution of priority pollutant metals and metalloids in the digestive gland cytosol of marine mussels: seasonal and spatial variability.

    Science.gov (United States)

    Strižak, Zeljka; Ivanković, Dušica; Pröfrock, Daniel; Helmholz, Heike; Cindrić, Ana-Marija; Erk, Marijana; Prange, Andreas

    2014-02-01

    Cytosolic profiles of several priority pollutant metals (Cu, Cd, Zn, Pb) and metalloid As were analyzed in the digestive gland of the mussel (Mytilus galloprovincialis) sampled at locations with different environmental pollution levels along the Croatian coast in the spring and summer season. Size-exclusion chromatography (SEC) connected to inductively coupled plasma mass spectrometry (ICP-MS) was used to determine selected elements bound to cytosolic biomolecules separated based on their molecular size. Copper, cadmium and zinc eluted mostly associated with high molecular weight (HMW) and medium molecular weight (MMW) biomolecules, but with a more prominent elution in the MMW peak at polluted locations which were probably associated with the 20 kDa metallothionein (MT). Elution of all three metals within this peak was also strongly correlated with cytosolic Cd as strong inducer of MT. Lead mostly eluted in HMW biomolecule range, but in elevated cytosolic Pb concentrations, significant amount eluted in low molecular weight (LMW) biomolecules. Arsenic, on the other hand eluted almost completely in LMW range, but we could not distinguish specific molecular weight biomolecules which would be predominant in detoxification mechanism. Seasonal variability in element abundance within specific peaks was present, although not in the same extent, for all elements and locations, especially for As. The results confirm the suitability of the distribution of selected metals/metalloids among different cytosolic ligands as potential indicator for metal exposure. Obtained findings can also serve as guidelines for further separation and characterization of specific cytosolic metal-binding biomolecules. © 2013.

  18. Seasonal and spatial variability of appendicularian density and taxonomic composition in the Caravelas Estuary (Northeastern Brazil and adjacent coastal area

    Directory of Open Access Journals (Sweden)

    Pedro Freitas de Carvalho

    2010-02-01

    Full Text Available This study aimed to identify and assess the seasonal and spatial variations of the appendicularians in the Caravelas River estuary and the adjacent coastal area. Samples were taken during 12 campaigns over five years (2001 and 2003-2006. Ten species were identified; the most abundant were Oikopleura dioica, Oikopleura rufescens, and Oikopleura longicauda. These species represented more than 95% of the total numbers of appendicularians. The remaining species were less frequent and occurred in low densities. The mean density of appendicularians found at the coastal stations (804 ind.m-3. was higher than in the estuary (66 ind.m-3. However, the differences observed between the estuary and coastal stations were not significant (p=0.54. The samples taken during the dry season showed a higher mean density (587 ind.m-3 than in the rainy season (376 ind.m-3, and the differences between the seasons were statistically significant (p=0.004.Esse trabalho teve como objetivo identificar e avaliar as variações espaciais e sazonais das apendiculárias no estuário do rio Caravelas e área costeira adjacente (17º35' - 18º22' S e 39º8' - 39º55'W. As coletas foram realizadas em 12 campanhas durante cinco anos (2001 e 2003 - 2006. Foram identificadas dez espécies, sendo que Oikopleura dioica, O. rufescens e O. longicauda foram as mais abundantes. Estas três espécies representaram mais de 95% do total de apendiculárias coletadas. As outras espécies foram menos freqüentes e ocorreram em baixas densidades. A densidade média de apendiculárias encontrada nas estações e costeiras (804 ind.m-3 foi maior que na de estuário (158 ind.m-3. As diferenças encontradas entre as estações de estuário e costeiras não foram significativas (p=0,73. As campanhas realizadas durante o período seco apresentaram densidade média (587 ind.m-3 maior que do período chuvoso (376 ind.m-3. As diferenças entre os períodos chuvoso e seco foram estatisticamente

  19. Seasonal Variability of Saturn's Tropospheric Temperatures, Winds and Para-H2 from Cassini Far-IR Spectroscopy

    Science.gov (United States)

    Fletcher, Leigh N.; Irwin, P. G. J; Achterberg, R. K.; Orton, G. S.; Flasar, F. M.

    2015-01-01

    temperatures, para-H2 and winds. Quantitative differences between the Cassini and Voyager epochs suggest that the oscillation is not in phase with the seasonal cycle at these tropospheric depths (i.e., it should be described as quasi-periodic rather than 'semi annual'). Variability in the zonal wind field derived from latitudinal thermal gradients is small (less than 10 m/s per scale height near the tropopause) and mostly affects the broad retrograde jets, with the notable exception of large variability on the northern flank of the equatorial jet. The meridional potential vorticity (PV) gradient, and hence the 'staircase of PV' associated with spatial variations in the vigour of vertical mixing, has varied over the course of the mission but maintained its overall shape. PV gradients in latitude and altitude are used to estimate the atmospheric refractive index for the propagation of stationary planetary (Rossby) waves, predicting that such wave activity would be confined to regions of real refractivity (tropical regions plus bands at 35-45 in both hemispheres). The penetration depth of these regions into the upper troposphere is temporally variable (potentially associated with stratification changes), whereas the latitudinal structure is largely unchanged over time (associated with the zonal jet system).

  20. Phenology of seed and leaves rain in response to periodic climatic variability in a seasonal wet tropical forest

    Science.gov (United States)

    Matteo, D.; Wright, S. J.; Davies, S. J.; Muller-Landau, H. C.; Wolfe, B.; Detto, M.

    2016-12-01

    Phenology, by controlling the rhythms of plants, plays a fundamental role in regulating access to resources, ecosystem processes, competition among species, interactions with consumers and feedbacks to the climate. In high biodiverse tropical forests, where phenology of flowering and leafing are complex, an adequate representation of phenology must take into account a given set of climatic, edaphic and biotic factors. Climatic factors are particularly important because plants may use them as cues for timing different phenological phases and be influenced by their intensity. Climatic variability can be periodic, if events occur with regular frequency, or aperiodic. One prominent periodic large-scale pattern that causes unusual weather is ENSO event. In general, Central America tends to be dry and warm during a mature phase of an ENSO event, which usually peaks between October and January with a frequency of 2-3 events per decade. Because in many tropical areas the effect of ENSO is highly prominent, it is plausible that plants have adapted their growth and reproduction mechanisms to synchronize ENSO phases, in a similar way that plants do during the seasonal cycle. We used a long dataset (30+ years) of fruits and leaves rains of tropical trees and lianas to determine ecosystem response and species specific response of these phenological events to local climate variability corresponding to the modes of ENSO. Specifically, we tested the hypothesis that phenological responses to ENSO are similar to response to seasonal cycles, i.e., higher litterfall before a warm-dry phase and higher fruiting after such phase, with strong correlation between seeds and leaves. At sub-community level, we evaluated whether evergreen and deciduous, biotic and abiotic dispersers and free and climbing life forms, have the same response to ENSO in terms of leaves and seeds rain. At species level we tested the hypothesis that species with low photosynthetic capacity leaves are more responsive

  1. Climatic controls of the interannual to decadal variability in Saudi Arabian dust activity: Towards the development of a seasonal prediction tool

    Science.gov (United States)

    Yu, Y.; Notaro, M.; Liu, Z.; Alkolibi, F.; Fadda, E.; Bakhrjy, F.

    2013-12-01

    Atmospheric dust significantly influences the climate system, as well as human life in Saudi Arabia. Skillful seasonal prediction of dust activity with climatic variables will help prevent some negative social impacts of dust storms. Yet, the climatic regulators on Saudi Arabian dust activity remain largely unaddressed. Remote sensing and station observations show consistent seasonal cycles in Saudi Arabian dust activity, which peaks in spring and summer. The climatic controls on springtime and summertime Saudi Arabian dust activity during 1975-2010 are studied using observational and reanalysis data. Empirical Orthogonal Function (EOF) of the observed Saudi Arabian dust storm frequency shows a dominant homogeneous pattern across the country, which has distinct interannual and decadal variations, as revealed by the power spectrum. Regression and correlation analyses reveal that Saudi Arabian dust activity is largely tied to precipitation on the Arabian Peninsula in spring and northwesterly (Shamal) wind in summer. On the seasonal-interannual time scale, warm El Niño-Southern Oscillation (ENSO) phase (El Niño) in winter-to-spring inhibits spring dust activity by increasing the precipitation over the Rub'al Khali Desert, a major dust source region on the southern Arabian Peninsula; warm ENSO and warm Indian Ocean Basin Mode (IOBM) in winter-to-spring favor less summer dust activity by producing anomalously low sea-level pressure over eastern north Africa and Arabian Peninsula, which leads to the reduced Shamal wind speed. The decadal variation in dust activity is likely associated with the Atlantic Multidecadal Oscillation (AMO), which impacts Sahel rainfall and North African dust, and likely dust transport to Saudi Arabia. The Pacific Decadal Oscillation (PDO) and tropical Indian Ocean SST also have influence on the decadal variation in Saudi Arabian dust activity, by altering precipitation over the Arabian Peninsula and summer Shamal wind speed. Using eastern

  2. The role of phytoplankton dynamics in the seasonal and interannual variability of carbon in the subpolar North Atlantic – a modeling study

    Directory of Open Access Journals (Sweden)

    S. R. Signorini

    2012-05-01

    Full Text Available We developed an ecosystem/biogeochemical model system, which includes multiple phytoplankton functional groups and carbon cycle dynamics, and applied it to investigate physical-biological interactions in Icelandic waters. Satellite and in situ data were used to evaluate the model. Surface seasonal cycle amplitudes and biases of key parameters (DIC, TA, pCO2, air-sea CO2 flux, and nutrients are significantly improved when compared to surface observations by prescribing deep water values and trends, based on available data. The seasonality of the coccolithophore and "other phytoplankton" (diatoms and dinoflagellates blooms is in general agreement with satellite ocean color products. Nutrient supply, biomass and calcite concentrations are modulated by light and mixed layer depth seasonal cycles. Diatoms are the most abundant phytoplankton, with a large bloom in early spring and a secondary bloom in fall. The diatom bloom is followed by blooms of dinoflagellates and coccolithophores. The effect of biological changes on the seasonal variability of the surface ocean pCO2 is nearly twice the temperature effect, in agreement with previous studies. The inclusion of multiple phytoplankton functional groups in the model played a major role in the accurate representation of CO2 uptake by biology. For instance, at the peak of the bloom, the exclusion of coccolithophores causes an increase in alkalinity of up to 4 μmol kg−1 with a corresponding increase in DIC of up to 16 μmol kg−1. During the peak of the bloom in summer, the net effect of the absence of the coccolithophores bloom is an increase in pCO2 of more than 20 μatm and a reduction of atmospheric CO2 uptake of more than 6 mmol m−2 d−1. On average, the impact of coccolithophores is an increase of air-sea CO2 flux of about 27%. Considering the areal

  3. The Role of Phytoplankton Dynamics in the Seasonal and Interannual Variability of Carbon in the Subpolar North Atlantic - a Modeling Study

    Science.gov (United States)

    Signorini, Sergio; Hakkinen, Sirpa; Gudmundsson, K.; Olsen, A.; Omar, A. M.; Olafsson, J.; Reverdin, G.; Henson, S. A.; McClain, C. R.; Worthen, D. L.

    2014-01-01

    We developed an ecosystem/biogeochemical model system, which includes multiple phytoplankton functional groups and carbon cycle dynamics, and applied it to investigate physical-biological interactions in Icelandic waters. Satellite and in situ data were used to evaluate the model. Surface seasonal cycle amplitudes and biases of key parameters (DIC, TA, pCO2, air-sea CO2 flux, and nutrients) are significantly improved when compared to surface observations by prescribing deep water values and trends, based on available data. The seasonality of the coccolithophore and "other phytoplankton" (diatoms and dinoflagellates) blooms is in general agreement with satellite ocean color products. Nutrient supply, biomass and calcite concentrations are modulated by light and mixed layer depth seasonal cycles. Diatoms are the most abundant phytoplankton, with a large bloom in early spring and a secondary bloom in fall. The diatom bloom is followed by blooms of dinoflagellates and coccolithophores. The effect of biological changes on the seasonal variability of the surface ocean pCO2 is nearly twice the temperature effect, in agreement with previous studies. The inclusion of multiple phytoplankton functional groups in the model played a major role in the accurate representation of CO2 uptake by biology. For instance, at the peak of the bloom, the exclusion of coccolithophores causes an increase in alkalinity of up to 4 µmol kg(sup -1) with a corresponding increase in DIC of up to 16 µmol kg(sup -1). During the peak of the bloom in summer, the net effect of the absence of the coccolithophores bloom is an increase in pCO2 of more than 20 µatm and a reduction of atmospheric CO2 uptake of more than 6 mmolm(sup -2) d(sup -1). On average, the impact of coccolithophores is an increase of air-sea CO2 flux of about 27 %. Considering the areal extent of the bloom from satellite images within the Irminger and Icelandic Basins, this reduction translates into an annual mean of nearly 1500

  4. Modelling tide-driven currents and residual eddies in the Gulf of Kachchh and their seasonal variability: A marine environmental planning perspective

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, M.T.; Vethamony, P.; Desa, E.

    showed very good agreement with the measured currents. The study suggests that though the currents of GoK are predominantly tide-driven, they respond significantly to the seasonally changing wind system. Strong southwesterly winds enhance the flood tidal...

  5. A 21-Year Record of Arctic Sea Ice Extents and Their Regional, Seasonal, and Monthly Variability and Trends

    Science.gov (United States)

    Parkinson, Claire L.; Cavalieri, Donald J.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Satellite passive-microwave data have been used to calculate sea ice extents over the period 1979-1999 for the north polar sea ice cover as a whole and for each of nine regions. Over this 21-year time period, the trend in yearly average ice extents for the ice cover as a whole is -32,900 +/- 6,100 sq km/yr (-2.7 +/- 0.5 %/decade), indicating a reduction in sea ice coverage that has decelerated from the earlier reported value of -34,000 +/- 8,300 sq km/yr (-2.8 +/- 0.7 %/decade) for the period 1979-1996. Regionally, the reductions are greatest in the Arctic Ocean, the Kara and Barents Seas, and the Seas of Okhotsk and Japan, whereas seasonally, the reductions are greatest in summer, for which season the 1979-1999 trend in ice extents is -41,600 +/- 12,900 sq km/ yr (-4.9 +/- 1.5 %/decade). On a monthly basis, the reductions are greatest in July and September for the north polar ice cover as a whole, in September for the Arctic Ocean, in June and July for the Kara and Barents Seas, and in April for the Seas of Okhotsk and Japan. Only two of the nine regions show overall ice extent increases, those being the Bering Sea and the Gulf of St. Lawrence.For neither of these two regions is the increase statistically significant, whereas the 1079 - 1999 ice extent decreases are statistically significant at the 99% confidence level for the north polar region as a whole, the Arctic Ocean, the Seas of Okhotsk and Japan, and Hudson Bay.

  6. Seasonal and interannual variability of surface CDOM in the South China Sea associated with El Niño

    Science.gov (United States)

    Ma, Jinfeng; Zhan, Haigang; Du, Yan

    2011-04-01

    Satellite imagery of SeaWiFS from October 1997 to November 2007 is used to investigate the dominant seasonal and interannual variations of the surface light absorption due to Colored Dissolved Organic Materials (CDOM) in the South China Sea (SCS). Results show that the spatial distribution of CDOM mimics the major features of the SCS basin-scale circulation. High values of CDOM are found in upwelling regions like southeast of Vietnam in summer and northwest of Luzon in winter. At a basin scale, CDOM is high in winter when upwelling is strong, solar shortwave radiation and stratification weak, and vertical mixing intense. Opposite conditions exist in spring and summer. Interannual variability of the basin-wide CDOM is characterized by abnormal troughs during the El Niño events. A strong relationship exists between the time series of the first EOF mode (for both winter and summer) and Niño 3.4 Index. Associations of these events with climatic and hydrographic properties (i.e. wind forcing, solar shortwave radiation, Ekman pumping, vertical mixing, sea surface height and temperature) are discussed.

  7. Seasonal variability of free amino acids in two marine bivalves, Macoma balthica and Mytilus spp., in relation to environmental and physiological factors

    NARCIS (Netherlands)

    Kube, S.; Sokolowski, A.; Jansen, J.M.; Schiedek, D.

    2007-01-01

    The seasonal variability of the intracellular free amino acid (FAA) concentration was studied in 5 Macoma balthica populations and 7 Mytilus spp. populations along their European distribution. Because of the well known physiological role of FAA as organic osmolytes for salinity induced cell volume

  8. The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland ice sheet

    NARCIS (Netherlands)

    van den Broeke, M.R.; Smeets, C.J.P.P.; van de Wal, R.S.W.

    2011-01-01

    We present the seasonal cycle and interannual variability of the surface energy balance (SEB) in the ablation zone of the west Greenland ice sheet, using seven years (September 2003–August 2010) of hourly observations from three automatic weather stations (AWS). The AWS are situated along the 67◦ N

  9. Correction of the significance level when attempting multiple transformations of an explanatory variable in generalized linear models

    Science.gov (United States)

    2013-01-01

    Background In statistical modeling, finding the most favorable coding for an exploratory quantitative variable involves many tests. This process involves multiple testing problems and requires the correction of the significance level. Methods For each coding, a test on the nullity of the coefficient associated with the new coded variable is computed. The selected coding corresponds to that associated with the largest statistical test (or equivalently the smallest pvalue). In the context of the Generalized Linear Model, Liquet and Commenges (Stat Probability Lett,71:33–38,2005) proposed an asymptotic correction of the significance level. This procedure, based on the score test, has been developed for dichotomous and Box-Cox transformations. In this paper, we suggest the use of resampling methods to estimate the significance level for categorical transformations with more than two levels and, by definition those that involve more than one parameter in the model. The categorical transformation is a more flexible way to explore the unknown shape of the effect between an explanatory and a dependent variable. Results The simulations we ran in this study showed good performances of the proposed methods. These methods were illustrated using the data from a study of the relationship between cholesterol and dementia. Conclusion The algorithms were implemented using R, and the associated CPMCGLM R package is available on the CRAN. PMID:23758852

  10. Seasonal plankton variability in Chilean Patagonia fjords: Carbon flow through the pelagic food web of Aysen Fjord and plankton dynamics in the Moraleda Channel basin

    Science.gov (United States)

    González, H. E.; Castro, L.; Daneri, G.; Iriarte, J. L.; Silva, N.; Vargas, C. A.; Giesecke, R.; Sánchez, N.

    2011-03-01

    Two research cruises ( CIMAR 13 Fiordos) were conducted in the N-S oriented macrobasin of the Moraleda Channel (42-47°S), which includes the E-W oriented Puyuhuapi Channel and Aysen Fjord, during two contrasting productive seasons: austral winter (27 July-7 August 2007) and spring (2-12 November 2007). These campaigns set out to assess the spatio-temporal variability, defined by the local topography along Moraleda Channel, in the biological, physical, and chemical oceanographic characteristics of different microbasins and to quantify the carbon budget of the pelagic trophic webs of Aysen Fjord. Seasonal carbon fluxes and fjord-system functioning vary widely in our study area. In terms of spatial topography, two constriction sills (Meninea and Elefantes) define three microbasins along Moraleda Channel, herein the (1) north (Guafo-Meninea), (2) central (Meninea-Elefantes), and (3) south (Elefantes-San Rafael Lagoon) microbasins. In winter, nutrient concentrations were high (i.e. nitrate range: 21-14 μM) and primary production was low (153-310 mgC m -2 d -1), suggesting that reduced light radiation depressed the plankton dynamics throughout Moraleda Channel. In spring, primary production followed a conspicuous N-S gradient, which was the highest (5167 mgC m -2 d -1) in the north microbasin and the lowest (742 mgC m -2 d -1) in the south microbasin. The seasonal pattern of the semi-enclosed Puyuhuapi Channel and Aysen Fjord, however, revealed no significant differences in primary production (˜800 mgC m -2 d -1), and vertical fluxes of particulate organic carbon were nearly twice as high in spring as in winter (266 vs. 168 mgC m -2 d -1). At the time-series station (St. 79), the lithogenic fraction dominated the total sedimented matter (seston). The role of euphausiids in the biological carbon pump of the Patagonian fjords was evident, given the predominance of zooplankton fecal material, mostly euphausiid fecal strings (46% of all fecal material), among the

  11. Frequent and seasonally variable sublethal anthrax infections are accompanied by short-lived immunity in an endemic system.

    Science.gov (United States)

    Cizauskas, Carrie A; Bellan, Steven E; Turner, Wendy C; Vance, Russell E; Getz, Wayne M

    2014-09-01

    Few studies have examined host-pathogen interactions in wildlife from an immunological perspective, particularly in the context of seasonal and longitudinal dynamics. In addition, though most ecological immunology studies employ serological antibody assays, endpoint titre determination is usually based on subjective criteria and needs to be made more objective. Despite the fact that anthrax is an ancient and emerging zoonotic infectious disease found world-wide, its natural ecology is not well understood. In particular, little is known about the adaptive immune responses of wild herbivore hosts against Bacillus anthracis. Working in the natural anthrax system of Etosha National Park, Namibia, we collected 154 serum samples from plains zebra (Equus quagga), 21 from springbok (Antidorcas marsupialis) and 45 from African elephants (Loxodonta africana) over 2-3 years, resampling individuals when possible for seasonal and longitudinal comparisons. We used enzyme-linked immunosorbent assays to measure anti-anthrax antibody titres and developed three increasingly conservative models to determine endpoint titres with more rigourous, objective mensuration. Between 52 and 87% of zebra, 0-15% of springbok and 3-52% of elephants had measurable anti-anthrax antibody titres, depending on the model used. While the ability of elephants and springbok to mount anti-anthrax adaptive immune responses is still equivocal, our results indicate that zebra in ENP often survive sublethal anthrax infections, encounter most B. anthracis in the wet season and can partially booster their immunity to B. anthracis. Thus, rather than being solely a lethal disease, anthrax often occurs as a sublethal infection in some susceptible hosts. Though we found that adaptive immunity to anthrax wanes rapidly, subsequent and frequent sublethal B. anthracis infections cause maturation of anti-anthrax immunity. By triggering host immune responses, these common sublethal infections may act as

  12. Seasonal variability in soil-surface CO{sub 2} efflux in selected young tree plantations in semi-arid eco-climate of Madurai

    Energy Technology Data Exchange (ETDEWEB)

    Saraswathi, S.G.; Lalrammawia, C.; Paliwal, K. [Madurai Kamaraj Univ., Madurai (India). Dept. of Plant Sciences

    2008-07-10

    Atmospheric CO{sub 2} concentrations have been increasing in response to the disruption of the global carbon cycle by anthropogenic activities such as deforestation, agricultural practices and burning of fossil fuels. This has resulted in large shifts among carbon pools. The efflux of CO{sub 2} from soil results from the combined rates of autotrophic (root) and heterotrophic (microbial and soil fauna) respiration. It is often called soil respiration. The response of soil respiration (SR) to varying soil temperature and soil moisture was studied in three year-old plantation sites of Dalbergia sissoo, Dalbergia latifolia, Albizia lebbeck, Hardwickia binata and Cassia siamea during 2005--06. Significant seasonal differences in SR rates were observed in each site (P {<=} 0.001). The highest rates of soil CO{sub 2} efflux were generally found during the rainy season and the lowest during summer in all the study sites. Highest SR rates were found in D. sissoo, 9.89 {+-} 0.78 {mu}mol m{sup -2} s{sup -1} in November and December, followed by H. binata, 9.68 {+-} 0.45 {mu}mol m{sup -2} s{sup -1} in September and October 2005, A. lebbeck, 8.84 {+-} 0.43 {mu}mol m{sup -2} s{sup -1} between November 2005 and January 2006, D. latifolia, 7.6 {+-} 0.12 {mu}mol m{sup -2} s{sup -1} in November and December 2005 and C. siamea, 7.3 {mu}mol m{sup -2} s{sup -1} in December 2005. There was a positive and significant (P {<=} 0.001) relationship between SR rates and soil moisture in all the sites (r{sup 2} above 0.60), except C. siamea (r{sup 2} = 0.30). A poor relationship was observed between SR and soil temperature in all the sites (r{sup 2} below 0.2). Examination of the seasonal pattern of SR rates suggests that much of the variability could be attributed to variations in soil moisture. There was a strong indication suggesting that the soil-water deficits served to reduce SR rates during summer and after subsequent rain events. Overall sensitivity of SR rate to soil moisture seems to

  13. Seasonal variability of carbon in humic-like matter of ambient size-segregated water soluble organic aerosols from urban background environment

    Science.gov (United States)

    Frka, Sanja; Grgić, Irena; Turšič, Janja; Gini, Maria I.; Eleftheriadis, Konstantinos

    2018-01-01

    Long-term measurements of carbon in HUmic-LIke Substances (HULIS-C) of ambient size-segregated water soluble organic aerosols were performed using a ten-stage low-pressure Berner impactor from December 2014 to November 2015 at an urban background environment in Ljubljana, Slovenia. The mass size distribution patterns of measured species (PM - particulate matter, WSOC - water-soluble organic carbon and HULIS-C) for all seasons were generally tri-modal (primarily accumulation mode) but with significant seasonal variability. HULIS-C was found to have similar distributions as WSOC, with nearly the same mass median aerodynamic diameters (MMADs), except for winter when the HULIS-C size distribution was bimodal. In autumn and winter, the dominant accumulation mode with MMAD at ca. 0.65 μm contributed 83 and 97% to the total HULIS-C concentration, respectively. HULIS-C accounted for a large fraction of WSOC, averaging more than 50% in autumn and 40% in winter. Alternatively, during warmer periods the contributions of ultrafine (27% in summer) and coarse mode (27% in spring) were also substantial. Based on mass size distribution characteristics, HULIS-C was found to be of various sources. In colder seasons, wood burning was confirmed as the most important HULIS source; secondary formation in atmospheric liquid water also contributed significantly, as revealed by the MMADs of the accumulation mode shifting to larger sizes. The distinct difference between the spring and summer ratios of HULIS-C/WSOC in fine particles (ca. 50% in spring, but only 10% in summer) indicated different sources and chemical composition of WSOC in summer (e.g., SOA formation from biogenic volatile organic compounds (BVOCs) via photochemistry). The enlarged amount of HULIS-C in the ultrafine mode in summer suggests that the important contribution was most likely from new particle formation during higher emissions of BVOC due to the vicinity of a mixed deciduous forest; the higher contribution of

  14. Season plays a role in variability in vitamin C content of fresh fruits and vegetables in a local retail market

    Science.gov (United States)

    Seasonal variation of vitamin C in fresh fruits and vegetables is not reflected in food composition database average values, yet many factors influence content and retention. Fresh fruits and vegetables were sampled on three occasions in each season, from the same local retail outlets, for one or tw...

  15. NEW SEASON NEW HOPES: OFF-SEASON OPTIMISM

    Directory of Open Access Journals (Sweden)

    Oguz Ersan

    2017-12-01

    Full Text Available While literature on the relation between on-field sports performance and stock returns is ample, there is very limited evidence on off-season stage. Constituting around 3 months, off-seasons do not only occupy a significant part of the year but also represent totally different characteristics than on-seasons. They lack the periodic, unambiguous news events in on-seasons (match results, instead they are associated with highly uncertain transfer news and rumors. We show that this distinction has several impacts on the stock market performances of soccer clubs. Most notably, off-seasons generate substantially higher (excess returns. After controlling for other variables, the estimated effect of off-season periods is as high as 38.75%, annually. In line with several seminal studies, we link this fact to increased optimism and betting behavior through uncertain periods; and periods prior to the start of a new calendar (in our case, new season. For all of the examined 7 clubs (3 from Italy and 4 from Turkey, mean excess returns over the market are positive (negative in off-seasons (on-seasons. On-seasons are associated with increased trading activity due to more frequent news. Stocks of Italian clubs are evidently more volatile through off-seasons while volatility results for the stocks of Turkish clubs are not consistent.

  16. Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: effects of climate and management.

    Science.gov (United States)

    Wohlfahrt, Georg; Hammerle, Albin; Haslwanter, Alois; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander

    2008-04-27

    The role and relative importance of climate and cutting for the seasonal and inter-annual variability of the net ecosystem CO 2 (NEE) of a temperate mountain grassland was investigated. Eddy covariance CO 2 flux data and associated measurements of the green area index and the major environmental driving forces acquired during 2001-2006 at the study site Neustift (Austria) were analyzed. Driven by three cutting events per year which kept the investigated grassland in a stage of vigorous growth, the seasonal variability of NEE was primarily modulated by gross primary productivity (GPP). The role of environmental parameters in modulating the seasonal variability of NEE was obscured by the strong response of GPP to changes in the amount of green area, as well as the cutting-mediated decoupling of phenological development and the seasonal course of climate drivers. None of the climate and management metrics examined was able to explain the inter-annual variability of annual NEE. This is thought to result from (1) a high covariance between GPP and ecosystem respiration (R eco ) at the annual time scale which results in a comparatively small inter-annual variation of NEE, (2) compensating effects between carbon exchange during and outside the management period, and (3) changes in the biotic response to rather than the climate variables per se. GPP was more important in modulating inter-annual variations in NEE in spring and before the first and second cut, while R eco explained a larger fraction of the inter-annual variability of NEE during the remaining, in particular the post-cut, periods.

  17. Spatial Variability in Condition of Southern Rock Lobsters (Jasus edwardsii) at the Start of the Tasmanian Fishing Season.

    Science.gov (United States)

    Mendo, Tania; Simon, Cedric; Green, Bridget; Gardner, Caleb

    2016-01-01

    The southern rock lobster (Jasus edwardsii) industry in Australia favours red lobsters, which are usually caught in shallow waters, over paler (brindle) lobsters. This preference is driven partly by the Chinese market, where red is associated with luck and prosperity, and additionally, by the widely held perception within the industry that brindles have greater mortality rates during out of water transport than reds. Limited scientific evidence supports these industry observations; however, these studies did not evaluate the initial condition of lobsters. This study aimed first, to determine which variables better describe condition in J. edwardsii and second, to compare condition among lobsters in several sites around Tasmania at the typical time of high transport mortality. Male lobsters were collected from the South West, South East, East and North coast of Tasmania in late November/December 2014, which correspond to the start of the Tasmanian fishing season. A comprehensive condition assessment was applied by measuring tissue proximal composition, Brix index, Total Haemocyte Count, pH, haemocyanin and another 16 haemolymph parameters of interest. A useful framework to compare condition in J. edwardsii was established by first, using Brix index as a measure of nutritional condition, second, using pH, magnesium, and bicarbonate to evaluate differences in physiological condition and finally, using THC counts as a proxy for lobster health condition. Lobsters from different sites had different nutritional, physiological and health condition, consistent with industry observations, however our results indicate that some red shallow water lobsters exhibited poorer nutritional and health condition, while some deep water brindle lobsters were in good condition. Differences in condition could not be directly associated to catch depth of lobsters and was related to other spatially discrete factors which sometimes vary over distances <3 km.

  18. Accounting for inter-annual and seasonal variability in regionalization of hydrologic response in the Great Lakes basin

    Science.gov (United States)

    Kult, J. M.; Fry, L. M.; Gronewold, A. D.

    2012-12-01

    Methods for predicting streamflow in areas with limited or nonexistent measures of hydrologic response typically invoke the concept of regionalization, whereby knowledge pertaining to gauged catchments is transferred to ungauged catchments. In this study, we identify watershed physical characteristics acting as primary drivers of hydrologic response throughout the US portion of the Great Lakes basin. Relationships between watershed physical characteristics and hydrologic response are generated from 166 catchments spanning a variety of climate, soil, land cover, and land form regimes through regression tree analysis, leading to a grouping of watersheds exhibiting similar hydrologic response characteristics. These groupings are then used to predict response in ungauged watersheds in an uncertainty framework. Results from this method are assessed alongside one historical regionalization approach which, while simple, has served as a cornerstone of Great Lakes regional hydrologic research for several decades. Our approach expands upon previous research by considering multiple temporal characterizations of hydrologic response. Due to the substantial inter-annual and seasonal variability in hydrologic response observed over the Great Lakes basin, results from the regression tree analysis differ considerably depending on the level of temporal aggregation used to define the response. Specifically, higher levels of temporal aggregation for the response metric (for example, indices derived from long-term means of climate and streamflow observations) lead to improved watershed groupings with lower within-group variance. However, this perceived improvement in model skill occurs at the cost of understated uncertainty when applying the regression to time series simulations or as a basis for model calibration. In such cases, our results indicate that predictions based on long-term characterizations of hydrologic response can produce misleading conclusions when applied at shorter

  19. Seasonal and geographical variability in some trace elements of Pacific oysters (Crassostrea Gigas) cultured in two different bays of Northern Chile

    International Nuclear Information System (INIS)

    Gras, N.; Thieck, M.; Munoz, L.

    1991-01-01

    Chile has approximately 4,500 kilometers of continental coastline on the Pacific Ocean. It is therefore in a favorable position to develop fishing activities, since its waters contain a great variety of marine resources, namely, fish, shellfish and seaweeds. Fishing in Chile plays an important role in production. Metal contamination of the marine ecosystem is a pervasive and worldwide problem. Consequently, seafood consuming and exporting countries have gradually increased the need to improve the quality of their products in order to meet the required standards. In turn, this implies the need to adopt more efficient methods to analyze these resources by carrying out studies that will provide greater integral knowledge on the levels of essential and toxic trace elements found in seafood. In the present study, seasonal and geographical variability of some trace elements content of Pacific Oysters (Crassostrea Gigas) cultured, greatly demanded on the international market, are investigated. Samples for the analysis were collected from two different bays of Northern Chile, where heavy-metal pollution is already recognized as a problem. The trace elements content of this mollusk was studied at monthly intervals for 12 months (September 1987-August 1988). The determination of Cu was carried out using radiochemical neutron activation analysis and the other trace elements like Cd, As, Br, Na, Se, Cr, Fe, Zn and Co, were determined through neutron activation analysis in its purely instrumental form. NBS Standard Reference Materials were used to determine the accuracy of both methods. Significant differences were found comparing the content of copper and cadmium at the different seasons and locations of capture

  20. Seasonal and nonseasonal variability of satellite-derived chlorophyll and colored dissolved organic matter concentration in the California Current

    Science.gov (United States)

    Kahru, Mati; Mitchell, B. Greg

    2001-02-01

    Time series of surface chlorophyll a concentration (Chl) and colored dissolved organic matter (CDOM) derived from the Ocean Color and Temperature Sensor and Sea-Viewing Wide Field-of-View Sensor were evaluated for the California Current area using regional algorithms. Satellite data composited for 8-day periods provide the ability to describe large-scale changes in surface parameters. These changes are difficult to detect based on in situ observations alone that suffer from undersampling the large temporal and spatial variability, especially in Chl. We detected no significant bias in satellite Chl estimates compared with ship-based measurements. The variability in CDOM concentration was significantly smaller than that in Chl, both spatially and temporally. While being subject to large interannual and short-term variations, offshore waters (100-1000 km from the shore) have an annual cycle of Chl and CDOM with a maximum in winter-spring (December-March) and a minimum in late summer. For inshore waters the maximum is more likely in spring (April-May). We detect significant increase in both Chl and CDOM off central and southern California during the La Niña year of 1999. The trend of increasing Chl and CDOM from October 1996 to June 2000 is statistically significant in many areas.

  1. Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Yen Yi Loo

    2015-11-01

    Full Text Available Global warming and climate change is one of the most extensively researched and discussed topical issues affecting the environment. Although there are enough historical evidence to support the theory that climate change is a natural phenomenon, many research scientists are widely in agreement that the increase in temperature in the 20th century is anthropologically related. The associated effects are the variability of rainfall and cyclonic patterns that are being observed globally. In Southeast Asia the link between global warming and the seasonal atmospheric flow during the monsoon seasons shows varying degree of fuzziness. This study investigates the impact of climate change on the seasonality of monsoon Asia and its effect on the variability of monsoon rainfall in Southeast Asia. The comparison of decadal variation of precipitation and temperature anomalies before the 1970s found general increases which were mostly varying. But beyond the 1970s, global precipitation anomalous showed increases that almost corresponded with increases in global temperature anomalies for the same period. There are frequent changes and a shift westward of the Indian summer monsoon. Although precipitation is observed to be 70% below normal levels, in some areas the topography affects the intensity of rainfall. These shifting phenomenon of other monsoon season in the region are impacting on the variability of rainfall and the onset of monsoons in Southeast Asia and is predicted to delay for 15 days the onset of the monsoon in the future. The variability of monsoon rainfall in the SEA region is observed to be decadal and the frequency and intensity of intermittent flooding of some areas during the monsoon season have serious consequences on the human, financial, infrastructure and food security of the region.

  2. Seasonal and inter-annual variability of the phytoplankton communities in an upwelling area of the Alborán Sea (SW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Jesús M. Mercado

    2005-12-01

    Full Text Available Temporal variability (seasonal and inter-annual in the assembly of phytoplankton communities from the northern Alborán Sea was investigated. For this purpose, the taxonomic composition of the micro- and nano-phytoplankton communities at three fixed stations was determined every three months from 1994 to 2002. A total of 357 different taxa were identified. Most of them (about 54% were diatom species belonging to 57 genera. Dinoflagellates and coccolitophorids accounted for 118 and 30 taxa respectively. Two time periods could be differentiated with respect to the cell abundance. Thus, the mean abundance from 1994 to 1999 was 338 cell ml-1 and it dropped to about 60 cell ml-1 during the period 2000-2002. Diatoms and un-identified small flagellates dominated the communities during this first period, although a significant increase in the abundance of coccolitophorids occurred after 1997. Pseudo-nitzschia, Leptocylindrus and Chaetoceros were the dominant genera. In contrast, the coccolitophorids Emiliania huxleyi and Gephyrocapsa spp. quantitatively dominated the communities from 2000 to 2002. These shifts in the community assembly were assessed by performing a sample-oriented stepwise discriminant analysis (SDA. The analysis separated the samples into three year-groups, with great inter-annual variability. In contrast, the SDA did not find any seasonal sucessional pattern. In spite of this result, chlorophyll a and cell abundance tended to be higher in the spring period, which has been described for the whole Alborán basin. The nutrient concentrations in the 75 m upper seawater layer had inter-annual fluctuations. Thus, NO3-+NO2-, PO4-3 and Si(OH4 concentrations decreased significantly in 1997-1998. Additionally, lower Si(OH4 concentrations and Si:P molar ratios were obtained in 2000. These results suggest that the inter-annual shifts in the phytoplankton taxonomic composition were due to alterations in the nutrient regime. In this paper we

  3. Socio-hydrological model to inform community adaptation to seasonal drought and climate variability in rural agricultural watersheds in Costa Rica

    Science.gov (United States)

    Hund, S. V.; Johnson, M. S.; Morillas, L.; McDaniels, T.; Romero Valpreda, J.; Allen, D. M.

    2017-12-01

    Climate variability and seasonal droughts associated with ENSO (El Niño Southern Oscillation) and increasing water demand due to growing population are leading to serious water conflicts in the wet-dry tropics of Central America. Integrated methods are needed to understand the linkages of these complex socio-hydrological systems and design reliable adaption strategies in a period of global change. With increasing pressure on surface and groundwater resources during long annual dry seasons, rural agricultural communities suffer water shortages, especially in those years preceded by wet seasons with lower rainfall (and reduced groundwater recharge). To support community resilience to rainfall variability and droughts, we conducted a combination of fieldwork (development of hydrologic monitoring system and local stakeholder cooperation), and hydrological modeling for two watersheds with a shared aquifer (Potrero and Caimital) in Northwestern Costa Rica. The agricultural land use of the region and the many rural villages that draw directly on their local water resource and live in close interaction with their watersheds necessitated a socio-hydrological systems approach. In this talk we present results from our hydrologic modeling, for which we used the WEAP (Water Evaluation and Planning) model and locally recorded data. With the integrated water supply and demand features of the WEAP model, we were able to synthesize both the hydrological system and the societal system (specifically, household and agricultural water use), and show feedbacks such as that water use tends to increase during the dry season, likely exacerbating water shortages issues. Further, applying a range of ENSO related rainfall scenarios to the model demonstrated that community adaptation will become in particular important in response to lower water availability in future El Niño years. In collaboration with local stakeholders, we identified a set of feasible adaptation strategies to seasonal

  4. Seasonal variability in biological carbon biomass standing stocks and production in the surface layers of the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Fernandes, V.; Paul, J.T.; Jyothibabu, R.; Gauns, M.; Jayraj, E.A.

    ). Incidentally it was mostly decoupled with chl a and PP. Cold-core eddies observed during most sampled seasons seem to bear an enhancing influence on the overall biological productivity processes...

  5. Variability and trends of wet season temperature in the Sudano-Sahelian zone and relationships with precipitation

    Science.gov (United States)

    Oueslati, Boutheina; Camberlin, Pierre; Zoungrana, Joël; Roucou, Pascal; Diallo, Saliou

    2018-02-01

    The relationships between precipitation and temperature in the central Sudano-Sahelian belt are investigated by analyzing 50 years (1959-2008) of observed temperature (Tx and Tn) and rainfall variations. At daily time-scale, both Tx and Tn show a marked decrease as a response to rainfall occurrence, with a strongest departure from normal 1 day after the rainfall event (-0.5 to -2.5 °C depending on the month). The cooling is slightly larger when heavy rainfall events (>5 mm) are considered. The temperature anomalies weaken after the rainfall event, but are still significant several days later. The physical mechanisms accounting for the temperature response to precipitation are analysed. The Tx drop is accounted for by reduced incoming solar radiation associated with increased cloud cover and increased surface evaporation following surface moistening. The effect of evaporation becomes dominant a few days after the rainfall event. The reduced daytime heat storage and the subsequent sensible heat flux result in a later negative Tn anomaly. The effect of rainfall variations on temperature is significant for long-term warming trends. The rainfall decrease experienced between 1959 and 2008 accounts for a rainy season Tx increase of 0.15 to 0.3 °C, out of a total Tx increase of 1.3 to 1.5 °C. These results have strong implications on the assessment of future temperature changes. The dampening or amplifying effects of precipitation are determined by the sign of future precipitation trends. Confidence on temperature changes under global warming partly depend on the robustness of precipitation projections.

  6. Growing season variability of net ecosystem CO2 exchange and evapotranspiration of a sphagnum mire in the broad-leaved forest zone of European Russia

    International Nuclear Information System (INIS)

    Olchev, A; Volkova, E; Karataeva, T; Novenko, E

    2013-01-01

    The spatial and temporal variability of net ecosystem exchange (NEE) of CO 2 and evapotranspiration (ET) of a karst-hole sphagnum peat mire situated at the boundary between broad-leaved and forest–steppe zones in the central part of European Russia in the Tula region was described using results from field measurements. NEE and ET were measured using a portable measuring system consisting of a transparent ventilated chamber combined with an infrared CO 2 /H 2 O analyzer, LI-840A (Li-Cor, USA) along a transect from the southern peripheral part of the mire to its center under sunny clear-sky weather conditions in the period from May to September of 2012 and in May 2013. The results of the field measurements showed significant spatial and temporal variability of NEE and ET that was mainly influenced by incoming solar radiation and ground water level. The seasonal patterns of NEE and ET within the mire were quite different. During the entire growing season the central part of the mire was a sink of CO 2 for the atmosphere. NEE reached maximal values in June–July (−6.8 ± 4.2 μmol m −2 s −1 ). The southern peripheral part of the mire, due to strong shading by the surrounding forest, was a sink of CO 2 for the atmosphere in June–July only. ET reached maximal values in the well-lighted central parts of the mire in May (0.34 ± 0.20 mm h −1 ) mainly because of high air and surface temperatures and the very wet upper peat horizon and sphagnum moss. Herbaceous species made the maximum contribution to the total gross primary production (GPP) in both the central and the peripheral parts of the mire. The contribution of sphagnum to the total GPP of these plant communities was relatively small and ranged on sunny days of July–August from −1.1 ± 1.1 mgC g −1 of dry weight (DW) per hour in the peripheral zone of the mire to −0.6 ± 0.2 mgC g −1 DW h −1 at the mire center. The sphagnum layer made the maximum contribution to total ET at the mire center (0

  7. Seasonal variability of soil CO2 flux and its carbon isotope composition in Krakow urban area, Southern Poland.

    Science.gov (United States)

    Jasek, Alina; Zimnoch, Miroslaw; Gorczyca, Zbigniew; Smula, Ewa; Rozanski, Kazimierz

    2014-06-01

    As urban atmosphere is depleted of (13)CO2, its imprint should be detectable in the local vegetation and therefore in its CO2 respiratory emissions. This work was aimed at characterising strength and isotope signature of CO2 fluxes from soil in urban areas with varying distances from anthropogenic CO2 emissions. The soil CO2 flux and its δ(13)C isotope signature were measured using a chamber method on a monthly basis from July 2009 to May 2012 within the metropolitan area of Krakow, Southern Poland, at two locations representing different levels of anthropogenic influence: a lawn adjacent to a busy street (A) and an urban meadow (B). The small-scale spatial variability of the soil CO2 flux was also investigated at site B. Site B revealed significantly higher summer CO2 fluxes (by approximately 46 %) than site A, but no significant differences were found between their δ(13)CO2 signatures.

  8. Seasonal variability of metallothioneins, cytochrome P450, Bile metabolites and oxyradical metabolism in the European eel Anguilla anguilla L. (Anguillidae) and striped mullet Mugil cephalus L. (Mugilidae).

    Science.gov (United States)

    Gorbi, Stefania; Baldini, Chiara; Regoli, Francesco

    2005-07-01

    The European eel Anguilla anguilla (Anguillidae) and the striped mullet Mugil cephalus (Mugilidae) are typical inhabitants of Mediterranean brackish lagoons, and their utility as bioindicator organisms has already been suggested. The seasonal variability of several potential biomarkers was investigated during a field study carried out in the Orbetello lagoon (Tuscany, Italy). Organisms were sampled on a seasonal basis, and analyzed parameters included the levels of hepatic metallothioneins, the activity of cytochrome P450 1A (EROD), and the presence of biliary PAH metabolites. Special attention was also paid to antioxidant defenses, including catalase, glutathione peroxidases, glutathione reductase, glutathione S-transferases, and total glutathione concentration. Total Oxyradical Scavenging Capacity (TOSC-assay) was measured as an indication of the overall biological resistance to toxicity of different forms of oxyradicals (peroxynitrite, peroxyl and hydroxyl radicals). Obtained results suggest that natural variations of analyzed responses are associated with seasonality of both environmental and biological factors, mainly temperature and reproductive cycle which, however, have a different influence in these two species. Striped mullets exhibited the strongest variations in October when spawning occurs; eels are not influenced by a seasonal sexual maturation and showed more marked changes during the summer, likely related to the elevated seawater temperature and light irradiance in the lagoon. This study confirms the importance of characterizing seasonal variations and the influence of different factors on biological responses that can be used as biomarkers in monitoring programs.

  9. The clinical significance of detection to heart rate deceleration capacity and heart rate variability in patients with chronic heart failure

    Directory of Open Access Journals (Sweden)

    Jiang-rong Zhou

    2015-01-01

    Full Text Available Objective: To study the change of heart rate deceleration capacity ( DC and heart rate variability in patients with chronic heart failure (CHF and its relationship with left ventricular ejection fraction (LVEF. Methods: DC, LVEF, time and frequency domain parameters of HRV were measured in 66 patients with CHF and 34 healthy adults (control group by using 24h Holter recordings and Echocardiography. The standard deviation of normal R-R intervals( SDNN, squares of differences between adjacent NN intervals ( RMSSD,low frequency power( LFn and high frequency power( HFn and the changes of LVEF were compared between  the two groups,the relationship between DC,LVEF and HRV were studied in patients with CHF. Results: The median value of DC in the patients with CHF was significantly lower than that in control group( 3.1 ± 2.4 ms vs 7.2 ± 1.3 ms,P <0.01.Incidence of abnormal DC in the CHF group was 57.5%,which was significantly higher than that in the control group (P <0.01.The HRV index, including SDNN、RMSSD、LFn、HFn, in the CHF group was significantly lower than that in normal control group (P < 0.01. Significant positive correlation between HRV index and LVEF were confirmed (P < 0.01. Conclusions: DC and HRV index are lower in patients with CHF and have a good correlation with the left ventricular ejection fraction.

  10. Seasonal variability of Dinophysis spp. and Protoceratium reticulatum associated to lipophilic shellfish toxins in a strongly stratified Chilean fjord

    Science.gov (United States)

    Alves-de-Souza, Catharina; Varela, Daniel; Contreras, Cristóbal; de La Iglesia, Pablo; Fernández, Pamela; Hipp, Byron; Hernández, Cristina; Riobó, Pilar; Reguera, Beatriz; Franco, José M.; Diogène, Jorge; García, Carlos; Lagos, Néstor

    2014-03-01

    The fine scale vertical distribution of Dinophysis spp. and Protoceratium reticulatum (potential producers of lipophilic shellfish toxins, LSTs) and its relation with LSTs in shellfish was studied in Reloncaví fjord, a strongly stratified system in Southern Chile. Samples were taken over two years from late spring to early autumn (2007-2008 period) and from early spring to late summer (2008-2009 period). Dinophysis spp., in particular Dinophysis acuminata, were always detected, often forming thin layers in the region of the salinity driven pycnocline, with cell maxima for D. acuminata of 28.5×103 cells L-1 in March 2008 and 17.1×103 cells L-1 in November 2008. During the 2008-2009 sampling period, blooms of D. acuminata co-occurred with high densities of cryptophyceans and the ciliate Mesodinium spp. The highest levels of pectenotoxin-2 (PTX-2; 2.2 ng L-1) were found in the plankton in February 2009, associated with moderate densities of D. acuminata, Dinophysis tripos and Dinophysis subcircularis (0.1-0.6×103 cells L-1). However, only trace levels of PTX-2 were observed in bivalves at that time. Dinophysistoxin (DTX-1 and DTX-3) levels in bivalves and densities of Dinophysis spp. were not well correlated. Low DTX levels in bivalves observed during a major bloom of D. acuminata in March 2008 suggested that there is a large seasonal intraspecific variability in toxin content of Dinophysis spp. driven by changes in population structure associated with distinct LST toxin profiles in Reloncaví fjord during the study period. A heterogeneous vertical distribution was also observed for P. reticulatum, whose presence was restricted to summer months. A bloom of this species of 2.2×103 cells L-1 at 14 m depth in February 2009 was positively correlated with high concentrations of yessotoxins in bivalves (51-496 ng g-1) and plankton samples (3.2 ng L-1). Our results suggest that a review of monitoring strategies for Dinophysis spp. in strongly stratified fjord systems

  11. Seasonal variability in nitrate and phosphate uptake kinetics in a forested headwater stream using pulse nutrient additions

    Science.gov (United States)

    Griffiths, N. A.; Mulholland, P. J.

    2011-12-01

    We used the Tracer Additions for Spiraling Curve Characterization (TASCC) approach to quantify seasonal variability in ambient nutrient spiraling metrics and nutrient uptake kinetics in the West Fork of Walker Branch, a forested headwater stream in eastern Tennessee, USA. We performed instantaneous additions of nitrate (NO3-) and phosphate (PO4-3) separately with a conservative tracer (chloride, Cl-) during the following biologically-important time periods: autumn (during leaf fall, high organic matter [OM] standing stocks), winter (low OM standing stocks), spring (prior to canopy closure), and summer (closed canopy). We predicted that nutrient demand would be highest during autumn and spring, as OM inputs fuel heterotrophic respiration and high light availability stimulates autotrophic production, respectively. The measured ambient PO4-3 uptake rates (Vf-amb) followed our predictions, with the highest Vf-amb rates in autumn (Vf-amb = 2.8 mm/min) and spring (Vf-amb = 2.9 mm/min), and undetectable uptake in winter. Further, maximum areal PO4-3 uptake rates (Umax) were higher in autumn (Umax = 297 μg/m2/min) than spring (Umax = 106 μg/m2/min), possibly due to greater nutrient demand of heterotrophs on leaf litter accumulations. Contrary to our predictions, ambient NO3- uptake rates were highest in autumn and winter (autumn: Vf-amb = 2.8 mm/min, winter: Vf-amb = 2.4 mm/min), and lowest in spring (Vf-amb = 1.0 mm/min). The higher than expected Vf-amb rate in winter may be due to higher stream metabolism rates and thus greater nitrogen demand; the lower than expected Vf-amb rate in spring may reflect an alleviation of nitrogen demand due to high ammonium concentrations during this time. As the demand for both nitrogen and phosphorus in Walker Branch is greatest in autumn, future work will characterize how nutrient metrics change during this dynamic time period (i.e., before, during, and after leaf fall).

  12. Hygienization and control of Diplodia seriata fungus in vine pruning waste composting and its seasonal variability in open and closed systems.

    Science.gov (United States)

    Matei, Petruta M; Sánchez-Báscones, Mercedes; Bravo-Sánchez, Carmen T; Martín-Ramos, Pablo; Martín-Villullas, M Teresa; García-González, M Cruz; Hernández-Navarro, Salvador; Navas-Gracia, Luis M; Martín-Gil, Jesús

    2016-12-01

    After the ban on sodium arsenite, waste management alternatives to the prevalent burning method, such as the hygienization and biodegradation in solid phase by composting, are required for the pruned material from grapevines affected by various fungi. In this work the dynamics of a fungus associated with vine decay (Diplodia seriata) during the composting process of a mixture of laying hen manure and vine pruning waste (2:1w/w) have been investigated in an open pile and a discontinuous closed biodigester. Through the optimization of the various physical-chemical parameters, hygienization of the infected waste materials was attained, yielding class-A organo-mineral fertilizers. Nevertheless, important differences in the efficiency of each system were observed: whereas in the open pile it took 10days to control D. seriata and 35 additional composting days to achieve full inactivation, in the discontinuous biodigester the fungus was entirely inactivated within the first 3-7days. Finally, the impact of seasonal variability was assessed and summer temperatures shown to have greater significance in the open pile. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. CO Seasonal Variability and Trend over Paris Megacity Using Ground-Based QualAir FTS and Satellite IASI-MetOp Measurements

    Science.gov (United States)

    Te, Yao; Jeseck, Pascal; Hadji-Lazaro, Juliette

    2012-11-01

    In a growing world with more than 7 billion inhabitants and big emerging countries such as China, Brazil and India, emissions of anthropogenic pollutants are increasing continuously. Monitoring and control of atmospheric pollutants in megacities have become a major challenge for scientists and public health authorities in environmental research area. The QualAir platform at University Pierre et Marie Curie (UPMC), is an innovating experimental research platform dedicated to survey urban atmospheric pollution and air quality. A Bruker Optics IFS 125HR Fourier transform spectrometer belonged to the Laboratoire de Physique Moléculaire pour l'Atmosphère et l'Astrophysique (LPMAA), was adapted for ground-based atmospheric measurements. As one of the major instruments of the QualAir platform, this ground-based Fourier transform spectrometer (QualAir FTS) analyses the composition of the urban atmosphere of Paris, which is the third largest European megacity. The continuous monitoring of atmospheric pollutants is essential to improve the understanding of urban air pollution processes. Associated with a sun-tracker, the QualAir remote sensing FTS operates in solar infrared absorption and enables to monitor many trace gases, and to follow up their variability in the Ile-de-France region. Concentrations of atmospheric pollutants are retrieved by the radiative transfer model PROFFIT. These ground-based remote sensing measurements are compared to ground in-situ measurements and to satellite data from IASI-MetOp (Infrared Atmospheric Sounding Interferometer). The remote sensing total column of the carbon monoxide (CO) obtained from January 2009 to June 2012, has a seasonal variability with a maximum in April and a minimum in October. While, after 2008, the mean CO level is quite stable (no significant decrease as before 2008).

  14. Are Simulated and Observed Twentieth Century Tropical Pacific Sea Surface Temperature Trends Significant Relative to Internal Variability?

    Science.gov (United States)

    Coats, S.; Karnauskas, K. B.

    2017-10-01

    Historical trends in the tropical Pacific zonal sea surface temperature gradient (SST gradient) are analyzed herein using 41 climate models (83 simulations) and 5 observational data sets. A linear inverse model is trained on each simulation and observational data set to assess if trends in the SST gradient are significant relative to the stationary statistics of internal variability, as would suggest an important role for external forcings such as anthropogenic greenhouse gasses. None of the 83 simulations have a positive trend in the SST gradient, a strengthening of the climatological SST gradient with more warming in the western than eastern tropical Pacific, as large as the mean trend across the five observational data sets. If the observed trends are anthropogenically forced, this discrepancy suggests that state-of-the-art climate models are not capturing the observed response of the tropical Pacific to anthropogenic forcing, with serious implications for confidence in future climate projections. There are caveats to this interpretation, however, as some climate models have a significant strengthening of the SST gradient between 1900 and 2013 Common Era, though smaller in magnitude than the observational data sets, and the strengthening in three out of five observational data sets is insignificant. When combined with observational uncertainties and the possibility of centennial time scale internal variability not sampled by the linear inverse model, this suggests that confident validation of anthropogenic SST gradient trends in climate models will require further emergence of anthropogenic trends. Regardless, the differences in SST gradient trends between climate models and observational data sets are concerning and motivate the need for process-level validation of the atmosphere-ocean dynamics relevant to climate change in the tropical Pacific.

  15. Seasonal and diel variability in dissolved DNA and in microbial biomass and activity in a subtropical estuary

    International Nuclear Information System (INIS)

    Paul, J.H.; Deflaun, M.F.; Jeffrey, W.H.; David, A.W.

    1988-01-01

    Dissolved DNA and microbial biomass and activity parameters were measured over a 15-month period at three stations along a salinity gradient in Tampa Bay, Fla. Dissolved DNA showed seasonal variation, with minimal values in December and January and maximal values in summer months (July and August). This pattern of seasonal variation followed that of particulate DNA and water temperature and did not correlate with bacterioplankton (direct counts and [ 3 H] thymidine incorporation) or phytoplankton (chlorophyll α and 14 CO 2 fixation) biomass and activity. Microautotrophic populations showed maxima in the spring and fall, whereas microheterotrophic activity was greatest in late summer (September). Both autotrophic and heterotrophic microbial activity was greatest at the high estuarine (low salinity) station and lowest at the mouth of the bay (high salinity station), irrespective of season. Dissolved DNA carbon and phosphorus constituted 0.11 +/- 0.05% of the dissolved organic carbon and 6.6 +/- 6.5% of the dissolved organic phosphorus, respectively. Strong diel periodicity was noted in dissolved DNA and in microbial activity in Bayboro Harbor during the dry season. A noon maximum in primary productivity was followed by an 8 p.m. maximum in heterotrophic activity and a midnight maximum in dissolved DNA. This diel periodicity was less pronounced in the wet season, when microbial parameters were strongly influenced by episodic inputs of freshwater

  16. The role of climate and environmental variables in structuring bird assemblages in the Seasonally Dry Tropical Forests (SDTFs.

    Directory of Open Access Journals (Sweden)

    Gabriela Silva Ribeiro Gonçalves

    Full Text Available Understanding the processes that influence species diversity is still a challenge in ecological studies. However, there are two main theories to discuss this topic, the niche theory and the neutral theory. Our objective was to understand the importance of environmental and spatial processes in structuring bird communities within the hydrological seasons in dry forest areas in northeastern Brazil. The study was conducted in two National Parks, the Serra da Capivara and Serra das Confusões National Parks, where 36 areas were sampled in different seasons (dry, dry/rainy transition, rainy, rainy/dry transition, in 2012 and 2013. We found with our results that bird species richness is higher in the rainy season and lower during the dry season, indicating a strong influence of seasonality, a pattern also found for environmental heterogeneity. Richness was explained by local environmental factors, while species composition was explained by environmental and spatial factors. The environmental factors were more important in explaining variations in composition. Climate change predictions have currently pointed out frequent drought events and a rise in global temperature by 2050, which would lead to changes in species behavior and to increasing desertification in some regions, including the Caatinga. In addition, the high deforestation rates and the low level of representativeness of the Caatinga in the conservation units negatively affects bird communities. This scenario has demonstrated how climatic factors affect individuals, and, therefore, should be the starting point for conservation initiatives to be developed in xeric environments.

  17. The role of climate and environmental variables in structuring bird assemblages in the Seasonally Dry Tropical Forests (SDTFs).

    Science.gov (United States)

    Gonçalves, Gabriela Silva Ribeiro; Cerqueira, Pablo Vieira; Brasil, Leandro Schlemmer; Santos, Marcos Pérsio Dantas

    2017-01-01

    Understanding the processes that influence species diversity is still a challenge in ecological studies. However, there are two main theories to discuss this topic, the niche theory and the neutral theory. Our objective was to understand the importance of environmental and spatial processes in structuring bird communities within the hydrological seasons in dry forest areas in northeastern Brazil. The study was conducted in two National Parks, the Serra da Capivara and Serra das Confusões National Parks, where 36 areas were sampled in different seasons (dry, dry/rainy transition, rainy, rainy/dry transition), in 2012 and 2013. We found with our results that bird species richness is higher in the rainy season and lower during the dry season, indicating a strong influence of seasonality, a pattern also found for environmental heterogeneity. Richness was explained by local environmental factors, while species composition was explained by environmental and spatial factors. The environmental factors were more important in explaining variations in composition. Climate change predictions have currently pointed out frequent drought events and a rise in global temperature by 2050, which would lead to changes in species behavior and to increasing desertification in some regions, including the Caatinga. In addition, the high deforestation rates and the low level of representativeness of the Caatinga in the conservation units negatively affects bird communities. This scenario has demonstrated how climatic factors affect individuals, and, therefore, should be the starting point for conservation initiatives to be developed in xeric environments.

  18. Seasonal variability in somatic and reproductive investment of the bivalve Scrobicularia plana (da Costa, 1778) along a latitudinal gradient

    Science.gov (United States)

    Santos, Sílvia; Cardoso, Joana F. M. F.; Carvalho, Célia; Luttikhuizen, Pieternella C.; van der Veer, Henk W.

    2011-03-01

    Monthly investment in soma and gonads in the bivalve Scrobicularia plana is described for three populations along its distributional range: Minho estuary, Portugal; Westerschelde estuary, The Netherlands and Buvika estuary, Norway. Seasonal cycles in body mass (BMI), somatic mass (SMI) and gonadal mass (GMI) indices were observed for all populations. In Portugal, BMI and SMI peaked in mid-autumn, while in The Netherlands both indices were at their highest in mid-spring. Norway showed a different pattern with two distinct peaks: one in mid-autumn and a second peak in spring. GMI reached maximum values in July in Portugal and Netherlands and in June in Norway. Overall, mean BMI and SMI were lower in Portugal while mean GMI was lower in Norway. The spawning period lasted the whole summer in Portugal, but was shorter (only two months) in The Netherlands and Norway. The reproductive investment in The Netherlands was significantly higher than in Portugal and Norway, with the lowest values being observed in Norway. Differences in annual cycles between populations were attributed to environmental factors, namely temperature and food availability. Temperature seems important in shaping the reproductive pattern with more northern populations showing shorter reproductive periods starting later in the year, and a lower reproductive output. In addition, winter water temperatures can explain the lower mean body and somatic mass values observed in Portugal. Food availability influenced the physiological performance of the species with peaks in somatic mass coinciding with phytoplankton blooms. This relation between physiological performance and environmental factors influences S. plana distribution, densities and even survival, with natural consequences on its commercial importance.

  19. Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols

    Directory of Open Access Journals (Sweden)

    L. Xing

    2013-04-01

    Full Text Available We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 year-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13 and spatially-invariant due to vigorous photochemistry and secondary organic aerosol (OA production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18 was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07 than in southern cities (1.65 ± 0.15. This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matter constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We report, for the first time, a high regional correlation between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011. We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic properties of aerosol dicarboxylic acids.

  20. Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols

    Science.gov (United States)

    Xing, L.; Fu, T.-M.; Cao, J. J.; Lee, S. C.; Wang, G. H.; Ho, K. F.; Cheng, M.-C.; You, C.-F.; Wang, T. J.

    2013-04-01

    We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios) in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 year-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13) and spatially-invariant due to vigorous photochemistry and secondary organic aerosol (OA) production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18) was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07) than in southern cities (1.65 ± 0.15). This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matter constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We report, for the first time, a high regional correlation between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011). We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic properties of aerosol dicarboxylic acids.

  1. The influence of the North Atlantic Ocean variability on the atmosphere in the cold season at seasonal to multidecadal time scales

    Science.gov (United States)

    Frankignoul, C.

    2017-12-01

    Observational evidence of an atmospheric response to the North Atlantic horseshoe SST anomalies has been accumulating since the late 90's, suggesting that it drives a negative NAO response during late fall/early winter. The North Atlantic horseshoe SST anomaly is in part stochastically driven by the atmosphere, but at low frequency it is correlated with the Atlantic Multidecadal Oscillation (AMO). Correspondingly, an atmospheric response to the AMO has been detected at low frequency in winter, with a positive AMO phase leading a negative NAO-like pattern, consistent with sensitivity studies with atmospheric general circulation models. Both the subpolar and tropical components of the AMO seem to contribute to its influence on the atmosphere. As North Atlantic SST changes reflects internally-generated SST fluctuations as well the response to anthropogenic and other external forcing, the AMO is sensitive to the way the forced SST signal is removed; estimates of the natural variability of the AMO vary by as much as a factor of two between estimation methods, leading to possible biases in its alleged impacts. Since an intensification of the Atlantic meridional overturning circulation (AMOC) leads the AMO and drives a negative NAO in many climate models, albeit with different lead times, the relation between AMO and AMOC will be discussed, as well as possible links with the North Pacific and sea ice variability.

  2. Seasonal variability in physicochemical characteristics of small water bodies across a High Arctic wetland, Polar Bear Pass, Bathurst Island, Nunavut, Canada

    Science.gov (United States)

    Abnizova, A.; Miller, E.; Shakil, S.; Young, K. L.

    2012-12-01

    Small water bodies (lakes, ponds) in permafrost environments make up roughly half of the total area of surface water, but their relevance to nutrient and carbon fluxes on a landscape scale still remains largely unknown. Small variations in pond water balance as a result of seasonal changes in precipitation, evaporation, or drainage processes have the potential to produce considerable changes in the carbon and nutrient budgets as small changes in the water level can have a major effect on volumes and surface areas of ponds. The aims of this study were (1) to identify the main characteristics in pond hydrology both seasonally and between years; (2) to identify factors controlling variation in measured physicochemical variables; and (3) to detect seasonal trends in the hydrological and chemical characteristics of ponds located in an extensive low-gradient High Arctic wetland. We conducted detailed limnological surveys of 50 wetland ponds located at Polar Bear Pass (PBP), Bathurst Island, Nunavut, Canada during 2007-2010. The results indicate large seasonal variability in physicochemical parameters that is associated with pond water budget changes, especially for ponds with steady water levels vs. dynamic ponds (fluctuating water levels). Principal component analysis (PCA) of the datasets indicated that major ion content, specifically calcium (Ca2+), was responsible for much of the variability among the ponds in both 2008 and 2009. Additionally in 2009 most of the variability was also due to specific conductivity in the summer and magnesium (Mg2+) in the fall. These trends are typically identified as a result of dilution or evapo-concentration processes in small water bodies. In 2007, a warm and dry year, pH and potassium (K+) were responsible for much of variation between ponds. This is attributed to high vegetation growth in ponds and a longer growing season. While no trend was identified in 2010 (PCA analysis), calculations of greenhouse gas (GHG) emissions from 50

  3. Environmental factors controlling the seasonal variability in particle sizedistribution of modern Saharan dust deposited off Cape Blanc

    NARCIS (Netherlands)

    Friese, C.A.; van der Does, M.; Merkel, U.; Iversen, M.H.; Fischer, G.; Stuut, J-B W.

    2016-01-01

    The particle sizes of Saharan dust in marine sediment core records have been used frequently as a proxyfor trade-wind speed. However, there are still large uncertainties with respect to the seasonality of theparticle sizes of deposited Saharan dust off northwestern Africa and the factors influencing

  4. Dynamics of size-fractionated phytoplankton biomass in a monsoonal estuary: Patterns and drivers for seasonal and spatial variability

    Science.gov (United States)

    Rajaneesh, K. M.; Mitbavkar, Smita; Anil, Arga Chandrashekar

    2018-07-01

    Phytoplankton size-fractionated biomass is an important determinant of the type of food web functioning in aquatic ecosystems. Knowledge about the effect of seasonal salinity gradient on the size-fractionated biomass dynamics is still lacking, especially in tropical estuaries experiencing monsoon. The phytoplankton size-fractionated chlorophyll a biomass (>3 μm and 3 μm size-fraction was the major contributor to the total phytoplankton chlorophyll a biomass with the ephemeral dominance of biomass concentration of both size-fractions showed signs of recovery with increasing salinity downstream towards the end of the monsoon season. In contrast, the chlorophyll a biomass response was size-dependent during the non-monsoon seasons with the sporadic dominance (>50%) of biomass during high water temperature episodes from downstream to middle estuary during pre-monsoon and at low salinity and high nutrient conditions upstream during post-monsoon. These conditions also influenced the picophytoplankton community structure with picoeukaryotes dominating during the pre-monsoon, phycoerythrin containing Synechococcus during the monsoon and phycocyanin containing Synechococcus during the post-monsoon. This study highlights switching over of dominance in size-fractionated phytoplankton chlorophyll a biomass at intra, inter-seasonal and spatial scales which will likely govern the estuarine trophodynamics.

  5. The Effects of Climate Change on Variability of the Growing Seasons in the Elbe River Lowland, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Potopová, V.; Zahradníček, Pavel; Türkot, L.; Štěpánek, Petr; Soukup, J.

    2015-01-01

    Roč. 2015, č. 546920 (2015), s. 546920 ISSN 1687-9309 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : Central Europe * extremes * climate change * growing seasons * Elbe River Lowland Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.107, year: 2015

  6. Seasonal forecasting of synoptic type variability: potential intraseasonal predictability relevant to the Cape south coast of South Africa

    CSIR Research Space (South Africa)

    Engelbrecht, CJ

    2015-09-01

    Full Text Available An ensemble of 12 sea-level pressure (SLP) simulations from the United Kingdom Meteorological Office (UKMO) Global Seasonal Forecast System 5 (GloSea5) is used to investigate the potential predictability of synoptic types within 14 austral spring...

  7. A 242-year seasonal-resolved speleothem record from Hainan Island: A window into variability of the precipitation δ18O in East Asia

    Science.gov (United States)

    Cai, Y.; An, Z.; Cheng, H.; Edwards, R. L.; Fung, I. Y.; Zhang, H.; Tan, L.; Bi, H.

    2016-12-01

    Hainan Island is located at the gateway of East Asian summer monsoon to the continent. The typical tropical monsoon climate at Hainan island is characterized by wet season during the summer and autumn and dry season during the winter and spring. Here, we present a seasonal resolved speleothem record spanning 242 years ( 50-292 AD) from Xianren Cave (E109°25`, N18°34`), which is situated in the Baoting County, Hainan Province. The monitoring inside the cave shows that the relative humidity kept saturated during the observed periods (one and half years) while the temperature varied seasonally following the temperature changes outside the cave, but with much smaller amplitude. Monthly observation of drip water inside the cave indicates that the isotope composition of drip water mainly responds to the changes in the precipitation isotope composition with less than two months' resident time. The visible annual lamination and distinct fluctuations of calcite Mg, Sr and Ba concentrations corroborate that the high-frequency oscillations of calcite δ18O largely capture the seasonal variation of the isotope composition of precipitation, although the temperature effect cannot be excluded. By setting the heaviest value of annual variation of calcite δ18O as the beginning of each annual cycle, we transferred the δ18O record of 11.2 cm in depth to a δ18O record of 242-year in age. The δ18O record of stalagmite XR-3 demonstrate clearly the annual, decadal and multi-decadal variations of amplitude from 2 to 4‰, in addition to the seasonal oscillation of amplitude varied from 1.5 to 2.5‰. The ensemble empirical mode decomposition results show that the dominant variability (54.6% of the total variance) is captured by the components at the timescale of 3-7 year, while the components on timescales of 22-24 -year, 80-year and 120-year capture 35.0%, 7.0% and 3.4% of the variance, respectively. We contribute the variability of speleothem δ18O at the timescale of 3-7 -year to

  8. Discoloration of polyvinyl chloride (PVC) tape as a proxy for water-table depth in peatlands: validation and assessment of seasonal variability

    Science.gov (United States)

    Booth, Robert K.; Hotchkiss, Sara C.; Wilcox, Douglas A.

    2005-01-01

    Summary: 1. Discoloration of polyvinyl chloride (PVC) tape has been used in peatland ecological and hydrological studies as an inexpensive way to monitor changes in water-table depth and reducing conditions. 2. We investigated the relationship between depth of PVC tape discoloration and measured water-table depth at monthly time steps during the growing season within nine kettle peatlands of northern Wisconsin. Our specific objectives were to: (1) determine if PVC discoloration is an accurate method of inferring water-table depth in Sphagnum-dominated kettle peatlands of the region; (2) assess seasonal variability in the accuracy of the method; and (3) determine if systematic differences in accuracy occurred among microhabitats, PVC tape colour and peatlands. 3. Our results indicated that PVC tape discoloration can be used to describe gradients of water-table depth in kettle peatlands. However, accuracy differed among the peatlands studied, and was systematically biased in early spring and late summer/autumn. Regardless of the month when the tape was installed, the highest elevations of PVC tape discoloration showed the strongest correlation with midsummer (around July) water-table depth and average water-table depth during the growing season. 4. The PVC tape discoloration method should be used cautiously when precise estimates are needed of seasonal changes in the water-table.

  9. Snow Precipitation and Snow Cover Climatic Variability for the Period 1971–2009 in the Southwestern Italian Alps: The 2008–2009 Snow Season Case Study

    Directory of Open Access Journals (Sweden)

    Simona Fratianni

    2010-10-01

    Full Text Available Snow cover greatly influences the climate in the Alpine region and is one of the most relevant parameters for the climate change analysis. Nevertheless, snow precipitation variability is a relatively underexplored field of research because of the lack of long-term, continuous and homogeneous time series. After a historical research aiming to recover continuous records, three high quality time series of snow precipitation and snow depth recorded in the southwestern Italian Alps were analyzed. The comparison between the climatological indices over the 30 years reference period 1971–2000 and the decade 2000–2009 outlined a general decrease in the amount of snow precipitation, and a shift in the seasonal distribution of the snow precipitation in the most recent period. In the analysis of the last decade snow seasons characteristics, the attention was focused on the heavy snowfalls that occurred in Piedmont during the 2008–2009 snow season: MODerate resolution Imager Spectroradiometer (MODIS snow cover products were used to evaluate snow cover extension at different times during the snow season, and the results were set in relation to the temperatures.

  10. Boreal summer sub-seasonal variability of the South Asian monsoon in the Met Office GloSea5 initialized coupled model

    Science.gov (United States)

    Jayakumar, A.; Turner, A. G.; Johnson, S. J.; Rajagopal, E. N.; Mohandas, Saji; Mitra, A. K.

    2017-09-01

    Boreal summer sub-seasonal variability in the Asian monsoon, otherwise known as the monsoon intra-seasonal oscillation (MISO), is one of the dominant modes of intraseasonal variability in the tropics, with large impacts on total monsoon rainfall and India's agricultural production. However, our understanding of the mechanisms involved in MISO is incomplete and its simulation in various numerical models is often flawed. In this study, we focus on the objective evaluation of the fidelity of MISO simulation in the Met Office Global Seasonal forecast system version 5 (GloSea5), an initialized coupled model. We analyze a series of nine-member hindcasts from GloSea5 over 1996-2009 during the peak monsoon period (July-August) over the South-Asian monsoon domain focusing on aspects of the time-mean background state and air-sea interaction processes pertinent to MISO. Dominant modes during this period are evident in power spectrum analysis, but propagation and evolution characteristics of the MISO are not realistic. We find that simulated air-sea interactions in the central Indian Ocean are not supportive of MISO initiation in that region, likely a result of the low surface wind variance there. As a consequence, the expected near-quadrature phase relationship between SST and convection is not represented properly over the central equatorial Indian Ocean, and northward propagation from the equator is poorly simulated. This may reinforce the equatorial rainfall mean state bias in GloSea5.

  11. Evaluating channel morphology in small watersheds of oak savannas Southeastern New Mexico, USA: Do seasonal prescribed burn treatments have a significant impact on sediment processes?

    Science.gov (United States)

    Koestner, Karen; Neary, Daniel; Gottfried, Gerald; Tecle, Aregai

    2010-05-01

    Oak-savannas comprise over 80,000 km2 of the southwestern United States and northern Mexico. However, there is a paucity of data to assist in the management of this vast ecotype. Fire, which was once the most important natural disturbance in this system, has been excluded due to over-grazing and fire suppression practices. This has resulted in ecosystem changes and fuel accumulations. Prescribed fire is one management technique to restore natural processes within southwestern oak-savannas by reducing woody species density, increasing herbaceous plant production, and creating vegetative mosaics on the landscape. However, questions concerning the seasonality of burn treatments and the overall effects of these treatments on physical and ecological processes need to be addressed prior to broad management application. The Cascabel Watershed Study is a collaborative effort between multiple government agencies, universities, local land managers, and environmental interest groups to evaluate the impacts of warm and cool season burn treatments on an array of ecosystem processes. Established in 2000, the Cascabel Watershed study takes an "ecosystem approach" to watershed research by examining an array of physical and biological components, including geomorphologic, climatologic, hydrologic, and biologic (flora and fauna) data to determine ecosystem response to prescribed fire. The 182.6 ha study area is located in the eastern Peloncillo Mountains, New Mexico at about the 1,640 m elevation. It consists of 12 small watersheds dominated by an oak (Quercus spp.) overstory and bunch-grass (Bouteloua spp.), savanna component. The parent material is fine-grained Tertiary rhyolite that is part of an extensive lava field that was formed about 25 to 27 M ybp. A US Forest Service soil survey in the area classified 45% of the soils as Typic Haplustolls, coarse-loamy, mixed, mesic, 25% as Typic Haplustalfs, and 15% rock outcrops. Here, we evaluate within-channel processes to establish

  12. The Relationship between El nino Southern Oscillation (ENSO) Phenomenon and Seasonal Precipitation Variability in Eastern Kenya with Special Reference to Katumani: Its Implication to Crop Production

    International Nuclear Information System (INIS)

    Kitheka, S.K

    1999-01-01

    Climatic variability has been defined as a major limitation to agricultural production in semi arid Kenya. The major difficulty to both farmers and research community, has been the inability to to predict seasonal rainfall prior to the season onset. Although several researches have attempted and made advances in predicting rainfall amount, solutions to the problem have not been achieved. This study has examined and related rainfall at Katumani with the El Nino-Southern Oscillation (ENSO) phenomenon. Rainfall variations during different phases of ENSO were established. Some advances in the early prediction of March-May and October -January rains for, both, the warm and cold phases of ENSO have been made. Crop production is closely related to the rainfall and therefore a need for revision of agronomic recommendation to tie them with rainfall variation

  13. Seasonal variability of the mixed layer in the central Bay of Bengal and associated changes in nutrients and chlorophyll

    Digital Repository Service at National Institute of Oceanography (India)

    Narvekar, J.; PrasannaKumar, S.

    Indian Ocean during 1977 and 1979 summer monsoon seasons, Indian Journal of Marine Sciences 17, 258-264. Josey, S. A., Kent, E. C. and Taylor, P. K., 1998. The Southampton Oceanography Centre (SOC) Ocean - Atmosphere Heat, Momentum... and Freshwater Flux Atlas, Southampton Oceanography Centre Report No. 6, 30 pp. plus figs. Levitus, S., 1982. Climatological Atlas of the World Ocean, NOAA Professional paper 13, National Oceanic and Atmospheric Administration, Rockville Md, 173...

  14. Stormwater impact in Guanabara Bay (Rio de Janeiro): Evidences of seasonal variability in the dynamic of the sediment heavy metals

    Science.gov (United States)

    Fonseca, E. M.; Baptista Neto, J. A.; Silva, C. G.; McAlister, J. J.; Smith, B. J.; Fernandez, M. A.

    2013-09-01

    Guanabara Bay is one of the most prominent coastal bays in Brazil. This environment is an estuary of 91 rivers and channels, surrounded by the metropolis of Rio de Janeiro. The bay receives considerable amounts of contaminants introduced from sewage effluents, industrial discharge, urban and agricultural runoff, atmospheric fallout, and the combined inputs from the rivers, making Guanabara Bay one of the most polluted coastal environments on the Brazilian coastline. The aim of this work is to study the concentration and fractionation of the heavy metals within the sediments of the bay. In order to understand the possible seasonal influence on the heavy metal fractionation, two campaigns were carried out in two different seasons of the year (rainy and dry). Twelve stations, in four different areas, with different oceanographic characteristics, where chosen. To assess the bioavailability of the metals a selective extraction procedure was used to study the geochemical fractionation and bioavailability of Zn, Cu, Cr, Ni and Pb. The rainy season was very important with respect to variation in the total concentrations of Cr, Ni and Pb and their fractionation within different "operational" phases present in Guanabara Bay sediments. The water-soluble phase showed little importance, with respect to metal adsorption and this would suggest very low mobility of metals in the water column. Nevertheless, the potentially available metals within these sediments showed a high probability for their release and therefore cause contamination of the water column, since different parts of the bay are constantly subjected to dredging projects promoted by the harbor authorities.

  15. Constraints on the Within Season and Between Year Variability of the North Residual Cap from MGS-TES

    Science.gov (United States)

    Calvin, W. M.; Titus, T. N.; Mahoney, S. A.

    2003-01-01

    There is a long history of telescopic and spacecraft observations of the polar regions of Mars. The finely laminated ice deposits and surrounding layered terrains are commonly thought to contain a record of past climate conditions and change. Understanding the basic nature of the deposits and their mineral and ice constituents is a continued focus of current and future orbited missions. Unresolved issues in Martian polar science include a) the unusual nature of the CO2 ice deposits ("Swiss Cheese", "slab ice" etc.) b) the relationship of the ice deposits to underlying layered units (which differs from the north to the south), c) understanding the seasonal variations and their connections to the finely laminated units observed in high-resolution images and d) the relationship of dark materials in the wind-swept lanes and reentrant valleys to the surrounding dark dune and surface materials. Our work focuses on understanding these issues in relationship to the north residual ice cap. Recent work using Mars Global Surveyor (MGS) data sets have described evolution of the seasonal CO2 frost deposits. In addition, the north polar residual ice cap exhibits albedo variations between Mars years and within the summer season. The Thermal Emission Spectrometer (TES) data set can augment these observations providing additional constraints such as temperature evolution and spectral properties associated with ice and rocky materials. Exploration of these properties is the subject of our current study.

  16. Seasonal and interannual variability in along-slope oceanic properties off the US West Coast: Inferences from a high-resolution regional model

    Science.gov (United States)

    Kurapov, A. L.; Pelland, N. A.; Rudnick, D. L.

    2017-07-01

    A 6 year, 2009-2014 simulation using a 2 km horizontal resolution ocean circulation model of the Northeast Pacific coast is analyzed with focus on seasonal and interannual variability in along-slope subsurface oceanic properties. Specifically, the fields are sampled on the isopycnal surface σ=26.5 kg m-3 that is found between depths of 150 and 300 m below the ocean surface over the continental slope. The fields analyzed include the depth z26.5, temperature T26.5, along-slope current v26.5, and the average potential vorticity PV between σ = 26.5 and 26.25 kg m-3. Each field is averaged in the cross-shore direction over the continental slope and presented as a function of the alongshore coordinate and time. The seasonal cycle in z26.5 shows a coherent upwelling-downwelling pattern from Mexico to Canada propagating to the north with a speed of 0.5 m s-1. The anomalously deep (-20 m) z26.5 displacement in spring-summer 2014 is forced by the southern boundary condition at 24°N as a manifestation of an emerging strong El Niño. The seasonal cycle in T26.5 is most pronounced between 36°N and 53°N indicating that subarctic waters are replaced by warmer Californian waters in summer with the speed close 0.15 m s-1, which is consistent with earlier estimates of the undercurrent speed and also present v26.5 analyses. The seasonal patterns and anomalies in z26.5 and T26.5 find confirmation in available long-term glider and shipborne observations. The PV seasonality over the slope is qualitatively different to the south and north of the southern edge of Heceta Bank (43.9°N).

  17. Environmental and Physiographic Controls on Inter-Growing Season Variability of Carbon Dioxide and Water Vapour Fluxes in a Minerotrophic Fen

    Science.gov (United States)

    van der Kamp, G.; Sonnentag, O.; Chen, J. M.; Barr, A.; Hedstrom, N.; Granger, R.

    2008-12-01

    The interaction of fens with groundwater is spatially and temporally highly variable in response to meteorological conditions, resulting in frequent changes of groundwater fluxes in both vertical and lateral directions (flow reversals) across the mineral soil-peat boundary. However, despite the importance of the topographic and hydrogeological setting of fens, no study has been reported in the literature that explores a fen's atmospheric CO2 and energy flux densities under contrasting meteorological conditions in response to its physiographic setting. In our contribution we report four years of growing season eddy covariance and supporting measurements from the Canada Fluxnet-BERMS fen (formerly BOREAS southern peatland) in Saskatchewan, Canada. We first analyze hydrological data along two piezometer transects across the mineral soil-peat boundary with the objective of assessing changes in water table configuration and thus hydraulic gradients, indicating flow reversals, in response to dry and wet meteorological conditions. Next we quantify and compare growing season totals and diurnal and daily variations in evapotranspiration (ET) and net ecosystem exchange (NEE) and its component fluxes gross ecosystem productivity (GPP) and terrestrial ecosystem respiration (TER) to identify their controls with a major focus on water table depth. While ET growing season totals were similar (~ 310 mm) under dry and wet meteorological conditions, the CO2 sink- source strength of Sandhill fen varied substantially from carbon neutral (NEE = -2 [+-7] g C m-2 per growing season) under dry meteorological condition (2003) to a moderate CO2- sink with NEE ranging between 157 [+- 10] and 190 [+- 11] g C m-2 per growing season under wet meteorological conditions (2004, 2005, and 2006). Using a process-oriented ecosystem model, BEPS-TerrainLab, we investigate how different canopy components at Sandhill contribute to total ET and GPP, and thus water use efficiency, under dry and wet

  18. Phytoplankton biomass and microbial abundances during the spring upwelling season in the coastal area off Concepción, central-southern Chile: Variability around a time series station

    Science.gov (United States)

    Morales, Carmen E.; Anabalón, Valeria

    2012-01-01

    In the coastal system off Concepción, time series observations at a fixed station (St. 18) have shown strong seasonal changes in the oceanographic environment of the upper layer (blooms, dominated by microplanktonic diatoms, have usually overshadowed the relevance of the smaller microbial components during upwelling. This study focuses on the variability of oceanographic conditions and their association with the structure of the planktonic community (size fractionated chlorophyll-a and microbial abundances) in the upper layer during the upwelling season, examining the extent to which St. 18 is representative of the coastal system off Concepción during springtime. For this purpose, data from three consecutive springs (2004, 2005, 2006) were compared, which included cruises for all years (8 stations around St. 18) as well as monthly sampling at St. 18. Most of the spatial (submesoscale) variability in chlorophyll-a and the microbial components was not significant, but data dispersion around mean values was high. Water column structure (temperature and salinity) in the upper layer explained a significant fraction (25-65%) of the spatial variability in most of the planktonic components; their responses to oceanographic variability were linear in some cases and non-linear in others. For the most part, St. 18 appears to adequately represent mean oceanographic conditions and the structure of planktonic communities in the coastal waters off Concepción during springtime, however spatial variability needs to be taken into account in the interpretations of temporal changes at this fixed station as well as in assessments of carbon flow within, and exportation processes from, this upwelling system.

  19. Assessing the vulnerability of economic sectors to climate variability to improve the usability of seasonal to decadal climate forecasts in Europe - a preliminary concept

    Science.gov (United States)

    Funk, Daniel

    2015-04-01

    Climate variability poses major challenges for decision-makers in climate-sensitive sectors. Seasonal to decadal (S2D) forecasts provide potential value for management decisions especially in the context of climate change where information from present or past climatology loses significance. However, usable and decision-relevant tailored climate forecasts are still sparse for Europe and successful examples of application require elaborate and individual producer-user interaction. The assessment of sector-specific vulnerabilities to critical climate conditions at specific temporal scale will be a great step forward to increase the usability and efficiency of climate forecasts. A concept for a sector-specific vulnerability assessment (VA) to climate variability is presented. The focus of this VA is on the provision of usable vulnerability information which can be directly incorporated in decision-making processes. This is done by developing sector-specific climate-impact-decision-pathways and the identification of their specific time frames using data from both bottom-up and top-down approaches. The structure of common VA's for climate change related issues is adopted which envisages the determination of exposure, sensitivity and coping capacity. However, the application of the common vulnerability components within the context of climate service application poses some fundamental considerations: Exposure - the effect of climate events on the system of concern may be modified and delayed due to interconnected systems (e.g. catchment). The critical time-frame of a climate event or event sequence is dependent on system-internal thresholds and initial conditions. But also on decision-making processes which require specific lead times of climate information to initiate respective coping measures. Sensitivity - in organizational systems climate may pose only one of many factors relevant for decision making. The scope of "sensitivity" in this concept comprises both the

  20. Physiological and performance adaptations to an in-season soccer camp in the heat: Associations with heart rate and heart rate variability

    DEFF Research Database (Denmark)

    Buchheit, M; Voss, S C; Nybo, Lars

    2011-01-01

    The aim of the present study was to examine the associations between adaptive responses to an in-season soccer training camp in the heat and changes in submaximal exercising heart rate (HRex, 5-min run at 9 ¿km/h), postexercise HR recovery (HRR) and HR variability (HRV). Fifteen well-trained but ......The aim of the present study was to examine the associations between adaptive responses to an in-season soccer training camp in the heat and changes in submaximal exercising heart rate (HRex, 5-min run at 9 ¿km/h), postexercise HR recovery (HRR) and HR variability (HRV). Fifteen well......-trained but non-heat-acclimatized male adult players performed a training week in Qatar (34.6¿±¿1.9°C wet bulb globe temperature). HRex, HRR, HRV (i.e. the standard deviation of instantaneous beat-to-beat R-R interval variability measured from Poincaré plots SD1, a vagal-related index), creatine kinase (CK...... at the beginning and at the end of the training week. Throughout the intervention, HRex and HRV showed decreasing (P¿...

  1. Interannual and seasonal variability in short-term grazing impact of Euphausia superba in nearshore and offshore waters west of the Antarctic Peninsula

    Science.gov (United States)

    Ross, R. M.; Quetin, L. B.; Haberman, K. L.

    1998-11-01

    Our focus in this paper is the interaction between macrozooplanktonic grazers and primary producers, and the interannual and seasonal variability in the Palmer Long-Term Ecological Research (Palmer LTER) study region from Anvers Island to Adelaide Island. Short-term grazing estimates are calculated by integrating (1) theoretical and experimental estimates of ingestion rates in response to the standing stock of phytoplankton, and (2) field measurements of phytoplankton standing stock and grazer biomass. Field data come from three austral summer cruises (January/February of 1993, 1994, and 1995) and one sequence of seasonal cruises (summer, fall and winter 1993). The relative and absolute abundance of the dominant macrozooplankton grazers, Euphausia superba and Salpa thompsoni, varied by at least an order of magnitude on the spatial and temporal scales observed. Mean grazing rates ranged from 0.4 to 9.0 μg chlorophyll m -2 h -1 for the Antarctic krill and salp populations over the three summer cruises. This leads to variability in the flow of carbon from the primary producers through the grazers on the same scales. Temporal and spatial variability in grazing impact and faecal pellet production are high.

  2. Ecological Momentary Assessment of Pain, Fatigue, Depressive, and Cognitive Symptoms Reveals Significant Daily Variability in Multiple Sclerosis.

    Science.gov (United States)

    Kratz, Anna L; Murphy, Susan L; Braley, Tiffany J

    2017-11-01

    To describe the daily variability and patterns of pain, fatigue, depressed mood, and cognitive function in persons with multiple sclerosis (MS). Repeated-measures observational study of 7 consecutive days of home monitoring, including ecological momentary assessment (EMA) of symptoms. Multilevel mixed models were used to analyze data. General community. Ambulatory adults (N=107) with MS recruited through the University of Michigan and surrounding community. Not applicable. EMA measures of pain, fatigue, depressed mood, and cognitive function rated on a 0 to 10 scale, collected 5 times a day for 7 days. Cognitive function and depressed mood exhibited more stable within-person patterns than pain and fatigue, which varied considerably within person. All symptoms increased in intensity across the day (all Pfatigue showing the most substantial increase. Notably, this diurnal increase varied by sex and age; women showed a continuous increase from wake to bedtime, whereas fatigue plateaued after 7 pm for men (wake-bed B=1.04, P=.004). For the oldest subgroup, diurnal increases were concentrated to the middle of the day compared with younger subgroups, which showed an earlier onset of fatigue increase and sustained increases until bed time (wake-3 pm B=.04, P=.01; wake-7 pm B=.03, P=.02). Diurnal patterns of cognitive function varied by education; those with advanced college degrees showed a more stable pattern across the day, with significant differences compared with those with bachelor-level degrees in the evening (wake-7 pm B=-.47, P=.02; wake-bed B=-.45, P=.04). Findings suggest that chronic symptoms in MS are not static, even over a short time frame; rather, symptoms-fatigue and pain in particular-vary dynamically across and within days. Incorporation of EMA methods should be considered in the assessment of these chronic MS symptoms to enhance assessment and treatment strategies. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier

  3. Assessing the seasonal variability of ephemeral gully erosion using high-frequency monitoring: case study in a fully cultivated catchment (The Pommeroye, Northern France)

    Science.gov (United States)

    Patault, E.; Alary, C.; Franke, C.; Gauthier, A.; Abriak, N. E.

    2017-12-01

    Gully erosion results in on-site and off-site problems including the loss of cultivated soils, the silting of riverbeds and dams as well as infrastructure and property damage by muddy floods. Regions of intensive agricultural production situated on the European loess belt are particularly affected. Recently a growing interest has focused on ephemeral gullies since there have been recognized as a major contributor to the sediment yield in small agricultural catchment in this area. The aims of this case study are (i) to quantify the sediment yield transported by ephemeral gullies, (ii) to identify parameters that control the function of the hydro-sedimentary response and (iii) to evaluate the influence of seasonal variability on the ephemeral gully erosion. For this study a high-frequency monitoring station was implemented. For each flood event, 8 variables related to hydro-sedimentary and rainfall dynamics are calculated and the relationships between these variables are analyzed using the Pearson correlation matrix and Principal Component Analysis. During the first year of monitoring (03/2016-03/2017), 22 flood events were recorded of which 75% occurred in spring and winter. The specific sediment yield was evaluated to 30 t km-2 yr-1 which is conventional for the study region but the results show a highly variable seasonal distribution; 90% of the sedimentary transfer occurred in winter and autumn. The main reasons were a high cumulative rainfall and a long duration for the events. The maximum suspended sediment concentration at the catchment outlet was observed in spring, likely due to maximum rainfall intensities in that season. Also, a huge variability between the events is observed; e.g. one exceptional rain storm in 11/2016 represents 45% of the total sediment yield of the study period. For the monitored 22 events, 2 different types of hysteresis behavior were observed: (i) clockwise and (ii) complex. In winter, only clockwise hysteresis was observed. These

  4. Drivers, mechanisms and long term variability of bottom seasonal hypoxia in the Black Sea north-western Shelf. Is there any recovery after eutrophication ?

    Science.gov (United States)

    Capet, Arthur; Beckers, Jean-Marie; Grégoire, Marilaure

    2013-04-01

    The Black Sea North-western shelf (NWS) is a shallow eutrophic area in which seasonal stratification of the water column isolates bottom waters from the atmosphere and prevents ventilation to compensate for the large consumption of oxygen, due to respiration in the bottom waters and in the sediments. A 3D coupled physical biogeochemical model is used to investigate the dynamics of bottom hypoxia in the Black Sea NWS at different temporal scales from seasonal to interannual (1981-2009) and to differentiate the driving factors (climatic versus eutrophication) of hypoxic conditions in bottom waters. Model skills are evaluated by comparison with 14500 in-situ oxygen measurements available in the NOAA World Ocean Database and the Black Sea Commission data. The choice of skill metrics and data subselections orientate the validation procedure towards specific aspects of the oxygen dynamics, and prove the model's ability to resolve the seasonal cycle and interannual variability of oxygen concentration as well as the spatial location of the oxygen depleted waters and the specific threshold of hypoxia. During the period 1981-2009, each year exhibits seasonal bottom hypoxia at the end of summer. This phenomenon essentially covers the northern part of the NWS, receiving large inputs of nutrients from the Danube, Dniestr and Dniepr rivers, and extends, during the years of severe hypoxia, towards the Romanian Bay of Constanta. In order to explain the interannual variability of bottom hypoxia and to disentangle its drivers, a statistical model (multiple linear regression) is proposed using the long time series of model results as input variables. This statistical model gives a general relationships that links the intensity of hypoxia to eutrophication and climate related variables. The use of four predictors allows to reproduce 78% of hypoxia interannual variability: the annual nitrate discharge (N), the sea surface temperature in the month preceding stratification (T ), the

  5. Seasonal variability of the vertical fluxes of Globigerina bulloides (D'Orbigny) in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.; Mohan, R.

    Settling particles intercepted using time-series sediment traps at seven locations in the northern Indian Ocean have been examined for the spatial and temporal variability in the distribution and fluxes of Globigerina bulloides (D'Orbigny...

  6. Seasonal variability of the vertical fluxes of @iGlobigerina bulloides@@ (D'Orbigny) in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.; Mohan, R.

    Settling particles intercepted using time-series sediment traps at seven locations in the northern Indian Ocean have been examined for the spatial and temporal variability in the distribution and fluxes of @iGlobigerina bulloides@@ (@i...

  7. Seasonal variability of the vertical fluxes of Globigerina bulloides (D'Orbigny) in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.; Mohan, R.

    Settling particles intercepted using time-series sediment traps at seven locations in the northern Indian Ocean have been examined for the spatial and temporal variability in the distribution and fluxes of Globigerina bulloides (D...

  8. Better late than never? Interannual and seasonal variability in breeding chronology of gentoo penguins at Stranger Point, Antarctica

    Directory of Open Access Journals (Sweden)

    Mariana A. Juáres

    2013-05-01

    Full Text Available Rapid climate change recorded in the western Antarctic Peninsula confronts species with less predictable conditions in the marine and terrestrial environments. We analysed the breeding chronology and nesting site selection of gentoo penguins (Pygoscelis papua at King George Island (Isla 25 de Mayo, Antarctica, during four seasons in which differences in snow presence and persistence on the ground were observed. We recorded an overall delay as well as seasonal asynchrony at the beginning of reproduction for those years with higher snow deposition. A redistribution of breeding groups was also observed. Nevertheless, the population breeding success and chicks’ weight at fledging remained relatively constant, despite the delay in breeding chronology, the increased duration of foraging trips during the guard stage and the decreased weight of stomach contents during the crèche stage. We suggest that the plasticity of their trophic biology, along with the flexibility of their breeding phenology and relocation of breeding groups, may be complementary reasons why gentoo penguin populations in the region have remained stable in spite of the changing conditions currently registered.

  9. Decadal variability in snow depth anomaly over Eurasia and its association with all India summer monsoon rainfall and seasonal circulations

    CERN Document Server

    Singh, G P

    2003-01-01

    The Historical Soviet Daily Snow Depth (HSDSD) version II data set has been used in the computation of winter and spring snow depth anomalies over west (25 deg. E to 70 deg. E, 35 deg. N to 65 deg. N) and east (70 deg. E to 160 deg. E, 35 deg. N to 65 deg. N) Eurasia. It is noticed that winter snow depth anomaly over east Eurasia is positively correlated while west Eurasia is negatively correlated with subsequent Indian summer monsoon rainfall (ISMR). The DJF snow depth anomaly shows highest and inverse correlation coefficient (CC) with ISMR over a large area of west Eurasia in a recent period of study i.e. 1975-1995. On the basis of standardised winter (mean of December, January and February) snow depth anomaly over west Eurasia, the years 1966, 1968, 1979 and 1986 are identified as high snow years and the years 1961 and 1975 as low snow years. The characteristics of seasonal monsoon circulation features have been studied in detail during contrasting years of less (more) snow depth in winter/spring seasons f...

  10. The role of open ocean boundary forcing on seasonal to decadal-scale variability and long-term change of natural shelf hypoxia

    International Nuclear Information System (INIS)

    Monteiro, Pedro M S; Dewitte, Boris; Paulmier, Aurelien; Scranton, Mary I; Van der Plas, Anja K

    2011-01-01

    In this study we investigate the possible reasons for the widespread differences between the seasonal cycles of carbon production and export compared to those of hypoxia in eastern boundary upwelling systems. An idealized model is proposed that qualitatively characterizes the relative roles of physics and biogeochemical fluxes. The model is tested on three contrasting upwelling systems: the Benguela (from relatively aerated to interannual anoxic), the Humboldt (sub-oxic and interannually anoxic) and the Cariaco (permanently anoxic). Overall we propose that shelf hypoxia variability can be explained on the basis of the interaction between ventilation by ocean boundary forcing through ocean-shelf exchange and the role of shelf geometry in the retention of shelf-based particulate organic carbon (POC) fluxes. We aim to identify the hypoxia regimes associated with low ventilation-wide-shelf systems and high ventilation-narrow-shelf systems, considering them as extremes of conditions controlled by the two factors. We propose that this may help to explain differences in the seasonal cycles of the biogeochemical drivers and responses as well as difference between upwelling systems and within individual upwelling systems. It is suggested that when seasonal hypoxia emerges it does so preferentially at a wide-shelf part of a system.

  11. Interrater and intrarater agreements of magnetic resonance imaging findings in the lumbar spine: significant variability across degenerative conditions.

    Science.gov (United States)

    Fu, Michael C; Buerba, Rafael A; Long, William D; Blizzard, Daniel J; Lischuk, Andrew W; Haims, Andrew H; Grauer, Jonathan N

    2014-10-01

    agreement. However, when stratified by condition, absolute interrater agreement ranged from 65.1% to 92.0%. Disc hydration, disc space height, and bone marrow changes exhibited the lowest absolute interrater agreements. The absolute intrarater agreement had a narrower range, from 74.5% to 91.5%. Fleiss kappa coefficients ranged from fair-to-substantial agreement (0.282-0.618). Even in a study using standardized evaluation criteria, there was significant variability in the interrater and intrarater agreements of MRI in assessing different degenerative conditions of the lumbar spine. Clinicians should be aware of the condition-specific diagnostic limitations of MRI interpretation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Exploring Niches for Short-Season Grain Legumes in Semi-Arid Eastern Kenya — Coping with the Impacts of Climate Variability

    Directory of Open Access Journals (Sweden)

    Anne Sennhenn

    2017-05-01

    Full Text Available Climate variability is the major risk to agricultural production in semi-arid agroecosystems and the key challenge to sustain farm livelihoods for the 500 million people who inhabit these areas worldwide. Short-season grain legumes have great potential to address this challenge and help to design more resilient and productive farming systems. However, grain legumes display a great diversity and differ widely in growth, development, and resource use efficiency. Three contrasting short season grain legumes common bean (Phaseolus vulgaris L., cowpea (Vigna unguiculata (L. Walp.] and lablab [Lablab purpureus (L. Sweet] were selected to assess their agricultural potential with respect to climate variability and change along the Machakos-Makueni transect in semi-arid Eastern Kenya. This was undertaken using measured data [a water response trial conducted during 2012/13 and 2013/14 in Machakos, Kenya] and simulated data using the Agricultural Production System sIMulator (APSIM. The APSIM crop model was calibrated and validated to simulate growth and development of short-season grain legumes in semi-arid environments. Water use efficiency (WUE was used as indicator to quantify the production potential. The major traits of adaptation include early flowering and pod and seed set before the onset of terminal drought. Early phenology together with adapted canopy architecture allowed more optimal water use and greater partitioning of dry matter into seed (higher harvest index. While common bean followed a comparatively conservative strategy of minimizing water loss through crop transpiration, the very short development time and compact growth habit limited grain yield to rarely exceed 1,000 kg ha−1. An advantage of this strategy was relatively stable yields independent of in-crop rainfall or season length across the Machakos-Makueni transect. The growth habit of cowpea in contrast minimized water loss through soil evaporation with rapid ground cover and

  13. Exploring Niches for Short-Season Grain Legumes in Semi-Arid Eastern Kenya - Coping with the Impacts of Climate Variability.

    Science.gov (United States)

    Sennhenn, Anne; Njarui, Donald M G; Maass, Brigitte L; Whitbread, Anthony M

    2017-01-01

    Climate variability is the major risk to agricultural production in semi-arid agroecosystems and the key challenge to sustain farm livelihoods for the 500 million people who inhabit these areas worldwide. Short-season grain legumes have great potential to address this challenge and help to design more resilient and productive farming systems. However, grain legumes display a great diversity and differ widely in growth, development, and resource use efficiency. Three contrasting short season grain legumes common bean ( Phaseolus vulgaris L.), cowpea ( Vigna unguiculata (L.) Walp.] and lablab [ Lablab purpureus (L.) Sweet] were selected to assess their agricultural potential with respect to climate variability and change along the Machakos-Makueni transect in semi-arid Eastern Kenya. This was undertaken using measured data [a water response trial conducted during 2012/13 and 2013/14 in Machakos, Kenya] and simulated data using the Agricultural Production System sIMulator (APSIM). The APSIM crop model was calibrated and validated to simulate growth and development of short-season grain legumes in semi-arid environments. Water use efficiency (WUE) was used as indicator to quantify the production potential. The major traits of adaptation include early flowering and pod and seed set before the onset of terminal drought. Early phenology together with adapted canopy architecture allowed more optimal water use and greater partitioning of dry matter into seed (higher harvest index). While common bean followed a comparatively conservative strategy of minimizing water loss through crop transpiration, the very short development time and compact growth habit limited grain yield to rarely exceed 1,000 kg ha -1 . An advantage of this strategy was relatively stable yields independent of in-crop rainfall or season length across the Machakos-Makueni transect. The growth habit of cowpea in contrast minimized water loss through soil evaporation with rapid ground cover and dry matter

  14. Exploring Niches for Short-Season Grain Legumes in Semi-Arid Eastern Kenya — Coping with the Impacts of Climate Variability

    Science.gov (United States)

    Sennhenn, Anne; Njarui, Donald M. G.; Maass, Brigitte L.; Whitbread, Anthony M.

    2017-01-01

    Climate variability is the major risk to agricultural production in semi-arid agroecosystems and the key challenge to sustain farm livelihoods for the 500 million people who inhabit these areas worldwide. Short-season grain legumes have great potential to address this challenge and help to design more resilient and productive farming systems. However, grain legumes display a great diversity and differ widely in growth, development, and resource use efficiency. Three contrasting short season grain legumes common bean (Phaseolus vulgaris L.), cowpea (Vigna unguiculata (L.) Walp.] and lablab [Lablab purpureus (L.) Sweet] were selected to assess their agricultural potential with respect to climate variability and change along the Machakos-Makueni transect in semi-arid Eastern Kenya. This was undertaken using measured data [a water response trial conducted during 2012/13 and 2013/14 in Machakos, Kenya] and simulated data using the Agricultural Production System sIMulator (APSIM). The APSIM crop model was calibrated and validated to simulate growth and development of short-season grain legumes in semi-arid environments. Water use efficiency (WUE) was used as indicator to quantify the production potential. The major traits of adaptation include early flowering and pod and seed set before the onset of terminal drought. Early phenology together with adapted canopy architecture allowed more optimal water use and greater partitioning of dry matter into seed (higher harvest index). While common bean followed a comparatively conservative strategy of minimizing water loss through crop transpiration, the very short development time and compact growth habit limited grain yield to rarely exceed 1,000 kg ha−1. An advantage of this strategy was relatively stable yields independent of in-crop rainfall or season length across the Machakos-Makueni transect. The growth habit of cowpea in contrast minimized water loss through soil evaporation with rapid ground cover and dry matter

  15. Vertical propagation characteristics and seasonal variability of tidal wind oscillations in the MLT region over Trivandrum (8.5° N, 77° E: first results from SKiYMET Meteor Radar

    Directory of Open Access Journals (Sweden)

    M. N. Sasi

    2006-11-01

    Full Text Available Tidal activity in the Mesospheric Lower Thermosphere (MLT region over Trivandrum (8.5° N, 77° E is investigated using the observations from newly installed SKiYMET Meteor Radar. The seasonal variability and vertical propagation characteristics of atmospheric tides in the MLT region are addressed in the present communication. The observations revealed that the diurnal tide is more prominent than the semi/terdiurnal components over this latitude. It is also observed that the amplitudes of meridional components are stronger than that of zonal ones. The amplitude and phase structure shows the vertical propagation of diurnal tides with vertical wavelength of ~25 km. However, the vertical wavelength of the semidiurnal tide showed considerable variations. The vertical propagation characteristics of the terdiurnal tide showed some indications of their generating mechanisms. The observed features of tidal components are compared with Global Scale Wave Model (GSWM02 values and they showed a similar amplitude and phase structure for diurnal tides. Month-to-month variations in the tidal amplitudes have shown significant seasonal variation. The observed seasonal variation is discussed in light of the variation in tidal forcing and dissipation.

  16. Evaluation of Variable Refrigerant Flow Systems Performance on Oak Ridge National Laboratory s Flexible Research Platform: Part 1 Cooling Season Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Im, Piljae [ORNL; Malhotra, Mini [ORNL; Munk, Jeffrey D [ORNL

    2016-08-01

    This report provides second-year cooling season test results for the multi-year project titled “Evaluation of Variable Refrigeration Flow (VRF) System on Oak Ridge National Laboratory (ORNL)’s Flexible Research Platform (FRP).” The purpose of the second-year project was to (1) evaluate the full- and partload performance of VRF systems compared with an existing baseline heating, ventilation, and airconditioning (HVAC) system, which is a conventional rooftop unit (RTU) variable-air-volume (VAV) system with electric resistance heating and (2) use hourly building energy simulation to evaluate the energy savings potential of using VRF systems in major US cities. The second-year project performance period was from July 2015 through June 2016.

  17. Drivers, mechanisms and long-term variability of seasonal hypoxia on the Black Sea northwestern shelf - is there any recovery after eutrophication?

    Science.gov (United States)

    Capet, A.; Beckers, J.-M.; Grégoire, M.

    2013-06-01

    The Black Sea northwestern shelf (NWS) is a shallow eutrophic area in which the seasonal stratification of the water column isolates the bottom waters from the atmosphere. This prevents ventilation from counterbalancing the large consumption of oxygen due to respiration in the bottom waters and in the sediments, and sets the stage for the development of seasonal hypoxia. A three-dimensional (3-D) coupled physical-biogeochemical model is used to investigate the dynamics of bottom hypoxia in the Black Sea NWS, first at seasonal and then at interannual scales (1981-2009), and to differentiate its driving factors (climatic versus eutrophication). Model skills are evaluated by a quantitative comparison of the model results to 14 123 in situ oxygen measurements available in the NOAA World Ocean and the Black Sea Commission databases, using different error metrics. This validation exercise shows that the model is able to represent the seasonal and interannual variability of the oxygen concentration and of the occurrence of hypoxia, as well as the spatial distribution of oxygen-depleted waters. During the period 1981-2009, each year exhibits seasonal bottom hypoxia at the end of summer. This phenomenon essentially covers the northern part of the NWS - which receives large inputs of nutrients from the Danube, Dniester and Dnieper rivers - and extends, during the years of severe hypoxia, towards the Romanian bay of Constanta. An index H which merges the aspects of the spatial and temporal extension of the hypoxic event is proposed to quantify, for each year, the intensity of hypoxia as an environmental stressor. In order to explain the interannual variability of H and to disentangle its drivers, we analyze the long time series of model results by means of a stepwise multiple linear regression. This statistical model gives a general relationship that links the intensity of hypoxia to eutrophication and climate-related variables. A total of 82% of the interannual variability

  18. Drivers, mechanisms and long-term variability of seasonal hypoxia on the Black Sea northwestern shelf – is there any recovery after eutrophication?

    Directory of Open Access Journals (Sweden)

    A. Capet

    2013-06-01

    Full Text Available The Black Sea northwestern shelf (NWS is a shallow eutrophic area in which the seasonal stratification of the water column isolates the bottom waters from the atmosphere. This prevents ventilation from counterbalancing the large consumption of oxygen due to respiration in the bottom waters and in the sediments, and sets the stage for the development of seasonal hypoxia. A three-dimensional (3-D coupled physical–biogeochemical model is used to investigate the dynamics of bottom hypoxia in the Black Sea NWS, first at seasonal and then at interannual scales (1981–2009, and to differentiate its driving factors (climatic versus eutrophication. Model skills are evaluated by a quantitative comparison of the model results to 14 123 in situ oxygen measurements available in the NOAA World Ocean and the Black Sea Commission databases, using different error metrics. This validation exercise shows that the model is able to represent the seasonal and interannual variability of the oxygen concentration and of the occurrence of hypoxia, as well as the spatial distribution of oxygen-depleted waters. During the period 1981–2009, each year exhibits seasonal bottom hypoxia at the end of summer. This phenomenon essentially covers the northern part of the NWS – which receives large inputs of nutrients from the Danube, Dniester and Dnieper rivers – and extends, during the years of severe hypoxia, towards the Romanian bay of Constanta. An index H which merges the aspects of the spatial and temporal extension of the hypoxic event is proposed to quantify, for each year, the intensity of hypoxia as an environmental stressor. In order to explain the interannual variability of H and to disentangle its drivers, we analyze the long time series of model results by means of a stepwise multiple linear regression. This statistical model gives a general relationship that links the intensity of hypoxia to eutrophication and climate-related variables. A total of 82% of the

  19. Seasonal variability of coastal water quality in bay of Bengal and Palk Strait, Tamilnadu, Southeast Coast of India

    Directory of Open Access Journals (Sweden)

    Viswanathan Srinivasan

    2013-10-01

    Full Text Available The aim of this work was to study the physicochemical parameters of water quality collected from 12 sampling stations from Topputhurai to Muthupet in Vedaranyam located on the southeast coast of India from January to December 2008. Results showed that the DO and nutrients were the maximum in the Bay of Bengal during the monsoon period. High concentration of the nutrients in summer season was obtained near the Muthupet mangroves compared to the Palk Strait, which showed that this acted as a source of nutrients to the adjacent coastal waters. Low concentrations of the nutrients observed in the monsoon could be attributed to the terrestrial runoff from Muthupet lagoon. The physicochemical characteristics of coastal waters between the Point Calimere and Muthupet could be used as a baseline data for the monitoring, conservation and management of Point Calimere Wildlife and Bird sanctuary, Great Vedaranyam swamp and Muthupet mangrove ecosystem.

  20. Comparison of ground-based and Viking Orbiter measurements of Martian water vapor - Variability of the seasonal cycle

    Science.gov (United States)

    Jakosky, B. M.; Barker, E. S.

    1984-01-01

    Earth-based observations of Mars atmospheric water vapor are presented for the 1975-1976, 1977-1978, and 1983 apparitions. Comparisons are made with near-simultaneous spacecraft measurements made from the Viking Orbiter Mars Atmospheric Water Detection experiment during 1976-1978 and with previous earth-based measurements. Differences occur between the behavior in the different years, and may be related to the Mars climate. Measurements during the southern summer in 1969 indicate a factor of three times as much water as is present at this same season in other years. This difference may have resulted from the sublimation of water from the south polar residual cap upon removal of most or all of the CO2 ice present; sublimation of all of the CO2 ice during some years could be a result of a greater thermal load being placed on the cap due to the presence of differing amounts of atmospheric dust.

  1. Remote sensing of trend and seasonal variability of greenhouse gas emissions from the Los Angeles basin using an FTS on Mount Wilson

    Science.gov (United States)

    Wong, C.; Fu, D.; Pongetti, T. J.; Newman, S.; Yung, Y. L.; Sander, S. P.

    2013-12-01

    Cities, such as Los Angeles, are significant sources of anthropogenic greenhouse gases (GHGs). With the growth of populations in cities worldwide, GHG emissions will increase, and monitoring the temporal trends will provide crucial data for global climate models as well as assessments of the effectiveness of control policies. Currently, continuous GHG observations in the Los Angeles basin are limited to a few in situ measurements, which are shown to be sensitive to local emissions and do not represent the Los Angeles basin well. To quantify GHG emissions from the metropolitan area, which tend to have heterogeneous characteristics, it is important to perform measurements which provide both continuous temporal and spatial coverage of the domain. Here we present observations of the major greenhouse gases, CO2 and CH4, using a spectroscopic remote sensing technique from the California Laboratory for Atmospheric Remote Sensing (CLARS) at Mount Wilson, California (1.7 km elevation). A Fourier Transform Spectrometer (FTS) deployed at the CLARS site points downward at 28 selected land surfaces in the Los Angeles basin to measure the slant column abundances of CO2, CH4, N2O, CO and O2 using reflected sunlight in the near-infrared and shortwave infrared regions. This remote sensing technique provides continuous temporal and spatial measurements in the Los Angeles basin to achieve the goal of quantifying emissions of GHGs and CO. It also serves as a test-bed for future geostationary satellite missions to measure GHGs from space such as JPL's Geostationary Carbon Process Investigation (GCPI). The path-averaged dry-air mixing ratio, XCO2 and XCH4, observed by the CLARS FTS, show significant diurnal variability that arises from emissions in the Los Angeles basin and atmospheric transport processes. High-precision data have been collected since August 2011. Here we analyze the annual and seasonal trend of the ratio XCH4:XCO2 in the Los Angeles basin observed by the CLARS FTS from

  2. Risk factors for surgical site infection following laparotomy: Effect of season and perioperative variables and reporting of bacterial isolates in 287 horses.

    Science.gov (United States)

    Isgren, C M; Salem, S E; Archer, D C; Worsman, F C F; Townsend, N B

    2017-01-01

    Surgical site infection (SSI) is an important cause of post operative morbidity following laparotomy. To investigate risk factors for SSI, including effect of season and surgery performed outside normal working hours, and to report bacterial isolates and antimicrobial resistance patterns. Retrospective cohort study. Data were obtained from horses that had undergone exploratory laparotomy over a 3-year period (2010-2013) in a UK hospital population. SSI was defined as any purulent or serous discharge from the laparotomy incision of >24 h duration that developed during hospitalisation. Multivariable logistic regression was used to identify associations between pre-, intra- and post operative variables and altered likelihood of SSI. Surgical site infection developed in 73/287 (25.4%) horses during hospitalisation. Horses of greater bodyweight (odds ratio [OR] 1.002, 95% confidence interval [CI] 1.0002-1.005, P = 0.03), increased packed cell volume (≥48%) on admission (OR 3.03, 95% CI 1.32-6.94, P = 0.01), small intestinal resection (OR 2.27, 95% CI 1.15-4.46, P = 0.02) and post operative colic (OR 2.86, 95% CI 1.41-5.79, P = 0.003) were significantly associated with increased likelihood of SSI in a multivariable model. SSI was also significantly more likely to occur during winter (OR 3.84, 95% CI 1.38-10.70, P = 0.01) and summer (OR 5.63, 95% CI 2.07-15.3, P = 0.001) months in the model. Three-layer closure of the incision was protective (OR 0.31, 95% CI 0.16-0.58, P<0.001) compared to 2-layer closure. There was no effect of surgery being performed outside normal working hours (P = 0.5). The most common bacterial isolates were Escherichia coli (59.5%), Enterococcus spp. (42.4%) and Staphylococcus spp. (25.4%). Penicillin resistant isolates accounted for 92% (96/104) of isolates while 18% (21/119) of isolates were gentamicin resistant. Laparotomy during winter and summer months was associated with increased likelihood of SSI but there was no effect of surgery

  3. Brief Communication: Upper Air Relaxation in RACMO2 Significantly Improves Modelled Interannual Surface Mass Balance Variability in Antarctica

    Science.gov (United States)

    van de Berg, W. J.; Medley, B.

    2016-01-01

    The Regional Atmospheric Climate Model (RACMO2) has been a powerful tool for improving surface mass balance (SMB) estimates from GCMs or reanalyses. However, new yearly SMB observations for West Antarctica show that the modelled interannual variability in SMB is poorly simulated by RACMO2, in contrast to ERA-Interim, which resolves this variability well. In an attempt to remedy RACMO2 performance, we included additional upper-air relaxation (UAR) in RACMO2. With UAR, the correlation to observations is similar for RACMO2 and ERA-Interim. The spatial SMB patterns and ice-sheet-integrated SMB modelled using UAR remain very similar to the estimates of RACMO2 without UAR. We only observe an upstream smoothing of precipitation in regions with very steep topography like the Antarctic Peninsula. We conclude that UAR is a useful improvement for regional climate model simulations, although results in regions with steep topography should be treated with care.

  4. IDENTIFICATION OF THOSE VARIABLES THAT HAVE A SIGNIFICANT INFLUENCE ON THE EXPECTED NUMBER OF DAYS OF STAYING IN THE CENTRE DEVELOPMENT REGION OF ROMANIA

    Directory of Open Access Journals (Sweden)

    Erika KULCSÁR

    2010-06-01

    Full Text Available I started from the assumption that there are more variables that have a significant influence on the expected number of days of staying in the Centre Development Region. To identify those variables this paper includes the analysis of variance with two variables that are not interacting, in this case the dependent variable is the question "How many days did you plan to stay in Centre Development Region?" and the independent variables are: "What is the purpose of your stay?" "What is the highest level of education?". Given that there are cases when interactions occur between variables, I also analyzed the interaction effects between the two independent variables. The paper also includes an ANOVA analysis with three variables between which interactions relationships occur. After identifying the dependency relations between the variables I found that the inclusion of the third variable, namely the "Marital status" of respondents, adds value to the model. Following the results obtained by ANOVA analysis, I identified those socio-demographic characteristics that, in my opinion, companies that operate on tourist market in the Center Development Region should consider when fundamenting marketing strategies in tourism.

  5. Decadal variability in snow depth anomaly over Eurasia and its association with all India summer monsoon rainfall and seasonal circulations

    International Nuclear Information System (INIS)

    Singh, G.P.

    2003-05-01

    The Historical Soviet Daily Snow Depth (HSDSD) version II data set has been used in the computation of winter and spring snow depth anomalies over west (25 deg. E to 70 deg. E, 35 deg. N to 65 deg. N) and east (70 deg. E to 160 deg. E, 35 deg. N to 65 deg. N) Eurasia. It is noticed that winter snow depth anomaly over east Eurasia is positively correlated while west Eurasia is negatively correlated with subsequent Indian summer monsoon rainfall (ISMR). The DJF snow depth anomaly shows highest and inverse correlation coefficient (CC) with ISMR over a large area of west Eurasia in a recent period of study i.e. 1975-1995. On the basis of standardised winter (mean of December, January and February) snow depth anomaly over west Eurasia, the years 1966, 1968, 1979 and 1986 are identified as high snow years and the years 1961 and 1975 as low snow years. The characteristics of seasonal monsoon circulation features have been studied in detail during contrasting years of less (more) snow depth in winter/spring seasons followed by excess (deficient) rainfall over India using National Center for Environmental Prediction (NCEP) / National Center for Atmospheric Research (NCAR) reanylised data for the period 1948-1995. The composite difference of temperature, wind, stream function and velocity potential during the years of high and low snow years at upper and lower levels have been studied in detail. The temperature at lower level shows maximum cooling up to 6 deg. C during DJF and this cooling persists up to 500hPa by 2 deg. C which gives rise to anomalous cyclonic circulation over the Caspian Sea and this may be one of the causes of the weakening of the summer monsoon circulation over Indian sub-continent. The stream function difference fields show westerly dominated over Arabian Sea at upper level in weak monsoon years. Velocity potential difference field shows complete phase reversal in the dipole structure from the deficient to excess Indian summer monsoon rainfall. (author)

  6. Seasonal variability of mercury concentration in soils, buds and leaves of Acer platanoides and Tilia platyphyllos in central Poland.

    Science.gov (United States)

    Kowalski, Artur; Frankowski, Marcin

    2016-05-01

    In this paper, we present the results of mercury concentration in soils, buds and leaves of maple (Acer platanoides-Ap) and linden (Tilia platyphyllos-Tp) collected in four periods of the growing season of trees, i.e. in April (IV), June (VI), August (VIII) and November (IX) in 2013, from the area of Poznań city (Poland). The highest average concentration of mercury for 88 samples was determined in soils and it equaled 65.8 ± 41.7 ng g(-1) (range 14.5-238.9 ng g(-1)); lower average concentration was found in Ap samples (n = 66): 55.4 ± 18.1 ng g(-1) (range 26.5-106.9 ng g(-1)); in Tp samples 50.4 ± 15.8 ng g(-1) (range 23.1-88.7 ng g(-1)) and in 22 samples of Tp buds 40.8 ± 22.7 ng g(-1) (range 12.4-98.7 ng g(-1)) and Ap buds 28.2 ± 13.6 ng g(-1) (range 8.0-59.5 ng g(-1)). Based on the obtained results, it was observed that the highest concentration of mercury in soils occurred in the centre of Poznań city (95.5 ± 39.1 ng g(-1)), and it was two times higher than the concentration of mercury in other parts of the city. Similar dependencies were not observed for the leaf samples of Ap and Tp. It was found that mercury concentrations in the soil and leaves of maple and linden were different depending on the period of the growing season (April to November). Mercury content in the examined samples was higher in the first two research periods (April IV, June VI), and then, in the following periods, the accumulation of mercury decreased both in soil and leaf samples of the two tree species. There was no correlation found between mercury concentration in leaves and mercury concentration in soils during the four research periods (April-November). When considering the transfer coefficient, it was observed that the main source of mercury in leaves is the mercury coming from the atmosphere.

  7. Forage accumulation in brachiaria grass under continuous grazing with single or variable height during the seasons of the year

    Directory of Open Access Journals (Sweden)

    Manoel Eduardo Rozalino Santos

    2013-05-01

    Full Text Available The objective of this study was to evaluate grazing management strategies of Brachiaria decumbens cv. Basilisk managed with different heights under continuous grazing with cattle. Two grazing management strategies were evaluated: maintenance of pasture with an average height of 25 cm throughout the experimental period and maintenance of pasture on the average of 15 cm in height during winter, up to 25 cm from the beginning of spring. The split-plot scheme and the randomized block design with four replications were adopted. The grazing management strategies corresponded to the primary factor, while the seasons (winter, spring and summer corresponded to secondary factor. The reduction of the average sward height to 15 cm in the winter resulted, when compared with pasture maintained at 25 cm, in overall higher growth rates (95 kg/ha.day DM and leaf blade (66.1 kg/ha.day DM, as well as higher rates of total accumulation (81.5 kg/ha.day DM and leaf blade (52.6 kg/ha.day DM. The accumulated forage production (from winter to summer was higher in the pasture lowered to 15 cm in winter (25.6 t/ha DM compared with that managed with an average height of 25 cm (22.2 t/ha DM. Regarding the seasons of the year, in the winter, there were lower rates of overall growth (6.4 kg/ha.day DM, leaf blade (5.6 kg/ha.day DM and pseudostem (0.8 kg/ha.day DM, and also lower total (-6.6 kg/ha.day DM and leaf blade (-7.5 kg/ha.day DM accumulation rates. In the spring there was a higher rate of leaf senescence (22.4 kg/ha.day DM. The accumulation of forage is incremented when the pasture of B. decumbens is lowered to 15 cm during the winter, and in the spring and summer, its average height is increased to 25 cm.

  8. Seasonal variability of iodine and selenium in surface and groundwater as a factor that may contribute to iodine isotope balance in the thyroid gland and its irradiation in case of radioiodine contamination during accidents at the NPP

    Science.gov (United States)

    Korobova, Elena; Kolmykova, Lyudmila; Ryzhenko, Boris; Berezkin, Viktor; Saraeva, Anastasia

    2016-04-01

    Radioiodine release to the environment during the accident at the Chernobyl NPP led to the increased risk of the thyroid cancer cases within the contaminated areas, the effect being aggravated in conditions of stable iodine and selenium deficiency in local food chains. Although the drinking water iodine is usually believed to contribute not more than 10% to local diet, our estimations accounting of water content in other products and several regional studies (e.g. India and Australia) proved its portion to be at least twice as much. As radioiodine isotopes are short-lived, their absorption depends greatly on stable iodine and selenium sufficiency in thyroid gland in the first few days of contamination and seasonal variation of stable iodine and selenium in local sources of drinking water may be significant as modifying the resulting thyroid irradiation in different seasons of the year. The main goal of the study was to evaluate seasonal variation of levels of iodine and selenium in natural waters of the Bryansk region as a possible factor affecting the radioiodine intake by thyroid gland of animals and humans in case of radioiodine contamination during the accident. Seasonal I and Se concentration was measured in the years of 2014 and 2015 at 14 test points characterizing surface (river and lake) and drinking groundwater. Obtained data proved considerable seasonal variation of I and Se concentration in natural waters (3,7-8,1 μg/l and 0,04-0,4 μg/l respectively) related to physico-chemical water parameters, such as pH, Eh and fluctuations in concentration of dissolved organic matter. The widest I and Se seasonal variability was observed in surface and well waters, maximum I level being found in autumn at the end of vegetation period characterized by active I leaching from the decomposed organic residues by long lasting precipitations. The content of selenium in the surface waters during summer-autumn (0,06-0,3 μg/l) was higher than in spring (0,04-0,05

  9. Short-term seasonal variability in 7Be wet deposition in a semiarid ecosystem of central Argentina

    International Nuclear Information System (INIS)

    Juri Ayub, J.; Di Gregorio, D.E.; Velasco, H.; Huck, H.; Rizzotto, M.; Lohaiza, F.

    2009-01-01

    The 7 Be wet deposition has been intensively investigated in a semiarid region at San Luis Province, Argentina. From November 2006 to May 2008, the 7 Be content in rainwater was determined in 58 individual rain events, randomly comprising more than 50% of all individual precipitations at the sampling period. 7 Be activity concentration in rainwater ranged from 0.7 ± 0.3 Bq l -1 to 3.2 ± 0.7 Bq l -1 , with a mean value of 1.7 Bq l -1 (sd = 0.53 Bq l -1 ). No relationship was found between 7 Be content in rainwater and (a) rainfall amount, (b) precipitation intensity and (c) elapsed time between events. 7 Be ground deposition was found to be well correlated with rainfall amount (R = 0.92). For the precipitation events considered, the 7 Be depositional fluxes ranged from 1.1 to 120 Bq m -2 , with a mean value of 32.7 Bq m -2 (sd = 29.9 Bq m -2 ). The annual depositional flux was estimated at 1140 ± 120 Bq m -2 y -1 . Assuming the same monthly deposition pattern and that the 7 Be content in soil decreases only through radioactive decay, the seasonal variation of 7 Be areal activity density in soil was estimated. Results of this investigation may contribute to a valuable characterization of 7 Be input in the explored semiarid ecosystem and its potential use as tracer of environmental processes.

  10. Seasonality in the Austrian Economy: Common Seasonals and Forecasting

    OpenAIRE

    Kunst, Robert M.

    1992-01-01

    Abstract: Seasonal cointegration generalizes the idea of cointegration to processes with unit roots at frequencies different from 0. Here, also the dual notion of common trends, "common seasonals", is adopted for the seasonal case. Using a five-variable macroeconomic core system of the Austrian economy, it is demonstrated how common seasonals and seasonal cointegrating vectors look in practice. Statistical tests provide clear evidence on seasonal cointegration in the system. However, it is sh...

  11. Study of the daily and seasonal atmospheric CH4 mixing ratio variability in a rural Spanish region using 222Rn tracer

    Science.gov (United States)

    Grossi, Claudia; Vogel, Felix R.; Curcoll, Roger; Àgueda, Alba; Vargas, Arturo; Rodó, Xavier; Morguí, Josep-Anton

    2018-04-01

    The ClimaDat station at Gredos (GIC3) has been continuously measuring atmospheric (dry air) mixing ratios of carbon dioxide (CO2) and methane (CH4), as well as meteorological parameters, since November 2012. In this study we investigate the atmospheric variability of CH4 mixing ratios between 2013 and 2015 at GIC3 with the help of co-located observations of 222Rn concentrations, modelled 222Rn fluxes and modelled planetary boundary layer heights (PBLHs). Both daily and seasonal changes in atmospheric CH4 can be better understood with the help of atmospheric concentrations of 222Rn (and the corresponding fluxes). On a daily timescale, the variation in the PBLH is the main driver for 222Rn and CH4 variability while, on monthly timescales, their atmospheric variability seems to depend on emission changes. To understand (changing) CH4 emissions, nocturnal fluxes of CH4 were estimated using two methods: the radon tracer method (RTM) and a method based on the EDGARv4.2 bottom-up emission inventory, both using FLEXPARTv9.0.2 footprints. The mean value of RTM-based methane fluxes (FR_CH4) is 0.11 mg CH4 m-2 h-1 with a standard deviation of 0.09 or 0.29 mg CH4 m-2 h-1 with a standard deviation of 0.23 mg CH4 m-2 h-1 when using a rescaled 222Rn map (FR_CH4_rescale). For our observational period, the mean value of methane fluxes based on the bottom-up inventory (FE_CH4) is 0.33 mg CH4 m-2 h-1 with a standard deviation of 0.08 mg CH4 m-2 h-1. Monthly CH4 fluxes based on RTM (both FR_CH4 and FR_CH4_rescale) show a seasonality which is not observed for monthly FE_CH4 fluxes. During January-May, RTM-based CH4 fluxes present mean values 25 % lower than during June-December. This seasonal increase in methane fluxes calculated by RTM for the GIC3 area appears to coincide with the arrival of transhumant livestock at GIC3 in the second half of the year.

  12. A Comparison of Seasonal and Interannual Variability of Soil Dust Aerosols Over the Atlantic Ocean as Inferred by the Toms AI and AVHRR AOT Retrievals

    Science.gov (United States)

    Cakmur, R. V.; Miller, R. L.; Tegen, Ina; Hansen, James E. (Technical Monitor)

    2001-01-01

    The seasonal cycle and interannual variability of two estimates of soil (or 'mineral') dust aerosols are compared: Advanced Very High Resolution Radiometer (AVHRR) aerosol optical thickness (AOT) and Total Ozone Mapping Spectrometer (TOMS) aerosol index (AI), Both data sets, comprising more than a decade of global, daily images, are commonly used to evaluate aerosol transport models. The present comparison is based upon monthly averages, constructed from daily images of each data set for the period between 1984 and 1990, a period that excludes contamination from volcanic eruptions. The comparison focuses upon the Northern Hemisphere subtropical Atlantic Ocean, where soil dust aerosols make the largest contribution to the aerosol load, and are assumed to dominate the variability of each data set. While each retrieval is sensitive to a different aerosol radiative property - absorption for the TOMS AI versus reflectance for the AVHRR AOT - the seasonal cycles of dust loading implied by each retrieval are consistent, if seasonal variations in the height of the aerosol layer are taken into account when interpreting the TOMS AI. On interannual time scales, the correlation is low at most locations. It is suggested that the poor interannual correlation is at least partly a consequence of data availability. When the monthly averages are constructed using only days common to both data sets, the correlation is substantially increased: this consistency suggests that both TOMS and AVHRR accurately measure the aerosol load in any given scene. However, the two retrievals have only a few days in common per month so that these restricted monthly averages have a large uncertainty. Calculations suggest that at least 7 to 10 daily images are needed to estimate reliably the average dust load during any particular month, a threshold that is rarely satisfied by the AVHRR AOT due to the presence of clouds in the domain. By rebinning each data set onto a coarser grid, the availability of

  13. Seasonal variability of aerosol concentration and size distribution in Cape Verde using a continuous aerosol optical spectrometer

    Directory of Open Access Journals (Sweden)

    Casimiro Adrião Pio

    2014-05-01

    Full Text Available One year of, almost continuous, measurements of aerosol optical properties and chemical composition were performed at the outskirts of Praia, Santiago Island, Cape Verde, within the framework of CV-DUST (Atmospheric aerosol in Cape Verde region: seasonal evaluation of composition, sources and transport research project, during 2011. This article reports the aerosol number and mass concentration measurements using a GRIMM Optical Aerosol Spectrometer that provides number size discrimination into 31 size ranges from 0.25 to 32 µm. Time series of 5 min average PM10 concentrations revealed peak values higher than 1000 µg.m-3 during winter dust storm events originating over Northern Africa. The 24 hours average concentrations exceeded the World Health Organization (WHO guidelines for PM2.5 and PM10 in 20% and 30% of the 2001 days, respectively. Annual average mass concentrations (±standard deviation for PM1, PM2.5 and PM10 were 5±5, 19±21 and 48±64 µg.m-3, respectively. The annual PM2.5 and PM10 values were also above the limits prescribed by the WHO (10 and 20 µg.m-3, respectively. The aerosol mass size distribution revealed two main modes for particles smaller than 10 µm: a fine mode (0.7-0.8 µm, which possibly results of gas to particle conversion processes; and a coarse mode with maxima at 3-4 µm, which is associated with desert dust and sea salt sources. Within the coarse mode two sub-modes with maxima at 5-6 µm and 10-12 µm were frequently present.

  14. Subsurface flow pathway dynamics in the active layer of coupled permafrost-hydrogeological systems under seasonal and annual temperature variability.

    Science.gov (United States)

    Frampton, Andrew

    2017-04-01

    There is a need for improved understanding of the mechanisms controlling subsurface solute transport in the active layer in order to better understand permafrost-hydrological-carbon feedbacks, in particular with regards to how dissolved carbon is transported in coupled surface and subsurface terrestrial arctic water systems under climate change. Studying solute transport in arctic systems is also relevant in the context of anthropogenic pollution which may increase due to increased activity in cold region environments. In this contribution subsurface solute transport subject to ground surface warming causing permafrost thaw and active layer change is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. These travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles. The impact these change mechanisms have on solute and dissolved substance transport is further analysed by integrating pathway analysis with a Lagrangian approach, incorporating considerations for both dissolved organic and inorganic

  15. Using k-dependence causal forest to mine the most significant dependency relationships among clinical variables for thyroid disease diagnosis.

    Directory of Open Access Journals (Sweden)

    LiMin Wang

    Full Text Available Numerous data mining models have been proposed to construct computer-aided medical expert systems. Bayesian network classifiers (BNCs are more distinct and understandable than other models. To graphically describe the dependency relationships among clinical variables for thyroid disease diagnosis and ensure the rationality of the diagnosis results, the proposed k-dependence causal forest (KCF model generates a series of submodels in the framework of maximum spanning tree (MST and demonstrates stronger dependence representation. Friedman test on 12 UCI datasets shows that KCF has classification accuracy advantage over the other state-of-the-art BNCs, such as Naive Bayes, tree augmented Naive Bayes, and k-dependence Bayesian classifier. Our extensive experimental comparison on 4 medical datasets also proves the feasibility and effectiveness of KCF in terms of sensitivity and specificity.

  16. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink

    DEFF Research Database (Denmark)

    Landschützer, P.; Gruber, N.; Bakker, D.C.E.

    2013-01-01

    The Atlantic Ocean is one of the most important sinks for atmospheric carbon dioxide (CO2), but this sink is known to vary substantially in time. Here we use surface ocean CO2 observations to estimate this sink and the temporal variability from 1998 to 2007 in the Atlantic Ocean. We benefit from ......, leading to a substantial trend toward a stronger CO2 sink for the entire South Atlantic (–0.14 Pg C yr–1 decade–1). The Atlantic carbon sink varies relatively little on inter-annual time-scales (±0.04 Pg C yr–1; 1σ)......The Atlantic Ocean is one of the most important sinks for atmospheric carbon dioxide (CO2), but this sink is known to vary substantially in time. Here we use surface ocean CO2 observations to estimate this sink and the temporal variability from 1998 to 2007 in the Atlantic Ocean. We benefit from (i...... poleward of 40° N, but many other parts of the North Atlantic increased more slowly, resulting in a barely changing Atlantic carbon sink north of the equator (–0.007 Pg C yr–1 decade–1). Surface ocean pCO2 was also increasing less than that of the atmosphere over most of the Atlantic south of the equator...

  17. Chromosomal radiosensitivity: a study of the chromosomal G2 assay in human blood lymphocytes indicating significant inter-individual variability

    International Nuclear Information System (INIS)

    Smart, V.; Curwen, G.B.; Whitehouse, C.A.; Edwards, A.; Tawn, E.J.

    2003-01-01

    The G 2 chromosomal radiosensitivity assay is a technically demanding assay. To ensure that it is reproducible in our laboratory, we have examined the effects of storage and culture conditions by applying the assay to a group of healthy controls and determined the extent of intra- and inter-individual variations. Nineteen different individuals provided one or more blood samples resulting in a total of 57 successful tests. Multiple cultures from a single blood sample showed no statistically significant difference in the number of chromatid type aberrations between cultures. A 24 h delay prior to culturing the lymphocytes did not significantly affect the induced G 2 score. Intra-individual variation was not statistically significant in seven out of nine individuals. Inter-individual variation was highly statistically significant (P<0.001), indicating that there is a real difference between individuals in the response to radiation using this assay

  18. Seasonal and spatial variability of polychlorinated biphenyls (PCBs) in vegetation and cow milk from a high altitude pasture in the Italian Alps

    Energy Technology Data Exchange (ETDEWEB)

    Tato, Liliana [Department of Biology, University of Milan, Via Celoria 26, Milan, I-20133 (Italy); Tremolada, Paolo, E-mail: paolo.tremolada@unimi.it [Department of Biology, University of Milan, Via Celoria 26, Milan, I-20133 (Italy); Ballabio, Cristiano [Department of Environmental and Land Sciences, University of Milano-Bicocca, Piazza Della Scienza 1, Milan, I-20126 (Italy); Guazzoni, Niccolo; Paroli