WorldWideScience

Sample records for significant ph range

  1. Carbon dots with strong excitation-dependent fluorescence changes towards pH. Application as nanosensors for a broad range of pH

    Energy Technology Data Exchange (ETDEWEB)

    Barati, Ali [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of); Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Abdollahi, Hamid, E-mail: abd@iasbs.ac.ir [Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of)

    2016-08-10

    In this study, preparation of novel pH-sensitive N-doped carbon dots (NCDs) using glucose and urea is reported. The prepared NCDs present strong excitation-dependent fluorescence changes towards the pH that is a new behavior from these nanomaterials. By taking advantage of this unique behavior, two separated ratiometric pH sensors using emission spectra of the NCDs for both acidic (pH 2.0 to 8.0) and basic (pH 7.0 to 14.0) ranges of pH are constructed. Additionally, by considering the entire Excitation–Emission Matrix (EEM) of NCDs as analytical signal and using a suitable multivariate calibration method, a broad range of pH from 2.0 to 14.0 was well calibrated. The multivariate calibration method was independent from the concentration of NCDs and resulted in a very low average prediction error of 0.067 pH units. No changes in the predicted pH under UV irradiation (for 3 h) and at high ionic strength (up to 2 M NaCl) indicated the high stability of this pH nanosensor. The practicality of this pH nanosensor for pH determination in real water samples was validated with good accuracy and repeatability. - Highlights: • Novel pH-sensitive carbon dots with strong FL changes towards pH are reported. • Ratiometric FL pH-sensors for both acidic and basic ranges of pH are constructed. • Multivariate calibration methods were used to calibrate a broad range of pH. • Using EEM of carbon dots and ANN, pH from 2.0 to 14.0 was well calibrated. • The pH prediction is stable even at high ionic strength up to 2 M NaCl.

  2. Carbon dots with strong excitation-dependent fluorescence changes towards pH. Application as nanosensors for a broad range of pH

    International Nuclear Information System (INIS)

    Barati, Ali; Shamsipur, Mojtaba; Abdollahi, Hamid

    2016-01-01

    In this study, preparation of novel pH-sensitive N-doped carbon dots (NCDs) using glucose and urea is reported. The prepared NCDs present strong excitation-dependent fluorescence changes towards the pH that is a new behavior from these nanomaterials. By taking advantage of this unique behavior, two separated ratiometric pH sensors using emission spectra of the NCDs for both acidic (pH 2.0 to 8.0) and basic (pH 7.0 to 14.0) ranges of pH are constructed. Additionally, by considering the entire Excitation–Emission Matrix (EEM) of NCDs as analytical signal and using a suitable multivariate calibration method, a broad range of pH from 2.0 to 14.0 was well calibrated. The multivariate calibration method was independent from the concentration of NCDs and resulted in a very low average prediction error of 0.067 pH units. No changes in the predicted pH under UV irradiation (for 3 h) and at high ionic strength (up to 2 M NaCl) indicated the high stability of this pH nanosensor. The practicality of this pH nanosensor for pH determination in real water samples was validated with good accuracy and repeatability. - Highlights: • Novel pH-sensitive carbon dots with strong FL changes towards pH are reported. • Ratiometric FL pH-sensors for both acidic and basic ranges of pH are constructed. • Multivariate calibration methods were used to calibrate a broad range of pH. • Using EEM of carbon dots and ANN, pH from 2.0 to 14.0 was well calibrated. • The pH prediction is stable even at high ionic strength up to 2 M NaCl.

  3. Narrow pH Range of Surface Water Bodies Receiving Pesticide Input in Europe.

    Science.gov (United States)

    Bundschuh, Mirco; Weyers, Arnd; Ebeling, Markus; Elsaesser, David; Schulz, Ralf

    2016-01-01

    Fate and toxicity of the active ingredients (AI's) of plant protection products in surface waters is often influenced by pH. Although a general range of pH values is reported in literature, an evaluation targeting aquatic ecosystems with documented AI inputs is lacking at the larger scale. Results show 95% of European surface waters (n = 3075) with a documented history of AI exposure fall within a rather narrow pH range, between 7.0 and 8.5. Spatial and temporal variability in the data may at least be partly explained by the calcareous characteristics of parental rock material, the affiliation of the sampling site to a freshwater ecoregion, and the photosynthetic activity of macrophytes (i.e., higher pH values with photosynthesis). Nonetheless, the documented pH range fits well with the standard pH of most ecotoxicological test guidelines, confirming the fate and ecotoxicity of AIs are usually adequately addressed.

  4. Oxidation of iodide and iodine on birnessite (delta-MnO2) in the pH range 4-8.

    Science.gov (United States)

    Allard, Sébastien; von Gunten, Urs; Sahli, Elisabeth; Nicolau, Rudy; Gallard, Hervé

    2009-08-01

    The oxidation of iodide by synthetic birnessite (delta-MnO(2)) was studied in perchlorate media in the pH range 4-8. Iodine (I(2)) was detected as an oxidation product that was subsequently further oxidized to iodate (IO(3)(-)). The third order rate constants, second order on iodide and first order on manganese oxide, determined by extraction of iodine in benzene decreased with increasing pH (6.3-7.5) from 1790 to 3.1M(-2) s(-1). Both iodine and iodate were found to adsorb significantly on birnessite with an adsorption capacity of 12.7 microM/g for iodate at pH 5.7. The rate of iodine oxidation by birnessite decreased with increasing ionic strength, which resulted in a lower rate of iodate formation. The production of iodine in iodide-containing waters in contact with manganese oxides may result in the formation of undesired iodinated organic compounds (taste and odor, toxicity) in natural and technical systems. The probability of the formation of such compounds is highest in the pH range 5-7.5. For pH iodine is quickly oxidized to iodate, a non-toxic and stable sink for iodine. At pH >7.5, iodide is not oxidized to a significant extent.

  5. Polymeric pH nanosensor with extended measurement range bearing octaarginine as cell penetrating peptide

    DEFF Research Database (Denmark)

    Ke, Peng; Sun, Honghao; Liu, Mingxing

    2016-01-01

    A synthetic peptide octaarginine which mimics human immunodeficiency virus-1, Tat protein is used as cell penetrating moiety for new pH nanosensors which demonstrate enhanced cellular uptake and expanded measurement range from pH 3.9 to pH 7.3 by simultaneously incorporating two complemental pH-s......H-sensitive fluorophores in a same nanoparticle. The authors believe that this triple fluorescent pH sensor provides a new tool to pH measurements that can have application in cellular uptake mechanism study and new nanomedicine design.......A synthetic peptide octaarginine which mimics human immunodeficiency virus-1, Tat protein is used as cell penetrating moiety for new pH nanosensors which demonstrate enhanced cellular uptake and expanded measurement range from pH 3.9 to pH 7.3 by simultaneously incorporating two complemental p...

  6. A protein-dye hybrid system as a narrow range tunable intracellular pH sensor.

    Science.gov (United States)

    Anees, Palapuravan; Sudheesh, Karivachery V; Jayamurthy, Purushothaman; Chandrika, Arunkumar R; Omkumar, Ramakrishnapillai V; Ajayaghosh, Ayyappanpillai

    2016-11-18

    Accurate monitoring of pH variations inside cells is important for the early diagnosis of diseases such as cancer. Even though a variety of different pH sensors are available, construction of a custom-made sensor array for measuring minute variations in a narrow biological pH window, using easily available constituents, is a challenge. Here we report two-component hybrid sensors derived from a protein and organic dye nanoparticles whose sensitivity range can be tuned by choosing different ratios of the components, to monitor the minute pH variations in a given system. The dye interacts noncovalently with the protein at lower pH and covalently at higher pH, triggering two distinguishable fluorescent signals at 700 and 480 nm, respectively. The pH sensitivity region of the probe can be tuned for every unit of the pH window resulting in custom-made pH sensors. These narrow range tunable pH sensors have been used to monitor pH variations in HeLa cells using the fluorescence imaging technique.

  7. A hydrogel based nanosensor with an unprecedented broad sensitivity range for pH measurements in cellular compartments

    DEFF Research Database (Denmark)

    Zhang, M.; Søndergaard, Rikke Vicki; Ek, Pramod Kumar

    2015-01-01

    Optical pH nanosensors have been applied for monitoring intracellular pH in real-time for about two decades. However, the pH sensitivity range of most nanosensors is too narrow, and measurements that are on the borderline of this range may not be correct. Furthermore, ratiometric measurements...... of acidic intracellular pH (pH sensor, a fluorophore based nanosensor, with an unprecedented broad measurement range from pH 1.4 to 7.0. In this nanosensor, three p......H-sensitive fluorophores (difluoro-Oregon Green, Oregon Green 488, and fluorescein) and one pH-insensitive fluorophore (Alexa 568) were covalently incorporated into a nanoparticle hydrogel matrix. With this broad range quadruple-labelled nanosensor all physiological relevant pH levels in living cells can be measured...

  8. Fluorescence based fibre optic pH sensor for the pH 10-13 range suitable for corrosion monitoring in concrete structures

    OpenAIRE

    Nguyen, T.H.; Venugopala, T.; Chen, S.; Sun, T.; Grattan, K. T. V.; Taylor, S.E.; Basheer, P.A.M.; Long, A.E.

    2014-01-01

    The design, development and evaluation of an optical fibre pH sensor for monitoring pH in the alkaline region are discussed in detail in this paper. The design of this specific pH sensor is based on the pH induced change in fluorescence intensity of a coumarin imidazole dye which is covalently attached to a polymer network and then fixed to the distal end of an optical fibre. The sensor provides a response over a pH range of 10.0 – 13.2 with an acceptable response rate of around 50 minutes, h...

  9. Dual-Emitting Fluorescent Metal-Organic Framework Nanocomposites as a Broad-Range pH Sensor for Fluorescence Imaging.

    Science.gov (United States)

    Chen, Haiyong; Wang, Jing; Shan, Duoliang; Chen, Jing; Zhang, Shouting; Lu, Xiaoquan

    2018-05-15

    pH plays an important role in understanding physiological/pathologic processes, and abnormal pH is a symbol of many common diseases such as cancer, stroke, and Alzheimer's disease. In this work, an effective dual-emission fluorescent metal-organic framework nanocomposite probe (denoted as RB-PCN) has been constructed for sensitive and broad-range detection of pH. RB-PCN was prepared by encapsulating the DBI-PEG-NH 2 -functionalized Fe 3 O 4 into Zr-MOFs and then further reacting it with rhodamine B isothiocyanates (RBITC). In RB-PCN, RBITC is capable of sensing changes in pH in acidic solutions. Zr-MOFs not only enrich the target analyte but also exhibit a fluorescence response to pH changes in alkaline solutions. Based on the above structural and compositional features, RB-PCN could detect a wide range of pH changes. Importantly, such a nanoprobe could "see" the intracellular pH changes by fluorescence confocal imaging as well as "measure" the wider range of pH in actual samples by fluorescence spectroscopy. To the best of our knowledge, this is the first time a MOF-based dual-emitting fluorescent nanoprobe has been used for a wide range of pH detection.

  10. Design, calibration and application of broad-range optical nanosensors for determining intracellular pH

    DEFF Research Database (Denmark)

    Søndergaard, Rikke Vicki; Henriksen, Jonas Rosager; Andresen, Thomas Lars

    2014-01-01

    Particle-based nanosensors offer a tool for determining the pH in the endosomal-lysosomal system of living cells. Measurements providing absolute values of pH have so far been restricted by the limited sensitivity range of nanosensors, calibration challenges and the complexity of image analysis....... This protocol describes the design and application of a polyacrylamide-based nanosensor (∼60 nm) that covalently incorporates two pH-sensitive fluorophores, fluorescein (FS) and Oregon Green (OG), to broaden the sensitivity range of the sensor (pH 3.1-7.0), and uses the pH-insensitive fluorophore rhodamine...... as a reference fluorophore. The nanosensors are spontaneously taken up via endocytosis and directed to the lysosomes where dynamic changes in pH can be measured with live-cell confocal microscopy. The most important focus areas of the protocol are the choice of pH-sensitive fluorophores, the design...

  11. Expanding the dynamic measurement range for polymeric nanoparticle pH sensors

    DEFF Research Database (Denmark)

    Sun, Honghao; Almdal, Kristoffer; Andresen, Thomas Lars

    2011-01-01

    Conventional optical nanoparticle pH sensors that are designed for ratiometric measurements in cells have been based on utilizing one sensor fluorophore and one reference fluorophore in each nanoparticle, which results in a relatively narrow dynamic measurement range. This results in substantial...

  12. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique.

    Science.gov (United States)

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-11-09

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal's pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R² is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry-Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors.

  13. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    Science.gov (United States)

    Khan, Md. Rajibur Rahaman; Kang, Shin-Won

    2016-01-01

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal’s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The sensitivity of the proposed pH sensor is 0.46 µs/pH, and the correlation coefficient R2 is approximately 0.997. Additional advantages of the proposed optical-fiber PWM pH sensor include a short/fast response-time of about 8 s, good reproducibility properties with a relative standard deviation (RSD) of about 0.019, easy fabrication, low cost, small size, reusability of the optical-fiber sensing-element, and the capability of remote sensing. Finally, the performance of the proposed PWM pH sensor was compared with that of potentiometric, optical-fiber modal interferometer, and optical-fiber Fabry–Perot interferometer pH sensors with respect to dynamic range width, linearity as well as response and recovery times. We observed that the proposed sensing systems have better sensing abilities than the above-mentioned pH sensors. PMID:27834865

  14. Dansyl-8-aminoquinoline as a sensitive pH fluorescent probe with dual-responsive ranges in aqueous solutions.

    Science.gov (United States)

    Zhang, Min; Zheng, Shuyu; Ma, Liguo; Zhao, Meili; Deng, Lengfang; Yang, Liting; Ma, Li-Jun

    2014-04-24

    A sensitive pH fluorescent probe based on dansyl group, dansyl-8-aminoquinoline (DAQ), has been synthesized. The probe showed dual-responsive ranges to pH changes, one range from 2.00 to 7.95 and another one from 7.95 to 10.87 in aqueous solution, as it showed pKa values of 5.73 and 8.56 under acid and basic conditions, respectively. Furthermore, the pH response mechanism of the probe was explored successfully by using NMR spectra. The results indicated that the responses of DAQ to pH changes should attribute to the protonation of the nitrogen atom in the dimethylamino group and deprotonation of sulfonamide group. Copyright © 2014. Published by Elsevier B.V.

  15. Hybrid fluorescent nanoparticles fabricated from pyridine-functionalized polyfluorene-based conjugated polymer as reversible pH probes over a broad range of acidity-alkalinity

    International Nuclear Information System (INIS)

    Cui, Haijun; Chen, Ying; Li, Lianshan; Tang, Zhiyong; Wu, Yishi; Fu, Hongbing; Tian, Zhiyuan

    2014-01-01

    Conjugated polymer nanoparticles (CPNs) were developed based on a polyfluorene-based conjugated polymer with thiophene units carrying pyridyl moieties incorporated in the backbone of polymer chains (PFPyT). Hybrid CPNs fabricated from PFPyT and an amphiphilic polymer (NP1) displayed pH-sensitive fluorescence emission features in the range from pH 4.8 to 13, which makes them an attractive nanomaterial for wide range optical sensing of pH values. The fluorescence of hybrid CPNs based on chemically close polyfluorene derivatives without pyridyl moieties (NP3), in contrast, remains virtually unperturbed by pH values in the same range. The fluorescence emission features of NP1 underwent fully reversible changes upon alternating acidification/basification of aqueous dispersions of the CPNs and also displayed excellent repeatability. The observed pH sensing properties of NP1 are attributed to protonation/deprotonation of the nitrogen atoms of the pyridine moieties. This, in turn, leads to the redistribution of electron density of pyridine moieties and their participation in the π-conjugation within the polymer main chains. The optically transparent amphiphilic polymers also exerted significant influence on the pH sensing features of the CPNs, likely by acting as proton sponge and/or acid chaperone. (author)

  16. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique

    OpenAIRE

    Md. Rajibur Rahaman Khan; Shin-Won Kang

    2016-01-01

    In this study, we propose a highly sensitive multichannel pH sensor that is based on an optical-fiber pulse width modulation (PWM) technique. According to the optical-fiber PWM method, the received sensing signal?s pulse width changes when the optical-fiber pH sensing-element of the array comes into contact with pH buffer solutions. The proposed optical-fiber PWM pH-sensing system offers a linear sensing response over a wide range of pH values from 2 to 12, with a high pH-sensing ability. The...

  17. Nitrogen-rich functional groups carbon nanoparticles based fluorescent pH sensor with broad-range responding for environmental and live cells applications.

    Science.gov (United States)

    Shi, Bingfang; Su, Yubin; Zhang, Liangliang; Liu, Rongjun; Huang, Mengjiao; Zhao, Shulin

    2016-08-15

    A nitrogen-rich functional groups carbon nanoparticles (N-CNs) based fluorescent pH sensor with a broad-range responding was prepared by one-pot hydrothermal treatment of melamine and triethanolamine. The as-prepared N-CNs exhibited excellent photoluminesence properties with an absolute quantum yield (QY) of 11.0%. Furthermore, the N-CNs possessed a broad-range pH response. The linear pH response range was 3.0 to 12.0, which is much wider than that of previously reported fluorescent pH sensors. The possible mechanism for the pH-sensitive response of the N-CNs was ascribed to photoinduced electron transfer (PET). Cell toxicity experiment showed that the as-prepared N-CNs exhibited low cytotoxicity and excellent biocompatibility with the cell viabilities of more than 87%. The proposed N-CNs-based pH sensor was used for pH monitoring of environmental water samples, and pH fluorescence imaging of live T24 cells. The N-CNs is promising as a convenient and general fluorescent pH sensor for environmental monitoring and bioimaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Synthesis and Characterization of a Micelle-Based pH Nanosensor with an Unprecedented Broad Measurement Range

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar; Feldborg, Lise N.; Almdal, Kristoffer

    2013-01-01

    A new cross-linked micelle pH nanosensor design was investigated. The nanosensor synthesis was based on self-assembly of an amphiphilic triblock copolymer, poly(ethylene glycol)-b-poly(2-amino ethyl methacrylate)-b-poly(coumarin methacrylate) (PEG-b-PAEMA-b-PCMA), which was synthesized by isolated...... irradiation (320 nm pH nanosensors by binding the pH-sensitive fluorophores oregon green 488 and 2′,7′-bis-(2-carboxyethyl)-5-(and-6......) carboxyfluorescein and a reference fluorophore Alexa 633 to the PAEMA shell region of the micelles. Fluorescence measurements show that these pH nanosensors are sensitive in a surprisingly broad pH range of 3.4–8.0, which is hypothesized to be due to small differences in the individual fluorophores’ local...

  19. A wide range and highly sensitive optical fiber pH sensor using polyacrylamide hydrogel

    Science.gov (United States)

    Pathak, Akhilesh Kumar; Singh, Vinod Kumar

    2017-12-01

    In the present study we report the fabrication and characterization of no-core fiber sensor (NCFS) using smart hydrogel coating for pH measurement. The no-core fiber (NCF) is stubbed between two single-mode fibers with SMA connector before immobilizing of smart hydrogel. The wavelength interrogation technique is used to calculate the sensitivity of the proposed sensor. The result shows a high sensitivity of 1.94 nm/pH for a wide range of pH values varied from 3 to 10 with a good linear response. In addition to high sensitivity, the fabricated sensor provides a fast response time with a good stability, repeatability and reproducibility.

  20. Diagnostic significance of pleural fluid pH and pCO2

    Directory of Open Access Journals (Sweden)

    K.E. Sobhey

    2015-10-01

    Results: We conducted this study on 50 patients with pleural effusions of different causes. The patients were classified into 5 groups according to the cause. For all the patients, measurement of pleural pH, pCO2, pO2, HCO3, protein, LDH, glucose and WBC was done. We observed lowest pH in complicated parapneumonic effusion (empyema 6.80 ± 0.15 and highest pH was observed in transudative effusion 7.47 ± 0.07. Tuberculous effusion has pH lower than pH of malignant effusion 7.17 ± 0.017 and 7.39 ± 0.08, respectively. Post pleurodesis malignant effusion has pH lower than pH of malignant effusion 7.28 ± 0.17 and 7.39 ± 0.08, respectively. There is a strong inverse correlation between pH and pCO2, WBC, LDH and protein (r = −0.813 and p < 0.001, (r = −0.796 and p, 0.001, (r = −0.829 and p, 0.001 and (r = −.837 and p, 0.001, respectively. While there is a weak correlation between pH and glucose of pleural fluid (r = 0.249 and p = 0.066. The highest increase of PNL numbers was in empyema (20169 ± 8094.8 cells/cc.The highest increase of lymphocytes was in malignant effusions (4285.00 ± 2948.20 cells/cc and tuberculous effusion (3977.7 ± 3169 cells/cc.

  1. IMPACT OF WATER PH ON ZEBRA MUSSEL MORTALITY

    International Nuclear Information System (INIS)

    Molloy, Daniel P.

    2002-01-01

    The experiments conducted this past quarter have suggested that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels throughout the entire range of pH values tested (7.2 to 8.6). Highest mortality was achieved at pH values characteristic of preferred zebra mussel waterbodies, i.e., hard waters with a range of 7.8 to 8.6. In all water types tested, however, ranging from very soft to very hard, considerable mussel kill was achieved (83 to 99% mean mortality), suggesting that regardless of the pH or hardness of the treated water, significant mussel kill can be achieved upon treatment with P. fluorescens strain CL0145A. These results further support the concept that this bacterium has significant potential for use as a zebra mussel control agent in power plant pipes receiving waters with a wide range of physical and chemical characteristics

  2. IMPACT OF WATER PH ON ZEBRA MUSSEL MORTALITY

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2002-10-15

    The experiments conducted this past quarter have suggested that the bacterium Pseudomonas fluorescens strain CL0145A is effective at killing zebra mussels throughout the entire range of pH values tested (7.2 to 8.6). Highest mortality was achieved at pH values characteristic of preferred zebra mussel waterbodies, i.e., hard waters with a range of 7.8 to 8.6. In all water types tested, however, ranging from very soft to very hard, considerable mussel kill was achieved (83 to 99% mean mortality), suggesting that regardless of the pH or hardness of the treated water, significant mussel kill can be achieved upon treatment with P. fluorescens strain CL0145A. These results further support the concept that this bacterium has significant potential for use as a zebra mussel control agent in power plant pipes receiving waters with a wide range of physical and chemical characteristics.

  3. A PhD is a PhD is a PhD

    OpenAIRE

    Ostrow, Deborah Anne

    2017-01-01

    A PhD is a PhD is a PhD is a practice-based project that interrogates the process of an artist undertaking PhD research under established criteria. It consists of an exegesis, an original screenplay, and a digital film made for online viewing, with images drawn from a range of documentaries and films found on YouTube. They have been dissected, re-assembled and then re-embedded to YouTube. The source material covers topics such as medicalization of madness, the conspicuous appropriation of uni...

  4. A broad pH range and processive chitinase from a metagenome library

    Directory of Open Access Journals (Sweden)

    S.S. Thimoteo

    Full Text Available Chitinases are hydrolases that degrade chitin, a polymer of N-acetylglucosamine linked β(1-4 present in the exoskeleton of crustaceans, insects, nematodes and fungal cell walls. A metagenome fosmid library from a wastewater-contaminated soil was functionally screened for chitinase activity leading to the isolation and identification of a chitinase gene named metachi18A. The metachi18A gene was subcloned and overexpressed in Escherichia coli BL21 and the MetaChi18A chitinase was purified by affinity chromatography as a 6xHis-tagged fusion protein. The MetaChi18A enzyme is a 92-kDa protein with a conserved active site domain of glycosyl hydrolases family 18. It hydrolyses colloidal chitin with an optimum pH of 5 and temperature of 50°C. Moreover, the enzyme retained at least 80% of its activity in the pH range from 4 to 9 and 98% at 600 mM NaCl. Thin layer chromatography analyses identified chitobiose as the main product of MetaChi18A on chitin polymers as substrate. Kinetic analysis showed inhibition of MetaChi18A activity at high concentrations of colloidal chitin and 4-methylumbelliferyl N,N′-diacetylchitobiose and sigmoid kinetics at low concentrations of colloidal chitin, indicating a possible conformational change to lead the chitin chain from the chitin-binding to the catalytic domain. The observed stability and activity of MetaChi18A over a wide range of conditions suggest that this chitinase, now characterized, may be suitable for application in the industrial processing of chitin.

  5. Pb and Cd binding to natural freshwater biofilms developed at different pH: the important role of culture pH.

    Science.gov (United States)

    Hua, Xiuyi; Dong, Deming; Ding, Xiaoou; Yang, Fan; Jiang, Xu; Guo, Zhiyong

    2013-01-01

    The effects of solution pH on adsorption of trace metals to different types of natural aquatic solid materials have been studied extensively, but few studies have been carried out to investigate the effect of pH at which the solid materials were formed on the adsorption. The purpose of present study is to examine this effect of culture pH on metal adsorption to natural freshwater biofilms. The adsorption of Pb and Cd to biofilms which were developed at different culture pH values (ranging from 6.5 to 9.0) was measured at the same adsorption pH value (6.5). The culture pH had considerable effects on both composition and metal adsorption ability of the biofilms. Higher culture pH usually promoted the accumulation of organic material and Fe oxides in the biofilms. The culture pH also affected the quantity and species of algae in the biofilms. The adsorption of Pb and Cd to the biofilms generally increased with the increase of culture pH. This increase was minor at lower pH range and significant at higher pH range and was more remarkable for Cd adsorption than for Pb adsorption. The notable contribution of organic material to the adsorption at higher culture pH values was also observed. The profound impacts of culture pH on adsorption behavior of biofilms mainly resulted from the variation of total contents of the biofilm components and were also affected by the alteration of composition and properties of the components.

  6. A combined experimental study of vivianite and As (V) reactivity in the pH range 2-11

    International Nuclear Information System (INIS)

    Thinnappan, V.; Merrifield, C.M.; Islam, F.S.; Polya, D.A.; Wincott, P.; Wogelius, R.A.

    2008-01-01

    Four different sets of experiments were completed in order to constrain vivianite [Fe 3 (PO 4 ) 2 . 8H 2 O] reactivity under conditions pertinent to As(V)-bearing groundwater systems. Firstly, titration experiments were undertaken in the pH range 4-9 to determine the zero point of charge (ZPC) of vivianite; showing that the ZPC lies at a pH of approximately 5.3. Secondly, the steady state dissolution rates of vivianite far from equilibrium were measured in aqueous solutions in the pH range 2-10 at 18.5 d eg. C (±3 deg. C) using a fluidized bed reactor. The rate of vivianite dissolution, R, is given by (1)R(moless -1 cm -2 )=1.18x10 -10 a H+ 0.77 +1x10 -15 +6.92x10 -24 a H+ -1 The dissolution rate exhibits an exponential increase with increase in the activity of the H + ion (a H+ ) in solution at 2 8. Thirdly, the sorption of arsenate [As(V)] onto natural well-crystallized vivianite in the pH range 3-11 under static flow conditions was determined. 25-40% of As(V) from a starting concentration (C 0 ) of 100 μM was adsorbed onto vivianite. Static adsorption experiments were also completed at two lower As(V) concentrations (C 0 = 10 and 1 μM). Sorption was determined to be only weakly dependent on pH. Fourthly, the final part of this study investigated the sorption of As(V) onto vivianite at pH 9 under dynamic flow conditions. An input solution of 4 mM As(V) was applied to water saturated columns, followed by leaching with deionised water (DIW). Breakthrough curves show that the retention and exchangeability of As within the column is enhanced with vivianite present, consistent with solid phase analysis of unreacted and reacted solid materials. A simple calculation based on a model shallow Bengal sediment having about 0.2 wt% of vivianite and total initial dissolved As concentrations of 100 μM showed that under such conditions 88% of dissolved As(V) could potentially be adsorbed onto vivianite. These results will help to better understand As mobility in the

  7. Acidic pH shock induces the expressions of a wide range of stress-response genes

    Directory of Open Access Journals (Sweden)

    Hong Soon-Kwang

    2008-12-01

    Full Text Available Abstract Background Environmental signals usually enhance secondary metabolite production in Streptomycetes by initiating complex signal transduction system. It is known that different sigma factors respond to different types of stresses, respectively in Streptomyces strains, which have a number of unique signal transduction mechanisms depending on the types of environmental shock. In this study, we wanted to know how a pH shock would affect the expression of various sigma factors and shock-related proteins in S. coelicolor A3(2. Results According to the results of transcriptional and proteomic analyses, the major number of sigma factor genes were upregulated by an acidic pH shock. Well-studied sigma factor genes of sigH (heat shock, sigR (oxidative stress, sigB (osmotic shock, and hrdD that play a major role in the secondary metabolism, were all strongly upregulated by the pH shock. A number of heat shock proteins including the DnaK family and chaperones such as GroEL2 were also observed to be upregulated by the pH shock, while their repressor of hspR was strongly downregulated. Oxidative stress-related proteins such as thioredoxin, catalase, superoxide dismutase, peroxidase, and osmotic shock-related protein such as vesicle synthases were also upregulated in overall. Conclusion From these observations, an acidic pH shock was considered to be one of the strongest stresses to influence a wide range of sigma factors and shock-related proteins including general stress response proteins. The upregulation of the sigma factors and shock proteins already found to be related to actinorhodin biosynthesis was considered to have contributed to enhanced actinorhodin productivity by mediating the pH shock signal to regulators or biosynthesis genes for actinorhodin production.

  8. Continuous fast focusing in trapezoidal void channel based on bidirectional isotachophoresis in wide pH range

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Šlais, Karel

    2015-01-01

    Roč. 36, č. 20 (2015), s. 2579-2586 ISSN 0173-0835 R&D Projects: GA MV VG20112015021 Institutional support: RVO:68081715 Keywords : bidirectional isotachophoresis * trapezoidal void channel * wide pH range * proteins Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.482, year: 2015 http://hdl.handle.net/11104/0250164

  9. Thermodynamic properties of pentaphenylantimony Ph5Sb over the range from T → 0 K to 400 K

    International Nuclear Information System (INIS)

    Smirnova, N.N.; Letyanina, I.A.; Larina, V.N.; Markin, A.V.; Sharutin, V.V.; Senchurin, V.S.

    2009-01-01

    In the present research, the temperature dependence of the heat capacity C p,m 0 =f(T) of pentaphenylantimony Ph 5 Sb has been measured between T = (6 and 350) K in the precision adiabatic vacuum calorimeter and from T = (327 to 415) K in the differential scanning calorimeter and reported for the first time. The melting of the sample has been observed within the above temperature range. The melting was accompanied by partial compound decomposition. The experimental results have been used to calculate the standard (p 0 = 0.1 MPa) thermodynamic functions C p,m 0 /R, Δ 0 T H m 0 /RT, Δ 0 T S m 0 /R, and Φ m 0 /R=Δ 0 T S m 0 /R-Δ 0 T H m 0 /RT (where R is the universal gas constant) of crystalline Ph 5 Sb over the range from T → 0 K to 400 K. The energy of combustion of the compound under study has been determined in the isothermal combustion calorimeter with a stationary bomb. The standard thermodynamic functions of crystalline Ph 5 Sb formation at T = 298.15 K have been calculated

  10. Template-free synthesis of ZnWO{sub 4} powders via hydrothermal process in a wide pH range

    Energy Technology Data Exchange (ETDEWEB)

    Hojamberdiev, Mirabbos, E-mail: mirabbos_uz@yahoo.com [Shaanxi Key Laboratory of Nano-materials and Technology, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Zhu, Gangqiang [School of Physics and Information Technology, Shaanxi Normal University, Xi' an 710062 (China); Xu, Yunhua [Shaanxi Key Laboratory of Nano-materials and Technology, Xi' an University of Architecture and Technology, Xi' an 710055 (China)

    2010-12-15

    ZnWO{sub 4} powders with different morphologies were fabricated through a template-free hydrothermal method at 180 {sup o}C for 8 h in a wide pH range. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible and luminescence spectrophotometers were applied to study the effects of pH values on crystallinity, morphology, optical and luminescence properties. The XRD results showed that the WO{sub 3} + ZnWO{sub 4}, ZnWO{sub 4}, and ZnO phases could form after hydrothermal processing at 180 {sup o}C for 8 h with the pH values of 1, 3-11, and 13, respectively. The SEM and TEM observation revealed that the morphological transformation of ZnWO{sub 4} powders occurred with an increase in pH values as follows: star anise-, peony-, and desert rose-like microstructures and soya bean- and rod-like nanostructures. The highest luminescence intensity was found to be in sample consisting of star anise-like crystallites among all the samples due to the presence of larger particles with high crystallinity resulted from the favorable pH under the current hydrothermal conditions.

  11. The potential of selected macroalgal species for treatment of AMD at different pH ranges in temperate regions

    CSIR Research Space (South Africa)

    Oberholster, Paul J

    2014-09-01

    Full Text Available The metal bioaccumulation potential of selected macroalgae species at different pH ranges was study for usage as part of a possible secondary passive acid mine drainage (AMD) treatment technology in algae ponds. Two separate studies were conducted...

  12. Solubility of lead and copper in biochar-amended small arms range soils: influence of soil organic carbon and pH.

    Science.gov (United States)

    Uchimiya, Minori; Bannon, Desmond I

    2013-08-14

    Biochar is often considered a strong heavy metal stabilizing agent. However, biochar in some cases had no effects on, or increased the soluble concentrations of, heavy metals in soil. The objective of this study was to determine the factors causing some biochars to stabilize and others to dissolve heavy metals in soil. Seven small arms range soils with known total organic carbon (TOC), cation exchange capacity, pH, and total Pb and Cu contents were first screened for soluble Pb and Cu concentrations. Over 2 weeks successive equilibrations using weak acid (pH 4.5 sulfuric acid) and acetate buffer (0.1 M at pH 4.9), Alaska soil containing disproportionately high (31.6%) TOC had nearly 100% residual (insoluble) Pb and Cu. This soil was then compared with sandy soils from Maryland containing significantly lower (0.5-2.0%) TOC in the presence of 10 wt % (i) plant biochar activated to increase the surface-bound carboxyl and phosphate ligands (PS450A), (ii) manure biochar enriched with soluble P (BL700), and (iii) unactivated plant biochars produced at 350 °C (CH350) and 700 °C (CH500) and by flash carbonization (corn). In weak acid, the pH was set by soil and biochar, and the biochars increasingly stabilized Pb with repeated extractions. In pH 4.9 acetate buffer, PS450A and BL700 stabilized Pb, and only PS450A stabilized Cu. Surface ligands of PS450A likely complexed and stabilized Pb and Cu even under acidic pH in the presence of competing acetate ligand. Oppositely, unactivated plant biochars (CH350, CH500, and corn) mobilized Pb and Cu in sandy soils; the putative mechanism is the formation of soluble complexes with biochar-borne dissolved organic carbon. In summary, unactivated plant biochars can inadvertently increase dissolved Pb and Cu concentrations of sandy, low TOC soils when used to stabilize other contaminants.

  13. Optical pH Sensor Covering the Range from pH 0-14 Compatible with Mobile-Device Readout and Based on a Set of Rationally Designed Indicator Dyes.

    Science.gov (United States)

    Gotor, Raúl; Ashokkumar, Pichandi; Hecht, Mandy; Keil, Karin; Rurack, Knut

    2017-08-15

    In this work, a family of pH-responsive fluorescent probes has been designed in a rational manner with the aid of quantum chemistry tools, covering the entire pH range from 0-14. Relying on the boron-dipyrromethene (BODIPY) core, all the probes as well as selected reference dyes display very similar spectroscopic properties with ON-OFF fluorescence switching responses, facilitating optical readout in simple devices used for detection and analysis. Embedding of the probes and reference dyes into hydrogel spots on a plastic strip yielded a test strip that reversibly indicates pH with a considerably small uncertainty of ∼0.1 pH units. These strips are not only reusable but, combined with a 3D-printed case that can be attached to a smartphone, the USB port of which drives the integrated LED used for excitation, allows for autonomous operation in on-site or in-the-field applications; the developed Android application software ("app") further simplifies operation for unskilled users.

  14. Alkaline pH sensor molecules.

    Science.gov (United States)

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.

  15. A colloidal water-stable MOF as a broad-range fluorescent pH sensor via post-synthetic modification.

    Science.gov (United States)

    Aguilera-Sigalat, Jordi; Bradshaw, Darren

    2014-05-11

    We report for the first time the pH-dependent fluorescence of UiO-66-NH2 across the wide range from 1 to 9. By application of a post-synthetic modification (PSM) diazotisation strategy, we synthesized a new material, UiO-66-N=N-ind, which shows increased chemical stability and enhanced sensing up to pH 12.

  16. Optimal pH in chlorinated swimming pools - balancing formation of by-products

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Albrechtsen, Hans-Jørgen; Andersen, Henrik Rasmus

    2013-01-01

    In order to identify the optimal pH range for chlorinated swimming pools the formation of trihalomethanes, haloacetonitriles and trichloramine was investigated in the pH-range 6.5–7.5 in batch experiments. An artificial body fluid analogue was used to simulate bather load as the precursor for by-products....... The chlorine-to-precursor ratio used in the batch experiments influenced the amounts of by-products formed, but regardless of the ratio the same trends in the effect of pH were observed. Trihalomethane formation was reduced by decreasing pH but haloacetonitrile and trichloramine formation increased....... To evaluate the significance of the increase and decrease of the investigated organic by-products at the different pH values, the genotoxicity was calculated based on literature values. The calculated genotoxicity was approximately at the same level in the pH range 6.8–7.5 and increased when pH was 6...

  17. Spectroscopic determination of pH

    International Nuclear Information System (INIS)

    Faanu, A.; Glover, E.T.; Bailey, E.; Rochelle, C.

    2009-01-01

    A technique of measuring pH at temperature range of 20 - 70 0 C and high pressure conditions of 1 - 200 atmospheres has been developed by relating the ratio of absorbance peaks of indicator solutions (basic and acidic) as a function of pH, using ultraviolet-visible spectrophotometer. The pH values of the buffer solutions measured at 20 0 C and 70 0 C indicated slight temperature dependence, while the pressure had no effect. The pH of the buffer solutions increased with temperature with relative standard deviations in the range 0.4 - 0.5 % at 95 % confidence interval. The possible causes of the temperature dependence were attributed to changes in pH values as the temperature changed. (au)

  18. Two-step counterdiffusion protocol for the crystallization of haemoglobin II from Lucina pectinata in the pH range 4–9

    International Nuclear Information System (INIS)

    Nieves-Marrero, Carlos A.; Ruiz-Martínez, Carlos R.; Estremera-Andújar, Rafael A.; González-Ramírez, Luis A.; López-Garriga, Juan; Gavira, José A.

    2010-01-01

    oxyHbII crystals have been grown at pH 4, 5, 8 and 9 by capillary counterdiffusion technique by a two-step protocol: (i) mini screen (searching step) and (ii) pH screen (optimization step). Lucina pectinata haemoglobin II (HbII) transports oxygen in the presence of H 2 S to the symbiotic system in this bivalve mollusc. The composition of the haem pocket at the distal site includes TyrB10 and GlnE7, which are very common in other haem proteins. Obtaining crystals of oxyHbII at various pH values is required in order to elucidate the changes in the conformations of TyrB10 and GlnE7 and structural scenarios induced by changes in pH. Here, the growth of crystals of oxyHbII using the capillary counterdiffusion (CCD) technique at various pH values using a two-step protocol is reported. In the first step, a mini-screen was used to validate sodium formate as the best precipitating reagent for the growth of oxyHbII crystals. The second step, a pH screen typically used for optimization, was used to produce crystals in the pH range 4–9. Very well faceted prismatic ruby-red crystals were obtained at all pH values. X-ray data sets were acquired using synchrotron radiation of wavelength 0.886 Å (for the crystals obtained at pH 5) and 0.908 Å (for those obtained at pH 4, 8 and 9) to maximum resolutions of 3.30, 1.95, 1.85 and 2.00 Å for the crystals obtained at pH 4, 5, 8 and 9, respectively. All of the crystals were isomorphous and belonged to space group P4 2 2 1 2

  19. Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists.

    Science.gov (United States)

    Kawahara, Ai; An, Gi-Hong; Miyakawa, Sachie; Sonoda, Jun; Ezawa, Tatsuhiro

    2016-01-01

    Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0-7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils.

  20. Nestedness in Arbuscular Mycorrhizal Fungal Communities along Soil pH Gradients in Early Primary Succession: Acid-Tolerant Fungi Are pH Generalists

    Science.gov (United States)

    Kawahara, Ai; An, Gi-Hong; Miyakawa, Sachie; Sonoda, Jun

    2016-01-01

    Soil acidity is a major constraint on plant productivity. Arbuscular mycorrhizal (AM) fungi support plant colonization in acidic soil, but soil acidity also constrains fungal growth and diversity. Fungi in extreme environments generally evolve towards specialists, suggesting that AM fungi in acidic soil are acidic-soil specialists. In our previous surveys, however, some AM fungi detected in strongly acidic soils could also be detected in a soil with moderate pH, which raised a hypothesis that the fungi in acidic soils are pH generalists. To test the hypothesis, we conducted a pH-manipulation experiment and also analyzed AM fungal distribution along a pH gradient in the field using a synthesized dataset of the previous and recent surveys. Rhizosphere soils of the generalist plant Miscanthus sinensis were collected both from a neutral soil and an acidic soil, and M. sinensis seedlings were grown at three different pH. For the analysis of field communities, rhizosphere soils of M. sinensis were collected from six field sites across Japan, which covered a soil pH range of 3.0–7.4, and subjected to soil trap culture. AM fungal community compositions were determined based on LSU rDNA sequences. In the pH-manipulation experiment the acidification of medium had a significant impact on the compositions of the community from the neutral soil, but the neutralization of the medium had no effect on those of the community from the acidic soil. Furthermore, the communities in lower -pH soils were subsets of (nested in) those in higher-pH soils. In the field communities a significant nestedness pattern was observed along the pH gradient. These observations suggest that the fungi in strongly acidic soils are pH generalists that occur not only in acidic soil but also in wide ranges of soil pH. Nestedness in AM fungal community along pH gradients may have important implications for plant community resilience and early primary succession after disturbance in acidic soils. PMID

  1. Influence of sodium dodecyl sulfonate (SDS) on the hydrothermal synthesis of YVO4:Eu3+ crystals in a wide pH range

    International Nuclear Information System (INIS)

    Wang Juan; Xu Yunhua; Hojamberdiev, Mirabbos; Zhu Gangqiang

    2009-01-01

    In this work, a facile hydrothermal route has been proposed for the morphology-controllable preparation of Eu-doped yttrium orthovanadate (YVO 4 :Eu 3+ ) powders in the presence of sodium dodecyl sulfonate (SDS) as a template in a wide pH range. The structure, composition, morphology, and optical properties of the final products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL), respectively. It was found that single phase YVO 4 :Eu 3+ micro- and nanocrystals with different shapes can be fabricated at 180 deg. C for 24 h with suitable amount of SDS in a wide pH range. The formation mechanism and the influence of SDS on the morphology of YVO 4 :Eu 3+ micro- and nanocrystals were investigated as a function of pH value. The PL measurement revealed that the samples with different morphologies exhibited different values for optical properties, especially soybean-like nanopowders showed a higher intensity compared to other samples with different morphologies due mainly to their high packing densities and low scattering of light.

  2. Loss on drying, calcium concentration and pH of fluoride dentifrices

    Directory of Open Access Journals (Sweden)

    Arella Cristina Muniz Brito

    2015-01-01

    Full Text Available Introduction: Fluoride dentifrices containing calcium carbonate have advantages such as control of dental plaque and progression of dental caries, also contributing to oral hygiene, represent most dentifrices marketed in Brazil. Aim: To evaluate the physicochemical properties of seven fluoride dentifrices containing calcium carbonate in relation to hydrogen potential (pH, loss on drying and calcium concentration. Materials and Methods: Data collection was performed using the potentiometric method for pH ranges, gravimetric analysis for loss on drying and atomic absorption spectrometry for the concentration of calcium ions. All tests were performed in triplicate and the analysis was performed entirely at random according to one-way analysis of variance at 5% significance level. Results: The pH values were alkaline and ranged from 8.67 (Oral-B 123® to 10.03 (Colgate Mαxima Proteηγo Anticαries® . The results of loss on drying ranged from 33.81% (Oral-B 123® to 61.13% (Close Up® , with significant differences between brands tested. In relation to the calcium content, the highest and lowest concentrations were found in dentifrices Even® (155.55 g/kg and Colgate Ultra Branco® (129 g/kg, respectively, with significant difference (P < 0.05. Conclusion: Fluoride dentifrices analyzed showed alkaline pH and high levels of loss on drying and calcium concentration. However, these physicochemical characteristics differed according to the different brands tested.

  3. Effect of pH grade on polymer-gel dosimeter and its brachytherapy application

    International Nuclear Information System (INIS)

    Spevacek, V.; Hrbacek, J.; Dvorak, P.; Cechak, T.; Novotny, J.

    2003-01-01

    To evaluate impact of pH grade on characteristics of polymer-gel dosimeter and its application in dose distribution verification in brachytherapy. A polymer-gel dosimeter based on radiation induced polymerization and crosslinking of acrylic monomers (acrylic acid, N,N' methylen-bis-acrylamide) was investigated with respect to its pH grade. pH grade of a dosimeter was varied by concentration of natrium hydroxide. Afterwards, dosimeter was split into several samples which were uniformly irradiated with Co-60 gamma rays. The range of doses applied was usually from 0 to 50 Gy with the main interest in region up to 20 Gy. Evaluation of dosimeter dose response was performed using MRI (T2). Dose response curves obtained were evaluated with respect to pH grade as a parameter. In parallel, there was studied temperature resistance (melting temperature) of gels with various pH grade. pH grade modified polymer-gel dosimeter was then used to compare dose distribution calculated with brachytherapy treatment planning system for simple irradiation geometry with Ir-192 HDR source. Additionaly, Monte Carlo calculated data were also included in the brachytherapy study. There was observed effect of pH grade on dose-response curve parameters (slope of linear fit, background response, linear range and maximum measurable dose). In general, the lower pH grade the higher sensitivity. Another positive effect of decreased pH grade is significantly higher maximum measurable dose. Maximum melting temperature of a gel was observed with pH grade between 3.5 and 4. For both higher and lower pH grades the melting temperature was lower. Using pH modified polymer-gel dosimeter simple brachytherapy dose distribution was measured and compared with calculated and Monte Carlo simulated data. There was observed strong dependence of dose-response relationship on pH grade of polymer-gel dosimeter resulting in significant improvement of dosimeter characteristics, namely sensitivity, applicable range of

  4. A novel pH optical sensor using methyl orange based on triacetylcellulose membranes as support.

    Science.gov (United States)

    Hosseini, Mohammad; Heydari, Rouhollah; Alimoradi, Mohammad

    2014-07-15

    A novel pH optical sensor based on triacetylcellulose membrane as solid support was developed by using immobilization of methyl orange indicator. The prepared optical sensor was fixed into a flow cell for on-line pH monitoring. Variables affecting sensor performance, such as pH of dye bonding to triacetylcellulose membrane and dye concentration have been fully evaluated and optimized. The calibration curve showed good behavior and precision (RSDpH range of 4.0-12.0. No significant variation was observed on sensor response with increasing the ionic strength in the range of 0.0-0.5M of sodium chloride. Determination of pH by using the proposed optical sensor is on-line, quick, inexpensive, selective and sensitive in the pH range of 4.0-12.0. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals.

    Science.gov (United States)

    Chen, Peng; Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Zhu, Dan; Zhong, Yuan; Cui, Yiping

    2014-10-01

    p-Aminothiophenol (pATP) functionalized multi-walled carbon nanotubes (MWCNTs) have been demonstrated as an efficient pH sensor for living cells. The proposed sensor employs gold/silver core-shell nanoparticles (Au@Ag NPs) functionalized MWCNTs hybrid structure as the surface-enhanced Raman scattering (SERS) substrate and pATP molecules as the SERS reporters, which possess a pH-dependent SERS performance. By using MWCNTs as the substrate to be in a state of aggregation, the pH sensing range could be extended to pH 3.0∼14.0, which is much wider than that using unaggregated Au@Ag NPs without MWCNTs. Furthermore, the pH-sensitive performance was well retained in living cells with a low cytotoxicity. The developed SERS-active MWCNTs-based nanocomposite is expected to be an efficient intracellular pH sensor for bio-applications.

  6. Nonionic surfactant-assisted hydrothermal synthesis of YVO4:Eu3+ powders in a wide pH range and their luminescent properties

    International Nuclear Information System (INIS)

    Wang Juan; Hojamberdiev, Mirabbos; Xu Yunhua; Peng Jianhong

    2011-01-01

    YVO 4 :Eu 3+ powders with different morphologies were fabricated by a simple hydrothermal method at 180 deg. C for 24 h in a wide pH range with the assistance of polyvinylpyrrolidone (PVP) as a nonionic surfactant. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL). The obtained results showed that the pH value of synthesis solution played a key role in the formation of final products with different morphologies, such as, microspheres, irregular microspheres with grain-like nanoparticles, stone-like structures with regular short nanorods, and smooth rhombohedrons. The PL measurements revealed that the emission intensity of the samples was first decreased, and then increased with increasing the pH value due mainly to the increase in crystallinity and decrease in surface defects.

  7. Colorimetric and Fluorescent Bimodal Ratiometric Probes for pH Sensing of Living Cells.

    Science.gov (United States)

    Liu, Yuan-Yuan; Wu, Ming; Zhu, Li-Na; Feng, Xi-Zeng; Kong, De-Ming

    2015-06-01

    pH measurement is widely used in many fields. Ratiometric pH sensing is an important way to improve the detection accuracy. Herein, five water-soluble cationic porphyrin derivatives were synthesized and their optical property changes with pH value were investigated. Their pH-dependent assembly/disassembly behaviors caused significant changes in both absorption and fluorescence spectra, thus making them promising bimodal ratiometric probes for both colorimetric and fluorescent pH sensing. Different substituent identity and position confer these probes with different sensitive pH-sensing ranges, and the substituent position gives a larger effect. By selecting different porphyrins, different signal intensity ratios and different fluorescence excitation wavelengths, sensitive pH sensing can be achieved in the range of 2.1-8.0. Having demonstrated the excellent reversibility, good accuracy and low cytotoxicity of the probes, they were successfully applied in pH sensing inside living cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Charge-leveling and proper treatment of long-range electrostatics in all-atom molecular dynamics at constant pH.

    Science.gov (United States)

    Wallace, Jason A; Shen, Jana K

    2012-11-14

    Recent development of constant pH molecular dynamics (CpHMD) methods has offered promise for adding pH-stat in molecular dynamics simulations. However, until now the working pH molecular dynamics (pHMD) implementations are dependent in part or whole on implicit-solvent models. Here we show that proper treatment of long-range electrostatics and maintaining charge neutrality of the system are critical for extending the continuous pHMD framework to the all-atom representation. The former is achieved here by adding forces to titration coordinates due to long-range electrostatics based on the generalized reaction field method, while the latter is made possible by a charge-leveling technique that couples proton titration with simultaneous ionization or neutralization of a co-ion in solution. We test the new method using the pH-replica-exchange CpHMD simulations of a series of aliphatic dicarboxylic acids with varying carbon chain length. The average absolute deviation from the experimental pK(a) values is merely 0.18 units. The results show that accounting for the forces due to extended electrostatics removes the large random noise in propagating titration coordinates, while maintaining charge neutrality of the system improves the accuracy in the calculated electrostatic interaction between ionizable sites. Thus, we believe that the way is paved for realizing pH-controlled all-atom molecular dynamics in the near future.

  9. Ph3CCOOSnPh3.Ph3PO AND Ph3CCOOSnPh3.Ph3AsO: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    ABDOU MBAYE

    2014-08-01

    Full Text Available The mixture of ethanolic solutions of Ph3CCOOSnPh3 and Ph3PO or Ph3AsO gives Ph3CCOOSnPh3.Ph3PO and Ph3CCOOSnPh3.Ph3AsO adducts which have been characterized by infrared spectroscopy. A discrete structure is suggested for both, the environment around the tin centre being trigonal bipyramidal, the triphenylacetate anion behaving as a mondentate ligand.

  10. Ecological ranges for the pH and NO3 of syntaxa: a new basis for the estimation of critical loads for acid and nitrogen deposition

    NARCIS (Netherlands)

    Wamelink, G.W.W.; Goedhart, P.W.; Malinowska, A.H.; Frissel, J.Y.; Wegman, R.M.A.; Slim, P.A.; Dobben, van H.F.

    2011-01-01

    Question: Can the abiotic ranges of syntaxonomic units (associations) in terms of pH and nitrate concentration be estimated and then in principle be used to estimate critical loads for acid and nitrogen deposition? Location: Europe. Methods: Using splines, abiotic ranges of syntaxonomic units were

  11. Amperometric micro pH measurements in oxygenated saliva.

    Science.gov (United States)

    Chaisiwamongkhol, Korbua; Batchelor-McAuley, Christopher; Compton, Richard G

    2017-07-24

    An amperometric micro pH sensor has been developed based on the chemical oxidation of carbon fibre surfaces (diameter of 9 μm and length of ca. 1 mm) to enhance the population of surface quinone groups for the measurement of salivary pH. The pH analysis utilises the electrochemically reversible two-electron, two-proton behaviour of surface quinone groups on the micro-wire electrodes. A Nernstian response is observed across the pH range 2-8 which is the pH range of many biological fluids. We highlight the measurement of pH in small volumes of biological fluids without the need for oxygen removal and specifically the micro pH electrode is examined by measuring the pH of commercial synthetic saliva and authentic human saliva samples. The results correspond well with those obtained by using commercial glass pH electrodes on large volume samples.

  12. Preparation of a novel pH optical sensor using orange (II) based on agarose membrane as support.

    Science.gov (United States)

    Heydari, Rouhollah; Hosseini, Mohammad; Amraei, Ahmadreza; Mohammadzadeh, Ali

    2016-04-01

    A novel and cost effective optical pH sensor was prepared using covalent immobilization of orange (II) indicator on the agarose membrane as solid support. The fabricated optical sensor was fixed into a sample holder of a spectrophotometer instrument for pH monitoring. Variables affecting sensor performance including pH of dye bonding to agarose membrane and dye concentration were optimized. The sensor responds to the pH changes in the range of 3.0-10.0 with a response time of 2.0 min and appropriate reproducibility (RSD ≤ 0.9%). No significant variation was observed on sensor response after increasing the ionic strength in the range of 0.0-0.5M of sodium chloride. Determination of pH using the proposed optical sensor is quick, simple, inexpensive, selective and sensitive in the pH range of 3.0-10.0. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging

    Directory of Open Access Journals (Sweden)

    Zuzana eBurdikova

    2015-03-01

    Full Text Available Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g. pH, redox potential due to their metabolic activity. While cheese pH may be measured at macro level there remains a significant knowledge gap relating to the degree of micro-heterogeneity of pH within the cheese matrix and its relationship with microbial, enzymatic and physiochemical parameters and ultimately with cheese quality, consistency and ripening patterns. The pH of cheese samples was monitored both at macroscopic scale and at microscopic scale, using a non-destructive microscopic technique employing C-SNARF-4 and Oregon Green 488 fluorescent probes. The objectives of this work were to evaluate the suitability of these dyes for microscale pH measurements in natural cheese matrices and to enhance the sensitivity and extend the useful pH range of these probes using fluorescence lifetime imaging (FLIM. In particular, fluorescence lifetime of Oregon Green 488 proved to be sensitive probe to map pH micro heterogeneity within cheese matrices. Good agreement was observed between macroscopic scale pH measurement by FLIM and by traditional pH methods, but in addition considerable localized microheterogeneity in pH was evident within the curd matrix with pH range between 4.0 and 5.5. This technique provides significant potential to further investigate the relationship between cheese matrix physico-chemistry and bacterial metabolism during cheese manufacture and ripening.

  14. Measurement of pH micro-heterogeneity in natural cheese matrices by fluorescence lifetime imaging.

    Science.gov (United States)

    Burdikova, Zuzana; Svindrych, Zdenek; Pala, Jan; Hickey, Cian D; Wilkinson, Martin G; Panek, Jiri; Auty, Mark A E; Periasamy, Ammasi; Sheehan, Jeremiah J

    2015-01-01

    Cheese, a product of microbial fermentation may be defined as a protein matrix entrapping fat, moisture, minerals and solutes as well as dispersed bacterial colonies. The growth and physiology of bacterial cells in these colonies may be influenced by the microenvironment around the colony, or alternatively the cells within the colony may modify the microenvironment (e.g., pH, redox potential) due to their metabolic activity. While cheese pH may be measured at macro level there remains a significant knowledge gap relating to the degree of micro-heterogeneity of pH within the cheese matrix and its relationship with microbial, enzymatic and physiochemical parameters and ultimately with cheese quality, consistency and ripening patterns. The pH of cheese samples was monitored both at macroscopic scale and at microscopic scale, using a non-destructive microscopic technique employing C-SNARF-4 and Oregon Green 488 fluorescent probes. The objectives of this work were to evaluate the suitability of these dyes for microscale pH measurements in natural cheese matrices and to enhance the sensitivity and extend the useful pH range of these probes using fluorescence lifetime imaging (FLIM). In particular, fluorescence lifetime of Oregon Green 488 proved to be sensitive probe to map pH micro heterogeneity within cheese matrices. Good agreement was observed between macroscopic scale pH measurement by FLIM and by traditional pH methods, but in addition considerable localized microheterogeneity in pH was evident within the curd matrix with pH range between 4.0 and 5.5. This technique provides significant potential to further investigate the relationship between cheese matrix physico-chemistry and bacterial metabolism during cheese manufacture and ripening.

  15. Variations of thiaminase I activity pH dependencies among typical Great Lakes forage fish and Paenibacillus thiaminolyticus.

    Science.gov (United States)

    Zajicek, J.L.; Brown, L.; Brown, S.B.; Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.

    2009-01-01

    The source of thiaminase in the Great Lakes food web remains unknown. Biochemical characterization of the thiaminase I activities observed in forage fish was undertaken to provide insights into potential thiaminase sources and to optimize catalytic assay conditions. We measured the thiaminase I activities of crude extracts from five forage fish species and one strain of Paenibacillus thiaminolyticus over a range of pH values. The clupeids, alewife Alosa pseudoharengus and gizzard shad Dorosoma cepedianum, had very similar thiaminase I pH dependencies, with optimal activity ranges (> or = 90% of maximum activity) between pH 4.6 and 5.5. Rainbow smelt Osmerus mordax and spottail shiner Notropis hudsonius had optimal activity ranges between pH 5.5-6.6. The thiaminase I activity pH dependence profile of P. thiaminolyticus had an optimal activity range between pH 5.4 and 6.3, which was similar to the optimal range for rainbow smelt and spottail shiners. Incubation of P. thiaminolyticus extracts with extracts from bloater Coregonus hoyi (normally, bloaters have little or no detectable thiaminase I activity) did not significantly alter the pH dependence profile of P. thiaminolyticus-derived thiaminase I, such that it continued to resemble that of the rainbow smelt and spottail shiner, with an apparent optimal activity range between pH 5.7 and 6.6. These data are consistent with the hypothesis of a bacterial source for thiaminase I in the nonclupeid species of forage fish; however, the data also suggest different sources of thiaminase I enzymes in the clupeid species.

  16. Non-sticky translocation of bio-molecules through Tween 20-coated solid-state nanopores in a wide pH range

    Science.gov (United States)

    Li, Xiaoqing; Hu, Rui; Li, Ji; Tong, Xin; Diao, J. J.; Yu, Dapeng; Zhao, Qing

    2016-10-01

    Nanopore-based sensing technology is considered high-throughput and low-cost for single molecule detection, but solid-state nanopores have suffered from pore clogging issues. A simple Tween 20 coating method is applied to ensure long-term (several hours) non-sticky translocation of various types of bio-molecules through SiN nanopores in a wide pH range (4.0-13.0). We also emphasize the importance of choosing appropriate concentration of Tween 20 coating buffer for desired effect. By coating nanopores with a Tween 20 layer, we are able to differentiate between single-stranded DNA and double-stranded DNA, to identify drift-dominated domain for single-stranded DNA, to estimate BSA volume and to observe the shape of individual nucleosome translocation event without non-specific adsorption. The wide pH endurance from 4.0 to 13.0 and the broad types of detection analytes including nucleic acids, proteins, and biological complexes highlight the great application potential of Tween 20-coated solid-state nanopores.

  17. Significance of pH-value for meat quality of broilers: Influence of breed lines

    Directory of Open Access Journals (Sweden)

    Ristic M.

    2013-01-01

    Full Text Available For determination of poultry quality shortly after slaughtering, physical criteria (pH-value, conductivity, colour, juice retention are of importance. However, they are affected by breeding, transport, cooling and the storage period. PH-values of breast meat (genetically structured material were recorded shortly after slaughtering (15 min p.m. and differences between breeding line and gender were found (n=5109. The pH1-values ranged from 5.50 to 6.79. Male broilers showed significantly lower pH1-values than female ones (6.02:6.10. There were also significant differences concerning breeding line and gender. Meat quality (PSE, DFD of broilers can be recorded quickly and accurately determining the pH1-value of breast meat. Threshold ranges to be considered are ≤ 5.8 (PSE, 5.9-6.2 (standard meat properties and ≥ 6.3 (DFD. This classification is not to be compared to the deviation of pork.

  18. The activity of hyperthermophilic glycosynthases is significantly enhanced at acidic pH

    NARCIS (Netherlands)

    Perugino, G.; Trincone, A.; Giordano, A.; Oost, van der J.; Kaper, T.; Rossi, M.; Moracci, M.

    2003-01-01

    We have previously shown that the hyperthermophilic glycosynthase from Sulfolobus so fataricus (Ssbeta-glyE387G) can promote the synthesis of branched oligosaccharides from activated beta-glycosides, at pH 6.5, in the presence of 2 M sodium formate as an external nucleophile. In an effort to

  19. Significance of Phébus-FP results for plant safety in Switzerland

    International Nuclear Information System (INIS)

    Birchley, J.; Güntay, S.

    2013-01-01

    Highlights: • Prototypicality of Phebus is unique for severe accident integral code assessment. • MELCOR and SCDAP show good simulation capability. • Phebus revealed knowledge gaps concerning organic iodine source. • Complementary studies seek to reduce uncertainties. • New engineering technology is developed to resolve organic iodine issue. - Abstract: Switzerland, in common with other countries, uses source term estimates to formulate emergency plans in the unlikely event of an accident with release of activity to the environment. In the past estimates have typically been based on conservative treatments of the accident sequence, necessitated by the limited validation status of models used for the phenomena that control the reactor accident evolution. Although analyses using best-estimate tools frequently indicated substantially smaller releases – knowledge and data were insufficient to place reliance on the methods or the calculated results. The Phébus programme is unique in providing a source of integral transient data on fission product release, transport and chemical behaviour under prototypic conditions, capturing the entire portfolio of processes – transport, material and chemical – and their causal interaction. To this day, no other source of such data is available. These data provide a means to assess, improve and validate methods for source term evaluation and establish the needs for establishing new processes to mitigate the source term. There are strong synergies and complementarities between the Phébus project, the International Source Term Project, the iodine-related studies at PSI and the aerosol retention projects at PSI, and current moves toward improved management/mitigation of severe accidents. The Federal Nuclear Safety Inspectorate (ENSI), Paul Scherrer Institute (PSI) and the Swiss utilities running five nuclear power plants share in the findings. The need to strengthen the foundation on which we perform best

  20. Modification of pH Conferring Virucidal Activity on Dental Alginates

    Directory of Open Access Journals (Sweden)

    Navina Nallamuthu

    2015-04-01

    Full Text Available To formulate an alginate dental impression material with virucidal properties, experimental alginate dental impression materials were developed and the formulations adjusted in order to study the effect on pH profiles during setting. Commercially available materials served as a comparison. Eight experimental materials were tested for antiviral activity against Herpes Simplex Virus type 1 (HSV-1. Changing the amount of magnesium oxide (MgO used in the experimental formulations had a marked effect on pH. Increasing MgO concentration corresponded with increased pH values. All experimental materials brought about viral log reductions ranging between 0.5 and 4.0 over a period of 4 h. The material with the lowest pH was the most effective. The current work highlights the very important role of MgO in controlling pH profiles. This knowledge has been applied to the formulation of experimental alginates; where materials with pH values of approximately 4.2–4.4 are able to achieve a significant log reduction when assayed against HSV-1.

  1. Trends in MD/PhD Graduates Entering Psychiatry: Assessing the Physician-Scientist Pipeline.

    Science.gov (United States)

    Arbuckle, Melissa R; Luo, Sean X; Pincus, Harold Alan; Gordon, Joshua A; Chung, Joyce Y; Chavez, Mark; Oquendo, Maria A

    2018-06-01

    The goal of this study was to identify trends in MD/PhD graduates entering psychiatry, to compare these trends with other specialties, and to review strategies for enhancing the physician-scientist pipeline. Data on 226,588 medical students graduating from Liaison Committee on Medical Education accredited programs between 1999 and 2012 (6626 MD/PhDs) were used to evaluate the number, percentage, and proportion of MD/PhDs entering psychiatry in comparison with other specialties (neurology, neurosurgery, internal medicine, family medicine, and radiation oncology). Linear regression and multiple linear regression determined whether these values increased over time and varied by sex. Over 14 years, an average of 18 MD/PhDs (range 13-29) enrolled in psychiatry each year. The number of MD/PhDs going into psychiatry significantly increased, although these gains were modest (less than one additional MD/PhD per year). The proportion of students entering psychiatry who were MD/PhDs varied between 2.9 and 5.9 per 100 residents, with no significant change over time. There was also no change in the percentage of MD/PhDs entering psychiatry from among all MD/PhD graduates. The rate of increase in the number of MD/PhDs going into psychiatry did not differ significantly from other specialties except for family medicine, which is decreasing. The rate of MD/PhDs going into psychiatry was higher for women, suggesting closure of the sex gap in 17 years. Despite the increase in the number of MD/PhDs entering psychiatry, these numbers remain low. Expanding the cohort of physician-scientists dedicated to translational research in psychiatry will require a multipronged approach.

  2. The potential of selected macroalgal species for treatment of AMD at different pH ranges in temperate regions.

    Science.gov (United States)

    Oberholster, Paul J; Cheng, Po-Hsun; Botha, Anna-Maria; Genthe, Bettina

    2014-09-01

    The metal bioaccumulation potential of selected macroalgae species at different pH ranges was study for usage as part of a possible secondary passive acid mine drainage (AMD) treatment technology in algae ponds. Two separate studies were conducted to determine the suitability of macroalgae for passive treatment when metabolic processes in macrophytes and microorganisms in constructed wetlands decrease during winter months. In the field study, the bioconcentration of metals (mg/kg dry weight) measured in the benthic macroalgae mats was in the following order: site 1. Oedogonium crassum Al > Fe > Mn > Zn; site 2. Klebsormidium klebsii, Al > Fe > Mn > Zn; site 3. Microspora tumidula, Fe > Al > Mn > Zn and site 4. M. tumidula, Fe > Mn > Al > Zn. In the laboratory study, cultured macroalgae K. klebsii, O. crassum and M. tumidula isolated from the field sampling sites were exposed to three different pH values (3, 5 and 7), while bioaccumulation of the metals, Al, Fe, Mn and Zn and glutathione S-transferase (GST) activity were measured in the different selected algae species at a constant water temperature of 14 °C. Bioaccumulation of Al was the highest for O. crassum followed by K. klebsii and M. tumidula (p macroalgae O. crassum at all three tested pH values under constant low water temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Intracellular pH homeostasis in Leishmania donovani amastigotes and promastigotes

    International Nuclear Information System (INIS)

    Glaser, T.A.; Baatz, J.E.; Kreishman, G.P.; Mukkada, A.J.

    1988-01-01

    Intracellular pH and pH gradients of Leishmania donovani amastigotes and promastigotes were determined over a broad range of extracellular pH values. Intracellular pH was determined by 31 P NMR and by equilibrium distribution studies with 5,5-dimethyloxazolidine-2,4-dione or methylamine. Promastigotes maintain intracellular pH values close to neutral between extracellular pH values of 5.0 and 7.4. Amastigote intracellular pH is maintained close to neutral at external pH values as low as 4.0. Both life stages maintain a positive pH gradient to an extracellular pH of 7.4, which is important for active transport of substrates. Treatment with ionophores, such as nigericin and carbonyl cyanide m-chlorophenylhydrazone and the ATPase inhibitor dicyclohexylcarbodiimide, reduced pH gradients in both stages. Maintenance of intracellular pH in the physiologic range is especially relevant for the survival of the amastigote in its acidic in vivo environment

  4. Changing noise levels in a high CO2/lower pH ocean

    Science.gov (United States)

    Brewer, P. G.; Hester, K. C.; Peltzer, E. T.; Kirkwood, W. J.

    2008-12-01

    We show that ocean acidification from fossil fuel CO2 invasion and from increased respiration/reduced ventilation, has significantly reduced ocean sound absorption and thus increased ocean noise levels in the kHz frequency range. Below 10 kHz, sound absorption occurs due to well known chemical relaxations in the B(OH)3/B(OH)4- and HCO3-/CO32- systems. The pH dependence of these chemical relaxations results in decreased sound absorption (α = dB/km) as the ocean becomes more acidic from increased CO2 levels. The scale of surface ocean pH change today from the +105 ppmv change in atmospheric CO2 is about - 0.12 pH, resulting in frequency dependent decreases in sound absorption that now exceed 12% over pre- industrial. Under reasonable projections of future fossil fuel CO2 emissions and other sources a pH change of 0.3 units or more can be anticipated by mid-century, resulting in a decrease in α by almost 40%. Increases in water temperature have a smaller effect but also contribute to decreased sound absorption. Combining a lowering of 0.3 pH units with an increase of 3°C, α will decrease further to almost 45%. Ambient noise levels in the ocean within the auditory range critical for environmental, military, and economic interests are set to increase significantly due to the combined effects of decreased absorption and increasing sources from mankind's activities. Incorporation of sound absorption in modeling future ocean scenarios (R. Zeebe, personal communication) and long-term monitoring possibly with the aid of modern cabled observatories can give insights in how ocean noise will continue to change and its effect on groups such as marine mammals which communicate in the affected frequency range.

  5. pH and salivary sodium bicarbonate in cancer patients: correlation with seric concentration.

    Science.gov (United States)

    Rojas-Morales, Thais; Navas, Rita; Viera, Ninoska; Alvarez, Carmen Julia; Chaparro, Neira

    2008-07-01

    To determine the correlation between pH and bicarbonate of soda in blood and saliva in child and adolescent patients during the administration of 3 g/m2 of methotrexate. A controlled clinical test was performed on 23 patients diagnosed with Acute Lymphoblastic Leukemia. Ages ranged from 4 to 18. The Spearman Correlation Coefficient was used to interpret the data. No significant correlation was found between pH levels and seric and salivary sodium bicarbonate. However, there was a significant correlation between the levels of sodium bicarbonate in the body fluids evaluated (rs 0.2576, p=0.0354). Changes modifying the microenvironment of the oral cavity probably do not allow saliva to be used to determine blood pH and seric bicarbonate.

  6. Effects of pH, Chloride, and Bicarbonate on Cu(I) Oxidation Kinetics at Circumneutral pH

    Science.gov (United States)

    Yuan, X.; Pham, A.; Waite, T.; Xing, G.; Rose, A.

    2012-12-01

    The redox chemistry of copper species in the upper water column plays a significant role in its speciation, transport and bioavailability. Most previous studies have focused primarily on Cu(II), principally because Cu(I) is easily oxidized to Cu(II) by oxygen or other oxidants. However, a growing body of evidence indicates that a number of potentially important reactions may lead to Cu(I) formation and result in a significant steady-state concentration of Cu(I) in natural waters. Redox reactions of Cu(I) could result in the production of reactive oxygen species (ROS), such as superoxide and hydroxyl radical, that may subsequently induce a cascade of radical-promoted reactions with other constituents in natural waters. As such, a better understanding of copper-catalysed processes that produce and consume O2- is important in furthering our insight into factors contributing to global biogeochemical cycles. In this study, the oxidation kinetics of nanomolar concentrations of Cu(I) in NaCl solutions have been investigated over the pH range 6.5-8.0.The overall apparent oxidation rate constant was strongly affected by chloride, moderately by bicarbonate and, and to a lesser extent, by pH. In the absence of bicarbonate, an equilibrium-based speciation model indicated that Cu+ and CuClOH- were the most kinetically reactive species, while the contribution of other Cu(I) species to the overall oxidation rate was minor. A kinetic model based on recognized key redox reactions for these two species further indicated that oxidation of Cu(I) by oxygen and superoxide were important reactions at all pH values and [Cl-] considered, but back reduction of Cu(II) by superoxide only became important at relatively low chloride concentrations. Bicarbonate concentrations from 2-5 mM substantially accelerated Cu(I) oxidation. Kinetic analysis over a range of bicarbonate concentrations revealed that this was due to the formation of CuCO3-, which reacts relatively rapidly with oxygen, and not

  7. Polymeric nanosensors for measuring the full dynamic pH range of endosomes and lysosomes in mammalian cells

    DEFF Research Database (Denmark)

    Sun, Honghao; Andresen, Thomas Lars; Benjaminsen, Rikke Vicki

    2009-01-01

    Polymer nanoparticle sensors have been constructed for studying pH in the endocytic pathway in mammalian cells. The pH sensors for fluorescence ratiometric measurements were prepared using inverse microemulsion polymerization with rhodamine as reference fluorophor and fluorescein and oregon green...... was used to introduce a net positive charge in the cationic particles. It was found that the positively charged particle sensors were internalized spontaneously by HepG2 cancer cells. These new pH nanosensors are potential tools in time resolved quantification of pH in the endocytic pathway of living cells....

  8. On Calibration of pH Meters

    Directory of Open Access Journals (Sweden)

    Da-Ming Zhu

    2005-04-01

    Full Text Available The calibration of pH meters including the pH glass electrode, ISE electrodes,buffers, and the general background for calibration are reviewed. Understanding of basicconcepts of pH, pOH, and electrode mechanism is emphasized. New concepts of pH, pOH,as well as critical examination of activity, and activity coefficients are given. Theemergence of new solid state pH electrodes and replacement of the salt bridge with aconducting wire have opened up a new horizon for pH measurements. A pH buffer solutionwith a conducting wire may be used as a stable reference electrode. The misleadingunlimited linear Nernstian slope should be discarded. Calibration curves with 3 nonlinearportions for the entire 0—14 pH range due to the isoelectric point change effect areexplained. The potential measurement with stirring or unstirring and effects by double layer(DL and triple layer (TL will be discussed.

  9. pH Sensing and Regulation in Cancer

    OpenAIRE

    Mehdi eDamaghi; Jonathan W. Wojtkowiak; Robert J. Gillies

    2013-01-01

    Cells maintain intracellular pH (pHi) within a narrow range (7.1-7.2) by controlling membrane proton pumps and transporters whose activity is set by intra-cytoplasmic pH sensors. These sensors have the ability to recognize and induce cellular responses to maintain the intracellular pH, often at the expense of acidifying the extracellular pH. In turn, extracellular acidification impacts cells via specific acid-sensing ion channels (ASICs) and proton-sensing G-protein coupled receptors (GPCRs...

  10. Control range: a controllability-based index for node significance in directed networks

    International Nuclear Information System (INIS)

    Wang, Bingbo; Gao, Lin; Gao, Yong

    2012-01-01

    While a large number of methods for module detection have been developed for undirected networks, it is difficult to adapt them to handle directed networks due to the lack of consensus criteria for measuring the node significance in a directed network. In this paper, we propose a novel structural index, the control range, motivated by recent studies on the structural controllability of large-scale directed networks. The control range of a node quantifies the size of the subnetwork that the node can effectively control. A related index, called the control range similarity, is also introduced to measure the structural similarity between two nodes. When applying the index of control range to several real-world and synthetic directed networks, it is observed that the control range of the nodes is mainly influenced by the network's degree distribution and that nodes with a low degree may have a high control range. We use the index of control range similarity to detect and analyze functional modules in glossary networks and the enzyme-centric network of homo sapiens. Our results, as compared with other approaches to module detection such as modularity optimization algorithm, dynamic algorithm and clique percolation method, indicate that the proposed indices are effective and practical in depicting structural and modular characteristics of sparse directed networks

  11. Reduced breath condensate pH in asymptomatic children with prior wheezing as a risk factor for asthma.

    Science.gov (United States)

    von Jagwitz, Marie; Pessler, Frank; Akmatov, Manas; Li, Jialiang; Range, Ursula; Vogelberg, Christian

    2011-07-01

    Early noninvasive detection of increased risk of asthma with exhaled breath condensate (EBC) pH measurement has not been applied to preschool children. We sought to evaluate the ability of EBC pH measurement to identify young asymptomatic children at risk of asthma using the combination of recurrent wheezing and atopic sensitization as a proxy for a high risk of asthma. pH values were measured in deaerated EBC from 191 children (median age, 4.4 years [interquartile range, 2.2 years]). Children were divided into one of 5 groups: asymptomatic children with recurrent wheezy bronchitis with (group 1, n = 34) or without (group 2, n = 64) allergic sensitization, acute wheezy bronchitis (group 3, n = 18), allergic rhinoconjunctivitis without recurrent wheezy bronchitis (group 4, n = 15), and healthy control subjects (group 5, n = 60). The Asthma Predictive Index score was calculated for groups 1 and 2. Statistical significance was evaluated with the appropriate nonparametric tests, and the discriminatory accuracy was evaluated with receiver operating characteristic analysis. Deaerated EBC pH values were significantly lower in groups 1 and 3 than in groups 2, 4, and 5 (median, 7.49 [interquartile range, 0.94] and 7.44 [interquartile range, 0.70] vs 7.93 [interquartile range, 0.23], 8.02 [interquartile range, 0.17], and 7.96 [interquartile range, 0.25], respectively; P < .001 and area under the receiver operating characteristic curve ≥0.80 in all comparisons). The area under the curve for the differentiation between groups 1 and 2 improved from 0.80 to 0.94 (sensitivity, 0.94; specificity, 0.84; positive predictive value, 0.76) when breath condensate pH values and Asthma Predictive Index scores were combined. A reduced deaerated EBC pH value might help identify young asymptomatic children at high risk of asthma. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  12. Evaluating nanoparticle sensor design for intracellular pH measurements.

    Science.gov (United States)

    Benjaminsen, Rikke V; Sun, Honghao; Henriksen, Jonas R; Christensen, Nynne M; Almdal, Kristoffer; Andresen, Thomas L

    2011-07-26

    Particle-based nanosensors have over the past decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors are challenging, and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time-resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle-based sensor systems that are internalized by endocytosis and elucidated important factors in nanosensor design that should be considered in future development of new sensors. From our experiments it is clear that it is highly important to use sensors that have a broad measurement range, as erroneous quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pK(a) to each sensor, seem to be a solution to some of the earlier problems found when measuring pH in the endosome-lysosome pathway.

  13. Complexation Key to a pH Locked Redox Reaction

    Science.gov (United States)

    Rizvi, Masood Ahmad; Dangat, Yuvraj; Shams, Tahir; Khan, Khaliquz Zaman

    2016-01-01

    An unfavorable pH can block a feasible electron transfer for a pH dependent redox reaction. In this experiment, a series of potentiometric titrations demonstrate the sequential loss in feasibility of iron(II) dichromate redox reaction over a pH range of 0-4. The pH at which this reaction failed to occur was termed as a pH locked reaction. The…

  14. Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: Evidence of physiological pH adjustment

    Science.gov (United States)

    Anagnostou, E.; Huang, K.-F.; You, C.-F.; Sikes, E. L.; Sherrell, R. M.

    2012-10-01

    The boron isotope ratio (δ11B) of foraminifers and tropical corals has been proposed to record seawater pH. To test the veracity and practicality of this potential paleo-pH proxy in deep sea corals, samples of skeletal material from twelve archived modern Desmophyllum dianthus (D. dianthus) corals from a depth range of 274-1470 m in the Atlantic, Pacific, and Southern Oceans, ambient pH range 7.57-8.05, were analyzed for δ11B. The δ11B values for these corals, spanning a range from 23.56 to 27.88, are found to be related to seawater borate δ11B by the linear regression: δ11Bcoral=(0.76±0.28) δ11Bborate+(14.67±4.19) (1 standard error (SE)). The D. dianthus δ11B values are greater than those measured in tropical corals, and suggest substantial physiological modification of pH in the calcifying space by a value that is an inverse function of seawater pH. This mechanism partially compensates for the range of ocean pH and aragonite saturation at which this species grows, enhancing aragonite precipitation and suggesting an adaptation mechanism to low pH environments in intermediate and deep waters. Consistent with the findings of Trotter et al. (2011) for tropical surface corals, the data suggest an inverse correlation between the magnitude of a biologically driven pH offset recorded in the coral skeleton, and the seawater pH, described by the equation: ΔpH=pH recorded by coral-seawater pH=-(0.75±0.12) pHw+(6.88±0.93) (1 SE). Error analysis based on 95% confidence interval(CI) and the standard deviation of the regression residuals suggests that the uncertainty of seawater pH reconstructed from δ11Bcoral is ±0.07 to 0.12 pH units. This study demonstrates the applicability of δ11B in D. dianthus to record ambient seawater pH and holds promise for reconstructing oceanic pH distribution and history using fossil corals.

  15. Thermostable, salt tolerant, wide pH range novel chitobiase from Vibrio parahemolyticus: isolation, characterization, molecular cloning, and expression.

    Science.gov (United States)

    Zhu, B C; Lo, J Y; Li, Y T; Li, S C; Jaynes, J M; Gildemeister, O S; Laine, R A; Ou, C Y

    1992-07-01

    A chitobiase gene from Vibrio parahemolyticus was cloned into plasmid pUC18 in Escherichia coli strain DH5 alpha. The plasmid construct, pC120, contained a 6.4 kb Vibrio DNA insert. The recombinant gene expressed chitobiase [EC 3.2.1.30] activity similar to that found in the native Vibrio. The enzyme was purified by ion exchange, hydroxylapatite and gel permeation chromatographies, and exhibited an apparent molecular weight of 80 kDa on SDS-polyacrylamide gel electrophoresis. Chitobiose and 6 more substrates, including beta-N-acetyl galactosamine glycosides, were hydrolyzed by the recombinant chitobiase, indicating its putative classification as an hexosaminidase [EC 3.2.1.52]. The enzyme was resistant to denaturation by 2 M NaCl, thermostable at 45 degrees C and active over a very unusual (for glycosyl hydrolases) pH range, from 4 to 10. The purified cloned chitobiase gave 4 closely focussed bands on an isoelectric focusing gel, at pH 4 to 6.5. The N-terminal 43 amino acid sequence shows no homology with other proteins in commercial databanks or in the literature, and from its N-terminal sequence, appears to be a novel protein, unrelated in sequence to chitobiases from other Vibrios reported and unrelated to hexosaminidases from other organisms.

  16. Quantified pH imaging with hyperpolarized (13) C-bicarbonate.

    Science.gov (United States)

    Scholz, David Johannes; Janich, Martin A; Köllisch, Ulrich; Schulte, Rolf F; Ardenkjaer-Larsen, Jan H; Frank, Annette; Haase, Axel; Schwaiger, Markus; Menzel, Marion I

    2015-06-01

    Because pH plays a crucial role in several diseases, it is desirable to measure pH in vivo noninvasively and in a spatially localized manner. Spatial maps of pH were quantified in vitro, with a focus on method-based errors, and applied in vivo. In vitro and in vivo (13) C mapping were performed for various flip angles for bicarbonate (BiC) and CO2 with spectral-spatial excitation and spiral readout in healthy Lewis rats in five slices. Acute subcutaneous sterile inflammation was induced with Concanavalin A in the right leg of Buffalo rats. pH and proton images were measured 2 h after induction. After optimizing the signal to noise ratio of the hyperpolarized (13) C-bicarbonate, error estimation of the spectral-spatial excited spectrum reveals that the method covers the biologically relevant pH range of 6 to 8 with low pH error (< 0.2). Quantification of pH maps shows negligible impact of the residual bicarbonate signal. pH maps reflect the induction of acute metabolic alkalosis. Inflamed, infected regions exhibit lower pH. Hyperpolarized (13) C-bicarbonate pH mapping was shown to be sensitive in the biologically relevant pH range. The mapping of pH was applied to healthy in vivo organs and interpreted within inflammation and acute metabolic alkalosis models. © 2014 Wiley Periodicals, Inc.

  17. Evaluating Nanoparticle Sensor Design for Intracellular pH Measurements

    DEFF Research Database (Denmark)

    Benjaminsen, Rikke Vicki; Sun, Honghao; Henriksen, Jonas Rosager

    2011-01-01

    Particle-based nanosensors have over the last decade been designed for optical fluorescent-based ratiometric measurements of pH in living cells. However, quantitative and time-resolved intracellular measurements of pH in endosomes and lysosomes using particle nanosensors is challenging...... and there is a need to improve measurement methodology. In the present paper, we have successfully carried out time resolved pH measurements in endosomes and lyosomes in living cells using nanoparticle sensors and show the importance of sensor choice for successful quantification. We have studied two nanoparticle...... quantification of pH is an unfortunate result when measuring pH too close to the limit of the sensitive range of the sensors. Triple-labeled nanosensors with a pH measurement range of 3.2-7.0, which was synthesized by adding two pH-sensitive fluorophores with different pKa to each sensor, seem to be a solution...

  18. Significant effect of surfactant micelles on pH dependent fluorescent off-on-off behavior of Salicylaldehyde-2,4-Dinitrophenylhydrazone

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Priyanka [Department of Chemistry, Gauhati University, Guwahati 781 014 (India); Das, Diganta K., E-mail: digkdas@yahoo.co [Department of Chemistry, Gauhati University, Guwahati 781 014 (India)

    2011-04-15

    The fluorescence response to pH of 2,4 dinitrophenolhydrazone in 1:1 CH{sub 3}OH:H{sub 2}O and micellar mediums-negatively charged sodium dodecylsulphate (SDS), positively charged cetyltrimethyl ammonium bromide (CTAB) and neutral Triton X-100 (TX-100), is reported. At pH 4.0 the fluorescence of the molecule can be switched 'on' by selecting CTAB as the solvent. At pH 6.0 if the medium is TX-100 the fluorescence is 'off', but remains 'on' for the other three solvents. At pH 8.0, fluorescence is 'on' in the solvents except CTAB. SDS and TX-100 switch the fluorescence 'on' at pH 13.0 but for the other two solvents the fluorescence is 'off'. - Research highlights: The fluorescence response to pH of Salicylaldehyde-2,4 Dinitrophenolhydrazone in 1:1 CH{sub 3}OH:H{sub 2}O and in positively charged cetyltrimethyl ammonium bromide (CTAB) micellar medium shows 'off-on-off' behavior. In negatively charged sodium dodecylsulphate (SDS) the response of fluorescence of Salicylaldehyde-2,4 Dinitrophenolhydrazone to pH is 'off-on-on' type while in neutral Triton X-100 it is 'off-on-1/2on' type. At a given pH, fluorescence of 2,4 dinitrophenolhydrazone can be made 'on' or 'off' by selecting an appropriate pH.

  19. Effect of pH on structure, function, and stability of mitochondrial carbonic anhydrase VA.

    Science.gov (United States)

    Idrees, Danish; Shahbaaz, Mohd; Bisetty, Krishna; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2017-02-01

    Mitochondrial carbonic anhydrase VA (CAVA) catalyzes the hydration of carbon dioxide to produce proton and bicarbonate which is primarily expressed in the mitochondrial matrix of liver, and involved in numerous physiological processes including lipogenesis, insulin secretion from pancreatic cells, ureagenesis, gluconeogenesis, and neuronal transmission. To understand the effect of pH on the structure, function, and stability of CAVA, we employed spectroscopic techniques such as circular dichroism, fluorescence, and absorbance measurements in wide range of pH (from pH 2.0 to pH 11.5). CAVA showed an aggregation at acidic pH range from pH 2.0 to pH 5.0. However, it remains stable and maintains its secondary structure in the pH range, pH 7.0-pH 11.5. Furthermore, this enzyme has an appreciable activity at more than pH 7.0 (7.0 < pH ≤ 11.5) with maximum activity at pH 9.0. The maximal values of k cat and k cat /K m at pH 9.0 are 3.7 × 10 6  s -1 and 5.5 × 10 7  M -1  s -1 , respectively. However, this enzyme loses its activity in the acidic pH range. We further performed 20-ns molecular dynamics simulation of CAVA to see the dynamics at different pH values. An excellent agreement was observed between in silico and in vitro studies. This study provides an insight into the activity of CAVA in the pH range of subcellular environment.

  20. Polymeric gel nanoparticle pH sensors for intracellular measurements

    DEFF Research Database (Denmark)

    Almdal, Kristoffer; Andresen, Thomas Lars; Benjaminsen, Rikke Vicki

    pH range is approximately 4 pH units and thus a nanoparticle sensor with two pH sensitive fluorophores is appropriate. With one pH sensitive fluorophore the output from the sensor follows R=R0+R1/10(pKa-pH), where R is the ratio of fluorescence for the two fluorophores, R0 is the minimum value of R...

  1. Perylene Diimide Based Fluorescent Dyes for Selective Sensing of Nitroaromatic Compounds: Selective Sensing in Aqueous Medium Across Wide pH Range.

    Science.gov (United States)

    Hariharan, P S; Pitchaimani, J; Madhu, Vedichi; Anthony, Savarimuthu Philip

    2016-03-01

    Water soluble perylenediimide based fluorophore salt, N,N'-bis(ethelenetrimethyl ammoniumiodide)-perylene-3,4,9,10-tetracarboxylicbisimide (PDI-1), has been used for selective fluorescence sensing of picric acid (PA) and 4-nitroaniline (4-NA) in organic as well as aqueous medium across wide pH range (1.0 to 10.0). PDI-1 showed strong fluorescence in dimethylformamide (DMF) (Φf = 0.26 (DMF) and moderate fluorescence in water. Addition of picric acid (PA) and 4-nitroaniline (4-NA) into PDI-1 in DMF/aqueous solution selectively quenches the fluorescence. The concentration dependent studies showed decrease of fluorescence linearly with increase of PA and 4-NA concentration. The interference studies demonstrate high selectivity for PA and 4-NA. Interestingly, PDI-1 showed selective fluorescence sensing of PA and 4-NA across wide pH range (1.0 to 10.0). Selective fluorescence sensing of PA and 4-NA has also been observed with trifluoroacetate (PDI-2), sulfate (PDI-3) salt of PDI-1 as well as octyl chain substituted PDI (PDI-4) without amine functionality. These studies suggest that PA and 4-NA might be having preferential interaction with PDI aromatic core and quenches the fluorescence. Thus PDI based dyes have been used for selective fluorescent sensing of explosive NACs for the first time to the best our knowledge.

  2. Characterizing the correlation between dephosphorization and solution pH in a calcined water treatment plant sludge.

    Science.gov (United States)

    Zhou, Zhenming; Liu, Qidi; Li, Shuwen; Li, Fei; Zou, Jing; Liao, Xiaobin; Yuan, Baoling; Sun, Wenjie

    2018-04-26

    This study focused on characterizing the correlation between the dephosphorization process of calcined water treatment plant sludge (C-WTPS) and the solution initial pH in batch experiments. The specific aim was to illustrate the effect of different initial pH on the adsorption and desorption of phosphorous in C-WTPS. In addition, the effects of solution initial pH on the release of ammonia nitrogen and total organic carbon (TOC) from C-WTPS and the change of pH after adsorption were also investigated. The results demonstrated that the initial pH significantly influenced the adsorption of phosphorus on C-WTPS. When initial pH was increased from 3 to 10, the phosphorous absorption capacity reduced by 76.5%. Especially, when the initial pH reached to 11, the phosphorus adsorption capacity became a negative value, indicating that C-WTPS released phosphorus into the solution. The addition of C-WTPS to the solution had little impact on the initial pH of the solution. The absorbed phosphorous on C-WTPS was relatively stable in the pH range of 3 to 10. Nevertheless, when the solution pH was higher than 11, it can be easily released into the solution. Furthermore, by comparison with WTPS, C-WTPS released less ammonia nitrogen and TOC into the solution and adsorbed more phosphorus from the solution in the experimental pH range. Therefore, C-WTPS is more suitable to serve as a cost-effective sorbent for phosphorus removal.

  3. Temporal and spatial variability of rainfall pH

    Science.gov (United States)

    Richard G. Semonin

    1977-01-01

    The distribution of average rainwater pH over an area of 1,800 km² containing 81 collectors was determined from 25 storm events. The areal average of the data was pH 4.9, with a range of values from 4.3 to 6.8. A single storm event was studied to determine the change of pH as a function of time. The initial rain was pH 7.1, decreasing to 4.1. An excellent...

  4. Polyhedral charge-packing model for blood pH changes in disease ...

    African Journals Online (AJOL)

    packing pH zone' (From pH = 7.30, for tetrahedral, to pH = 7.65 for dodecahedral packing), which lies in the neighborhood of the well known physiological pH range. Literature is cited in support of pH 7.65 as the extreme upper limit of tolerable ...

  5. The effect of pH on chronic aquatic nickel toxicity is dependent on the pH itself: Extending the chronic nickel bioavailability models.

    Science.gov (United States)

    Nys, Charlotte; Janssen, Colin R; Van Sprang, Patrick; De Schamphelaere, Karel A C

    2016-05-01

    The environmental quality standard for Ni in the European Commission's Water Framework Directive is bioavailability based. Although some of the available chronic Ni bioavailability models are validated only for pH ≤ 8.2, a considerable fraction of European surface waters has a pH > 8.2. Therefore, the authors investigated the effect of a change in pH from 8.2 to 8.7 on chronic Ni toxicity in 3 invertebrate (Daphnia magna, Lymnaea stagnalis, and Brachionus calyciflorus) and 2 plant species (Pseudokirchneriella subcapitata and Lemna minor). Nickel toxicity was almost always significantly higher at pH 8.7 than at pH 8.2. To test whether the existing chronic Ni bioavailability models developed for pH ≤ 8.2 can be used at higher pH levels, Ni toxicity at pH 8.7 was predicted based on Ni toxicity observed at pH 8.2. This resulted in a consistent underestimation of toxicity. The results suggest that the effect of pH on Ni(2+) toxicity is dependent on the pH itself: the slope of the pH effect is steeper above than below pH 8.2 for species for which a species-specific bioavailability model exists. Therefore, the existing chronic Ni bioavailability models were modified to allow predictions of chronic Ni toxicity to invertebrates and plants in the pH range of 8.2 to 8.7 by applying a pH slope (SpH ) dependent on the pH of the target water. These modified Ni bioavailability models resulted in more accurate predictions of Ni toxicity to all 5 species (within 2-fold error), without the bias observed using the bioavailability models developed for pH ≤ 8.2. The results of the present study can decrease the uncertainty in implementing the bioavailability-based environmental quality standard under the Water Framework Directive for high-pH regions in Europe. © 2015 SETAC.

  6. Characterisation and deployment of an immobilised pH sensor spot towards surface ocean pH measurements.

    Science.gov (United States)

    Clarke, Jennifer S; Achterberg, Eric P; Rérolle, Victoire M C; Abi Kaed Bey, Samer; Floquet, Cedric F A; Mowlem, Matthew C

    2015-10-15

    The oceans are a major sink for anthropogenic atmospheric carbon dioxide, and the uptake causes changes to the marine carbonate system and has wide ranging effects on flora and fauna. It is crucial to develop analytical systems that allow us to follow the increase in oceanic pCO2 and corresponding reduction in pH. Miniaturised sensor systems using immobilised fluorescence indicator spots are attractive for this purpose because of their simple design and low power requirements. The technology is increasingly used for oceanic dissolved oxygen measurements. We present a detailed method on the use of immobilised fluorescence indicator spots to determine pH in ocean waters across the pH range 7.6-8.2. We characterised temperature (-0.046 pH/°C from 5 to 25 °C) and salinity dependences (-0.01 pH/psu over 5-35), and performed a preliminary investigation into the influence of chlorophyll on the pH measurement. The apparent pKa of the sensor spots was 6.93 at 20 °C. A drift of 0.00014 R (ca. 0.0004 pH, at 25 °C, salinity 35) was observed over a 3 day period in a laboratory based drift experiment. We achieved a precision of 0.0074 pH units, and observed a drift of 0.06 pH units during a test deployment of 5 week duration in the Southern Ocean as an underway surface ocean sensor, which was corrected for using certified reference materials. The temperature and salinity dependences were accounted for with the algorithm, R=0.00034-0.17·pH+0.15·S(2)+0.0067·T-0.0084·S·1.075. This study provides a first step towards a pH optode system suitable for autonomous deployment. The use of a short duration low power illumination (LED current 0.2 mA, 5 μs illumination time) improved the lifetime and precision of the spot. Further improvements to the pH indicator spot operations include regular application of certified reference materials for drift correction and cross-calibration against a spectrophotometric pH system. Desirable future developments should involve novel

  7. Graphite Screen-Printed Electrodes Applied for the Accurate and Reagentless Sensing of pH.

    Science.gov (United States)

    Galdino, Flávia E; Smith, Jamie P; Kwamou, Sophie I; Kampouris, Dimitrios K; Iniesta, Jesus; Smith, Graham C; Bonacin, Juliano A; Banks, Craig E

    2015-12-01

    A reagentless pH sensor based upon disposable and economical graphite screen-printed electrodes (GSPEs) is demonstrated for the first time. The voltammetric pH sensor utilizes GSPEs which are chemically pretreated to form surface immobilized oxygenated species that, when their redox behavior is monitored, give a Nernstian response over a large pH range (1-13). An excellent experimental correlation is observed between the voltammetric potential and pH over the entire pH range of 1-13 providing a simple approach with which to monitor solution pH. Such a linear response over this dynamic pH range is not usually expected but rather deviation from linearity is encountered at alkaline pH values; absence of this has previously been attributed to a change in the pKa value of surface immobilized groups from that of solution phase species. This non-deviation, which is observed here in the case of our facile produced reagentless pH sensor and also reported in the literature for pH sensitive compounds immobilized upon carbon electrodes/surfaces, where a linear response is observed over the entire pH range, is explained alternatively for the first time. The performance of the GSPE pH sensor is also directly compared with a glass pH probe and applied to the measurement of pH in "real" unbuffered samples where an excellent correlation between the two protocols is observed validating the proposed GSPE pH sensor.

  8. A quantum dot-spore nanocomposite pH sensor.

    Science.gov (United States)

    Zhang, Xingya; Li, Zheng; Zhou, Tao; Zhou, Qian; Zeng, Zhiming; Xu, Xiangdong; Hu, Yonggang

    2016-04-01

    A new quantum dot (QD)-based pH sensor design is investigated. The sensor is synthesized based on the self-assembly of green QDs onto treated spores to form QD@spore nanocomposites. The nanocomposites are characterized using laser scanning confocal microscopy, transmission electron microscope, and fluorescence spectroscopy, among others. Fluorescence measurements showed that these nanocomposites are sensitive to pH in a broad pH range of 5.0-10.0. The developed pH sensors have been satisfactorily applied for pH estimation of real samples and are comparable with those of the commercial assay method, indicating the potential practical application of the pH sensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Habit-associated salivary pH changes in oral submucous fibrosis-A controlled cross-sectional study.

    Science.gov (United States)

    Donoghue, Mandana; Basandi, Praveen S; Adarsh, H; Madhushankari, G S; Selvamani, M; Nayak, Prachi

    2015-01-01

    Oral submucous fibrosis (OSF) is a multi-causal inflammatory reaction to the chemical or mechanical trauma caused due to exposure to arecanut containing products with or without tobacco (ANCP/T). Arecanut and additional components such as lime and chewing tobacco render ANCP/T highly alkaline. Fibrosing repair is a common reaction to an alkaline exposure in the skin. OSF may be related to the alkaline exposure by ANCP/T in a similar manner. The study was aimed at establishing the relationship of habit-associated salivary pH changes and OSF. The study design was controlled cross-sectional. Base line salivary pH (BLS pH), salivary pH after chewing the habitual ANCP/T substance, post chew salivary pH (PCSpH) for 2 min and salivary pH recovery time (SpHRT) were compared in 30 OSF patients and 30 sex-matched individuals with ANCP/T habits and apparently healthy oral mucosa. The group's mean BLSpH values were similar and within normal range and representative of the population level values. The average PCSpH was significantly higher (P ˂ 0.0001) than the average BLSpH in both groups. There was no significant difference (P = 0.09) between PCSpH of OSF patients and controls. OSF patients had a significantly longer (P = 0.0076) SpHRT than controls. Factors such as age, daily exposure, cumulative habit years, BLSpH and PCSpH, had varying effects on the groups. Chewing ANCP/T causes a significant rise in salivary pH of all individuals. SpHRT has a significant association with OSF. The effect of salivary changes in OSF patients differs with those in healthy controls.

  10. Tolerance of photoperiod insensitive mutant of Sesbania rostrata to salinity and pH

    International Nuclear Information System (INIS)

    Ramani, Saradha; Joshua, D.C.; Shaikh, M.S.; Athalye, V.V.

    1998-01-01

    The photoperiod insensitive mutant, TSR-1 of Sesbania rostrata was compared with the parent variety for its response to soil salinity and different levels of pH in hydroponics. The plant growth and stem nodulation were not significantly affected by salinity. However, salinity in soil without farmyard manure stimulated plant growth. Radiotracer studies showed that the translocation of Na to stem and leaves was much less compared to uptake in both parent and mutant. The growth of TSR-1 was comparable to or marginally better than that of the parent variety in the pH range of 3.5-8.0. Root nodulation was less with low pH. The nitrogen content was not adversely affected by pH, but it was reduced with 200 mM NaCl. This mutant in addition to being short-day insensitive, is tolerant to low to moderate salinity levels and pH like its parent. (author)

  11. Some observations of the pH of precipitation elements

    Energy Technology Data Exchange (ETDEWEB)

    Landsberg, H

    1954-01-01

    A year of observations of pH values of individual rain drops and snowflakes near Boston, Mass., showed acidic values ranging from 3 to 5.5 with a mean value of 4. There was no systematic relation between pH and the duration of rainfall. Drizzle and light rain had the lowest values, heavy rain and solid precipitation had the highest. There is a tendency for smaller drops to have lower values of pH than the larger ones. Measurements of dew and frost showed also a range from 3 to 5.5 with a mean value of 4.3.

  12. Decrease in Daphnia egg viability at elevated pH

    NARCIS (Netherlands)

    Vijverberg, J.; Kalf, D.F.; Boersma, M.

    1996-01-01

    The effect of high pH on the reproduction of two Daphnia galeata clones was experimentally investigated in the laboratory. We observed that the mortality of juveniles and adults did not increase with increasing pH in the range pH 9.0- 10.5, which agrees with what is generally reported in the

  13. pH tolerance of Daphnia pulex (leydig, emend. , richard)

    Energy Technology Data Exchange (ETDEWEB)

    Davis, P; Ozburn, G W

    1969-01-01

    The survival time and reproduction of female Daphnia pulex in solutions varying in pH have been observed. Dilute sodium hydroxide or sulfuric acid solutions were added to four different diluent waters: distilled water, aerated tap water, aerated and filtered tap water from an aquarium containing Dace minnows, and Mcintyre River water. D. Pulex (initially up to 72 hours old) survived for the duration of the experiment (32 hours) in river water within a pH range of 6.1 to 10.3; in aquarium water within a pH range of 4.3 to 10.4; only at pH 6.4 and pH 7.6 in distilled water; and in none of the solutions using aerated tap water. The dissolved oxygen content was measured at the beginning and end of every experiment and was found never to fall below 6.2 p.p.M. Those individuals which survived were cultured in the laboratory and parthenogenesis was observed at pH values between 7.0 and 8.7.

  14. Characterizing the variation in pH measurements with apheresis platelets.

    Science.gov (United States)

    Moroff, Gary; Seetharaman, Shalini; Kurtz, James; Wagner, Stephen J

    2011-11-01

    pH measurements of platelet (PLT) components remain a key parameter when assessing how storage and shipping conditions influence the retention of PLT properties. Studies were conducted to characterize variations in pH measured with two pH meters and a blood gas analyzer. Samples were obtained from apheresis PLT units that were stored with or without continuous agitation to measure a range of pH values. pH values were determined with pH meters at room temperature (20-24°C) upon placing of samples in 5-mL sterile polypropylene tubes and with the blood gas analyzer at 37°C upon injection of identical samples, with conversion to 22°C. The calculated coefficient of variation (%CV) of pH measurements using pH meters (n = 10) was 0.43% or less. The %CV values were comparable with different samples having pH values ranging from 6.0 to 7.4. The %CV levels with the blood gas analyzer were comparable to those observed with the pH meters. The difference in the mean pH values for the two pH meters was no greater than 0.10 units, with 9 of 10 samples having differences in values of 0.05 or less; however, greater differences of values (0.1 to 0.2) were observed between pH measured using the blood gas analyzer and pH meters. Our data show good precision and comparability of pH measurements with two pH meters. Differences in pH values were greater on comparison of the blood gas analyzer with the pH meters. © 2011 American Association of Blood Banks.

  15. Dielectrophoresis Aligned Single-Walled Carbon Nanotubes as pH Sensors.

    Science.gov (United States)

    Li, Pengfei; Martin, Caleb M; Yeung, Kan Kan; Xue, Wei

    2011-01-31

    Here we report the fabrication and characterization of pH sensors using aligned single-walled carbon nanotubes (SWNTs). The SWNTs are dispersed in deionized (DI) water after chemical functionalization and filtration. They are deposited and organized on silicon substrates with the dielectrophoresis process. Electrodes with "teeth"-like patterns-fabricated with photolithography and wet etching-are used to generate concentrated electric fields and strong dielectrophoretic forces for the SWNTs to deposit and align in desired locations. The device fabrication is inexpensive, solution-based, and conducted at room temperature. The devices are used as pH sensors with the electrodes as the testing pads and the dielectrophoretically captured SWNTs as the sensing elements. When exposed to aqueous solutions with various pH values, the SWNTs change their resistance accordingly. The SWNT-based sensors demonstrate a linear relationship between the sensor resistance and the pH values in the range of 5-9. The characterization of multiple sensors proves that their pH sensitivity is highly repeatable. The real-time data acquisition shows that the sensor response time depends on the pH value, ranging from 2.26 s for the pH-5 solution to 23.82 s for the pH-9 solution. The long-term stability tests illustrate that the sensors can maintain their original sensitivity for a long period of time. The simple fabrication process, high sensitivity, and fast response of the SWNT-based sensors facilitate their applications in a wide range of areas.

  16. Electrostatic Assemblies of Well-Dispersed AgNPs on the Surface of Electrospun Nanofibers as Highly Active SERS Substrates for Wide-Range pH Sensing.

    Science.gov (United States)

    Yang, Tong; Ma, Jun; Zhen, Shu Jun; Huang, Cheng Zhi

    2016-06-15

    Surface-enhanced Raman scattering (SERS) has shown high promise in analysis and bioanalysis, wherein noble metal nanoparticles (NMNPs) such as silver nanoparticles were employed as substrates because of their strong localized surface plasmon resonance (LSPR) properties. However, SERS-based pH sensing was restricted because of the aggregation of NMNPs in acidic medium or biosamples with high ionic strength. Herein, by using the electrostatic interaction as a driving force, AgNPs are assembled on the surface of ethylene imine polymer (PEI)/poly(vinyl alcohol) (PVA) electrospun nanofibers, which are then applied as highly sensitive and reproducible SERS substrate with an enhancement factor (EF) of 10(7)-10(8). When p-aminothiophenol (p-ATP) is used as an indicator with its b2 mode, a good and wide linear response to pH ranging from 2.56 to 11.20 could be available, and the as-prepared nanocomposite fibers then could be fabricated as excellent pH sensors in complicated biological samples such as urine, considering that the pH of urine could reflect the acid-base status of a person. This work not only emerges a cost-effective, direct, and convenient approach to homogeneously decorate AgNPs on the surface of polymer nanofibers but also supplies a route for preparing other noble metal nanofibrous sensing membranes.

  17. Methodology of analysis of very weak acids by isotachophoresis with electrospray-ionization mass-spectrometric detection: Anionic electrolyte systems for the medium-alkaline pH range.

    Science.gov (United States)

    Malá, Zdena; Gebauer, Petr

    2018-01-15

    This work describes for the first time a functional electrolyte system setup for anionic isotachophoresis (ITP) with electrospray-ionization mass-spectrometric (ESI-MS) detection in the neutral to medium-alkaline pH range. So far no application was published on the analysis of very weak acids by anionic ITP-MS although there is a broad spectrum of potential analytes with pK a values in the range 5-10, where application of this technique promises interesting gains in both sensitivity and specificity. The problem so far was the lack of anionic ESI-compatible ITP systems in the mentioned pH range as all typical volatile anionic system components are fully ionized at neutral and alkaline pH and thus too fast to suit as terminators. We propose an original solution of the problem based on the combination of two ITP methods: (i) use of the hydroxyl ion as a natural and ESI-compatible terminator, and (ii) use of configurations based on moving-boundary ITP. The former method ensures effective stacking of analytes by an alkaline terminator of sufficiently low mobility and the latter offers increased flexibility for tuning of the separation window and selectivity according to actual needs. A theoretical description of the proposed model is presented and applied to the design of very simple functional electrolyte configurations. The properties of example systems are demonstrated by both computer simulation and experiments with a group of model analytes. Potential effects of carbon dioxide present in the solutions are demonstrated for particular systems. Experimental results confirm that the proposed methodology is well capable of performing sensitive and selective ITP-MS analyses of very weak acidic analytes (e.g. sulfonamides or chlorophenols). Copyright © 2017 Elsevier B.V. All rights reserved.

  18. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    International Nuclear Information System (INIS)

    Liu, Lu; Shao, Jinyou; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-01-01

    Highlights: • The flexible chemiresistive pH sensor based on two-terminal microsensors eliminating the need for a reference electrode, is simple in structure and can be fabricated on a variety of substrates such as PET, PI and PVC. • SWNTs as an ideal one dimensional material are carboxyl-functionalized to make the pH sensor show high sensitivity and outstanding flexibility for practical applications. • DEP technique is used to manipulate and position SWNTs into appropriate locations and desired formations to improve the metal-nanotube interface and highly rapid detection of pH value, resulting in better overall device performance. • Mechanical bendability of the pH sensor, which arises from the combination of flexible PET substrates and SWNTs, offer a significant improvement for applications that are difficult or impossible to achieve with traditional sensors on rigid substrates. - Abstract: The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H"+) and hydroxide (OH"−) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H"+ and OH"− ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results shows that the

  19. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lu; Shao, Jinyou, E-mail: jyshao@mail.xjtu.edu.cn; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-11-15

    Highlights: • The flexible chemiresistive pH sensor based on two-terminal microsensors eliminating the need for a reference electrode, is simple in structure and can be fabricated on a variety of substrates such as PET, PI and PVC. • SWNTs as an ideal one dimensional material are carboxyl-functionalized to make the pH sensor show high sensitivity and outstanding flexibility for practical applications. • DEP technique is used to manipulate and position SWNTs into appropriate locations and desired formations to improve the metal-nanotube interface and highly rapid detection of pH value, resulting in better overall device performance. • Mechanical bendability of the pH sensor, which arises from the combination of flexible PET substrates and SWNTs, offer a significant improvement for applications that are difficult or impossible to achieve with traditional sensors on rigid substrates. - Abstract: The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H{sup +}) and hydroxide (OH{sup −}) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H{sup +} and OH{sup −} ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results

  20. Effect of low pH on the survival and emergence of aquatic insects

    Energy Technology Data Exchange (ETDEWEB)

    Bell, H L

    1971-01-01

    Mature larvae and nymphs of 9 species of aquatic insects (dragonflies, stoneflies, caddisflies, and mayfly) were tested in the laboratory at pH values from 1.0 to 7.0. The tl/sub 50/ values (pH at which 50 per cent of the organisms died) at 30 days ranged from pH 2.45 (Brachycentrus americanus) to pH 5.38 (Ephemeralla subvaria). The range at which 50 per cent of the insects emerged was pH 4.0 -5.9. The 9 species tested were all more sensitive to low pH during the period of emergence.

  1. An efficient and sensitive fluorescent pH sensor based on amino functional metal-organic frameworks in aqueous environment.

    Science.gov (United States)

    Xu, Xiao-Yu; Yan, Bing

    2016-04-28

    A pH sensor is fabricated via a reaction between an Al(III) salt and 2-aminoterephthalic acid in DMF which leads to a MOF (Al-MIL-101-NH2) with free amino groups. The Al-MIL-101-NH2 samples show good luminescence and an intact structure in aqueous solutions with pH ranging from 4.0 to 7.7. Given its exceptional stability and pH-dependent fluorescence intensity, Al-MIL-101-NH2 has been applied to fluorescent pH sensing. Significantly, in the whole experimental pH range (4.0-7.7), the fluorescence intensity almost increases with increasing pH (R(2) = 0.99688) which can be rationalized using a linear equation: I = 2.33 pH + 26.04. In addition, error analysis and cycling experiments have demonstrated the accuracy and utilizability of the sensor. In practical applications (PBS and lake water), Al-MIL-101-NH2 also manifests its analytical efficiency in pH sensing. And the samples can be easily isolated from an aqueous solution by incorporating Fe3O4 nanoparticles. Moreover, the possible sensing mechanism based on amino protonation is discussed in detail. This work is on of the few cases for integrated pH sensing systems in aqueous solution based on luminescent MOFs.

  2. A novel optical probe for pH sensing in gastro-esophageal apparatus

    Science.gov (United States)

    Baldini, F.; Ghini, G.; Giannetti, A.; Senesi, F.; Trono, C.

    2011-03-01

    Monitoring gastric pH for long periods, usually 24 h, may be essential in analyzing the physiological pattern of acidity, in obtaining information on changes in activity during peptic ulcer disease, and in assessing the effect of antisecretory drugs. Gastro-esophageal reflux, which causes a pH decrease in the esophagus content from pH 7 even down to pH 2, can determine esophagitis with possible strictures and Barrett's esophagus. One of the difficulties of the optical measurement of pH in the gastro-esophageal apparatus lies in the required extended working range from 1 to 8 pH units. The present paper deals with a novel optical pH sensor, using methyl red as optical pH indicator. Contrary to all acidbase indicators characterized by working ranges limited to 2-3 pH units, methyl red, after its covalent immobilization on controlled pore glass (CPG), is characterized by a wide working range which fits with the clinical requirements. The novel probe design here described is suitable for gastro-esophageal applications and allows the optimization of the performances of the CPG with the immobilised indicator. This leads to a very simple configuration characterized by a very fast response time.

  3. Mechanisms of intragastric pH sensing.

    Science.gov (United States)

    Goo, Tyralee; Akiba, Yasutada; Kaunitz, Jonathan D

    2010-12-01

    Luminal amino acids and lack of luminal acidity as a result of acid neutralization by intragastric foodstuffs are powerful signals for acid secretion. Although the hormonal and neural pathways underlying this regulatory mechanism are well understood, the nature of the gastric luminal pH sensor has been enigmatic. In clinical studies, high pH, tryptic peptides, and luminal divalent metals (Ca(2+) and Mg(2+)) increase gastrin release and acid production. The calcium-sensing receptor (CaSR), first described in the parathyroid gland but expressed on gastric G cells, is a logical candidate for the gastric acid sensor. Because CaSR ligands include amino acids and divalent metals, and because extracellular pH affects ligand binding in the pH range of the gastric content, its pH, metal, and nutrient-sensing functions are consistent with physiologic observations. The CaSR is thus an attractive candidate for the gastric luminal sensor that is part of the neuroendocrine negative regulatory loop for acid secretion.

  4. Super-Nernstian pH sensors based on WO3 nanosheets

    Science.gov (United States)

    Kuo, Chao-Yin; Wang, Shui-Jinn; Ko, Rong-Ming; Tseng, Hung-Hao

    2018-04-01

    The effects of the surface morphology of hydrothermally grown WO3 nanosheets (NSs) and sputtering WO3 film on the performance of pH sensing electrodes are presented and compared in the pH range of 2–12. Using a separated electrode of an extended-gate field-effect transistor (EGFET) configuration, the WO3 nanosheet (NS) pH sensor shows a sensitivity of 63.37 mV/pH, a good linearity of 0.9973, a low voltage hysteresis of 4.79 mV, and a low drift rate of 3.18 mV/h. In contrast, the film-type one shows a typical sensitivity of only 50.08 mV/pH and a linearity of 0.9932. The super-Nernstian response could be attributed to the significant increase in the number of surface ion adsorption sites of the NS structure and the occurrence of local electric field enhancement over the sharp edges and corners of WO3 NSs.

  5. Evaluation of pH of bathing soaps and shampoos for skin and hair care

    Directory of Open Access Journals (Sweden)

    Jose Tarun

    2014-01-01

    Full Text Available Background: Normal healthy skin has potential of hydrogen (pH range of 5.4-5.9 and a normal bacterial flora. Use of soap with high pH causes an increase in skin pH, which in turn causes an increase in dehydrative effect, irritability and alteration in bacterial flora. The majority of soaps and shampoos available in the market do not disclose their pH. Aims and Objectives: The aim of this study was to assess the pH of different brands of bathing soaps and shampoos available in the market. Materials and Methods: The samples of soaps and shampoos were collected from shops in the locality. The samples of different brands are coded before the analysis of the pH. Solution of each sample was made and pH was measured using pH meter. Results: Majority of the soaps have a pH within the range of 9-10. Majority of the shampoos have a pH within the range of 6-7. Conclusions: The soaps and shampoos commonly used by the population at large have a pH outside the range of normal skin and hair pH values. Therefore, it is hoped that before recommending soap to patient especially those who have sensitive and acne prone skin, due consideration is given to the pH factor and also that manufacturers will give a thought to pH of soaps and shampoos manufactured by them, so that their products will be more skin and hair friendly.

  6. Salivary pH: A diagnostic biomarker.

    Science.gov (United States)

    Baliga, Sharmila; Muglikar, Sangeeta; Kale, Rahul

    2013-07-01

    Saliva contains a variety of host defense factors. It influences calculus formation and periodontal disease. Different studies have been done to find exact correlation of salivary biomarkers with periodontal disease. With a multitude of biomarkers and complexities in their determination, the salivary pH may be tried to be used as a quick chairside test. The aim of this study was to analyze the pH of saliva and determine its relevance to the severity of periodontal disease. The study population consisted of 300 patients. They were divided into three groups of 100 patients each: Group A had clinically healthy gingiva, Group B who had generalized chronic gingivitis and Group C who had generalized chronic periodontitis. The randomized unstimulated saliva from each patient was collected and pH was tested. Data was analyzed statistically using analysis of variance technique. The salivary pH was more alkaline for patients with generalized chronic gingivitis as compared with the control group (P = 0.001) whereas patients with generalized chronic periodontitis had more acidic pH as compared with the control group (P = 0.001). These results indicate a significant change in the pH depending on the severity of the periodontal condition. The salivary pH shows significant changes and thus relevance to the severity of periodontal disease. Salivary pH may thus be used as a quick chairside diagnostic biomarker.

  7. Influence of pH on extracellular matrix preservation during lung decellularization.

    Science.gov (United States)

    Tsuchiya, Tomoshi; Balestrini, Jenna L; Mendez, Julio; Calle, Elizabeth A; Zhao, Liping; Niklason, Laura E

    2014-12-01

    The creation of decellularized organs for use in regenerative medicine requires the preservation of the organ extracellular matrix (ECM) as a means to provide critical cues for differentiation and migration of cells that are seeded onto the organ scaffold. The purpose of this study was to assess the influence of varying pH levels on the preservation of key ECM components during the decellularization of rat lungs. Herein, we show that the pH of the 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS)-based decellularization solution influences ECM retention, cell removal, and also the potential for host response upon implantation of acellular lung tissue. The preservation of ECM components, including elastin, fibronectin, and laminin, were better retained in the lower pH conditions that were tested (pH ranges tested: 8, 10, 12); glycosaminoglycans were preserved to a higher extent in the lower pH groups as well. The DNA content following decellularization of the rat lung was inversely correlated with the pH of the decellularization solution. Despite detectible levels of cyotoskeletal proteins and significant residual DNA, tissues decellularized at pH 8 demonstrated the greatest tissue architecture maintenance and the least induction of host response of all acellular conditions. These results highlight the effect of pH on the results obtained by organ decellularization and suggest that altering the pH of the solutions used for decellularization may influence the ability of cells to properly differentiate and home to appropriate locations within the scaffold, based on the preservation of key ECM components and implantation results.

  8. Effect of pH on the sorption properties of bentonite Kopernica

    International Nuclear Information System (INIS)

    Galambos, M.; Paucova, V.

    2009-01-01

    In this work sorption of strontium-85 on Slovak bentonites was studied. Sorption experiments that were conducted at four different values of pH = 2, 4, 6 and 8 showed that by increasing of pH in the solution an increasing of values of percentage of sorption and of distribution relationships occur. Value approaching 99% was achieved during the sorption of strontium cations from the bentonite deposits Kopernica only at pH = 8. It can be concluded that in addition to the basic mechanism of sorption, which is ion exchange, complex-forming reactions with surface groups of bentonite take place there at higher values. The increase in value attributable to R 'hydrolytic' adsorption, because there is a reaction between Sr(OH) + and OH-groups and H + ion competition is stifled. At pH = 2 in the whole studied range of concentrations low values of sorption percent, distribution ratio and adsorbed amount of strontium were observed. It can be attributed to a significant competitive impact of hydrogen ions and disruption of the structure of bentonite.

  9. Dielectrophoresis Aligned Single-Walled Carbon Nanotubes as pH Sensors

    Directory of Open Access Journals (Sweden)

    Wei Xue

    2011-01-01

    Full Text Available Here we report the fabrication and characterization of pH sensors using aligned single-walled carbon nanotubes (SWNTs. The SWNTs are dispersed in deionized (DI water after chemical functionalization and filtration. They are deposited and organized on silicon substrates with the dielectrophoresis process. Electrodes with “teeth”-like patterns—fabricated with photolithography and wet etching—are used to generate concentrated electric fields and strong dielectrophoretic forces for the SWNTs to deposit and align in desired locations. The device fabrication is inexpensive, solution-based, and conducted at room temperature. The devices are used as pH sensors with the electrodes as the testing pads and the dielectrophoretically captured SWNTs as the sensing elements. When exposed to aqueous solutions with various pH values, the SWNTs change their resistance accordingly. The SWNT-based sensors demonstrate a linear relationship between the sensor resistance and the pH values in the range of 5–9. The characterization of multiple sensors proves that their pH sensitivity is highly repeatable. The real-time data acquisition shows that the sensor response time depends on the pH value, ranging from 2.26 s for the pH-5 solution to 23.82 s for the pH-9 solution. The long-term stability tests illustrate that the sensors can maintain their original sensitivity for a long period of time. The simple fabrication process, high sensitivity, and fast response of the SWNT-based sensors facilitate their applications in a wide range of areas.

  10. Zirconium oxide crystal phase: The role of the pH and time to attain the final pH for precipitation of the hydrous oxide

    International Nuclear Information System (INIS)

    Srinivasan, R.; Harris, M.B.; Simpson, S.F.; De Angelis, R.J.; Davis, B.H.

    1988-01-01

    Precipitated hydrous zirconium oxide can be calcined to produce either a monoclinic or tetragonal product. It has been observed that the time taken to attain the final pH of the solution in contact with the precipitate plays a dominant role in determining the crystal structure of the zirconium oxide after calcination at 500 0 C. The dependence of crystal structure on the rate of precipitation is observed only in the pH range 7--11. Rapid precipitation in this pH range yields predominately monoclinic zirconia, whereas slow (8 h) precipitation produces the tetragonal phase. At pH of approximately 13.0, only the tetragonal phase is formed from both slowly and rapidly precipitated hydrous oxide. The present results, together with earlier results, show that both the pH of the supernatant liquid and the time taken to attain this pH play dominant roles in determining the crystal structure of zirconia that is formed after calcination of the hydrous oxide. The factors that determine the crystal phase are therefore imparted in a mechanism of precipitation that depends upon the pH, and it is inferred that it is the hydroxyl concentration that is the dominant factor

  11. Self-Assembled Fluorescent Bovine Serum Albumin Nanoprobes for Ratiometric pH Measurement inside Living Cells.

    Science.gov (United States)

    Yang, Qiaoyu; Ye, Zhongju; Zhong, Meile; Chen, Bo; Chen, Jian; Zeng, Rongjin; Wei, Lin; Li, Hung-wing; Xiao, Lehui

    2016-04-20

    In this work, we demonstrated a new ratiometric method for the quantitative analysis of pH inside living cells. The structure of the nanosensor comprises a biofriendly fluorescent bovine serum albumin (BSA) matrix, acting as a pH probe, and pH-insensitive reference dye Alexa 594 enabling ratiometric quantitative pH measurement. The fluorescent BSA matrix was synthesized by cross-linking of the denatured BSA proteins in ethanol with glutaraldehyde. The size of the as-synthesized BSA nanoparticles can be readily manipulated from 30 to 90 nm, which exhibit decent fluorescence at the peak wavelength of 535 nm with a pH response range of 6-8. The potential of this pH sensor for intracellular pH monitoring was demonstrated inside living HeLa cells, whereby a significant change in fluorescence ratio was observed when the pH of the cell was switched from normal to acidic with anticancer drug treatment. The fast response of the nanosensor makes it a very powerful tool in monitoring the processes occurring within the cytosol.

  12. Millimeter/submillimeter Spectroscopy of PH2CN ({\\tilde{X}} 1A') and CH3PH2 ({\\tilde{X}} 1A'): Probing the Complexity of Interstellar Phosphorus Chemistry

    Science.gov (United States)

    Halfen, D. T.; Clouthier, D. J.; Ziurys, L. M.

    2014-11-01

    Millimeter/submillimeter spectra of PH2CN ({\\tilde{X}} 1A') and CH3PH2 ({\\tilde{X}} 1A') have been recorded for the first time using direct absorption techniques. This work extends previous measurements of both molecules beyond the 10-50 GHz range. Both species were created in the presence of an AC discharge by the reaction of phosphorus vapor and either cyanogen and hydrogen (PH2CN) or methane (CH3PH2). Twelve rotational transitions of PH2CN were recorded over the region 305-422 GHz for asymmetry components Ka = 0 through 8. For CH3PH2, eight rotational transitions were measured from 210-470 GHz with Ka = 0 through 16; these spectra exhibited greater complexity due to the presence of internal rotation, which splits the Ka = 1, 2, and 3 asymmetry components into A and E states. Combined analyses of the millimeter/submillimeter and previous microwave data were performed for both molecules. For PH2CN, the spectra were fit with a Watson S-reduced asymmetric top Hamiltonian, resulting in more accurate rotational and centrifugal distortion constants. In the case of CH3PH2, an asymmetric top internal-rotation Hamiltonian was employed in the analysis, significantly improving the rotational and torsional parameters over previous microwave estimates. Searches for both molecules were subsequently conducted toward Sgr B2(N), using the 12 m telescope of the Arizona Radio Observatory (ARO). Neither species was identified, with abundance upper limits, relative to H2, of f (PH2CN/H2) PH2/H2) 2 and >200, respectively.

  13. Final chlorine dioxide stage at near-neutral pH for bleaching eucalypt pulp

    Directory of Open Access Journals (Sweden)

    Robisnéa A. Ribeiro

    2014-01-01

    Full Text Available It is well known that pH is an important parameter for controlling the eucalyptus pulp bleaching when using the final chlorine dioxide stage, since it affects the effectiveness of the process. Recommendations found in the literature for operating are in the 3.5 to 4.0 range. However, in this paper it was shown that final chlorine dioxide has better performance, with significant brightness gain while also preserving pulp quality, when it is operated at near neutral pH. This result can be explained by the generation of sodium bicarbonate in situ upon adding carbon dioxide at this stage.

  14. The potential of curcumin reagent as a natural pH indicator for the development of an optical pH sensor

    International Nuclear Information System (INIS)

    Rosmawani Mohammad; Musa Ahmad; Jamaluddin Mohd Daud

    2007-01-01

    The potential of curcumin reagent as a natural pH indicator for the development of an optical pH sensor was discussed in this study. Curcumin has been chosen because it has never been reported before for use in the development of an optical pH sensor. Curcumin is a coloring constituent of turmeric that giving yellow pigmentation. Curcumin showed clear color changes, for example yellow in acidic and reddish-brown in basic solutions. The color change is fast for example within 5 seconds. Results from the study showed that a linear pH range for this reagent was observed at pH 8-12 (R 2 =0.9854). Curcumin has a good photo stability with RSD value of 1.42 % for a study period of 6 months. The RSD values of the reproducibility study were found to be 1.43 % and 0.37 % for pH 9 and pH 12, respectively. Characterisation of the immobilised curcumin reagent also showed promising results, hence a good potential for use as a sensing reagent for an optical pH sensor. (author)

  15. Host origin determines pH tolerance of Tritrichomonas foetus isolates from the feline gastrointestinal and bovine urogenital tracts.

    Science.gov (United States)

    Morin-Adeline, Victoria; Fraser, Stuart T; Stack, Colin; Šlapeta, Jan

    2015-10-01

    The ability for protozoan parasites to tolerate pH fluctuations within their niche is critical for the establishment of infection and require the parasite to be capable of adapting to a distinct pH range. We used two host adapted Tritrichomonas foetus isolates, capable of infecting either the digestive tract (pH 5.3-6.6) of feline hosts or the reproductive tract (pH 7.4-7.8) of bovine hosts to address their adaptability to changing pH. Using flow cytometry, we investigated the pH tolerance of the bovine and feline T. foetus isolates over a range of physiologically relevant pH in vitro. Following exposure to mild acid stress (pH 6), the bovine T. foetus isolates showed a significant decrease in cell viability and increased cytoplasmic granularity (p-value  0.7). In contrast, the feline genotype displayed an enhanced capacity to maintain cell morphology and viability (p-value > 0.05). Microscopic assessment revealed that following exposure to a weak acidic stress (pH 6), the bovine T. foetus transformed into rounded parasites with extended cell volumes and displays a decrease in viability. The higher tolerance for acidic extracellular environment of the feline isolate compared to the bovine isolate suggests that pH could be a critical factor in regulating T. foetus infections and host-specificity. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Salivary pH: A diagnostic biomarker

    Directory of Open Access Journals (Sweden)

    Sharmila Baliga

    2013-01-01

    Full Text Available Objectives: Saliva contains a variety of host defense factors. It influences calculus formation and periodontal disease. Different studies have been done to find exact correlation of salivary biomarkers with periodontal disease. With a multitude of biomarkers and complexities in their determination, the salivary pH may be tried to be used as a quick chairside test. The aim of this study was to analyze the pH of saliva and determine its relevance to the severity of periodontal disease. Study Design: The study population consisted of 300 patients. They were divided into three groups of 100 patients each: Group A had clinically healthy gingiva, Group B who had generalized chronic gingivitis and Group C who had generalized chronic periodontitis. The randomized unstimulated saliva from each patient was collected and pH was tested. Data was analyzed statistically using analysis of variance technique. Results: The salivary pH was more alkaline for patients with generalized chronic gingivitis as compared with the control group (P = 0.001 whereas patients with generalized chronic periodontitis had more acidic pH as compared with the control group (P = 0.001. Conclusion: These results indicate a significant change in the pH depending on the severity of the periodontal condition. The salivary pH shows significant changes and thus relevance to the severity of periodontal disease. Salivary pH may thus be used as a quick chairside diagnostic biomarker.

  17. [Characteristics of precipitation pH and conductivity at Mt. Huang].

    Science.gov (United States)

    Shi, Chun-e; Deng, Xue-liang; Wu, Bi-wen; Hong, Jie; Zhang, Su; Yang, Yuan-jian

    2013-05-01

    To understand the general characteristics of pH distribution and pollution in precipitation at Mt. Huang, statistical analyses were conducted for the routine measurements of pH and conductivity (K) at Mt. Huang during 2006-2011. The results showed that: (1) Over the period of study, the annual volume weighted mean (VWM) precipitation pH varied from 4.81 to 5.57, with precipitation acidity strengthening before 2009 and weakening thereafter. The precipitation acidity showed evident seasonal variations, with the VWM pH lowest in winter (4.78), and highest in summer (5.33). The occurrence frequency of acid rain was 46% , accounting for 45% of total rainfalls and with the most frequent pH falling into weak acid to neutral rain. (2) The annual VWM K varied from 16.91 to 27.84 microS x cm(-1), with no evident trend. As for ions pollution, the precipitation was relatively clean at Mt. Huang, with the most frequent K range being below 15 microS x cm(-1), followed by 15-25 microS x cm(-1). From February 2010 to December 2011, precipitation samples were collected on daily basis for ions analysis, as well as pH and K measurement in lab. Detailed comparisons were conducted between the two sets of pH and K, one set from field measurement and the other from lab measurement. The results indicated: (1) The lab measured pH (K) was highly correlated with the field pH (K); however, the lab pH tended to move towards neutral comparing with the corresponding field pH, and the shift range was closely correlated with the field pH and rainfall. The shift range of K from field to lab was highly correlated with the total ion concentration of precipitation. The field K showed evident negative correlation with the field pH with a correlation coefficient of -0.51. (2) When sampling with nylon-polyethylene bags, the statistics showed smaller bias between two sets of pH, with higher correlation coefficient between two sets of K. Furthermore, the lab K also showed evident negative correlation with

  18. Magnetic and fluorescent core-shell nanoparticles for ratiometric pH sensing

    International Nuclear Information System (INIS)

    Lapresta-Fernandez, Alejandro; Doussineau, Tristan; Moro, Artur J; Dutz, Silvio; Steiniger, Frank; Mohr, Gerhard J

    2011-01-01

    This paper describes the preparation of nanoparticles composed of a magnetic core surrounded by two successive silica shells embedding two fluorophores, showing uniform nanoparticle size (50-60 nm in diameter) and shape, which allow ratiometric pH measurements in the pH range 5-8. Uncoated iron oxide magnetic nanoparticles (∼10 nm in diameter) were formed by the coprecipitation reaction of ferrous and ferric salts. Then, they were added to a water-in-oil microemulsion where the hydrophilic silica shells were obtained through hydrolysis and condensation of tetraethoxyorthosilicate together with the corresponding silylated dye derivatives-a sulforhodamine was embedded in the inner silica shell and used as the reference dye while a pH-sensitive fluorescein was incorporated in the outer shell as the pH indicator. The magnetic nanoparticles were characterized using vibrating sample magnetometry, dynamic light scattering, transmission electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy. The relationship between the analytical parameter, that is, the ratio of fluorescence between the sensing and reference dyes versus the pH was adjusted to a sigmoidal fit using a Boltzmann type equation giving an apparent pK a value of 6.8. The fluorescence intensity of the reference dye did not change significantly (∼3.0%) on modifying the pH of the nanoparticle dispersion. Finally, the proposed method was statistically validated against a reference procedure using samples of water and physiological buffer with 2% of horse serum, indicating that there are no significant statistical differences at a 95% confidence level.

  19. Umbilical Cord Blood pH in Intrapartum Hypoxia.

    Science.gov (United States)

    Perveen, Fouzia; Khan, Ayesha; Ali, Tahmina; Rabia, Syeda

    2015-09-01

    To determine the association of cord arterial blood pH with neonatal outcome in cases of intrapartum fetal hypoxia. Descriptive analytical study. Gynaecology Unit-II, Civil Hospital, Karachi, from September 2011 to November 2012. All singleton cephalic fetuses at term gestation were included in the study. Those with any anomaly, malpresentation, medical disorders, maternal age 7.25, neonatal outcome measures (healthy, NICU admission or neonatal death), color of liquor and mode of delivery recorded on predesigned proforma. Statistical analysis performed by SPSS 16 by using independent-t test or chi-square test and ANOVA test as needed. A total of 204 newborns were evaluated. The mean pH level was found to be significantly different (p=0.007) in two groups. The pH value 7.25 had significant association (p 7.25. Majority (63.6%) cases needed caesarean section as compared to 31.4% controls. There is a significant association of cord arterial blood pH at birth with neonatal outcome at pH 7.25; but below the level of pH 7.25 it is still inconclusive.

  20. Micro Electrochemical pH Sensor Applicable for Real-Time Ratiometric Monitoring of pH Values in Rat Brains.

    Science.gov (United States)

    Zhou, Jie; Zhang, Limin; Tian, Yang

    2016-02-16

    To develop in vivo monitoring meter for pH measurements is still the bottleneck for understanding the role of pH plays in the brain diseases. In this work, a selective and sensitive electrochemical pH meter was developed for real-time ratiometric monitoring of pH in different regions of rat brains upon ischemia. First, 1,2-naphthoquinone (1,2-NQ) was employed and optimized as a selective pH recognition element to establish a 2H(+)/2e(-) approach over a wide range of pH from 5.8 to 8.0. The pH meter demonstrated remarkable selectivity toward pH detection against metal ions, amino acids, reactive oxygen species, and other biological species in the brain. Meanwhile, an inner reference, 6-(ferrocenyl)hexanethiol (FcHT), was selected as a built-in correction to avoid the environmental effect through coimmobilization with 1,2-NQ. In addition, three-dimensional gold nanoleaves were electrodeposited onto the electrode surface to amplify the signal by ∼4.0-fold and the measurement was achieved down to 0.07 pH. Finally, combined with the microelectrode technique, the microelectrochemical pH meter was directly implanted into brain regions including the striatum, hippocampus, and cortex and successfully applied in real-time monitoring of pH values in these regions of brain followed by global cerebral ischemia. The results demonstrated that pH values were estimated to 7.21 ± 0.05, 7.13 ± 0.09, and 7.27 ± 0.06 in the striatum, hippocampus, and cortex in the rat brains, respectively, in normal conditions. However, pH decreased to 6.75 ± 0.07 and 6.52 ± 0.03 in the striatum and hippocampus, upon global cerebral ischemia, while a negligible pH change was obtained in the cortex.

  1. Climate and pH predict the potential range of the invasive apple snail (Pomacea insularum in the southeastern United States.

    Directory of Open Access Journals (Sweden)

    James E Byers

    Full Text Available Predicting the potential range of invasive species is essential for risk assessment, monitoring, and management, and it can also inform us about a species' overall potential invasiveness. However, modeling the distribution of invasive species that have not reached their equilibrium distribution can be problematic for many predictive approaches. We apply the modeling approach of maximum entropy (MaxEnt that is effective with incomplete, presence-only datasets to predict the distribution of the invasive island apple snail, Pomacea insularum. This freshwater snail is native to South America and has been spreading in the USA over the last decade from its initial introductions in Texas and Florida. It has now been documented throughout eight southeastern states. The snail's extensive consumption of aquatic vegetation and ability to accumulate and transmit algal toxins through the food web heighten concerns about its spread. Our model shows that under current climate conditions the snail should remain mostly confined to the coastal plain of the southeastern USA where it is limited by minimum temperature in the coldest month and precipitation in the warmest quarter. Furthermore, low pH waters (pH <5.5 are detrimental to the snail's survival and persistence. Of particular note are low-pH blackwater swamps, especially Okefenokee Swamp in southern Georgia (with a pH below 4 in many areas, which are predicted to preclude the snail's establishment even though many of these areas are well matched climatically. Our results elucidate the factors that affect the regional distribution of P. insularum, while simultaneously presenting a spatial basis for the prediction of its future spread. Furthermore, the model for this species exemplifies that combining climatic and habitat variables is a powerful way to model distributions of invasive species.

  2. A novel "modularized" optical sensor for pH monitoring in biological matrixes.

    Science.gov (United States)

    Liu, Xun; Zhang, Shang-Qing; Wei, Xing; Yang, Ting; Chen, Ming-Li; Wang, Jian-Hua

    2018-06-30

    A novel core-shell structure optical pH sensor is developed with upconversion nanoparticles (UCNPs) serving as the core and silica as the shell, followed by grafting bovineserumalbumin (BSA) as another shell via glutaraldehyde cross-linking. The obtained core-shell-shell structure is shortly termed as UCNPs@SiO 2 @BSA, and its surface provides a platform for loading various pH sensitive dyes, which are alike "modules" to make it feasible for measuring pHs within different pH ranges by simply regulating the type of dyes. Generally, a single pH sensitive dye is adopted to respond within a certain pH range. This study employs bromothymol blue (BTB) and rhodamine B (RhB) to facilitate their responses to pH variations within two ranges, i.e., pH 5.99-8.09 and pH 4.98-6.40, respectively, with detection by ratio-fluorescence protocol. The core-shell-shell structure offers superior sensitivity, which is tens of times more sensitive than those achieved by ratio-fluorescence approaches based on various nanostructures, and favorable stability is achieved in high ionic strength medium. In addition, this sensor exhibits superior photostability under continuous excitation at 980 nm. Thanks to the near infrared excitation in the core-shell-shell structure, it effectively avoids the self-fluorescence from biological samples and thus facilitates accurate sensing of pH in various biological sample matrixes. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Neutralizing salivary pH by mouthwashes after an acidic challenge.

    Science.gov (United States)

    Dehghan, Mojdeh; Tantbirojn, Daranee; Kymer-Davis, Emily; Stewart, Colette W; Zhang, Yanhui H; Versluis, Antheunis; Garcia-Godoy, Franklin

    2017-05-01

    The aim of the present study was to test the neutralizing effect of mouthwashes on salivary pH after an acidic challenge. Twelve participants were recruited for three visits, one morning per week. Resting saliva was collected at baseline and after 2-min swishing with 20 mL orange juice as an acidic challenge. Participants then rinsed their mouth for 30 s with 20 mL water (control), an over-the-counter mouthwash (Listerine), or a two-step mouthwash, randomly assigned for each visit. Saliva was collected immediately, 15, and 45 min after rinsing. The pH values of the collected saliva were measured and analyzed with anova, followed by Student-Newman-Keuls post-hoc test (significance level: 0.05). Orange juice significantly lowered salivary pH. Immediately after rinsing, Listerine and water brought pH back to baseline values, with the pH significantly higher in the Listerine group. The two-step mouthwash raised pH significantly higher than Listerine and water, and higher than the baseline value. Salivary pH returned to baseline and was not significantly different among groups at 15 and 45 min post-rinsing. Mouth rinsing after an acidic challenge increased salivary pH. The tested mouthwashes raised pH higher than water. Mouthwashes with a neutralizing effect can potentially reduce tooth erosion from acid exposure. © 2015 Wiley Publishing Asia Pty Ltd.

  4. A Novel Water-soluble Ratiometric Fluorescent Probe Based on FRET for Sensing Lysosomal pH.

    Science.gov (United States)

    Song, Guang-Jie; Bai, Su-Yun; Luo, Jing; Cao, Xiao-Qun; Zhao, Bao-Xiang

    2016-11-01

    A new ratiometric fluorescent probe based on Förster resonance energy transfer (FRET) for sensing lysosomal pH has been developed. The probe (RMPM) was composed of imidazo[1,5-α]pyridine quaternary ammonium salt fluorophore as the FRET donor and the rhodamine moiety as the FRET acceptor. It's the first time to report that imidazo[1,5-α]pyridine quaternary ammonium salt acts as the FRET donor. The ratio of fluorescence intensity of the probe at two wavelengths (I 424 /I 581 ) changed significantly and responded linearly toward minor pH changes in the range of 5.4-6.6. It should be noted that it's rare to report that a ratiometric pH probe could detect so weak acidic pH with pKa = 6.31. In addition, probe RMPM exhibited excellent water-solubility, fast-response, all-right selectivity and brilliant reversibility. Moreover, RMPM has been successfully applied to sensing lysosomal pH in HeLa cells and has low cytotoxicity.

  5. pH and its frequency distribution patterns of Acid Precipitation in Japan

    International Nuclear Information System (INIS)

    Kitamura, Moritsugu; Katou, Takunori; Sekiguchi, Kyoichi

    1991-01-01

    The pH data was collected at the 29 stations in Phase-I study of Acid Precipitation Survey over Japan by Japan Environment Agency in terms of frequency distribution patterns. This study was undertaken from April 1984 to March 1988, which was the first survey of acid precipitation over Japan with identical sampling procedures and subsequent chemical analyses. While the annual mean pH at each station ranged from 4.4 to 5.5, the monthly mean varied more widely, from 4.0 to 7.1. Its frequency distribution pattern was obtained for each station, and further grouped into four classes: class I; a mode at the rank of pH 4.5∼4.9, class II; bimodes above and below this pH region, class III; a mode at a higher pH region, class IV; a mode at a lower pH region. The bimodal pattern was suggestive of precipitation with and without incorporation of significant amounts of basic aerosol of anthropogenic origin during descent of rain droplet. The patterns of the stations were also classified on a basis of summer-winter difference into another four classes. Winter pH values were appreciably lower than summer pHs in western parts of Japan and on Japan Sea coast, we attribute the winter pH to probable contribution of acidic pollutants transported by strong winter monsoon from Eurasian Continent. At most stations in northern and eastern Japan, the pH was higher in winter months reflecting more incorporation of basic materials, e.g., NH 4 + and Ca 2+ . (author)

  6. Economical wireless optical ratiometric pH sensor

    International Nuclear Information System (INIS)

    Vuppu, Sandeep; Kostov, Yordan; Rao, Govind

    2009-01-01

    The development and application of a portable, wireless fluorescence-based optical pH sensor is presented. The design incorporates the MSP430 microcontroller as the control unit, an RF transceiver for wireless communication, digital filters and amplifiers and a USB-based communication module for data transmission. The pH sensor is based on ratiometric fluorescence detection from pH sensitive dye incorporated in a peel-and-stick patch. The ability of the instrument to detect the pH of the solution with contact only between the sensor patch and the solution makes it partially non-invasive. The instrument also has the ability to transmit data wirelessly, enabling its use in processes that entail stringent temperature control and sterility. The use of the microcontroller makes it a reliable, low-cost and low-power device. The luminous intensity of the light source can be digitally controlled to maximize the sensitivity of the instrument. It has a resolution of 0.05 pH. The sensor is accurate and reversible over the pH range of 6.5–9

  7. Covalent Organic Framework Functionalized with 8-Hydroxyquinoline as a Dual-Mode Fluorescent and Colorimetric pH Sensor.

    Science.gov (United States)

    Chen, Long; He, Linwei; Ma, Fuyin; Liu, Wei; Wang, Yaxing; Silver, Mark A; Chen, Lanhua; Zhu, Lin; Gui, Daxiang; Diwu, Juan; Chai, Zhifang; Wang, Shuao

    2018-05-09

    Real-time and accurate detection of pH in aqueous solution is of great significance in chemical, environmental, and engineering-related fields. We report here the use of 8-hydroxyquinoline-functionalized covalent organic framework (COF-HQ) for dual-mode pH sensing. In the fluorescent mode, the emission intensity of COF-HQ weakened as the pH decreased, and also displayed a good linear relationship against pH in the range from 1 to 5. In addition, COF-HQ showed discernible color changes from yellow to black as the acidity increased and can be therefore used as a colorimetric pH sensor. All these changes are reversible and COF-HQ can be recycled for multiple detection runs owing to its high hydrolytical stability. It can be further assembled into a mixed matrix membrane for practical applications.

  8. pH regulation of the kinetic stability of the lipase from Thermomyces lanuginosus

    DEFF Research Database (Denmark)

    Wang, H.; Andersen, Kell Kleiner; Sehgal, P.

    2013-01-01

    Thermomyces lanuginosus lipase (TlL) is a kinetically stable protein, resistant toward both denaturation and refolding in the presence of the ionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant decyl maltoside (DecM). We investigate the pH dependence of this kinetic stability....... At pH 8, TlL remains folded and enzymatically active at multimillimolar surfactant concentrations but fails to refold from the acid urea-denatured state at submillimolar concentrations of SDS and DecM, indicating a broad concentration range of kinetic trapping or hysteresis. At pH 8, very few SDS...... molecules bind to TlL. The hysteresis SDS concentration range shrinks when moving to pH 4–6; in this pH range, SDS binds as micellelike clusters. Although hysteresis can be eliminated by reducing disulfide bonds, destabilizing the native state, and lowering the unfolding activation barrier, SDS sensitivity...

  9. Ubiquinone modified printed carbon electrodes for cell culture pH monitoring.

    Science.gov (United States)

    McBeth, Craig; Dughaishi, Rajaa Al; Paterson, Andrew; Sharp, Duncan

    2018-08-15

    The measurement of pH is important throughout many biological systems, but there are limited available technologies to enable its periodical monitoring in the complex, small volume, media often used in cell culture experiments across a range of disciplines. Herein, pad printed electrodes are developed and characterised through modification with: a commercially available fullerene multiwall carbon nanotube composite applied in Nafion, casting of hydrophobic ubiquinone as a pH probe to provide the electrochemical signal, and coated in Polyethylene glycol to reduce fouling and potentially enhance biocompatibility, which together are proven to enable the determination of pH in cell culture media containing serum. The ubiquinone oxidation peak position (E pa ) provided an indirect marker of pH across the applicable range of pH 6-9 (R 2 = 0.9985, n = 15) in complete DMEM. The electrochemical behaviour of these sensors was also proven to be robust; retaining their ability to measure pH in cell culture media supplemented with serum up to 20% (v/v) [encompassing the range commonly employed in cell culture], cycled > 100 times in 10% serum containing media and maintain > 60% functionality after 5 day incubation in a 10% serum containing medium. Overall, this proof of concept research highlights the potential applicability of this, or similar, electrochemical approaches to enable to detection or monitoring of pH in complex cell culture media. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Effect of hospitalization on gastrointestinal motility and pH in dogs.

    Science.gov (United States)

    Warrit, Kanawee; Boscan, Pedro; Ferguson, Leah E; Bradley, Allison M; Dowers, Kristy L; Twedt, David C

    2017-07-01

    OBJECTIVE To determine the effect of hospitalization on gastrointestinal motility and pH in healthy dogs. DESIGN Experimental study. ANIMALS 12 healthy adult dogs. PROCEDURES A wireless motility capsule (WMC) that measured pressure, transit time, and pH within the gastrointestinal tract was administered orally to dogs in 2 phases. In the first phase, dogs received the WMC at the hospital and then returned to their home to follow their daily routine. In the second phase, dogs were hospitalized, housed individually, had abdominal radiography performed daily, and were leash exercised 4 to 6 times/d until the WMC passed in the feces. All dogs received the same diet twice per day in both phases. Data were compared between phases with the Wilcoxon signed rank test. RESULTS Data were collected from 11 dogs; 1 dog was excluded because the WMC failed to exit the stomach. Median gastric emptying time during hospitalization (71.8 hours; range, 10.7 to 163.0 hours) was significantly longer than at home (17.6 hours; range, 9.7 to 80.8 hours). Values of all other gastric, small bowel, and large bowel parameters (motility index, motility pattern, pH, and transit time) were similar between phases. No change in gastric pH was detected over the hospitalization period. High interdog variability was evident for all measured parameters. CONCLUSIONS AND CLINICAL RELEVANCE Hospitalization of dogs may result in a prolonged gastric emptying time, which could adversely affect gastric emptying of meals, transit of orally administered drugs, or assessments of underlying motility disorders.

  11. Molecular aspects of bacterial pH sensing and homeostasis

    Science.gov (United States)

    Krulwich, Terry A.; Sachs, George; Padan, Etana

    2011-01-01

    Diverse mechanisms for pH-sensing and cytoplasmic pH homeostasis enable most bacteria to tolerate or grow at external pH values that are outside the cytoplasmic pH range they must maintain for growth. The most extreme cases are exemplified by the extremophiles that inhabit environments whose pH is below 3 or above 11. Here we describe how recent insights into the structure and function of key molecules and their regulators reveal novel strategies of bacterial pH-homeostasis. These insights may help us better target certain pathogens and better harness the capacities of environmental bacteria. PMID:21464825

  12. Two dimensional gel electrophoresis using narrow pH 3-5.6 immobilised pH gradient strips identifies potential novel disease biomarkers in plasma or serum

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Bevin Gangadharan & Nicole Zitzmann ### Abstract Two-dimensional gel electrophoresis (2-DE) is a protein separation technique often used to separate plasma or serum proteins in an attempt to identify novel biomarkers. This protocol describes how to run 2-DE gels using narrow pH 3-5.6 immobilised pH gradient strips to separate 2 mg of serum proteins. pH 3-6 ampholytes are used to enhance the solubility of proteins in this pH range before the serum proteins are separated in the...

  13. Hyperpolarised Organic Phosphates as NMR Reporters of Compartmental pH

    DEFF Research Database (Denmark)

    Jensen, Pernille Rose; Meier, Sebastian

    2016-01-01

    Organic phosphate metabolites contain functional groups withpKa values near the physiologic pH range, yielding pH-dependet 13C chemical shift changes of adjacent quaternary carbon sites.Whenformed in defined cellular compartmentsfrom exogenoushyperpolarised13Csubstrates,metabolites thuscanyieldlo......Organic phosphate metabolites contain functional groups withpKa values near the physiologic pH range, yielding pH-dependet 13C chemical shift changes of adjacent quaternary carbon sites.Whenformed in defined cellular compartmentsfrom exogenoushyperpolarised13Csubstrates...

  14. Synergic effect of salivary pH baselines and low pH intakes on the force relaxation of orthodontic latex elastics.

    Science.gov (United States)

    Ajami, Shabnam; Farjood, Amin; Zare, Mahbubeh

    2017-01-01

    Latex elastics are still in common use due to their low cost and high flexibility to improve sagittal discrepancies or interdigitation of teeth. Mechanical properties of elastics are influenced by several environmental factors such as pH changes. This study evaluated similar latex elastics to define the influence of synergic effect of intermittent low pH and various baselines pH of saliva. Four groups of latex elastics (3-M Unitek, 3/16 inch) were tested ( n = 15 in each group). Two groups of elastics were immersed in two tanks of artificial saliva with different pH levels of 7 and 5, and two groups were immersed in two tanks of artificial saliva with intermittent drop of pH to 4. The force was measured when the elastics were stretched to 25 mm. These measurements were taken in 0, 4, 8, 12, 24, 36, and 48 h for each group. Repeated measures analysis of variance (RMANOVA) and post-hoc Tukey's test were used to assess the findings. The level of significance was 0.05%. The interaction between pH and time analyzed with RMANOVA showed no significant differences ( P > 0.05) except in 36 h ( P = 0.014). The Tukey's analysis showed that each comparison between any two groups did not indicate significant differences ( P > 0.05) except between Groups 1 and 3 and between Groups 2 and 3 ( P pH and force degradation in latex elastic band except in 36 h.

  15. Critical review of pH sensing with optical fibers

    Science.gov (United States)

    Baldini, Francesco

    1999-02-01

    The chemical parameter most investigated with optical fibers is doubtless pH. The first pH optical fiber sensor was described in 1980. Since then, more than one hundred and twenty original papers describing different pH sensors have been published, based on absorption-based indicators on fluorophores. Such interest is perfectly justified, since pH detection is essential in many fields of application, ranging from the environment and medicine to industry and process control. Moreover, pH transduction can be used for measuring different chemical species, such as carbon dioxide, ammonia and pesticides. Notwithstanding the great number of prototypes realized in different laboratories all over the world, only a few products are available on the market. A critical analysis of the state of art in pH sensing using optical fibers is described, outlining the advantages and disadvantages of an optical approach.

  16. A novel acidic pH fluorescent probe based on a benzothiazole derivative

    Science.gov (United States)

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-01

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  17. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization

    DEFF Research Database (Denmark)

    Kruse, Carla R; Singh, Mansher; Targosinski, Stefan

    2017-01-01

    primary keratinocyte and fibroblast function in vitro and on wound healing in vivo. In vitro, primary human keratinocytes and fibroblasts were cultured in different levels of pH (5.5-12.5) and the effect on cell viability, proliferation, and migration was studied. A rat full-thickness wound model was used...... to investigate the effect of pH (5.5-9.5) on wound healing in vivo. The effect of pH on inflammation was monitored by measuring IL-1 α concentrations from wounds and cell cultures exposed to different pH environments. Our results showed that both skin cell types tolerated wide range of pH very well. They further...... demonstrated that both acidic and alkaline environments decelerated cell migration in comparison to neutral environments and interestingly alkaline conditions significantly enhanced cell proliferation. Results from the in vivo experiments indicated that a prolonged, strongly acidic wound environment prevents...

  18. Scales and sources of pH and dissolved oxygen variability in a shallow, upwelling-driven ecosystem

    Science.gov (United States)

    Tanner, C. A.; Martz, T.; Levin, L. A.

    2011-12-01

    In the coastal zone extreme variability in carbonate chemistry and oxygen is driven by fluctuations in temperature, salinity, air-sea gas exchange, mixing processes, and biology. This variability appears to be magnified in upwelling-driven ecosystems where low oxygen and low pH waters intrude into shallow depths. The oxygen and carbon chemistry signal can be further confounded by highly productive ecosystems such as kelp beds where photosynthesis and respiration consume and release significant amounts of dissolved inorganic carbon and oxygen. This variability poses a challenge for scientists assessing the impacts of climate change on nearshore ecosystems. We deployed physical & biogeochemical sensors in order to observe these processes in situ. The "SeapHOx" instruments used in this study consist of a modified Honeywell Durafet° ISFET pH sensor, an Aanderra Optode Oxygen sensor, and a SBE-37 conductivity, temperature, pressure sensor. The instruments were deployed on and around the La Jolla Kelp Forest at a variety of depths. Our goals were to (a) characterize the link between pH and oxygen and identify the magnitude of pH and oxygen variability over a range of intra-annual time scales and (b) investigate spatial patterns of pH and oxygen variability associated with depth, proximity to shore, and presence of kelp. Results thus far reveal a strong relationship between oxygen and pH. Temporal variability is greatest at the semidiurnal frequency where pH (at 7 m) can range up to 0.3 units and oxygen can change 50% over 6 h. Diurnal variability is a combination of the diurnal tidal component and diel cycles of production and respiration. Event-scale dynamics associated with upwelling can maintain pH and oxygen below 7.8 units and 200 μmol kg-1, respectively, for multiple days. Frequent current reversals drive changes in the observed oxygen and pH variability. When alongshore currents are flowing southward, driven by upwelling-favorable winds, the magnitude of

  19. Influence of in-office whitening gel pH on hydrogen peroxide diffusion through enamel and color changes in bovine teeth.

    Science.gov (United States)

    Pignoly, Christian; Camps, Lila; Susini, Guy; About, Imad; Camps, Jean

    2012-04-01

    To assess the influence of in-office whitening gel pH on whitening efficiency. Hydrogen peroxide diffusion and color changes on bovine teeth were assessed. Three gels with close hydrogen peroxide concentrations but with various pH levels were tested: Zoom 2 (Discus Dental), Opalescence Endo and Opalescence Boost (Ultradent). The pH levels were respectively: 3.0, 5.0 and 7.0. Thirty enamel slices and tooth crowns were used for both studies (n = 10 per group per study). Hydrogen peroxide diffusion through the enamel slices and the tooth crowns was spectrophotometrically recorded every 10 minutes for 1 hour to calculate the diffusion coefficients. Color changes were spectrophotometrically recorded every 10 minutes for 1 hour and quantified in term of CIE-Lab. The hydrogen peroxide diffusion coefficient through enamel ranged from 5.12 +/- 0.82 x 10(-9) cm2 s(-1) for pH 3 to 5.19 +/- 0.92 x 10(-9) cm2 S(-1) for pH 7. Through tooth crowns it ranged from 4.80 +/- 1.75 x 10(-10) cm2 s(-1) for pH 5 to 4.85 +/- 1.82 x 10(-10) cm2 s(-1) for pH 3. After 1 hour, the deltaE varied from 5.6 +/- 4.0 for pH 7 to 7.0 +/- 5.0 for pH 3 on enamel slices and from 3.9 +/- 2.5 for pH 5 to 4.9 +/- 3.5 for pH 7 on tooth crowns. There was no statistically significant difference between groups for both parameters.

  20. Sol gel based fiber optic sensor for blook pH measurement

    International Nuclear Information System (INIS)

    Grant, S. A.; Glass, R. S.

    1996-01-01

    This paper describes a fiber-optic pH sensor based upon sol-gel encapsulation of a self-referencing dye, seminaphthorhodamine-1 carboxylate (SNARF-1C). The simple sol-gel fabrication procedure and low coating leachability are ideal for encapsulation and immobilization of dye molecules onto the end of an optical fiber. A miniature bench-top fluorimeter system was developed for use with the optical fiber to obtain pH measurements. Linear and reproducible responses were obtained in human blood in the pH range 6.8 to 8.0, which encompasses the clinically-relevant range. Therefore, this sensor can be considered for in vivo use

  1. pH and effects on Streptococcus mutans growth of denture adhesives: an in vitro study.

    Science.gov (United States)

    Chen, Fengying; Mao, Tiantian; Cheng, Xiangrong

    2014-06-01

    To evaluate the pH and effects on Streptococcus mutans growth of denture adhesives. There is little information regarding the pH of contemporary adhesives and their influences on S. mutans growth. The adhesives tested were Polident® cream, Protefix® cream and Protefix® powder. Samples of each adhesive were added to deionized water to produce solutions of 10.0, 5.0, 2.5 and 1.0% w/v (cream formulations) or 5.0, 2.5,1.0 and 0.5% (powder formulation). The pH values were measured immediately after preparation and at 1-, 2-, 3-, 6-, 12-, and 24-h intervals using a digital pH meter. Streptococcus mutans UA159 was inoculated in the Brain Heart Infusion medium with or without the adhesive extracts (control). Bacterial growth was observed by measuring absorption at 600 nm every 1 h for 12 h using a spectrophotometer. The tested adhesives generally remained relatively pH-stable over 24 h, ranging from 5.5 to 7.0. There were no statistically significant differences in S. mutans growth rates between the extract-treated and control cultures (p>0.5). Some adhesives produce a pH below the critical pH of hydroxyapatite and may not be suitable for patients with natural teeth. None of the tested adhesives significantly affect S. mutans growth. © 2012 The Gerodontology Society and John Wiley & Sons A/S.

  2. Synthesis of magnetic nanoparticles: effects of polyelectrolyte concentration and pH

    Energy Technology Data Exchange (ETDEWEB)

    Urquijo, J. P., E-mail: jurquijo@fisica.udea.edu.co; Casanova, Herley; Garces, Javier; Morales, Alvaro L. [Universidad de Antioquia (Colombia)

    2011-11-15

    This study refers to the effect of sodium polyacrylate concentration (1 to 5 mass %) and pH (10 to 12) on the synthesis of magnetic nanoparticles (magnetite-maghemite) and their characterization by Moessbauer spectroscopy. The magnetic particles were obtained by coprecipitation method using iron chloride (II) and iron chloride (III) as precursor reagents and sodium polyacrylate as stabilizing agent. All samples showed Moessbauer broad resonance lines in typical doublet and sextets patterns of magnetite or maghemite with corresponding wide particle size distributions. The stability of magnetic particles was carried out by measuring particle sizes with dynamic light scattering (DLS). The z-average values for magnetic particles were in the range 24 to 590 nm and no significant change in size was observed on aging by leaving this material in air for 20 days. X-ray diffraction patterns showed characteristic peaks of the spinel structure and have an increase in their broadening as the pH decreases, effect that is dominated by the decrease in crystallite sizes. The nanoparticles showed to be magnetic at pH 12 and at room temperature.

  3. The pH behavior of a 2-aminoethyl dihydrogen phosphate zwitterion studied with NMR-titrations

    Science.gov (United States)

    Myller, A. T.; Karhe, J. J.; Haukka, M.; Pakkanen, T. T.

    2013-02-01

    In this study a bifunctional 2-aminoethyl dihydrogen phosphate (AEPH2) was 1H and 31P NMR characterized in a pH range of 1-12 in order to determine the zwitterion properties in different pH regions in H2O and D2O solutions. NMR was also used to determine the pH range where AEPH2 exists as a zwitterion. The phosphate group has two deprotonation points, around pH 1 and 6, while the amino group deprotonates at pH 11. The zwitterion form of AEPH2 (NH3+sbnd CHsbnd CHsbnd OPOH) exists as the main ion between pH 1 and 6 in water solutions and also in the solid state.

  4. Fluorescent pH sensor based on Ag@SiO2 core-shell nanoparticle.

    Science.gov (United States)

    Bai, Zhenhua; Chen, Rui; Si, Peng; Huang, Youju; Sun, Handong; Kim, Dong-Hwan

    2013-06-26

    We have demonstrated a novel method for the preparation of a fluorescence-based pH sensor by combining the plasmon resonance band of Ag core and pH sensitive dye (HPTS). A thickness-variable silica shell is placed between Ag core and HPTS dye to achieve the maximum fluorescence enhancement. At the shell thickness of 8 nm, the fluorescence intensity increases 4 and 9 times when the sensor is excited at 405 and 455 nm, respectively. At the same time, the fluorescence intensity shows a good sensitivity toward pH value in the range of 5-9, and the ratio of emission intensity at 513 nm excited at 455 nm to that excited at 405 nm versus the pH value in the range of 5-9 is determined. It is believed that the present pH sensor has the potential for determining pH real time in the biological sample.

  5. Influence of pH on the localized corrosion of iron

    International Nuclear Information System (INIS)

    Webley, R.; Henry, R.

    1986-06-01

    The influence of pH on the pitting corrosion of iron in chloride and sulfate solutions was determined using two artificial pit apparatuses to obtain the pH near the surface of the pit bottom. A glass membrane electrode and an antimony electrode were used to measure pH in the two apparatuses. Using solutions of NaCl and Na 2 SO 4 at current densities of 0.5, 5.0, and 10 mA/cm 2 pH's in the range 5 to 6 were obtained with the first apparatus. The antimony probe did not measure pH accurately in solutions of 1 N NaCl and 1 N Na 2 SO 4 and had an error of approximately 2 pH units. A one-dimensional transport model was developed to predict pH variations around the pit mouth and inside the pit. The validity of this model was not verified due to the relative lack of precision with pH measurement techniques

  6. pH dominates variation in tropical soil archaeal diversity and community structure.

    Science.gov (United States)

    Tripathi, Binu M; Kim, Mincheol; Lai-Hoe, Ang; Shukor, Nor A A; Rahim, Raha A; Go, Rusea; Adams, Jonathan M

    2013-11-01

    Little is known of the factors influencing soil archaeal community diversity and composition in the tropics. We sampled soils across a range of forest and nonforest environments in the equatorial tropics of Malaysia, covering a wide range of pH values. DNA was PCR-amplified for the V1-V3 region of the 16S rRNA gene, and 454-pyrosequenced. Soil pH was the best predictor of diversity and community composition of Archaea, being a stronger predictor than land use. Archaeal OTU richness was highest in the most acidic soils. Overall archaeal abundance in tropical soils (determined by qPCR) also decreased at higher pH. This contrasts with the opposite trend previously found in temperate soils. Thaumarcheota group 1.1b was more abundant in alkaline soils, whereas group 1.1c was only detected in acidic soils. These results parallel those found in previous studies in cooler climates, emphasizing niche conservatism among broad archaeal groups. Among the most abundant operational taxonomic units (OTUs), there was clear evidence of niche partitioning by pH. No individual OTU occurred across the entire range of pH values. Overall, the results of this study show that pH plays a major role in structuring tropical soil archaeal communities. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. EVALUATION OF VEGETABLE EXTRACTS FROM THE SEMI-ARID AS NATURAL pH INDICATOR

    Directory of Open Access Journals (Sweden)

    Sebastiana Estefana Torres Brilhante

    2015-02-01

    Full Text Available Given the various difficulties to expose the contents of the subject of chemistry is a constant search for alternative materials to facilitate learning. This may partly be due to chemical science to be a significant practical character. However, due to professional educational institutions and material limitations ends up being passed on to the student of predominantly theoretical way, requiring a high degree of abstraction and consequently in their disinterest the same. In this context , we investigated the use of ethanol extracts of various plants, such as: Jitirana (Ipomoea glabra , Íxora (Ixora coccínea, Centro (Centrosema brasilianum and Candlebush (Senna alata flowers, Beet (Beta vulgaris L. fruit and Urucum (Bixa orellana seeds as an acids and bases natural indicator, from laboratory tests capable of identifying properties demonstrate the pH. Initially we evaluated the variation in the coloration of extracts using for this buffer solutions at pH 3, 7 and 12. Among the cited vegetable flowers Jitirana, ixora and Centro presented activities relevant indicator as staining variants between pH 2:13. The extracts of plants were further added in glass tubes containing buffer solutions with a pH ranging from 2 to 13. The change in color of the extracts showed good activity has the same pH indicator.

  8. OZONE BLEACHING AT NEUTRAL PH – A NEW CONCEPT

    Directory of Open Access Journals (Sweden)

    Fernando de Carvalho

    2010-08-01

    Full Text Available The effect of medium consistency ozone stage pH was evaluated for brown and oxygen delignified eucalyptus kraft pulp samples obtained from VCP - Luiz Antônio pulp mill. These samples were used as such or previously treated with the hot acid stage (A. The main objective of this study was to determine the viability of increasing the ozone stage pH aiming at decreasing bleaching variable costs. The ozone stage was studied in the pH range of 2.5-9.0, taking into account some important variables which affect ozone bleaching: (1 pulp kappa number entering the ozone stage, (2 reactivity of ozone towards lignin versus hexenuronic acids (HexA´s, (3 pulp treatments prior to ozone stage (acid hydrolysis, and (4 pulp treatments after the ozone stage (extraction or a chlorine dioxide stage.  Therefore, the impact of ozone stage pH was investigated in bleaching process such as Z/DEop vs AZ/DEop, Z/DEopD vs AZ/DEopD, Z/E vs AZ/E. The results were interpreted based on ozone stage efficiency and selectivity, and overall bleaching performance measured by the total bleaching chemical consumption required to achieve full brightness, pulp quality and environmental impact. It was concluded that the increase of ozone stage pH from 2.5 to 7.0 has a slightly negative impact on the efficiency and selectivity, measured after Z/DEop sequence, but this effect is not expressive in the end of Z/DEopD bleaching sequence. The increase of ozone stage pH from 2.5 to 7.0 in the sequence Z/DEopD is cost-effective at industrial level because it represents expressive reduction of sulphuric acid and caustic soda demand for pH control in the bleaching plant. These gain areas achieved without any significant changes in pulp quality and effluent load discharge. Nevertheless, the increase of ozone stage pH from 2.5 to 7.0 has a very high negative impact on the efficiency and selectivity for the Z/E and AZ/E processes and it is not recommended in such cases.

  9. Assessment of long-term pH developments in leachate from waste incineration residues

    DEFF Research Database (Denmark)

    Astrup, Thomas; Jakobsen, Rasmus; Christensen, Thomas Højlund

    2006-01-01

    influenced by changes in pH over time. The paper presents an approach for assessing pH changes in leachate from municipal solid waste incineration (MSWI) air-pollution-control (APC) residues. Residue samples were subjected to a stepwise batch extraction method in order to obtain residue samples at a range...... of pH Values (similar to common pH-dependence tests), and then on these samples to determine leaching of alkalinity as well as remaining solid phase alkalinity. On a range of APC residues covering various pretreatment and disposal options, this procedure was used to determine leachable and residual...... alkalinity as a function of pH. Mass balance calculations for typical disposal scenarios were used to provide data on pH as a function of the liquid-to-solid (L/S) ratio in the leaching system. Regardless of residue type and pretreatment, pH was found to stay above 7 for L/S ratios up to about 2000 L kg(-1...

  10. Processed dairy beverages pH evaluation: consequences of temperature variation.

    Science.gov (United States)

    Ferreira, Fabiana Vargas; Pozzobon, Roselaine Terezinha

    2009-01-01

    This study assessed the pH from processed dairy beverages as well as eventual consequences deriving from different ingestion temperatures. 50 adults who accompanied children attended to at the Dentistry School were randomly selected and they answered a questionnaire on beverages. The beverages were divided into 4 groups: yogurt (GI) fermented milk (GII), chocolate-based products (GIII) and fermented dairy beverages (GIV). They were asked which type, flavor and temperature. The most popular beverages were selected, and these made up the sample. A pH meter Quimis 400A device was used to verify pH. The average pH from each beverage was calculated and submitted to statistical analysis (Variance and Tukey test with a 5% significance level). for groups I, II and III beverages, type x temperature interaction was significant, showing the pH averages were influenced by temperature variation. At iced temperatures, they presented lower pH values, which were considered statistically significant when compared to the values found for the same beverages at room temperature. All dairy beverages, with the exception of the chocolate-based type presented pH below critical level for enamel and present corrosive potential; as to ingestion temperature, iced temperature influenced pH reducing its values, in vitro.

  11. Effect of pH on chitosan hydrogel polymer network structure.

    Science.gov (United States)

    Xu, Hongcheng; Matysiak, Silvina

    2017-06-29

    Chitosan is a molecule that can form water-filled 3D polymer networks with a wide range of applications. A new coarse-grained model for chitosan hydrogel was developed to explore its pH-dependent self-assembly behavior and mechanical properties. Our results indicate that the underlying polymer physical crosslinking pattern induced by solution pH has a significant effect on hydrogel elastic moduli. With this model, we obtain pH-dependent structural and mechanical property changes in agreement with experimental observations, and provide a molecular mechanism behind the changes in polymer crosslinking patterns.

  12. Electrochemical Impedance Spectroscopic Analysis of RuO2 Based Thick Film pH Sensors

    International Nuclear Information System (INIS)

    Manjakkal, Libu; Djurdjic, Elvira; Cvejin, Katarina; Kulawik, Jan; Zaraska, Krzysztof; Szwagierczak, Dorota

    2015-01-01

    The conductimetric interdigitated thick film pH sensors based on RuO 2 were fabricated and their electrochemical reactions with solutions of different pH values were studied by electrochemical impedance spectroscopy (EIS) technique. The microstructural properties and composition of the sensitive films were examined by scanning electron microscopy, X-ray energy dispersive spectroscopy and Raman spectroscopy. The EIS analysis of the sensor was carried out in the frequency range 10 mHz–2 MHz for pH values of test solutions 2–12. The electrical parameters of the sensor were found to vary with changing pH. The conductance and capacitance of the film were distinctly dependent on pH in the low frequency range. The Nyquist and Bode plots derived from the impedance data for the metal oxide thick film pH sensor provided information about the underlying electrochemical reactions

  13. THE IMPACT OF CONJUGATED LINOLEIC ACID ADDITION ON PH VALUE OF LONGISSIMUS DORSI MUSCLE

    Directory of Open Access Journals (Sweden)

    Przemysław WASILEWSKI

    2009-08-01

    Full Text Available The subject of research was 60 crossbred gilts, divided into 6 groups, fed the fodder with addition of conjugated linoleic acid (CLA or sunflower oil (SFO in amount: 0.5; 1.0; and 2.0 %, respectively. Animals were slaughtered with the body weight ca. 95 kg. The aim of research was to determine pH value of loin meat tissue (Longissimus dorsi of right half-carcass in 45 minutes, 2, 3, 4, 5, 6 hours and 24 hours after slaughter. Results were statistically elaborated using one-way variance analysis. Longissimus dorsi muscle pH values measured 45 minutes after slaughter in case of all groups of pigs were in range from 6.34 up to 6.47, what shows good meat quality. The lowest pH1 (measured 45 minutes after slaughter had meat of fatteners where addition of 2 % sunflower oil was given into fodder and the highest value of this trait was in group of individuals where also was given sunflower oil in 1 % amount. Statistical significant differences in pH value measured in different time after slaughter i.e. after 45 minutes, 2, 3, 4, 6 and 24 hours between tested groups of pigs were not stated. The exception is the result of pH measurement 5 hours after slaughter. Statistical significant differences were between group of pigs getting 0.5 % addition of conjugated linoleic acid characterized by the highest pH value of meat and group of animals fed the fodder with 1 % addition of conjugated linoleic acid (P≤0.01. On the basis of the results obtained in presented paper may be stated that feeding pigs with addition of conjugated linoleic acid in amounts 0.5; 1.0 and 2.0 % did not impact negatively on meat quality defined by pH value.

  14. pH gradients in the diffusive boundary layer of subarctic macrophytes

    KAUST Repository

    Hendriks, Iris E.; Duarte, Carlos M.; Marbà , Nú ria; Krause-Jensen, Dorte

    2017-01-01

    Highly productive macrophytes produce diurnal and seasonal cycles in CO concentrations modulated by metabolic activity, which cause discrepancies between pH in the bulk water and near seaweed blades, especially when entering the diffusion boundary layer (DBL). Calcifying epiphytic organisms living in this environment are therefore exposed to a different pH environment than that of the water column. To evaluate the actual pH environment on blade surfaces, we measured the thickness of the DBL and pH gradients within it for six subarctic macrophytes: Fucus vesiculosus, Ascophyllum nodosum, Ulva lactuca, Zostera marina, Saccharina longicruris, and Agarum clathratum. We measured pH under laboratory conditions at ambient temperatures (2–3 °C) and slow, stable flow over the blade surface at five light intensities (dark, 30, 50, 100 and 200 µmol photons m s). Boundary layer thickness ranged between 511 and 1632 µm, while the maximum difference in pH (∆pH) between the blade surface and the water column ranged between 0.4 ± 0.14 (average ± SE; Zostera) and 1.2 ± 0.13 (average ± SE; Ulva) pH units. These differences in pH are larger than predictions for pH changes in the bulk water by the end of the century. A simple quadratic model best described the relationship between light intensity and maximum ∆pH, pointing at relatively low optimum PAR of between 28 and 139 µmol photons m s to reach maximum ∆pH. Elevated pH at the blade surface may provide chemical “refugia” for calcifying epiphytic organisms, especially during summer at higher latitudes where photoperiods are long.

  15. pH gradients in the diffusive boundary layer of subarctic macrophytes

    KAUST Repository

    Hendriks, Iris E.

    2017-06-20

    Highly productive macrophytes produce diurnal and seasonal cycles in CO concentrations modulated by metabolic activity, which cause discrepancies between pH in the bulk water and near seaweed blades, especially when entering the diffusion boundary layer (DBL). Calcifying epiphytic organisms living in this environment are therefore exposed to a different pH environment than that of the water column. To evaluate the actual pH environment on blade surfaces, we measured the thickness of the DBL and pH gradients within it for six subarctic macrophytes: Fucus vesiculosus, Ascophyllum nodosum, Ulva lactuca, Zostera marina, Saccharina longicruris, and Agarum clathratum. We measured pH under laboratory conditions at ambient temperatures (2–3 °C) and slow, stable flow over the blade surface at five light intensities (dark, 30, 50, 100 and 200 µmol photons m s). Boundary layer thickness ranged between 511 and 1632 µm, while the maximum difference in pH (∆pH) between the blade surface and the water column ranged between 0.4 ± 0.14 (average ± SE; Zostera) and 1.2 ± 0.13 (average ± SE; Ulva) pH units. These differences in pH are larger than predictions for pH changes in the bulk water by the end of the century. A simple quadratic model best described the relationship between light intensity and maximum ∆pH, pointing at relatively low optimum PAR of between 28 and 139 µmol photons m s to reach maximum ∆pH. Elevated pH at the blade surface may provide chemical “refugia” for calcifying epiphytic organisms, especially during summer at higher latitudes where photoperiods are long.

  16. Effect of pH on sludge composting

    International Nuclear Information System (INIS)

    Hashimoto, Shoji; Watanabe, Hiromasa; Nishimura, Koichi; Kawakami, Waichiro

    1984-01-01

    The effect of pH on composting of irradiated sewage sludge was discussed. Inorganic materials, such as activated alumina, Kanuma-soil, and Akadama-soil, were used as bulking agents. Na 2 CO 3 was used as a pH adjuster. The fermentations were done isothermally at the optimum temperature, 50 0 C. The rate of CO 2 evolution increased initially with time, and then, decreased. The peak value of CO 2 evolution and the time to attain the peak varied by the addition of Na 2 CO 3 . When Kanuma-soil was used as the bulking agent, for example, the peak value became larger as the amount of Na 2 CO 3 was increased to 1.0 % and became smaller over this value. From pH measurements, it was found that the optimum pH for fermentation was ranged from 6 to 8 when activated alumina was used. When other bulking agents were used, the maximum value of CO 2 evolution rate was obtained at pH 7 to 8.5. The peak value and the peak time also varied by the addition of NH 3 in the aeration gas. (author)

  17. pH regulation of the kinetic stability of the lipase from Thermomyces lanuginosus.

    Science.gov (United States)

    Wang, H; Andersen, K K; Sehgal, P; Hagedorn, J; Westh, P; Borch, K; Otzen, D E

    2013-01-08

    Thermomyces lanuginosus lipase (TlL) is a kinetically stable protein, resistant toward both denaturation and refolding in the presence of the ionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant decyl maltoside (DecM). We investigate the pH dependence of this kinetic stability. At pH 8, TlL remains folded and enzymatically active at multimillimolar surfactant concentrations but fails to refold from the acid urea-denatured state at submillimolar concentrations of SDS and DecM, indicating a broad concentration range of kinetic trapping or hysteresis. At pH 8, very few SDS molecules bind to TlL. The hysteresis SDS concentration range shrinks when moving to pH 4-6; in this pH range, SDS binds as micellelike clusters. Although hysteresis can be eliminated by reducing disulfide bonds, destabilizing the native state, and lowering the unfolding activation barrier, SDS sensitivity is not directly linked to intrinsic kinetic stability [its resistance to the general chemical denaturant guanidinium chloride (GdmCl)], because TlL unfolds more slowly in GdmCl at pH 6.0 than at pH 8.0. However, the estimated net charge drops from approximately -12 to approximately -5 between pH 8 and 6. SDS denatures TlL at pH 6.0 by nucleating via a critical number of bound SDS molecules on the surface of native TlL to form clusters. These results imply that SDS sensitivity is connected to the availability of appropriately charged regions on the protein. We suggest that conformational rigidity is a necessary but not sufficient feature of SDS resistance, because this has to be combined with sufficient negative electrostatic potential to avoid extensive SDS binding.

  18. Modeling retention and selectivity as a function of pH and column temperature in liquid chromatography.

    Science.gov (United States)

    Gagliardi, Leonardo G; Castells, Cecilia B; Ràfols, Clara; Rosés, Martí; Bosch, Elisabeth

    2006-08-15

    In reversed-phase liquid chromatography (RPLC), the retention of weak acids and bases is a sigmoidal function of the mobile-phase pH. Therefore, pH is a key chromatographic variable to optimize retention and selectivity. Furthermore, at an eluent pH close to the pKa of the solute, the dependence of ionization of the buffer and solute on temperature can be used to improve chromatographic separations involving ionizable solutes by an adequate handling of column temperature. In this paper, we derive a general equation for the prediction of the retentive behavior of ionizable compounds upon simultaneous changes in mobile-phase pH and column temperature. Four experiments, two limiting pH values and two temperatures, provide the input data that allow predictions in the whole range of these two variables, based on the thermodynamic fundamentals of the involved equilibria. Also, the study demonstrates the significant role that the choice of the buffer compound would have on selectivity factors in RPLC at temperatures higher than 25 degrees C.

  19. Functionalization of carbon nanotubes with a pH-responsive molecule to produce a pH sensor

    International Nuclear Information System (INIS)

    Zhao Liping; Nakayama, Tomonobu; Tomimoto, Hiroyuki; Shingaya, Yoshitaka; Huang Qing

    2009-01-01

    Carbon nanotubes were functionalized with the ratiometric pH-responsive dye molecule 6,8-dihydroxy-1,3-pyrenedisulfonic acid disodium salt, which enabled them to indicate pH values over the range of pH 5.6-8.3. The nanotubes were coated with a layer of electron-donating ZnPc, which strengthened the CNT-dye interaction. The range of pH response is relevant for biological systems, which makes the nanotubes suitable for a wide range of applications within nanobiotechnology.

  20. pH Sensing and Regulation in Cancer

    Directory of Open Access Journals (Sweden)

    Mehdi eDamaghi

    2013-12-01

    Full Text Available Cells maintain intracellular pH (pHi within a narrow range (7.1-7.2 by controlling membrane proton pumps and transporters whose activity is set by intra-cytoplasmic pH sensors. These sensors have the ability to recognize and induce cellular responses to maintain the intracellular pH, often at the expense of acidifying the extracellular pH. In turn, extracellular acidification impacts cells via specific acid-sensing ion channels (ASICs and proton-sensing G-protein coupled receptors (GPCRs. In this review, we will discuss some of the major players in proton sensing at the plasma membrane and their downstream consequences in cancer cells and how these pH-mediated changes affect processes such as migration and metastasis. The complex mechanisms by which they transduce acid pH signals to the cytoplasm and nucleus are not well understood. However, there is evidence that expression of proton-sensing GPCRs such as GPR4, TDAG8, and OGR1 can regulate aspects of tumorigenesis and invasion, including colfilin and talin regulated actin (de-polymerization. Major mechanisms for maintenance of pHi homeostasis include monocarboxylate, bicarbonate and proton transporters. Notably, there is little evidence suggesting a link between their activities and those of the extracellular H+-sensors, suggesting a mechanistic disconnect between intra- and extra-cellular pH. Understanding the mechanisms of pH sensing and regulation may lead to novel and informed therapeutic strategies that can target acidosis, a common physical hallmark of solid tumors.

  1. Diurnal variation of intraoral pH and temperature.

    Science.gov (United States)

    Choi, Jung Eun; Lyons, Karl M; Kieser, Jules A; Waddell, Neil J

    2017-01-01

    The aim of this study was to measure continuously the intraoral pH and temperature of healthy individuals to investigate their diurnal variations. Seventeen participants (mean age, 31±9 years) wore a custom-made intraoral appliance fitted with a pH probe and thermocouple for two sets of 24 h, while carrying out normal daily activities including sleep. The continuous changes in intraoral pH and temperature were captured using a sensor placed on the palatal aspect of the upper central incisors. The collected data were categorised into different status (awake and sleep) and periods (morning, afternoon, evening and night). Both quantitative and qualitative analyses were conducted. The intraoral pH change was found to show a distinctive daily rhythm, showing a 12-h interval between maximum (7.73) and minimum (6.6) pH values. The maximum and minimum values were found to repeat after 24 h. The mean pH over 48 h (two sets of 24 h) was found to be 7.27 (±0.74). There was significant difference found in pH when subjects were awake and asleep and different periods during the day ( P pH. There was a significant difference found in temperature depending on the time of the day, except between morning and afternoon ( P =0.78). Our results showed that there is a distinctive daily, circadian-like pattern in intraoral pH variation over a 24-h period, which has been considered as one of the risk factors in sleep-related dental diseases.

  2. pH controls over methanogenesis and iron reduction along soil depth profile in Arctic tundra

    Science.gov (United States)

    Zheng, J.; Gu, B.; Wullschleger, S. D.; Graham, D. E.

    2017-12-01

    Increasing soil temperature in the Arctic is expected to accelerate rates of soil organic matter decomposition. However, the magnitude of this impact is uncertain due to the many physical, chemical, and biological processes that control the decomposition pathways. Varying soil redox conditions present a key control over pathways of organic matter decomposition by diverting the flow of reductants among different electron accepting processes and further driving acid-base reactions that alter soil pH. In this study we investigated the pH controls over anaerobic carbon mineralization, methanogenesis, Fe(III) reduction and the interplay between these processes across a range of pH and redox conditions. pH manipulation experiments were conducted by incubating soils representing organic, mineral, cryoturbated transitional layers and permafrost. In the experiments we sought to understand (1) if methanogenesis or Fe(III) reduction had similar pH optima; (2) if this pH response also occurs at `upstream' fermentation process; and (3) if pH alters organo-mineral association or organic matter sorption and desorption and its availability for microbial degradation. Our preliminary results suggest that the common bell-shaped pH response curve provides a good fit for both Fe(III) reduction and methanogenesis, with optimum pH at 6.0-7.0. Exceptions to this were found in transitional layer where methanogenesis rates positively correlated with increasing pH, with maximum rates measured at pH 8.5. It is likely that the transitional layer harbors distinct groups of methanogens that prefer a high pH. Variations in the optimum pH of Fe(III) reduction and methanogenesis may play a significant role in regulating organic matter decomposition pathways and thus greenhouse gas production in thawing soils. These results support biogeochemical modeling efforts to accurately simulate organic matter decomposition under changing redox and pH conditions.

  3. Extraction of indirectly captured information for use in a comparison of offline pH measurement technologies.

    Science.gov (United States)

    Ritchie, Elspeth K; Martin, Elaine B; Racher, Andy; Jaques, Colin

    2017-06-10

    Understanding the causes of discrepancies in pH readings of a sample can allow more robust pH control strategies to be implemented. It was found that 59.4% of differences between two offline pH measurement technologies for an historical dataset lay outside an expected instrument error range of ±0.02pH. A new variable, Osmo Res , was created using multiple linear regression (MLR) to extract information indirectly captured in the recorded measurements for osmolality. Principal component analysis and time series analysis were used to validate the expansion of the historical dataset with the new variable Osmo Res . MLR was used to identify variables strongly correlated (p<0.05) with differences in pH readings by the two offline pH measurement technologies. These included concentrations of specific chemicals (e.g. glucose) and Osmo Res, indicating culture medium and bolus feed additions as possible causes of discrepancies between the offline pH measurement technologies. Temperature was also identified as statistically significant. It is suggested that this was a result of differences in pH-temperature compensations employed by the pH measurement technologies. In summary, a method for extracting indirectly captured information has been demonstrated, and it has been shown that competing pH measurement technologies were not necessarily interchangeable at the desired level of control (±0.02pH). Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A luminescent ratiometric pH sensor based on a nanoscale and biocompatible Eu/Tb-mixed MOF.

    Science.gov (United States)

    Xia, Tifeng; Zhu, Fengliang; Jiang, Ke; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2017-06-13

    The precise and real-time monitoring of localized pH changes is of great importance in many engineering and environmental fields, especially for monitoring small pH changes in biological environments and living cells. Metal-organic frameworks (MOFs) with their nanoscale processability show very promising applications in bioimaging and biomonitoring, but the fabrication of nanoscale MOFs is still a challenge. In this study, we synthesized a nanoscale mixed-lanthanide metal-organic framework by a microemulsion method. The morphology and size of the NMOF can be simply adjusted by the addition of different amounts of the CTAB surfactant. This NMOF exhibits significant pH-dependent luminescence emission, which can act as a self-referenced pH sensor based on two emissions of Tb 3+ at 545 nm and Eu 3+ at 618 nm in the pH range from 3.00 to 7.00. The MTT assay and optical microscopy assay demonstrate the low cytotoxicity and good biocompatibility of the nanosensor.

  5. Investigation of pH and Temperature Profiles in the GI Tract of Fasted Human Subjects Using the Intellicap(®) System.

    Science.gov (United States)

    Koziolek, Mirko; Grimm, Michael; Becker, Dieter; Iordanov, Ventzeslav; Zou, Hans; Shimizu, Jeff; Wanke, Christoph; Garbacz, Grzegorz; Weitschies, Werner

    2015-09-01

    Gastrointestinal (GI) pH and temperature profiles under fasted-state conditions were investigated in two studies with each 10 healthy human subjects using the IntelliCap(®) system. This telemetric drug delivery device enabled the determination of gastric emptying time, small bowel transit time, and colon arrival time by significant pH and temperature changes. The study results revealed high variability of GI pH and transit times. The gastric transit of IntelliCap(®) was characterized by high fluctuations of the pH with mean values ranging from pH 1.7 to pH 4.7. Gastric emptying was observed after 7-202 min (median: 30 min). During small bowel transit, which had a duration of 67-532 min (median: 247 min), pH values increased slightly from pH 5.9-6.3 in proximal parts to pH 7.4-7.8 in distal parts. Colonic pH conditions were characterized by values fluctuating mainly between pH 5 and pH 8. The pH profiles and transit times described in this work are highly relevant for the comprehension of drug delivery of solid oral dosage forms comprising ionizable drugs and excipients with pH-dependent solubility. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. An intramolecular charge transfer process based fluorescent probe for monitoring subtle pH fluctuation in living cells.

    Science.gov (United States)

    Sun, Mingtai; Du, Libo; Yu, Huan; Zhang, Kui; Liu, Yang; Wang, Suhua

    2017-01-01

    It is crucial to monitor intracellular pH values and their fluctuation since the organelles of cells have different pH distribution. Herein we construct a new small molecule fluorescent probe HBT-O for monitoring the subtle pH values within the scope of neutral to acid in living cells. The probe exhibited good water solubility, a marked turquoise to olivine emission color change in response to pH, and tremendous fluorescence hypochromatic shift of ∼50nm (1718cm -1 ) as well as the increased fluorescence intensity when the pH value changed from neutral to acid. Thus, the probe HBT-O can distinguish the subtle changes in the range of normal pH values from neutral to acid with significant fluorescence changes. These properties can be attributed to the intramolecular charge transfer (ICT) process of the probe upon protonation in buffer solutions at varied pH values. Moreover, the probe was reversible and nearly non-toxic for living cells. Then the probe was successfully used to detect pH fluctuation in living cells by exhibiting different fluorescence colors and intensity. These findings demonstrate that the probe will find useful applications in biology and biomedical research. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effect of wine pH and bottle closure on tannins.

    Science.gov (United States)

    McRae, Jacqui M; Kassara, Stella; Kennedy, James A; Waters, Elizabeth J; Smith, Paul A

    2013-11-27

    The impact of wine pH and closure type on color, tannin concentration, and composition was investigated. A single vintage of Cabernet Sauvignon wine was divided into three batches, the pH was adjusted to 3.2, 3.5 or 3.8, and the wines were bottled under screw caps with either SaranTin (ST) or Saranex (Sx) liners. After 24 months, the tannin concentration, tannin percent yield (relating to the proportion of acid-labile interflavan bonds), and the mean degree of polymerization (mDp) had decreased significantly, all of which can contribute to the softening of wine astringency with aging. The higher pH wines contained less percent (-)-epicatechin 3-O-gallate subunits, whereas the Sx pH 3.2 wines were significantly lower in percent yield and mDp than the other wines. Overall, the tannin structure and wine color of the lower pH wines (pH 3.2) bottled under Sx screw caps changed more rapidly with aging than those of the higher pH wines (pH 3.8) bottled under ST screw caps.

  8. A Flexible Optical pH Sensor Based on Polysulfone Membranes Coated with pH-Responsive Polyaniline Nanofibers.

    Science.gov (United States)

    Abu-Thabit, Nedal; Umar, Yunusa; Ratemi, Elaref; Ahmad, Ayman; Ahmad Abuilaiwi, Faraj

    2016-06-27

    A new optical pH sensor based on polysulfone (PSU) and polyaniline (PANI) was developed. A transparent and flexible PSU membrane was employed as a support. The electrically conductive and pH-responsive PANI was deposited onto the membrane surface by in situ chemical oxidative polymerization (COP). The absorption spectra of the PANI-coated PSU membranes exhibited sensitivity to pH changes in the range of 4-12, which allowed for designing a dual wavelength pH optical sensor. The performance of the membranes was assessed by measuring their response starting from high pH and going down to low pH, and vice versa. It was found that it is necessary to precondition the sensor layers before each measurement due to the slight hysteresis observed during forward and backward pH titrations. PSU membranes with polyaniline coating thicknesses in the range of ≈100-200 nm exhibited fast response times of pH sensor was characterized by a sigmoidal response (R² = 0.997) which allows for pH determination over a wide dynamic range. All membranes were stable for a period of more than six months when stored in 1 M HCl solution. The reproducibility of the fabricated optical pH sensors was found to be pH sensor was tested and the obtained pH values were compared with the results obtained using a pH meter device.

  9. Systematic generation of buffer systems for pH gradient ion exchange chromatography and their application.

    Science.gov (United States)

    Kröner, Frieder; Hubbuch, Jürgen

    2013-04-12

    pH gradient protein separations are widely used techniques in the field of protein analytics, of which isoelectric focusing is the most well known application. The chromatographic variant, based on the formation of pH gradients in ion exchange columns is only rarely applied due to the difficulties to form controllable, linear pH gradients over a broad pH range. This work describes a method for the systematic generation of buffer compositions with linear titration curves, resulting in well controllable pH gradients. To generate buffer compositions with linear titration curves an in silico method was successfully developed. With this tool, buffer compositions for pH gradient ion exchange chromatography with pH ranges spanning up to 7.5 pH units were established and successfully validated. Subsequently, the buffer systems were used to characterize the elution behavior of 22 different model proteins in cation and anion exchange pH gradient chromatography. The results of both chromatographic modes as well as isoelectric focusing were compared to describe differences in between the methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Experimental investigation on the active range of sulfate-reducing bacteria for geological disposal

    International Nuclear Information System (INIS)

    Fukunaga, S.; Fujiki, K.; Asano, H.; Yoshikawa, H.

    1995-01-01

    The active range of Desulfovibrio desulfuricans, a species of sulfate-reducing bacteria, was examined in terms of pH and Eh using a fermenter at controlled pH and Eh. Such research is important because sulfate-reducing bacteria (SRB) are thought to exist underground at depths equal to those of supposed repositories for high-level radioactive wastes and to be capable of inducing corrosion of the metals used in containment vessels. SRB activity was estimated at 35 C, with lactate as an electron donor, at a pH range from 7 to 11 and Eh range from 0 to -380 mV. Activity increased as pH approached neutral and Eh declined. The upper pH limit for activity was between 9.9 and 10.3, at Eh of -360 to -384 mV. The upper Eh limit for activity was between -68 and -3 mV, at pH 7.1. These results show that SRB can be made active at higher pH by decreasing Eh, and that the higher pH levels of 8 to 10 produced by use of the buffer material bentonite does not suppress SRB completely. A chart was obtained showing the active range of Desulfovibrio desulfuricans in terms of pH and Eh. Such charts can be used to estimate the viability of SRB and other microorganisms when the environmental conditions of a repository are specified

  11. From proton nuclear magnetic resonance spectra to pH. Assessment of {sup 1}H NMR pH indicator compound set for deuterium oxide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Tynkkynen, Tuulia, E-mail: tuulia.tynkkynen@uku.fi [Laboratory of Chemistry, Department of Biosciences, University of Kuopio, PO Box 1627, 70211 Kuopio (Finland); Tiainen, Mika; Soininen, Pasi; Laatikainen, Reino [Laboratory of Chemistry, Department of Biosciences, University of Kuopio, PO Box 1627, 70211 Kuopio (Finland)

    2009-08-19

    In this study, a protocol for pH determination from D{sub 2}O samples using {sup 1}H NMR pH indicator compounds was developed and assessed by exploring the pH-dependency of 13 compounds giving pH-dependent {sup 1}H NMR signals. The indicators cover the pH range from pH* 0 to 7.2. Equations to transform the indicator chemical shifts to pH estimates are given here for acetic acid, formic acid, chloroacetic acid, dichloroacetic acid, creatine, creatinine, glycine, histidine, 1,2,4-triazole, and TSP (2,2,3,3-tetradeutero-3-(trimethylsilyl)-propionic acid). To characterize the method in presence of typical solutes, the effects of common metabolites, albumin and ionic strength were also evaluated. For the ionic strengths, the effects were also modelled. The experiments showed that the use of pH sensitive {sup 1}H NMR chemical shifts allows the pH determination of typical metabolite solutions with accuracy of 0.01-0.05 pH units. Also, when the ionic strength is known with accuracy better than 0.1 mol dm{sup -3} and the solute concentrations are low, pH{sub nmr}{sup *} (the NMR estimate of pH) can be assumed to be within 0.05 pH units from potentiometrically determined pH.

  12. pH homeostasis in Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate

    International Nuclear Information System (INIS)

    Slonczewski, J.L.; Rosen, B.P.; Alger, J.R.; Macnab, R.M.

    1981-01-01

    The intracellular pH of Escherichia coli cells, respiring on endogenous energy sources, was monitored continuously by 31 P NMR over an extracellular pH range between 5.5 and 9. pH homeostasis was found to be good over the entire range, with the data conforming to the simple relationship intracellular pH = 7.6 + 0.1(external pH - 7.6) so that the extreme values observed for intracellular pH were 7.4 and 7.8 external pH 5.5 and 9, respectively. As well as inorganic phosphate, we employed the pH-sensitive NMR probe methylphosphonate, which was taken up by glycerol-grown cells and was nontoxic; its pK/sub a/ of 7.65 made it an ideal probe for measurement of cytoplasmic pH and alkaline external pH

  13. Variation in pH optima of hydrolytic enzyme activities in tropical rain forest soils.

    Science.gov (United States)

    Turner, Benjamin L

    2010-10-01

    Extracellular enzymes synthesized by soil microbes play a central role in the biogeochemical cycling of nutrients in the environment. The pH optima of eight hydrolytic enzymes involved in the cycles of carbon, nitrogen, phosphorus, and sulfur, were assessed in a series of tropical forest soils of contrasting pH values from the Republic of Panama. Assays were conducted using 4-methylumbelliferone-linked fluorogenic substrates in modified universal buffer. Optimum pH values differed markedly among enzymes and soils. Enzymes were grouped into three classes based on their pH optima: (i) enzymes with acidic pH optima that were consistent among soils (cellobiohydrolase, β-xylanase, and arylsulfatase), (ii) enzymes with acidic pH optima that varied systematically with soil pH, with the most acidic pH optima in the most acidic soils (α-glucosidase, β-glucosidase, and N-acetyl-β-glucosaminidase), and (iii) enzymes with an optimum pH in either the acid range or the alkaline range depending on soil pH (phosphomonoesterase and phosphodiesterase). The optimum pH values of phosphomonoesterase were consistent among soils, being 4 to 5 for acid phosphomonoesterase and 10 to 11 for alkaline phosphomonoesterase. In contrast, the optimum pH for phosphodiesterase activity varied systematically with soil pH, with the most acidic pH optima (3.0) in the most acidic soils and the most alkaline pH optima (pH 10) in near-neutral soils. Arylsulfatase activity had a very acidic optimum pH in all soils (pH ≤3.0) irrespective of soil pH. The differences in pH optima may be linked to the origins of the enzymes and/or the degree of stabilization on solid surfaces. The results have important implications for the interpretation of hydrolytic enzyme assays using fluorogenic substrates.

  14. Impact of biogeochemical processes on pH dynamics in marine systems

    NARCIS (Netherlands)

    Hagens, Mathilde

    2015-01-01

    Uptake of anthropogenic carbon dioxide (CO2) from the atmosphere has resulted in a range of changes in ocean chemistry, including the lowering of pH, collectively referred to as ocean acidification. Rates of coastal-zone acidification exceed those of the open ocean since coastal-ocean pH is

  15. Nanoparticle/Polymer assembled microcapsules with pH sensing property.

    Science.gov (United States)

    Zhang, Pan; Song, Xiaoxue; Tong, Weijun; Gao, Changyou

    2014-10-01

    The dual-labeled microcapsules via nanoparticle/polymer assembly based on polyamine-salt aggregates can be fabricated for the ratiometric intracellular pH sensing. After deposition of SiO2 nanoparticles on the poly(allylamine hydrochloride)/multivalent anionic salt aggregates followed by silicic acid treatment, the generated microcapsules are stable in a wide pH range (3.0 ∼ 8.0). pH sensitive dye and pH insensitive dye are simultaneously labeled on the capsules, which enable the ratiometric pH sensing. Due to the rough and positively charged surface, the microcapsules can be internalized by several kinds of cells naturally. Real-time measurement of intracellular pH in several living cells shows that the capsules are all located in acidic organelles after being taken up. Furthermore, the negatively charged DNA and dyes can be easily encapsulated into the capsules via charge interaction. The microcapsules with combination of localized pH sensing and drug loading abilities have many advantages, such as following the real-time transportation and processing of the carriers in cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Skin pH, Atopic Dermatitis, and Filaggrin Mutations

    DEFF Research Database (Denmark)

    Bandier, Josefine; Johansen, Jeanne Duus; Petersen, Lars Jelstrup

    2014-01-01

    mutations may influence skin pH. OBJECTIVE: We aimed to determine the epidermal pH in different groups stratified by filaggrin mutations and atopic dermatitis. Further, we investigated the changes in pH according to severity of mutational status among patients with dermatitis, irrespective of skin condition....... METHODS: pH was measured with a multiprobe system pH probe (PH 905), and the study population was composed of 67 individuals, who had all been genotyped for 3 filaggrin mutations (R501X, 2282del4, R2447X). RESULTS: We found no clear pattern in relation to filaggrin mutation carrier status. Individuals...... with wild-type filaggrin displayed both the most acidic and most alkaline values independent of concomitant skin disease; however, no statistical differences between the groups were found. CONCLUSIONS: The lack of significant diversity in skin pH in relation to filaggrin mutation carrier status suggests...

  17. Titration and Spectroscopic Measurements of Poultry Litter pH Buffering Capacity.

    Science.gov (United States)

    Cassity-Duffey, Kate; Cabrera, Miguel; Mowrer, Jake; Kissel, David

    2015-07-01

    The pH value of poultry litter is affected by nitrification, mineralization, and the addition of acidifying chemicals, all acting on the poultry litter pH buffering capacity (pHBC). Increased understanding of poultry litter pHBC will aid in modeling NH volatilization from surface-applied poultry litter as well as estimating rates of alum applications. Our objectives were to (i) determine the pHBC of a wide range of poultry litters; (ii) assess the accuracy of near-infrared reflectance spectroscopy (NIRS) for determining poultry litter pHBC; and (iii) demonstrate the use of poultry litter pHBC to increase the accuracy of alum additions. Litter pHBC was determined by titration and calculated from linear and sigmoidal curves. For the 37 litters measured, linear pHBC ranged from 187 to 537 mmol (pH unit) kg dry litter. The linear and sigmoidal curves provided accurate predictions of pHBC, with most > 0.90. Results from NIRS analysis showed that the linear pHBC expressed on an "as is" water content basis had a NIRS coefficient of calibration (developed using a modified partial least squares procedure) of 0.90 for the 37 poultry litters measured. Using the litter pHBC, an empirical model was derived to determine the amount of alum needed to create a target pH. The model performed well in the range of pH 6.5 to 7.5 (RMSE = 0.07) but underpredicted the amount of alum needed to reach pH litter, which prevented its hydrolysis. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. [Ph-Sensor Properties of a Fluorescent Protein from Dendronephthya sp].

    Science.gov (United States)

    Pakhomov, A A; Chertkova, R V; Martynov, V I

    2015-01-01

    Genetically encoded biosensors based on fluorescent proteins are now widely applicable for monitoring pH changes in live cells. Here, we have shown that a fluorescent protein from Dendronephthya sp. (DendFP) exhibits a pronounced pH-sensitivity. Unlike most of known genetically encoded pH-sensors, fluorescence of the protein is not quenched upon medium acidification, but is shifting from the red to green spectral range. Therefore, quantitative measurements of intracellular pH are feasible by ratiometric comparison of emission intensities in the red and green spectral ranges, which makes DendFP advantageous compared with other genetically encoded pH-sensors.

  19. Miniaturised optical fiber pH sensor for gastro-esophageal applications

    Science.gov (United States)

    Baldini, F.; Chiavaioli, F.; Cosi, F.; Giannetti, A.; Tombelli, S.; Trono, C.

    2013-05-01

    Monitoring pH for long periods, usually 24 h, in the stomach and in the esophagus may be essential in the diagnosis of gastro-esophageal diseases. The clinical range of interest is quite extended, between 1 to 8 pH units. Methyl red, after its covalent immobilization on controlled pore glass (CPG), is characterized by a working range which fits well with the clinical one. A novel probe, suitable for gastro-esophageal applications, was designed in order to optimize the performances of the colored CPG. This leads to a very simple probe configuration characterized by a very fast response.

  20. A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device.

    Science.gov (United States)

    Ausländer, David; Ausländer, Simon; Charpin-El Hamri, Ghislaine; Sedlmayer, Ferdinand; Müller, Marius; Frey, Olivier; Hierlemann, Andreas; Stelling, Jörg; Fussenegger, Martin

    2014-08-07

    All metabolic activities operate within a narrow pH range that is controlled by the CO2-bicarbonate buffering system. We hypothesized that pH could serve as surrogate signal to monitor and respond to the physiological state. By functionally rewiring the human proton-activated cell-surface receptor TDAG8 to chimeric promoters, we created a synthetic signaling cascade that precisely monitors extracellular pH within the physiological range. The synthetic pH sensor could be adjusted by organic acids as well as gaseous CO2 that shifts the CO2-bicarbonate balance toward hydrogen ions. This enabled the design of gas-programmable logic gates, provided remote control of cellular behavior inside microfluidic devices, and allowed for CO2-triggered production of biopharmaceuticals in standard bioreactors. When implanting cells containing the synthetic pH sensor linked to production of insulin into type 1 diabetic mice developing diabetic ketoacidosis, the prosthetic network automatically scored acidic pH and coordinated an insulin expression response that corrected ketoacidosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Barium recovery by crystallization in a fluidized-bed reactor: effects of pH, Ba/P molar ratio and seed.

    Science.gov (United States)

    Su, Chia-Chi; Reano, Resmond L; Dalida, Maria Lourdes P; Lu, Ming-Chun

    2014-06-01

    The effects of process conditions, including upward velocity inside the column, the amount of added seed and seed size, the pH value of the precipitant or the phosphate stream and the Ba/P molar ratio in a fluidized-bed reactor (FBR) were studied with a view to producing BaHPO₄ crystals of significant size and maximize the removal of barium. XRD were used to identify the products that were collected from the FBR. Experimental results show that an upward velocity of 48 cmmin(-1) produced the largest BaHPO₄ crystals with a size of around 0.84-1.0mm. The addition of seed crystals has no effect on barium removal. The use of a seed of a size in the ranges unseededbarium was removed at pH 8.4-8.6 and [Ba]/[P]=1.0. The XRD results show that a significant amount of barium phosphate (Ba₃(PO₄)₂) was obtained at pH 11. The compounds BaHPO₄ and BaO were present at a pH of below 10. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. First-principles supercell calculations of small polarons with proper account for long-range polarization effects

    Science.gov (United States)

    Kokott, Sebastian; Levchenko, Sergey V.; Rinke, Patrick; Scheffler, Matthias

    2018-03-01

    We present a density functional theory (DFT) based supercell approach for modeling small polarons with proper account for the long-range elastic response of the material. Our analysis of the supercell dependence of the polaron properties (e.g., atomic structure, binding energy, and the polaron level) reveals long-range electrostatic effects and the electron–phonon (el–ph) interaction as the two main contributors. We develop a correction scheme for DFT polaron calculations that significantly reduces the dependence of polaron properties on the DFT exchange-correlation functional and the size of the supercell in the limit of strong el–ph coupling. Using our correction approach, we present accurate all-electron full-potential DFT results for small polarons in rocksalt MgO and rutile TiO2.

  3. The Shampoo pH can Affect the Hair: Myth or Reality?

    Science.gov (United States)

    Gavazzoni Dias, Maria Fernanda Reis; de Almeida, Andréia Munck; Cecato, Patricia Makino Rezende; Adriano, Andre Ricardo; Pichler, Janine

    2014-07-01

    Dermatologists most frequently prescribe shampoos for the treatment of hair shed and scalp disorders. Prescription of hair care products is often focused on improving scalp hair density, whereas the over-the-counter products focus on hair damage prevention. Little is taught in medical schools about the hair cosmetics, so that the prescriptions are based only on the treatment of the scalp and usually disregards the hair fiber health. In this work, we review the current literature about the mode of action of a low-pH shampoo regarding the hair shaft's health and analyze the pH of 123 shampoos of international brands. All shampoo pH values ranged from 3.5 to 9.0. 38.21% of all 123 shampoos presented a pH ≤ 5.5 (IC: 29.9-47%) and 61.78% presented a pH > 5.5. 26 anti-dandruff shampoos were analyzed. About 19.23% presented pH ≤ 5.5.(IC: 7.4-37.6%). 80.77% of all anti-dandruffs shampoos presented a pH > 5.5. The dermatological shampoo group (n = 19) presented 42.10% with pH ≤ 5.5 (IC: 21.8-64.6%), and 57.90% with pH > 5.5. Among the commercial (popular) products (n = 96), 34.37% presented pH ≤ 5.5 (IC: 25.4-44.3%) and 65.62% presented pH > 5.5. 15 professional products (used in hair salons) were analyzed, of which 75% had a pH ≤ 5.5 (IC: 18-65, 4%), and 25% had a pH > 5.5. 100% of the children's shampoos presented a pH > 5.5. Alkaline pH may increase the negative electrical charge of the hair fiber surface and, therefore, increase friction between the fibers. This may lead to cuticle damage and fiber breakage. It is a reality and not a myth that lower pH of shampoos may cause less frizzing for generating less negative static electricity on the fiber surface. Interestingly, only 38% of the popular brand shampoos against 75% of the salons shampoos presented a pH ≤ 5.0. Pediatric shampoos had the pH of 7.0 because of the "no-tear" concept. There is no standardized value for the final pH. The authors believe that it is important to reveal the pH value on the

  4. The effect of soil pH and the fungicide 'Captan' on 134Cs transfer factors for cucumber and radish plants

    International Nuclear Information System (INIS)

    Skarlou, V.; Massas, I.; Anoussis, J.; Haidouti, C.; Arapis, G.

    1999-01-01

    The effect of soil pH and the fungicide 'Captan' on 134 Cs transfer factors (TFs) was studied in a greenhouse pot experiment with cucumber and radish plants. A soil with a low pH (4.2) was selected and its pH value has increased to 5.7, 6.5 and 7.6 by the addition of different amounts of Ca(OH) 2 . Liming of the soil and the subsequent increase in pH values resulted in a reduction of 134 Cs TFs which was not always significant. TFs were the highest in the very acid soil (pH 4.2) and were practically the same above the pH 5.7 although they were the lowest in the calcareous soil. The ratio highest / lowest TF of each crop or plant part ranged between ∼ 2.0 for radish and 4.5 for cucumber plants and it was much lower than that previously reported and attributed to pH differences. Edible to other plant material TF ratio indicates that cucumber plant accumulates considerably more of the totally absorbed 134 CS in the edible part than radish crops. When biomass production was used for excluding dilution effects, 134 CS total activity (Bq/pot) was higher for both plants when grown in the intermediate soil pH (5.7 - 6.5), due to the higher yield at these pH values. The application of the fungicide 'Captan' gave no significant differences in 134 Cs TFs for both plant species and in all studied soil pH. Refs. 4 (author)

  5. Hydrogel-coated fiber Bragg grating sensor for pH monitoring

    Science.gov (United States)

    Pabbisetti, Vayu Nandana Kishore; Madhuvarasu, Sai Shankar

    2016-06-01

    We present a fiber-optic wavelength-modulated sensor for pH applications. Fiber Bragg grating (FBG) is functionalized with a stimulus-responsive hydrogel that induces a strain on FBG due to mechanical expansion of the gel in response to ambient pH changes. The gel is synthesized from the blends of poly (vinyl alcohol)/poly (acrylic acid). The induced strain results in a shift of FBG reflected peak that is monitored by an interrogator. The sensor system shows good linearity in the acidic pH range of 3 to 7 with a sensitivity of 12.16 pm/pH. In addition, it shows good repeatability and oscillator behavior, which proves it to be fit for pH sensing applications.

  6. Effect of soy and bovine milks on the dental plaque pH

    Directory of Open Access Journals (Sweden)

    Peyvand Moeiny

    2016-11-01

    (P<0.05. Conclusion: Bovine milk in none of frequent timing dropped its pH below basic pH but also significantly increased the plaque pH above the critical pH. The maximum pH drop for soy milk was in 2minutes after consumption but it never reached below the critical pH.

  7. Enkephalins: Raman spectral analysis and comparison as function of pH 1-13

    DEFF Research Database (Denmark)

    Abdali, Salim; Refstrup, Pia; Nielsen, O.F.

    2003-01-01

    Raman spectral studies are carried out on Leu- and Met-enkephalin as a function of the pH value in the range of 1-13. The molecules are dissolved in KCI solvent and the pH is controlled at each value. Spectral analyses reveal the dependence of the structural conformation on the pH, and a comparis...

  8. Roughness and pH changes of enamel surface induced by soft drinks in vitro-applications of stylus profilometry, focus variation 3D scanning microscopy and micro pH sensor.

    Science.gov (United States)

    Fujii, Mie; Kitasako, Yuichi; Sadr, Alireza; Tagami, Junji

    2011-01-01

    This study aimed to evaluate enamel surface roughness (Ra) and pH before and after erosion by soft drinks. Enamel was exposed to a soft drink (cola, orange juice or green tea) for 1, 5 or 60 min; Ra was measured using contact-stylus surface profilometry (SSP) and non-contact focus variation 3D microscope (FVM). Surface pH was measured using a micro pH sensor. Data were analyzed at significance level of alpha=0.05. There was a significant correlation in Ra between SSP and FVM. FVM images showed no changes in the surface morphology after various periods of exposure to green tea. Unlike cola and orange juice, exposure to green tea did not significantly affect Ra or pH. A significant correlation was observed between surface pH and Ra change after exposure to the drinks. Optical surface analysis and micro pH sensor may be useful tools for non-damaging, quantitative assessment of soft drinks erosion on enamel.

  9. The Semen pH Affects Sperm Motility and Capacitation.

    Science.gov (United States)

    Zhou, Ji; Chen, Li; Li, Jie; Li, Hongjun; Hong, Zhiwei; Xie, Min; Chen, Shengrong; Yao, Bing

    2015-01-01

    As the chemical environment of semen can have a profound effect on sperm quality, we examined the effect of pH on the motility, viability and capacitation of human sperm. The sperm in this study was collected from healthy males to avoid interference from other factors. The spermatozoa cultured in sperm nutrition solution at pH 5.2, 6.2, 7.2 and 8.2 were analyzed for sperm total motility, progressive motility (PR), hypo-osmotic swelling (HOS) rate, and sperm penetration. Our results showed that these parameters were similar in pH 7.2 and 8.2 sperm nutrition solutions, but decreased in pH 5.2 and 6.2 solutions. The HOS rate exhibited positive correlation with the sperm total motility and PR. In addition, the sperm Na(+)/K(+)-ATPase activity at different pHs was measured, and the enzyme activity was significantly lower in pH 5.2 and 6.2 media, comparing with that in pH 8.2 and pH 7.2 solutions. Using flow cytometry (FCM) and laser confocal scanning microscopy (LCSM) analysis, the intracellular Ca2(+ )concentrations of sperm cultured in sperm capacitation solution at pH 5.2, 6.2, 7.2 and 8.2 were determined. Compared with that at pH 7.2, the mean fluorescence intensity of sperm in pH 5.2 and 6.2 media decreased significantly, while that of pH 8.2 group showed no difference. Our results suggested that the declined Na(+)/K(+)-ATPase activity at acidic pHs result in decreased sperm movement and capacitation, which could be one of the mechanisms of male infertility.

  10. Generation of pH responsive fluorescent nano capsules through simple steps for the oral delivery of low pH susceptible drugs

    Science.gov (United States)

    Radhakumary, Changerath; Sreenivasan, Kunnatheeri

    2016-11-01

    pH responsive nano capsules are promising as it can encapsulate low pH susceptible drugs like insulin and guard them from the hostile environments in the intestinal tract. The strong acidity of the gastro-intestinal tract and the presence of proteolytic enzymes are the tumbling blocks for the design of drug delivery vehicles through oral route for drugs like insulin. Nano capsules are normally built over templates which are subsequently removed by further steps. Such processes are complex and often lead into deformed and collapsed capsules. In this study, we choose calcium carbonate (CaCO3) nano particles to serve as template. Over CaCO3 nanoparticles, silica layers were built followed by polymethacrylic acid chains to acquire pH responsiveness. During the polymerization process of the methacrylic acid, the calcium carbonate core particles were dissolved leading to the formation of nano hollow capsules having a size that ranges from 225 to 246 nm and thickness from 19 to 58 nm. The methodology is simple and devoid of additional steps. The nano shells exhibited 80% release of the loaded model drug, insulin at pH 7.4 while at pH 2.0 the capsules nearly stopped the release of the drug. Polymethacrylic acid shows pH responsive swelling behavior that it swells at intestinal pH (7.0-7.5) and shrinks at gastric pH (˜2.0) thus enabling the safe unloading of the drug from the nano capsules.

  11. δ11B as monitor of calcification site pH in divergent marine calcifying organisms

    Science.gov (United States)

    Sutton, Jill N.; Liu, Yi-Wei; Ries, Justin B.; Guillermic, Maxence; Ponzevera, Emmanuel; Eagle, Robert A.

    2018-03-01

    The boron isotope composition (δ11B) of marine biogenic carbonates has been predominantly studied as a proxy for monitoring past changes in seawater pH and carbonate chemistry. However, a number of assumptions regarding chemical kinetics and thermodynamic isotope exchange reactions are required to derive seawater pH from δ11B biogenic carbonates. It is also probable that δ11B of biogenic carbonate reflects seawater pH at the organism's site of calcification, which may or may not reflect seawater pH. Here, we report the development of methodology for measuring the δ11B of biogenic carbonate samples at the multi-collector inductively coupled mass spectrometry facility at Ifremer (Plouzané, France) and the evaluation of δ11BCaCO3 in a diverse range of marine calcifying organisms reared for 60 days in isothermal seawater (25 °C) equilibrated with an atmospheric pCO2 of ca. 409 µatm. Average δ11BCaCO3 composition for all species evaluated in this study range from 16.27 to 35.09 ‰, including, in decreasing order, coralline red alga Neogoniolithion sp. (35.89 ± 3.71 ‰), temperate coral Oculina arbuscula (24.12 ± 0.19 ‰), serpulid worm Hydroides crucigera (19.26 ± 0.16 ‰), tropical urchin Eucidaris tribuloides (18.71 ± 0.26 ‰), temperate urchin Arbacia punctulata (16.28 ± 0.86 ‰), and temperate oyster Crassostrea virginica (16.03 ‰). These results are discussed in the context of each species' proposed mechanism of biocalcification and other factors that could influence skeletal and shell δ11B, including calcifying site pH, the proposed direct incorporation of isotopically enriched boric acid (instead of borate) into biogenic calcium carbonate, and differences in shell/skeleton polymorph mineralogy. We conclude that the large inter-species variability in δ11BCaCO3 (ca. 20 ‰) and significant discrepancies between measured δ11BCaCO3 and δ11BCaCO3 expected from established relationships between abiogenic δ11BCaCO3 and seawater pH arise

  12. Dynamic regulation of gastric surface pH by luminal pH

    OpenAIRE

    Chu, Shaoyou; Tanaka, Shin; Kaunitz, Jonathan D.; Montrose, Marshall H.

    1999-01-01

    In vivo confocal imaging of the mucosal surface of rat stomach was used to measure pH noninvasively under the mucus gel layer while simultaneously imaging mucus gel thickness and tissue architecture. When tissue was superfused at pH 3, the 25 μm adjacent to the epithelial surface was relatively alkaline (pH 4.1 ± 0.1), and surface alkalinity was enhanced by topical dimethyl prostaglandin E2 (pH 4.8 ± 0.2). Luminal pH was changed from pH 3 to pH 5 to mimic the fasted-to-fed transition in intra...

  13. Lactobacilli Dominance and Vaginal pH: Why is the Human Vaginal Microbiome Unique?

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Miller

    2016-12-01

    Full Text Available The human vaginal microbiome is dominated by bacteria from the genus Lactobacillus, which create an acidic environment thought to protect women against sexually transmitted pathogens and opportunistic infections. Strikingly, lactobacilli dominance appears to be unique to humans; while the relative abundance of lactobacilli in the human vagina is typically >70%, in other mammals lactobacilli rarely comprise more than 1% of vaginal microbiota. Several hypotheses have been proposed to explain humans' unique vaginal microbiota, including humans' distinct reproductive physiology, high risk of STDs, and high risk of microbial complications linked to pregnancy and birth. Here, we test these hypotheses using comparative data on vaginal pH and the relative abundance of lactobacilli in 26 mammalian species and 50 studies (N=21 mammals for pH and 14 mammals for lactobacilli abundance. We found that non-human mammals, like humans, exhibit the lowest vaginal pH during the period of highest estrogen. However, the vaginal pH of non-human mammals is never as low as is typical for humans (median vaginal pH in humans = 4.5; range of pH across all 21 non-human mammals = 5.4 to 7.8. Contrary to disease and obstetric risk hypotheses, we found no significant relationship between vaginal pH or lactobacilli abundance and multiple metrics of STD or birth injury risk (P-values ranged from 0.13 to 0.99. Given the lack of evidence for these hypotheses, we discuss two alternative explanations: the common function hypothesis and a novel hypothesis related to the diet of agricultural humans. Specifically, with regard to diet we propose that high levels of starch in human diets have led to increased levels of glycogen in the vaginal tract, which, in turn, promotes the proliferation of lactobacilli. If true, human diet may have paved the way for a novel, protective microbiome in human vaginal tracts. Overall, our results highlight the need for continuing research on non

  14. Effects of lowered pH on marine phytoplankton growth rates

    DEFF Research Database (Denmark)

    Berge, Terje; Daugbjerg, Niels; Andersen, Betinna Balling

    2010-01-01

    concentration of seawater. Ocean acidification may potentially both stimulate and reduce primary production by marine phytoplankton. Data are scarce on the response of marine phytoplankton growth rates to lowered pH/increased CO2. Using the acid addition method to lower the seawater pH and manipulate...... the carbonate system, we determined in detail the lower pH limit for growth rates of 2 model species of common marine phytoplankton. We also tested whether growth and production rates of 6 other common species of phytoplankton were affected by ocean acidification (lowered to pH 7.0). The lower pH limits...... statistically similar in the pH range of ~7.0 to 8.5. Our results and literature reports on growth at lowered pH indicate that marine phytoplankton in general are resistant to climate change in terms of ocean acidification, and do not increase or decrease their growth rates according to ecological relevant...

  15. pH controls spermatozoa motility in the Pacific oyster (Crassostrea gigas

    Directory of Open Access Journals (Sweden)

    Myrina Boulais

    2018-03-01

    Full Text Available Investigating the roles of chemical factors stimulating and inhibiting sperm motility is required to understand the mechanisms of spermatozoa movement. In this study, we described the composition of the seminal fluid (osmotic pressure, pH, and ions and investigated the roles of these factors and salinity in initiating spermatozoa movement in the Pacific oyster, Crassostrea gigas. The acidic pH of the gonad (5.82±0.22 maintained sperm in the quiescent stage and initiation of flagellar movement was triggered by a sudden increase of spermatozoa external pH (pHe when released in seawater (SW. At pH 6.4, percentage of motile spermatozoa was three times higher when they were activated in SW containing 30 mM NH4Cl, which alkalinizes internal pH (pHi of spermatozoa, compared to NH4Cl-free SW, revealing the role of pHi in triggering sperm movement. Percentage of motile spermatozoa activated in Na+-free artificial seawater (ASW was highly reduced compared to ASW, suggesting that change of pHi triggering sperm motility was mediated by a Na+/H+ exchanger. Motility and swimming speed were highest in salinities between 33.8 and 42.7‰ (within a range of 0 to 50 ‰, and pH values above 7.5 (within a range of 4.5 to 9.5.

  16. Microencapsulation of Clostridium difficile specific bacteriophages using microfluidic glass capillary devices for colon delivery using pH triggered release.

    Directory of Open Access Journals (Sweden)

    Gurinder K Vinner

    Full Text Available The prevalence of pathogenic bacteria acquiring multidrug antibiotic resistance is a global health threat to mankind. This has motivated a renewed interest in developing alternatives to conventional antibiotics including bacteriophages (viruses as therapeutic agents. The bacterium Clostridium difficile causes colon infection and is particularly difficult to treat with existing antibiotics; phage therapy may offer a viable alternative. The punitive environment within the gastrointestinal tract can inactivate orally delivered phages. C. difficile specific bacteriophage, myovirus CDKM9 was encapsulated in a pH responsive polymer (Eudragit® S100 with and without alginate using a flow focussing glass microcapillary device. Highly monodispersed core-shell microparticles containing phages trapped within the particle core were produced by in situ polymer curing using 4-aminobenzoic acid dissolved in the oil phase. The size of the generated microparticles could be precisely controlled in the range 80 μm to 160 μm through design of the microfluidic device geometry and by varying flow rates of the dispersed and continuous phase. In contrast to free 'naked' phages, those encapsulated within the microparticles could withstand a 3 h exposure to simulated gastric fluid at pH 2 and then underwent a subsequent pH triggered burst release at pH 7. The significance of our research is in demonstrating that C. difficile specific phage can be formulated and encapsulated in highly uniform pH responsive microparticles using a microfluidic system. The microparticles were shown to afford significant protection to the encapsulated phage upon prolonged exposure to an acid solution mimicking the human stomach environment. Phage encapsulation and subsequent release kinetics revealed that the microparticles prepared using Eudragit® S100 formulations possess pH responsive characteristics with phage release triggered in an intestinal pH range suitable for therapeutic

  17. pH sensing and regulation in cancer.

    Science.gov (United States)

    Damaghi, Mehdi; Wojtkowiak, Jonathan W; Gillies, Robert J

    2013-12-17

    Cells maintain intracellular pH (pHi) within a narrow range (7.1-7.2) by controlling membrane proton pumps and transporters whose activity is set by intra-cytoplasmic pH sensors. These sensors have the ability to recognize and induce cellular responses to maintain the pHi, often at the expense of acidifying the extracellular pH. In turn, extracellular acidification impacts cells via specific acid-sensing ion channels (ASICs) and proton-sensing G-protein coupled receptors (GPCRs). In this review, we will discuss some of the major players in proton sensing at the plasma membrane and their downstream consequences in cancer cells and how these pH-mediated changes affect processes such as migration and metastasis. The complex mechanisms by which they transduce acid pH signals to the cytoplasm and nucleus are not well understood. However, there is evidence that expression of proton-sensing GPCRs such as GPR4, TDAG8, and OGR1 can regulate aspects of tumorigenesis and invasion, including cofilin and talin regulated actin (de-)polymerization. Major mechanisms for maintenance of pHi homeostasis include monocarboxylate, bicarbonate, and proton transporters. Notably, there is little evidence suggesting a link between their activities and those of the extracellular H(+)-sensors, suggesting a mechanistic disconnect between intra- and extracellular pH. Understanding the mechanisms of pH sensing and regulation may lead to novel and informed therapeutic strategies that can target acidosis, a common physical hallmark of solid tumors.

  18. Statistical analysis on dominating factor of pH in rain and snow sample. Investigation on water analysis from January, 1984 through December, 1986 sampled at Chuo-ku, Sapporo city

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Norimoto; Kishi, Masami; Hayakawa, Osamu

    1988-03-31

    On the each samples of rain and snow collected in the City of Sapporo from January 1984 through December 1986, analyses were made in eleven ionic species, amount of rainfall, conductivity, ninhydrin-N, pH buffer, chemical oxygen demand (COD), and ultra violet absorbance. The pH of samples correlated to the logarithm of the concentration on each analysis except Na, NH/sub 4/, ninhydrin-N, and PO. Rainfall samples were divided into five respective pH range as follows: 5.0 or less, 5.0 to 5.5, 5.5 to 6.0, 6.0 to 6.5, and 6.5 or more. Equivalent amount of cation and anion, and cation/anion ratio increased in higher pH range. No significant correlation was found between the pH of the samples and the concentration of N and S oxides, nor between the hydrogen ion concentration precipitated amounts and the NO/sub 2/ and SO/sub 4/ precipitated amounts in pH range of 5.5 or less. The study yeilded the result that the increase of N and S oxides has little effect on the increase of H/sup +/. (8 figs, 6 tabs, 1 ref)

  19. Protein A chromatography increases monoclonal antibody aggregation rate during subsequent low pH virus inactivation hold

    Science.gov (United States)

    Mazzer, Alice R.; Perraud, Xavier; Halley, Jennifer; O’Hara, John; Bracewell, Daniel G.

    2015-01-01

    Protein A chromatography is a near-ubiquitous method of mAb capture in bioprocesses. The use of low pH buffer for elution from protein A is known to contribute to product aggregation. Yet, a more limited set of evidence suggests that low pH may not be the sole cause of aggregation in protein A chromatography, rather, other facets of the process may contribute significantly. This paper presents a well-defined method for investigating this problem. An IgG4 was incubated in elution buffer after protein A chromatography (typical of the viral inactivation hold) and the quantity of monomer in neutralised samples was determined by size exclusion chromatography; elution buffers of different pH values predetermined to induce aggregation of the IgG4 were used. Rate constants for monomer decay over time were determined by fitting exponential decay functions to the data. Similar experiments were implemented in the absence of a chromatography step, i.e. IgG4 aggregation at low pH. Rate constants for aggregation after protein A chromatography were considerably higher than those from low pH exposure alone; a distinct shift in aggregation rates was apparent across the pH range tested. PMID:26346187

  20. BSA-coated nanoparticles for improved SERS-based intracellular pH sensing.

    Science.gov (United States)

    Zheng, Xiao-Shan; Hu, Pei; Cui, Yan; Zong, Cheng; Feng, Jia-Min; Wang, Xin; Ren, Bin

    2014-12-16

    Local microenvironment pH sensing is one of the key parameters for the understanding of many biological processes. As a noninvasive and high sensitive technique, surface-enhanced Raman spectroscopy (SERS) has attracted considerable interest in the detection of the local pH of live cells. We herein develop a facile way to prepare Au-(4-MPy)-BSA (AMB) pH nanosensor. The 4-MPy (4-mercaptopyridine) was used as the pH sensing molecule. The modification of the nanoparticles with BSA not only provides a high sensitive response to pH changes ranging from pH 4.0 to 9.0 but also exhibits a high sensitivity and good biocompatibility, stability, and reliability in various solutions (including the solutions of high ionic strength or with complex composition such as the cell culture medium), both in the aggregation state or after long-term storage. The AMB pH nanosensor shows great advantages for reliable intracellular pH analysis and has been successfully used to monitor the pH distribution of live cells and can address the grand challenges in SERS-based pH sensing for practical biological applications.

  1. Empirical algorithms to estimate water column pH in the Southern Ocean

    Science.gov (United States)

    Williams, N. L.; Juranek, L. W.; Johnson, K. S.; Feely, R. A.; Riser, S. C.; Talley, L. D.; Russell, J. L.; Sarmiento, J. L.; Wanninkhof, R.

    2016-04-01

    Empirical algorithms are developed using high-quality GO-SHIP hydrographic measurements of commonly measured parameters (temperature, salinity, pressure, nitrate, and oxygen) that estimate pH in the Pacific sector of the Southern Ocean. The coefficients of determination, R2, are 0.98 for pH from nitrate (pHN) and 0.97 for pH from oxygen (pHOx) with RMS errors of 0.010 and 0.008, respectively. These algorithms are applied to Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) biogeochemical profiling floats, which include novel sensors (pH, nitrate, oxygen, fluorescence, and backscatter). These algorithms are used to estimate pH on floats with no pH sensors and to validate and adjust pH sensor data from floats with pH sensors. The adjusted float data provide, for the first time, seasonal cycles in surface pH on weekly resolution that range from 0.05 to 0.08 on weekly resolution for the Pacific sector of the Southern Ocean.

  2. Semantic conditioning of salivary pH for communication.

    Science.gov (United States)

    Ruf, Carolin A; De Massari, Daniele; Wagner-Podmaniczky, Franziska; Matuz, Tamara; Birbaumer, Niels

    2013-10-01

    Semantic conditioning of salivary pH was investigated as a new paradigm for binary communication. In a sample of eleven healthy participants, affirmation or negation of presented statements were paired with milk and lemon to condition changes in salivary pH level. Significant differences between the conditioned reactions were found at the group level. However, the analysis of pH changes on single-subject level revealed significant differences between affirmative and negative responses to the presented statements only for isolated samples in few participants. When classifying a change in pH value of more than .01 as correct response to a statement, only responses to affirmative statements reached mean accuracies of more than 60%. Improvements in the paradigm are necessary before testing it with the critical target population of patients to prove its profit for basic yes/no communication in case no other reliable means of communication could be preserved. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. pH effect on pit potential and protection potential of stainless steels AISI-304, 310 and 316 in NaCl solution

    International Nuclear Information System (INIS)

    Cabral, U.Q.; Sathler, L.; Mariano Neto, F.

    1973-06-01

    For three austenitic stainless steels, AISI 304, 310 and 316, the pH influence on the rupture, protection and corrosion potentials was studied in a 0,5N NACl solution. The pit potentials determined by the chronogalvonometric method, are pH independent within the acid range. They showed a rough linear variation within the basic range having a maximum corresponding to the pH value of 8.8. The electrochemical hysteresis method, employed for determining the protection potential, presented a total pH independence for the AISI 316. The other steels showed a small dependence within the basic range but with a tendency for the protection potential to become slightly more active with increasing pH, within the acid range. It was also noted for the three steels studied that the corrosion potental became more active with increasing pH, within the basic range [pt

  4. Comparative study of two modes of gastroesophageal reflux measuring: conventional esophageal pH monitoring and wireless pH monitoring

    Directory of Open Access Journals (Sweden)

    Rimon Sobhi Azzam

    2012-06-01

    Full Text Available CONTEXT: Esophageal pH monitoring is considered to be the gold standard for the diagnosis of gastroesophageal acid reflux. However, this method is very troublesome and considerably limits the patient's routine activities. Wireless pH monitoring was developed to avoid these restrictions. OBJECTIVE: To compare the first 24 hours of the conventional and wireless pH monitoring, positioned 3 cm above the lower esophageal sphincter, in relation to: the occurrence of relevant technical failures, the ability to detect reflux and the ability to correlate the clinical symptoms to reflux. METHODS: Twenty-five patients referred for esophageal pH monitoring and with typical symptoms of gastroesophageal reflux disease were studied prospectively, underwent clinical interview, endoscopy, esophageal manometry and were submitted, with a simultaneous initial period, to 24-hour catheter pH monitoring and 48-hour wireless pH monitoring. RESULTS: Early capsule detachment occurred in one (4% case and there were no technical failures with the catheter pH monitoring (P = 0.463. Percentages of reflux time (total, upright and supine were higher with the wireless pH monitoring (P < 0.05. Pathological gastroesophageal reflux occurred in 16 (64% patients submitted to catheter and in 19 (76% to the capsule (P = 0.355. The symptom index was positive in 12 (48% patients with catheter pH monitoring and in 13 (52% with wireless pH monitoring (P = 0.777. CONCLUSIONS: 1 No significant differences were reported between the two methods of pH monitoring (capsule vs catheter, in regard to relevant technical failures; 2 Wireless pH monitoring detected higher percentages of reflux time than the conventional pH-metry; 3 The two methods of pH monitoring were comparable in diagnosis of pathological gastroesophageal reflux and comparable in correlating the clinical symptoms with the gastroesophageal reflux.

  5. The Influence of Polymerization Condition to Optical Properties of Poly-o-toludine Films for PH Sensor Application

    Directory of Open Access Journals (Sweden)

    Yanti Sabarinah

    2006-04-01

    Full Text Available Properties of poly-o-toludine film strongly bonded to non polar substrate was studied for application as optical pH sensor. Characterization of film in various pH value is carried out by recording absorbance curve using uv-visible spectrophotometer. All poly-o-toluidine film was then found to be applicable as optical pH sensor in the pH range of 2.0- 6.0. Further computational processing by means of curve fitting into logaritmic trend will allow expansion of measurement to the pH range of 2.0-8.0. Sensitivity of pH response was highest in poly-o-toluidine film fabricate at HCl 1.0 M and at 12 hours of dipping time. This paper also studied hysteresis effect in pH response. It was concluded that poly-o-toluidine salt exposed to basic pH will not be easily regenerated. For this reason, poly-o-toluidine film will only be suitable for single usage of pH measurement.

  6. Low pH Cements

    International Nuclear Information System (INIS)

    Savage, David; Benbow, Steven

    2007-05-01

    speciation of silicon at pH 10 has a significant impact upon the solubility of montmorillonite and would thus constitute a logical choice of pH limit for cement-derived pore fluids, but it is unlikely that cement-based grouts could be developed to meet this limit. Control of mass transport by diffusion processes serves as a significant constraint over the amount of bentonite that can be degraded. Computer simulations indicate that porosity reduction is likely at the interface between cement and bentonite. However, it is not clear how the transport properties of bentonite may be modified due to mineral alteration processes. There are considerable uncertainties concerning the precise mechanism of the rate of montmorillonite dissolution at elevated pH. The rate of dissolution may be inhibited by the presence of dissolved Si (and perhaps Al), but this mechanism has yet to be confirmed at high pH. The type of secondary minerals assumed to form from cement-bentonite interaction will also have a significant impact upon the rate of montmorillonite dissolution. Low-pH cement systems have received little attention thus far regarding the development of models for the chemical evolution of pore fluids. Low Ca/Si CSH gels show preferential leaching of Si, which is in marked contrast with gels of greater Ca/Si ratio. Models apparently capable of predicting pore fluid composition coexisting with low Ca/Si CSH gels are a modified Berner model and a solid-solution model proposed by Sugiyama and Fujita. The solubility of silica in pore fluids coexisting with low Ca/Si gels may exceed that of amorphous silica, and may pose problems regarding the stability of montmorillonite in relation to framework silicates such as feldspars. However, the potential rate of conversion of montmorillonite to feldspar under repository conditions is uncertain. It is necessary to use additives such as super plasticiser to improve the workability of low-pH cements. These organic additives have the potential to

  7. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    speciation of silicon at pH 10 has a significant impact upon the solubility of montmorillonite and would thus constitute a logical choice of pH limit for cement-derived pore fluids, but it is unlikely that cement-based grouts could be developed to meet this limit. Control of mass transport by diffusion processes serves as a significant constraint over the amount of bentonite that can be degraded. Computer simulations indicate that porosity reduction is likely at the interface between cement and bentonite. However, it is not clear how the transport properties of bentonite may be modified due to mineral alteration processes. There are considerable uncertainties concerning the precise mechanism of the rate of montmorillonite dissolution at elevated pH. The rate of dissolution may be inhibited by the presence of dissolved Si (and perhaps Al), but this mechanism has yet to be confirmed at high pH. The type of secondary minerals assumed to form from cement-bentonite interaction will also have a significant impact upon the rate of montmorillonite dissolution. Low-pH cement systems have received little attention thus far regarding the development of models for the chemical evolution of pore fluids. Low Ca/Si CSH gels show preferential leaching of Si, which is in marked contrast with gels of greater Ca/Si ratio. Models apparently capable of predicting pore fluid composition coexisting with low Ca/Si CSH gels are a modified Berner model and a solid-solution model proposed by Sugiyama and Fujita. The solubility of silica in pore fluids coexisting with low Ca/Si gels may exceed that of amorphous silica, and may pose problems regarding the stability of montmorillonite in relation to framework silicates such as feldspars. However, the potential rate of conversion of montmorillonite to feldspar under repository conditions is uncertain. It is necessary to use additives such as super plasticiser to improve the workability of low-pH cements. These organic additives have the potential to

  8. [Medical therapy of gastroesophageal reflux. Evaluation of the activity of clebopride by continuous intraluminal pH measurement].

    Science.gov (United States)

    Alvisi, V; Onofrio, W; Intrieri, L; D'Ambrosi, A

    1987-10-15

    Seven female and three male outpatients (mean age 45, range 37-54), suffering from gastroesophageal reflux underwent therapy with clebopride, a new selective antidopaminergic agent. Before and after treatment (1 mg b.i.d. for ten days) 24 h-continuous monitoring of esophageal pH was done. Clebopride significantly lowered the number and the extension of gastroesophageal acid refluxes.

  9. Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans cell suspensions under different pH condition

    Energy Technology Data Exchange (ETDEWEB)

    Liao Yuehua [Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China); Zhou Lixiang [Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China)], E-mail: lxzhou@njau.edu.cn; Liang Jianru; Xiong Huixin [Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 (China)

    2009-01-01

    Oxidation of FeSO{sub 4} solution with initial pH in the range of 1.40-3.51 by Acidithiobacillus ferrooxidans LX5 cell at 26 deg. C and subsequent precipitation of resulting Fe(III) were investigated in the present study. Results showed that the oxidation rate of Fe(II) was around 1.2-3.9 mmol l{sup -1} h{sup -1}. X-ray diffraction (XRD) indicated that the formed precipitates were composed of natrojarosite with schwertmannite when the initial pH was 3.51, while only schwertmannite was produced when initial pH was in the range of 1.60-3.44 and no precipitate occurred when initial pH {<=} 1.40. Scanning electron microscope (SEM) analyses showed that precipitates formed in solution with initial pH 3.51 were spherical particles of about 0.4 {mu}m in diameter and had a smooth surface, whereas precipitates in solution with initial pH {<=} 3.44 were spherical particles of approximately 1.0 {mu}m in diameter, having specific sea-urchin morphology. Specific surface area of the precipitates varied from 3.42 to 23.45 m{sup 2} g{sup -1}. X-ray fluorescence analyses revealed that schwertmannite formed in solution with initial pH in the range of 2.00-3.44 had similar elemental composition and could be expressed as Fe{sub 8}O{sub 8}(OH){sub 4.42}(SO{sub 4}){sub 1.79,} whereas Fe{sub 8}O{sub 8}(OH){sub 4.36}(SO{sub 4}){sub 1.82} and Fe{sub 8}O{sub 8}(OH){sub 4.29}(SO{sub 4}){sub 1.86} as its chemical formula when the initial pH was 1.80 and 1.60, respectively.

  10. High-frequency dynamics of ocean pH: a multi-ecosystem comparison.

    Directory of Open Access Journals (Sweden)

    Gretchen E Hofmann

    Full Text Available The effect of Ocean Acidification (OA on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO(2, reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO(2, often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO(2. Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change.

  11. Resilience to temperature and pH changes in a future climate change scenario in six strains of the polar diatom Fragilariopsis cylindrus

    Science.gov (United States)

    Pančić, M.; Hansen, P. J.; Tammilehto, A.; Lundholm, N.

    2015-07-01

    The effects of ocean acidification and increased temperature on physiology of six strains of the polar diatom Fragilariopsis cylindrus from Greenland were investigated. Experiments were performed under manipulated pH levels (8.0, 7.7, 7.4, and 7.1) and different temperatures (1, 5, and 8 °C) to simulate changes from present to plausible future levels. Each of the 12 scenarios was run for 7 days, and a significant interaction between temperature and pH on growth was detected. By combining increased temperature and acidification, the two factors counterbalanced each other, and therefore no effect on the growth rates was found. However, the growth rates increased with elevated temperatures by ~ 20-50 % depending on the strain. In addition, a general negative effect of increasing acidification on growth was observed. At pH 7.7 and 7.4, the growth response varied considerably among strains. However, a more uniform response was detected at pH 7.1 with most of the strains exhibiting reduced growth rates by 20-37 % compared to pH 8.0. It should be emphasized that a significant interaction between temperature and pH was found, meaning that the combination of the two parameters affected growth differently than when considering one at a time. Based on these results, we anticipate that the polar diatom F. cylindrus will be unaffected by changes in temperature and pH within the range expected by the end of the century. In each simulated scenario, the variation in growth rates among the strains was larger than the variation observed due to the whole range of changes in either pH or temperature. Climate change may therefore not affect the species as such, but may lead to changes in the population structure of the species, with the strains exhibiting high phenotypic plasticity, in terms of temperature and pH tolerance towards future conditions, dominating the population.

  12. Plasmodium falciparum chloroquine resistance transporter (PfCRT) isoforms PH1 and PH2 perturb vacuolar physiology.

    Science.gov (United States)

    Callaghan, Paul S; Siriwardana, Amila; Hassett, Matthew R; Roepe, Paul D

    2016-03-31

    Recent work has perfected yeast-based methods for measuring drug transport by the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT). The approach relies on inducible heterologous expression of PfCRT in Saccharomyces cerevisiae yeast. In these experiments selecting drug concentrations are not toxic to the yeast, nor is expression of PfCRT alone toxic. Only when PfCRT is expressed in the presence of CQ is the growth of yeast impaired, due to inward transport of chloroquine (CQ) via the transporter. During analysis of all 53 known naturally occurring PfCRT isoforms, two isoforms (PH1 and PH2 PfCRT) were found to be intrinsically toxic to yeast, even in the absence of CQ. Additional analysis of six very recently identified PfCRT isoforms from Malaysia also showed some toxicity. In this paper the nature of this yeast toxicity is examined. Data also show that PH1 and PH2 isoforms of PfCRT transport CQ with an efficiency intermediate to that catalyzed by previously studied CQR conferring isoforms. Mutation of PfCRT at position 160 is found to perturb vacuolar physiology, suggesting a fitness cost to position 160 amino acid substitutions. These data further define the wide range of activities that exist for PfCRT isoforms found in P. falciparum isolates from around the globe.

  13. Altered Ca fluxes and contractile state during pH changes in cultured heart cells

    International Nuclear Information System (INIS)

    Kim, D.; Smith, T.W.

    1987-01-01

    The authors studied mechanisms underlying changes in myocardial contractile state produced by intracellular (pH/sub i/) or extracellular (pH 0 ) changes in pH using cultured chick embryo ventricular cells. A change in pH 0 of HEPES-buffered medium from 7.4 to 6.0 or to 8.8 changed the amplitude of cell motion by -85 or +60%, and 45 Ca uptake at 10 s by -29 or +22%, respectively. The pH 0 induced change in Ca uptake was not sensitive to nifedipine but was Na gradient dependent. Changes in pH/sub i/ produced by NH 4 Cl or preincubation in media at pH values ranging from 6.0 to 8.8 failed to alter significantly 45 Ca uptake or efflux. However, larger changes in pH/sub i/ were associated with altered Ca uptake. Changes in pH 0 from 7.5 to 6.0 or to 8.8 were associated with initial changes in 45 Ca efflux by +17 or -18%, respectively, and these effects were not Na dependent. Exposure of cells to 20 mM NH 4 Cl produced intracellular alkalinization and a positive inotropic effect, whereas subsequent removal of NH 4 Cl caused intracellular acidification and a negative inotropic effect. There was, however, a lack of close temporal relationships between pH/sub i/ and contractile state. These results indicated that pH 0 -induced changes in contractile state in cultured heart cells are closely correlated with altered transarcolemmal Ca movements and presumably are due to these Ca flux changes

  14. Next Generation Qualification: Nanometrics T120PH Seismometer Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Bion J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Slad, George William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Sandia National Laboratories has tested and evaluated three seismometers, the Trillium 120PH, manufactured by Nanometrics. These seismometers measure broadband ground velocity using a UVW configuration with feedback control in a mechanically levelled borehole package. The purpose of the seismometer evaluation was to determine a measured sensitivity, response, self- noise, dynamic range, and self-calibration ability. The Nanometrics Trillium 120PH seismometers are being evaluated for the U.S. Air Force as part of their Next Generation Qualification effort.

  15. Fabrication of triple-labeled polyelectrolyte microcapsules for localized ratiometric pH sensing.

    Science.gov (United States)

    Song, Xiaoxue; Li, Huanbin; Tong, Weijun; Gao, Changyou

    2014-02-15

    Encapsulation of pH sensitive fluorophores as reporting molecules provides a powerful approach to visualize the transportation of multilayer capsules. In this study, two pH sensitive dyes (fluorescein and oregon green) and one pH insensitive dye (rhodamine B) were simultaneously labeled on the microcapsules to fabricate ratiometric pH sensors. The fluorescence of the triple-labeled microcapsule sensors was robust and nearly independent of other intracellular species. With a dynamic pH measurement range of 3.3-6.5, the microcapsules can report their localized pH at a real time. Cell culture experiments showed that the microcapsules could be internalized by RAW 246.7 cells naturally and finally accumulated in acidic organelles with a pH value of 5.08 ± 0.59 (mean ± s.d.; n=162). Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Determination of salivary flow rate, pH, and dental caries during pregnancy: A study

    Directory of Open Access Journals (Sweden)

    Amruta A Karnik

    2015-01-01

    Full Text Available Introduction: Saliva is an important diagnostic biofluid and the salivary composition is affected by various systemic conditions including pregnancy. Aims: The study was conducted to evaluate the salivary flow rate and pH in pregnant and non-pregnant Indian women and, consequently, to compare and correlate the salivary flow rate, pH, and prevalence of dental caries in both groups. Settings and Design: A cross-sectional study was conducted in our institute on a sample of 30 pregnant and 30 non-pregnant women. Materials and Methods: The clinical findings for Decayed-Missing-Filled Teeth (DMFT index were recorded. Unstimulated whole saliva was collected to determine the salivary flow rate and pH. Statistical Analysis Used: Data were statistically analyzed using Student′s t-test. Results: Salivary flow rate was lower in pregnant women (0.63 ml/min as compared to that in non-pregnant women (0.81 ml/min (P < 0.05 and the pH was also lesser in pregnant women (6.56 than in non-pregnant women (6.86 (P < 0.05. DMFT index showed a strong negative correlation with pH in pregnant women and non-pregnant women (P < 0.05. Conclusion: A difference was observed between the salivary parameters of pregnant and non-pregnant women in this sample. However, all the values were within the normal range. A significant inverse relation was found between salivary pH and dental caries for both the groups.

  17. Stereoselectivity and conformational stability of haloalkane dehalogenase DbjA from Bradyrhizobium japonicum USDA110: the effect of pH and temperature.

    Science.gov (United States)

    Chaloupkova, Radka; Prokop, Zbynek; Sato, Yukari; Nagata, Yuji; Damborsky, Jiri

    2011-08-01

    The effect of pH and temperature on structure, stability, activity and enantioselectivity of haloalkane dehalogenase DbjA from Bradyrhizobium japonicum USDA110 was investigated in this study. Conformational changes have been assessed by circular dichroism spectroscopy, functional changes by kinetic analysis, while quaternary structure was studied by gel filtration chromatography. Our study shows that the DbjA enzyme is highly tolerant to pH changes. Its secondary and tertiary structure was not affected by pH in the ranges 5.3-10.3 and 6.2-10.1, respectively. Oligomerization of DbjA was strongly pH-dependent: monomer, dimer, tetramer and a high molecular weight cluster of the enzyme were distinguished in solution at different pH conditions. Moreover, different oligomeric states of DbjA possessed different thermal stabilities. The highest melting temperature (T(m) = 49.1 ± 0.2 °C) was observed at pH 6.5, at which the enzyme occurs in dimeric form. Maximal activity was detected at 50 °C and in the pH interval 7.7-10.4. While pH did not have any effect on enantiodiscriminination of DbjA, temperature significantly altered DbjA enantioselectivity. A decrease in temperature results in significantly enhanced enantioselectivity. The temperature dependence of DbjA enantioselectivity was analysed with 2-bromobutane, 2-bromopentane, methyl 2-bromopropionate and ethyl 2-bromobutyrate, and differential activation parameters Δ(R-S)ΔH and Δ(R-S)ΔS were determined. The thermodynamic analysis revealed that the resolution of β-bromoalkanes was driven by both enthalpic and entropic terms, while the resolution of α-bromoesters was driven mainly by an enthalpic term. Unique catalytic activity and structural stability of DbjA in a broad pH range, combined with high enantioselectivity with particular substrates, make this enzyme a very versatile biocatalyst. Enzyme EC3.8.1.5 haloalkane dehalogenase. © 2011 The Authors Journal compilation © 2011 FEBS.

  18. PhMYB4 fine-tunes the floral volatile signature of Petunia x hybrida through PhC4H.

    Science.gov (United States)

    Colquhoun, Thomas A; Kim, Joo Young; Wedde, Ashlyn E; Levin, Laura A; Schmitt, Kyle C; Schuurink, Robert C; Clark, David G

    2011-01-01

    In Petunia × hybrida cv 'Mitchell Diploid' (MD), floral volatile benzenoid/phenylpropanoid (FVBP) biosynthesis is controlled spatially, developmentally, and daily at molecular, metabolic, and biochemical levels. Multiple genes have been shown to encode proteins that either directly catalyse a biochemical reaction yielding FVBP compounds or are involved in metabolite flux prior to the formation of FVBP compounds. It was hypothesized that multiple transcription factors are involved in the precise regulation of all necessary genes, resulting in the specific volatile signature of MD flowers. After acquiring all available petunia transcript sequences with homology to Arabidopsis thaliana R2R3-MYB transcription factors, PhMYB4 (named for its close identity to AtMYB4) was identified, cloned, and characterized. PhMYB4 transcripts accumulate to relatively high levels in floral tissues at anthesis and throughout open flower stages, which coincides with the spatial and developmental distribution of FVBP production and emission. Upon RNAi suppression of PhMYB4 (ir-PhMYB4) both petunia cinnamate-4-hydroxylase (PhC4H1 and PhC4H2) gene transcript levels were significantly increased. In addition, ir-PhMYB4 plants emit higher levels of FVBP compounds derived from p-coumaric acid (isoeugenol and eugenol) compared with MD. Together, these results indicate that PhMYB4 functions in the repression of C4H transcription, indirectly controlling the balance of FVBP production in petunia floral tissue (i.e. fine-tunes).

  19. Intracellular pH in rat pancreatic ducts

    DEFF Research Database (Denmark)

    Novak, I; Hug, M; Greger, R

    1997-01-01

    In order to study the mechanism of H+ and HCO3- transport in a HCO3- secreting epithelium, pancreatic ducts, we have measured the intracellular pH (pHi) in this tissue using the pH sensitive probe BCECF. We found that exposures of ducts to solutions containing acetate/acetic acid or NH4+/NH3...... buffers (20 mmol/l) led to pHi changes in accordance with entry of lipid-soluble forms of the buffers, followed by back-regulation of pHi by duct cells. In another type of experiment, changes in extracellular pH of solutions containing HEPES or HCO3-/CO2 buffers led to significant changes in pHi that did....... Under some conditions, these exchangers can be invoked to regulate cell pH....

  20. Optimization of urinary dipstick pH: Are multiple dipstick pH readings reliably comparable to commercial 24-hour urinary pH?

    Science.gov (United States)

    Abbott, Joel E; Miller, Daniel L; Shi, William; Wenzler, David; Elkhoury, Fuad F; Patel, Nishant D; Sur, Roger L

    2017-09-01

    Accurate measurement of pH is necessary to guide medical management of nephrolithiasis. Urinary dipsticks offer a convenient method to measure pH, but prior studies have only assessed the accuracy of a single, spot dipstick. Given the known diurnal variation in pH, a single dipstick pH is unlikely to reflect the average daily urinary pH. Our goal was to determine whether multiple dipstick pH readings would be reliably comparable to pH from a 24-hour urine analysis. Kidney stone patients undergoing a 24-hour urine collection were enrolled and took images of dipsticks from their first 3 voids concurrently with the 24-hour collection. Images were sent to and read by a study investigator. The individual and mean pH from the dipsticks were compared to the 24-hour urine pH and considered to be accurate if the dipstick readings were within 0.5 of the 24-hour urine pH. The Bland-Altman test of agreement was used to further compare dipstick pH relative to 24-hour urine pH. Fifty-nine percent of patients had mean urinary pH values within 0.5 pH units of their 24-hour urine pH. Bland-Altman analysis showed a mean difference between dipstick pH and 24-hour urine pH of -0.22, with an upper limit of agreement of 1.02 (95% confidence interval [CI], 0.45-1.59) and a lower limit of agreement of -1.47 (95% CI, -2.04 to -0.90). We concluded that urinary dipstick based pH measurement lacks the precision required to guide medical management of nephrolithiasis and physicians should use 24-hour urine analysis to base their metabolic therapy.

  1. Gastrointestinal pH profile in subjects with irritable bowel syndrome.

    Science.gov (United States)

    Lalezari, David

    2012-01-01

    To investigate the small bowel pH profile and small intestine transit time (SITT) in healthy controls and patients with irritable bowel syndrome (IBS). Nine IBS patients (3 males, mean age 35 yr) and 10 healthy subjects (6 males, mean age 33 yr) were studied. Intestinal pH profile and SITT were assessed by a wireless motility pH and pressure capsule (Smart Pill). Mean pH values were measured in the small intestine (SI) and compared both within and between groups. Data presented as mean or median, ANOVA, P <0.05 for significance. We found the pH for the first (Q1), second (Q2), third (Q3), and fourth quartile (Q4) of the SI in healthy versus IBS patients was 5.608 ± 0.491 vs. 5.667 ± 0.297, 6.200 ± 0.328 vs. 6.168 ± 0.288, 6.679 ± 0.316 vs. 6.741 ± 0.322, and 6.884 ± 0.200 vs. 6.899 ± 0.303, respectively. We found no significant group difference in pH per quartile (P=0.7979). The proximal SI was significantly more acidic, compared to distal segments, in both healthy subjects and IBS patients (P<0.0001). We found no significant difference in the measured SITT between IBS and control groups with a mean SITT of 218.56 ± 59.60 min and 199.20 ± 82.31 min, respectively (P=0.55). This study shows the presence of a gradient of pH along the SI, in both IBS and healthy subjects, the distal being less acidic. These finding may be of importance in small bowel homeostasis.

  2. The thermal stability of the Fusarium solani pisi cutinase as a function of pH

    OpenAIRE

    Petersen, Steffen B; Fojan, Peter; Petersen, Evamaria I; Petersen, Maria Teresa Neves

    2001-01-01

    We have investigated the thermal stability of the Fusarium solani pisi cutinase as a function of pH, in the range from pH 2–12. Its highest enzymatic activity coincides with the pH-range at which it displays its highest thermal stability. The unfolding of the enzyme as a function of pH was investigated by microcalorimetry. The ratio between the calorimetric enthalpy (ΔHcal) and the van′t Hoff enthalpy (ΔHv) obtained, is far from unity, indicating that cutinase does not exhibit a simple...

  3. How Prepared Are MSW Graduates for Doctoral Research? Views of PhD Research Faculty

    Science.gov (United States)

    Drisko, James W.; Evans, Kristin

    2018-01-01

    This national survey of PhD faculty assessed the research preparation of entering doctoral social work students on a wide range of research knowledge and related skills. The prior literature shows that PhD programs repeat much BSW and MSW research course content. This study shows that the trend continues and has perhaps widened. PhD research…

  4. Physico-chemical changes of ZnO nanoparticles with different size and surface chemistry under physiological pH conditions.

    Science.gov (United States)

    Gwak, Gyeong-Hyeon; Lee, Won-Jae; Paek, Seung-Min; Oh, Jae-Min

    2015-03-01

    We studied the physico-chemical properties of ZnO nanoparticles under physiological pH conditions (gastric, intestinal and plasma) as functions of their size (20 and 70 nm) and surface chemistry (pristine, L-serine, or citrate coating). ZnO nanoparticles were dispersed in phosphate buffered saline under physiological pH conditions and aliquots were collected at specific time points (0.5, 1, 4, 10 and 24 h) for further characterization. The pH values of the aqueous ZnO colloids at each condition were in the neutral to slightly basic range and showed different patterns depending on the original size and surface chemistry of the ZnO nanoparticles. The gastric pH condition was found to significantly dissolve ZnO nanoparticles up to 18-30 wt%, while the intestinal or plasma pH conditions resulted in much lower dissolution amounts than expected. Based on the X-ray diffraction patterns and X-ray absorption spectra, we identified partial phase transition of the ZnO nanoparticles from wurtzite to Zn(OH)2 under the intestinal and plasma pH conditions. Using scanning electron microscopy, we verified that the overall particle size and morphology of all ZnO nanoparticles were maintained regardless of the pH. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Carbonate adsorption onto goethite as a function of pH and ionic strength

    International Nuclear Information System (INIS)

    Rundberg, R.S.; Albinsson, Y.

    1991-01-01

    The adsorption of carbonate onto geothite was studied as a function of both pH and ionic strength (NaClO 4 electrolyte) using 14 C tracer. The pH ranged from 2.5 to 11.6. The ionic strength was controlled by varying the NaClO 4 concentration and ranged from 0.01 to 0.1 molar. The results indicate that carbonate is adsorbed on goethite as primarily an inner-sphere complex at pH values above the point of zero charge. This is inferred from the lack of dependence on ionic strength in the adsorption of carbonate. Below the point of zero charge carbonate is adsorbed by an additional outer-sphere mechanism. An adsorption isotherm was measured at pH 7.0 with an electrolyte concentration of 0.01M. Deconvolution of the isotherm proved that at least two sorption mechanisms exist. These mechanisms lead to large distribution coefficients at low pH. Thereby making the complete removal and exclusion of carbonate from an aqueous goethite system difficult, for the purpose of characterizing a ''clean'' goethite surface

  6. pH sensitive quantum dot-anthraquinone nanoconjugates

    Science.gov (United States)

    Ruedas-Rama, Maria Jose; Hall, Elizabeth A. H.

    2014-05-01

    Semiconductor quantum dots (QDs) have been shown to be highly sensitive to electron or charge transfer processes, which may alter their optical properties. This feature can be exploited for different sensing applications. Here, we demonstrate that QD-anthraquinone conjugates can function as electron transfer-based pH nanosensors. The attachment of the anthraquinones on the surface of QDs results in the reduction of electron hole recombination, and therefore a quenching of the photoluminescence intensity. For some anthraquinone derivatives tested, the quenching mechanism is simply caused by an electron transfer process from QDs to the anthraquinone, functioning as an electron acceptor. For others, electron transfer and energy transfer (FRET) processes were found. A detailed analysis of the quenching processes for CdSe/ZnS QD of two different sizes is presented. The photoluminescence quenching phenomenon of QDs is consistent with the pH sensitive anthraquinone redox chemistry. The resultant family of pH nanosensors shows pKa ranging ˜5-8, being ideal for applications of pH determination in physiological samples like blood or serum, for intracellular pH determination, and for more acidic cellular compartments such as endosomes and lysosomes. The nanosensors showed high selectivity towards many metal cations, including the most physiologically important cations which exist at high concentration in living cells. The reversibility of the proposed systems was also demonstrated. The nanosensors were applied in the determination of pH in samples mimicking the intracellular environment. Finally, the possibility of incorporating a reference QD to achieve quantitative ratiometric measurements was investigated.

  7. pH sensitive quantum dot–anthraquinone nanoconjugates

    International Nuclear Information System (INIS)

    Ruedas-Rama, Maria Jose; Hall, Elizabeth A H

    2014-01-01

    Semiconductor quantum dots (QDs) have been shown to be highly sensitive to electron or charge transfer processes, which may alter their optical properties. This feature can be exploited for different sensing applications. Here, we demonstrate that QD-anthraquinone conjugates can function as electron transfer-based pH nanosensors. The attachment of the anthraquinones on the surface of QDs results in the reduction of electron hole recombination, and therefore a quenching of the photoluminescence intensity. For some anthraquinone derivatives tested, the quenching mechanism is simply caused by an electron transfer process from QDs to the anthraquinone, functioning as an electron acceptor. For others, electron transfer and energy transfer (FRET) processes were found. A detailed analysis of the quenching processes for CdSe/ZnS QD of two different sizes is presented. The photoluminescence quenching phenomenon of QDs is consistent with the pH sensitive anthraquinone redox chemistry. The resultant family of pH nanosensors shows pK a ranging ∼5–8, being ideal for applications of pH determination in physiological samples like blood or serum, for intracellular pH determination, and for more acidic cellular compartments such as endosomes and lysosomes. The nanosensors showed high selectivity towards many metal cations, including the most physiologically important cations which exist at high concentration in living cells. The reversibility of the proposed systems was also demonstrated. The nanosensors were applied in the determination of pH in samples mimicking the intracellular environment. Finally, the possibility of incorporating a reference QD to achieve quantitative ratiometric measurements was investigated

  8. Embedded micro-sensor for monitoring pH in concrete structures

    Science.gov (United States)

    Srinivasan, Rengaswamy; Phillips, Terry E.; Bargeron, C. Brent; Carlson, Micah A.; Schemm, Elizabeth R.; Saffarian, Hassan M.

    2000-04-01

    Three major causes of corrosion of steel in concrete are chloride ions (Cl-), temperature (T) and acidity (pH). Under normal operating temperatures and with pH above 13, steel does not undergo pitting corrosion. In presence of Cl-, if the pH decreases below 12, the probability of pitting increases. Acid rain and atmospheric carbon dioxide cause the pH to drop in concrete, often leading to corrosion of the structure with the concomitant cost of repair or replacement. Currently, the pH level in concrete is estimated through destructive testing of the structures. Glass ISFET, and other pH sensors that need maintenance and calibration cannot be embedded in concrete. In this paper, we describe an inexpensive solid state pH sensor that can be embedded in concrete, to detect pH changes at the early stages. It employs a chemical reagent, trinitrobenzenesulfonic acid (TNBS) that exhibits changes in optical properties in the 12 - 14 pH range, and is held in a film of a sol-gel/TNBS composite on an optically transparent surface. A simple LED/filter/photodiode transducer monitors pH-induced changes in TNBS. Such a device needs no periodic calibration or maintenance. The optical window, the light-source and sensor can be easily housed and encapsulated in a chemically inert structure, and embedded in concrete.

  9. Optoelectronic pH Meter: Further Details

    Science.gov (United States)

    Jeevarajan, Antony S.; Anderson, Mejody M.; Macatangay, Ariel V.

    2009-01-01

    A collection of documents provides further detailed information about an optoelectronic instrument that measures the pH of an aqueous cell-culture medium to within 0.1 unit in the range from 6.5 to 7.5. The instrument at an earlier stage of development was reported in Optoelectronic Instrument Monitors pH in a Culture Medium (MSC-23107), NASA Tech Briefs, Vol. 28, No. 9 (September 2004), page 4a. To recapitulate: The instrument includes a quartz cuvette through which the medium flows as it is circulated through a bioreactor. The medium contains some phenol red, which is an organic pH-indicator dye. The cuvette sits between a light source and a photodetector. [The light source in the earlier version comprised red (625 nm) and green (558 nm) light-emitting diodes (LEDs); the light source in the present version comprises a single green- (560 nm)-or-red (623 nm) LED.] The red and green are repeatedly flashed in alternation. The responses of the photodiode to the green and red are processed electronically to obtain the ratio between the amounts of green and red light transmitted through the medium. The optical absorbance of the phenol red in the green light varies as a known function of pH. Hence, the pH of the medium can be calculated from the aforesaid ratio.

  10. On-line monitoring of CO2 production in Lactococcus lactis during physiological pH decrease using membrane inlet mass spectrometry with dynamic pH calibration.

    Science.gov (United States)

    Andersen, Ann Zahle; Lauritsen, Frants Roager; Olsen, Lars Folke

    2005-12-20

    Monitoring CO2 production in systems, where pH is changing with time is hampered by the chemical behavior and pH-dependent volatility of this compound. In this article, we present the first method where the concentration and production rate of dissolved CO2 can be monitored directly, continuously, and quantitatively under conditions where pH changes rapidly ( approximately 2 units in 15 min). The method corrects membrane inlet mass spectrometry (MIMS) measurements of CO2 for pH dependency using on-line pH analysis and an experimentally established calibration model. It is valid within the pH range of 3.5 to 7, despite pH-dependent calibration constants that vary in a non-linear fashion with more than a factor of 3 in this interval. The method made it possible to determine the carbon dioxide production during Lactococcus lactis fermentations, where pH drops up to 3 units during the fermentation. The accuracy was approximately 5%. We used the method to investigate the effect of initial extracellular pH on carbon dioxide production during anarobic glucose fermentation by non-growing Lactocoocus lactis and demonstrated that the carbon dioxide production rate increases considerably, when the initial pH was increased from 6 to 6.8. (c) 2005 Wiley Periodicals, Inc.

  11. A Flexible Optical pH Sensor Based on Polysulfone Membranes Coated with pH-Responsive Polyaniline Nanofibers

    Directory of Open Access Journals (Sweden)

    Nedal Abu-Thabit

    2016-06-01

    Full Text Available A new optical pH sensor based on polysulfone (PSU and polyaniline (PANI was developed. A transparent and flexible PSU membrane was employed as a support. The electrically conductive and pH-responsive PANI was deposited onto the membrane surface by in situ chemical oxidative polymerization (COP. The absorption spectra of the PANI-coated PSU membranes exhibited sensitivity to pH changes in the range of 4–12, which allowed for designing a dual wavelength pH optical sensor. The performance of the membranes was assessed by measuring their response starting from high pH and going down to low pH, and vice versa. It was found that it is necessary to precondition the sensor layers before each measurement due to the slight hysteresis observed during forward and backward pH titrations. PSU membranes with polyaniline coating thicknesses in the range of ≈100–200 nm exhibited fast response times of <4 s, which are attributed to the porous, rough and nanofibrillar morphology of the polyaniline coating. The fabricated pH sensor was characterized by a sigmoidal response (R2 = 0.997 which allows for pH determination over a wide dynamic range. All membranes were stable for a period of more than six months when stored in 1 M HCl solution. The reproducibility of the fabricated optical pH sensors was found to be <0.02 absorption units after one month storage in 1 M HCl solution. The performance of the optical pH sensor was tested and the obtained pH values were compared with the results obtained using a pH meter device.

  12. Effect of Sodium Chloride and pH on Enterotoxin C Production

    Science.gov (United States)

    Genigeorgis, Constantin; Foda, Mohamed S.; Mantis, Antony; Sadler, Walter W.

    1971-01-01

    Growth and production of enterotoxin C by Staphylococcus aureus strain 137 in 3% + 3% protein hydrolysate powder N-Z Amine NAK broths with 0 to 12% NaCl and an initial pH of 4.00 to 9.83 were studied during an 8-day incubation period at 37 C. Growth was initiated at pH values as low as 4.00 and as high as 9.83 at 0% salt level as long as the inoculum contained at least 108 cells per ml. Rate of growth decreased as the NaCl concentration was increased gradually to 12%. Enterotoxin C was produced in broths inoculated with 108 cells per ml and above and having initial pH ranges of 4.00 to 9.83, 4.40 to 9.43, 4.50 to 8.55 and respective NaCl concentrations of 0, 4, and 8%. In the presence of 10% NaCl, the pH range supporting enterotoxin C production was 5.45 to 7.30 for an inoculum level of 108 cells per ml and 6.38 to 7.30 for 3.6 × 106 cells per ml. In repeated experiments in which the inoculum contained 108 cells per ml, we failed to demonstrate enterotoxin C production in broths with 12% NaCl and a pH range of 4.50 to 8.55 and concentrated up to 14 times. The effect of NaCl on enterotoxin C production followed the same pattern as its effect on enterotoxin B production. As the concentration of NaCl increased from 0 to 10%, yields of enterotoxin B and C decreased to undetectable amounts. PMID:5574320

  13. Sorption of uranyl ions on silica. Effects of contact time, pH, ionic strength, concentration and phosphate

    International Nuclear Information System (INIS)

    Zhang Hongxia; Tao Zuyi

    2002-01-01

    The sorption of UO 2 2+ and phosphate on silica were simultaneously studied. The effect of contact time between the solid phase and aqueous solution, pH and ionic strength on the UO 2 2+ sorption in the absence and the presence of phosphate was investigated. The effect of contact time between the solid phase and aqueous solution, pH and ionic strength on the phosphate sorption was investigated too. The isotherms of UO 2 2+ and phosphate sorption at different pH values were determined. It was found that as compared with the sorption in the absence of phosphate, the sorption of UO 2 2+ on silica in the presence of phosphate is increased at low pH and decreased at high pH; the abruptly increased with increasing pH in the pH range 3-6; the sorption is gradually decreased with increasing pH in the pH range 2-12; the sorption insensitive and the sorption of phosphate is sensitive to ionic strength. (author)

  14. Size control of Au NPs supported by pH operation

    Science.gov (United States)

    Ichiji, Masumi; Akiba, Hiroko; Hirasawa, Izumi

    2017-07-01

    Au NPs are expected to become useful functional particles, as particle gun used for plant gene transfer and also catalysts. We have studied PSD (particle size distribution) control of Au NPs by reduction crystallization. Previous study found out importance of seeds policy and also feeding profile. In this paper, effect of pH in the reduction crystallization was investigated to clarify the possibility of Au NPs PSD control by pH operation and also their growth process. Au NPs of size range 10-600 nm were obtained in single-jet system using ascorbic acid (AsA) as a reducing agent with adjusting pH of AsA. Au NPs are found to grow in the process of nucleation, agglomeration, agglomeration growth and surface growth. Au NPs tend to grow by agglomeration and become larger size in lower pH regions, and to grow only by surface growth and become smaller size in higher pH regions.

  15. Blood ph and mortality of rainbow trout (Salmo gairdnerii) and sockeye salmon (Oncorhynchus nerka)

    Energy Technology Data Exchange (ETDEWEB)

    Jonas, R E.E.; Sehdev, H S; Tomlinson, N

    1972-01-01

    Rainbow trout (Salmo gairdnerii) under light anaesthesia with MS 222 (Tricaine methanesulphonate) died when their blood pH was lowered into the range of 6.8 to 6.9 by injection of either lactic acid or hydrochloric acid. When injection of the same quantities of either acid did not lower the blood pH into this range, fatalities did not result (one exception in 56 fish injected). The injection of much larger quantities of lactate of chloride ions in the form of sodium salts did not cause fatalities. Very limited date for sockeye salmon (Oncorhynchus nerka) suggest a similar association between blood pH and mortality for this species.

  16. BRANQUEAMENTO COM OZÔNIO EM PH NEUTRO ¿ UM NOVO CONCEITO

    Directory of Open Access Journals (Sweden)

    Fernando De Carvalho

    2006-01-01

    Full Text Available The effect of medium consistency ozone stage pH was evaluated for brown and oxygen delignified eucalyptus kraft pulp samples obtained from VCP - Luiz Antônio pulp mill. These samples were used as such or previously treated with the hot acid stage (A. The main objective of this study was to determine the viability of increasing the ozone stage pH aiming at decreasing bleaching variable costs. The ozone stage was studied in the pH range of 2.5-9.0, taking into account some important variables which affect ozone bleaching: (1 pulp kappa number entering the ozone stage, (2 reactivity of ozone towards lignin versus hexenuronic acids (HexA´s, (3 pulp treatments prior to ozone stage (acid hydrolysis, and (4 pulp treatments after the ozone stage (extraction or a chlorine dioxide stage. Therefore, the impact of ozone stage pH was investigated in bleaching process such as Z/DEop vs AZ/DEop, Z/DEopD vs AZ/DEopD, Z/E vs AZ/E. The results were interpreted based on ozone stage efficiency and selectivity, and overall bleaching performance measured by the total bleaching chemical consumption required to achieve full brightness, pulp quality and environmental impact. It was concluded that the increase of ozone stage pH from 2.5 to 7.0 has a slightly negative impact on the efficiency and selectivity, measured after Z/DEop sequence, but this effect is not expressive in the end of Z/DEopD bleaching sequence. The increase of ozone stage pH from 2.5 to 7.0 in the sequence Z/DEopD is cost-effective at industrial level because it represents expressive reduction of sulphuric acid and caustic soda demand for pH control in the bleaching plant. These gain areas achieved without any significant changes in pulp quality and effluent load discharge. Nevertheless, the increase of ozone stage pH from 2.5 to 7.0 has a very high negative impact on the efficiency and selectivity for the Z/E and AZ/E processes and it is not recommended in such cases.

  17. Biochar contribution to soil pH buffer capacity

    Science.gov (United States)

    Tonutare, Tonu; Krebstein, Kadri; Utso, Maarius; Rodima, Ako; Kolli, Raimo; Shanskiy, Merrit

    2014-05-01

    Biochar as ecologically clean and stable form of carbon has complex of physical and chemical properties which make it a potentially powerful soil amendment (Mutezo, 2013). Therefore during the last decade the biochar application as soil amendment has been a matter for a great number of investigations. For the ecological viewpoint the trend of decreasing of soil organic matter in European agricultural land is a major problem. Society is faced with the task to find possibilities to stabilize or increase soil organic matter content in soil and quality. The availability of different functional groups (e.g. carboxylic, phenolic, acidic, alcoholic, amine, amide) allows soil organic matter to buffer over a wide range of soil pH values (Krull et al. 2004). Therefore the loss of soil organic matter also reduces cation exchange capacity resulting in lower nutrient retention (Kimetu et al. 2008). Biochar can retain elements in soil directly through the negative charge that develops on its surfaces, and this negative charge can buffer acidity in the soil. There are lack of investigations about the effect of biochar to soil pH buffering properties, The aim of our investigation was to investigate the changes in soil pH buffer capacity in a result of addition of carbonizated material to temperate region soils. In the experiment different kind of softwood biochars, activated carbon and different soil types with various organic matter and pH were used. The study soils were Albeluvisols, Leptosols, Cambisols, Regosols and Histosols . In the experiment the series of the soil: biochar mixtures with the biochar content 0 to 100% were used. The times of equiliberation between solid and liquid phase were from 1 to 168 hours. The suspension of soil: biochar mixtures was titrated with HCl solution. The titration curves were established and pH buffer capacities were calculated for the pH interval from 3.0 to 10.0. The results demonstrate the dependence of pH buffer capacity from soil type

  18. Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils.

    Science.gov (United States)

    Long, Xi-En; Yao, Huaiying; Wang, Juan; Huang, Ying; Singh, Brajesh K; Zhu, Yong-Guan

    2015-06-16

    Previous studies suggested that microbial photosynthesis plays a potential role in paddy fields, but little is known about chemoautotrophic carbon fixers in drained paddy soils. We conducted a microcosm study using soil samples from five paddy fields to determine the environmental factors and quantify key functional microbial taxa involved in chemoautotrophic carbon fixation. We used stable isotope probing in combination with phospholipid fatty acid (PLFA) and molecular approaches. The amount of microbial (13)CO2 fixation was determined by quantification of (13)C-enriched fatty acid methyl esters and ranged from 21.28 to 72.48 ng of (13)C (g of dry soil)(-1), and the corresponding ratio (labeled PLFA-C:total PLFA-C) ranged from 0.06 to 0.49%. The amount of incorporationof (13)CO2 into PLFAs significantly increased with soil pH except at pH 7.8. PLFA and high-throughput sequencing results indicated a dominant role of Gram-negative bacteria or proteobacteria in (13)CO2 fixation. Correlation analysis indicated a significant association between microbial community structure and carbon fixation. We provide direct evidence of chemoautotrophic C fixation in soils with statistical evidence of microbial community structure regulation of inorganic carbon fixation in the paddy soil ecosystem.

  19. The effect of pH on the complexation of Cd, Ni and Zn by dissolved organic carbon from leachate-polluted groundwater

    DEFF Research Database (Denmark)

    Christensen, J. B.; Christensen, Thomas Højlund

    2000-01-01

    model provided useful predictions of the complexation of Cd and Zn by DOC in the pH range 5±8, and of Ni in the pH range 5±7. At pH 8, however, the model overestimates the extent of Ni-DOC complexation to an unacceptable degree. The MINTEQA2 model predicts virtually no pH dependence for DOC complexation...

  20. Assessment of the suitability of Durafet-based sensors for pH measurement in dynamic estuarine environments

    Science.gov (United States)

    Gonski, Stephen F.; Cai, Wei-Jun; Ullman, William J.; Joesoef, Andrew; Main, Christopher R.; Pettay, D. Tye; Martz, Todd R.

    2018-01-01

    The suitability of the Honeywell Durafet to the measurement of pH in productive, high-fouling, and highly-turbid estuarine environments was investigated at the confluence of the Murderkill Estuary and Delaware Bay (Delaware, USA). Three different flow configurations of the SeapHOx sensor equipped with a Honeywell Durafet and its integrated internal (Ag/AgCl reference electrode containing a 4.5 M KCl gel liquid junction) and external (solid-state chloride ion selective electrode, Cl-ISE) reference electrodes were deployed for four periods between April 2015 and September 2016. In this environment, the Honeywell Durafet proved capable of making high-resolution and high-frequency pH measurements on the total scale between pH 6.8 and 8.4. Natural pH fluctuations of >1 pH unit were routinely captured over a range of timescales. The sensor pH collected between May and August 2016 using the most refined SeapHOx configuration exhibited good agreement with multiple sets of independently measured reference pH values. When deployed in conjunction with rigorous discrete sampling and calibration schemes, the sensor pH had a root-mean squared error ranging between 0.011 and 0.036 pH units across a wide range of salinity relative to both pHT calculated from measured dissolved inorganic carbon and total alkalinity and pHNBS measured with a glass electrode corrected to pHT at in situ conditions. The present work demonstrates the viability of the Honeywell Durafet to the measurement of pH to within the weather-level precision defined by the Global Ocean Acidification Observing Network (GOA-ON, ≤ 0.02 pH units) as a part of future estuarine CO2 chemistry studies undertaken in dynamic environments.

  1. Development of miniaturized pH biosensors based on electrosynthesized polymer films.

    Science.gov (United States)

    Segut, Olivier; Lakard, Boris; Herlem, Guillaume; Rauch, Jean-Yves; Jeannot, Jean-Claude; Robert, Laurent; Fahys, Bernard

    2007-08-06

    A new type of pH biosensor was developed for biological applications. This biosensor was fabricated using silicon microsystem technology and consists in two platinum microelectrodes. The first microelectrode was coated by an electrosynthesized polymer and acted as the pH sensitive electrode when the second one was coated by a silver layer and was used as the reference electrode. Then, this potentiometric pH miniaturized biosensor based on electrosynthesized polypyrrole or electrosynthesized linear polyethylenimine films was tested. The potentiometric responses appeared reversible and linear to pH changes in the range from pH 4 to 9. More, the responses were fast (less than 1 min for all sensors), they were stable in time since PPy/PEI films were stable during more than 30 days, and no interference was observed. The influence of the polymer thickness was also studied.

  2. Dual-lifetime referencing (DLR: a powerful method for on-line measurement of internal pH in carrier-bound immobilized biocatalysts

    Directory of Open Access Journals (Sweden)

    Boniello Caterina

    2012-03-01

    Full Text Available Abstract Background Industrial-scale biocatalytic synthesis of fine chemicals occurs preferentially as continuous processes employing immobilized enzymes on insoluble porous carriers. Diffusional effects in these systems often create substrate and product concentration gradients between bulk liquid and the carrier. Moreover, some widely-used biotransformation processes induce changes in proton concentration. Unlike the bulk pH, which is usually controlled at a suitable value, the intraparticle pH of immobilized enzymes may deviate significantly from its activity and stability optima. The magnitude of the resulting pH gradient depends on the ratio of characteristic times for enzymatic reaction and on mass transfer (the latter is strongly influenced by geometrical features of the porous carrier. Design and selection of optimally performing enzyme immobilizates would therefore benefit largely from experimental studies of the intraparticle pH environment. Here, a simple and non-invasive method based on dual-lifetime referencing (DLR for pH determination in immobilized enzymes is introduced. The technique is applicable to other systems in which particles are kept in suspension by agitation. Results The DLR method employs fluorescein as pH-sensitive luminophore and Ru(II tris(4,7-diphenyl-1,10-phenantroline, abbreviated Ru(dpp, as the reference luminophore. Luminescence intensities of the two luminophores are converted into an overall phase shift suitable for pH determination in the range 5.0-8.0. Sepabeads EC-EP were labeled by physically incorporating lipophilic variants of the two luminophores into their polymeric matrix. These beads were employed as carriers for immobilization of cephalosporin C amidase (a model enzyme of industrial relevance. The luminophores did not interfere with the enzyme immobilization characteristics. Analytical intraparticle pH determination was optimized for sensitivity, reproducibility and signal stability under

  3. The effect of pH on the stability of smectite

    International Nuclear Information System (INIS)

    Johnston, R.M.; Miller, H.G.

    1984-11-01

    The hydrothermal stability of smectite at temperatures less than 275 degrees C was investigated experimentally over a range of pH values. In the near-neutral pH region, the smectite to illite conversion predominated; in the mildly acid region, there was extensive formation of aluminum hydroxy interlayers in the clay; and in the alkaline region, framework silicates (feldspar and zeolites) were produced. The geological evidence for these reactions is also reviewed

  4. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH.

    Science.gov (United States)

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-05

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (K(a)=3582.88 M(-1)) and selectivity for fructose over glucose at pH=7.4. The sensor 1 showed a linear response toward d-fructose in the concentrations ranging from 2.5×10(-5) to 4×10(-4) mol L(-1) with the detection limit of 1.3×10(-5) mol L(-1). Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Nanoparticle assembled microcapsules for application as pH and ammonia sensor.

    Science.gov (United States)

    Amali, Arlin Jose; Awwad, Nour H; Rana, Rohit Kumar; Patra, Digambara

    2011-12-05

    The encapsulation of molecular probes in a suitable nanostructured matrix can be exploited to alter their optical properties and robustness for fabricating efficient chemical sensors. Despite high sensitivity, simplicity, selectivity and cost effectiveness, the photo-destruction and photo-bleaching are the serious concerns while utilizing molecular probes. Herein we demonstrate that hydroxy pyrene trisulfonate (HPTS), a pH sensitive molecular probe, when encapsulated in a microcapsule structure prepared via the assembly of silica nanoparticles mediated by poly-L-lysine and trisodium citrate, provides a robust sensing material for pH sensing under the physiological conditions. The temporal evolution under continuous irradiation indicates that the fluorophore inside the silica microcapsule is extraordinarily photostable. The fluorescence intensity alternation at dual excitation facilitates for a ratiometic sensing of the pH, however, the fluorescence lifetime is insensitive to hydrogen ion concentration. The sensing scheme is found to be robust, fast and simple for the measurement of pH in the range 5.8-8.0, and can be successfully applied for the determination of ammonia in the concentration range 0-1.2 mM, which is important for aquatic life and the environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Measurement of peritoneal fluid pH in patients with non-serosal invasive gastric cancer.

    Science.gov (United States)

    Noh, Seung Moo

    2003-02-01

    The accurate pH range of peritoneal fluid is clinically valuable for the evaluation of some pathological conditions of the body, however, it is not easy to measure in healthy individuals. The aim of this study was to measure; pH, pCO2, pO2, Na+, K++, Ca++, HCO3-, and O2 saturation of the peritoneal fluid in patients with non-serosal invasive gastric cancer. One hundred and thirty four patients (86 men and 48 women), ranging in age from 24 to 91 years were enrolled in this study. After opening the abdominal wall, the probe of a portable pH meter was placed in the peritoneal fluid in the subhepatic space. In addition, I collected the peritoneal fluid from the subhepatic space to measure, pH, pCO2, pO2, Na+, K++, Ca++, HCO3-, and O2 saturation using an autoanalyzer. The pHs of the peritoneal fluids tested has a mean of 7.73 (range 7.46 - 8.10), and the other parameters were pCO2, 22.81 mmHg; pO2, 136.49 mmHg; Na+, 146.57 mmol/L; K++, 4.80 mmol/L; Ca++, 0.89 mmol/L; HCO3-, 30.54 mmol/L, and O2 saturation, 99.74%. This study describes a practical method of measuring the pH of peritoneal fluid. The result obtained reflects the normal adult peritoneal pH value, which I propose as a reference value.

  7. Development of Hybrid pH sensor for long-term seawater pH monitoring.

    Science.gov (United States)

    Nakano, Y.; Egashira, T.; Miwa, T.; Kimoto, H.

    2016-02-01

    We have been developing the in situ pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring. We are planning to provide the HpHS for researchers and environmental consultants for observation of the CCS (Carbon dioxide Capture and Storage) monitoring system, the coastal environment monitoring system (e.g. Blue Carbon) and ocean acidification. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH (Clayton and Byrne, 1993 and Liu et al., 2011). We can choose both coefficients before deployment. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS consists of an aluminum pressure housing with optical cell (main unit) and an aluminum silicon-oil filled, pressure-compensated vessel containing pumps and valves (diaphragm pump and valve unit) and pressure-compensated reagents bags (pH indicator, pure water and Tris buffer or certified reference material: CRM) with an ability to resist water pressure to 3000m depth. The main unit holds system control boards, pump drivers, data storage (micro SD card), LED right source, photodiode, optical cell and pressure proof windows. The HpHS also has an aluminum pressure housing that holds a rechargeable lithium-ion battery or a lithium battery for the power supply (DC 24 V). The HpHS is correcting the value of the potentiometric pH sensor (measuring frequently) by the value of the spectrophotometric pH sensor (measuring less frequently). It is possible to calibrate in

  8. Novel fluorescent pH sensor based on coumarin with piperazine and imidazole substituents.

    Science.gov (United States)

    Saleh, Na'il; Al-Soud, Yaseen A; Nau, Werner M

    2008-12-01

    A new coumarin derivative containing piperazine and imidazole moieties is reported as a fluorophore for hydrogen ions sensing. The fluorescence enhancement of the studied sensor with an increase in hydrogen ions concentration is based on the hindering of photoinduced electron transfer from the piperazinyl amine and the imidazolyl amine to the coumarin fluorophore by protonation. The presented sensor has a novel design of fluorophore-spacer-receptor(1)-receptor(2) format, which is proposed to sense two ranges of pH (from 2.5 to 5.5) and (from 10 to 12) instead of sensing one pH range. A model compound, in which the piperazinyl ring is absent, was synthesized as well to confirm the novel pH sensing of the proposed sensor.

  9. Dimerization of Organic Dyes on Luminescent Gold Nanoparticles for Ratiometric pH Sensing.

    Science.gov (United States)

    Sun, Shasha; Ning, Xuhui; Zhang, Greg; Wang, Yen-Chung; Peng, Chuanqi; Zheng, Jie

    2016-02-12

    Synergistic effects arising from the conjugation of organic dyes onto non-luminescent metal nanoparticles (NPs) have greatly broadened their applications in both imaging and sensing. Herein, we report that conjugation of a well-known pH-insensitive dye, tetramethyl-rhodamine (TAMRA), to pH-insensitive luminescent gold nanoparticles (AuNPs) can lead to an ultrasmall nanoindicator that can fluorescently report local pH in a ratiometric way. Such synergy originated from the dimerization of TAMRA on AuNPs, of which geometry was very sensitive to surface charges of the AuNPs and can be reversely modulated through protonation of surrounding glutathione ligands. Not limited to pH-insensitive dyes, this pH-dependent dimerization can also enhance the pH sensitivity of fluorescein, a well-known pH-sensitive dye, within a larger pH range, opening up a new pathway to design ultrasmall fluorescent ratiometric nanoindicators with tunable wavelengths and pH response ranges. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hydrazine functionalized probes for chromogenic and fluorescent ratiometric sensing of pH and F-: experimental and DFT studies.

    Science.gov (United States)

    Roy Chowdhury, Additi; Mondal, Amita; Roy, Biswajit Gopal; K, Jagadeesh C Bose; Mukhopadhyay, Sudit; Banerjee, Priyabrata

    2017-11-08

    Two novel hydrazine based sensors, BPPIH (N 1 ,N 3 -bis(perfluorophenyl)isophthalohydrazide) and BPBIH (N 1' ,N 3' -bis(perfluorobenzylidene)isophthalohydrazide), are presented here. BPPIH is found to be a highly sensitive pH sensor in the pH range 5.0 to 10.0 in a DMSO-water solvent mixture with a pK a value of 9.22. Interesting optical responses have been observed for BPPIH in the above mentioned pH range. BPBIH on the other hand turns out to be a less effective pH sensor in the above mentioned pH range. The increase in fluorescence intensity at a lower pH for BPPIH was explained by using density functional theory. The ability of BPPIH to monitor the pH changes inside cancer cells is a useful application of the sensor as a functional material. In addition fluoride (F - ) selectivity studies of these two chemosensors have been performed and show that between them, BPBIH shows greater selectivity towards F - . The interaction energy calculated from the DFT-D3 supports the experimental findings. The pH sensor (BPPIH) can be further interfaced with suitable circuitry interfaced with desired programming for ease of access and enhancement of practical applications.

  11. Evaluation of the relation between lipid coat, transepidermal water loss, and skin pH.

    Science.gov (United States)

    Algiert-Zielińska, Barbara; Batory, Mirella; Skubalski, Janusz; Rotsztejn, Helena

    2017-11-01

    The epidermis is an epidermal barrier which accumulates lipid substances and participates in skin moisturizing. An evaluation of the epidermal barrier efficiency can be made, among others, by the measurement of the following values: the lipid coat, the transepidermal water loss (TEWL) index, and pH. The study involved 50 Caucasian, healthy women aged 19-35 years (mean 20.56). Measurements were made using Courage & Khazaka Multi Probe Adapter MPA 580: Tewameter TM 300, pH-Meter PH 905, Sebumeter SM 815. The areas of measurements included forehead, nose, left cheek, right cheek, chin, and thigh. In the T-zone, the lipid coat was in the range between 0 and 270 μg/cm 2 (mean 128 μg/cm 2 ), TEWL between 1 and 55 g/m 2 /h (mean 11.1 g/m 2 /h), and pH 4.0-5.6 (mean 5.39). Lower values of the lipid coat up to 100 μg/cm 2 were accompanied by TEWL greater than 30 g/m 2 /h and less acidic pH of 5.6-9.0. In the U-zone the range of lipid coat was up to 200 μg/cm 2 (mean 65.2 μg/cm 2 ), the skin pH remained 4.0-5.6 (mean 5.47), and TEWL was in the range between 1 and 20 g/m 2 /h (mean 8.7 g/m 2 /h). Lower values of the lipid coat up to 100 μg/cm 2 were accompanied by TEWL between 1 and 20 g/m 2 /h and less acidic pH of 5.6-9.0. High values of the lipid coat between 180 and 200 μg/cm 2 were connected with TEWL of 1-15 g/m 2 /h. On the skin of the thigh, we observed a very thin lipid coat - 35 μg/cm 2 (mean 5.6 μg/cm 2 ), pH (mean 5.37), and TEWL (mean 8.5 g/m 2 /h) were considered by us to be within regular limits. In the T-zone, a thinner lipid coat resulted in relatively high TEWL and pH levels changing toward alkaline. In the U-zone, thinner lipid coat was accompanied by lower TEWL and pH changing toward alkaline. We also observed that lower values of lipid coat up to 100 μg/cm 2 were associated with higher pH values ranging toward the basic character pH 5.6-9.0). © 2017 The International Society of Dermatology.

  12. Simple graphene chemiresistors as pH sensors: fabrication and characterization

    Science.gov (United States)

    Lei, Nan; Li, Pengfei; Xue, Wei; Xu, Jie

    2011-10-01

    We report the fabrication and characterization of a simple gate-free graphene device as a pH sensor. The graphene sheets are made by mechanical exfoliation. Platinum contact electrodes are fabricated with a mask-free process using a focused ion beam and then expanded by silver paint. Annealing is used to improve the electrical contact. The experiment on the fabricated graphene device shows that the resistance of the device decreases linearly with increasing pH values (in the range of 4-10) in the surrounding liquid environment. The resolution achieved in our experiments is approximately 0.3 pH in alkali environment. The sensitivity of the device is calculated as approximately 2 kΩ pH-1. The simple configuration, miniaturized size and integration ability make graphene-based sensors promising candidates for future micro/nano applications.

  13. Simple graphene chemiresistors as pH sensors: fabrication and characterization

    International Nuclear Information System (INIS)

    Lei, Nan; Li, Pengfei; Xue, Wei; Xu, Jie

    2011-01-01

    We report the fabrication and characterization of a simple gate-free graphene device as a pH sensor. The graphene sheets are made by mechanical exfoliation. Platinum contact electrodes are fabricated with a mask-free process using a focused ion beam and then expanded by silver paint. Annealing is used to improve the electrical contact. The experiment on the fabricated graphene device shows that the resistance of the device decreases linearly with increasing pH values (in the range of 4–10) in the surrounding liquid environment. The resolution achieved in our experiments is approximately 0.3 pH in alkali environment. The sensitivity of the device is calculated as approximately 2 kΩ pH −1 . The simple configuration, miniaturized size and integration ability make graphene-based sensors promising candidates for future micro/nano applications. (technical design note)

  14. Effect of the pH on the radiocesium adsorption in tropical soils

    International Nuclear Information System (INIS)

    Roque, Mario Lucio; Boaretto, Antonio E.; Moniz, Antonio C; Smolders, Erik E. T.

    2002-01-01

    The objective was to demonstrate that the pH dependent charges are specific change sites for radiocesium. Clay minerals occurrence in superficial samples of eight tropical soils was analyzed by X-Ray diffractometry. The variation of superficial charge of these soils were quantify by potentiometric titration in a range from 3 to 8 pH values. The results of radiocesium interception potential showed the presence of specific sites of adsorption of this radionuclide for all the soils. The variation of radiocesium adsorption for all soils was quantified in a pH defined range. The increase on the pH values caused increase on the radiocesium adsorption by the soils and a consequent decrease in the radiocesium activity in the equilibrium solution. The soil with predominance of the 2:1 clay minerals showed higher radiocesium adsorption than the soils with 1:1 clay minerals or iron and aluminum oxides. The increase on the negative charge in consequence of pH increase caused increase on radiocesium adsorption. The correction of soil acidity with lime by increasing the specific sites charge for radiocesium and decreasing the radionuclide activity in soil solution may cause decrease on the transference of radiocesium from soil to plant. (author)

  15. Direct reduction of N-acetoxy-PhIP by tea polyphenols: a possible mechanism for chemoprevention against PhIP-DNA adduct formation

    International Nuclear Information System (INIS)

    Lin Dongxin; Thompson, Patricia A.; Teitel, Candee; Chen Junshi; Kadlubar, Fred F.

    2003-01-01

    The chemopreventive effect of tea against 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-DNA adduct formation and its mechanism were studied. Rats were exposed to freshly prepared aqueous extracts of green tea (3% (w/v)) as the sole source of drinking water for 10 days prior to administration with a single dose of PhIP (10 mg/kg body weight) by oral gavage. PhIP-DNA adducts in the liver, colon, heart, and lung were measured using the 32 P-postlabelling technique. Rats pre-treated with tea and given PhIP 20 h before sacrifice had significantly reduced levels of PhIP-DNA adducts as compared with controls given PhIP alone. The possible mechanism of protective effect of tea on PhIP-DNA adduct formation was then examined in vitro. It was found that an aqueous extract of green and black tea, mixtures of green and black tea polyphenols, as well as purified polyphenols could strongly inhibit the DNA binding of N-acetoxy-PhIP, a putative ultimate carcinogen of PhIP formed in vivo via metabolic activation. Among these, epigallocatechin gallate was exceptionally potent. HPLC analyses of these incubation mixtures containing N-acetoxy-PhIP and the tea polyphenols each revealed the production of the parent amine, PhIP, indicating the involvement of a redox mechanism. In view of the presence of relatively high levels of tea polyphenols in rat and human plasma after ingestion of tea, this study suggests that direct reduction of the ultimate carcinogen N-acetoxy-PhIP by tea polyphenols is likely to be involved in the mechanism of chemoprotection of tea against this carcinogen

  16. Effect of pH and VFA on hydrolysis of organic solid waste

    NARCIS (Netherlands)

    Veeken, A.H.M.; Kalyuzhnyi, S.; Scharff, H.; Hamelers, H.V.M.

    2000-01-01

    The anaerobic hydrolysis rate of organic solid waste was studied at fixed volatile fatty acid (VFA) concentrations ranging from 3 to 30 g COD/L and fixed pH values between 5 and 7. For separate control of both VFA and pH, a special completely mixed reactor was designed. In this way, it was possible

  17. Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems.

    Science.gov (United States)

    Zhang, Xin; Rehm, Stefanie; Safont-Sempere, Marina M; Würthner, Frank

    2009-11-01

    Water-soluble, self-assembled nanocapsules composed of a functional bilayer membrane and enclosed guest molecules can provide smart (that is, condition responsive) sensors for a variety of purposes. Owing to their outstanding optical and redox properties, perylene bisimide chromophores are interesting building blocks for a functional bilayer membrane in a water environment. Here, we report water-soluble perylene bisimide vesicles loaded with bispyrene-based energy donors in their aqueous interior. These loaded vesicles are stabilized by in situ photopolymerization to give nanocapsules that are stable over the entire aqueous pH range. On the basis of pH-tunable spectral overlap of donors and acceptors, the donor-loaded polymerized vesicles display pH-dependent fluorescence resonance energy transfer from the encapsulated donors to the bilayer dye membrane, providing ultrasensitive pH information on their aqueous environment with fluorescence colour changes covering the whole visible light range. At pH 9.0, quite exceptional white fluorescence could be observed for such water-soluble donor-loaded perylene vesicles.

  18. Inhibition of Candida albicans by Fluvastatin Is Dependent on pH

    Directory of Open Access Journals (Sweden)

    Martin Schmidt

    2009-01-01

    Full Text Available The cholesterol-lowering drug fluvastatin (FS has an inhibitory effect on the growth of the pathogenic yeast Candida albicans that is dependent on the pH of the medium. At the low pH value of the vagina, FS is growth inhibitory at low and at high concentrations, while at intermediate concentrations (1–10 mM, it has no inhibitory effect. Examination of the effect of the common antifungal drug fluconazole in combination with FS demonstrates drug interactions in the low concentration range. Determination of intracellular stress and the activity of the FS target enzyme HMG-CoA reductase confirm our hypothesis that in the intermediate dose range adjustments to the sterol biosynthesis pathway can compensate for the action of FS. We conclude that the pH dependent uptake of FS across yeast membranes might make FS combination therapy an attractive possibility for treatment of vaginal C. albicans infections.

  19. Are salivary amylase and pH - Prognostic indicators of cancers?

    Science.gov (United States)

    Ramya, Atmakuri Shanmukha; Uppala, Divya; Majumdar, Sumit; Surekha, Ch; Deepak, K G K

    2015-01-01

    Saliva, "Mirror of body's health" has long been of particular interest as a substitute for blood for disease diagnosis and monitoring. The radiation effects on salivary glands are of particular interest in which salivary amylase is a good indicator of salivary glands function. Thus, estimation of these parameters represents a reasonable approach in evaluation of patient's risk for disease occurrence, intensity and prognosis. To evaluate and compare the pH and amylase levels in saliva of cancer patients prior to treatment, patients during treatment. Saliva samples of 90 individuals were taken which were divided into 3 groups - 30 individuals without cancer, 30 cancer patients prior treatment and 30 cancer patients during treatment. Materials used were pH strips and pH meter, Salivary Amylase assay. Statistical analysis - ANOVA with post-hoc Tukey's test. 1) Significant decrease in salivary amylase levels - in cancer patients, during treatment when compared to others. 2) Significant decrease in salivary pH levels in newly diagnosed cancer patients prior to treatment. To conclude, pH strips and pH meter showed to be a useful tool in the measurement of pH of saliva in individuals with and without cancer. This study showed that cancer patients without treatment have a lower pH of saliva. Treatment increased the pH of the saliva to a more alkaline level whereas amylase levels decreased in those subjects. Therefore those parameters can be an area of further research with an increased sample size, which in-turn may help in opening the doors for new dimension in non invasive prognostic markers.

  20. Modulation of the epithelial Ca2+ channel ECaC by extracellular pH.

    NARCIS (Netherlands)

    Vennekens, R.; Prenen, J.; Hoenderop, J.G.J.; Bindels, R.J.M.; Droogmans, G.; Nilius, B.

    2001-01-01

    We investigated the effect of extracellular pH on whole-cell currents through the epithelial Ca2+ channel, ECaC, expressed in HEK 293 cells. Both mono- and divalent current densities were significantly smaller at pH 6.0 than at pH 7.4. At pH 8.5 they were slightly larger. Lowering extracellular pH

  1. Effect of two mouthwashes on salivary ph.

    Science.gov (United States)

    Belardinelli, Paola A; Morelatto, Rosana A; Benavidez, Tomás E; Baruzzi, Ana M; López de Blanc, Silvia A

    2014-01-01

    To analyze the effect of two mouthwashes on salivary pH and correlate it with age, buffer capacity and saliva flow rate in healthy volunteers, a crossover phase IV clinical study involving three age-based groups was designed. Two commercial mouthwashes (MW), Cool Mint ListerineR (MWa) and Periobacter R (MWb) were used. The unstimulated saliva of each individual was first characterized by measuring flow rate, pH, and buffer capacity. Salivary pH was evaluated before rinsing with a given MW, immediately after rinsing, 5 minutes later, and then every 10 min (at 15, 25, 35 min) until the baseline pH was recovered. Paired t-test, ANOVA with a randomized block design, and Pearson correlation tests were used. Averages were 0.63 mL/min, 7.06, and 0.87 for flow rate, pH, and buffer capacity, respectively. An immediate significant increase in salivary pH was observed after rinsing, reaching average values of 7.24 (MWb) and 7.30 (MWa), which declined to an almost stable value 15 minutes. The great increase in salivary pH, after MW use shows that saliva is a dynamic system, and that the organism is capable of responding to a stimulus with changes in its composition. It is thus evident that pH of the external agent alone is not a good indicator for its erosive potential because biological systems tend to neutralize it. The results of this study enhance the importance of in vivo measurements and reinforce the concept of the protective action of saliva.

  2. pH Tolerance in Freshwater Bacterioplankton: Trait Variation of the Community as Measured by Leucine Incorporation

    OpenAIRE

    Bååth, Erland; Kritzberg, Emma

    2015-01-01

    pH is an important factor determining bacterial community composition in soil and water. We have directly determined the community tolerance (trait variation) to pH in communities from 22 lakes and streams ranging in pH from 4 to 9 using a growth-based method not relying on distinguishing between individual populations. The pH in the water samples was altered to up to 16 pH values, covering in situ pH ± 2.5 U, and the tolerance was assessed by measuring bacterial growth (Leu incorporation) in...

  3. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution.

    Science.gov (United States)

    Cerozi, Brunno da Silva; Fitzsimmons, Kevin

    2016-11-01

    The interaction between the main ions in aquaponics nutrient solutions affects chemical composition and availability of nutrients, and nutrient uptake by plant roots. This study determined the effect of pH on phosphorus (P) speciation and availability in an aquaponics nutrient solution and used Visual MINTEQ to simulate P species and P activity. In both experimental and simulated results, P availability decreased with increase in pH of aquaponics nutrient solutions. According to simulations, P binds to several cations leaving less free phosphate ions available in solution. High pH values resulted in the formation of insoluble calcium phosphate species. The study also demonstrated the importance of organic matter and alkalinity in keeping free phosphate ions in solution at high pH ranges. It is recommended though that pH in aquaponics systems is maintained at a 5.5-7.2 range for optimal availability and uptake by plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Extrinsic factors significantly affect patterns of disease in free-ranging and captive cheetah (Acinonyx jubatus) populations.

    Science.gov (United States)

    Munson, Linda; Terio, Karen A; Worley, Michael; Jago, Mark; Bagot-Smith, Arthur; Marker, Laurie

    2005-07-01

    The cheetah (Acinonyx jubatus) has been considered a paradigm for disease vulnerability due to loss of genetic diversity. This species monomorphism has been suspected to be the basis for their general poor health and dwindling populations in captivity. North American and South African captive populations have high prevalences of hepatic veno-occlusive disease, glomerulosclerosis, gastritis, and systemic amyloidosis, diseases that are rare in other species. Unusually severe inflammatory reactions to common infectious agents have also been documented in captive cheetahs. The current study compared disease prevalences in free-ranging Namibian cheetahs with those in two captive populations of similar ages. The occurrence of diseases in the free-ranging population was determined from 49 necropsies and 27 gastric biopsies obtained between 1986 and 2003 and compared with prevalences in 147 North American and 80 South African captive cheetahs. Except for two cheetahs, the free-ranging population was in robust health with only mild lesions present, in contrast with significantly higher prevalences in the captive populations. Despite widespread heavy Helicobacter colonization in wild cheetahs, only 3% of the free-ranging population had moderate to severe gastritis, in contrast with 64% of captive cheetahs. No severe inflammatory reactions to viral infections were detected in the free-ranging animals. Because free-ranging Namibian cheetahs are as genetically impoverished as captive cheetahs, these findings caution against attributing loss of fitness solely to genetic factors and attest to the fundamental importance of extrinsic factors in wildlife health.

  5. Monitoring of color and pH in muscles of pork leg (m. adductor and m. semimembranosus

    Directory of Open Access Journals (Sweden)

    Martina Bednářová

    2014-02-01

    Full Text Available In order to identify PSE pork meat, pH and color testing was performed directly in a cutting plant (72 hours post mortem in this research. Specifically pork leg muscles musculi adductor (AD and semimembranosus (SM from five selected suppliers (A, B, C, D, E were examined. Twenty samples of meat for each muscle were examined from each supplier. The measured pH values ranged from 5.43 to 5.63, and the L* values from 46.13 to 57.18. No statistically significant differences in pH values and color were detected among the various suppliers with the exception of the a* and b* parameters for two suppliers, namely A and B (p<0.01. On the contrary, a statistically significant difference (p<0.5 was recorded between individual muscles (AD/SM across all the suppliers (A, B, C, D, E with the exception of a* parameter from suppliers B, C, D, E, and pH values for the E supplier. Our results revealed that individual muscles differ in values of pH and color. In comparison with literature, pH and lightness L* values in musculus adductor point to PSE (pale, soft and exudative meat, while the values of musculus semimebranosus to RFN (red, firm and non-exudative. Use of PSE meat in production of meat products can cause several problems. In particular, it causes light color, low water-holding capacity, poor fat emulsifying ability, lower yield, granular or crumbly texture and poor consistency of the finished product. Therefore classification of the meat directly cutting plant may be possible solution for this problem. The finished product pruduces from muscles of musculi semimembranosus can obtain better quality than the finished product from musculi adductor.

  6. Sustainable Range Management of RDX and TNT by Phytoremediation with Engineered Plants

    Science.gov (United States)

    2016-04-01

    pH 6.5. Change in absorbance at 340 nm was measured over 1 min. Significant difference from wild-type (WT) is shown by an asterisk and determined by...FINAL REPORT Sustainable Range Management of RDX and TNT by Phytoremediation with Engineered Plants SERDP Project ER-1498 APRIL 2016...by Phyoremediation with Engineered Plants 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER ER-1498 Neil C

  7. Modal spectral analysis of piping: Determination of the significant frequency range

    International Nuclear Information System (INIS)

    Geraets, L.H.

    1981-01-01

    This paper investigates the influence of the number of modes on the response of a piping system in a dynamic modal spectral analysis. It shows how the analysis can be limited to a specific frequency range of the pipe (independent of the frequency range of the response spectrum), allowing cost reduction without loss in accuracy. The 'missing mass' is taken into account through an original technique. (orig./HP)

  8. Corrosion studies of thermally sensitised AGR fuel element brace in pH7 and pH9.2 borate solutions

    International Nuclear Information System (INIS)

    Tyfield, S.P.; Smith, C.A.

    1987-04-01

    Brace and cladding of AGR fuel elements sensitised in reactor are susceptible to intergranular and crevice corrosion, which may initiate in the pH7 borate pond storage environment of CEGB/SSEB stations. This report considers the benefit in corrosion control that is provided by raising the pond solution pH to 9.2, whilst maintaining the boron level at 1250 gm -3 . The greater corrosion protection provided by pH9.2 solution compared to the pH7 borate solution is demonstrated by a series of tests with non-active laboratory sensitised brace samples exposed to solutions dosed with chloride or sulphate in order to promote localised corrosion. The corrosion tests undertaken consisted of 5000 hour immersions at 32 0 C and shorter term electrochemically monitored experiments (rest potential, impedance, anodic current) generally conducted at 22 0 C. The pH9.2 solution effectively inhibited the initiation of crevice and intergranular corrosion in the presence of low levels of chloride and sulphate, whereas the pH7 solution did not always do so. However, the pH9.2 solution, dosed with 40 gm -3 chloride, failed to suppress fully crevice corrosion initiated in unborated 40 gm -3 chloride solution at 22 0 C. Fluoride is not deleterious at low levels ∼ 10 gm -3 in the borate solutions. The significant improvement in corrosion control demonstrated for the change from pH7 to pH9.2 borate solution on laboratory sensitised brace samples should ideally be confirmed using complete irradiated AGR fuel elements. (U.K.)

  9. Millimeter/submillimeter spectroscopy of PH{sub 2}CN ( X-tilde {sup 1}A') and CH{sub 3}PH{sub 2} ( X-tilde {sup 1}A'): probing the complexity of interstellar phosphorus chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Halfen, D. T.; Ziurys, L. M. [Department of Chemistry and Biochemistry, Department of Astronomy, Arizona Radio Observatory, and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Clouthier, D. J., E-mail: halfendt@as.arizona.edu [Department of Chemistry, University of Kentucky, Lexington, KY 40506 (United States)

    2014-11-20

    Millimeter/submillimeter spectra of PH{sub 2}CN ( X-tilde {sup 1}A') and CH{sub 3}PH{sub 2} ( X-tilde {sup 1}A') have been recorded for the first time using direct absorption techniques. This work extends previous measurements of both molecules beyond the 10-50 GHz range. Both species were created in the presence of an AC discharge by the reaction of phosphorus vapor and either cyanogen and hydrogen (PH{sub 2}CN) or methane (CH{sub 3}PH{sub 2}). Twelve rotational transitions of PH{sub 2}CN were recorded over the region 305-422 GHz for asymmetry components K{sub a} = 0 through 8. For CH{sub 3}PH{sub 2}, eight rotational transitions were measured from 210-470 GHz with K{sub a} = 0 through 16; these spectra exhibited greater complexity due to the presence of internal rotation, which splits the K{sub a} = 1, 2, and 3 asymmetry components into A and E states. Combined analyses of the millimeter/submillimeter and previous microwave data were performed for both molecules. For PH{sub 2}CN, the spectra were fit with a Watson S-reduced asymmetric top Hamiltonian, resulting in more accurate rotational and centrifugal distortion constants. In the case of CH{sub 3}PH{sub 2}, an asymmetric top internal-rotation Hamiltonian was employed in the analysis, significantly improving the rotational and torsional parameters over previous microwave estimates. Searches for both molecules were subsequently conducted toward Sgr B2(N), using the 12 m telescope of the Arizona Radio Observatory (ARO). Neither species was identified, with abundance upper limits, relative to H{sub 2}, of f (PH{sub 2}CN/H{sub 2}) < 7.0 × 10{sup –12} and f (CH{sub 3}PH{sub 2}/H{sub 2}) < 8.4 × 10{sup –12}. The nitrogen analogs NH{sub 2}CN and CH{sub 3}NH{sub 2} are therefore more abundant in Sgr B2(N) by factors of >2 and >200, respectively.

  10. Soaps and cleansers for atopic eczema, friends or foes? What every South African paediatrician should know about their pH

    Directory of Open Access Journals (Sweden)

    N C Dlova

    2017-10-01

    Full Text Available Background. Knowledge of the pH level of soaps and cleansers used by patients with atopic eczema and sensitive skin is crucial, as high-alkalinity products are irritants and impair the normal skin barrier, so interfering with the adequate control of atopic eczema. Objectives. The aim of this study was to assess the pH of various bar soaps and cleansers that are usually recommended and used by patients with atopic diseases and dry, sensitive skin in South Africa. Methods. Forty-nine commercial soap bars and cleansers were randomly selected for pH analysis. The samples were prepared as 8% emulsions in tap water. Nine undiluted liquid facial cleansers were also evaluated. Deionised water was used as a negative control. The pH of each emulsion or liquid cleanser was recorded in duplicate using a Metrohm pH meter model 827 (Metrohm, Herisau, Switzerland. Results. Of the 49 samples analysed, 34 (69.4% were alkaline with a pH ranging from 9.3 - 10.7. Two samples (4.1% were within the acceptable range of (5.4 - 5.9, and 2 samples (4.1% had pH levels of below 5. In total, 5 samples (10.2 % had a pH of 4 - 6. Conclusion. The majority of soaps and cleansers analysed in this study were alkaline, with only 2 falling in the acceptable pH range of 5.4 - 5.9 and 5 within the pH range of 4 - 6, thus raising concerns regarding the optimal management of atopic eczema patients.

  11. PhCESA3 silencing inhibits elongation and stimulates radial expansion in petunia

    OpenAIRE

    Weiyuan Yang; Yuanping Cai; Li Hu; Qian Wei; Guoju Chen; Mei Bai; Hong Wu; Juanxu Liu; Yixun Yu

    2017-01-01

    Cellulose synthase catalytic subunits (CESAs) play important roles in plant growth, development and disease resistance. Previous studies have shown an essential role of Arabidopsis thaliana CESA3 in plant growth. However, little is known about the role of CESA3 in species other than A. thaliana. To gain a better understanding of CESA3, the petunia (Petunia hybrida) PhCESA3 gene was isolated, and the role of PhCESA3 in plant growth was analyzed in a wide range of plants. PhCESA3 mRNA was prese...

  12. Esophageal scintigraphy and pH monitoring in adults with gastroesophageal reflux

    Energy Technology Data Exchange (ETDEWEB)

    Jouin, H.; Chamouard, P.; Baumann, R. and others

    1987-10-01

    Thirty-seven adults with gastroesophageal reflux were explored by oesophageal scintigraphy and pH monitoring (three hours postprandial). Scintigraphy was less frequently positive than pH test in gastroesophageal reflux (81% versus 57%) with a significant difference. It is suggested that postprandial pH monitoring is reliable in the initial assessment of symptomatic gastroesophageal reflux.

  13. Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature.

    Science.gov (United States)

    Farinas, Cristiane S; Loyo, Marcel Moitas; Baraldo, Anderson; Tardioli, Paulo W; Neto, Victor Bertucci; Couri, Sonia

    2010-12-31

    Ethanol from lignocellulosic biomass has been recognized as one of the most promising alternatives for the production of renewable and sustainable energy. However, one of the major bottlenecks holding back its commercialization is the high costs of the enzymes needed for biomass conversion. In this work, we studied the enzymes produced from a selected strain of Aspergillus niger under solid state fermentation. The cellulase and xylanase enzymatic cocktail was characterized in terms of pH and temperature by using response surface methodology. Thermostability and kinetic parameters were also determined. The statistical analysis of pH and temperature effects on enzymatic activity showed a synergistic interaction of these two variables, thus enabling to find a pH and temperature range in which the enzymes have a higher activity. The results obtained allowed the construction of mathematical models used to predict endoglucanase, β-glucosidase and xylanase activities under different pH and temperature conditions. Optimum temperature values for all three enzymes were found to be in the range between 35°C and 60°C, and the optimum pH range was found between 4 and 5.5. The methodology employed here was very effective in estimating enzyme behavior under different process conditions. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Paper-based potentiometric pH sensor using carbon electrode drawn by pencil

    Science.gov (United States)

    Kawahara, Ryotaro; Sahatiya, Parikshit; Badhulika, Sushmee; Uno, Shigeyasu

    2018-04-01

    A flexible and disposable paper-based pH sensor fabricated with a pencil-drawn working electrode and a Ag/AgCl paste reference electrode is demonstrated for the first time to show pH response by the potentiometric principle. The sensor substrate is made of chromatography paper with a wax-printed hydrophobic area, and various types of carbon pencils are tested as working electrodes. The pH sensitivities of the electrodes drawn by carbon pencils with different hardnesses range from 16.5 to 26.9 mV/pH. The proposed sensor is expected to be more robust against shape change in electrodes on a flexible substrate than other types of chemiresistive/amperometric pH sensors.

  15. Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods

    Directory of Open Access Journals (Sweden)

    Magnus Willander

    2009-11-01

    Full Text Available ZnO nanotubes and nanorods grown on gold thin film were used to create pH sensor devices. The developed ZnO nanotube and nanorod pH sensors display good reproducibility, repeatability and long-term stability and exhibit a pH-dependent electrochemical potential difference versus an Ag/AgCl reference electrode over a large dynamic pH range. We found the ZnO nanotubes provide sensitivity as high as twice that of the ZnO nanorods, which can be ascribed to the fact that small dimensional ZnO nanotubes have a higher level of surface and subsurface oxygen vacancies and provide a larger effective surface area with higher surface-to-volume ratio as compared to ZnO nanorods, thus affording the ZnO nanotube pH sensor a higher sensitivity. Experimental results indicate ZnO nanotubes can be used in pH sensor applications with improved performance. Moreover, the ZnO nanotube arrays may find potential application as a novel material for measurements of intracellular biochemical species within single living cells.

  16. The effects of lead, water hardness and pH on oxygen consumption ...

    African Journals Online (AJOL)

    Closed system respirometry was performed on captive juvenile Tilapia sparrmanii exposed for 96 hours to a range of Pb-acetate concentrations in hard and soft water to determine the effect of Pb in relation to water hardness and pH. For hard and soft water with a pH above 7.51 no change in the resting specific oxygen ...

  17. A fluorescent pH probe for acidic organelles in living cells.

    Science.gov (United States)

    Chen, Jyun-Wei; Chen, Chih-Ming; Chang, Cheng-Chung

    2017-09-26

    A water-soluble pH sensor, 2-(6-(4-aminostyryl)-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-N, N-dimethylethanamine (ADA), was synthesized based on the molecular design of photoinduced electron transfer (PET) and intramolecular charge transfer (ICT). The fluorescence emission response against a pH value is in the range 3-6, which is suitable for labelling intracellular pH-dependent microenvironments. After biological evolution, ADA is more than a pH biosensor because it is also an endocytosis pathway tracking biosensor that labels endosomes, late endosomes, and lysosome pH gradients. From this, the emissive aggregates of ADA and protonated-ADA in these organs were evaluated to explore how this probe stresses emission colour change to cause these unique cellular images.

  18. Effect of pH, temperature, and lead concentration on the bioremoval of lead from water using Lemna minor.

    Science.gov (United States)

    Uysal, Yağmur; Taner, Fadime

    2009-09-01

    This study examined the ability of the aquatic plant Lemna minor (duckweed) to remove soluble lead under various laboratory conditions. In a batch process L. minor was exposed to different pH values (4.5-8.0) and temperature (15-35 degrees C) in presence of different lead concentrations (0.1-10.0 mg L(-1)) for 168 h. The amount of biomass obtained in the study period on a dry weight basis, the concentrations of lead in tissue and in medium and net uptake of lead by Lemna all have been determined in each condition. The percentages of lead uptake ratios (PMU) and bioconcentration factors (BCF) were also calculated for these conditions. Bioaccumulated lead concentrations and the PMU were obtained at lowest pH of 4.5, and at 30 degrees C. The highest accumulated lead concentration was found at pH 4.5 as 3.599 mg Pb g(-1) in 10.0 mg L(-1). It decreased to pH 6.0, but it did not change at pH 6.0-8.0 range. The maximum lead accumulation was obtained at 30 degrees C as 8.622 mg Pb g(-1) in 10 mg L(-1) at pH 5.0, and the minimum was at 15 degrees C as 0.291 mg g(-1) in 0.1 mg L(-1). Lead accumulation gradually increased with increasing lead in medium, but the opposite trend was observed for PMU. Lead accumulation increased up to 50 mg L(-1), but did not change significantly in the 50.0-100.0 mg L(-1) range. The lead uptake from water was modeled and the equation fit the experimental data very well

  19. Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models

    Directory of Open Access Journals (Sweden)

    S. Song

    2018-05-01

    Full Text Available pH is an important property of aerosol particles but is difficult to measure directly. Several studies have estimated the pH values for fine particles in northern China winter haze using thermodynamic models (i.e., E-AIM and ISORROPIA and ambient measurements. The reported pH values differ widely, ranging from close to 0 (highly acidic to as high as 7 (neutral. In order to understand the reason for this discrepancy, we calculated pH values using these models with different assumptions with regard to model inputs and particle phase states. We find that the large discrepancy is due primarily to differences in the model assumptions adopted in previous studies. Calculations using only aerosol-phase composition as inputs (i.e., reverse mode are sensitive to the measurement errors of ionic species, and inferred pH values exhibit a bimodal distribution, with peaks between −2 and 2 and between 7 and 10, depending on whether anions or cations are in excess. Calculations using total (gas plus aerosol phase measurements as inputs (i.e., forward mode are affected much less by these measurement errors. In future studies, the reverse mode should be avoided whereas the forward mode should be used. Forward-mode calculations in this and previous studies collectively indicate a moderately acidic condition (pH from about 4 to about 5 for fine particles in northern China winter haze, indicating further that ammonia plays an important role in determining this property. The assumed particle phase state, either stable (solid plus liquid or metastable (only liquid, does not significantly impact pH predictions. The unrealistic pH values of about 7 in a few previous studies (using the standard ISORROPIA model and stable state assumption resulted from coding errors in the model, which have been identified and fixed in this study.

  20. Esophageal scintigraphy and pH monitoring in adults with gastroesophageal reflux

    International Nuclear Information System (INIS)

    Jouin, H.; Chamouard, P.; Baumann, R.

    1987-01-01

    Thirty-seven adults with gastroesophageal reflux were explored by oesophageal scintigraphy and pH monitoring (three hours postprandial). Scintigraphy was less frequently positive than pH test in gastroesophageal reflux (81% versus 57%) with a significant difference. It is suggested that postprandial pH monitoring is reliable in the initial assessment of symptomatic gastroesophageal reflux [fr

  1. Nanoparticle assembled microcapsules for application as pH and ammonia sensor

    International Nuclear Information System (INIS)

    Amali, Arlin Jose; Awwad, Nour H.; Rana, Rohit Kumar; Patra, Digambara

    2011-01-01

    Graphical abstract: HPTS encapsulated nanoparticle assembled microcapsule is exploited as dual excitations ratiometic pH sensor. This nanoparticle assembled microcapsule based fluorescence sensor can determine ammonia and offers a robust, simple and fast sensing material. Highlights: ► A novel HPTS encapsulated nanoparticle assembled microcapsule is developed. ► Its dual excitation facilitates a ratiometic pH sensor. ► It is successfully applied for the determination of ammonia. ► It provides a robust, simple and fast sensing material. - Abstract: The encapsulation of molecular probes in a suitable nanostructured matrix can be exploited to alter their optical properties and robustness for fabricating efficient chemical sensors. Despite high sensitivity, simplicity, selectivity and cost effectiveness, the photo-destruction and photo-bleaching are the serious concerns while utilizing molecular probes. Herein we demonstrate that hydroxy pyrene trisulfonate (HPTS), a pH sensitive molecular probe, when encapsulated in a microcapsule structure prepared via the assembly of silica nanoparticles mediated by poly-L-lysine and trisodium citrate, provides a robust sensing material for pH sensing under the physiological conditions. The temporal evolution under continuous irradiation indicates that the fluorophore inside the silica microcapsule is extraordinarily photostable. The fluorescence intensity alternation at dual excitation facilitates for a ratiometic sensing of the pH, however, the fluorescence lifetime is insensitive to hydrogen ion concentration. The sensing scheme is found to be robust, fast and simple for the measurement of pH in the range 5.8–8.0, and can be successfully applied for the determination of ammonia in the concentration range 0–1.2 mM, which is important for aquatic life and the environment.

  2. Temperature and pH conditions for mycelial growth of Agaricus brasiliensis on axenic cultivation/ Condições de temperatura e pH para o crescimento micelial de Agaricus brasiliensis em cultivo axênico

    Directory of Open Access Journals (Sweden)

    Luzia Doretto Paccola-Meirelles

    2008-08-01

    Full Text Available Few studies have been done to determine Agaricus brasiliensis Wasser et al. (A. blazei; A. subrufescens basic mycelial growth characteristics on axenic cultivation. This study aimed to determine the optimal temperature and initial pH for mycelial growth of A. brasiliensis on malt extract agar medium to develop axenic cultivation techniques. Studied initial pH values for mycelial growth were adjusted to 3.0, 4.0, 5.0, 5.5, with HCl, 6.0, 7.0, 8.0, with NaOH, and again 7.0 and 8.0, with CaCO3. Studied temperatures for mycelial growth were 22 ºC, 25 ºC, 28 ºC, 31 ºC and 34 ºC. It was concluded that A. brasiliensis can grow in axenic cultivation at temperature range from 22 oC to 34 ºC, with optimal temperature range from 28 oC to 31 ºC and optimal temperature value of 30.5 ºC ± 0.3 ºC. It also grows in initial pH range from 4.0 to 7.0, adjusted with HCl or NaOH but not CaCO3, with optimal initial pH range from 5.5 to 6.0 and optimal initial pH value of 5.56 ± 0.05. Mycelial growth is inhibited with pH of 3.0 or lower, 8.0 or higher, or when CaCO3 is used to adjust pH in the substratum to 7.0 or higher.Poucos estudos foram desenvolvidos para determinar as condições básicas de crescimento micelial do fungo Agaricus brasiliensis Wasser et al. (A. blazei, A. subrufescens. O objetivo deste trabalho foi determinar a faixa ótima de temperatura e pH para o crescimento micelial, em agar-extrato-de-malte, de A. brasiliensis, visando o desenvolvimento de técnicas de cultivo axênica. Os valores de pH estudados foram 3,0, 4,0, 5,0 e 5,5, ajustados com HCl, 6,0, 7,0 e 8,0, ajustados com NaOH, e 7,0 e 8,0, ajustados com CaCO3. As temperaturas de crescimento estudadas foram 22 ºC; 25 ºC; 28 ºC; 31 ºC e 34 oC. Concluiu-se que A. brasiliensis cresce em uma faixa de temperatura ótima de 28 oC a 31 ºC, com valor ótimo de temperatura de 30,5 ºC ± 0,3 ºC. A faixa de pH inicial ótimo no substrato é de 5,5 a 6,0 e o valor de pH inicial

  3. Modelling lamb carcase pH and temperature decline parameters: relationship to shear force and abattoir variation.

    Science.gov (United States)

    Hopkins, David L; Holman, Benjamin W B; van de Ven, Remy J

    2015-02-01

    Carcase pH and temperature decline rates influence lamb tenderness; therefore pH decline parameters are beneficial when modelling tenderness. These include pH at temperature 18 °C (pH@Temp18), temperature when pH is 6 (Temp@pH6), and pH at 24 h post-mortem (pH24). This study aimed to establish a relationship between shear force (SF) as a proxy for tenderness and carcase pH decline parameters estimated using both linear and spline estimation models for the m. longissimus lumborum (LL). The study also compared abattoirs regarding their achievement of ideal pH decline, indicative of optimal tenderness. Based on SF measurements of LL and m. semimembranosus collected as part of the Information Nucleus slaughter programme (CRC for Sheep Industry Innovation) this study found significant relationships between tenderness and pH24LL, consistent across the meat cuts and ageing periods examined. Achievement of ideal pH decline was shown not to have significantly differed across abattoirs, although rates of pH decline varied significantly across years within abattoirs.

  4. Ab initio study of weakly bound halogen complexes: RX⋯PH3.

    Science.gov (United States)

    Georg, Herbert C; Fileti, Eudes E; Malaspina, Thaciana

    2013-01-01

    Ab initio calculations were employed to study the role of ipso carbon hybridization in halogenated compounds RX (R=methyl, phenyl, acetyl, H and X=F, Cl, Br and I) and its interaction with a phosphorus atom, as occurs in the halogen bonded complex type RX⋯PH3. The analysis was performed using ab initio MP2, MP4 and CCSD(T) methods. Systematic energy analysis found that the interaction energies are in the range -4.14 to -11.92 kJ mol(-1) (at MP2 level without ZPE correction). Effects of electronic correlation levels were evaluated at MP4 and CCSD(T) levels and a reduction of up to 27% in interaction energy obtained in MP2 was observed. Analysis of the electrostatic maps confirms that the PhCl⋯PH3 and all MeX⋯PH3 complexes are unstable. NBO analysis suggested that the charge transfer between the moieties is bigger when using iodine than bromine and chlorine. The electrical properties of these complexes (dipole and polarizability) were determined and the most important observed aspect was the systematic increase at the dipole polarizability, given by the interaction polarizability. This increase is in the range of 0.7-6.7 u.a. (about 3-7%).

  5. The enhanced cyan fluorescent protein: a sensitive pH sensor for fluorescence lifetime imaging.

    Science.gov (United States)

    Poëa-Guyon, Sandrine; Pasquier, Hélène; Mérola, Fabienne; Morel, Nicolas; Erard, Marie

    2013-05-01

    pH is an important parameter that affects many functions of live cells, from protein structure or function to several crucial steps of their metabolism. Genetically encoded pH sensors based on pH-sensitive fluorescent proteins have been developed and used to monitor the pH of intracellular compartments. The quantitative analysis of pH variations can be performed either by ratiometric or fluorescence lifetime detection. However, most available genetically encoded pH sensors are based on green and yellow fluorescent proteins and are not compatible with multicolor approaches. Taking advantage of the strong pH sensitivity of enhanced cyan fluorescent protein (ECFP), we demonstrate here its suitability as a sensitive pH sensor using fluorescence lifetime imaging. The intracellular ECFP lifetime undergoes large changes (32 %) in the pH 5 to pH 7 range, which allows accurate pH measurements to better than 0.2 pH units. By fusion of ECFP with the granular chromogranin A, we successfully measured the pH in secretory granules of PC12 cells, and we performed a kinetic analysis of intragranular pH variations in living cells exposed to ammonium chloride.

  6. Computer simulation of immobilized pH gradients at acidic and alkaline extremes - A quest for extended pH intervals

    Science.gov (United States)

    Mosher, Richard A.; Bier, Milan; Righetti, Pier Giorgio

    1986-01-01

    Computer simulations of the concentration profiles of simple biprotic ampholytes with Delta pKs 1, 2, and 3, on immobilized pH gradients (IPG) at extreme pH values (pH 3-4 and pH 10-11) show markedly skewed steady-state profiles with increasing kurtosis at higher Delta pK values. Across neutrality, all the peaks are symmetric irrespective of their Delta pK values, but they show very high contribution to the conductivity of the background gel and significant alteration of the local buffering capacity. The problems of skewness, due to the exponential conductivity profiles at low and high pHs, and of gel burning due to a strong electroosmotic flow generated by the net charges in the gel matrix, also at low and high pHs, are solved by incorporating in the IPG gel a strong viscosity gradient. This is generated by a gradient of linear polyacrylamide which is trapped in the gel by the polymerization process.

  7. Archaeal abundance across a pH gradient in an arable soil and its relationship to bacterial and fungal growth rates.

    Science.gov (United States)

    Bengtson, Per; Sterngren, Anna E; Rousk, Johannes

    2012-08-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient.

  8. High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor.

    Science.gov (United States)

    Al-Hardan, Naif H; Abdul Hamid, Muhammad Azmi; Ahmed, Naser M; Jalar, Azman; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim; Chiu, Weesiong; Al-Rawi, Hamzah N

    2016-06-07

    In this study, porous silicon (PSi) was prepared and tested as an extended gate field-effect transistor (EGFET) for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions.

  9. PH sensor

    OpenAIRE

    Artero, C.; Nogueras Cervera, Marc; Manuel Lázaro, Antonio

    2012-01-01

    This paper presents a design of a marine instrument for the measurement of pH in seawater. The measurement system consists of a pH electrode connected to the underwater observatory OBSEA. The extracted data are useful for scientists researching ocean acidification. Peer Reviewed

  10. An ultrasensitive method of real time pH monitoring with complementary metal oxide semiconductor image sensor.

    Science.gov (United States)

    Devadhasan, Jasmine Pramila; Kim, Sanghyo

    2015-02-09

    CMOS sensors are becoming a powerful tool in the biological and chemical field. In this work, we introduce a new approach on quantifying various pH solutions with a CMOS image sensor. The CMOS image sensor based pH measurement produces high-accuracy analysis, making it a truly portable and user friendly system. pH indicator blended hydrogel matrix was fabricated as a thin film to the accurate color development. A distinct color change of red, green and blue (RGB) develops in the hydrogel film by applying various pH solutions (pH 1-14). The semi-quantitative pH evolution was acquired by visual read out. Further, CMOS image sensor absorbs the RGB color intensity of the film and hue value converted into digital numbers with the aid of an analog-to-digital converter (ADC) to determine the pH ranges of solutions. Chromaticity diagram and Euclidean distance represent the RGB color space and differentiation of pH ranges, respectively. This technique is applicable to sense the various toxic chemicals and chemical vapors by situ sensing. Ultimately, the entire approach can be integrated into smartphone and operable with the user friendly manner. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A novel ''donor-π-acceptor'' type fluorescence probe for sensing pH: mechanism and application in vivo.

    Science.gov (United States)

    Chao, Jianbin; Wang, Huijuan; Zhang, Yongbin; Yin, Caixia; Huo, Fangjun; Song, Kailun; Li, Zhiqing; Zhang, Ting; Zhao, Yaqin

    2017-11-01

    A novel pH fluorescent probe 1-(pyren-1-yl)-3-(6-methoxypridin-3-yl)-acrylketone, (PMPA), which had a pyrene structure attached to methoxypyridine, was synthesized for monitoring extremely acidic and alkaline pH. The pH titrations indicated that PMPA displayed a remarkable emission enhancement with a pK a of 2.70 and responded linearly to minor pH fluctuations within the extremely acidic range of 1.26-3.97. Interestingly, PMPA also exhibited strong pH-dependent characteristics with pK a 9.32 and linear response to extreme-alkalinity range of 8.54-10.36. In addition, PMPA displayed a good selectivity, excellent photostability and large Stokes shift (167nm). Furthermore, the probe PMPA had excellent cell membrane permeability and was applied successfully to rapidly detect pH in living cells. pH value in these organs was closely related to many diseases, so these findings suggested that the probe had potential application in pH detecting for disease diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. ISFET pH Sensitivity: Counter-Ions Play a Key Role.

    Science.gov (United States)

    Parizi, Kokab B; Xu, Xiaoqing; Pal, Ashish; Hu, Xiaolin; Wong, H S Philip

    2017-02-02

    The Field Effect sensors are broadly used for detecting various target analytes in chemical and biological solutions. We report the conditions under which the pH sensitivity of an Ion Sensitive Field Effect transistor (ISFET) sensor can be significantly enhanced. Our theory and simulations show that by using pH buffer solutions containing counter-ions that are beyond a specific size, the sensor shows significantly higher sensitivity which can exceed the Nernst limit. We validate the theory by measuring the pH response of an extended gate ISFET pH sensor. The consistency and reproducibility of the measurement results have been recorded in hysteresis free and stable operations. Different conditions have been tested to confirm the accuracy and validity of our experiment results such as using different solutions, various oxide dielectrics as the sensing layer and off-the-shelf versus IC fabricated transistors as the basis of the ISFET sensor.

  13. Low pH induces co-ordinate regulation of gene expression in oesophageal cells.

    Science.gov (United States)

    Duggan, Shane P; Gallagher, William M; Fox, Edward J P; Abdel-Latif, Mohammed M; Reynolds, John V; Kelleher, Dermot

    2006-02-01

    The development of gastro-oesophageal reflux disease (GORD) is known to be a causative risk factor in the evolution of adenocarcinoma of the oesophagus. The major component of this reflux is gastric acid. However, the impact of low pH on gene expression has not been extensively studied in oesophageal cells. This study utilizes a transcriptomic and bioinformatic approach to assess regulation of gene expression in response to low pH. In more detail, oesophageal adenocarcinoma cell lines were exposed to a range of pH environments. Affymetrix microarrays were used for gene-expression analysis and results were validated using cycle limitation and real-time RT-PCR analysis, as well as northern and western blotting. Comparative promoter transcription factor binding site (TFBS) analysis (MatInspector) of hierarchically clustered gene-expression data was employed to identify the elements which may co-ordinately regulate individual gene clusters. Initial experiments demonstrated maximal induction of EGR1 gene expression at pH 6.5. Subsequent array experimentation revealed significant induction of gene expression from such functional categories as DNA damage response (EGR1-4, ATF3) and cell-cycle control (GADD34, GADD45, p57). Changes in expression of EGR1, EGR3, ATF3, MKP-1, FOSB, CTGF and CYR61 were verified in separate experiments and in a variety of oesophageal cell lines. TFBS analysis of promoters identified transcription factors that may co-ordinately regulate gene-expression clusters, Cluster 1: Oct-1, AP4R; Cluster 2: NF-kB, EGRF; Cluster 3: IKRS, AP-1F. Low pH has the ability to induce genes and pathways which can provide an environment suitable for the progression of malignancy. Further functional analysis of the genes and clusters identified in this low pH study is likely to lead to new insights into the pathogenesis and therapeutics of GORD and oesophageal cancer.

  14. Evaluation of the 11CO2 positron emission tomographic method for measuring brain pH. I. pH changes measured in states of altered PCO2

    International Nuclear Information System (INIS)

    Buxton, R.B.; Alpert, N.M.; Babikian, V.; Weise, S.; Correia, J.A.; Ackerman, R.H.

    1987-01-01

    The 11 CO 2 method for measuring local brain pH with positron emission tomography (PET) has been experimentally evaluated, testing the adequacy of the kinetic model and the ability of the method to measure changes in brain pH. Plasma and tissue time/activity curves measured during and following continuous inhalation of 11 CO 2 were fit with a kinetic model that includes effects of tissue pH, blood flow, and fixation of CO 2 into compounds other than dissolved gas and bicarbonate ions. For each of ten dogs, brain pH was measured with PET at two values of PaCO 2 (range 21-67 mm Hg). The kinetic model fit the data well during both inhalation and washout of the label, with residual root mean square (RMS) deviations of the model from the measurements consistent with the statistical quality of the PET data. Brain pH calculated from the PET data shows a linear variation with log(PaCO 2 ). These results were in good agreement with previously reported measurements of brain pH, both in absolute value and in variation with PCO 2 . The interpretation of these pH values in normal and pathological states is discussed

  15. PH of Hawaiian precipitation: A preliminary report

    International Nuclear Information System (INIS)

    Miller, J.M.; Yoshinaga, A.M.

    1981-01-01

    Daily or biweekly precipitation samples have been collected at various sites on the island of Hawaii since 1974. The elevations of the sites ranged from sea level to 3400 m. Samples were analyzed on the day of collection for pH and conductivity. Detection of major anions, such as sulfate and nitrate, were made on selected samples during the period

  16. Iron Mobilization from Particles as a Function of pH and Particle Source

    National Research Council Canada - National Science Library

    Rohrbough, James

    2000-01-01

    .... The work presented here shows the role pH can play in iron mobilization from particles. At low pH, bioavailability of iron can be greatly increased, and can be significantly decreased at higher pH...

  17. Crystallization and evaluation of hen egg-white lysozyme crystals for protein pH titration in the crystalline state

    International Nuclear Information System (INIS)

    Iwai, Wakari; Yagi, Daichi; Ishikawa, Takuya; Ohnishi, Yuki; Tanaka, Ichiro; Niimura, Nobuo

    2008-01-01

    Hen egg-white lysozyme was crystallized over a wide pH range (2.5–8.0) and the quality of the crystals was characterized. Crystallization phase diagrams at pH 2.5, 6.0 and 7.5 were determined To observe the ionized status of the amino acid residues in proteins at different pH (protein pH titration in the crystalline state) by neutron diffraction, hen egg-white lysozyme was crystallized over a wide pH range (2.5–8.0). Crystallization phase diagrams at pH 2.5, 6.0 and 7.5 were determined. At pH < 4.5 the border between the metastable region and the nucleation region shifted to the left (lower precipitant concentration) in the phase diagram, and at pH > 4.5 the border shifted to the right (higher precipitant concentration). The qualities of these crystals were characterized using the Wilson plot method. The qualities of all crystals at different pH were more or less equivalent (B-factor values within 25–40). It is expected that neutron diffraction analysis of these crystals of different pH provides equivalent data in quality for discussions of protein pH titration in the crystalline state of hen egg-white lysozyme

  18. A single pH fluorescent probe for biosensing and imaging of extreme acidity and extreme alkalinity.

    Science.gov (United States)

    Chao, Jian-Bin; Wang, Hui-Juan; Zhang, Yong-Bin; Li, Zhi-Qing; Liu, Yu-Hong; Huo, Fang-Jun; Yin, Cai-Xia; Shi, Ya-Wei; Wang, Juan-Juan

    2017-07-04

    A simple tailor-made pH fluorescent probe 2-benzothiazole (N-ethylcarbazole-3-yl) hydrazone (Probe) is facilely synthesized by the condensation reaction of 2-hydrazinobenzothiazole with N-ethylcarbazole-3-formaldehyde, which is a useful fluorescent probe for monitoring extremely acidic and alkaline pH, quantitatively. The pH titrations indicate that Probe displays a remarkable emission enhancement with a pK a of 2.73 and responds linearly to minor pH fluctuations within the extremely acidic range of 2.21-3.30. Interestingly, Probe also exhibits strong pH-dependent characteristics with pK a 11.28 and linear response to extreme-alkalinity range of 10.41-12.43. In addition, Probe shows a large Stokes shift of 84 nm under extremely acidic and alkaline conditions, high selectivity, excellent sensitivity, good water-solubility and fine stability, all of which are favorable for intracellular pH imaging. The probe is further successfully applied to image extremely acidic and alkaline pH values fluctuations in E. coli cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Distributed plastic optical fibre measurement of pH using a photon counting OTDR

    International Nuclear Information System (INIS)

    Saunders, C; Scully, P J

    2005-01-01

    Distributed measurement of pH was demonstrated at a sensitised region 4m from the distal end of a 20m length of plastic optical fibre. The cladding was removed from the fibre over 150mm and the bare core was exposed to an aqueous solution of methyl red at three values of pH, between 2.89 and 9.70. The optical fibre was interrogated at 648nm using a Luciol photon counting optical time domain reflectometer, and demonstrated that the sensing region was attenuated as a function of pH. The attenuation varied from 16.3 dB at pH 2.89 to 8.6 dB at pH 9.70; this range equated to -1.13 ± 0.04 dB/pH. It is thus possible to determine both the position to ± 12mm and pH to an estimated ± 0.5pH at the sensing region

  20. Manipulation of pH induced sensitivity of a fluorescent probe in presence of silver nanoparticles

    International Nuclear Information System (INIS)

    Kacmaz, Sibel; Ertekin, Kadriye; Oter, Ozlem; Hizliateş, Cevher Gundogdu; Ergun, Yavuz; Celik, Erdal

    2015-01-01

    In this study, pH induced spectral response of the newly synthesized carbazole derivative (9-butyl-bis-3-(4-(dimethylamino) phenyl) allylidene)-9H-carbazole-3,6-diamine) has been declared. We utilized silver nanoparticles (AgNPs) along with ionic liquid as additives for manipulation of the spectral response. Plasticized ethyl cellulose (EC) was used as matrix material. Fibers and porous films were produced by electrospinning technique. The emission intensity at 631 nm has been followed as the analytical signal. Utilization of silver nanoparticles in electrospun polymeric fibers for pH sensing purposes resulted with many advantages such as tuned sensitivity, linear calibration plot for larger pH ranges, increased surface area and enhancement in all sensor dynamics. Additionally, we performed manipulation of the pKa within the same matrix exploiting the silver NPs. Characteristics of the pH induced response for the offered composition was superior with respect to the previously reported ones. When stored at the ambient air of the laboratory there was no significant drift in the signal intensity after 16 months. Our sensitivity and stability tests are still in progress. - Highlights: • A carbozole derivative was used for the first time for sensing of pH along with silver nanoparticles. • The sensor slides fabricated in form of nanofibers. • The Ag containing and Ag-free slides were produced by electrospinning technique. • pH Sensitivity of the dye was compared for both; Ag containing and Ag-free forms. • We performed manipulation of the pKa within the same matrix exploiting the silver NPs.

  1. Manipulation of pH induced sensitivity of a fluorescent probe in presence of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kacmaz, Sibel [Giresun University, Faculty of Engineering, Department of Food Engineering, 28200 Giresun (Turkey); Ertekin, Kadriye [University of Dokuz Eylul, Faculty of Sciences, Department of Chemistry, 35160 Izmir (Turkey); University of Dokuz Eylul, Center for Fabrication and Application of Electronic Materials (EMUM), 35160 Izmir (Turkey); Oter, Ozlem; Hizliateş, Cevher Gundogdu; Ergun, Yavuz [University of Dokuz Eylul, Faculty of Sciences, Department of Chemistry, 35160 Izmir (Turkey); Celik, Erdal [University of Dokuz Eylul, Faculty of Engineering, Department of Metallurgical and Materials Engineering, 35160 Izmir (Turkey); University of Dokuz Eylul, Center for Fabrication and Application of Electronic Materials (EMUM), 35160 Izmir (Turkey)

    2015-12-15

    In this study, pH induced spectral response of the newly synthesized carbazole derivative (9-butyl-bis-3-(4-(dimethylamino) phenyl) allylidene)-9H-carbazole-3,6-diamine) has been declared. We utilized silver nanoparticles (AgNPs) along with ionic liquid as additives for manipulation of the spectral response. Plasticized ethyl cellulose (EC) was used as matrix material. Fibers and porous films were produced by electrospinning technique. The emission intensity at 631 nm has been followed as the analytical signal. Utilization of silver nanoparticles in electrospun polymeric fibers for pH sensing purposes resulted with many advantages such as tuned sensitivity, linear calibration plot for larger pH ranges, increased surface area and enhancement in all sensor dynamics. Additionally, we performed manipulation of the pKa within the same matrix exploiting the silver NPs. Characteristics of the pH induced response for the offered composition was superior with respect to the previously reported ones. When stored at the ambient air of the laboratory there was no significant drift in the signal intensity after 16 months. Our sensitivity and stability tests are still in progress. - Highlights: • A carbozole derivative was used for the first time for sensing of pH along with silver nanoparticles. • The sensor slides fabricated in form of nanofibers. • The Ag containing and Ag-free slides were produced by electrospinning technique. • pH Sensitivity of the dye was compared for both; Ag containing and Ag-free forms. • We performed manipulation of the pKa within the same matrix exploiting the silver NPs.

  2. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Russell, J.B. (Cornell Univ., Ithaca, NY (USA))

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y{sub ATP} (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up ({sup 14}C)acetate and ({sup 14}C)benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation.

  3. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    International Nuclear Information System (INIS)

    Russell, J.B.

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y ATP (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up [ 14 C]acetate and [ 14 C]benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation

  4. A wearable fingernail chemical sensing platform: pH sensing at your fingertips.

    Science.gov (United States)

    Kim, Jayoung; Cho, Thomas N; Valdés-Ramírez, Gabriela; Wang, Joseph

    2016-04-01

    This article demonstrates an example of a wearable chemical sensor based on a fingernail platform. Fingernails represent an attractive wearable platform, merging beauty products with chemical sensing, to enable monitoring of our surrounding environment. The new colorimetric pH fingernail sensor relies on coating artificial nails with a recognition layer consisted of pH indicators entrapped in a polyvinyl chloride (PVC) matrix. Such color changing fingernails offer fast and reversible response to pH changes, repeated use, and intense color change detected easily with naked eye. The PVC matrix prevents leaching out of the indicator molecules from the fingernail sensor toward such repeated use. The limited narrow working pH range of a single pH indicator has been addressed by multiplexing three different pH indicators: bromothymol blue (pH 6.0-7.6), bromocresol green (pH 3.8-5.4), and cresol red (pH 7.2-8.8), as demonstrated for analyses of real-life samples of acidic, neutral, and basic character. The new concept of an optical wearable chemical sensor on fingernail platforms can be expanded towards diverse analytes for various applications in connection to the judicious design of the recognition layer. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Evaluating high pH for control of dreissenid mussels

    Directory of Open Access Journals (Sweden)

    Dave Evans

    2013-04-01

    Full Text Available Two field experiments were carried out using a custom built flow-through laboratory to test the effect of elevated pH on dreissenid musselsas a potential control method. Both experiments tested the ability of dreissenid pediveligers to settle under conditions of elevated pH and thelong-term survival of adult dreissenids under the same conditions. The two experimental sites had different water quality and differentspecies of dreissenids present. The settlement of quagga mussel pediveligers at the lower Colorado River was inhibited with increasing pH.At the maximum achieved pH of 9.1, there was approximately 90% reduction compared to the maximum settlement observed in the controls.Since the settlement was almost as low in pH 8.9 as at pH 9.1, the inhibition in settlement may have been due to the presence of a precipitateformed under high pH conditions rather than the increase in background pH. No mortality of quagga mussel adults was observed in theexperimental pH levels at the lower Colorado River. At San Justo Reservoir, zebra mussel settlement decreased with increasing pH. Newsettlement was almost entirely absent at the highest pH tested (pH 9.6. The observed mortality of adult zebra mussels was low, but did tendto increase with increasing pH. We also tested the response of adult zebra mussels to short-term exposure to very high pH levels (i.e. pH 10,11, and 12. Adult mussels in poor physical condition experienced 90% mortality after 12 hours at pH 12. For unstressed adult zebra mussels,90% mortality was reached after 120 hours at pH 12. Significant mortalities were also observed both at pH 10 and pH 11. From this study,we conclude that pH elevation could be used both as a preventative treatment to eliminate settlement by dreissenid mussels and as an end ofseason treatment to eliminate adults. The high pH treatment would have to be tailored to the site water quality to prevent formation ofprecipitate during treatment and to minimize corrosive

  6. Rain pH estimation based on the particulate matter pollutants and wet deposition study.

    Science.gov (United States)

    Singh, Shweta; Elumalai, Suresh Pandian; Pal, Asim Kumar

    2016-09-01

    In forecasting of rain pH, the changes caused by particulate matter (PM) are generally neglected. In regions of high PM concentration like Dhanbad, the role of PM in deciding the rain pH becomes important. Present work takes into account theoretical prediction of rain pH by two methods. First method considers only acid causing gases (ACG) like CO2, SO2 and NOx in pH estimation, whereas, second method additionally accounts for effect of PM (ACG-PM). In order to predict the rain pH, site specific deposited dust that represents local PM was studied experimentally for its impact on pH of neutral water. After incorporation of PM correction factor, it was found that, rain pH values estimated were more representative of the observed ones. Fractional bias (FB) for the ACG-PM method reduced to values of the order of 10(-2) from those with order of 10(-1) for the ACG method. The study confirms neutralization of rain acidity by PM. On account of this, rain pH was found in the slightly acidic to near neutral range, despite of the high sulfate flux found in rain water. Although, the safer range of rain pH blurs the severity of acid rain from the picture, yet huge flux of acidic and other ions get transferred to water bodies, soil and ultimately to the ground water system. Simple use of rain pH for rain water quality fails to address the issues of its increased ionic composition due to the interfering pollutants and thus undermines severity of pollutants transferred from air to rain water and then to water bodies and soil. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Development of a fluorescence endoscopic system for pH mapping of gastric tissue

    Science.gov (United States)

    Rochon, Philippe; Mordon, Serge; Buys, Bruno; Dhelin, Guy; Lesage, Jean C.; Chopin, Claude

    2003-10-01

    Measurement of gastro intestinal intramucosal pH (pHim) has been recognized as an important factor in the detection of hypoxia induced dysfonctions. However, current pH measurements techniques are limited in terms of time and spatial resolutions. A major advance in accurate pH measurement was the development of the ratiometric fluorescent indicator dye, 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF). BCECF which pKa is in the physiological pH range is suitable for pH tissue measurements in vivo. This study aimed to develop and evaluate an endoscopic imaging system for real time pH measurements in the stomach in order to provide to ICU a new tool for gastro intestinal intramucosal pH (pHim) measurements. This fluorescence imaging technique should allow the temporal exploration of sequential events, particularly in ICU where the pHim provides a predictive information of the patient' status. The experimental evaluations of this new and innovative endoscopic fluorescence system confirms the accuracy of pH measurement using BCECF.

  8. Voltammetric pH sensing using carbon electrodes: glassy carbon behaves similarly to EPPG.

    Science.gov (United States)

    Lu, Min; Compton, Richard G

    2014-09-21

    Developing and building on recent work based on a simple sensor for pH determination using unmodified edge plane pyrolytic graphite (EPPG) electrodes, we present a voltammetric method for pH determination using a bare unmodified glassy carbon (GC) electrode. By exploiting the pH sensitive nature of quinones present on carbon edge-plane like sites within the GC, we show how GC electrodes can be used to measure pH. The electro-reduction of surface quinone groups on the glassy carbon electrode was characterised using cyclic voltammetry (CV) and optimised with square-wave voltammetry (SWV) at 298 K and 310 K. At both temperatures, a linear correlation was observed, corresponding to a 2 electron, 2 proton Nernstian response over the aqueous pH range 1.0 to 13.1. As such, unmodified glassy carbon electrodes are seen to be pH dependent, and the Nernstian response suggests its facile use for pH sensing. Given the widespread use of glassy carbon electrodes in electroanalysis, the approach offers a method for the near-simultaneous measurement and monitoring of pH during such analyses.

  9. A protein?dye hybrid system as a narrow range tunable intracellular pH sensor? ?Electronic supplementary information (ESI) available: Figures depicting various photophysical properties, cytotoxicity studies and confocal fluorescence images. See DOI: 10.1039/c6sc02659a Click here for additional data file.

    OpenAIRE

    Anees, Palapuravan; Sudheesh, Karivachery V.; Jayamurthy, Purushothaman; Chandrika, Arunkumar R.; Omkumar, Ramakrishnapillai V.; Ajayaghosh, Ayyappanpillai

    2016-01-01

    Accurate monitoring of pH variations inside cells is important for the early diagnosis of diseases such as cancer. Even though a variety of different pH sensors are available, construction of a custom-made sensor array for measuring minute variations in a narrow biological pH window, using easily available constituents, is a challenge. Here we report two-component hybrid sensors derived from a protein and organic dye nanoparticles whose sensitivity range can be tuned by choosing different rat...

  10. Design of an optically stable pH sensor based on immobilization of Giemsa on triacetylcellulose membrane.

    Science.gov (United States)

    Khodadoust, Saeid; Kouri, Narges Cham; Talebiyanpoor, Mohammad Sharif; Deris, Jamile; Pebdani, Arezou Amiri

    2015-12-01

    In this work a simple, inexpensive, and sensitive optical sensor based on triacetylcellulose membrane as solid support was developed by using immobilization of Giemsa indicator for pH measurement. In this method, the influence variables on the membrane performance including pH concentration of indicator, response time, ionic strength, and reversibility were investigated. At optimum values of all variables the response of optical pH sensor is linear in the pH range of 3.0-12.0. This optical sensor was produced through simultaneous binding of the Giemsa on the activated triacetylcellulose membrane which responded to the pH changes in a broader linear range within less than 2.0 min and suitable reproducibility (RSDsensor was stable after 6 months of storage in the water/ethanol (50:50, v/v) solution without any measurable divergence in response properties (less than 5% RSD). Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A new fluorescent pH probe for imaging lysosomes in living cells.

    Science.gov (United States)

    Lv, Hong-Shui; Huang, Shu-Ya; Xu, Yu; Dai, Xi; Miao, Jun-Ying; Zhao, Bao-Xiang

    2014-01-15

    A new rhodamine B-based pH fluorescent probe has been synthesized and characterized. The probe responds to acidic pH with short response time, high selectivity and sensitivity, and exhibits a more than 20-fold increase in fluorescence intensity within the pH range of 7.5-4.1 with the pKa value of 5.72, which is valuable to study acidic organelles in living cells. Also, it has been successfully applied to HeLa cells, for its low cytotoxicity, brilliant photostability, good membrane permeability and no 'alkalizing effect' on lysosomes. The results demonstrate that this probe is a lysosome-specific probe, which can selectively stain lysosomes and monitor lysosomal pH changes in living cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Chemigation with micronized sulfur rapidly reduces soil pH in northern highbush blueberry

    Science.gov (United States)

    Northern highbush blueberry is adapted to low soil pH in the range of 4.5–5.5. When pH is higher, soil is usually acidified by incorporating elemental sulfur (S) prior to planting. A study was conducted to determine the potential of applying micronized S by chemigation through the drip system to red...

  13. Influence of pH on organic acid production by Clostridium sporogenes in test tube and fermentor cultures.

    Science.gov (United States)

    Montville, T J; Parris, N; Conway, L K

    1985-01-01

    The influence of pH on the growth parameters of and the organic acids produced by Clostridium sporogenes 3121 cultured in test tubes and fermentors at 35 degrees C was examined. Specific growth rates in the fermentor maintained at a constant pH ranged from 0.20 h-1 at pH 5.00 to 0.86 h-1 at pH 6.50. Acetic acid was the primary organic acid in supernatants of 24-h cultures; total organic acid levels were 2.0 to 22.0 mumol/ml. Supernatants from pH 5.00 and 5.50 cultures had total organic acid levels less than one-third of those found at pH 6.00 to 7.00. The specific growth rates of the test tube cultures ranged from 0.51 h-1 at pH 5.00 to 0.95 h-1 at pH 6.50. The pH of the medium did not affect the average total organic acid content (51.5 mumol/ml) but did affect the distribution of the organic acids, which included formic, acetic, propionic, butyric, 3-(p-hydroxyphenyl)propionic, and 3-phenylpropionic acids. Butyric acid levels were lower, but formic and propionic acid levels were higher, at pH 5.00 than at other pHs. PMID:4004207

  14. Control of red cell volume and pH in trout: Effects of isoproterenol, transport inhibitors, and extracellular pH in bicarbonate/carbon dioxide-buffered media

    DEFF Research Database (Denmark)

    NIKINMAA, M; STEFFENSEN, JF; TUFTS, BL

    1987-01-01

    The effects of extracellular pH and beta-adrenergic stimula-tion on the volume and pH of rainbow. trout red cells were studied in HCO3-/ CO2 butfered media. A decrease in extracellular pH caused an increase in red cell volume and a decrease in intracellular pH. The pH-induced changes in cell volume......, and that the Na+/H+ exchanger is not activated by changes in intracellular pH alone. The adrenergic drug, isoproterenol, promoted cell swelling and proton extrusion even in the presence of 10 mM HCO3-, showing that the adrenergic response plays a significant role in the control of cytoplasmic pH. These responses...... were enhanced by a decrease in extracellular pH, showing that the adrenergic response is of benefit to stressed animals. DIDS markedly enhanced the effect of isoproterenol on the pHi, but abolished the increase in red cell volume. The effects of furosemide were similar to those of DIDS, suggesting...

  15. Metabolic footprint of Lactobacillus acidophilus NCFM at different pH

    DEFF Research Database (Denmark)

    Sulek, Karolina; Frandsen, Henrik Lauritz; Smedsgaard, Jørn

    2012-01-01

    increased the concentration of lactic acid, succinic acid, adenine and arginine in the medium. The metabolism of NCFM did not change significantly between pH 5 and 7, suggesting that other environmental factors than pH might have bigger impact on its colonization throughout the gastrointestinal tract....

  16. PhD on Track – designing learning for PhD students

    Directory of Open Access Journals (Sweden)

    Gunhild Austrheim

    2013-12-01

    Full Text Available Three years ago we started the project "Information Management for Knowledge Creation". The project was initiated to create online information literacy modules for PhD students. The result of our endeavours, PhD on Track, will be launched in May 2013. The initial stage of the project was mapping out the information behaviour of PhD students, as well as what services they require from the library through a literature review and a focus group study. The findings of these inquiries formed the knowledge base from which we developed our information literacy modules. Our paper will focus on the interaction between content production and user testing when creating PhD on Track. Methods: User testing has been employed throughout the production stage. We have tested navigation and organisation of the web site, content and usability. The project team have conducted expert testing. Analysis: The results from our user testing have played an important part in decisions concerning content production. Our working hypothesis was that the PhD students would want an encyclopaedic website, a place to quickly find answers. However, the user tests revealed that PhD students understood and expected the website to be learning modules. Conclusions: The PhD students in the tests agreed that a site such as this would be useful, especially to new PhD students. They also liked the design, but had some qualms with the level of information. They preferred shorter text, but with more depth. The students would likewise have preferred more practical examples, more illustrations and more discipline specific information. The current content of PhD on Track reflects the feedback from the user testing. We have retained initial ideas such as one section for reviewing and discovering research literature and one section for publishing PhD research work. In addition, we have included more practical examples to indicate efficient workflows or relevant actions in context. Illustrations

  17. Macroalgae contribute to nested mosaics of pH variability in a subarctic fjord

    KAUST Repository

    Krause-Jensen, D.; Duarte, Carlos M.; Hendriks, I. E.; Meire, L.; Blicher, M. E.; Marbà , N.; Sejr, M. K.

    2015-01-01

    The Arctic Ocean is considered the most vulnerable ecosystem to ocean acidification, and large-scale assessments of pH and the saturation state for aragonite (Ωarag) have led to the notion that the Arctic Ocean is already close to a corrosive state. In high-latitude coastal waters the regulation of pH and Ωarag is, however, far more complex than offshore because increased biological activity and input of glacial meltwater affect pH. Effects of ocean acidification on calcifiers and non-calcifying phototrophs occupying coastal habitats cannot be derived from extrapolation of current and forecasted offshore conditions, but they require an understanding of the regimes of pH and Ωarag in their coastal habitats. To increase knowledge of the natural variability in pH in the Arctic coastal zone and specifically to test the influence of benthic vegetated habitats, we quantified pH variability in a Greenland fjord in a nested-scale approach. A sensor array logging pH, O2, PAR, temperature and salinity was applied on spatial scales ranging from kilometre scale across the horizontal extension of the fjord; to 100 m scale vertically in the fjord, 10–100 m scale between subtidal habitats with and without kelp forests and between vegetated tidal pools and adjacent vegetated shores; and to centimetre to metre scale within kelp forests and millimetre scale across diffusive boundary layers of macrophyte tissue. In addition, we assessed the temporal variability in pH on diurnal and seasonal scales. Based on pH measurements combined with point samples of total alkalinity, dissolved inorganic carbon and relationships to salinity, we also estimated variability in Ωarag. Results show variability in pH and Ωarag of up to 0.2–0.3 units at several scales, i.e. along the horizontal and vertical extension of the fjord, between seasons and on a diel basis in benthic habitats and within 1 m3 of kelp forest. Vegetated intertidal pools exhibited extreme diel pH variability of > 1.5 units

  18. Macroalgae contribute to nested mosaics of pH variability in a subarctic fjord

    KAUST Repository

    Krause-Jensen, D.

    2015-08-19

    The Arctic Ocean is considered the most vulnerable ecosystem to ocean acidification, and large-scale assessments of pH and the saturation state for aragonite (Ωarag) have led to the notion that the Arctic Ocean is already close to a corrosive state. In high-latitude coastal waters the regulation of pH and Ωarag is, however, far more complex than offshore because increased biological activity and input of glacial meltwater affect pH. Effects of ocean acidification on calcifiers and non-calcifying phototrophs occupying coastal habitats cannot be derived from extrapolation of current and forecasted offshore conditions, but they require an understanding of the regimes of pH and Ωarag in their coastal habitats. To increase knowledge of the natural variability in pH in the Arctic coastal zone and specifically to test the influence of benthic vegetated habitats, we quantified pH variability in a Greenland fjord in a nested-scale approach. A sensor array logging pH, O2, PAR, temperature and salinity was applied on spatial scales ranging from kilometre scale across the horizontal extension of the fjord; to 100 m scale vertically in the fjord, 10–100 m scale between subtidal habitats with and without kelp forests and between vegetated tidal pools and adjacent vegetated shores; and to centimetre to metre scale within kelp forests and millimetre scale across diffusive boundary layers of macrophyte tissue. In addition, we assessed the temporal variability in pH on diurnal and seasonal scales. Based on pH measurements combined with point samples of total alkalinity, dissolved inorganic carbon and relationships to salinity, we also estimated variability in Ωarag. Results show variability in pH and Ωarag of up to 0.2–0.3 units at several scales, i.e. along the horizontal and vertical extension of the fjord, between seasons and on a diel basis in benthic habitats and within 1 m3 of kelp forest. Vegetated intertidal pools exhibited extreme diel pH variability of > 1.5 units

  19. Effect of orally administered sodium bicarbonate on caecal pH.

    Science.gov (United States)

    Taylor, E A; Beard, W L; Douthit, T; Pohlman, L

    2014-03-01

    Caecal acidosis is a central event in the metabolic cascade that occurs following grain overload. Buffering the caecal acidosis by enterally administered sodium bicarbonate (NaHCO3 ) may be beneficial to affected horses. To determine the effect and duration of enterally administered NaHCO3 on caecal pH in healthy horses. Experimental study using horses with caecal cannulas. Nine horses had been previously fitted with a caecal cannula. Six horses received 1.0 g/kg bwt NaHCO3 and 3 control horses were given 3 l of water via nasogastric tube. Clinical parameters, water consumption, venous blood gases, caecal pH, faecal pH and faecal water content were measured at 6 h intervals over a 36 h study period. Horses that received enterally administered NaHCO3 had significantly increased caecal pH that lasted the duration of the study. Treated horses increased their water intake, and developed metabolic alkalaemia, significantly increased plasma sodium concentrations and significantly decreased plasma potassium concentrations. Enterally administered NaHCO3 may be beneficial in buffering caecal acidosis. © 2013 EVJ Ltd.

  20. High Sensitivity pH Sensor Based on Porous Silicon (PSi Extended Gate Field-Effect Transistor

    Directory of Open Access Journals (Sweden)

    Naif H. Al-Hardan

    2016-06-01

    Full Text Available In this study, porous silicon (PSi was prepared and tested as an extended gate field-effect transistor (EGFET for pH sensing. The prepared PSi has pore sizes in the range of 500 to 750 nm with a depth of approximately 42 µm. The results of testing PSi for hydrogen ion sensing in different pH buffer solutions reveal that the PSi has a sensitivity value of 66 mV/pH that is considered a super Nernstian value. The sensor considers stability to be in the pH range of 2 to 12. The hysteresis values of the prepared PSi sensor were approximately 8.2 and 10.5 mV in the low and high pH loop, respectively. The result of this study reveals a promising application of PSi in the field for detecting hydrogen ions in different solutions.

  1. Salivary pH as a marker of plasma adiponectin concentrations in Women.

    Science.gov (United States)

    Tremblay, Monique; Loucif, Yacine; Methot, Julie; Brisson, Diane; Gaudet, Daniel

    2012-02-03

    Plasma adiponectin is a significant correlate of the pro-inflammatory cardiometabolic risk profile associated with obesity and type 2 diabetes. Salivary pH is influenced by several cardiometabolic risk components such as inflammation, oxidation and numerous oral and systemic health modulators, including the menopausal status. This study aimed to assess the association between plasma adiponectin concentrations and salivary pH in women according to the menopausal status. Unstimulated saliva collection was performed in 151 Caucasian women of French-Canadian origin (53 premenopausal women (PMW) and 98 menopausal women (MW)). Student's t test, ANOVA and linear regression models were used to assess the association between plasma adiponectin concentrations and salivary pH. Plasma adiponectin levels increased as a function of salivary pH in the whole sample and among MW (r = 0.29 and r = 0.36, p salivary pH (R2) was 10.8% (p salivary pH quartiles (p = 0.005). These results suggest that salivary pH is a significant correlate of plasma adiponectin levels in women. With the increasing prevalence of type 2 diabetes and obesity, new technologies should be developed to more easily monitor health status, disease onset and progression. Salivary pH, a simple, inexpensive and non-invasive measure, could be a very promising avenue.

  2. Growth rates of three geographically separated strains of the ichthyotoxic Prymnesium parvum (Prymnesiophyceae) in response to six different pH levels

    Science.gov (United States)

    Lysgaard, Maria L.; Eckford-Soper, Lisa; Daugbjerg, Niels

    2018-05-01

    Continued anthropogenic carbon emissions are expected to cause a decline in global average pH of the oceans to a projected value of 7.8 by the end of the century. Understanding how harmful algal bloom (HAB) species will respond to lowered pH levels will be important when predicting future HAB events and their ecological consequences. In this study, we examined how manipulated pH levels affected the growth rate of three strains of Prymnesium parvum from North America, Denmark and Japan. Triplicate strains were grown under pH conditions ranging from 6.6 to 9.1 to simulate plausible future levels. Different tolerances were evident for all strains. Significantly higher growth rates were observed at pH 6.6-8.1 compared to growth rates at pH 8.6-9.1 and a lower pH limit was not observed. The Japanese strain (NIES-1017) had the highest maximum growth rate of 0.39 divisions day-1 at pH 6.6 but a low tolerance (0.22 divisions day-1) to high levels (pH 9.1) with growth declining markedly after pH 7.6. The Danish (SCCAP K-0081) and North American (UTEX LB 2797) strains had maximum growth rates of 0.26 and 0.35 divisions day-1, respectively between pH 6.6-8.1. Compared to the other two strains the Danish strain had a statistically lower growth rate across all pH treatments. Strain differences were either attributed to their provenance or the length of time the strain had been in culture.

  3. Regulating NETosis: Increasing pH Promotes NADPH Oxidase-Dependent NETosis

    Science.gov (United States)

    Khan, Meraj A.; Philip, Lijy M.; Cheung, Guillaume; Vadakepeedika, Shawn; Grasemann, Hartmut; Sweezey, Neil; Palaniyar, Nades

    2018-01-01

    Neutrophils migrating from the blood (pH 7.35–7.45) into the surrounding tissues encounter changes in extracellular pH (pHe) conditions. Upon activation of NADPH oxidase 2 (Nox), neutrophils generate large amounts of H+ ions reducing the intracellular pH (pHi). Nevertheless, how extracellular pH regulates neutrophil extracellular trap (NET) formation (NETosis) is not clearly established. We hypothesized that increasing pH increases Nox-mediated production of reactive oxygen species (ROS) and neutrophil protease activity, stimulating NETosis. Here, we found that raising pHe (ranging from 6.6 to 7.8; every 0.2 units) increased pHi of both activated and resting neutrophils within 10–20 min (Seminaphtharhodafluor dual fluorescence measurements). Since Nox activity generates H+ ions, pHi is lower in neutrophils that are activated compared to resting. We also found that higher pH stimulated Nox-dependent ROS production (R123 generation; flow cytometry, plate reader assay, and imaging) during spontaneous and phorbol myristate acetate-induced NETosis (Sytox Green assays, immunoconfocal microscopy, and quantifying NETs). In neutrophils that are activated and not resting, higher pH stimulated histone H4 cleavage (Western blots) and NETosis. Raising pH increased Escherichia coli lipopolysaccharide-, Pseudomonas aeruginosa (Gram-negative)-, and Staphylococcus aureus (Gram-positive)-induced NETosis. Thus, higher pHe promoted Nox-dependent ROS production, protease activity, and NETosis; lower pH has the opposite effect. These studies provided mechanistic steps of pHe-mediated regulation of Nox-dependent NETosis. Raising pH either by sodium bicarbonate or Tris base (clinically known as Tris hydroxymethyl aminomethane, tromethamine, or THAM) increases NETosis. Each Tris molecule can bind 3H+ ions, whereas each bicarbonate HCO3− ion binds 1H+ ion. Therefore, the amount of Tris solution required to cause the same increase in pH level is less than that of equimolar

  4. Regulating NETosis: Increasing pH Promotes NADPH Oxidase-Dependent NETosis

    Directory of Open Access Journals (Sweden)

    Meraj A. Khan

    2018-02-01

    Full Text Available Neutrophils migrating from the blood (pH 7.35–7.45 into the surrounding tissues encounter changes in extracellular pH (pHe conditions. Upon activation of NADPH oxidase 2 (Nox, neutrophils generate large amounts of H+ ions reducing the intracellular pH (pHi. Nevertheless, how extracellular pH regulates neutrophil extracellular trap (NET formation (NETosis is not clearly established. We hypothesized that increasing pH increases Nox-mediated production of reactive oxygen species (ROS and neutrophil protease activity, stimulating NETosis. Here, we found that raising pHe (ranging from 6.6 to 7.8; every 0.2 units increased pHi of both activated and resting neutrophils within 10–20 min (Seminaphtharhodafluor dual fluorescence measurements. Since Nox activity generates H+ ions, pHi is lower in neutrophils that are activated compared to resting. We also found that higher pH stimulated Nox-dependent ROS production (R123 generation; flow cytometry, plate reader assay, and imaging during spontaneous and phorbol myristate acetate-induced NETosis (Sytox Green assays, immunoconfocal microscopy, and quantifying NETs. In neutrophils that are activated and not resting, higher pH stimulated histone H4 cleavage (Western blots and NETosis. Raising pH increased Escherichia coli lipopolysaccharide-, Pseudomonas aeruginosa (Gram-negative-, and Staphylococcus aureus (Gram-positive-induced NETosis. Thus, higher pHe promoted Nox-dependent ROS production, protease activity, and NETosis; lower pH has the opposite effect. These studies provided mechanistic steps of pHe-mediated regulation of Nox-dependent NETosis. Raising pH either by sodium bicarbonate or Tris base (clinically known as Tris hydroxymethyl aminomethane, tromethamine, or THAM increases NETosis. Each Tris molecule can bind 3H+ ions, whereas each bicarbonate HCO3− ion binds 1H+ ion. Therefore, the amount of Tris solution required to cause the same increase in pH level is less than that of equimolar

  5. Fiber optic pH sensor with self-assembled polymer multilayer nanocoatings.

    Science.gov (United States)

    Shao, Li-Yang; Yin, Ming-Jie; Tam, Hwa-Yaw; Albert, Jacques

    2013-01-24

    A fiber-optic pH sensor based on a tilted fiber Bragg grating (TFBG) with electrostatic self-assembly multilayer sensing film is presented. The pH sensitive polymeric film, poly(diallyldimethylammonium chloride) (PDDA) and poly(acrylic acid) (PAA) was deposited on the circumference of the TFBG with the layer-by-layer (LbL) electrostatic self-assembly technique. The PDDA/PAA film exhibits a reduction in refractive index by swelling in different pH solutions. This effect results in wavelength shifts and transmission changes in the spectrum of the TFBG. The peak amplitude of the dominant spectral fringes over a certain window of the transmission spectrum, obtained by FFT analysis, has a near-linear pH sensitivity of 117 arbitrary unit (a.u.)/pH unit and an accuracy of ±1 a.u. (in the range of pH 4.66 to pH 6.02). The thickness and surface morphology of the sensing multilayer film were characterized to investigate their effects on the sensor's performance. The dynamic response of the sensor also has been studied (10 s rise time and 18 s fall time for a sensor with six bilayers of PDDA/PAA).

  6. PH- and salt-dependent molecular combing of DNA: experiments and phenomenological model

    International Nuclear Information System (INIS)

    Benke, Annegret; Pompe, Wolfgang; Mertig, Michael

    2011-01-01

    λ-DNA as well as plasmids can be successfully deposited by molecular combing on hydrophobic surfaces, for pH values ranging from 4 to 10. On polydimethylsiloxane (PDMS) substrates, the deposited DNA molecules are overstretched by about 60-100%. There is a significant influence of sodium ions (NaCl) on the surface density of the deposited DNA, with a maximum near to 100 mM NaCl for a DNA solution (28 ng μl -1 ) at pH 8. The combing process can be described by a micromechanical model including: (i) the adsorption of free moving coiled DNA at the substrate; (ii) the stretching of the coiled DNA by the preceding meniscus; (iii) the relaxation of the deposited DNA to the final length. The sticky ends of λ-DNA cause an adhesion force in the range of about 400 pN which allows a stable overstretching of the DNA by the preceding meniscus. The exposing of hidden hydrophobic bonds of the overstretched DNA leads to a stable deposition on the hydrophobic substrate. The pH-dependent density of deposited DNA as well as the observed influence of sodium ions can be explained by their screening of the negatively charged DNA backbone and sticky ends, respectively. The final DNA length can be derived from a balance of the stored elastic energy of the overstretched molecules and the energy of adhesion.

  7. A ph sensor based on a flexible substrate

    Science.gov (United States)

    Huang, Wen-Ding

    pH sensor is an essential component used in many chemical, food, and bio-material industries. Conventional glass electrodes have been used to construct pH sensors, however, have some disadvantages. Glass electrodes are easily affected by alkaline or HF solution, they require a high input impedance pH meter, they often exhibit a sluggish response. In some specific applications, it is also difficult to use glass electrodes for in vivo biomedical or food monitoring applications due to the difficulty of size miniaturization, planarization and polymerization based on current manufacturing technologies. In this work, we have demonstrated a novel flexible pH sensor based on low-cost sol-gel fabrication process of iridium oxide (IrOx) sensing film (IROF). A pair of flexible miniature IrOx/AgCl electrode generated the action potential from the solution by electrochemical mechanism to obtain the pH level of the reagent. The fabrication process including sol-gel, thermal oxidation, and the electro-plating process of the silver chloride (AgCl) reference electrode were reported in the work. The IrOx film was verified and characterized using electron dispersive analysis (EDAX), scanning electron microscope (SEM), and x-ray diffraction (XRD). The flexible pH sensor's performance and characterization have been investigated with different testing parameters such as sensitivity, response time, stability, reversibility, repeatability, selectivity and temperature dependence. The flexible IrOx pH sensors exhibited promising sensing performance with a near-Nernstian response of sensitivity which is between --51.1mV/pH and --51.7mV/pH in different pH levels ranging from 1.5 to 12 at 25°C. Two applications including gastroesophageal reflux disease (GERD) diagnosis and food freshness wireless monitoring using our micro-flexible IrOx pH sensors were demonstrated. For the GERD diagnosing system, we embedded the micro flexible pH sensor on a 1.2cmx3.8cm of the capsule size of wireless sensor

  8. Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity.

    Science.gov (United States)

    Shin, Sun-Mi; Kim, Hana; Joo, Yunhye; Lee, Sang-Jae; Lee, Yong-Jik; Lee, Sang Jun; Lee, Dong-Woo

    2014-12-17

    The gadB gene encoding glutamate decarboxylase (GAD) from Lactobacillus plantarum was cloned and expressed in Escherichia coli. The recombinant enzyme exhibited maximal activity at 40 °C and pH 5.0. The 3D model structure of L. plantarum GAD proposed that its C-terminal region (Ile454-Thr468) may play an important role in the pH dependence of catalysis. Accordingly, C-terminally truncated (Δ3 and Δ11 residues) mutants were generated and their enzyme activities compared with that of the wild-type enzyme at different pH values. Unlike the wild-type GAD, the mutants showed pronounced catalytic activity in a broad pH range of 4.0-8.0, suggesting that the C-terminal region is involved in the pH dependence of GAD activity. Therefore, this study may provide effective target regions for engineering pH dependence of GAD activity, thereby meeting industrial demands for the production of γ-aminobutyrate in a broad range of pH values.

  9. Development of technology for plantlet propagation by tissue culture. (3). Strawberry callus growth and changes in pH in liquid medium; Soshiki baiyo ni yoru shubyo tairyo zoshoku gijutsu no kaihatsu. (3). Ekitai baiyo ni okeru ichigo callus no zoshoku to baichi no pH henka

    Energy Technology Data Exchange (ETDEWEB)

    Yoshihara, T; Hanyo, H [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    1991-02-01

    Development of strawberry cultivation plants is described as a part of night-time power utilization activities for power load levelling. Strawberry calluses (undifferent tissue mass) cultured in a liquid medium reach the fastest growth period in one week and the steady state in four weeks. The callus growth shows the maximum value at this time, which was 20 times as much of the seedling. The medium pH changed in a range from 4 to 7. If the initial pH is 4.0 or higher, no difference is created in the callus propagation in the steady state period, but at 3.0, no propagation whatsoever. The pH after the fastest growth period converged to a range from 6.0 to 7.0, with the exception of initial pH at 3.0. The medium pH decreased as a result of pre-culture heating sterilization, formation of iron phosphate due to light irradiation, and organic acid release during the initial growth phase. The pH increased because of difference in the speed of absorbing ammonium and nitric acid during the later growth phase. The growth efficiency of 20 times is about the same as other plants. Since the pH change is maintained within the range from 4 to 7, which causes no difference in in growth, there is no need of adjusting the pH within this range. 18 refs., 15 figs., 3 tabs.

  10. Effect of Fe, Ni, and Cr on the corrosion behaviour of hyper-eutectic Al-Si automotive alloy under different pH conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Salim Kaiser

    2018-05-01

    Full Text Available Effect of Fe, Ni and Cr on the corrosion behaviour of hyper-eutectic Al-Si automotive alloy was studied. The test of corrosion behaviour at different environmental pH 1, 3, 5, 7, 9, 11 and 13 was performed using conventional gravimetric measurements and complemented by resistivity, optical micrograph, scanning electron microscopy (SEM and X-ray analyser (EDX investigations. The highest corrosion rate was observed at pH 13 followed by pH 1, while in the pH range of 3.0 to 11, there is a high protection of surface due to formation of stable surface oxide film. The highest corrosion rate at pH 13 is due to presence of sodium hydroxide in the solution in which the surface oxide film is soluble. At pH 1, however, high corrosion rate can be attributed to dissolution of Al due to the surface attack by aggressive chloride ions. Presence of Fe, Ni and Cr in hyper-eutectic Al-Si automotive alloy has significant effect on the corrosion rate at both environmental pH values. Resistivity of alloy surfaces initially decreases at pH 1 and pH 13 due to formation of thin films. The SEM images of corroded samples immersed in pH 1 solution clearly show pores due to uniform degradation of the alloy. In pH 13 solution, however, the corrosion layer looks more packed and impermeable.

  11. Fine particle pH and gas-particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign

    Science.gov (United States)

    Guo, Hongyu; Liu, Jiumeng; Froyd, Karl D.; Roberts, James M.; Veres, Patrick R.; Hayes, Patrick L.; Jimenez, Jose L.; Nenes, Athanasios; Weber, Rodney J.

    2017-05-01

    pH is a fundamental aerosol property that affects ambient particle concentration and composition, linking pH to all aerosol environmental impacts. Here, PM1 and PM2. 5 pH are calculated based on data from measurements during the California Research at the Nexus of Air Quality and Climate Change (CalNex) study from 15 May to 15 June 2010 in Pasadena, CA. Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to measured gas-particle partitioning of inorganic nitrate, ammonium, and chloride. The study mean ± standard deviation PM1 pH was 1.9 ± 0.5 for the SO42--NO3--NH4+-HNO3-NH3 system. For PM2. 5, internal mixing of sea salt components (SO42--NO3--NH4+-Na+-Cl--K+-HNO3-NH3-HCl system) raised the bulk pH to 2.7 ± 0.3 and improved predicted nitric acid partitioning with PM2. 5 components. The results show little effect of sea salt on PM1 pH, but significant effects on PM2. 5 pH. A mean PM1 pH of 1.9 at Pasadena was approximately one unit higher than what we have reported in the southeastern US, despite similar temperature, relative humidity, and sulfate ranges, and is due to higher total nitrate concentrations (nitric acid plus nitrate) relative to sulfate, a situation where particle water is affected by semi-volatile nitrate concentrations. Under these conditions nitric acid partitioning can further promote nitrate formation by increasing aerosol water, which raises pH by dilution, further increasing nitric acid partitioning and resulting in a significant increase in fine particle nitrate and pH. This study provides insights into the complex interactions between particle pH and nitrate in a summertime coastal environment and a contrast to recently reported pH in the eastern US in summer and winter and the eastern Mediterranean. All studies have consistently found highly acidic PM1 with pH generally below 3.

  12. A cell-surface-anchored ratiometric fluorescent probe for extracellular pH sensing.

    Science.gov (United States)

    Ke, Guoliang; Zhu, Zhi; Wang, Wei; Zou, Yuan; Guan, Zhichao; Jia, Shasha; Zhang, Huimin; Wu, Xuemeng; Yang, Chaoyong James

    2014-09-10

    Accurate sensing of the extracellular pH is a very important yet challenging task in biological and clinical applications. This paper describes the development of an amphiphilic lipid-DNA molecule as a simple yet useful cell-surface-anchored ratiometric fluorescent probe for extracellular pH sensing. The lipid-DNA probe, which consists of a hydrophobic diacyllipid tail and a hydrophilic DNA strand, is modified with two fluorescent dyes; one is pH-sensitive as pH indicator and the other is pH-insensitive as an internal reference. The lipid-DNA probe showed sensitive and reversible response to pH change in the range of 6.0-8.0, which is suitable for most extracellular studies. In addition, based on simple hydrophobic interactions with the cell membrane, the lipid-DNA probe can be easily anchored on the cell surface with negligible cytotoxicity, excellent stability, and unique ratiometric readout, thus ensuring its accurate sensing of extracellular pH. Finally, this lipid-DNA-based ratiometric pH indicator was successfully used for extracellular pH sensing of cells in 3D culture environment, demonstrating the potential applications of the sensor in biological and medical studies.

  13. Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache.

    Science.gov (United States)

    Yan, Jin; Edelmayer, Rebecca M; Wei, Xiaomei; De Felice, Milena; Porreca, Frank; Dussor, Gregory

    2011-01-01

    Migraine headache is one of the most common neurological disorders. The pathological conditions that directly initiate afferent pain signaling are poorly understood. In trigeminal neurons retrogradely labeled from the cranial meninges, we have recorded pH-evoked currents using whole-cell patch-clamp electrophysiology. Approximately 80% of dural-afferent neurons responded to a pH 6.0 application with a rapidly activating and rapidly desensitizing ASIC-like current that often exceeded 20nA in amplitude. Inward currents were observed in response to a wide range of pH values and 30% of the neurons exhibited inward currents at pH 7.1. These currents led to action potentials in 53%, 30% and 7% of the dural afferents at pH 6.8, 6.9 and 7.0, respectively. Small decreases in extracellular pH were also able to generate sustained window currents and sustained membrane depolarizations. Amiloride, a non-specific blocker of ASIC channels, inhibited the peak currents evoked upon application of decreased pH while no inhibition was observed upon application of TRPV1 antagonists. The desensitization time constant of pH 6.0-evoked currents in the majority of dural afferents was less than 500ms which is consistent with that reported for ASIC3 homomeric or heteromeric channels. Finally, application of pH 5.0 synthetic-interstitial fluid to the dura produced significant decreases in facial and hind-paw withdrawal threshold, an effect blocked by amiloride but not TRPV1 antagonists, suggesting that ASIC activation produces migraine-related behavior in vivo. These data provide a cellular mechanism by which decreased pH in the meninges following ischemic or inflammatory events directly excites afferent pain-sensing neurons potentially contributing to migraine headache. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  14. Formation of Hg(II) Tetrathiolate Complexes with Cysteine at Neutral pH.

    Science.gov (United States)

    Warner, Thomas; Jalilehvand, Farideh

    2016-04-01

    Mercury(II) ions precipitate from aqueous cysteine (H 2 Cys) solutions containing H 2 Cys/Hg(II) mole ratio ≥ 2.0 as Hg( S -HCys) 2 . In absence of additional cysteine, the precipitate dissolves at pH ~12 with the [Hg( S,N -Cys) 2 ] 2- complex dominating. With excess cysteine (H 2 Cys/Hg(II) mole ratio ≥ 4.0), higher complexes form and the precipitate dissolves at lower pH values. Previously, we found that tetrathiolate [Hg( S -Cys) 4 ] 6- complexes form at pH = 11.0; in this work we extend the investigation to pH values of physiological interest. We examined two series of Hg(II)-cysteine solutions in which C Hg(II) varied between 8 - 9 mM and 80 - 100 mM, respectively, with H 2 Cys/Hg(II) mole ratios from 4 to ~20. The solutions were prepared in the pH range 7.1 - 8.8, at the pH at which the initial Hg( S -HCys) 2 precipitate dissolved. The variations in the Hg(II) speciation were followed by 199 Hg NMR, X-ray absorption and Raman spectroscopic techniques. Our results show that in the dilute solutions ( C Hg(II) = 8 - 9 mM), mixtures of di-, tri- (major) and tetrathiolate complexes exist at moderate cysteine excess ( C H2Cys ~ 0.16 M) at pH 7.1. In the more concentrated solutions ( C Hg(II) = 80 - 100 mM) with high cysteine excess ( C H2Cys > 0.9 M), tetrathiolate [Hg( S -cysteinate) 4 ] m -6 ( m = 0 - 4) complexes dominate in the pH range 7.3 - 7.8, with lower charge than for the [Hg( S -Cys) 4 ] 6- complex due to protonation of some ( m ) of the amino groups of the coordinated cysteine ligands. The results of this investigation could provide a key to the mechanism of biosorption and accumulation of Hg(II) ions in biological / environmental systems.

  15. Influence of pH on the acute toxicity of ammonia to juvenile freshwater mussels (fatmucket, Lampsills siliquoidea)

    Science.gov (United States)

    Wang, N.; Erickson, R.J.; Ingersoll, C.G.; Ivey, C.D.; Brunson, E.L.; Augspurger, T.; Barnhart, M.C.

    2008-01-01

    The objective of the present study was to evaluate the influence of pH on the toxicity of ammonia to juvenile freshwater mussels. Acute 96-h ammonia toxicity tests were conducted with 10-d-old juvenile mussels (fatmucket, Lampsilis siliquoidea) at five pH levels ranging from 6.5 to 9.0 in flow-through diluter systems at 20??C. Acute 48-h tests with amphipods (Hyalella azteca) and 96-h tests with oligochaetes (Lumbriculus variegatus) were conducted concurrently under the same test conditions to determine the sensitivity of mussels relative to these two commonly tested benthic invertebrate species. During the exposure, pH levels were maintained within 0.1 of a pH unit and ammonia concentrations were relatively constant through time (coefficient of variation for ammonia concentrations ranged from 2 to 30% with a median value of 7.9%). The median effective concentrations (EC50s) of total ammonia nitrogen (N) for mussels were at least two to six times lower than the EC50s for amphipods and oligochaetes, and the EC50s for mussels decreased with increasing pH and ranged from 88 mg N/L at pH 6.6 to 0.96 mg N/L at pH 9.0. The EC50s for mussels were at or below the final acute values used to derive the U.S. Environmental Protection Agency's acute water quality criterion (WQC). However, the quantitative relationship between pH and ammonia toxicity to juvenile mussels was similar to the average relationship for other taxa reported in the WQC. These results indicate that including mussel toxicity data in a revision to the WQC would lower the acute criterion but not change the WQC mathematical representation of the relative effect of pH on ammonia toxicity. ?? 2008 SETAC.

  16. pH and Organic Carbon Dose Rates Control Microbially Driven Bioremediation Efficacy in Alkaline Bauxite Residue.

    Science.gov (United States)

    Santini, Talitha C; Malcolm, Laura I; Tyson, Gene W; Warren, Lesley A

    2016-10-18

    Bioremediation of alkaline tailings, based on fermentative microbial metabolisms, is a novel strategy for achieving rapid pH neutralization and thus improving environmental outcomes associated with mining and refining activities. Laboratory-scale bioreactors containing bauxite residue (an alkaline, saline tailings material generated as a byproduct of alumina refining), to which a diverse microbial inoculum was added, were used in this study to identify key factors (pH, salinity, organic carbon supply) controlling the rates and extent of microbially driven pH neutralization (bioremediation) in alkaline tailings. Initial tailings pH and organic carbon dose rates both significantly affected bioremediation extent and efficiency with lower minimum pHs and higher extents of pH neutralization occurring under low initial pH or high organic carbon conditions. Rates of pH neutralization (up to 0.13 mM H + produced per day with pH decreasing from 9.5 to ≤6.5 in three days) were significantly higher in low initial pH treatments. Representatives of the Bacillaceae and Enterobacteriaceae, which contain many known facultative anaerobes and fermenters, were identified as key contributors to 2,3-butanediol and/or mixed acid fermentation as the major mechanism(s) of pH neutralization. Initial pH and salinity significantly influenced microbial community successional trajectories, and microbial community structure was significantly related to markers of fermentation activity. This study provides the first experimental demonstration of bioremediation in bauxite residue, identifying pH and organic carbon dose rates as key controls on bioremediation efficacy, and will enable future development of bioreactor technologies at full field scale.

  17. Effects of pH on the stability of cyanidin and cyanidin 3-O-β-glucopyranoside in aqueous solution

    Directory of Open Access Journals (Sweden)

    Rakić Violeta P.

    2015-01-01

    Full Text Available The colour variation, colour intensity and stability at various pH values (2.0, 4.0, 7.0 and 9.0 of cyanidin 3-O-β-glucopyranoside (Cy3Glc and its aglycone cyanidin was investigated during a period of 8 hours storage at 25ºC. Our data showed that pH of aqueous solution had impact on spectroscopic profile of cyanidin and Cy3Glc. Beginning with the most acidic solutions, increasing the pH induce bathochromic shifts of absorbance maximum in the visible range for all examined pH values (with the exception pH 4.0 for cyanidin, while the presence of the 3-glucosidic substitution induce hypsochromic shift. Compared to cyanidin, Cy3Glc has higher colour intensity and higher stability in the whole pH range, except at pH 7.0. The 3-glucosidic substitution influences on the colour intensity of Cy3Glc in the alkaline region. After 8-hour incubation of Cy3Glc and cyanidin at pH 2.0 and 25 ºC, 99% of Cy3Glc and only 27% of cyanidin remained unchanged.

  18. A Reliable and Non-destructive Method for Monitoring the Stromal pH in Isolated Chloroplasts Using a Fluorescent pH Probe

    Directory of Open Access Journals (Sweden)

    Pai-Hsiang Su

    2017-12-01

    Full Text Available The proton gradient established by the pH difference across a biological membrane is essential for many physiological processes, including ATP synthesis and ion and metabolite transport. Currently, ionophores are used to study proton gradients, and determine their importance to biological functions of interest. Because of the lack of an easy method for monitoring the proton gradient across the inner envelope membrane of chloroplasts (ΔpHenv, whether the concentration of ionophores used can effectively abolish the ΔpHenv is not proven for most experiments. To overcome this hindrance, we tried to setup an easy method for real-time monitoring of the stromal pH in buffered, isolated chloroplasts by using fluorescent pH probes; using this method the ΔpHenv can be calculated by subtracting the buffer pH from the measured stromal pH. When three fluorescent dyes, BCECF-AM [2′,7′-bis-(2-carboxyethyl-5-(and-6-carboxyfluorescein acetoxymethyl ester], CFDA-SE [5(6-Carboxyfluorescein diacetate succinimidyl ester] and SNARF-1 carboxylic acid acetate succinimidyl ester were incubated with isolated chloroplasts, BCECF-AM and CFDA-SE, but not the ester-formed SNARF-1 were taken up by chloroplasts and digested with esterase to release high levels of fluorescence. According to its relatively higher pKa value (6.98, near the physiological pH of the stroma, BCECF was chosen for further development. Due to shielding of the excitation and emission lights by chloroplast pigments, the ratiometric fluorescence of BCECF was highly dependent on the concentration of chloroplasts. By using a fixed concentration of chloroplasts, a highly correlated standard curve of pH to the BCECF ratiometric fluorescence with an r-square value of 0.98 was obtained, indicating the reliability of this method. Consistent with previous reports, the light-dependent formation of ΔpHenv can be detected ranging from 0.15 to 0.33 pH units upon illumination. The concentration of the ionophore

  19. Critical assessment of the pH of children's soap

    Directory of Open Access Journals (Sweden)

    Bruna Rafaela Mendes

    2016-06-01

    Full Text Available Abstract Objective: To evaluate the pH value of children's antibacterial soaps and syndets used in children's baths and verify whether there is information regarding pH on the product label. Methods: Quantitative, cross-sectional, analytical observational study that included ninety soap samples, both in bar and liquid presentations, as follows: 67 children's soap (group 1, 17 antibacterial soaps (group 2, and 6 syndets (group 3. Each sample had its pH measured after 1% dilution. In addition to descriptive statistics, the Pearson-Yates chi-squared test and Student's t-tests were applied, considering the minimal significance level of 5%. The Wilcoxon-Mann-Whitney test, Fisher's exact test, and the Kruskal-Wallis test were used for inferential statistics. Results: The pH levels varied considerably between liquid and bar presentations, with lower levels (4.4-7.9 found for the liquids (p < 0.05. Syndets showed pH levels close to the ideal (slightly acid and the antibacterial soaps showed the highest pH levels (up to 11.34 (p < 0.05. Only two of the soaps included in the study had information about their pH levels on the product packaging. Conclusions: Knowledge of the pH of children's soap by doctors and users is important, considering the great pH variability found in this study. Moreover, liquid soaps, and especially syndets, are the most recommended for the sensitive skin of neonates and infants, in order to guarantee skin barrier efficacy.

  20. Cross-linked self-assembled micelle based nanosensor for intracellular pH measurements

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar; Søndergaard, Rikke Vicki; Windschiegl, Barbara

    2014-01-01

    A micelle based nanosensor was synthesized and investigated as a ratiometric pH sensor for use in measurements in living cells by fluorescent microscopy. The nanosensor synthesis was based on self-assembly of an amphiphilic triblock copolymer, which was chemically cross-linked after micelle......-linked by an amidation reaction using 3,6,9-trioxaundecandioic acid cross-linker. The cross-linked micelle was functionalized with two pH sensitive fluorophores and one reference fluorophore, which resulted in a highly uniform ratiometric pH nanosensor with a diameter of 29 nm. The use of two sensor fluorophores...... provided a sensor with a very broad measurement range that seems to be influenced by the chemical design of the sensor. Cell experiments show that the sensor is capable of monitoring the pH distributions in HeLa cells....

  1. The pH of commonly available soaps, liquid cleansers, detergents and alcohol gels.

    Science.gov (United States)

    Boonchai, Waranya; Iamtharachai, Pacharee

    2010-01-01

    The hydrogen ion concentration (pH) of a cleanser certainly has an impact on skin condition. Dermatologists always need to recommend a cleanser to patients with hand dermatitis or sensitive skin; particularly during the outbreak of swine (AH1N1 virus) influenza, frequent hand washing and alcohol gel cleansing were greatly recommended. The purpose of this study was to evaluate the pH of various commonly available cleansers and alcohol gels on the market to assess patient comfort in using such products and to make good recommendations to our patients. Multiple brands of liquid cleansers, dishwashing liquids, soaps, laundry detergents, and alcohol gels commonly available on the market were assessed for pH by using a pH meter and pH-indicator strips. The pH assessment imitated real-life conditions by diluting each cleanser with tap water and then comparing the changed pH. The pH levels of liquid cleansers, dishwashing liquids, a beauty bar, and alcohol gels were acidic to neutral and compatible with normal skin pH. Most bar soaps, baby soaps, and powdered laundry detergents had a pH in the alkali range. The pH of concentrated cleansers was slightly different from that of their dissolved forms. Regarding the antiseptic property and pH of the cleansers, alcohol gels with moisturizers appeared to be the best hand cleansers to recommend to our patients.

  2. Long-term effect of tobacco on unstimulated salivary pH.

    Science.gov (United States)

    Grover, Neeraj; Sharma, Jyoti; Sengupta, Shamindra; Singh, Sanjeet; Singh, Nishant; Kaur, Harjeet

    2016-01-01

    The aim of this study was to analyze and compare the effects of tobacco on salivary pH between tobacco chewers, smokers and controls. A total of 60 subjects (males and females) aged 25-40 years, were divided equally into three groups: Tobacco smokers (Group A), chewers (Group B) and controls (Group C). Saliva of each subject was collected under resting condition. Salivary pH was determined using the specific salivary pH meter. The mean (±standard deviation) pH for Group A was 6.75 (±0.11), Group B was 6.5 (±0.29) and Group C was 7.00 (±0.28) after comparison. The significant results showed lower salivary pH in Groups A and B as compared to controls. Salivary pH was lowest in Group B compared to Group A and Group C. This study indicates that a lower (acidic) salivary pH was observed in tobacco users as compared with control. These alterations in pH due to the long-term effect of tobacco use can render oral mucosa vulnerable to various oral and dental diseases.

  3. Corrosion of glass-bonded sodalite as a function of pH and temperature

    International Nuclear Information System (INIS)

    Morss, L. R.; Stanley, M.; Tatko, C.; Ebert, W. L.

    1999-01-01

    This paper reports the results of corrosion tests with monoliths of sodalite, binder glass, and glass-bonded sodalite, a ceramic waste form (CWF) that is being developed to immobilize radioactive electrorefiner salt used to condition spent sodium-bonded nuclear fuel. These tests were performed with dilute pH-buffered solutions in the pH range of 5-10 at temperatures of 70 and 90 C. The pH dependence of the forward dissolution rates of the CWF and its components have been determined. The pH dependence of the dissolution rates of sodalite, binder glass, and glass-bonded sodalite are similar to the pH dependence of dissolution rate of borosilicate nuclear waste glasses, with a negative pH dependence in the acidic region and a positive pH dependence in the basic region. Our results on the forward dissolution rates and their temperature and pH dependence will be used as components of a waste form degradation model to predict the long-term behavior of the CWF in a nuclear waste repository

  4. Cementitious porous pavement in stormwater quality control: pH and alkalinity elevation.

    Science.gov (United States)

    Kuang, Xuheng; Sansalone, John

    2011-01-01

    A certain level of alkalinity acts as a buffer and maintains the pH value in a stable range in water bodies. With rapid urban development, more and more acidic pollutants flow to watersheds with runoff and drop alkalinity to a very low level and ultimately degrade the water environment. Cementitious porous pavement is an effective tool for stormwater acidic neutralization. When stormwater infiltrates cement porous pavement (CPP) materials, alkalinity and pH will be elevated due to the basic characteristics of cement concrete. The elevated alkalinity will neutralize acids in water bodies and maintain the pH in a stable level as a buffer. It is expected that CPP materials still have a certain capability of alkalinity elevation after years of service, which is important for CPP as an effective tool for stormwater management. However, few previous studies have reported on how CPP structures would elevate runoff alkalinity and pH after being exposed to rainfall-runoff for years. In this study, three groups of CPP specimens, all exposed to rainfall-runoff for 3 years, were used to test the pH and alkalinity elevation properties. It was found that runoff pH values were elevated from 7.4 to the range of 7.8-8.6 after infiltrating through the uncoated specimens, and from 7.4 to 8.5-10.7 after infiltrating through aluminum-coated specimens. Runoff alkalinity elevation efficiencies are 11.5-14.5% for uncoated specimens and 42.2% for coated specimens. The study shows that CPP is an effective passive unit operation for stormwater acid neutralization in our built environment.

  5. Thermodynamic Solubility Profile of Carbamazepine-Cinnamic Acid Cocrystal at Different pH.

    Science.gov (United States)

    Keramatnia, Fatemeh; Shayanfar, Ali; Jouyban, Abolghasem

    2015-08-01

    Pharmaceutical cocrystal formation is a direct way to dramatically influence physicochemical properties of drug substances, especially their solubility and dissolution rate. Because of their instability in the solution, thermodynamic solubility of cocrystals could not be determined in the common way like other compounds; therefore, the thermodynamic solubility is calculated through concentration of their components in the eutectic point. The objective of this study is to investigate the effect of an ionizable coformer in cocrystal with a nonionizable drug at different pH. Carbamazepine (CBZ), a nonionizable drug with cinnamic acid (CIN), which is an acidic coformer, was selected to prepare CBZ-CIN cocrystal and its thermodynamic solubility was studied in pH range 2-7. Instead of HPLC that is a costly and time-consuming method, a chemometric-based approach, net analyte signal standard addition method, was selected for simultaneous determination of CBZ and CIN in solution. The result showed that, as pH increases, CIN ionization leads to change in CBZ-CIN cocrystal solubility and stability in solution. In addition, the results of this study indicated that there is no significant difference between intrinsic solubility of CBZ and cocrystal despite the higher ideal solubility of cocrystal. This verifies that ideal solubility is not good parameter to predict cocrystal solubility. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules

    Directory of Open Access Journals (Sweden)

    Christian Hundshammer

    2018-02-01

    Full Text Available pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (pKa. Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the pKa of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1-13C]serine amide and [1-13C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei (13C, 15N, 31P with high sensitivity up to 4.8 ppm/pH and we show that 13C spins can be hyperpolarized with dissolution dynamic polarization (DNP. Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.

  7. Hyperpolarized Amino Acid Derivatives as Multivalent Magnetic Resonance pH Sensor Molecules.

    Science.gov (United States)

    Hundshammer, Christian; Düwel, Stephan; Ruseckas, David; Topping, Geoffrey; Dzien, Piotr; Müller, Christoph; Feuerecker, Benedikt; Hövener, Jan B; Haase, Axel; Schwaiger, Markus; Glaser, Steffen J; Schilling, Franz

    2018-02-15

    pH is a tightly regulated physiological parameter that is often altered in diseased states like cancer. The development of biosensors that can be used to non-invasively image pH with hyperpolarized (HP) magnetic resonance spectroscopic imaging has therefore recently gained tremendous interest. However, most of the known HP-sensors have only individually and not comprehensively been analyzed for their biocompatibility, their pH sensitivity under physiological conditions, and the effects of chemical derivatization on their logarithmic acid dissociation constant (p K a ). Proteinogenic amino acids are biocompatible, can be hyperpolarized and have at least two pH sensitive moieties. However, they do not exhibit a pH sensitivity in the physiologically relevant pH range. Here, we developed a systematic approach to tailor the p K a of molecules using modifications of carbon chain length and derivatization rendering these molecules interesting for pH biosensing. Notably, we identified several derivatives such as [1- 13 C]serine amide and [1- 13 C]-2,3-diaminopropionic acid as novel pH sensors. They bear several spin-1/2 nuclei ( 13 C, 15 N, 31 P) with high sensitivity up to 4.8 ppm/pH and we show that 13 C spins can be hyperpolarized with dissolution dynamic polarization (DNP). Our findings elucidate the molecular mechanisms of chemical shift pH sensors that might help to design tailored probes for specific pH in vivo imaging applications.

  8. Development and characterization of a voltammetric carbon-fiber microelectrode pH sensor.

    Science.gov (United States)

    Makos, Monique A; Omiatek, Donna M; Ewing, Andrew G; Heien, Michael L

    2010-06-15

    This work describes the development and characterization of a modified carbon-fiber microelectrode sensor capable of measuring real-time physiological pH changes in biological microenvironments. The reagentless sensor was fabricated under ambient conditions from voltammetric reduction of the diazonium salt Fast Blue RR onto a carbon-fiber surface in aprotic media. Fast-scan cyclic voltammetry was used to probe redox activity of the p-quinone moiety of the surface-bound molecule as a function of pH. In vitro calibration of the sensor in solutions ranging from pH 6.5 to 8.0 resulted in a pH-dependent anodic peak potential response. Flow-injection analysis was used to characterize the modified microelectrode, revealing sensitivity to acidic and basic changes discernible to 0.005 pH units. Furthermore, the modified electrode was used to measure dynamic in vivo pH changes evoked during neurotransmitter release in the central nervous system of the microanalytical model organism Drosophila melanogaster.

  9. The effects of temperature and pH on the kinetics of reactions between catalase and its suicide substrate hydrogen peroxide.

    Science.gov (United States)

    Ghadermarzi, M; Moosavi-Movahedi, A A

    1997-12-01

    Variation of initial (intact) activity (ai), inactivation rate constant (ki) and the partition ratio (r) of bovine liver catalase in the reaction with its suicide substrate, hydrogen peroxide, were determined in workable ranges of temperature (17-42 degrees C) or pH (5-10.5), using the data of progress curves. The changes of temperature had a slight effect on ai, giving a Q10 of 1.15 for the enzymatic breakdown of H2O2, corresponding to an improved value for its activation energy of 8.8 +/- l kJ.mol-1. In contrast, the ki was greatly increased by elevation of temperature, giving a Q10 of 2.1 for the suicide inactivation reaction of catalase. Consequently, a significant decrease of r was observed by increasing of temperature. In pH studies, decreasing of pH from 7.0 to 5.0 led to reduction of ai whereas the ki value was not effected significantly, possibly due to the parallel changes in affinities to free catalase and compound I for H2O2. Reduction of ki and alpha i were observed at pH > 9.5, where reversible dissociation of tetrameric enzyme into catalytically inactive subunits is possible. The r had a maximum value at pH around 7.5, similar to that of catalase activity. The effect of ionic strength on the above kinetic parameters was studied. There was not an observable influence when the ammonium sulfate concentration was below l M.

  10. Stress corrosion cracking properties of 15-5PH steel

    Science.gov (United States)

    Rosa, Ferdinand

    1993-01-01

    Unexpected occurrence of failures, due to stress corrosion cracking (SCC) of structural components, indicate a need for improved characterization of materials and more advanced analytical procedures for reliably predicting structures performance. Accordingly, the purpose of this study was to determine the stress corrosion susceptibility of 15-5PH steel over a wide range of applied strain rates in a highly corrosive environment. The selected environment for this investigation was a highly acidified sodium chloride (NaCl) aqueous solution. The selected alloy for the study was a 15-5PH steel in the H900 condition. The slow strain rate technique was selected to test the metals specimens.

  11. An evidence-based evaluation of transferrable skills and job satisfaction for science PhDs.

    Directory of Open Access Journals (Sweden)

    Melanie Sinche

    Full Text Available PhD recipients acquire discipline-specific knowledge and a range of relevant skills during their training in the life sciences, physical sciences, computational sciences, social sciences, and engineering. Empirically testing the applicability of these skills to various careers held by graduates will help assess the value of current training models. This report details results of an Internet survey of science PhDs (n = 8099 who provided ratings for fifteen transferrable skills. Indeed, analyses indicated that doctoral training develops these transferrable skills, crucial to success in a wide range of careers including research-intensive (RI and non-research-intensive (NRI careers. Notably, the vast majority of skills were transferrable across both RI and NRI careers, with the exception of three skills that favored RI careers (creativity/innovative thinking, career planning and awareness skills, and ability to work with people outside the organization and three skills that favored NRI careers (time management, ability to learn quickly, ability to manage a project. High overall rankings suggested that graduate training imparted transferrable skills broadly. Nonetheless, we identified gaps between career skills needed and skills developed in PhD training that suggest potential areas for improvement in graduate training. Therefore, we suggest that a two-pronged approach is crucial to maximizing existing career opportunities for PhDs and developing a career-conscious training model: 1 encouraging trainees to recognize their existing individual skill sets, and 2 increasing resources and programmatic interventions at the institutional level to address skill gaps. Lastly, comparison of job satisfaction ratings between PhD-trained employees in both career categories indicated that those in NRI career paths were just as satisfied in their work as their RI counterparts. We conclude that PhD training prepares graduates for a broad range of satisfying careers

  12. An evidence-based evaluation of transferrable skills and job satisfaction for science PhDs.

    Science.gov (United States)

    Sinche, Melanie; Layton, Rebekah L; Brandt, Patrick D; O'Connell, Anna B; Hall, Joshua D; Freeman, Ashalla M; Harrell, Jessica R; Cook, Jeanette Gowen; Brennwald, Patrick J

    2017-01-01

    PhD recipients acquire discipline-specific knowledge and a range of relevant skills during their training in the life sciences, physical sciences, computational sciences, social sciences, and engineering. Empirically testing the applicability of these skills to various careers held by graduates will help assess the value of current training models. This report details results of an Internet survey of science PhDs (n = 8099) who provided ratings for fifteen transferrable skills. Indeed, analyses indicated that doctoral training develops these transferrable skills, crucial to success in a wide range of careers including research-intensive (RI) and non-research-intensive (NRI) careers. Notably, the vast majority of skills were transferrable across both RI and NRI careers, with the exception of three skills that favored RI careers (creativity/innovative thinking, career planning and awareness skills, and ability to work with people outside the organization) and three skills that favored NRI careers (time management, ability to learn quickly, ability to manage a project). High overall rankings suggested that graduate training imparted transferrable skills broadly. Nonetheless, we identified gaps between career skills needed and skills developed in PhD training that suggest potential areas for improvement in graduate training. Therefore, we suggest that a two-pronged approach is crucial to maximizing existing career opportunities for PhDs and developing a career-conscious training model: 1) encouraging trainees to recognize their existing individual skill sets, and 2) increasing resources and programmatic interventions at the institutional level to address skill gaps. Lastly, comparison of job satisfaction ratings between PhD-trained employees in both career categories indicated that those in NRI career paths were just as satisfied in their work as their RI counterparts. We conclude that PhD training prepares graduates for a broad range of satisfying careers, potentially

  13. Effect of pH and sulfate concentration on hydrogen production using anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jae-Hoon; Choi, Jeong-A.; Bhatnagar, Amit; Kumar, Eva; Jeon, Byong-Hun [Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do, 220-710 (Korea); Abou-Shanab, R.A.I. [Department of Environmental Engineering, Yonsei University, Wonju, Gangwon-do, 220-710 (Korea); Department of Environmental Biotechnology, Mubarak City for Scientific Research, Alexandria (Egypt); Min, Booki [Department of Environmental Science and Engineering, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea); Song, Hocheol; Kim, Yong Je [Geologic Environment Division, KIGAM, Daejeon, 305-350 (Korea); Choi, Jaeyoung [Korea Institute of Science and Technology (KIST), Gangneung Institute, Gangneung 210-340 (Korea); Lee, Eung Seok [Geological Sciences, College of Arts and Sciences, Ohio University, Athens, OH 45701-2979 (United States); Um, Sukkee [School of Mechanical Engineering, Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul, 133-791 (Korea); Lee, Dae Sung [Petroleum and Marine Research Department, KIGAM, Daejeon (Korea)

    2009-12-15

    The effects of varying sulfate concentrations with pH on continuous fermentative hydrogen production were studied using anaerobic mixed cultures growing on a glucose substrate in a chemostat reactor. The maximum hydrogen production rate was 2.8 L/day at pH 5.5 and sulfate concentration of 3000 mg/L. Hydrogen production and residual sulfate level decreased with increasing the pH from 5.5 to 6.2. The volatile fatty acids (VFAs) and ethanol fractions in the effluent were in the order of butyric acid (HBu) > acetic acid (HAc) > ethanol > propionic acid (HPr). Fluorescence In Situ Hybridization (FISH) analysis revealed the presence of hydrogen producing bacteria (HPB) under all pH ranges while sulfate reducing bacteria (SRB) were present at pH 5.8 and 6.2. The inhibition in hydrogen production by SRB at pH 6.2 diminished entirely by lowering to pH 5.5, at which activity of SRB is substantially suppressed. (author)

  14. Preparation of acridine orange-doped silica nanoparticles for pH measurement

    International Nuclear Information System (INIS)

    Liu, Jinshui; Zang, Lingjie; Wang, Yiru; Liu, Guoning

    2014-01-01

    Acridine orange was first encapsulated into silica shell via a facile reverse microemusion method to built core–shell fluorescent nanoparticles. The nanoparticles are all in spherical shape and have a narrow size distribution, and its application as a optical pH sensor has been demonstrated. This novel sensor is based on the pH-dependent fluorescence intensities of acridine orange in different pH value. The fluorescence intensity of acridine orange-doped silica nanoparticles was decreased by increasing pH value. Under optimum conditions, the changes of fluorescence intensity were proportional to the pH value in the range of 8.00–10.90. In addition, the sensor can be easily separated by centrifugation and adds no pollution to the environment compared to the free dyes. Furthermore, the effects of ionic strength and co-existing substances were proved to have little influence on the determination of pH. The sensor has been successfully applied to determine the pH of two artificial samples. Hence, the core–shell fluorescent nanoparticles show potential for practical application. -- Highlights: • Acridine orange was encapsulated into silica shell via a facile reverse microemusion method to built core–shell fluorescent nanoparticles. • The fluorescence intensity of acridine orange-doped silica nanoparticles was decreased by increasing pH value. • Its can be used as an optical pH sensor. • The sensor can be easily separated by centrifugation and adds no pollution to the environment compared to the free dyes. • The sensor has been successfully applied to determine the pH of artificial samples

  15. Early Development of the Threespine Stickleback in Relation to Water pH

    Directory of Open Access Journals (Sweden)

    Olivier Glippa

    2017-12-01

    Full Text Available Ocean acidification is a growing environmental problem, and there is a need to investigate how the decreasing pH will affect marine organisms. Here we studied the effects of lowered pH on the growth and development of the threespine stickleback (Gasterosteus aculeatus eggs. Adult fish, collected from the natural environment, were allowed to mate in aquaria and the newly produced eggs were incubated in an experiment. Eggs and larvae from ambient conditions (produced in the laboratory were reared at three different pH concentrations (control: pH 7.8; and reduced pH treatments: pH 7.5 and 7.0 for 21 days in the laboratory. Dissolved oxygen concentration (8.1 ± 0.1 mg l−1 and temperature (18.6 ± 0.02°C were monitored regularly. Then, egg diameter, larval length, weight and survival were measured. There was no relationship between egg diameter and pH or oxygen, but a negative relationship was found with temperature. Survival of larvae was not affected by pH or temperature, whereas dissolved oxygen concentration had a positive effect on number of survivors. The pH did not have a significant effect on the final larval length on day 21, but interacted significantly with dissolved oxygen. Higher temperatures were found to have a positive effect on the final larval length and weight. Larval weight, on the other hand, was not related to pH nor oxygen. Coastal zones are characterized by pH levels that fluctuate due to natural processes, such as upwelling and river runoff. Our results suggest that the threespine stickleback larvae are well adapted to the different pHs tested, and egg development will likely not be affected by decreasing pH, but even slight temperature and oxygen changes can have a great impact on the threespine stickleback development.

  16. Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress

    International Nuclear Information System (INIS)

    Zeng Fanrong; Chen Song; Miao Ying; Wu Feibo; Zhang Guoping

    2008-01-01

    The effect of chromium (Cr) stress on the changes of rhizosphere pH, organic acid exudation, and Cr accumulation in plants was studied using two rice genotypes differing in grain Cr accumulation. The results showed that rhizosphere pH increased with increasing level of Cr in the culture solution and with an extended time of Cr exposure. Among the six organic acids examined in this experiment, oxalic and malic acid contents were relatively higher, and had a significant positive correlation with the rhizosphere pH, indicating that they play an important role in changing rhizosphere pH. The Cr content in roots was significantly higher than that in stems and leaves. Cr accumulation in plants was significantly and positively correlated with rhizosphere pH, and the exudation of oxalic, malic and citric acids, suggesting that an increase in rhizosphere pH, and exudation of oxalic, malic and citric acid enhances Cr accumulation in rice plants. - Rhizosphere pH and organic acid exudation of rice roots are markedly affected by chromium level in culture solution

  17. Temperature and pH sensors based on graphenic materials.

    Science.gov (United States)

    Salvo, P; Calisi, N; Melai, B; Cortigiani, B; Mannini, M; Caneschi, A; Lorenzetti, G; Paoletti, C; Lomonaco, T; Paolicchi, A; Scataglini, I; Dini, V; Romanelli, M; Fuoco, R; Di Francesco, F

    2017-05-15

    Point-of-care applications and patients' real-time monitoring outside a clinical setting would require disposable and durable sensors to provide better therapies and quality of life for patients. This paper describes the fabrication and performances of a temperature and a pH sensor on a biocompatible and wearable board for healthcare applications. The temperature sensor was based on a reduced graphene oxide (rGO) layer that changed its electrical resistivity with the temperature. When tested in a human serum sample between 25 and 43°C, the sensor had a sensitivity of 110±10Ω/°C and an error of 0.4±0.1°C compared with the reference value set in a thermostatic bath. The pH sensor, based on a graphene oxide (GO) sensitive layer, had a sensitivity of 40±4mV/pH in the pH range between 4 and 10. Five sensor prototypes were tested in a human serum sample over one week and the maximum deviation of the average response from reference values obtained by a glass electrode was 0.2pH units. For biological applications, the temperature and pH sensors were successfully tested for in vitro cytotoxicity with human fibroblast cells (MRC-5) over 24h. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Newly Developed Neutralized pH Icodextrin Dialysis Fluid: Nonclinical Evaluation.

    Science.gov (United States)

    Yamaguchi, Naoya; Miyamoto, Keiichi; Murata, Tomohiro; Ishikawa, Eiji; Horiuchi, Takashi

    2016-08-01

    A two-compartment system (NICOPELIQ; NICO, Terumo Co., Tokyo, Japan) has recently been developed to neutralize icodextrin peritoneal dialysis fluid (PDF). In this study, a nonclinical evaluation of NICO was carried out to evaluate biocompatibility as well as water transport ability. Glucose degradation products (GDPs) in the icodextrin PDFs were analyzed via high-performance liquid chromatography (HPLC). The cell viability of human peritoneal mesothelial cells derived from peritoneal dialysis effluent (PDE-HPMCs) was evaluated as well as the amount of lactate dehydrogenase (LDH) released after exposure to different PDFs (NICO and EXTRANEAL [EX, Baxter Healthcare Corp., Chicago, IL, USA]) and neutralized pH glucose PDF MIDPELIQ 250 (M250, Terumo). The water transport ability of NICO, EX, and M250 was tested using dialysis tube membranes with various pore sizes: 1, 2, 6-8, and 12-16 kDa. Although cell viability decreased by 30% after 30 min exposure to NICO, it was maintained for 6 h while a significant decrease was observed after 6 h exposure to EX. However, following adjustment of the pH to the same pre-exposure pH value, there was no significant difference in cell viability within the same pH group despite a doubling of the difference in the total amount of GDPs (44.6 ± 8.6 µM in NICO and 91.9 ± 9.5 µM in EX, respectively). In contrast, a significant decrease in cell viability was observed when the pH decreased to less than pH 6. Levels of released LDH, a cytotoxic marker, were within 5% after a 6-h exposure of NICO to PDE-HPMCs. There was no significant difference in water transport ability represented as overall osmotic gradients between NICO and EX. In conclusion, neutralization of icodextrin PDF is beneficial for maintaining cell viability and minimizing LDH release while water transport ability is comparable to the conventional icodextrin PDF. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. Microchamber arrays with an integrated long luminescence lifetime pH sensor.

    Science.gov (United States)

    Poehler, Elisabeth; Pfeiffer, Simon A; Herm, Marc; Gaebler, Michael; Busse, Benedikt; Nagl, Stefan

    2016-04-01

    A pH probe with a microsecond luminescence lifetime was obtained via covalent coupling of 6-carboxynaphthofluorescein (CNF) moieties to ruthenium-tris-(1,10-phenanthroline)(2+). The probe was covalently attached to amino-modified poly-(2-hydroxyethyl)methacrylate (pHEMA) and showed a pH-dependent FRET with luminescence lifetimes of 681 to 1260 ns and a working range from ca. pH 6.5 to 9.0 with a pKa of 7.79 ± 0.14. The pH sensor matrix was integrated via spin coating as ca. 1- to 2-μm-thick layer into "CytoCapture" cell culture dishes of 6 mm in diameter. These contained a microcavity array of square-shaped regions of 40 μm length and width and 15 μm depth that was homogeneously coated with the pH sensor matrix. The sensor layer showed fast response times in both directions. A microscopic setup was developed that enabled imaging of the pH inside the microchamber arrays over many hours. As a proof of principle, we monitored the pH of Escherichia coli cell cultures grown in the microchamber arrays. The integrated sensor matrix allowed pH monitoring spatially resolved in every microchamber, and the differences in cell growth between individual chambers could be resolved and quantified.

  20. The effects of salinity, pH, and dissolved organic matter on acute copper toxicity to the rotifer, Brachionus plicatilis ("L" strain).

    Science.gov (United States)

    Arnold, W R; Diamond, R L; Smith, D S

    2010-08-01

    This paper presents data from original research for use in the development of a marine biotic ligand model and, ultimately, copper criteria for the protection of estuarine and marine organisms and their uses. Ten 48-h static acute (unfed) copper toxicity tests using the euryhaline rotifer Brachionus plicatilis ("L" strain) were performed to assess the effects of salinity, pH, and dissolved organic matter (measured as dissolved organic carbon; DOC) on median lethal dissolved copper concentrations (LC50). Reconstituted and natural saltwater samples were tested at seven salinities (6, 11, 13, 15, 20, 24, and 29 g/L), over a pH range of 6.8-8.6 and a range of dissolved organic carbon of <0.5-4.1 mg C/L. Water chemistry analyses (alkalinity, calcium, chloride, DOC, hardness, magnesium, potassium, sodium, salinity, and temperature) are presented for input parameters to the biotic ligand model. In stepwise multiple regression analysis of experimental results where salinity, pH, and DOC concentrations varied, copper toxicity was significantly related only to the dissolved organic matter content (pH and salinity not statistically retained; alpha=0.05). The relationship of the 48-h dissolved copper LC50 values and dissolved organic carbon concentrations was LC50 (microg Cu/L)=27.1xDOC (mg C/L)1.25; r2=0.94.

  1. Ratiometric detection of pH fluctuation in mitochondria with a new fluorescein/cyanine hybrid sensor.

    Science.gov (United States)

    Chen, Yuncong; Zhu, Chengcheng; Cen, Jiajie; Bai, Yang; He, Weijiang; Guo, Zijian

    2015-05-01

    The homeostasis of mitochondrial pH (pH m ) is crucial in cell physiology. Developing small-molecular fluorescent sensors for the ratiometric detection of pH m fluctuation is highly demanded yet challenging. A ratiometric pH sensor, Mito-pH , was constructed by integrating a pH-sensitive FITC fluorophore with a pH-insensitive hemicyanine group. The hemicyanine group also acts as the mitochondria targeting group due to its lipophilic cationic nature. Besides its ability to target mitochondria, this sensor provides two ratiometric pH sensing modes, the dual excitation/dual emission mode (D ex /D em ) and dual excitation (D ex ) mode, and its linear and reversible ratiometric response range from pH 6.15 to 8.38 makes this sensor suitable for the practical tracking of pH m fluctuation in live cells. With this sensor, stimulated pH m fluctuation has been successfully tracked in a ratiometric manner via both fluorescence imaging and flow cytometry.

  2. Effects of pH and ionic strength on the thermodynamics of human serum albumin-photosensitizer binding

    International Nuclear Information System (INIS)

    Jones, Cecil L.; Dickson, TiReJe; Hayes, Ronald; Thomas, Lana

    2012-01-01

    Highlights: ► The pH dependence of entropy and enthalpy changes was determined for zinc phthalocyanine tetrasulfonic acid, ZnPcS 4 binding to human serum albumin, HSA. ► The ionic strength dependence of entropy and enthalpy changes was determined for ZnPcS 4 acid binding to HSA. ► The primary driving force governing the interaction between ZnPcS 4 and HSA over the range of pH and ionic strength was solution dynamics. ► The interplay between entropy and enthalpy changes was demonstrated. - Abstract: Fluorescence spectroscopy was used to measure the effects of pH and ionic strength on thermodynamic parameters governing the interaction of human serum albumin with zinc phthalocyanine tetrasulfonic acid. Fluorescence emission of zinc phthalocyanine increases at 686 nm with increasing concentrations of the protein. The non-linear correlation between protein concentration and emission of the photosensitizer was fitted using Chipman's analysis to calculate the binding affinities. The standard enthalpy and entropy changes were estimated from van’t Hoff analysis of data that were acquired from temperature ramping studies. Results show that reaction is primarily driven by solution dynamics and that the change in enthalpy for the system becomes increasingly unfavorable with increasing pH and ionic strength. The effect of ionic strength on the entropy change for binding is shown to be significantly greater than the effects of pH. The interplay between entropy and enthalpy changes is demonstrated.

  3. A study of specific sorption of neptunium(V) on smectite in low pH solution

    International Nuclear Information System (INIS)

    Kozai, Naofumi; Ohnuki, Toshihiko; Matsumoto, Junko; Banba, Tsunetaka; Ito, Yoshimoto

    1996-01-01

    The 'specific sorption' of neptunium(V) on smectite, in other words, a strong sorption undesorbable by 1 M KCl, is studied with a combination of batch type sorption and desorption experiments over a pH range of 2 to 5. Six types of homoionic smectite (Li-, Na-, K-, Cs-, Mg-, and Ca-smectite) are used in this study. Distribution coefficients (K d ) of neptunium for smectite vary over a wide pH range; the maximum K d value of ∝300 cm 3 x g -1 at around pH 2 for Li- and Na-smectite and the minimum value of ∝2 cm 3 x g -1 for Cs-smectite. The specific sorption of neptunium depends on pH and on the affinity of the exchangeable cation for smectite; the lower the pH of solution or the affinity, the larger the specific sorption. The neptunium-smectite association varies with the elapse of contact time. Within the first day of the neptunium-smectite contact the neptunium sorbed on na-smectite at low pH is desorbable by 1 M KCl solution, and on the passage of time most of the neuptunium sorbed becomes undesorbable by KCl (the specific sorption). Hydronium ion in solution is sorbed on smectite at low pH and dissociates the exchangeable cation from smectite into solution, and the specific sorption of neuptunium increases with increasing the exchangeable cation that is dissociated from smectite. (orig.)

  4. Harvesting Microalgal Biomass grown in Anaerobic Sewage Treatment Effluent by the Coagulation-Flocculation Method: Effect of pH

    Directory of Open Access Journals (Sweden)

    Servio Tulio Cassini

    2017-03-01

    Full Text Available ABSTRACT Harvesting is a critical step in microalgal biomass production process for many reasons. Among the existing techniques available for harvesting and dewatering microalgal biomass, recovery from aqueous medium by coagulation-flocculation has been the most economically viable process, althoughit is highly dependent on pH. This study aims to assess alternative coagulants compared to the standard coagulant aluminum sulfate for microalgal biomass recovery from anaerobic effluent of domestic sewage treatment. The effluent quality was also analyzed after biomass recovery. Coagulants represented by modified tannin, cationic starch and aluminum sulfate recovered more than 90% of algae biomass, at concentrations greater than 80 mg/L, in the pH range 7-10. Cationic starch promoted higher microalgal biomass recovery with a wider pH range. Powdered seeds of Moringa oleifera and Hibiscus esculentus(okra gum promoted biomass removal of 50%, only in the acidic range of pH. After sedimentation of the microalgal biomass, the effluents showed a removal of >80% for phosphorus and nitrogen values and >50% for BOD and COD when using aluminum sulfate, cationic starch and modified tannin as coagulants. Natural organic coagulants in a wide pH range can replace aluminum sulfate, a reference coagulant in microalgal biomass recovery, without decreasing microalgal biomass harvesting efficiency and the quality of the final effluent.

  5. Novel lanthanide pH fluorescent probes based on multiple emissions and its visible-light-sensitized feature

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jintai [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zheng, Yuhui, E-mail: yhzheng78@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou 510006 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Zeng, Zhi [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhang, Cheng Cheng [Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, Dallas (United States)

    2014-08-11

    Graphical abstract: A new type of Eu(III) ofloxacin complex as the fluorescent pH indicator has been reported. Compared to pure ligand, the complex offers more distinguished color changes (green–red–blue) derived from both lanthanide line emissions and the secondary ionization steps of ofloxacin. - Highlights: • The pH probe offers a very wide working range in water (pH 1–14). • The emission changes have multiple colors. • Long-lived excited state lifetimes of Eu(III) has been used. • Two types of pH sensitive hydrogels were fabricated. - Abstract: A new type of Eu(III) ofloxacin complex as the fluorescent pH indicator has been presented. Compared to pure ligand, the complex offers more distinguished color changes (green–red–blue) derived from both lanthanide line emissions and the secondary ionization steps of ofloxacin. During the concentration dependence experiments, the photoluminescence studies on the complex showed that the excitation of this pH probe can occur at a very long wavelength which extends to visible range (Ex = 427 nm). Furthermore, the functional complex was successfully incorporated into soft networks and two novel luminescent hydrogels (rod and film) were fabricated. The soft materials also exhibited specific responses towards the pH variation. Finally, the onion cell-stain experiments were carried out to further confirm the validity of pH dependence and the results support the idea that the material will be suitable for monitoring biological samples in the future.

  6. Salinity and pH effects on floating and emergent macrophytes in a constructed wetland.

    Science.gov (United States)

    Hadad, H R; Mufarrege, M M; Di Luca, G A; Maine, M A

    2017-04-01

    Salvinia herzogii, Pistia stratiotes and Eichhornia crassipes (floating species) were the dominant macrophytes in a constructed wetland (CW) over the first years of operation. Later, the emergent Typha domingensis displaced the floating species, becoming dominant. The industrial effluent treated at this CW showed high pH and salinity. The aim of this work was to study the tolerance of floating species and T. domingensis exposed to different pH and salinity treatments. Treatments at pH 8, 9, 10 and 11 and salinities of 2,000; 3,000; 4,000; 6,000; and 8,000 mg L -1 were performed. Floating macrophytes were unable to tolerate the studied pH and salinity ranges, while T. domingensis tolerated higher pH and salinity values. Many industrial effluents commonly show high pH and salinity. T. domingensis demonstrated to be a suitable macrophyte to treat this type of effluents.

  7. Fast and long term optical sensors for pH based on sol-gels

    International Nuclear Information System (INIS)

    Wang Enju; Chow, Kwok-Fan; Kwan, Vivian; Chin, Tammy; Wong, Crystal; Bocarsly, Andrew

    2003-01-01

    Long lasting and fast response optical sensor for the detection of pH in the range of 6-12 is described. The sensor is fabricated by spin coating silica sol in the presence of phenol red (PR). The sol is in turn obtained by acidic hydrolysis of tetraethoxysilane (TEOS) and phenyltriethoxysilane (Ph-TriEOS). The performance of the sensor depends on the ratio of Ph-TriOES to TEOS. At the optimal composition, the sensor has a response time of less than 20 s, the response is completely reversible and its life-time is over 12 months

  8. Extracellular pH modulates GABAergic neurotransmission in rat hypothalamus.

    Science.gov (United States)

    Chen, Z L; Huang, R Q

    2014-06-20

    Changes in extracellular pH have a modulatory effect on GABAA receptor function. It has been reported that pH sensitivity of the GABA receptor is dependent on subunit composition and GABA concentration. Most of previous investigations focused on GABA-evoked currents, which only reflect the postsynaptic receptors. The physiological relevance of pH modulation of GABAergic neurotransmission is not fully elucidated. In the present studies, we examined the influence of extracellular pH on the GABAA receptor-mediated inhibitory neurotransmission in rat hypothalamic neurons. The inhibitory postsynaptic currents (IPSCs), tonic currents, and the GABA-evoked currents were recorded with whole-cell patch techniques on the hypothalamic slices from Sprague-Dawley rats at 15-26 postnatal days. The amplitude and frequency of spontaneous GABA IPSCs were significantly increased while the external pH was changed from 7.3 to 8.4. In the acidic pH (6.4), the spontaneous GABA IPSCs were reduced in amplitude and frequency. The pH induced changes in miniature GABA IPSCs (mIPSCs) similar to that in spontaneous IPSCs. The pH effect on the postsynaptic GABA receptors was assessed with exogenously applied varying concentrations of GABA. The tonic currents and the currents evoked by sub-saturating concentration of GABA ([GABA]) (10 μM) were inhibited by acidic pH and potentiated by alkaline pH. In contrast, the currents evoked by saturating [GABA] (1mM) were not affected by pH changes. We also investigated the influence of pH buffers and buffering capacity on pH sensitivity of GABAA receptors on human recombinant α1β2γ2 GABAA receptors stably expressed in HEK 293 cells. The pH influence on GABAA receptors was similar in HEPES- and MES-buffered media, and not dependent on protonated buffers, suggesting that the observed pH effect on GABA response is a specific consequence of changes in extracellular protons. Our data suggest that the hydrogen ions suppress the GABAergic neurotransmission

  9. A method for measuring pH at high temperatures is presented

    International Nuclear Information System (INIS)

    Chaudon, Luc.

    1979-01-01

    Two hydrogen electrodes are used and set up in a PTFE cell comprising two chambers connected through a saturated potassium chloride solution bridge. This cell is put in an autoclave containing hydrogen. The potential difference of the following cell is measured: H 2 , Pt, R solution - KCl saturated solution at 25 0 C - X solution, Pt, H 2 - The pH of the reference solution R is known up to 300 0 C and the X solution must have its pH to be determined. The precision of the measures at 300 0 C is estimated about +-0,1 pH unit. The dissociation constant of water is calculated from pH variations of alcaline solutions up to 300 0 C. The method has helped to measure the pH at 300 0 C of some boric acid solutions, with or without lithium hydroxide additions, in the following concentration range: B: 250 to 1500 ppm and Li: 0 to 3 ppm. Some concentrations are in fact those chosen for the primary circuits of pressurized water reactors. The pH of ammoniacal solutions is measured too and helped to determine the variations of the dissociation constant of ammonia with temperature [fr

  10. Effect of pH on the properties of ZnS thin films grown by chemical bath deposition

    International Nuclear Information System (INIS)

    Ben Nasr, T.; Kamoun, N.; Kanzari, M.; Bennaceur, R.

    2006-01-01

    Zinc sulphide thin films have been deposited on glass substrates using the chemical bath deposition technique. The depositions were carried out in the pH range of 10 to 11.5. Structure of these films was characterized by X-ray diffraction and scanning electron microscopy. Optical properties were studied by spectrophotometric measurements. Influence of the increased pH value on structural and optical properties is described and discussed in terms of transmission improvement in the visible range. Transmission spectra indicate a high transmission coefficient (∼70%). The direct band gap energy is found to be about 3.67 eV for the films prepared at pH equal to 11.5

  11. Critical assessment of the pH of children's soap.

    Science.gov (United States)

    Mendes, Bruna Rafaela; Shimabukuro, Danielle Midori; Uber, Marjorie; Abagge, Kerstin Taniguchi

    2016-01-01

    To evaluate the pH value of children's antibacterial soaps and syndets used in children's baths and verify whether there is information regarding pH on the product label. Quantitative, cross-sectional, analytical observational study that included ninety soap samples, both in bar and liquid presentations, as follows: 67 children's soap (group 1), 17 antibacterial soaps (group 2), and 6 syndets (group 3). Each sample had its pH measured after 1% dilution. In addition to descriptive statistics, the Pearson-Yates chi-squared test and Student's t-tests were applied, considering the minimal significance level of 5%. The Wilcoxon-Mann-Whitney test, Fisher's exact test, and the Kruskal-Wallis test were used for inferential statistics. The pH levels varied considerably between liquid and bar presentations, with lower levels (4.4-7.9) found for the liquids (p<0.05). Syndets showed pH levels close to the ideal (slightly acid) and the antibacterial soaps showed the highest pH levels (up to 11.34) (p<0.05). Only two of the soaps included in the study had information about their pH levels on the product packaging. Knowledge of the pH of children's soap by doctors and users is important, considering the great pH variability found in this study. Moreover, liquid soaps, and especially syndets, are the most recommended for the sensitive skin of neonates and infants, in order to guarantee skin barrier efficacy. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  12. Partitioning of uranyl between ferrihydrite and humic substances at acidic and circum-neutral pH

    Science.gov (United States)

    Dublet, Gabrielle; Lezama Pacheco, Juan; Bargar, John R.; Fendorf, Scott; Kumar, Naresh; Lowry, Gregory V.; Brown, Gordon E.

    2017-10-01

    proportion of uranyl-Fh inner-sphere sorption complexes decreased relative to uranyl-ESHA or uranyl-SRFA complexes, which comprised up to ∼60% of the total uranyl in the systems studied. At pH 7.0, uranyl-NOM complexes were also present in the Fh-NOM aggregates in the concentration ranges of ESHA or SRFA considered; however, the proportion of these complexes was smaller at pH 7.0 than at pH 4.6 and did not increase significantly with increasing NOM concentration.

  13. Initial steps in defining the environment of the prepuce of the bull by measuring pH and temperature.

    Science.gov (United States)

    Koziol, J H; Fraser, N S; Passler, T; Wolfe, D F

    2017-12-01

    To determine the baseline pH and temperature of the preputial cavity of bulls. We enrolled 55 bulls ranging in age from 15 to 84 months. The preputial temperature and pH were measured by insertion of temperature and pH probes, respectively, into the preputial orifice prior to routine breeding soundness examinations. Information was obtained from owners regarding the diet of each bull and categorised as one of three categories: forage only, grain supplemented or silage supplemented. The average temperature of the prepuce was 37.81°C ± 1.76 and the median pH of the prepuce was 8.45 (6.35-9.46). Preputial temperatures of the bull weakly correlated with ambient temperatures (r s  = -0.29, P = 0.028). The preputial pH of silage-fed bulls was significantly lower than that of bulls fed forage only (P = 0.025) or grain-supplemented diets (P = 0.002). The median preputial pH of bulls fed a silage-based diet was 7.6 (6.3-8.9) compared with a median pH 8.7 (7.8-9.1) for bulls fed forage-based diets or a median of 8.5 (7.7-9.4) for those given grain-supplemented diets. Diet and ambient temperature can, respectively, affect pH and the temperature in the prepuce. Further studies to describe and understand the microbiota of the prepuce and penis may assist in developing treatments for diseases of the genital tract in bulls. © 2017 Australian Veterinary Association.

  14. Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution

    Science.gov (United States)

    Liu, Xiao-rong; Jiang, Sheng-cai; Liu, Yan-jun; Li, Hui; Wang, Hua-jun

    2013-10-01

    Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans ( A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.

  15. No-core fiber-based highly sensitive optical fiber pH sensor.

    Science.gov (United States)

    Bhardwaj, Vanita; Pathak, Akhilesh Kumar; Singh, Vinod Kumar

    2017-05-01

    The present work describes the fabrication and characterization of an optical fiber pH sensor using a sol–gel technique. The sensing head configuration is incorporated using a short section of no-core fiber, coated with tetraethyl orthosilicate and spliced at the end of a single mode fiber with a bulge. Different types of indicators (bromophenol blue, cresol red, and chlorophenol red) were used to achieve a wide pH range from 2 to 13. High sensitivities of the fabricated device were found to be 1.02 and ? 0.93 ?? nm / pH for acidic and alkaline solutions, respectively. From the characterization results, it was noted that there is an impact of ionic strength and an effect of the temperature of liquid on the response characteristic, which is an advantage of the existing device over the other pH sensors. The fabricated sensor exhibited good reflection spectrum, indicating a blueshift in resonance wavelength for alkaline solutions and a redshift for acidic solutions.

  16. Functional characterization of PhGR and PhGRL1 during flower senescence in the petunia.

    Science.gov (United States)

    Yang, Weiyuan; Liu, Juanxu; Tan, Yinyan; Zhong, Shan; Tang, Na; Chen, Guoju; Yu, Yixun

    2015-09-01

    Petunia PhGRL1 suppression accelerated flower senescence and increased the expression of the genes downstream of ethylene signaling, whereas PhGR suppression did not. Ethylene plays an important role in flowers senescence. Homologous proteins Green-Ripe and Reversion to Ethylene sensitivity1 are positive regulators of ethylene responses in tomato and Arabidopsis, respectively. The petunia flower has served as a model for the study of ethylene response during senescence. In this study, petunia PhGR and PhGRL1 expression was analyzed in different organs, throughout floral senescence, and after exogenous ethylene treatment; and the roles of PhGR and PhGRL1 during petunia flower senescence were investigated. PhGRL1 suppression mediated by virus-induced gene silencing accelerated flower senescence and increased ethylene production; however, the suppression of PhGR did not. Taken together, these data suggest that PhGRL1 is involved in negative regulation of flower senescence, possibly via ethylene production inhibition and consequently reduced ethylene signaling activation.

  17. Development of a pH sensing membrane electrode based on a new calix[4]arene derivative.

    Science.gov (United States)

    Kormalı Ertürün, H Elif; Demirel Özel, Ayça; Sayın, Serkan; Yılmaz, Mustafa; Kılıç, Esma

    2015-01-01

    A new pH sensing poly(vinyl chloride) (PVC) membrane electrode was developed by using recently synthesized 5,17-bis(4-benzylpiperidine-1-yl)methyl-25,26,27,28-tetrahydroxy calix[4]arene as an ionophore. The effects of membrane composition, inner filling solution and conditioning solution on the potential response of the proposed pH sensing membrane electrode were investigated. An optimum membrane composition of 3% ionophore, 67% o-nitrophenyl octyl ether (o-NPOE) as plasticizer, 30% PVC was found. The electrode exhibited a near-Nernstian slope of 58.7±1.1 mV pH(-1) in the pH range 1.9-12.7 at 20±1 °C. It showed good selectivity for H(+) ions in the presence of some cations and anions and a longer lifetime of at least 12 months when compared with the other PVC membrane pH electrodes reported in the literature. Having a wide working pH range, it was not only applied as a potentiometric indicator electrode in various acid-base titrations, but also successfully employed in different real samples. It has good reproducibility and repeatability with a response time of 6-7s. Compared to traditional glass pH electrode, it exhibited excellent potentiometric response after being used in fluoride-containing media. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Food web analysis reveals effects of pH on mercury bioaccumulation at multiple trophic levels in streams

    International Nuclear Information System (INIS)

    Jardine, Timothy D.; Kidd, Karen A.; O’ Driscoll, Nelson

    2013-01-01

    Highlights: ► We examine biomagnification of Hg through stream food webs using δ15 N. ► Slopes of methyl Hg vs. trophic level were higher than total Hg vs. trophic level. ► Biomagnification from predatory insects to fish was related to pH of the water. ► Biomagnification at lower trophic levels was related to dietary concentrations. ► These trends can explain variation in field-measured Hg in food webs. -- Abstract: Biomagnification processes and the factors that govern them, including those for mercury (Hg), are poorly understood in streams. Total and methyl Hg concentrations and relative trophic position (using δ 15 N) were analyzed in biofilm and invertebrates from 21 streams in New Brunswick, Canada to assess food web biomagnification leading to the common minnow blacknose dace (Rhinichthys atratulus), a species known to have Hg concentrations that are higher in low pH waters. Biomagnification slopes within stream food webs measured using Hg vs. δ 15 N or corresponding trophic levels (TL) differed depending on the chemical species analyzed, with total Hg exhibiting increases of 1.3–2.5 per TL (mean slope of total Hg vs. δ 15 N = 0.14 ± 0.06 S.D., range = 0.06–0.20) and methyl Hg showing a more pronounced increase of 2.8 to 6.0 per TL (mean slope of methyl Hg vs. δ 15 N = 0.30 ± 0.08 S.D., range = 0.22–0.39). While Hg biomagnification slopes through the entire food web (Trophic Magnification Factors, TMFs) were not influenced by water chemistry (pH), dietary concentrations of methyl Hg strongly influenced biomagnification factors (BMFs) for consumer-diet pairs within the food web at lower trophic levels, and BMFs between dace and predatory invertebrates were significantly higher in low pH waters. These analyses, coupled with observations of higher Hg in primary producers in streams with low pH, suggest that pH influences both baseline concentrations and biomagnification of Hg in these systems. Because higher Hg concentrations in the diets

  19. Food web analysis reveals effects of pH on mercury bioaccumulation at multiple trophic levels in streams

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, Timothy D., E-mail: tim.jardine@usask.ca [Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); Kidd, Karen A. [Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); O’ Driscoll, Nelson [Department of Earth and Environmental Sciences, Acadia University, Wolfville, NS B4P 2R6 (Canada)

    2013-05-15

    Highlights: ► We examine biomagnification of Hg through stream food webs using δ15 N. ► Slopes of methyl Hg vs. trophic level were higher than total Hg vs. trophic level. ► Biomagnification from predatory insects to fish was related to pH of the water. ► Biomagnification at lower trophic levels was related to dietary concentrations. ► These trends can explain variation in field-measured Hg in food webs. -- Abstract: Biomagnification processes and the factors that govern them, including those for mercury (Hg), are poorly understood in streams. Total and methyl Hg concentrations and relative trophic position (using δ{sup 15}N) were analyzed in biofilm and invertebrates from 21 streams in New Brunswick, Canada to assess food web biomagnification leading to the common minnow blacknose dace (Rhinichthys atratulus), a species known to have Hg concentrations that are higher in low pH waters. Biomagnification slopes within stream food webs measured using Hg vs. δ{sup 15}N or corresponding trophic levels (TL) differed depending on the chemical species analyzed, with total Hg exhibiting increases of 1.3–2.5 per TL (mean slope of total Hg vs. δ{sup 15}N = 0.14 ± 0.06 S.D., range = 0.06–0.20) and methyl Hg showing a more pronounced increase of 2.8 to 6.0 per TL (mean slope of methyl Hg vs. δ{sup 15}N = 0.30 ± 0.08 S.D., range = 0.22–0.39). While Hg biomagnification slopes through the entire food web (Trophic Magnification Factors, TMFs) were not influenced by water chemistry (pH), dietary concentrations of methyl Hg strongly influenced biomagnification factors (BMFs) for consumer-diet pairs within the food web at lower trophic levels, and BMFs between dace and predatory invertebrates were significantly higher in low pH waters. These analyses, coupled with observations of higher Hg in primary producers in streams with low pH, suggest that pH influences both baseline concentrations and biomagnification of Hg in these systems. Because higher Hg

  20. Effects of pH on nitrogen transformations in media-based aquaponics.

    Science.gov (United States)

    Zou, Yina; Hu, Zhen; Zhang, Jian; Xie, Huijun; Guimbaud, Christophe; Fang, Yingke

    2016-06-01

    To investigate the effects of pH on performance and nitrogen transformations in aquaponics, media-based aquaponics operated at pH 6.0, 7.5 and 9.0 were systematically examined and compared in this study. Results showed that nitrogen utilization efficiency (NUE) reached its maximum of 50.9% at pH 6.0, followed by 47.3% at pH 7.5 and 44.7% at pH 9.0. Concentrations of nitrogen compounds (i.e., TAN, NO2(-)-N and NO3(-)-N) in three pH systems were all under tolerable levels. pH had significant effect on N2O emission and N2O conversion ratio decreased from 2.0% to 0.6% when pH increased from 6.0 to 9.0, mainly because acid environment would inhibit denitrifiers and lead to higher N2O emission. 75.2-78.5% of N2O emission from aquaponics was attributed to denitrification. In general, aquaponics was suggested to maintain pH at 6.0 for high NUE, and further investigations on N2O mitigation strategy are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The effect of pectin, corn and wheat starch, inulin and pH on in vitro production of methane, short chain fatty acids and on the microbial community composition in rumen fluid.

    Science.gov (United States)

    Poulsen, Morten; Jensen, Bent Borg; Engberg, Ricarda M

    2012-02-01

    Methane emission from livestock, ruminants in particular, contributes to the build up of greenhouse gases in the atmosphere. Therefore the focus on methane emission from ruminants has increased. The objective of this study was to investigate mechanisms for methanogenesis in a rumen fluid-based in vitro fermentation system as a consequence of carbohydrate source (pectin, wheat and corn starch and inulin) and pH (ranging from 5.5 to 7.0). Effects were evaluated with respect to methane and short chain fatty acid (SCFA) production, and changes in the microbial community in the ruminal fluid as assessed by terminal-restriction fragment length polymorphism (T-RFLP) analysis. Fermentation of pectin resulted in significantly lower methane production rates during the first 10 h of fermentation compared to the other substrates (P = 0.001), although total methane production was unaffected by carbohydrate source (P = 0.531). Total acetic acid production was highest for pectin and lowest for inulin (P Methane production rates were significantly lower for fermentations at pH 5.5 and 7.0 (P = 0.005), sustained as a trend after 48 h (P = 0.059), indicating that there was a general optimum for methanogenic activity in the pH range from 6.0 to 6.5. Decreasing pH from 7.0 to 5.5 significantly favored total butyric acid production (P composition. This study demonstrates that both carbohydrate source and pH affect methane and SCFA production patterns, and the microbial community composition in rumen fluid. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Meta-Cresol Purple Reference Material® (RM) for Seawater pH Measurements

    Science.gov (United States)

    Easley, R. A.; Waters, J. F.; Place, B. J.; Pratt, K. W.

    2016-02-01

    The pH of seawater is a fundamental quantity that governs the carbon dioxide - carbonate system in the world's oceans. High quality pH measurements for long-term monitoring, shipboard studies, and shorter-term biological studies (mesocosm and field experiments) can be ensured through a reference material (RM) that is compatible with existing procedures and which is traceable to primary pH measurement metrology. High-precision spectrophotometric measurements of seawater pH using an indicator dye such as meta-cresol purple (mCP) are well established. However, traceability of these measurements to the International System of Units (SI) additionally requires characterizing the spectrophotometric pH response of the dye in multiple artificial seawater buffers that themselves are benchmarked via primary pH (Harned cell) measurements at a range of pH, salinity, and temperature. NIST is currently developing such a mCP pH RM using this approach. This material will also incorporate new procedures developed at NIST for assessing the purity and homogeneity of the mCP reagent itself. The resulting mCP will provide long-term (years) stability and ease of shipment compared to artificial seawater pH buffers. These efforts will provide the oceanographic user community with a NIST issued mCP (RM), characterized as to its molar absorptivity values and acid dissociation constants (pKa), with uncertainties that comply with the Guide to the Expression of Uncertainty in Measurement (GUM).

  3. The evolution of Root effect hemoglobins in the absence of intracellular pH protection of the red blood cell: insights from primitive fishes.

    Science.gov (United States)

    Regan, Matthew D; Brauner, Colin J

    2010-06-01

    The Root effect, a reduction in blood oxygen (O(2)) carrying capacity at low pH, is used by many fish species to maximize O(2) delivery to the eye and swimbladder. It is believed to have evolved in the basal actinopterygian lineage of fishes, species that lack the intracellular pH (pH(i)) protection mechanism of more derived species' red blood cells (i.e., adrenergically activated Na(+)/H(+) exchangers; betaNHE). These basal actinopterygians may consequently experience a reduction in blood O(2) carrying capacity, and thus O(2) uptake at the gills, during hypoxia- and exercise-induced generalized blood acidoses. We analyzed the hemoglobins (Hbs) of seven species within this group [American paddlefish (Polyodon spathula), white sturgeon (Acipenser transmontanus), spotted gar (Lepisosteus oculatus), alligator gar (Atractosteus spatula), bowfin (Amia calva), mooneye (Hiodon tergisus), and pirarucu (Arapaima gigas)] for their Root effect characteristics so as to test the hypothesis of the Root effect onset pH value being lower than those pH values expected during a generalized acidosis in vivo. Analysis of the haemolysates revealed that, although each of the seven species displayed Root effects (ranging from 7.3 to 40.5% desaturation of Hb with O(2), i.e., Hb O(2) desaturation), the Root effect onset pH values of all species are considerably lower (ranging from pH 5.94 to 7.04) than the maximum blood acidoses that would be expected following hypoxia or exercise (pH(i) 7.15-7.3). Thus, although these primitive fishes possess Hbs with large Root effects and lack any significant red blood cell betaNHE activity, it is unlikely that the possession of a Root effect would impair O(2) uptake at the gills following a generalized acidosis of the blood. As well, it was shown that both maximal Root effect and Root effect onset pH values increased significantly in bowfin over those of the more basal species, toward values of similar magnitude to those of most of the more derived

  4. A nocturnal decline of salivary pH associated with airway hyperresponsiveness in asthma.

    Science.gov (United States)

    Watanabe, Masanari; Sano, Hiroyuki; Tomita, Katsuyuki; Yamasaki, Akira; Kurai, Jun; Hasegawa, Yasuyuki; Igishi, Tadashi; Okazaki, Ryota; Tohda, Yuji; Burioka, Naoto; Shimizu, Eiji

    2010-08-01

    Salivary pH is associated with esophageal acid reflux and neutralization of esophageal acid. In this study, we assessed the association between nocturnal decline of salivary pH and airway hyperresponsiveness. Salivary pH was serially assessed in 9 patients with mild asthma (7 men and 2 women; mean age 33.3 years; mean %predicted FEV(1.0) 89.4%) and 10 healthy volunteers (6 men and 4 women; mean age 31.2 years) using a pH indicator tape. The buffering capacity of saliva was defined as the median effective dose (ED(50)) for acidification of saliva with 0.01 N HCl, and airway responsiveness was defined as the dose of methacholine producing a 35% fall in Grs (PD(35)-Grs). There was a significant correlation between the values obtained from the pH indicator tape and those obtained from the electrometric pH meter. Using the indicator tape for sequential monitoring, we observed a nocturnal fall (ΔpH) in salivary pH in all subjects. A significant correlation was found between airway hyperresponsiveness (PD(35)-Grs) and either ΔpH or ED(50) in mildly asthmatic patients. Vagal reflux dysfunction might contribute to nocturnal salivary pH as well as to airway hyperresponsiveness in mild asthmatics.

  5. pH and the cytotoxicity of fluoride in an animal cell culture system

    International Nuclear Information System (INIS)

    Helgeland, K.; Leirskar, J.

    1976-01-01

    To investigate the mechanism for the toxicity of silicate cement as observed in a cell culture system, the effects of pH and fluoride were tested on human epithelial cells (NCTC 2544). At pH 7.3, fluoride concentrations from 15 to 25 μg/ml (0.79 to 1.3 mM) had a growth inhibitory effect. When the pH of the incubation medium was lowered to the range 7.0 to 6.4, an enhanced cytotoxic effect of fluoride was found, and even at 5 to 10 μg/ml growth inhibition occurred. Concomitant with the enhanced cytotoxicity of fluoride at low pH, there was an increased utilization of glucose and formation of lactate. Upon lowering the pH of the incubation medium from 7.4 to 6.7, a twofold increase in the intracellular concentration of fluoride was found. (author)

  6. Formation of NDMA from ranitidine and sumatriptan: the role of pH.

    Science.gov (United States)

    Shen, Ruqiao; Andrews, Susan A

    2013-02-01

    N-nitrosodimethylamine (NDMA) is an emerging disinfection by-product (DBP) which can be formed via the chloramination of amine-based precursors. The formation of NDMA is mainly determined by the speciation of chloramines and the precursor amine groups, both of which are highly dependent on pH. The impact of pH on NDMA formation has been studied for the model precursor dimethylamine (DMA) and natural organic matter (NOM), but little is known for amine-based pharmaceuticals which have been newly identified as a group of potential NDMA precursors, especially in waters impacted by treated wastewater effluents. This study investigates the role of pH in the formation of NDMA from two amine-based pharmaceuticals, ranitidine and sumatriptan, under drinking water relevant conditions. The results indicate that pH affects both the ultimate NDMA formation as well as the reaction kinetics. The maximum NDMA formation typically occurs in the pH range of 7-8. At lower pH, the reaction is limited due to the lack of non-protonated amines. At higher pH, although the initial reaction is enhanced by the increasing amount of non-protonated amines, the ultimate NDMA formation is limited because of the lack of dichloramine. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The acid test of fluoride: how pH modulates toxicity.

    Science.gov (United States)

    Sharma, Ramaswamy; Tsuchiya, Masahiro; Skobe, Ziedonis; Tannous, Bakhos A; Bartlett, John D

    2010-05-28

    It is not known why the ameloblasts responsible for dental enamel formation are uniquely sensitive to fluoride (F(-)). Herein, we present a novel theory with supporting data to show that the low pH environment of maturating stage ameloblasts enhances their sensitivity to a given dose of F(-). Enamel formation is initiated in a neutral pH environment (secretory stage); however, the pH can fall to below 6.0 as most of the mineral precipitates (maturation stage). Low pH can facilitate entry of F(-) into cells. Here, we asked if F(-) was more toxic at low pH, as measured by increased cell stress and decreased cell function. Treatment of ameloblast-derived LS8 cells with F(-) at low pH reduced the threshold dose of F(-) required to phosphorylate stress-related proteins, PERK, eIF2alpha, JNK and c-jun. To assess protein secretion, LS8 cells were stably transduced with a secreted reporter, Gaussia luciferase, and secretion was quantified as a function of F(-) dose and pH. Luciferase secretion significantly decreased within 2 hr of F(-) treatment at low pH versus neutral pH, indicating increased functional toxicity. Rats given 100 ppm F(-) in their drinking water exhibited increased stress-mediated phosphorylation of eIF2alpha in maturation stage ameloblasts (pHdental fluorosis.

  8. Multimodal Sensing Strategy Using pH Dependent Fluorescence Switchable System

    Science.gov (United States)

    Muthurasu, A.; Ganesh, V.

    2016-12-01

    Biomolecules assisted preparation of fluorescent gold nanoparticles (FL-Au NPs) has been reported in this work using glucose oxidase enzyme as both reducing and stabilizing agent and demonstrated their application through multimodal sensing strategy for selective detection of cysteine (Cys). Three different methods namely fluorescence turn OFF-ON strategy, naked eye detection and electrochemical methods are used for Cys detection by employing FL-Au NPs as a common probe. In case of fluorescence turn-OFF method a strong interaction between Au NPs and thiol results in quenching of fluorescence due to replacement of glucose oxidase by Cys at neutral pH. Second mode is based on fluorescence switch-ON strategy where initial fluorescence is significantly quenched by either excess acid or base and further addition of Cys results in appearance of rosy-red and green fluorescence respectively. Visual colour change and fluorescence emission arises due to etching of Au atoms on the surface by thiol leading to formation of Au nanoclusters. Finally, electrochemical sensing of Cys is also carried out using cyclic voltammetry in 0.1 M PBS solution. These findings provide a suitable platform for Cys detection over a wide range of pH and concentration levels and hence the sensitivity can also be tuned accordingly.

  9. Optimization of paper bridge loading for 2-DE analysis in the basic pH region: application to the mitochondrial subproteome.

    Science.gov (United States)

    Kane, Lesley A; Yung, Christina K; Agnetti, Giulio; Neverova, Irina; Van Eyk, Jennifer E

    2006-11-01

    Separation of basic proteins with 2-DE presents technical challenges involving protein precipitation, load limitations, and streaking. Cardiac mitochondria are enriched in basic proteins and difficult to resolve by 2-DE. We investigated two methods, cup and paper bridge, for sample loading of this subproteome into the basic range (pH 6-11) gels. Paper bridge loading consistently produced improved resolution of both analytical and preparative protein loads. A unique benefit of this technique is that proteins retained in the paper bridge after loading basic gels can be reloaded onto lower pH gradients (pH 4-7), allowing valued samples to be analyzed on multiple pH ranges.

  10. Nanofiltration of Mine Water: Impact of Feed pH and Membrane Charge on Resource Recovery and Water Discharge

    Directory of Open Access Journals (Sweden)

    Mark Mullett

    2014-03-01

    Full Text Available Two nanofiltration membranes, a Dow NF 270 polyamide thin film and a TriSep TS 80 polyamide thin film, were investigated for their retention of ionic species when filtering mine influenced water streams at a range of acidic pH values. The functional iso-electric point of the membranes, characterized by changes in retention over a small pH range, were examined by filtering solutions of sodium sulphate. Both membranes showed changes in retention at pH 3, suggesting a zero net charge on the membranes at this pH. Copper mine drainage and synthetic solutions of mine influenced water were filtered using the same membranes. These solutions were characterized by pH values within 2 and 5, thus crossing the iso-electric point of both membranes. Retention of cations was maximized when the feed solution pH was less than the iso-electric point of the membrane. In these conditions, the membrane has a net positive charge, reducing the transmission rate of cations. From the recoveries of a range of cations, the suitability of nanofiltration was discussed relative to the compliance with mine water discharge criteria and the recovery of valuable commodity metals. The nanofiltration process was demonstrated to offer advantages in metal recovery from mine waste streams, concomitantly enabling discharge criteria for the filtrate disposal to be met.

  11. Duodenal pH in health and duodenal ulcer disease: effect of a meal, Coca-Cola, smoking, and cimetidine.

    Science.gov (United States)

    McCloy, R F; Greenberg, G R; Baron, J H

    1984-04-01

    Intraluminal duodenal pH was recorded using a combined miniature electrode and logged digitally every 10 or 20 seconds for five hours (basal/meal/drink) in eight control subjects and 11 patients with duodenal ulcer (five on and off treatment with cimetidine). Over the whole test there were no significant differences in duodenal mean pH or log mean hydrogen ion activity (LMHa) between control subjects and patients with duodenal ulcer, but there were significantly longer periods of duodenal acidification (pH less than 4) and paradoxically more periods of duodenal alkalinisation (pH greater than 6) in the duodenal ulcer group compared with controls. After a meal duodenal mean pH and LMHa fell significantly in both controls and patients with duodenal ulcer, with more periods of duodenal acidification and alkalinisation in the duodenal ulcer group. An exogenous acid load (Coca-Cola) significantly increased the periods of duodenal acidification, and reduced alkalinisation, in both groups. Cimetidine significantly increased mean pH and LMHa and abolished the brief spikes of acidification in four of five patients with duodenal ulcer. Peak acid output (but not basal acid output) was significantly correlated with duodenal mean pH and LMHa but not with the periods of duodenal acidification. Smoking did not affect duodenal pH in either group.

  12. Core-shell fluorescent silica nanoparticles for sensing near-neutral pH values

    International Nuclear Information System (INIS)

    Gao, F.; Chen, X.; Ye, Q.; Yao, Z.; Guo, X.; Wang, L.

    2011-01-01

    pH-responsive fluorescent core-shell silica nanoparticles (SiNPs) were prepared by encapsulating the pH-sensitive fluorophore 8-hydroxypyrene-1,3, 6-trisulfonate into their silica shell via a facile reverse microemulsion method. The resulting SiNPs were characterized by SEM, TEM, fluorescence lifetime spectroscopy, photobleaching experiments, and photoluminescence. The core-shell structure endows the SiNPs with reduced photobleaching, excellent photostability, minimized solvatachromic shift, and increased fluorescence efficiency compared to the free fluorophore in aqueous solution. The dynamic range for sensing pH ranges from 5. 5 to 9. 0. The nanosensors show excellent stability, are highly reproducible, and enable rapid detection of pH. The results obtained with the SiNPs are in good agreement with data obtained with a glass electrode. (author)

  13. Reflection-mode micro-spherical fiber-optic probes for in vitro real-time and single-cell level pH sensing.

    Science.gov (United States)

    Yang, Qingbo; Wang, Hanzheng; Lan, Xinwei; Cheng, Baokai; Chen, Sisi; Shi, Honglan; Xiao, Hai; Ma, Yinfa

    2015-02-01

    pH sensing at the single-cell level without negatively affecting living cells is very important but still a remaining issue in the biomedical studies. A 70 μm reflection-mode fiber-optic micro-pH sensor was designed and fabricated by dip-coating thin layer of organically modified aerogel onto a tapered spherical probe head. A pH sensitive fluorescent dye 2', 7'-Bis (2-carbonylethyl)-5(6)-carboxyfluorescein (BCECF) was employed and covalently bonded within the aerogel networks. By tuning the alkoxide mixing ratio and adjusting hexamethyldisilazane (HMDS) priming procedure, the sensor can be optimized to have high stability and pH sensing ability. The in vitro real-time sensing capability was then demonstrated in a simple spectroscopic way, and showed linear measurement responses with a pH resolution up to an average of 0.049 pH unit within a narrow, but biological meaningful pH range of 6.12-7.81. Its novel characterizations of high spatial resolution, reflection mode operation, fast response and high stability, great linear response within biological meaningful pH range and high pH resolutions, make this novel pH probe a very cost-effective tool for chemical/biological sensing, especially within the single cell level research field.

  14. The gecko visual pigment: a pH indicator with a salt effect.

    Science.gov (United States)

    Crescitelli, F

    1981-12-01

    1. Unlike rhodopsin, the extracted 521-pigment of the Tokay gecko (Gekko gekko) is pH-sensitive and changes its spectral absorbance in the pH range of 4.5-7.3. The colour change is reversible and pH can be employed to adjust the spectral maximum anywhere between 490 nm and its native location at 521 nm.2. The hypsochromic shift with increasing acidity is opposite to that expected for the protonation of the Schiff base nitrogen and suggests an action on the secondary system of interacting charges that have long been postulated to adjust vertebrate visual pigment colour within the visible spectrum.3. Chloride ions modulate this pH effect in a systematic and significant manner. For the pigment extracted in the chloride-deficient state the colour change occurs in the pH range of 6.0-7.0, the midpoint being close to 6.5, suggesting the possible participation of the imidazole group of histidine as the functional moiety. With added NaCl the colour shifts to the region below pH 6.2.4. The modulating action of chloride is postulated to be a conformational change of the opsin leading to a shift of the secondary interacting site from one functional group to another or else to a change in pK of a single group due to the conformational alteration of the electrostatics of the system.5. At pH values between 7.5 and 9.0 a different mechanism becomes apparent. In this region a decrease occurs in the photopigment density as well as a shift in absorbance toward the blue. This alkaline effect is readily reversed either by adding NaCl or else by lowering the pH. Along with the other protective effects of chloride these ions serve to reduce or prevent this alkaline loss in density.6. Associated with this reversible photopigment loss is a reversible appearance of a product with a maximum at about 366 nm. The spectrum of this product is like that produced by the addition of 11-cis retinal to the extract. Acidification of the alkaline preparation leads to a restitution of the photopigment

  15. Coral calcifying fluid pH is modulated by seawater carbonate chemistry not solely seawater pH.

    Science.gov (United States)

    Comeau, S; Tambutté, E; Carpenter, R C; Edmunds, P J; Evensen, N R; Allemand, D; Ferrier-Pagès, C; Tambutté, S; Venn, A A

    2017-01-25

    Reef coral calcification depends on regulation of pH in the internal calcifying fluid (CF) in which the coral skeleton forms. However, little is known about calcifying fluid pH (pH CF ) regulation, despite its importance in determining the response of corals to ocean acidification. Here, we investigate pH CF in the coral Stylophora pistillata in seawater maintained at constant pH with manipulated carbonate chemistry to alter dissolved inorganic carbon (DIC) concentration, and therefore total alkalinity (A T ). We also investigate the intracellular pH of calcifying cells, photosynthesis, respiration and calcification rates under the same conditions. Our results show that despite constant pH in the surrounding seawater, pH CF is sensitive to shifts in carbonate chemistry associated with changes in [DIC] and [A T ], revealing that seawater pH is not the sole driver of pH CF Notably, when we synthesize our results with published data, we identify linear relationships of pH CF with the seawater [DIC]/[H + ] ratio, [A T ]/ [H + ] ratio and [[Formula: see text

  16. Effect of pH on the adsorption of carbendazim in Polish mineral soils

    International Nuclear Information System (INIS)

    Paszko, Tadeusz

    2012-01-01

    The study aimed to determine the influence of pH on the adsorption of carbendazim in soil profiles of three mineral agricultural soils: Hyperdystric Arenosol, Haplic Luvisol and Hypereutric Cambisol. In the examined pH range between 3 and 7 the adsorption of carbendazim was inversely correlated to the pH of the soil. The adsorption coefficients were in the range between 0.3 and 151.8 mL g −1 . Decreasing the pH in the soil suspensions from 7 to 3 increased the value of this coefficient by 3 to 70 times. A decrease in the amounts of organic matter down the soil profiles was not associated with weaker carbendazim adsorption. In the samples from all soil horizons, at pH values between 3 and 6, the predominant sorption process was carbendazim adsorption on clay minerals. The adsorption of carbendazim on organic matter prevailed over that on clays only at pH > 6 and only in the Ap horizon of the examined soils. The developed mathematical models yielded very good results when the adsorption of the protonated form of carbendazim was assumed to be the predominant adsorption process on clays together with the adsorption of neutral molecules on organic matter and clays. The results from both the model fitting and the experiments revealed the negative effect of Al oxides and hydroxides and Al cations on the adsorption of the protonated form of carbendazim on clay minerals. The developed models successfully described the pH-dependent adsorption processes of carbendazim for both data from particular soil horizons and those from all three examined soil profiles. -- Highlights: ► Adsorption of carbendazim in soils was inversely correlated to soil pH. ► At low pH carbendazim was adsorbed predominantly by clay minerals. ► Al 3+ influenced adsorption of the protonated form of carbendazim on clays. ► Created models predict pH-dependent sorption processes in the whole soil profiles.

  17. pH Sensitivity of Novel PANI/PVB/PS3 Composite Films

    Directory of Open Access Journals (Sweden)

    Olga Korostynska

    2007-12-01

    Full Text Available This paper reports on the results from the investigation into the pH sensitivity ofnovel PANI/PVB/PS3 composite films. The conductimetric sensing mode was chosen as itis one of the most promising alternatives to the mainstream pH-sensing methods and it is theleast investigated due to the popularity of other approaches. The films were deposited usingboth screen-printing and a drop-coating method. It was found that the best response to pHwas obtained from the screen-printed thick films, which demonstrated a change inconductance by as much as three orders of magnitude over the pH range pH2-pH11. Thedevices exhibited a stable response over 96 hours of operation. Several films were immersedin buffer solutions of different pH values for 96 hours and these were then investigated usingXPS. The resulting N 1s spectra for the various films confirmed that the change inconductance was due to deprotonation of the PANI polymer backbone. SEM andProfilometry were also undertaken and showed that no considerable changes in themorphology of the films took place and that the films did not swell or contract due toexposure to test solutions.

  18. Effects of pH upon the environmental fate of [14C]fenitrothion in an aquatic microcosm

    International Nuclear Information System (INIS)

    Fisher, S.W.

    1985-01-01

    The environmental fate of [ 14 C]fenitrothion was evaluated in aquatic microcosms held at pH 8.3 or 6.7. No general effect attributable to pH was observed; however, several significant interactions were identified. Of these, the findings that statistically higher amounts of radioactivity were present in water held at pH 6.7 and that significantly less metabolism of the parent compound occurred in the organisms at pH 8.3 were preeminent. These differences seen in metabolism and environmental fate between pH values are relatively minor and do not compromise the safety of the compound

  19. Inverse opal pH sensors with various protic monomers copolymerized with polyhydroxyethylmethacrylate hydrogel

    International Nuclear Information System (INIS)

    Shin, Jinsub; Han, Sung Gu; Lee, Wonmok

    2012-01-01

    Highlights: ► We polymerized four different inverse opal pH sensors by using vinyl monomers containing acidic or basic substituents. ► Stepwise swelling response from polyprotic acid sensor was investigated. ► Opposite color changing responses were obtained for acidic and basic sensors. ► Composite pH sensor with wide pH sensing range was fabricated by mixing different monomers. ► Both acid and base sensors show the response time as fast as ∼10 s. - Abstract: pH sensitive inverse opal sensors were synthesized using various vinyl monomers containing acidic or basic substituents. Acrylic acid (AA), vinylphosphonic acid (VPA), vinylimidazole (VI), and dimethylaminoethylmethacrylic acid (DMAEMA) were respectively copolymerized with hydroxyethylmethacrylate (HEMA), the building block monomer of the hydrogel via UV-initiated photopolymerization. Opal templating and subsequent template removal enabled the fabrication of four inverse opal (IO) hydrogel colorimetric sensors, which responded to pH in different fashions. pH-dependent swelling of the IO hydrogel induced the red-shift of the diffracted color. The sensors containing AA or VPA, the proton donating monomers showed the color shifts from green to red with pH increase due to the increased concentration of carboxylate anions bound to the hydrogel. Diprotic VPA sensor exhibited two-step increases of diffracted wavelengths at its pK a1 and pK a2 respectively. The sensors containing proton acceptors, VI and DMAEMA showed the pH-dependent color changes in an opposite way to the AA sensor and the VPA sensor since their ionizations take place by lowering pH due to the protonation at the amino groups. The shapes of pH response curves of VI and DMAEMA sensors were similar but pK b s were different from each other. Optical diffraction responses of four sensors were compared with the calculated concentration ratios of the ionized species to the total monomer with pH variation, and a deswelling effect in the

  20. An Optical Sensor with Polyaniline-Gold Hybrid Nanostructures for Monitoring pH in Saliva

    Directory of Open Access Journals (Sweden)

    Chongdai Luo

    2017-03-01

    Full Text Available Saliva contains important personal physiological information that is related to some diseases, and it is a valuable source of biochemical information that can be collected rapidly, frequently, and without stress. In this article, we reported a new and simple localized surface plasmon resonance (LSPR substrate composed of polyaniline (PANI-gold hybrid nanostructures as an optical sensor for monitoring the pH of saliva samples. The overall appearance and topography of the substrates, the composition, and the wettability of the LSPR surfaces were characterized by optical and scanning electron microscope (SEM images, infrared spectra, and contact angles measurement, respectively. The PANI-gold hybrid substrate readily responded to the pH. The response time was very short, which was 3.5 s when the pH switched from 2 to 7, and 4.5 s from 7 to 2. The changes of visible-near-infrared (NIR spectra of this sensor upon varying pH in solution showed that—for the absorption at given wavelengths of 665 nm and 785 nm—the sensitivities were 0.0299 a.u./pH (a.u. = arbitrary unit with a linear range of pH = 5–8 and 0.0234 a.u./pH with linear range of pH = 2–8, respectively. By using this new sensor, the pH of a real saliva sample was monitored and was consistent with the parallel measurements with a standard laboratory method. The results suggest that this novel LSPR sensor shows great potential in the field of mobile healthcare and home medical devices, and could also be modified by different sensitive materials to detect various molecules or ions in the future.

  1. An Optical Sensor with Polyaniline-Gold Hybrid Nanostructures for Monitoring pH in Saliva.

    Science.gov (United States)

    Luo, Chongdai; Wang, Yangyang; Li, Xuemeng; Jiang, Xueqin; Gao, Panpan; Sun, Kang; Zhou, Jianhua; Zhang, Zhiguang; Jiang, Qing

    2017-03-17

    Saliva contains important personal physiological information that is related to some diseases, and it is a valuable source of biochemical information that can be collected rapidly, frequently, and without stress. In this article, we reported a new and simple localized surface plasmon resonance (LSPR) substrate composed of polyaniline (PANI)-gold hybrid nanostructures as an optical sensor for monitoring the pH of saliva samples. The overall appearance and topography of the substrates, the composition, and the wettability of the LSPR surfaces were characterized by optical and scanning electron microscope (SEM) images, infrared spectra, and contact angles measurement, respectively. The PANI-gold hybrid substrate readily responded to the pH. The response time was very short, which was 3.5 s when the pH switched from 2 to 7, and 4.5 s from 7 to 2. The changes of visible-near-infrared (NIR) spectra of this sensor upon varying pH in solution showed that-for the absorption at given wavelengths of 665 nm and 785 nm-the sensitivities were 0.0299 a.u./pH (a.u. = arbitrary unit) with a linear range of pH = 5-8 and 0.0234 a.u./pH with linear range of pH = 2-8, respectively. By using this new sensor, the pH of a real saliva sample was monitored and was consistent with the parallel measurements with a standard laboratory method. The results suggest that this novel LSPR sensor shows great potential in the field of mobile healthcare and home medical devices, and could also be modified by different sensitive materials to detect various molecules or ions in the future.

  2. Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid.

    Science.gov (United States)

    Behera, Shishir Kumar; Oh, Seok-Young; Park, Hung-Suck

    2010-07-15

    Sorption of triclosan on three sorbents, viz., activated carbon, kaolinite and montmorillonite was studied as a function of pH, ionic strength and humic acid (HA) concentration through controlled batch experiments. Triclosan sorption was found to be higher in the acidic pH range, as varying pH showed significant influence on the surface charge of the sorbents and degree of ionization of the sorbate. Sorption capacity of the sorbents increased with an increase in the ionic strength of solution. At low pH (pH 3), the overall increase in triclosan sorption was 1.2, approximately 4 and 3.5 times, respectively for activated carbon, kaolinite and montmorillonite when ionic strength was increased from 1x10(-3) to 5x10(-1) M. Triclosan sorption onto activated carbon decreased from 31.4 to 10.6 mg g(-1) by increasing the HA concentration to 200 mg C L(-1). However, during sorption onto kaolinite and montmorillonite, the effect of HA was very complex probably due to (i) hydrophobicity (log K(ow)=4.76) of triclosan; and (ii) complexation of HA with triclosan. Though triclosan sorption onto activated carbon is higher, the potential of kaolinite and montmorillonite in controlling the transport of triclosan in subsurface environment can still be appreciable. 2010 Elsevier B.V. All rights reserved.

  3. Resilience and recovery of Dehalococcoides mccartyi following low pH exposure.

    Science.gov (United States)

    Yang, Yi; Cápiro, Natalie L; Yan, Jun; Marcet, Tyler F; Pennell, Kurt D; Löffler, Frank E

    2017-12-01

    Bioremediation treatment (e.g. biostimulation) can decrease groundwater pH with consequences for Dehalococcoides mccartyi (Dhc) reductive dechlorination activity. To explore the pH resilience of Dhc, the Dhc-containing consortium BDI was exposed to pH 5.5 for up to 40 days. Following 8- and 16-day exposure periods to pH 5.5, dechlorination activity and growth recovered when returned to pH 7.2; however, the ability of the culture to dechlorinate vinyl chloride (VC) to ethene was impaired (i.e. decreased rate of VC transformation). Dhc cells exposed to pH 5.5 for 40 days did not recover the ethene-producing phenotype upon transfer to pH 7.2 even after 200 days of incubation. When returned to pH 7.2 conditions after an 8-, a 16- and a 40-day low pH exposure, tceA and vcrA genes showed distinct fold increases, suggesting Dhc strain-specific responses to low pH exposure. Furthermore, a survey of Dhc biomarker genes in groundwater samples revealed the average abundances of Dhc 16S rRNA, tceA and vcrA genes in pH 4.5-6 groundwater were significantly lower (P-value pH 6-8.3 groundwater. Overall, the results of the laboratory study and the assessment of field data demonstrate that sustained Dhc activity should not be expected in low pH groundwater, and the duration of low pH exposure affects the ability of Dhc to recover activity at circumneutral pH. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer

    Energy Technology Data Exchange (ETDEWEB)

    Hoefer, Christoph [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria); Santner, Jakob, E-mail: jakob.santner@boku.ac.at [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria); Department of Crop Sciences, Division of Agronomy, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, 3430 Tulln (Austria); Borisov, Sergey M. [Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010, Graz (Austria); Wenzel, Walter W.; Puschenreiter, Markus [Department of Forest and Soil Sciences, Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Strasse 24, A-3430 Tulln (Austria)

    2017-01-15

    Gel-based, two-dimensional (2D) chemical imaging techniques are versatile methods for investigating biogeochemically active environments at high spatial resolution (sub-mm). State-of-the-art solute imaging techniques, such as diffusive gradients in thin films (DGT) and planar optodes (PO), employ passive solute sampling or sensing. Combining these methods will provide powerful tools for studying the biogeochemistry of biological niches in soils and sediments. In this study we aimed at developing a combined single-layer gel for direct pH imaging using PO and sampling of anionic and cationic solutes by DGT, with subsequent analysis of the bound solutes by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We tested three ultra-thin (<100 μm) polyurethane-based gels, incorporating anion and cation binding materials and the fluorescent pH indicator DCIFODA (2′,7′-dichloro-5(6)-N-octadecyl-carboxamidofluorescein). Results showed that PO-based pH sensing using DCIFODA was impossible in the presence of the anion binding materials due to interferences with DCIFODA protonation. One gel, containing only a cation binding material and DCIFODA, was fully characterized and showed similar performance characteristics as comparable DGT-only gels (applicable pH range: pH 5–8, applicable ionic strength range: 1–20 mmol L{sup -1}, cation binding capacity ∼24 μg cm{sup −2}). The dynamic range for PO-based pH mapping was between pH 5.5 and 7.5 with t{sub 90} response time of ∼60 min. In a case study we demonstrated the gel's suitability for multi-analyte solute imaging and mapped pH gradients and concurrent metal solubility patterns in the rhizosphere of Salix smithiana. pH decreases in the rooted soil were co-localized with elevated solute fluxes of Al{sup 3+}, Co{sup 2+}, Cu{sup 2+}, Fe, Mn{sup 2+}, Ni{sup 2+} and Pb{sup 2+}, indicating pH-induced metal solubilisation. - Highlights: • Diffusive gradients in thin films (DGT) and planar

  5. Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer

    International Nuclear Information System (INIS)

    Hoefer, Christoph; Santner, Jakob; Borisov, Sergey M.; Wenzel, Walter W.; Puschenreiter, Markus

    2017-01-01

    Gel-based, two-dimensional (2D) chemical imaging techniques are versatile methods for investigating biogeochemically active environments at high spatial resolution (sub-mm). State-of-the-art solute imaging techniques, such as diffusive gradients in thin films (DGT) and planar optodes (PO), employ passive solute sampling or sensing. Combining these methods will provide powerful tools for studying the biogeochemistry of biological niches in soils and sediments. In this study we aimed at developing a combined single-layer gel for direct pH imaging using PO and sampling of anionic and cationic solutes by DGT, with subsequent analysis of the bound solutes by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We tested three ultra-thin (<100 μm) polyurethane-based gels, incorporating anion and cation binding materials and the fluorescent pH indicator DCIFODA (2′,7′-dichloro-5(6)-N-octadecyl-carboxamidofluorescein). Results showed that PO-based pH sensing using DCIFODA was impossible in the presence of the anion binding materials due to interferences with DCIFODA protonation. One gel, containing only a cation binding material and DCIFODA, was fully characterized and showed similar performance characteristics as comparable DGT-only gels (applicable pH range: pH 5–8, applicable ionic strength range: 1–20 mmol L"-"1, cation binding capacity ∼24 μg cm"−"2). The dynamic range for PO-based pH mapping was between pH 5.5 and 7.5 with t_9_0 response time of ∼60 min. In a case study we demonstrated the gel's suitability for multi-analyte solute imaging and mapped pH gradients and concurrent metal solubility patterns in the rhizosphere of Salix smithiana. pH decreases in the rooted soil were co-localized with elevated solute fluxes of Al"3"+, Co"2"+, Cu"2"+, Fe, Mn"2"+, Ni"2"+ and Pb"2"+, indicating pH-induced metal solubilisation. - Highlights: • Diffusive gradients in thin films (DGT) and planar optode (PO) imaging is combined. • A

  6. Influence of pH on inhibition of Streptococcus mutans by Streptococcus oligofermentans.

    Science.gov (United States)

    Liu, Ying; Chu, Lei; Wu, Fei; Guo, Lili; Li, Mengci; Wang, Yinghui; Wu, Ligeng

    2014-02-01

    Streptococcus oligofermentans is a novel strain of oral streptococcus that can specifically inhibit the growth of Streptococcus mutans. The aims of this study were to assess the growth of S. oligofermentans and the ability of S. oligofermentans to inhibit growth of Streptococcus mutans at different pH values. Growth inhibition was investigated in vitro using an interspecies competition assay. The 4-aminoantipyine method was used to measure the initial production rate and the total yield of hydrogen peroxide in S. oligofermentans. S. oligofermentans grew best at pH 7.0 and showed the most pronounced inhibitory effect when it was inoculated earlier than S. mutans. In terms of the total yield and the initial production rate of hydrogen peroxide by S. oligofermentans, the effects of the different culture pH values were as follows: pH 7.0 > 6.5 > 6.0 > 7.5 > 5.5 = 8.0 (i.e. there was no significant difference between pH 5.5 and pH 8.0). Environmental pH and the sequence of inoculation significantly affected the ability of S. oligofermentans to inhibit the growth of S. mutans. The degree of inhibition may be attributed to the amount of hydrogen peroxide produced. © 2013 Eur J Oral Sci.

  7. Shear bond strength of one-step self-etch adhesives: pH influence

    Science.gov (United States)

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2015-01-01

    Background: The aim of this study was to compare the shear bond strength of four one-step self-etch adhesives with different pH values to enamel and dentin. Materials and Methods: In this in vitro study, 200 bovine permanent mandibular incisors were used. Four one-step self-etch adhesives with different pH values were tested both on enamel and on dentin: Adper™ Easy Bond Self-Etch Adhesive (pH = 0.8-1), Futurabond NR (pH=2), G-aenial Bond (pH = 1.5), Clearfil S3 Bond (pH = 2.7). After adhesive systems application, a nanohybrid composite resin was inserted into the bonded surface. The specimens were placed in a universal testing machine. The shear bond strength was performed at a cross-head speed of 1 mm/min until the sample rupture. The shear bond strength values (MPa) of the different groups were compared with analysis of variance after that Kolmogorov and Smirnov tests were applied to assess normality of distributions. P enamel shear bond strength, the highest shear bond strength values were reported with Futurabond NR (P adhesive systems showed lower shear bond strength values with significant differences between them (P 0.05). Conclusion: The pH values of adhesive systems did not influence significantly their shear bond strength to enamel or dentin. PMID:26005459

  8. Organic acid excretion in Penicillium ochrochloron increases with ambient pH

    Directory of Open Access Journals (Sweden)

    Pamela eVrabl

    2012-04-01

    Full Text Available Despite being of high biotechnological relevance, many aspects of organic acid excretion in filamentous fungi like the influence of ambient pH are still insufficiently understood. While the excretion of an individual organic acid may peak at a certain pH value, the few available studies investigating a broader range of organic acids indicate that total organic acid excretion rises with increasing external pH.We hypothesized that this phenomenon might be a general response of filamentous fungi to increased ambient pH. If this is the case, the observation should be widely independent of the organism, growth conditions or experimental design and might therefore be a crucial key point in understanding the function and mechanisms of organic acid excretion in filamentous fungi.In this study we explored this hypothesis using ammonium limited chemostat cultivations (pH 2-7, and ammonium or phosphate limited bioreactor batch cultivations (pH 5 and 7. Two strains of Penicillium ochrochloron were investigated differing in the spectrum of excreted organic acids.Confirming our hypothesis, the main result demonstrated that organic acid excretion in P. ochrochloron was enhanced at high external pH levels compared to low pH levels independent of the tested strain, nutrient limitation and cultivation method. We discuss these findings against the background of three hypotheses explaining organic acid excretion in filamentous fungi, i.e. overflow metabolism, charge balance and aggressive acidification hypothesis.

  9. Au36(SePh)24 nanomolecules: synthesis, optical spectroscopy and theoretical analysis.

    Science.gov (United States)

    Rambukwella, Milan; Chang, Le; Ravishanker, Anish; Fortunelli, Alessandro; Stener, Mauro; Dass, Amala

    2018-05-16

    Here, we report the synthesis of selenophenol (HSePh) protected Au36(SePh)24 nanomolecules via a ligand-exchange reaction of 4-tert-butylbenzenethiol (HSPh-tBu) protected Au36(SPh-tBu)24 with selenophenol, and its spectroscopic and theoretical analysis. Matrix assisted laser desorption ionization (MALDI) mass spectrometry, electrospray ionization (ESI) mass spectrometry and optical characterization confirm that the composition of the as synthesized product is predominantly Au36(SePh)24 nanomolecules. Size exclusion chromatography (SEC) was employed to isolate the Au36(SePh)24 and temperature dependent optical absorption studies and theoretical analysis were performed. Theoretically, an Independent Component Maps of Oscillator Strength (ICM-OS) analysis of simulated spectra shows that the enhancement in absorption intensity in Au36(SePh)24 with respect to Au36(SPh)24 can be ascribed to the absence of interference and/or increased long-range coupling between interband metal core and ligand excitations. This work demonstrates and helps to understand the effect of Au-Se bridging on the properties of gold nanomolecules.

  10. PhEDEx Data Service

    International Nuclear Information System (INIS)

    Egeland, Ricky; Wildish, Tony; Huang, Chih-Hao

    2010-01-01

    The PhEDEx Data Service provides access to information from the central PhEDEx database, as well as certificate-authenticated managerial operations such as requesting the transfer or deletion of data. The Data Service is integrated with the 'SiteDB' service for fine-grained access control, providing a safe and secure environment for operations. A plug-in architecture allows server-side modules to be developed rapidly and easily by anyone familiar with the schema, and can automatically return the data in a variety of formats for use by different client technologies. Using HTTP access via the Data Service instead of direct database connections makes it possible to build monitoring web-pages with complex drill-down operations, suitable for debugging or presentation from many aspects. This will form the basis of the new PhEDEx website in the near future, as well as providing access to PhEDEx information and certificate-authenticated services for other CMS dataflow and workflow management tools such as CRAB, WMCore, DBS and the dashboard. A PhEDEx command-line client tool provides one-stop access to all the functions of the PhEDEx Data Service interactively, for use in simple scripts that do not access the service directly. The client tool provides certificate-authenticated access to managerial functions, so all the functions of the PhEDEx Data Service are available to it. The tool can be expanded by plug-ins which can combine or extend the client-side manipulation of data from the Data Service, providing a powerful environment for manipulating data within PhEDEx.

  11. Modified Organosilica Core-Shell Nanoparticles for Stable pH Sensing in Biological Solutions.

    Science.gov (United States)

    Robinson, Kye J; Huynh, Gabriel T; Kouskousis, Betty P; Fletcher, Nicholas L; Houston, Zachary H; Thurecht, Kristofer J; Corrie, Simon R

    2018-04-19

    Continuous monitoring using nanoparticle-based sensors has been successfully employed in complex biological systems, yet the sensors still suffer from poor long-term stability partially because of the scaffold materials chosen to date. Organosilica core-shell nanoparticles containing a mixture of covalently incorporated pH-sensitive (shell) and pH-insensitive (core) fluorophores is presented as a continuous pH sensor for application in biological media. In contrast to previous studies focusing on similar materials, we sought to investigate the sensor characteristics (dynamic range, sensitivity, response time, stability) as a function of material properties. The ratio of the fluorescence intensities at specific wavelengths was found to be highly sensitive to pH over a physiologically relevant range (4.5-8) with a response time of pH-specific signals when stored at room temperature for more than 80 days. Finally, we demonstrated that the nanosensors successfully monitored the pH of a bacterial culture over 15 h and that pH changes in the skin of mouse cadavers could also be observed via in vivo fluorescence imaging following subcutaneous injection. The understanding gained from linking sensor characteristics and material properties will inform the next generation of optical nanosensors for continuous-monitoring applications.

  12. Tapered Optical Fiber Sensor for Detection of pH in Microscopic Volumes

    Directory of Open Access Journals (Sweden)

    Ondřej PODRAZKÝ

    2014-05-01

    Full Text Available A compact and robust tapered optical fiber microsensor is presented for detection of pH in a range from 5.8 to 7.5 in sub-microliter volumes. The sensor is based on a pH transducer 8- hydroxypyrene-1,3,6-trisulfonic acid trisodium salt immobilized in a xerogel matrix onto the tip of a optical fiber taper with a tip diameter below 20 mm. The sol-gel method and two silicon alkoxides is used for preparing the matrix. A ratio of the fluorescence emission intensities measured at 518 nm after the excitation at 400 and 450 nm is used for evaluating the sensor response to pH. This ratiometric approach enables to reduce effects of ambient light, bleaching of the sensitive layer and geometry of the probe to the fluorescence signal and achieve the resolution of about 0.07 pH units.

  13. pH measurement of tubular vacuoles of an arbuscular mycorrhizal fungus, Gigaspora margarita.

    Science.gov (United States)

    Funamoto, Rintaro; Saito, Katsuharu; Oyaizu, Hiroshi; Aono, Toshihiro; Saito, Masanori

    2015-01-01

    Arbuscular mycorrhizal fungi play an important role in phosphate supply to the host plants. The fungal hyphae contain tubular vacuoles where phosphate compounds such as polyphosphate are accumulated. Despite their importance for the phosphate storage, little is known about the physiological properties of the tubular vacuoles in arbuscular mycorrhizal fungi. As an indicator of the physiological state in vacuoles, we measured pH of tubular vacuoles in living hyphae of arbuscular mycorrhizal fungus Gigaspora margarita using ratio image analysis with pH-dependent fluorescent probe, 6-carboxyfluorescein. Fluorescent images of the fine tubular vacuoles were obtained using a laser scanning confocal microscope, which enabled calculation of vacuolar pH with high spatial resolution. The tubular vacuoles showed mean pH of 5.6 and a pH range of 5.1-6.3. These results suggest that the tubular vacuoles of arbuscular mycorrhizal fungi have a mildly acidic pH just like vacuoles of other fungal species including yeast and ectomycorrhizal fungi.

  14. The effect of pH on the erosion of dentine and enamel by dietary acids in vitro.

    Science.gov (United States)

    West, N X; Hughes, J A; Addy, M

    2001-09-01

    The reported incidence of tooth erosion caused by acidic soft drinks has been increasingly documented. Citric and phosphoric acids are the two main dietary acids present in these soft drinks. Many variables need to be determined in order to assess risk factors for dental erosion caused by beverage consumption including pH, titratable acidity, pKa, buffering capacity, hence the aim of these in vitro investigations. Methodologies included profiling flat enamel and dentine samples (acidic solutions adjusted with alkali over the available pH range; citric, phosphoric and hydrochloric acid were adjusted with sodium hydroxide and citric acid with trisodium citrate. Tissue loss was calculated by profilometry. Results showed that under these conditions citric acid caused far more erosion over the pH range employed than phosphoric acid for both tissue types. Citric acid compared with hydrochloric acid highlighted dissolution and chelation effects. Phosphoric acid caused minimal erosion over pH 3 for enamel and pH 4 for dentine. These factors could be considered in order to reduce the erosivity of acidic soft drinks.

  15. Versatility of non-native forms of human cytochrome c: pH and micellar concentration dependence.

    Science.gov (United States)

    Simon, Matthieu; Metzinger-Le Meuth, Valérie; Chevance, Soizic; Delalande, Olivier; Bondon, Arnaud

    2013-01-01

    In addition to its electron transfer activity, cytochrome c is now known to trigger apoptosis via peroxidase activity. This new function is related to a structural modification of the cytochrome upon association with anionic lipids, particularly cardiolipin present in the mitochondrial membrane. However, the exact nature of the non-native state induced by this interaction remains an active subject of debate. In this work, using human cytochromes c (native and two single-histidine mutants and the corresponding double mutant) and micelles as a hydrophobic medium, we succeeded, through UV-visible spectroscopy, circular dichroism spectroscopy and NMR spectroscopy, in fully characterizing the nature of the sixth ligand replacing the native methionine. Furthermore, careful pH titrations permitted the identification of the amino acids involved in the iron binding over a range of pH values. Replacement of the methionine by lysine was only observed at pH above 8.5, whereas histidine binding is dependent on both pH and micelle concentration. The pH variation range for histidine protonation is relatively narrow and is consistent with the mitochondrial intermembrane pH changes occurring during apoptosis. These results allow us to rule out lysine as the sixth ligand at pH values close to neutrality and reinforce the role of histidines (preferentially His33 vs. His26) as the main candidate to replace methionine in the non-native cytochrome c. Finally, on the basis of these results and molecular dynamics simulations, we propose a 3D model for non-native cytochrome c in a micellar environment.

  16. Stabilization of pH in solid-matrix hydroponic systems

    Science.gov (United States)

    Frick, J.; Mitchell, C. A.

    1993-01-01

    2-[N-morpholino]ethanesulfonic acid (MES) buffer or Amberlite DP-1 (cation-exchange resin beads) were used to stabilize substrate pH of passive-wicking, solid-matrix hydroponic systems in which small canopies of Brassica napus L. (CrGC 5-2, genome : ACaacc) were grown to maturity. Two concentrations of MES (5 or 10 mM) were included in Hoagland 1 nutrient solution. Alternatively, resin beads were incorporated into the 2 vermiculite : 1 perlite (v/v) growth medium at 6% or 12% of total substrate volume. Both strategies stabilized pH without toxic side effects on plants. Average seed yield rates for all four pH stabilization treatments (13.3 to 16.9 g m-2 day-1) were about double that of the control (8.2 g m-2 day-1), for which there was no attempt to buffer substrate pH. Both the highest canopy seed yield rate (16.9 g m-2 day-1) and the highest shoot harvest index (19.5%) occurred with the 6% resin bead treatment, even though the 10 mM MES and 12% bead treatments maintained pH within the narrowest limits. The pH stabilization methods tested did not significantly affect seed oil and protein contents.

  17. PhD students: making research and publishing

    Directory of Open Access Journals (Sweden)

    Ioan Sporea, MD, PhD

    2016-12-01

    Full Text Available PhD student time is very interesting in the life of researchers. Many of them are young graduates, without or with very few experience in the field of scientific research. During four years, they must become experts in a narrow field (virtually, the subject of their PhD thesis, but at the same time they have to be trained for research and for publishing. Is it possible? It is mandatory! PhD students start with a one year training in the basic field of research during which they attend different courses regarding how to search the literature, how to perform research, how to perform statistical analysis, how to prepare a paper, where and how to publish and so on. Following this training year, together with their mentor (the coordinator of the PhD thesis, the PhD student starts working on the thesis. And this means reading as much as possible significant published data regarding his/her subject, proper research (basic, experimental, or clinical, and finally preparing papers for publication (in the beginning as abstracts for different meetings and later as original articles in dedicated journals.Participation of PhD students to different meetings is important to improve the quality of their research as an exercise for oral presentations. On the other hand, oral presentation is useful because the paper is open for discussion and corrections can be made during and after the oral presentation. During last ten years, there were organized conferences for PhD students and young doctors, particularly in Târgu Mureș and Timișoara. It was a good opportunity to show results, to discuss and to cooperate.This is why in December 2016, the Doctoral School of Victor Babes University of Medicine and Pharmacy decided to organize a scientific competition between PhD students, in an interesting scientific session. The top 10 PhD students (according to the cumulative Impact Factor of their first author publications were invited to present their scientific research

  18. Batch and flow-through continuous stirred reactor experiments of Sr2+-adsorption onto smectite: influence of pH, concentration and ionic strength

    International Nuclear Information System (INIS)

    Guimaraes, V.; Azenha, M.; Silva, A.F.; Bobos, I.

    2012-01-01

    Document available in extended abstract form only. Strontium-90 (t 1/2 = 29.1 years) resulting from the nuclear fission process is one of the main constituents connected with nuclear waste fuel. Concerning the physical properties and sorption behaviour one of the suitable buffer materials used as a backfill in the geological disposal systems for high-level radioactive wastes is smectite. The 2 μm clay fractions of di-octahedral smectite were used for adsorption experiments in batch and flow-through experiments. Flow-through experiments were carried out at different pH (4 and 8) and concentrations (8.00x10 -2 mmolSr 2+ /L, 2.0x10 -1 mmolSr 2+ /L, 3.3x10 -1 mmolSr 2+ /L and 4.1 x10 -1 mmol Sr 2+ /L). Batch experiments were carried out at different ionic strength ([KNO 3 ]=10 -2 M and [KNO 3 ]=10 -3 M), pH (4 and 8), whereas the concentration ranged between 0.19 mmolSr 2+ /L and 9.60 mmolSr 2+ /L. The adsorption strontium rate in flow-through experiments was found higher at pH 4 than at pH 8, where less of 20% amount of strontium was adsorbed on clay surface after 34 hours. This is explained by the surface charge of smectite layers with a permanent negative charge on the basal planes due essentially to isomorphic substitution. Also additional polar sites are conditionally charged by direct protonation of outer edge surfaces. Therefore, more negative sites become available for the strontium ions sorption, as the pH increasing. After adsorption, the clays were submitted to a desorption process. The rate of desorption at pH 4 is initially too fast due to the elevated amount of strontium released by smectite. After 255 min, the strontium amount desorbed is very low and the rate of desorption approached to zero. By contrast at pH 8 the rate of desorption is practically constant, and after 255 min there is a significant amount of strontium released by clay. Due to these different behaviors in different pH conditions, after 10 hours of desorption, the amount of strontium

  19. The acid test of fluoride: how pH modulates toxicity.

    Directory of Open Access Journals (Sweden)

    Ramaswamy Sharma

    2010-05-01

    Full Text Available It is not known why the ameloblasts responsible for dental enamel formation are uniquely sensitive to fluoride (F(-. Herein, we present a novel theory with supporting data to show that the low pH environment of maturating stage ameloblasts enhances their sensitivity to a given dose of F(-. Enamel formation is initiated in a neutral pH environment (secretory stage; however, the pH can fall to below 6.0 as most of the mineral precipitates (maturation stage. Low pH can facilitate entry of F(- into cells. Here, we asked if F(- was more toxic at low pH, as measured by increased cell stress and decreased cell function.Treatment of ameloblast-derived LS8 cells with F(- at low pH reduced the threshold dose of F(- required to phosphorylate stress-related proteins, PERK, eIF2alpha, JNK and c-jun. To assess protein secretion, LS8 cells were stably transduced with a secreted reporter, Gaussia luciferase, and secretion was quantified as a function of F(- dose and pH. Luciferase secretion significantly decreased within 2 hr of F(- treatment at low pH versus neutral pH, indicating increased functional toxicity. Rats given 100 ppm F(- in their drinking water exhibited increased stress-mediated phosphorylation of eIF2alpha in maturation stage ameloblasts (pH<6.0 as compared to secretory stage ameloblasts (pH approximately 7.2. Intriguingly, F(--treated rats demonstrated a striking decrease in transcripts expressed during the maturation stage of enamel development (Klk4 and Amtn. In contrast, the expression of secretory stage genes, AmelX, Ambn, Enam and Mmp20, was unaffected.The low pH environment of maturation stage ameloblasts facilitates the uptake of F(-, causing increased cell stress that compromises ameloblast function, resulting in dental fluorosis.

  20. Evaluation of total soluble solids content (TSSC and endogenous pH in antimicrobials of pediatric use

    Directory of Open Access Journals (Sweden)

    Alessandro Leite Cavalcanti

    2013-01-01

    Full Text Available Background: The use of liquid pharmaceutical preparations is a daily occurrence for some children. Evidences show a significant relation between the intake of oral sucrose based medicines and an increase incidence in dental caries. Aim: This in vitro experimental study evaluated the Total Soluble Solids Content (TSSC by means of Brix scale refractometry and the endogenous pH of antimicrobials of pediatric use presented as oral suspensions. Materials and Methods: Nine medications (6 chemotherapics and 3 antibiotics were evaluated by random experiment with 3 repetitions for each sample. The analysis of TSSC readings were performed by Brix refractometry using the Abbé refractometer, and the pH values were determined by potentiometry. Results: The mean TSS contents ranged from 11.73 (Keflaxina to 63.83 (Azitromed. The minimum and maximum mean pH values were 4.12 (Keflaxina and 10.97 (Zitroneo, respectively. Conclusions: The chemotherapic antimicrobials evaluated in this study presented the highest TSSC means, while the antibiotics showed pHs below the values considered as critical, which may contribute to the development of caries lesions in case of inadequate administration of these medications to children.

  1. Evaluation of a portable urinary pH meter and reagent strips.

    Science.gov (United States)

    De Coninck, Vincent; Keller, Etienne Xavier; Rodríguez-Monsalve, María; Haymann, Jean-Philippe; Doizi, Steeve; Traxer, Olivier

    2018-04-27

    To evaluate a portable electronic pH meter and to put its accuracy in perspective with reagent strips read by a layperson, a healthcare professional and an electronic reading device. Based on a pre-analysis on 20 patients, a sample size of 77 urine aliquots from healthy volunteers was necessary to obtain sufficient study power. Measurements of urinary pH were obtained by use of reagent strips, a portable pH meter and a laboratory pH meter (gold standard). Reagents strips were read by a professional experienced in interpreting strips, a layperson, and an electronic strip reader. The mean matched pair difference between measurement methods was analyzed by the paired t-test. The degree of correlation and agreement were evaluated by the Pearson's correlation coefficient and Bland-Altman plots, respectively. The mean matched pair difference between the gold standard and all other pH measurement methods was the smallest with the portable electronic pH meter (bias 0.01, 95% CI -0.07 to 0.08; p=0.89), followed by strips read by a professional (bias -0.09, 95% CI -0.21 to 0.02; p=0.10), layperson (bias -0.17, 95% CI -0.31 to -0.04; p=0.015) and electronic strip reader (bias -0.29, 95% CI -0.41 to -0.16; pmeter achieved the highest Pearson's correlation coefficient and narrowest 95% limits of agreement, followed by strip interpretation by a professional, the electronic strip reader and the layperson. In order to quantify the ability of pH measurement methods to correctly classify values within a predefined urinary pH target range, we performed classification tests for several stones. The portable electronic pH meter outperformed all other measurement methods for negative predictive values. Findings of the current study support that the portable electronic pH meter is a reliable pH measuring device. It seems to be more accurate compared to reagent strips readings.

  2. Efeito do pH e da hidrólise tríptica sobre as propriedades emulsionantes da globina bovina The effect of the pH and the tryptic hydrolysis on the emulsifying properties of bovine globin

    Directory of Open Access Journals (Sweden)

    Cleia Batista Dias ORNELLAS

    2001-01-01

    Full Text Available No intuito de estudar o efeito do pH e da ação da tripsina sobre as propriedades emulsionantes da globina bovina, extraída pelo método da acetona acidificada, foram determinados neste trabalho, a capacidade emulsionante (EC, o índice de atividade emulsionante (EAI e a estabilidade da emulsão (ES. Testaram-se os valores de pH de 3,0 a 8,0 e os tempos de hidrólise de 5,0 a 60 min. Os dados obtidos indicam que os maiores valores de EC e ES foram obtidos no pH 5,0 e 6,0, respectivamente, correspondente à faixa de alta solubilidade da proteína. Por outro lado, o EAI, além de apresentar um máximo no pH 3,0, foi igualmente elevado nos valores de pH 7,0 e 8,0, situados na zona onde a globina é praticamente insolúvel. A hidrólise tríptica, nas condições empregadas, contribuiu para melhorar a EC, em toda a faixa de pH estudada, enquanto que para o EAI somente foi benéfico em pH 4,0 e 5,0. No caso da ES, este tratamento enzimático não foi vantajoso, promovendo melhoras apenas no pH 7,0, onde a proteína é insolúvel, e somente após 60 min de hidrólise.The effect of the pH and of the trypsin on the emulsifying properties of bovine globin, extracted by the acidified acetone method, was studied. The emulsifying capacity (EC, the emulsifying activity index (EAI and the emulsion stability (ES were determined at pH varying from 3.0 to 8.0 and employing hydrolysis times from 5 to 60 min. The highest vaules for EC and ES were obtained at pH 5.0 and 6.0, respectively, corresponding to the range of large protein solubility. On the other hand, the EAI was higher at pH 3.0 and also at pH 7.0 and 8.0, where the protein is insoluble. The tryptic hydrolysis produced an increase in EC, in all pH ranges studied, while for the EAI the same effect was observed only in pH 4.0 and 5.0, and for ES at pH 7.0 after 60 min of hydrolysis.

  3. Swiss national MD-PhD-program: an outcome analysis.

    Science.gov (United States)

    Kuehnle, Katrin; Winkler, David T; Meier-Abt, Peter J

    2009-09-19

    This study aims at a first evaluation of the outcome of the Swiss national MD-PhD program during the last 16 years. One hundred and twenty six former and current students in the Swiss national MD-PhD program were surveyed via a Web-based questionnaire in September 2007. Twenty-four questions assessed information regarding participant demographics, information on the PhD thesis and publication activity, current positions and research activity, as well as participant's opinions, attitudes and career goals. Eighty questionnaires were received from 126 MD-PhD students and graduates (63.5% response rate). The responders consisted of present students (36%), former graduates (56%), and dropouts (8%). The percentage of women in the program was 23%, and the average duration of the program was 4.2 +/- 1.4 years. Research interests were predominantly in the fields of neuroscience, immunology, molecular biology and cancer research. A considerable portion of the MD-PhD graduates had an excellent publication record stemming from their PhD research work, and 89% were planning to continue a research-orientated career. Over 50% of those MD-PhD graduates completing their thesis before 2002 had already reached an assistant or full professor position at the time of the survey. Nearly all participants considered the MD-PhD training helpful to their career and high quality standards were assigned to the acquired practical and intellectual skills. However, criticism was expressed concerning the general mentoring and the career related mentoring. Moreover, general mentoring and career related mentoring were significantly less well perceived in research groups employing more than seven PhD students at the same time. The MD-PhD students and graduates surveyed were satisfied with their education and most of them continued a research-orientated career. Regarding the overall positive evaluation, this study supports the view that MD-PhD graduates are well qualified for a successful career in

  4. Computer simulation of the effect of temperature on pH.

    Science.gov (United States)

    Kipp, J E; Schuck, D F

    1995-11-01

    The effect of temperature on solution pH was simulated by computer (program PHTEMP). We have determined that the change in pH due to shifts in acid-base equilibria [delta pH = pH(60 degrees C) - pH(25 degrees C)] can be substantial for compounds such as aliphatic amines that have high enthalpies for acid dissociation. This is of particular significance during elevated temperature experiments in which changes in the pKa values of formulation components, and hence the solution pH, can accelerate decomposition as compared to those formulations where sensitive functionality is absent. PHTEMP afforded the following results at initial pH = 7 (25 degrees C): (a) 0.1 M triethylamine (delta H zero = 10.4 kcal/mol) delta pH approximately -0.8; (b) 0.1 M acetic acid (delta H zero = -0.1 kcal/mol) delta pH approximately 0; (c) 0.1 M sulfuric acid (delta H zero 1 = -12 kcal/mol; delta H zero 2 = -5.4 kcal/mol) delta pH approximately -0.4. Solutions of general pharmaceutical interest were also studied and included a 12-component amino acid mixture, 0.1 M glycine, and 0.1 M triethylamine in either 0.02 M citric acid or 0.05 M TRIS buffer. In each case the pH change with temperature was dependent on the concentrations of components, the enthalpies for each acid dissociation, and the starting pH. At lower pH ( 9). These results are interpreted as the effect of a relative change in hydronium ion activity, delta H+/H+(initial), due to temperature-induced shifts in equilibria (acid dissociation, water autoprotolysis). This relative change must become larger as H+ decreases (pH increases). The output of PHTEMP was experimentally verified with 0.1 M glycine and with a multiple component amino acid solution. In both cases, agreement with prediction was excellent. The results of this investigation underscore the need to critically review formulation choices for both thermodynamic and traditional kinetic effects on the resulting product stability.

  5. Salivary pH as a marker of plasma adiponectin concentrations in Women

    Directory of Open Access Journals (Sweden)

    Tremblay Monique

    2012-02-01

    Full Text Available Abstract Background Plasma adiponectin is a significant correlate of the pro-inflammatory cardiometabolic risk profile associated with obesity and type 2 diabetes. Salivary pH is influenced by several cardiometabolic risk components such as inflammation, oxidation and numerous oral and systemic health modulators, including the menopausal status. This study aimed to assess the association between plasma adiponectin concentrations and salivary pH in women according to the menopausal status. Method Unstimulated saliva collection was performed in 151 Caucasian women of French-Canadian origin (53 premenopausal women (PMW and 98 menopausal women (MW. Student's t test, ANOVA and linear regression models were used to assess the association between plasma adiponectin concentrations and salivary pH. Results Plasma adiponectin levels increased as a function of salivary pH in the whole sample and among MW (r = 0.29 and r = 0.36, p 2 was 10.8% (p Conclusions These results suggest that salivary pH is a significant correlate of plasma adiponectin levels in women. With the increasing prevalence of type 2 diabetes and obesity, new technologies should be developed to more easily monitor health status, disease onset and progression. Salivary pH, a simple, inexpensive and non-invasive measure, could be a very promising avenue.

  6. Metarhizium anisopliae: influence of pH on enzyme activity and control of Rhipicephalus microplus ticks

    Directory of Open Access Journals (Sweden)

    Allan Felipe Marciano

    2015-12-01

    Full Text Available ABSTRACT. Marciano A.F., Coutinho-Rodrigues C.J.B., Perinotto W.M.S., Camargo M.G., Gôlo P.S., Sá F.A., Quinelato S., Freitas M.C., Angelo I.C., Nogueira M.R.S. & Bittencourt V.R.E.P. [Metarhizium anisopliae: influence of pH on enzyme activity and control of Rhipicephalus microplus ticks.] Metarhizium anisopliae: influência do pH na atividade enzimática e no controle de Rhipicephalus microplus. Revista Brasileira de Medicina Veterinária, 37(Supl.1:85-90, 2015. Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, BR 465, Km 47, Seropédica, RJ 23897-970, Brasil. E-mail: vaniabit@ufrrj.br Rhipicephalus microplus ticks are one of the major agents causing substantial losses to livestock worldwide. In the search for alternative control strategies, both in vitro and in vivo use of the arthropodpathogenic fungus Metarhizium anisopliae has shown promising results against this ectoparasite. During host colonization, protease production by M. anisopliae is considered one important virulence factor once it is directly related to the active penetration process carried by the fungus on the full host cuticle. Nevertheless, limitations as environmental pH may modulate the proteases production and/or activity, as well as, the fungal virulence. The current study aimed evaluate the virulence and total protease activity of M. anisopliae CG 148 sensu lato (s.l.. Fungal aqueous suspensions or 5% mineral oil formulations were used in different pH ranges (5, 7, or 9. Suspensions and formulations were prepared using a pH meter and adjusted to 108 spores mL-1. In the bioassay, four groups were formed for each pH range: the aqueous fungal suspension, the oil-based fungal formulation and their respective controls (aqueous and oil-based, totaling 12 groups. Engorged females were immersed for 3 minutes and maintained under optimal conditions for evaluation of biological parameters. Total protease activity of the artificial medium (after

  7. Effect of a feed/fast protocol on pH in the proximal equine stomach.

    Science.gov (United States)

    Husted, L; Sanchez, L C; Baptiste, K E; Olsen, S N

    2009-09-01

    Risk factors for the development of gastric squamous ulcers include various management procedures, such as intermittent feed deprivation that can occur during weight management regimens or stall and dry lot confinement. To investigate the effect of intermittent feed deprivation relative to continuous feed intake on proximal intragastric pH, specifically in the region of the squamous mucosa of the lesser curvature. In 6 horses, pH electrodes were placed just inside of the oesophageal sphincter in the stomach for each of two 72 h protocols (A and B) in a randomised, cross-over design. Protocol A consisted of 12 h fed, 12 h fasted, 24 h fed and 24 h fasted, in sequence. Protocol B consisted of 72 h fed. During the fed periods of each protocol, horses had ad libitum access to coastal Bermuda hay and were fed sweet feed (1 kg, b.i.d.). Horses had ad libitum access to water at all times. Proximal intragastric pH was significantly lower during protocol A, than during protocol B. However, hourly mean pH was significantly different only during the day and evening hours between protocols. During protocol B, mean proximal pH decreased significantly from 03.00 to 09.00 compared to 19.00 to 23.00 h. A moderate positive correlation of hay intake vs. proximal gastric pH could be established. Intermittent feed deprivation decreased proximal gastric pH in horses relative to those horses for which feed was not restricted. However, the effect was only significant when fasting occurred during the day and evening hours, as a nocturnal decrease in pH occurred simultaneously in the fed horses. Episodes of daytime feed deprivation should be avoided if possible, as proximal gastric acid exposure rapidly increases during such events.

  8. Modulation of leak K(+) channel in hypoglossal motoneurons of rats by serotonin and/or variation of pH value.

    Science.gov (United States)

    Xu, Xue-Feng; Tsai, Hao-Jan; Li, Lin; Chen, Yi-Fan; Zhang, Cheng; Wang, Guang-Fa

    2009-08-25

    The cloned TWIK-related acid-sensitive K(+) channel (TASK-1) is sensitive to the pH changes within physiological pH range (pK~7.4). Recently, the native TASK-1-like channel was suggested to be the main contributor to the background (or leak) K(+) conductance in the motoneurons of the brain stem. Serotonin (5-HT) and variation of pH value in perfused solution could modulate these currents. Here we aimed to examine the properties and modulation of the currents by serotonin or variation of pH value in hypoglossal motoneurons of rats. Transverse slices were prepared from the brainstem of neonatal Sprague-Dawley rats (postnatal days 7-8). Hypoglossal motoneurons were used for the study. The leak K(+) current (TASK-1-like current) and hyperpolarization-activated cationic current (I(h)) were recorded with the whole-cell patch-clamp technique. The results showed that these currents were inhibited by acidified artificial cerebrospinal fluid (ACSF, pH 6.0) and activated by alkalized ACSF (pH 8.5). 5-HT (10 mumol/L) significantly inhibited both leak K(+) current and I(h) with depolarization of membrane potential and the occurrence of oscillation and/or spikes. Bath application of Ketanserine, an antagonist of 5-HT₂ receptor, reversed or reduced the inhibitory effect of acidified solution on leak K(+) current and I(h). The results suggest that 5-HT₂ receptors mediate the effects of acidified media on leak K(+) current and I(h) in hypoglossal motoneurons.

  9. Regional postprandial differences in pH within the stomach and gastroesophageal junction.

    Science.gov (United States)

    Simonian, Hrair P; Vo, Lien; Doma, Siva; Fisher, Robert S; Parkman, Henry P

    2005-12-01

    Our objective was to determine regional differences in intragastric pH after different types of meals. Ten normal subjects underwent 27-hr esophagogastric pH monitoring using a four-probe pH catheter. Meals were a spicy lunch, a high-fat dinner, and a typical bland breakfast. The fatty dinner had the highest postprandial buffering effect, elevating proximal and mid/distal gastric pH to 4.9 +/- 0.4 and 4.0 +/- 0.4, respectively, significantly (P pH > 4 was also longer (150 min) compared to that of the spicy lunch (45 min) and the bland breakfast, which did not increase gastric pH to > 4 at any time. Proximal gastric acid pockets were seen between 15 and 90 min postprandially. These were located 3.4 +/- 0.8 cm below the proximal LES border, extending for a length of 2.3 +/- 0.8 cm, with a drop in mean pH from 4.7 +/- 0.4 to 1.5 +/- 0.9. Acid pockets were seen equally after the spicy lunch and fatty dinner but less frequently after the bland breakfast. We conclude that a high-volume fatty meal has the highest buffering effect on gastric pH compared to a spicy lunch or a bland breakfast. Buffering effects of meals are significantly higher in the proximal than in the mid/distal stomach. Despite the intragastric buffering effect of meals, focal areas of acidity were observed in the region of the cardia-gastroesophageal junction during the postprandial period.

  10. Preparation and evaluation of Vinpocetine self-emulsifying pH gradient release pellets.

    Science.gov (United States)

    Liu, Mengqi; Zhang, Shiming; Cui, Shuxia; Chen, Fen; Jia, Lianqun; Wang, Shu; Gai, Xiumei; Li, Pingfei; Yang, Feifei; Pan, Weisan; Yang, Xinggang

    2017-11-01

    The main objective of this study was to develop a pH gradient release pellet with self-emulsifying drug delivery system (SEDDS), which could not only improve the oral bioavailability of Vinpocetine (VIN), a poor soluble drug, but reduce the fluctuation of plasma concentration. First, the liquid VIN SEDDS formulation was prepared. Then the self-emulsifying pH gradient release pellets were prepared by extrusion spheronization technique, and formulation consisted by the liquid SEDDS, absorbent (colloidal silicon dioxide), penetration enhancer (sodium chloride), microcrystalline cellulose, ethyl alcohol, and three coating materials (HPMC, Eudragit L30D55, Eudragit FS30D) were eventually selected. Three kinds of coated pellets were mixed in capsules with the mass ratio of 1:1:1. The release curves of capsules were investigated in vitro under the simulated gastrointestinal conditions. In addition, the oral bioavailability and pharmacokinetics of VIN self-emulsifying pH gradient release pellets, commercial tablets and liquid VIN SEDDS were evaluated in Beagle dogs. The oral bioavailability of self-emulsifying pH gradient release pellets was about 149.8% of commercial VIN tablets, and it was about 86% of liquid VIN SEDDS, but there were no significant difference between liquid SEDDS and self-emulsifying pH gradient release pellets. In conclusion, the self-emulsifying pH gradient release pellets could significantly enhance the absorption of VIN and effectively achieve a pH gradient release. And the self-emulsifying pH gradient release pellet was a promising method to improve bioavailability of insoluble drugs.

  11. PhCESA3 silencing inhibits elongation and stimulates radial expansion in petunia.

    Science.gov (United States)

    Yang, Weiyuan; Cai, Yuanping; Hu, Li; Wei, Qian; Chen, Guoju; Bai, Mei; Wu, Hong; Liu, Juanxu; Yu, Yixun

    2017-02-02

    Cellulose synthase catalytic subunits (CESAs) play important roles in plant growth, development and disease resistance. Previous studies have shown an essential role of Arabidopsis thaliana CESA3 in plant growth. However, little is known about the role of CESA3 in species other than A. thaliana. To gain a better understanding of CESA3, the petunia (Petunia hybrida) PhCESA3 gene was isolated, and the role of PhCESA3 in plant growth was analyzed in a wide range of plants. PhCESA3 mRNA was present at varying levels in tissues examined. VIGS-mediated PhCESA3 silencing resulted in dwarfing of plant height, which was consistent with the phenotype of the A. thaliana rsw1 mutant (a temperature-sensitive allele of AtCESA1), the A. thaliana cev1 mutant (the AtCESA3 mild mutant), and the antisense AtCESA3 line. However, PhCESA3 silencing led to swollen stems, pedicels, filaments, styles and epidermal hairs as well as thickened leaves and corollas, which were not observed in the A. thaliana cev1 mutant, the rsw1 mutant and the antisense AtCESA3 line. Further micrographs showed that PhCESA3 silencing reduced the length and increased the width of cells, suggesting that PhCESA3 silencing inhibits elongation and stimulates radial expansion in petunia.

  12. Effects of Reduced pH on Macoma balthica Larvae from a System with Naturally Fluctuating pH-Dynamics.

    Directory of Open Access Journals (Sweden)

    Anna Jansson

    Full Text Available Ocean acidification is causing severe changes in the inorganic carbon balance of the oceans. The pH conditions predicted for the future oceans are, however, already regularly occurring in the Baltic Sea, and the system might thus work as an analogue for future ocean acidification scenarios. The characteristics of the Baltic Sea with low buffering capacity and large natural pH fluctuations, in combination with multiple other stressors, suggest that OA effects may be severe, but remain largely unexplored. A calcifying species potentially affected by low pH conditions is the bivalve Macoma balthica (L.. We investigated larval survival and development of M. balthica by exposing the larvae to a range of pH levels: 7.2, 7.4, 7.7 and 8.1 during 20 days in order to learn what the effects of reduced pH are on the larval biology and thus also potentially for the population dynamics of this key species. We found that even a slight pH decrease causes significant negative changes during the larval phase, both by slowing growth and by decreasing survival. The growth was slower in all reduced pH treatments compared to the control treatment. The size of 250 µm that is considered indicative to imminent settling in our system was reached by 22% of the larvae grown in control conditions after 20 days, whereas in all reduced pH treatments the size of 250 µm was reached by only 7-14%. The strong impact of ocean acidification on larvae is alarming as slowly growing individuals are exposed to higher predation risk in response to the longer time they are required to spend in the plankton, further decreasing the ecological competence of the species.

  13. Controllable synthesis of green and blue fluorescent carbon nanodots for pH and Cu(2+) sensing in living cells.

    Science.gov (United States)

    Shi, Lihong; Li, Yanyan; Li, Xiaofeng; Zhao, Bo; Wen, Xiangping; Zhang, Guomei; Dong, Chuan; Shuang, Shaomin

    2016-03-15

    We report a controllable strategy for fabrication of green and blue fluorescent carbon nanodots (CDs), and demonstrate their applications for pH and Cu(2+) sensing in living cells. Green and blue fluorescent CDs have been synthesized by hydrothermal method and pyrolysis of leeks, respectively, providing an easy way for the production of CDs without the request of tedious synthetic methodology or the use of toxic/expensive solvents and starting materials. Green fluorescent CDs (G-CDs) exhibit high tolerance to pH values and external cations. Blue fluorescent CDs (B-CDs) can be applied to pH and Cu(2+) sensing. The linear range of Cu(2+) detection is 0.01-10.00 μM and the detection limit is 0.05 μM. For pH detection, there is a good linearity in the pH range of 3.5-10.0. The linear and rapid response of B-CDs to Cu(2+) and pH is valuable for Cu(2+) and pH sensing in living cells. Confocal fluorescent imaging of human cervical carcinoma cells indicates that B-CDs could visualize Cu(2+) and pH fluctuations in living cells with negligible autofluorescence. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Objective determination of pH thresholds in the analysis of 24 h ambulatory oesophageal pH monitoring

    NARCIS (Netherlands)

    Weusten, B. L.; Roelofs, J. M.; Akkermans, L. M.; vanBerge-Henegouwen, G. P.; Smout, A. J.

    1996-01-01

    In 24 h oesophageal pH monitoring, pH 4 is widely but arbitrarily used as the threshold between reflux and non-reflux pH values. The aim of the study was to define pH thresholds objectively, based on Gaussian curve fitting of pH frequency distributions. Single-channel 24 h oesophageal pH monitoring

  15. Sorption of Am(III) on attapulgite/iron oxide magnetic composites. Effect of pH, ionic strength and humic acid

    International Nuclear Information System (INIS)

    Yu, T.; East China Institute of Technology, Fuzhou, Jiangxi; Fan, Q.H.; Wu, W.S.; Lanzhou Univ., Gansu; Liu, S.P.; Pan, D.Q.; Zhang, Y.Y.; Li, P.

    2012-01-01

    Attapulgite/iron oxide magnetic (ATP/IOM) composites was prepared, and the sorption behavior of Am(III) on that composites was studied as a function of pH, ionic strength, the solid-to-liquid ratio (m/V), contact time, and the concentration of Am(III) under ambient conditions using batch technique. The time to achieve the sorption equilibrium was less than 5 h. The sorption of Am(III) on ATP/IOM composites was strongly affected by pH and ionic strength. Though ion exchange reaction contributed to Am(III) sorption over low pH range and low ionic strength, the sorption was mainly dominated by surface complexion (i.e., outer- and/or inner-sphere complexes) in the whole observed pH range. In the presence of humic acid (HA), the sorption edge of Am(III) on ATP/IOM composites obviously shifted to lower pH; but Am(III) sorption gradually became weak after pH exceeded 4, which may be mainly in terms of the soluble complexes of HA-Am(III). (orig.)

  16. Role of pH on antioxidants production by Spirulina (Arthrospira platensis

    Directory of Open Access Journals (Sweden)

    Mostafa Mahmoud Sami Ismaiel

    2016-06-01

    Full Text Available Abstract Algae can tolerate a broad range of growing conditions but extreme conditions may lead to the generation of highly dangerous reactive oxygen species (ROS, which may cause the deterioration of cell metabolism and damage cellular components. The antioxidants produced by algae alleviate the harmful effects of ROS. While the enhancement of antioxidant production in blue green algae under stress has been reported, the antioxidant response to changes in pH levels requires further investigation. This study presents the effect of pH changes on the antioxidant activity and productivity of the blue green alga Spirulina (Arthrospira platensis. The algal dry weight (DW was greatly enhanced at pH 9.0. The highest content of chlorophyll a and carotenoids (10.6 and 2.4 mg/g DW, respectively was recorded at pH 8.5. The highest phenolic content (12.1 mg gallic acid equivalent (GAE/g DW was recorded at pH 9.5. The maximum production of total phycobiliprotein (159 mg/g DW was obtained at pH 9.0. The antioxidant activities of radical scavenging activity, reducing power and chelating activity were highest at pH 9.0 with an increase of 567, 250 and 206% compared to the positive control, respectively. Variation in the activity of the antioxidant enzymes superoxide dismutase (SOD, catalase (CAT and peroxidase (POD was also reported. While the high alkaline pH may favor the overproduction of antioxidants, normal cell metabolism and membrane function is unaffected, as shown by growth and chlorophyll content, which suggests that these conditions are suitable for further studies on the harvest of antioxidants from S. platensis.

  17. In vitro synthesis and purification of PhIP-deoxyguanosine and PhIP-DNA oligomer covalent complexes

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, J.

    1994-12-01

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic amine compound formed when meats are cooked at high temperatures. PhIP damages DNA by forming covalent complexes with DNA carcinogen. In an effort to understand how the binding of PhIP to DNA may cause cancer, it is important to characterize the structures of PhIP-damaged DNA molecules. Our HPLC data support fluorescence and {sup 32}P Post-labeling studies which indicate the formation of several species of 2{prime}deoxyguanosine-(dG) or oligodeoxynucleotide-PhIP adducts. The reaction of PhIP with dG resulted in a reddish precipitate that was likely the major adduct, N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP) adduct, with a more polar adduct fraction remaining in the supernatant. Reversed-phase HPLC analysis of the adducts in the supernatant revealed the existence of species of much shorter retention times than the dG-C8-PhIP adduct, confirming that these species are more polar than dG-C8-PhIP. At least four adducts were formed in the reaction of PhIP with DNA oligomer. HPLC analysis of the PhIP-DNA oligomer supernatant after butanol extractions revealed four unresolved peaks which spectra had maximum wavelengths between 340 and 360 nm. Though adduct peaks were not completely resolved, there was {approximately}3 minutes interval between the DNA oligomer peak and the adduct peaks. Furthermore, fluorescence emission data of the DNA oligomer-PhIP adduct solution show heterogeneous binding. The more polar PhIP adducts were fraction-collected and their structures will be solved by nuclear magnetic resonance or x-ray crystallography.

  18. Bacterial profile of dentine caries and the impact of pH on bacterial population diversity.

    Directory of Open Access Journals (Sweden)

    Nima Kianoush

    Full Text Available Dental caries is caused by the release of organic acids from fermentative bacteria, which results in the dissolution of hydroxyapatite matrices of enamel and dentine. While low environmental pH is proposed to cause a shift in the consortium of oral bacteria, favouring the development of caries, the impact of this variable has been overlooked in microbial population studies. This study aimed to detail the zonal composition of the microbiota associated with carious dentine lesions with reference to pH. We used 454 sequencing of the 16S rRNA gene (V3-V4 region to compare microbial communities in layers ranging in pH from 4.5-7.8 from 25 teeth with advanced dentine caries. Pyrosequencing of the amplicons yielded 449,762 sequences. Nine phyla, 97 genera and 409 species were identified from the quality-filtered, de-noised and chimera-free sequences. Among the microbiota associated with dentinal caries, the most abundant taxa included Lactobacillus sp., Prevotella sp., Atopobium sp., Olsenella sp. and Actinomyces sp. We found a disparity between microbial communities localised at acidic versus neutral pH strata. Acidic conditions were associated with low diversity microbial populations, with Lactobacillus species including L. fermentum, L. rhamnosus and L. crispatus, being prominent. In comparison, the distinctive species of a more diverse flora associated with neutral pH regions of carious lesions included Alloprevotella tanerrae, Leptothrix sp., Sphingomonas sp. and Streptococcus anginosus. While certain bacteria were affected by the pH gradient, we also found that ∼ 60% of the taxa associated with caries were present across the investigated pH range, representing a substantial core. We demonstrated that some bacterial species implicated in caries progression show selective clustering with respect to pH gradient, providing a basis for specific therapeutic strategies.

  19. Vaginal pH and microbicidal lactic acid when lactobacilli dominate the microbiota.

    Science.gov (United States)

    O'Hanlon, Deirdre E; Moench, Thomas R; Cone, Richard A

    2013-01-01

    Lactic acid at sufficiently acidic pH is a potent microbicide, and lactic acid produced by vaginal lactobacilli may help protect against reproductive tract infections. However, previous observations likely underestimated healthy vaginal acidity and total lactate concentration since they failed to exclude women without a lactobacillus-dominated vaginal microbiota, and also did not account for the high carbon dioxide, low oxygen environment of the vagina. Fifty-six women with low (0-3) Nugent scores (indicating a lactobacillus-dominated vaginal microbiota) and no symptoms of reproductive tract disease or infection, provided a total of 64 cervicovaginal fluid samples using a collection method that avoided the need for sample dilution and rigorously minimized aerobic exposure. The pH of samples was measured by microelectrode immediately after collection and under a physiological vaginal concentration of CO2. Commercial enzymatic assays of total lactate and total acetate concentrations were validated for use in CVF, and compared to the more usual HPLC method. The average pH of the CVF samples was 3.5 ± 0.3 (mean ± SD), range 2.8-4.2, and the average total lactate was 1.0% ± 0.2% w/v; this is a five-fold higher average hydrogen ion concentration (lower pH) and a fivefold higher total lactate concentration than in the prior literature. The microbicidal form of lactic acid (protonated lactic acid) was therefore eleven-fold more concentrated, and a markedly more potent microbicide, than indicated by prior research. This suggests that when lactobacilli dominate the vaginal microbiota, women have significantly more lactic acid-mediated protection against infections than currently believed. Our results invite further evaluations of the prophylactic and therapeutic actions of vaginal lactic acid, whether provided in situ by endogenous lactobacilli, by probiotic lactobacilli, or by products that reinforce vaginal lactic acid.

  20. [Influence of pH on Kinetics of Anilines Oxidation by Permanganate].

    Science.gov (United States)

    Wang, Hui; Sun, Bo; Guan, Xiao-hong

    2016-02-15

    To investigate the effect of pH on the oxidation of anilines by potassium permanganate, aniline and p-Chloroaniline were taken as the target contaminants, and the experiments were conducted under the condition with potassium permanganate in excess over a wide pH range. The reaction displayed remarkable autocatalysis, which was presumably ascribed to the formation of complexes by the in situ generated MnOx and the target contaminants on its surface, and thereby improved the oxidation rate of the target contaminants by permanganate. The reaction kinetics was fitted with the pseudo-first-order kinetics at different pH to obtain the pseudo-first-order reaction constants (k(obs)). The second-order rate constants calculated from permanganate concentration and k,b, increased with the increase of pH and reached the maximum near their respective pKa, after which they decreased gradually. This tendency is called parabola-like shaped pH-rate profile. The second-order rate constants between permanganate and anilines were well fitted by the proton transfer model proposed by us in previous work.

  1. Cerebral interstitial tissue oxygen tension, pH, HCO3, CO2.

    Science.gov (United States)

    Charbel, F T; Hoffman, W E; Misra, M; Hannigan, K; Ausman, J I

    1997-10-01

    There are many techniques for monitoring the injured brain following trauma, subarachnoid hemorrhage, or surgery. It is thought that the major determinants for recovery of injured cerebral tissue are oxygen, glucose delivery, and the clearance of metabolites. These factors, at optimal levels, are probably responsible for the regaining of neuronal functions. These parameters are in turn dependent on the tissue's blood flow and metabolism. We have been using a single, compact, polyethylene sensor, the Paratrend 7 for the measurement of cerebral oxygen tension, CO2, pH, and temperature. This sensor is designed for continuous blood gas analysis to aid in monitoring neurosurgical patients, both during surgery and in the intensive care unit. Using the Paratrend 7 sensor, we found the normal range of values to be: PO2 33 +/- 11 mm Hg; PCO2 48 +/- 7 mm Hg; pH 7.19 +/- 0.11. Critical measurements are considered to be tissue PO2 60 mm Hg, and pH effective method of measuring tissue cerebral oxygen tension, along with carbon dioxide levels, pH, and temperature.

  2. Struvite recovery from swine waste biogas digester effluent through a stainless steel device under constant pH conditions.

    Science.gov (United States)

    Perera, P W Anton; Wu, Wei-Xiang; Chen, Ying-Xu; Han, Zhi-Ying

    2009-06-01

    To investigate the struvite precipitation under constant and non-constant pH conditions and to test a stainless steel device under different operating regimes to maximize the recovery of struvite. The molar ratio of NH4+: Mg2+: PO4(3-) was adjusted to 1: 1.2: 1.2 and pH was elevated to 9.0. The absorbance measurement was used to trace the process of struvite crystallization. Wastewater and precipitate analysis was done by standard analytical methods. The pH constant experiment reported a significantly higher struvite precipitation (24.6 +/- 0.86 g) than the non-constant pH experiment (19.8 +/- 1.86 g). The SAR ranged from 5.6 to 8.2 g m(-2) h(-1) to 3.6-4.8 g m(-2) h(-1) in pH constant and non-constant experiments, respectively. The highest struvite deposit on the device was found in regime 3 followed by in regimes 2 and 4. The highest PO4(3-) (97.2%) and NH4+ (71%) removal was reported in the R1 regime. None of the influent Cu2+ or Zn2+ was precipitated on the device. A higher struvite yield is evident in pH constant experiments. Moreover, the stainless steel device facilitates the isolation of heavy metal free pure (around 96%) struvite from swine waste biogas digester effluent contaminated with cu2+ and Zn2+ and the highest yield is attainable with the device operating at 50 rpm with agitation by a magnetic stirrer.

  3. Application of zirconia membranes as high-temperature PH sensors

    International Nuclear Information System (INIS)

    Neidrach, L.W.

    1983-01-01

    The zirconia pH sensor behaves much like the classical glass electrode, but it extends the range of measurement to much higher temperatures - about 300 0 vs 120 0 C. It also has virtues over the glass electrode at lower temperatures because of the absence of an ''alkaline error.'' Like the glass electrode, it is insensitive to changes in the redox potential of the environment and, in turn, it exerts no influence on the environment. Such sensors have been finding application in the direct measurement of the pH of geothermal brines, of water in nuclear reactors, and in high-temperature corrosion studies. The sensors can also be used as ''pseudoreference'' electrodes for the measurement of redox and corrosion potentials in high-temperature media

  4. Dually Fluorescent Sensing of pH and Dissolved Oxygen Using a Membrane Made from Polymerizable Sensing Monomers.

    Science.gov (United States)

    Tian, Yanqing; Shumway, Bradley R; Youngbull, A Cody; Li, Yongzhong; Jen, Alex K-Y; Johnson, Roger H; Meldrum, Deirdre R

    2010-06-03

    Using a thermal polymerization approach and polymerizable pH and oxygen sensing monomers with green and red emission spectra, respectively, new pH, oxygen, and their dual sensing membranes were prepared using poly(2-hydroxyethyl methacrylate)-co-poly(acrylamide) as a matrix. The sensors were grafted on acrylate-modified quartz glass and characterized under different pH values, oxygen concentrations, ion strengths, temperatures and cell culture media. The pH and oxygen sensors were excited using the same excitation wavelength and exhibited well-separated emission spectra. The pH-sensing films showed good response over the pH range 5.5 to 8.5, corresponding to pK(a) values in the biologically-relevant range between 6.9 and 7.1. The oxygen-sensing films exhibited linear Stern-Volmer quenching responses to dissolved oxygen. As the sensing membranes were prepared using thermally initiated polymerization of sensing moiety-containing monomers, no leaching of the sensors from the membranes to buffers or medium was observed. This advantageous characteristic accounts in part for the sensors' biocompatibility without apparent toxicity to HeLa cells after 40 hours incubation. The dual-sensing membrane was used to measure pH and dissolved oxygen simultaneously. The measured results correlated with the set-point values.

  5. A solid-state pH sensor for nonaqueous media including ionic liquids.

    Science.gov (United States)

    Thompson, Brianna C; Winther-Jensen, Orawan; Winther-Jensen, Bjorn; MacFarlane, Douglas R

    2013-04-02

    We describe a solid state electrode structure based on a biologically derived proton-active redox center, riboflavin (RFN). The redox reaction of RFN is a pH-dependent process that requires no water. The electrode was fabricated using our previously described 'stuffing' method to entrap RFN into vapor phase polymerized poly(3,4-ethylenedioxythiophene). The electrode is shown to be capable of measuring the proton activity in the form of an effective pH over a range of different water contents including nonaqueous systems and ionic liquids (ILs). This demonstrates that the entrapment of the redox center facilitates direct electron communication with the polymer. This work provides a miniaturizable system to determine pH (effective) in nonaqueous systems as well as in ionic liquids. The ability to measure pH (effective) is an important step toward the ability to customize ILs with suitable pH (effective) for catalytic reactions and biotechnology applications such as protein preservation.

  6. Foliar pH as a new plant trait: can it explain variation in foliar chemistry and carbon cycling processes among subarctic plant species and types?

    Science.gov (United States)

    Cornelissen, J H C; Quested, H M; van Logtestijn, R S P; Pérez-Harguindeguy, N; Gwynn-Jones, D; Díaz, S; Callaghan, T V; Press, M C; Aerts, R

    2006-03-01

    Plant traits have become popular as predictors of interspecific variation in important ecosystem properties and processes. Here we introduce foliar pH as a possible new plant trait, and tested whether (1) green leaf pH or leaf litter pH correlates with biochemical and structural foliar traits that are linked to biogeochemical cycling; (2) there is consistent variation in green leaf pH or leaf litter pH among plant types as defined by nutrient uptake mode and higher taxonomy; (3) green leaf pH can predict a significant proportion of variation in leaf digestibility among plant species and types; (4) leaf litter pH can predict a significant proportion of variation in leaf litter decomposability among plant species and types. We found some evidence in support of all four hypotheses for a wide range of species in a subarctic flora, although cryptogams (fern allies and a moss) tended to weaken the patterns by showing relatively poor leaf digestibility or litter decomposability at a given pH. Among seed plant species, green leaf pH itself explained only up to a third of the interspecific variation in leaf digestibility and leaf litter up to a quarter of the interspecific variation in leaf litter decomposability. However, foliar pH substantially improved the power of foliar lignin and/or cellulose concentrations as predictors of these processes when added to regression models as a second variable. When species were aggregated into plant types as defined by higher taxonomy and nutrient uptake mode, green-specific leaf area was a more powerful predictor of digestibility or decomposability than any of the biochemical traits including pH. The usefulness of foliar pH as a new predictive trait, whether or not in combination with other traits, remains to be tested across more plant species, types and biomes, and also in relation to other plant or ecosystem traits and processes.

  7. Ultrafine fibers of zein and anthocyanins as natural pH indicator.

    Science.gov (United States)

    Prietto, Luciana; Pinto, Vania Zanella; El Halal, Shanise Lisie Mello; de Morais, Michele Greque; Costa, Jorge Alberto Vieira; Lim, Loong-Tak; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2018-05-01

    pH-sensitive indicator membranes, which are useful for pharmaceutical, food, and packaging applications, can be formed by encapsulating halochromic compounds within various solid supports. Accordingly, electrospinning is a versatile technique for the development of these indicators, by entrapping pH dyes within ultrafine polymer fibers. The ultrafine zein fibers, containing 5% (w/v) anthocyanins, had an average diameter of 510 nm. The pH-sensitive membrane exhibited color changes from pink to green when exposed to acidic and alkaline buffers, respectively. The contact angle was negligible after 10 and 2 s for neat and 5% anthocyanin-loaded zein membranes, respectively. The pH membranes exhibited color changes in a board pH range, which can potentially be used in various active packaging applications. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. The PhD by Publication

    Directory of Open Access Journals (Sweden)

    Susi Peacock

    2017-07-01

    Full Text Available Aim/Purpose: The purpose of this work is to develop more nuanced understandings of the PhD by publication, particularly raising awareness of the retrospective PhD by publication. The article aims to contribute to contemporary debates about the differing pathways to the attainment of doctoral study completion and the artifacts submitted for that purpose. It also seeks to support prospective graduate students and supervisors who are embarking upon alternative routes to doctoral accreditation. Background: The PhD is considered the pinnacle of academic study – highly cherished, and replete with deeply held beliefs. In response to changes in job markets, developments in the disciplines, and more varied student cohorts, diverse pathways to completion of this award have emerged, such as the PhD by publication (PhDP. A PhDP may either be prospective or retrospective. For the former, publications are planned and created with their contributions to the PhDP in mind. The retrospective PhD is assembled after some, or most, of the publications have been completed. The artifact submitted for examination in this case consists of a series of peer-reviewed academic papers, books, chapters, or equivalents that have been published or accepted for publication, accompanied by an over-arching narrative. The retrospective route is particularly attractive for professionals who are research-active but lack formal academic accreditation at the highest level. Methodology: This article calls upon a literature review pertaining to the award of PhDP combined with the work of authors who offer their personal experiences of the award. The author also refers to her candidature as a Scottish doctoral student whilst studying for the award of PhD by publication. Contribution: This work raises awareness of the PhDP as a credible and comparable pathway for graduate students. The article focuses upon the retrospective PhDP which, as with all routes to doctoral accreditation, has

  9. Gastric pH and residual volume after 1 and 2 h fasting time for clear fluids in children†.

    Science.gov (United States)

    Schmidt, A R; Buehler, P; Seglias, L; Stark, T; Brotschi, B; Renner, T; Sabandal, C; Klaghofer, R; Weiss, M; Schmitz, A

    2015-03-01

    Current guidelines suggest a fasting time of 2 h for clear fluids, which is often exceeded in clinical practice, leading to discomfort, dehydration and stressful anaesthesia induction to patients, especially in the paediatric population. Shorter fluid fasting might be a strategy to improve patient comfort but has not been investigated yet. This prospective clinical trial compares gastric pH and residual volume after 1 vs 2 h of preoperative clear fluid fasting. Children (1-16 yr, ASA I or II) undergoing elective procedures in general anaesthesia requiring tracheal intubation were randomized into group A with 60 min or B with 120 min preoperative clear fluid fasting. To determine gastric pH and residual volume, the gastric content was sampled in supine, left and right lateral patient position using an oro-gastric tube after intubation. Data are median (interquartile range) for group A or B (PPatient characteristic data were similar between the two groups, except for gender (46/33 males in group A/B; P=0.02). Despite significantly shorter fasting times for clear fluids in group A compared with group B (76/136 min; P<0.001), no significant difference was observed regarding gastric pH [1.43 (1.30-1.56)/1.44 (1.29-1.68), P=0.66] or residual volume [0.43 (0.21-0.84)/0.46 (0.19-0.78) ml kg(-1), P=0.47]. One hour clear fluid fasting does not alter gastric pH or residual volume significantly compared with 2 h fasting. The study was approved by the local ethics committee (KEK-ZH-Nr. 2011-0034) and registered with ClinicalTrials.gov (NCT01516775). © The Author 2014. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Generating method-specific Reference Ranges - A harmonious outcome?

    Science.gov (United States)

    Lee, Graham R; Griffin, Alison; Halton, Kieran; Fitzgibbon, Maria C

    2017-12-01

    When laboratory Reference Ranges (RR) do not reflect analytical methodology, result interpretation can cause misclassification of patients and inappropriate management. This can be mitigated by determining and implementing method-specific RRs, which was the main objective of this study. Serum was obtained from healthy volunteers (Male + Female, n > 120) attending hospital health-check sessions during June and July 2011. Pseudo-anonymised aliquots were stored (at - 70 °C) prior t° analysis on Abbott ARCHITECT c16000 chemistry and i 2000SR immunoassay analysers. Data were stratified by gender where appropriate. Outliers were excluded statistically (Tukey method) to generate non-parametric RRs (2.5th + 97.5th percentiles). RRs were compared to those quoted by Abbott and UK Pathology Harmony (PH) where possible. For 7 selected tests, RRs were verified using a data mining approach. For chemistry tests (n = 23), Upper or Lower Reference Limits (LRL or URL) were > 20% different from Abbott ranges in 25% of tests (11% from PH ranges) but in 38% for immunoassay tests (n = 13). RRs (mmol/L) for sodium (138-144), potassium (3.8-4.9) and chloride (102-110) were considerably narrower than PH ranges (133-146, 3.5-5.0 and 95-108, respectively). The gender difference for ferritin (M: 29-441, F: 8-193 ng/mL) was more pronounced than reported by Abbott (M: 22-275, F: 5-204 ng/mL). Verification studies showed good agreement for chemistry tests (mean [SD] difference = 0.4% [1.2%]) but less so for immunoassay tests (27% [29%]), particularly for TSH (LRL). Where resource permits, we advocate using method-specific RRs in preference to other sources, particularly where method bias and lack of standardisation limits RR transferability and harmonisation.

  11. Polyamine stress at high pH in Escherichia coli K-12

    Directory of Open Access Journals (Sweden)

    Tate Daniel P

    2005-10-01

    Full Text Available Abstract Background Polyamines such as spermine and spermidine are required for growth of Escherichia coli; they interact with nucleic acids, and they bind to ribosomes. Polyamines block porins and decrease membrane permeability, activities that may protect cells in acid. At high concentrations, however, polyamines impair growth. They impair growth more severely at high pH, probably due to their increased uptake as membrane-permeant weak bases. The role of pH is critical in understanding polyamine stress. Results The effect of polyamines was tested on survival of Escherichia coli K-12 W3110 in extreme acid or base (pH conditions outside the growth range. At pH 2, 10 mM spermine increased survival by 2-fold, and putrescine increased survival by 30%. At pH 9.8, however, E. coli survival was decreased 100-fold by 10 mM spermine, putrescine, cadaverine, or spermidine. At pH 8.5, spermine decreased the growth rate substantially, whereas little effect was seen at pH 5.5. Spermidine required ten-fold higher concentrations to impair growth. On proteomic 2-D gels, spermine and spermidine caused differential expression of 31 different proteins. During log-phase growth at pH 7.0, 1 mM spermine induced eight proteins, including PykF, GlpK, SerS, DeaD, OmpC and OmpF. Proteins repressed included acetate-inducible enzymes (YfiD, Pta, Lpd as well as RapA (HepA, and FabB. At pH 8.5, spermine induced additional proteins: TnaA, OmpA, YrdA and NanA (YhcJ and also repressed 17 proteins. Four of the proteins that spermine induced (GlpK, OmpA, OmpF, TnaA and five that were repressed (Lpd, Pta, SucB, TpiA, YfiD show similar induction or repression, respectively, in base compared to acid. Most of these base stress proteins were also regulated by spermidine, but only at ten-fold higher concentration (10 mM at high pH (pH 8.5. Conclusion Polyamines increase survival in extreme acid, but decrease E. coli survival in extreme base. Growth inhibition by spermine and

  12. Effect of pH Changes on Antioxidant Capacity and the Content of Betalain Pigments During the Heating of a Solution of Red Beet Betalains

    Directory of Open Access Journals (Sweden)

    Mikołajczyk-Bator Katarzyna

    2017-06-01

    Full Text Available Red beets and their products are mainly consumed after processing. In this study, the effect of pH on changes in antioxidant capacity (AC and the content of betalain pigments were analysed during the heating of a betalain preparation solution. With pH ranging from 4 to 9 during the heat-treatment, the content of red pigments decreased depending on the pH level of the sample. The losses of red pigments in the investigated betalain preparation solution increased along with rising pH levels of the heated solution. The greatest losses were recorded at pH of 9.0. An opposite correlation was observed for yellow pigments. The content of yellow pigments in the heated betalain preparation solution was increasing along with increasing pH. The most pronounced increase in the content of yellow pigments was found at pH of 6.5 and 7.0. At the same time, the heated betalain preparation solution was shown to exhibit a higher antioxidant capacity at pH of 6.0 (14.9 μmol Trolox/mL than at pH of 4.0 (12.6 μmol Trolox/mL. It was observed that the increase in the antioxidant capacity in heated betalain preparation solutions with pH in the 6.0–6.5 range occurred as a result of increased concentrations of neobetanin, assessed by HPLC, within the pH range from 5.0 to 6.5.

  13. Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor

    Science.gov (United States)

    Jeevarajan, Antony S.; Vani, Sundeep; Taylor, Thomas D.; Anderson, Melody M.

    2002-01-01

    Monitoring and regulating the pH of the solution in a bioprocess is one of the key steps in the success of bioreactor operation. An in-line optical pH sensor, based on the optical absorption properties of phenol red present in the medium, was developed and tested in this work for use in NASA space bioreactors based on a rotating wall-perfused vessel system supporting a baby hamster kidney (BHK-21) cell culture. The sensor was tested over three 30-day and one 124-day cell runs. The pH sensor initially was calibrated and then used during the entire cell culture interval. The pH reported by the sensor was compared to that measured by a fiber optically coupled Shimadzu spectrophotometer and a blood gas analyzer. The maximum standard error of prediction for all the four cell runs for development pH sensor against BGA was +/-0.06 pH unit and for the fiber optically coupled Shimadzu spectrophotometer against the blood gas analyzer was +/-0.05 pH unit. The pH sensor system performed well without need of recalibration for 124 days. Copyright 2002 Wiley Periodicals, Inc.

  14. The Effect of NaOH Concentration on pH, Egg White Protein Content and Yolk Colour Pidan Egg

    Directory of Open Access Journals (Sweden)

    Herly Evanuarini

    2017-11-01

    Full Text Available The purpose of this research was to determine the best treatment NaOH addition on pidan eggs. The materials used for this research was pidan made from duck egg, NaOH, salt, black tea and water. The method was used experiment laboratory and Completely Randomized Design (CRD using 4 treatments and 4 replications. The treatments were T0 (control, T1 (1.4%, T2 (2.8% and T3 (4.2%. The data were analyzed by Analysis of Variance (ANOVA if there was significantly continued by Duncan’s Multiple Range Test (DMRT. The result showed that NaOH concentration on pidan eggs gave significant effect (P<0.05 on albumen protein content, gave highly significant (P<0.01 on pH value and yolk colour. The conclusion of this research was 4.2% NaOH addition on pidan egg was the best treatment with gave result yolk and albumen pH: 10.69; 10.25, albumen protein content 26.89%, egg yolk colour L* (lightness, a* (redness, b* (yellowness:  26.89; 11.33, and 26.77. The suggestion of this research was ussed different immersion time on pidan egg production.

  15. Tumor blood flow and pH changes after glucose administration

    International Nuclear Information System (INIS)

    Thistlethwaite, A.J.; Tupchong, L.; Leeper, D.B.

    1987-01-01

    The authors used a laser doppler technique to correlate blood flow changes with pH changes in human tumors after glucose ingestion. Three PTs with large superficial tumors ingested 100 gm glucose. A 21g needle pH electrode (Micro-electrodes, Inc.) and a 21g ''Laserflo'' fiberoptic laser doppler blood flow probe (TSI, Minneapolis, MN) were used at the same location. Blood glucose was measured by finger stick every 7.5 min. One PT with a squamous cell CA with extensive necrosis had only a small increase in blood glucose and an increase in tumor pH. Blood flow readings were within 6.4-18.4ml/100g/min. Another PT with a squamous CA had a drop in tumor pH (7.46 to 7.05) as blood glucose increased from 85 to 137 mg/dl by 55 min. Blood flow remained in a range of 7.7-13.8 ml/100g/min with a mean of 11.4. The third PT with a sarcoma had tumor pH and blood glucose measurements on two occasions, with similar results. Blood glucose rose from approx. 100 to 150 mg/dl by 52.5 min with a drop in tumor pH from approx. 7.4 to 7.25. On the second trial, tumor blood flow was measured and, while erratic (6.4-24.9ml/100g/min), decreased by approx. 50%. These preliminary data show that the laser doppler blood flow technique is quite sensitive to movement artifact and interference by free hemoglobin. Currently, it is inconclusive whether blood flow is altered with blood glucose and tumor pH changes. Further studies may prove this to be a valuable tool in predicting tumor response to hyperthermia

  16. Identification of a molecular pH sensor in coral.

    Science.gov (United States)

    Barott, Katie L; Barron, Megan E; Tresguerres, Martin

    2017-11-15

    Maintaining stable intracellular pH (pHi) is essential for homeostasis, and requires the ability to both sense pH changes that may result from internal and external sources, and to regulate downstream compensatory pH pathways. Here we identified the cAMP-producing enzyme soluble adenylyl cyclase (sAC) as the first molecular pH sensor in corals. sAC protein was detected throughout coral tissues, including those involved in symbiosis and calcification. Application of a sAC-specific inhibitor caused significant and reversible pHi acidosis in isolated coral cells under both dark and light conditions, indicating sAC is essential for sensing and regulating pHi perturbations caused by respiration and photosynthesis. Furthermore, pHi regulation during external acidification was also dependent on sAC activity. Thus, sAC is a sensor and regulator of pH disturbances from both metabolic and external origin in corals. Since sAC is present in all coral cell types, and the cAMP pathway can regulate virtually every aspect of cell physiology through post-translational modifications of proteins, sAC is likely to trigger multiple homeostatic mechanisms in response to pH disturbances. This is also the first evidence that sAC modulates pHi in any non-mammalian animal. Since corals are basal metazoans, our results indicate this function is evolutionarily conserved across animals. © 2017 The Author(s).

  17. 2D ratiometric fluorescent pH sensor for tracking of cells proliferation and metabolism.

    Science.gov (United States)

    Ma, Jun; Ding, Changqin; Zhou, Jie; Tian, Yang

    2015-08-15

    Extracellular pH plays a vital role no matter in physiological or pathological studies. In this work, a hydrogel, CD@Nile-FITC@Gel (Gel sensor), entrapping the ratiometric fluorescent probe CD@Nile-FITC was developed. The Gel sensor was successfully used for real-time extracellular pH monitoring. In the case of CD@Nile-FITC, pH-sensitive fluorescent dye fluorescein isothiocyanate (FITC) was chosen as the response signal for H(+) and Nile blue chloride (Nile) as the reference signal. The developed fluorescent probe exhibited high selectivity for pH over other metal ions and amino acids. Meanwhile, the carbon-dots-based inorganic-organic probe demonstrated excellent photostability against long-term light illumination. In order to study the extracellular pH change in processes of cell proliferation and metabolism, CD@Nile-FITC probe was entrapped in sodium alginate gel and consequently formed CD@Nile-FITC@Gel. The MTT assay showed low cytotoxicity of the Gel and the pH titration indicated that it could monitor the pH fluctuations linearly and rapidly within the pH range of 6.0-9.0, which is valuable for physiological pH determination. As expected, the real-time bioimaging of the probe was successfully achieved. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Study on low-cost calibration-free pH sensing with disposable optical sensors

    International Nuclear Information System (INIS)

    Ge Xudong; Kostov, Yordan; Tolosa, Leah; Rao, Govind

    2012-01-01

    Highlights: ► Development of disposable calibration-free optical pH sensor. ► Derivation of theoretical calibration model. ► Strategy to eliminate inter-coaster inconsistency. - Abstract: As labor costs become more expensive, less labor-intensive disposable devices have become more ubiquitous. Similarly, the disposable optical pH sensor developed in our lab could provide a convenient yet cost-effective way for pH sensing in processes that require stringent pH control. This optical pH sensor is prepared in uniform individual lots of 100–200 sensors per lot. Calibration is accomplished on a few randomly selected sensors out of each lot. We show that all others in the same lot can then be used directly without requiring individual calibration. In this paper, a calibration model is derived to include all the factors that affect the signal of the disposable sensor. Experimental results show that the derived calibration model fits the experimental data. The readings of 28 randomly selected disposable sensors with 4 sensors from each of the 7 lots show an error less than 0.1 pH units in the useful sensing range of the sensor. The calibration model indicates that if further improvement on precision is desired, more uniform porous material and more advanced coating techniques will be required. When it comes to the effects of the varying coasters, house-made low-cost fluorometers, the variability in the brightness ratio of the blue-to-violet LEDs is the primary reason for the lack of precision. Other factors like LED light intensity distribution, optical properties of the filters and electronics also contribute to the coaster-to-coaster difference, but to a lesser extent. Two different methods for correcting the instrument variations were introduced. After correction, the collective reading errors for all the tested instruments were reduced to less than 0.2 pH units within the sensor's useful sensing range. Based on this result, our lab is currently implementing

  19. Recurrent symptoms after fundoplication with a negative pH study--recurrent reflux or functional heartburn?

    Science.gov (United States)

    Thompson, Sarah K; Cai, Wang; Jamieson, Glyn G; Zhang, Alison Y; Myers, Jennifer C; Parr, Zoe E; Watson, David I; Persson, Jenny; Holtmann, Gerald; Devitt, Peter G

    2009-01-01

    A small cohort of patients present after antireflux surgery complaining of recurrent heartburn. Over two thirds of these patients will have a negative 24-h pH study. The aim of our study is to determine whether these patients have an associated functional disorder or abnormal cytokine activity and to examine the reproducibility of pH testing. A prospective analysis was carried out on a cohort of patients who had undergone a fundoplication and postoperative pH testing for recurrent heartburn: group A--patients with recurrent heartburn and a negative 24-h pH study and group B (control group)--patients with recurrent heartburn and a positive pH study. Questionnaires, a blood sample, and repeat pH testing were completed. Sixty-nine patients were identified. Group A's depression score (8.6 +/- 4.1) was significantly higher than group B's (5.9 +/- 4.2; P = 0.03). Cytokine levels were similar in both groups. Forty-seven of 49 (96%) patients who underwent repeat pH testing had a negative study. Symptom-reflux correlation was highly significant (P heartburn and a negative pH study have associated functional or psychiatric comorbidities such as depression. Reproducibility of 24-h pH testing in these patients is excellent.

  20. Crystallization and evaluation of hen egg-white lysozyme crystals for protein pH titration in the crystalline state.

    Science.gov (United States)

    Iwai, Wakari; Yagi, Daichi; Ishikawa, Takuya; Ohnishi, Yuki; Tanaka, Ichiro; Niimura, Nobuo

    2008-05-01

    To observe the ionized status of the amino acid residues in proteins at different pH (protein pH titration in the crystalline state) by neutron diffraction, hen egg-white lysozyme was crystallized over a wide pH range (2.5-8.0). Crystallization phase diagrams at pH 2.5, 6.0 and 7.5 were determined. At pH diagram, and at pH > 4.5 the border shifted to the right (higher precipitant concentration). The qualities of these crystals were characterized using the Wilson plot method. The qualities of all crystals at different pH were more or less equivalent (B-factor values within 25-40). It is expected that neutron diffraction analysis of these crystals of different pH provides equivalent data in quality for discussions of protein pH titration in the crystalline state of hen egg-white lysozyme.

  1. Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor.

    Science.gov (United States)

    Tantama, Mathew; Hung, Yin Pun; Yellen, Gary

    2011-07-06

    Intracellular pH affects protein structure and function, and proton gradients underlie the function of organelles such as lysosomes and mitochondria. We engineered a genetically encoded pH sensor by mutagenesis of the red fluorescent protein mKeima, providing a new tool to image intracellular pH in live cells. This sensor, named pHRed, is the first ratiometric, single-protein red fluorescent sensor of pH. Fluorescence emission of pHRed peaks at 610 nm while exhibiting dual excitation peaks at 440 and 585 nm that can be used for ratiometric imaging. The intensity ratio responds with an apparent pK(a) of 6.6 and a >10-fold dynamic range. Furthermore, pHRed has a pH-responsive fluorescence lifetime that changes by ~0.4 ns over physiological pH values and can be monitored with single-wavelength two-photon excitation. After characterizing the sensor, we tested pHRed's ability to monitor intracellular pH by imaging energy-dependent changes in cytosolic and mitochondrial pH.

  2. An Electrochemical pH Sensor Based on the Amino-Functionalized Graphene and Polyaniline Composite Film.

    Science.gov (United States)

    Su, W; Xu, J; Ding, Xianting

    2016-12-01

    Conventional glass-based pH sensors are usually fragile and space consuming. Herein, a miniature electrochemical pH sensor based on amino-functionalized graphene fragments and polyaniline (NH 2 -G/PANI) composite film is developed via simply one-pot electrochemical polymerization on the ITO-coated glass substrates. Cyclic Voltammetry (CV), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Raman Spectra are involved to confirm the successful synthesis and to characterize the properties of the NH 2 -G/PANI composite film. The developed electrochemical pH sensor presents fast response, high sensitivity (51.1 mV/pH) and wide detection range when applied to PBS solutions of pH values from 1 to 11. The robust reproducibility and good stability of the developed pH sensors are investigated as well. Compared to the conventional glass-based pH meters, the NH 2 -G/PANI composite film-based pH sensor could be a promising contender for the flexible and miniaturized pH-sensing devices.

  3. Effect of pH on Separation of Solid Content from Paint Contained Wastewater by a Coagulant-flocculant Compound

    Directory of Open Access Journals (Sweden)

    Mojtaba Semnani Rahbar

    2014-05-01

    Full Text Available Chemical wastewater treatment is one of the attracting and common methods for wastewater treatment among the currently employed chemical unit processes. The use of coagulant-flocculant compound is one of the efficient methods for separating of paint and recovery of water. In this research, it was introduced and the effect of pH on removal of solid content from solution was studied experimentally. For this purpose, sludge and suspended solid content of the solution were determined in a jar test by measurement of UV absorption of treated solution and solid separation percentage. The results showed that in pH range 9.5-10.5, maximum efficiency of solid content removal was up to 95%. Consequently, maximum paint removal was obtained in this range of pH. The separation of solid content of the solution was due to formation of aluminum hydroxide. As shown by the results, the reduction of potassium hydroxide as pH adjuster caused decrease of pH and consequently decreases of aluminum hydroxide and solid content removal.  

  4. Assessment of the Effect of Fruit (Apple and Plain Yoghurt Consumption on Plaque pH

    Directory of Open Access Journals (Sweden)

    Peyvand Moeiny

    2017-09-01

    Full Text Available Introduction: Nowadays, thanks to improvements in fruit yoghurt tastes, more tendencies are seen in their consumption especially among children. Therefore, their cariogenicity evaluation as healthy snacks is important. The goal of this study was the assessment of the consumption effect of two kinds of Iranian fruit (apple and plain yoghurts on dental plaque PH. Methods: In this experimental study, 10 healthy dentistry students were selected upon inclusion criteria. Plaque pH in the certain areas of the mouth was measured by microelectrode and digital pH meter. PH was measured at the baseline and intervals of 2, 5, 7, 10, 15, 20, 30, 40, 50 and 60 minutes after eating test products: fruit yoghurt (apple and plain Yoghurt. For positive control group, just the baseline PH and at intervals of 2 and 5 min after swishing with 10% sucrose solutions were recorded. The results were analyzed using repeated measures ANOVA. Results: Lowest pH was obtained after fruit yoghurt consumption followed by plain yoghurt and %10 sucrose solution and the plaque PH difference was significant (P=0.05. Furthermore, time duration which remained below the critical pH was longer after consuming fruit yoghurt. Conclusion: Both kinds of yoghurts were considered cariogenic since plaque pH drop below critical points. Average of plaque pH after consuming fruit yoghurt was significantly lower in almost all the time intervals

  5. Assement of the fluoride concentration and pH in different mouthrinses on the brazilian market Avaliação do teor de flúor e pH em diferentes soluções para bochechos no mercado nacional

    Directory of Open Access Journals (Sweden)

    Alberto Carlos Botazzo Delbem

    2003-12-01

    Full Text Available In this study, the fluoride concentration and pH of 14 commercial brands of mouthrinses were assessed in order to compare them with the values expressed on the labels and with those established by the National Sanitary Surveillance Agency. Forty-two (42 products were obtained from three places, with different manufacturing batches. The fluoride concentration was determined in diluted solutions, using a combined specific electrode for fluoride ion (9609 BN Orion Research and ion analyzer (290 A Orion Research. The results showed that 50% of the solutions had statistically significant differences, with higher fluoride concentrations than those expressed on the labels, and the pH ranged from 4.23 to 7.34, but only one of the products registered the pH value on its label.No presente estudo, o teor de flúor e o pH de 14 marcas comerciais de soluções para bochechos foram avaliados a fim de comparar com os valores expressos nos rótulos e com aqueles determinados pela Agência Nacional de Vigilância Sanitária. Foram adquiridos 42 produtos em três localidades, com diferentes lotes de fabricação. A concentração de flúor foi determinada em soluções diluídas, utilizando-se eletrodo específico combinado para íon flúor (9609 BN Orion Research e analisador de íons (290 A Orion Research. Os resultados mostraram que 50% das soluções apresentaram diferenças estatisticamente significantes, com concentrações de flúor superiores àquelas expressas nos rótulos e o pH variou entre 4,23 a 7,34, mas apenas um dos produtos registrou o valor do pH em seu rótulo.

  6. Detection of irradiated peppers by viscosity measurement at extremely high pH

    International Nuclear Information System (INIS)

    Hayashi, Toru; Todoriki, Setsuko

    1996-01-01

    The viscosities of aqueous suspensions of irradiated peppers determined after heat gelatinization were influenced by the pH of the suspension to a greater degree than those of unirradiated ones. Viscosity measurement under an extremely alkaline condition (pH 13.8) resulted in a significant different between irradiated peppers and unirradiated ones, irrespective of the planting locality and storage period. All of the pepper samples irradiated at 5 kGy showed viscosity values significantly lower than unirradiated ones. (Author)

  7. pH dependence of steroid hormone-organic matter interactions at environmental concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Neale, Peta A. [School of Engineering and Electronics, University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom)], E-mail: p.neale@ed.ac.uk; Escher, Beate I. [Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Duebendorf (Switzerland); Schaefer, Andrea I. [School of Engineering and Electronics, University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom)

    2009-01-15

    The interaction of estradiol, estrone, progesterone and testosterone with environmentally relevant concentrations of Aldrich humic acid, alginic acid and tannic acid was studied using solid-phase microextraction (SPME). Since bulk organic matter and certain hormones such as estradiol and estrone contain dissociable functional groups, the effect of pH on sorption was investigated as this will influence their fate and bioavailability. For humic acid and tannic acid, sorption was strongest at acidic pH when the bulk organic matter was in a non-dissociated form and decreased when they became partially negatively charged. At acidic and neutral pH the strength of partitioning was influenced by hormone functional groups content, with the strongest sorption observed for progesterone and estrone. At alkaline pH conditions, when the bulk organics were dissociated, sorption decreased considerably (up to a factor of 14), although the non-dissociated hormones testosterone and progesterone indicated greater sorption to humic acid at pH 10 compared to the partially deprotonated estradiol and estrone. This study demonstrates that SPME can be used to assess organic matter sorption behaviour of a selected range of micropollutants and at environmentally relevant organic matter concentrations.

  8. A Simple Technique for Determining the pH of Whole Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Dong J

    2014-12-01

    Full Text Available A new technique has been developed to determine the pH of whole cigarette smoke. In this technique, whole smoke from ten cigarettes was trapped in 300 mL water containing 1% (w/v sodium chloride and the pH was determined on the resulting aqueous suspension of cigarette smoke. Two impingers with an extra coarse porosity fritted disc were used to dispense the smoke in the aqueous trapping medium. Cigarettes were smoked on a 20-port Borgwaldt RM 20/CS smoking machine using modified FTC (Federal Trade Commission conditions. The puff volume was adjusted to take a 35 mL puff as measured through the cigarette and the collection traps. This new technique accounts for the contributions to smoke pH from both the vapor phase and the particulate phase of smoke. The repeatability of this new technique was determined on eighteen replicates of a commercially available non-menthol, filter cigarette. Each measurement was done on a different day to check for a possible drift in pH with time. The mean pH value for the chosen sample was found to be 4.97 with a standard deviation of 0.07 pH units. The smoke pH values for over 150 commercially available cigarette brands with a variety of “tar” levels were determined. The smoke pH values had a range from 4.6 to 5.5, with an average of 4.79 and a maximum standard deviation of 0.10 pH units. An experimental flue cured cigarette had a smoke pH of around 5.0, while an experimental Burley cigarette had a smoke pH of 5.4. No correlation between smoke pH and “tar” or total particulate matter (TPM and between pH and nicotine levels was found. The purpose of the present study was to develop a practical, relatively simple laboratory method to measure the pH of a water solution of whole smoke, and was not intended to reflect, or have direct relevance for any biochemical or biological phenomena such as inhalability of smoke, flavor perception, nicotine ab-sorption, etc.”

  9. Methods of pH determination in Calcareous soils of Oman: The effect of Electrolyte and soil solution ratio

    International Nuclear Information System (INIS)

    Al-Busaidi, A.; Cookson, P.

    2002-01-01

    Determination of pH assists in understanding many reactions that occur in soil. Soil pH values are highly sensitive to the procedure used for determination. In this study, pH was measured in different electrolytes [distilled water (pHw), 0.01MCaCl2 (pHCa), 1MKCl (pHk), and 0.01MBaCl2 (pHba)] with different soil: electrolyte ratios (i.e. 1:1, 1:2.5 and 1:5). The objective was to determine the effect of each electrolyte and dilution ratio on pH of saline and non-saline soils from Oman. It was found that ph values varied significantly between electrolytes and with different dilution ratios. Linear regression equations were generated between electrolytes, dilution ratios and were mostly significant. Soil pH values determined in different electrolytes were significantly interrelated. Water appeared as a highly suitable solvent for soil pH measurements because it is simple and values familiar to soil users. However, alkaline errors and electrode instabilities due to liquid junction and soluble salt effects, affected soil pH measurements, especially in water, and resulted in alkaline errors during pH measurements. Errors were minimized when pH was measured in electrolytes rather than in water. (author)

  10. Preparation and influence of pH on the dynamic magnetic property of magnetic FeCoC films

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Hongmei; Wei, Jinwu; Zhu, Zengtai; Cao, Derang; Liu, Qingfang [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Wang, Jianbo, E-mail: wangjb@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Key Laboratory for Special Function Materials and Structural Design of the Ministry of the Education, Lanzhou University, Lanzhou 730000 (China)

    2016-07-01

    FeCoC films were successfully prepared by electrochemical deposition method in different citric acid concentrations and pH values. The morphology, structure and magnetic properties were investigated. FeCoC films deposited at different citric acid concentrations have good soft magnetic performance. As the pH value increases from 2.49 to 6.02, the atomic ratio of Fe:Co range from 0.72 to 0.95. The coercivities of the films deposited at different pH values first increase and then decrease with increasing pH. The resonance frequency of the films can be tuned by controlling the pH value, and in an appropriate pH value a wide absorption peak can be obtained. - Highlights: • We have successfully prepared FeCoC soft magnetic films by electrochemical deposition method. • The resonance frequency can be controlled by changing pH value. • A widely absorption peak will be obtained when the pH value is appropriate.

  11. Determination of pH by flow-injection analysis and by fiber-optrode analysis

    International Nuclear Information System (INIS)

    Pia, S.H.; Waltman, D.P.; Hillman, D.C.

    1988-07-01

    Two new procedures for measuring pH were developed. The first measures pH colorimetrically using a proprietary indicator-dye mixture in a flow injection analysis (FIA) procedure. The second measures pH using a fiber-optic chemical sensor (FOCS) specifically developed for pH determinations. The FOCS method measures pH by monitoring the fluorescence of a fluorescein derivative bonded to the distal end of a fiber-optic cable called an optrade. The FIA method currently has a precision and accuracy of about + or - 0.2 pH units and can measure 100 samples/hour. The FOCS method has a precision of + or - 0.05-0.20 pH units and an accuracy of + or - 0.1 to 0.6 pH units. About 10 to 60 samples can be analyzed. The characteristics of the FOCS Method will vary significantly with individual optrodes. The experimental results indicate that either flow-injection analysis or fiber optic chemical sensor analysis could form the basis for an alternative to electrometric measurement of pH in certain circumstances

  12. Influence of pH on the adsorption of uranium ions by oxidized activated carbon and chitosan

    International Nuclear Information System (INIS)

    Park, G.I.; Park, H.S.; Woo, S.I.

    1999-01-01

    The adsorption characteristics of uranyl ions on surface-oxidized carbon were compared with those of powdered chitosan over a wide pH range. In particular, an extensive analysis was made on solution pH variation during the adsorption process or after adsorption equilibrium. Uranium adsorption on the two adsorbents was revealed to be strongly dependent on the initial pH of the solution. A quantitative comparison of the adsorption capacities of the two adsorbents was made, based on the isotherm data obtained at initial pH 3, 4, and 5. In order to analyze the adsorption kinetics incorporated with pH effects, batch experiments at various initial pH values were carried out, and solution pH profiles with the adsorption time were also evaluated. The breakthrough behavior in a column packed with oxidized carbon was also characterized with respect to the variation of effluent pH. Based on these experimental results, the practical applicability of oxidized carbon for uranium removal from acidic radioactive liquid waste was suggested

  13. High Ph, Ammonia Toxicity, and the Search for Life on the Jovian Planets

    Science.gov (United States)

    Deal, P. H.; Souza, K. A.; Mack, H. M.

    1975-01-01

    The effects of pH and ammonia concentration were studied separately, where possible, on a variety of organisms, including some isolated from natural environments of high pH and/or ammonia concentration. Escherichia coli and Bacillus subtilis are both extremely sensitive to ammonia. An aerobic organism (growth up to pH 11.4) from an alkaline spring is more resistant, but exhibits a toxic response to ammonia at a pH much lower than its maximum for growth. The greatest ammonia resistance has been found in an unidentified organism growing at near neutral pH. Even in this case, however, urvival at ammonia concentrations reasonably expected on the Jovian planets is measured in hours. This is two to three orders of magnitude longer than for E. coli. Results support the tentative conclusion that contamination of the Jovian planets with terrestrial organisms that can grow is unlikely. However, the range of toxic response noted, coupled with the observation that terrestrial life has not been exposed to high ammonia concentrations for millions of years, suggests that adaptation to greater ammonia tolerance may be possible.

  14. ReadMON: a portable readout system for the CERN PH-RADMON sensors

    CERN Document Server

    Mateu, Isidre; Gorine, Georgi; Moll, Michael; Pezzullo, Giuseppe; Ravotti, Federico

    2018-01-01

    PH-RADMON sensors are extensively used for radiation monitoring in the LHC experiments. Here, ReadMON, a dedicated and portable readout system for non-LHC applications, is presented. The system is able to source currents up to 32 mA and measure voltages up to 125 V, covering the full operational range of all dosimeters onboard the PH-RADMON sensor. Thus, the total measurement range of the system goes from 0.01 Gy to hundreds of kGy Total Ionizing Dose, and from few 10^10 neq/cm2 to 10^15 neq/cm2 1MeV neutron equivalent fluence. Different tests have been carried out at CERN IRRAD facility to prove the system concept and analyze its performance. Errors of only a few percent with respect to the readout done with a commercial Source Measuring Unit were found.

  15. Hierarchical cobalt poly-phosphide hollow spheres as highly active and stable electrocatalysts for hydrogen evolution over a wide pH range

    Science.gov (United States)

    Wu, Tianli; Pi, Mingyu; Wang, Xiaodeng; Guo, Weimeng; Zhang, Dingke; Chen, Shijian

    2018-01-01

    Exploring highly-efficient and low-cost non-noble metal electrocatalyst toward the hydrogen evolution reaction (HER) is highly desired for renewable energy system but remains challenging. In this work, three dimensional hierarchical porous cobalt poly-phosphide hollow spheres (CoP3 HSs) were prepared by topotactic phosphidation of the cobalt-based precursor via vacuum encapsulation technique. As a porous HER cathode, the CoP3 HSs delivers remarkable electrocatalytic performance over the wide pH range. It needs overpotentials of -69 mV and -118 mV with a small Tafel slope of 51 mV dec-1 to obtain current densities of 10 mA cm-2 and 50 mA cm-2, respectively, and maintains its electrocatalytic performance over 30 h in acidic solution. In addition, CoP3 also exhibit superior electrocatalytic performance and stability under neutral and alkaline conditions for the HER. Both experimental measurements and density functional theory (DFT) calculations are performed to explore the mechanism behind the excellent HER performance. The results of our study make the porous CoP3 HSs as a promising electrocatalyst for practical applications toward energy conversion system and present a new way for designing and fabricating HER electrodes through high degree of phosphorization and nano-porous architecture.

  16. [Effects of soil pH on the competitive uptake of amino acids by maize and microorganisms].

    Science.gov (United States)

    Ma, Qing Xu; Wang, Jun; Cao, Xiao Chuang; Sun, Yan; Sun, Tao; Wu, Liang Huan

    2017-07-18

    Organic nitrogen can play an important role in plant growth, and soil pH changed greatly due to the over-use of chemical fertilizers, but the effects of soil pH on the competitive uptake of amino acids by plants and rhizosphere microorganisms are lack of detailed research. To study the effects of soil pH on the uptake of amino acids by maize and soil microorganisms, two soils from Hangzhou and Tieling were selected, and the soil pH was changed by the electrokinesis, then the 15 N-labeled glycine was injected to the centrifuge tube with a short-term uptake of 4 h. Soil pH had a significant effect on the shoot and root biomass, and the optimal pH for maize shoot growth was 6.48 for Hangzhou red soil, while it was 7.65 for Tieling brown soil. For Hangzhou soil, the 15 N abundance of maize shoots under pH=6.48 was significantly higher than under other treatments, and the uptake amount of 15 N-glycine was also much higher. However, the 15 N abundance of maize shoots and roots under pH=7.65 Tieling soil was significantly lower than it under pH=5.78, but the uptake amount of 15 N-glycine under pH=7.65 was much higher. The microbial biomass C was much higher in pH=6.48 Hangzhou soil, while it was much lower in pH=7.65 Tieling soil. According to the results of root uptake, root to shoot transportation, and the competition with microorganisms, we suggested that although facing the fierce competition with microorganisms, the maize grown in pH=6.48 Hangzhou soil increased the uptake of glycine by increasing its root uptake and root to shoot transportation. While in pH=7.65 Tieling soil, the activity of microorganisms was decreased, which decreased the competition with maize for glycine, and increased the uptake of glycine by maize.

  17. Effect of the pH of the medium during growth on the enzymic activities of bacteria (Escherichia coli and Micrococcus lysodeikticus) and the biological significance of the changes produced

    Energy Technology Data Exchange (ETDEWEB)

    Gale, E F; Epps, H M.R.

    1942-01-01

    Change in the external pH during growth of E. Coli is followed by an alteration in the enzyme content of the cells. The enzymes can be divided into two groups, those whose formation undergoes a variation so that their activity per cell is constant whatever the medium pH, and those whose formation is greatest when the growth pH approaches their optimum activity pH. In general, a change in the external pH is followed by an alteration in the enzymic constitution of the cells such that an attempt is made to counter the external change and that certain essential activities are maintained at a constant level. 21 references, 15 figures, 3 tables.

  18. pH sensor calibration procedure

    OpenAIRE

    Artero Delgado, Carola; Nogueras Cervera, Marc; Manuel Lázaro, Antonio; Prat Tasias, Jordi; Prat Farran, Joana d'Arc

    2013-01-01

    This paper describes the calibration of pH sensor located at the OBSEA marine Observatory. This instrument is based on an industrial pH electrode that is connected to a CTD instrument (Conductivity, Temperature, and Depth ). The calibration of the pH sensor has been done using a high precision spectrophotometer pH meter from Institute of Marine Sciences (ICM), and in this way it has been obtained a numerical function for the p H sensor propor...

  19. Six Month In Situ High-Resolution Carbonate Chemistry and Temperature Study on a Coral Reef Flat Reveals Asynchronous pH and Temperature Anomalies.

    Directory of Open Access Journals (Sweden)

    David I Kline

    Full Text Available Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC and total alkalinity (TA, rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 - 6.6°C and lowest diel ranges (0.9 - 3.2°C were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 - 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall to December (end of Spring. Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems.

  20. Six Month In Situ High-Resolution Carbonate Chemistry and Temperature Study on a Coral Reef Flat Reveals Asynchronous pH and Temperature Anomalies.

    Science.gov (United States)

    Kline, David I; Teneva, Lida; Hauri, Claudine; Schneider, Kenneth; Miard, Thomas; Chai, Aaron; Marker, Malcolm; Dunbar, Rob; Caldeira, Ken; Lazar, Boaz; Rivlin, Tanya; Mitchell, Brian Gregory; Dove, Sophie; Hoegh-Guldberg, Ove

    2015-01-01

    Understanding the temporal dynamics of present thermal and pH exposure on coral reefs is crucial for elucidating reef response to future global change. Diel ranges in temperature and carbonate chemistry parameters coupled with seasonal changes in the mean conditions define periods during the year when a reef habitat is exposed to anomalous thermal and/or pH exposure. Anomalous conditions are defined as values that exceed an empirically estimated threshold for each variable. We present a 200-day time series from June through December 2010 of carbonate chemistry and environmental parameters measured on the Heron Island reef flat. These data reveal that aragonite saturation state, pH, and pCO2 were primarily modulated by biologically-driven changes in dissolved organic carbon (DIC) and total alkalinity (TA), rather than salinity and temperature. The largest diel temperature ranges occurred in austral spring, in October (1.5 - 6.6°C) and lowest diel ranges (0.9 - 3.2°C) were observed in July, at the peak of winter. We observed large diel total pH variability, with a maximum range of 7.7 - 8.5 total pH units, with minimum diel average pH values occurring during spring and maximum during fall. As with many other reefs, the nighttime pH minima on the reef flat were far lower than pH values predicted for the open ocean by 2100. DIC and TA both increased from June (end of Fall) to December (end of Spring). Using this high-resolution dataset, we developed exposure metrics of pH and temperature individually for intensity, duration, and severity of low pH and high temperature events, as well as a combined metric. Periods of anomalous temperature and pH exposure were asynchronous on the Heron Island reef flat, which underlines the importance of understanding the dynamics of co-occurrence of multiple stressors on coastal ecosystems.

  1. The effect of sodium bicarbonate on intracellular pH using 31P-MR spectroscopy

    International Nuclear Information System (INIS)

    Nakashima, Kazuya; Kashiwagi, Shiro; Ito, Haruhide; Yamashita, Tetsuo; Kitahara, Tetsuhiro; Nakayama, Naoto; Saito, Kennichi

    1997-01-01

    This report deals with the effects of sodium bicarbonate on the intracellular pH of the brain and cerebral blood flow (CBF); five normal volunteers were studied. Intracellular pH and CBF were measured by phosphorus 31 magnetic resonance spectroscopy ( 31 P-MRS) and stable xenon computed tomography (Xe-CT), respectively. Each individual received 7% sodium bicarbonate (3.5 ml/kg body weight), infused intravenously over a 15-min period. Intracellular pH, CBF, and physiological parameters were determined before and after the injection. Intracellular pH was significantly decreased and CBF was increased. Among the physiological parameters, the hematocrit was significantly decreased and arterial pressure of carbon dioxide (PaCO 2 ), increased. These results suggest that increasing CO 2 contributes to the decrease in intracellular pH. In conclusion, three factors increase CBF during the administration of sodium bicarbonate to humans: arterial dilatation in response to carbon dioxide; decrease of the hematocrit, and intracellular cerebral acidosis. (author)

  2. pH tolerance in freshwater bacterioplankton: trait variation of the community as measured by leucine incorporation.

    Science.gov (United States)

    Bååth, Erland; Kritzberg, Emma

    2015-11-01

    pH is an important factor determining bacterial community composition in soil and water. We have directly determined the community tolerance (trait variation) to pH in communities from 22 lakes and streams ranging in pH from 4 to 9 using a growth-based method not relying on distinguishing between individual populations. The pH in the water samples was altered to up to 16 pH values, covering in situ pH ± 2.5 U, and the tolerance was assessed by measuring bacterial growth (Leu incorporation) instantaneously after pH adjustment. The resulting unimodal response curves, reflecting community tolerance to pH, were well modeled with a double logistic equation (mean R(2) = 0.97). The optimal pH for growth (pHopt) among the bacterial communities was closely correlated with in situ pH, with a slope (0.89 ± 0.099) close to unity. The pH interval, in which growth was ≥90% of that at pHopt, was 1.1 to 3 pH units wide (mean 2.0 pH units). Tolerance response curves of communities originating from circum-neutral pH were symmetrical, whereas in high-pH (8.9) and especially in low-pH (pH waters, decreasing pH was more detrimental for bacterial growth than increasing pH, with a tendency for the opposite for high-pH waters. A pH tolerance index, using the ratio of growth at only two pH values (pH 4 and 8), was closely related to pHopt (R(2) = 0.83), allowing for easy determination of pH tolerance during rapid changes in pH. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Atomic structure of the sweet-tasting protein thaumatin I at pH 8.0 reveals the large disulfide-rich region in domain II to be sensitive to a pH change

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Tetsuya, E-mail: t2masuda@kais.kyoto-u.ac.jp [Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Department of Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Ohta, Keisuke [Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Department of Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Mikami, Bunzo [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kitabatake, Naofumi [Department of Foods and Human Nutrition, Notre Dame Seishin University, Okayama 700-8516 (Japan); Tani, Fumito [Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Department of Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer Structure of a recombinant thaumatin at pH 8.0 determined at a resolution of 1.0 A. Black-Right-Pointing-Pointer Substantial fluctuations of a loop in domain II was found in the structure at pH 8.0. Black-Right-Pointing-Pointer B-factors for Lys137, Lys163, and Lys187 were significantly affected by pH change. Black-Right-Pointing-Pointer An increase in mobility might play an important role in the heat-induced aggregation. -- Abstract: Thaumatin, an intensely sweet-tasting plant protein, elicits a sweet taste at 50 nM. Although the sweetness remains when thaumatin is heated at 80 Degree-Sign C for 4 h under acid conditions, it rapidly declines when heating at a pH above 6.5. To clarify the structural difference at high pH, the atomic structure of a recombinant thaumatin I at pH 8.0 was determined at a resolution of 1.0 A. Comparison to the crystal structure of thaumatin at pH 7.3 and 7.0 revealed the root-mean square deviation value of a C{alpha} atom to be substantially greater in the large disulfide-rich region of domain II, especially residues 154-164, suggesting that a loop region in domain II to be affected by solvent conditions. Furthermore, B-factors of Lys137, Lys163, and Lys187 were significantly affected by pH change, suggesting that a striking increase in the mobility of these lysine residues, which could facilitate a reaction with a free sulfhydryl residue produced via the {beta}-elimination of disulfide bonds by heating at a pH above 7.0. The increase in mobility of lysine residues as well as a loop region in domain II might play an important role in the heat-induced aggregation of thaumatin above pH 7.0.

  4. The potential effects of pH and buffering capacity on dental erosion.

    Science.gov (United States)

    Owens, Barry M

    2007-01-01

    Soft drink pH (initial pH) has been shown to be a causative factor--but not necessarily the primary initiating factor--of dental erosion. The titratable acidity or buffering capacity has been acknowledged as playing a significant role in the etiology of these lesions. This in vitro study sought to evaluate five different soft drinks (Coca-Cola Classic, Diet Coke, Gatorade sports drink, Red Bull high-energy drink, Starbucks Frappucino coffee drink) and tap water (control) in terms of initial pH and buffering capacity. Initial pH was measured in triplicate for the six beverages. The buffering capacity of each beverage was assessed by measuring the weight (in grams) of 0.10 M sodium hydroxide necessary for titration to pH levels of 5.0, 6.0, 7.0, and 8.3. Coca-Cola Classic produced the lowest mean pH, while Starbucks Frappucino produced the highest pH of any of the drinks except for tap water. Based on statistical analysis using ANOVA and Fisher's post hoc tests at a P Starbucks Frappucino.

  5. Using membrane composition to fine-tune the pKa of an optical liposome pH sensor.

    Science.gov (United States)

    Clear, Kasey J; Virga, Katelyn; Gray, Lawrence; Smith, Bradley D

    2016-04-14

    Liposomes containing membrane-anchored pH-sensitive optical probes are valuable sensors for monitoring pH in various biomedical samples. The dynamic range of the sensor is maximized when the probe p K a is close to the expected sample pH. While some biomedical samples are close to neutral pH there are several circumstances where the pH is 1 or 2 units lower. Thus, there is a need to fine-tune the probe p K a in a predictable way. This investigation examined two lipid-conjugated optical probes, each with appended deep-red cyanine dyes containing indoline nitrogen atoms that are protonated in acid. The presence of anionic phospholipids in the liposomes stabilized the protonated probes and increased the probe p K a values by sensor for optimal pH sensing performance.

  6. Biocompatibility of 17-4 PH stainless steel foam for implant applications.

    Science.gov (United States)

    Mutlu, Ilven; Oktay, Enver

    2011-01-01

    In this study, biocompatibility of 17-4 PH stainless steel foam for biomedical implant applications was investigated. 17-4 PH stainless steel foams having porosities in the range of 40-82% with an average pore size of around 600 μm were produced by space holder-sintering technique. Sintered foams were precipitation hardened for times of 1-6 h at temperatures between 450-570 °C. Compressive yield strength and Young's modulus of aged stainless steel foams were observed to vary between 80-130 MPa and 0.73-1.54 GPa, respectively. Pore morphology, pore size and the mechanical properties of the 17-4 PH stainless steel foams were close to cancellous bone. In vitro evaluations of cytotoxicity of the foams were investigated by XTT and MTT assays and showed sufficient biocompatibility. Surface roughness parameters of the stainless steel foams were also determined to characterize the foams.

  7. Effects of pH and Temperature on Recombinant Manganese Peroxidase Production and Stability

    Science.gov (United States)

    Jiang, Fei; Kongsaeree, Puapong; Schilke, Karl; Lajoie, Curtis; Kelly, Christine

    The enzyme manganese peroxidase (MnP) is produced by numerous white-rot fungi to overcome biomass recalcitrance caused by lignin. MnP acts directly on lignin and increases access of the woody structure to synergistic wood-degrading enzymes such as cellulases and xylanases. Recombinant MnP (rMnP) can be produced in the yeast Pichia pastoris αMnP1-1 in fed-batch fermentations. The effects of pH and temperature on recombinant manganese peroxidase (rMnP) production by P. pastoris αMnP1-1 were investigated in shake flask and fed-batch fermentations. The optimum pH and temperature for a standardized fed-batch fermentation process for rMnP production in P. pastoris ctMnP1-1 were determined to be pH 6 and 30 °C, respectively. P. pastoris αMnP1-1 constitutively expresses the manganese peroxidase (mnp1) complementary DNA from Phanerochaete chrysosporium, and the rMnP has similar kinetic characteristics and pH activity and stability ranges as the wild-type MnP (wtMnP). Cultivation of P. chrysosporium mycelia in stationary flasks for production of heme peroxidases is commonly conducted at low pH (pH 4.2). However, shake flask and fed-batch fermentation experiments with P. pastoris αMnP1-1 demonstrated that rMnP production is highest at pH 6, with rMnP concentrations in the medium declining rapidly at pH less than 5.5, although cell growth rates were similar from pH 4-7. Investigations of the cause of low rMnP production at low pH were consistent with the hypothesis that intracellular proteases are released from dead and lysed yeast cells during the fermentation that are active against rMnP at pH less than 5.5.

  8. Effect of sampling site, repeated sampling, pH, and PCO2 on plasma lactate concentration in healthy dogs.

    Science.gov (United States)

    Hughes, D; Rozanski, E R; Shofer, F S; Laster, L L; Drobatz, K J

    1999-04-01

    To characterize the variation in plasma lactate concentration among samples from commonly used blood sampling sites in conscious, healthy dogs. 60 healthy dogs. Cross-sectional study using a replicated Latin square design. Each dog was assigned to 1 of 6 groups (n = 10) representing all possible orders for 3 sites (cephalic vein, jugular vein, and femoral artery) used to obtain blood. Samples were analyzed immediately, by use of direct amperometry for pH, PO2, Pco2, glucose, and lactate concentration. Significant differences in plasma lactate concentrations were detected among blood samples from the cephalic vein (highest), femoral artery, and jugular vein (lowest). Mean plasma lactate concentration in the first sample obtained, irrespective of sampling site, was lower than in subsequent samples. Covariation was identified among plasma lactate concentration, pH, and PCO2, but correlation coefficients were low. Plasma lactate concentrations differed among blood samples from various sites. A reference range for plasma lactate concentration was 0.3 to 2.5 mmol/L. Differences in plasma lactate concentrations among samples from various sites and with repeated sampling, in healthy dogs, are small. Use of the reference range may facilitate the clinical use of plasma lactate concentration in dogs.

  9. Development of a Transferable Reactive Force Field of P/H Systems: Application to the Chemical and Mechanical Properties of Phosphorene.

    Science.gov (United States)

    Xiao, Hang; Shi, Xiaoyang; Hao, Feng; Liao, Xiangbiao; Zhang, Yayun; Chen, Xi

    2017-08-17

    We developed ReaxFF parameters for phosphorus and hydrogen to give a good description of the chemical and mechanical properties of pristine and defected black phosphorene. ReaxFF for P/H is transferable to a wide range of phosphorus- and hydrogen-containing systems including bulk black phosphorus, blue phosphorene, edge-hydrogenated phosphorene, phosphorus clusters, and phosphorus hydride molecules. The potential parameters were obtained by conducting global optimization with respect to a set of reference data generated by extensive ab initio calculations. We extended ReaxFF by adding a 60° correction term, which significantly improved the description of phosphorus clusters. Emphasis was placed on the mechanical response of black phosphorene with different types of defects. Compared to the nonreactive SW potential ( Jiang , J.-W. Nanotechnology 2015 , 26 , 315706 ), ReaxFF for P/H systems provides a significant improvement in describing the mechanical properties of the pristine and defected black phosphorene, as well as the thermal stability of phosphorene nanotubes. A counterintuitive phenomenon is observed that single vacancies weaken the black phosphorene more than double vacancies with higher formation energy. Our results also showed that the mechanical response of black phosphorene is more sensitive to defects in the zigzag direction than that in the armchair direction. In addition, we developed a preliminary set of ReaxFF parameters for P/H/O/C to demonstrate that the ReaxFF parameters developed in this work could be generalized to oxidized phosphorene and P-containing 2D van der Waals heterostructures. That is, the proposed ReaxFF parameters for P/H systems establish a solid foundation for modeling of a wide range of P-containing materials.

  10. Effect of pH on paste properties of irradiated corn starch by gamma-rays

    International Nuclear Information System (INIS)

    Kume, Tamikazu; Aoki, Shohei; Kobayashi, Nobuo; Okuaki, Akira.

    1979-01-01

    The degradation of starch by γ-irradiation and the effect of pH on gelatinization of starch after irradiation were investigated. Paste viscosities were markedly affected by pH on gelatinization and a decrease in the viscosity of irradiated starch was stimulated by increasing pH. On the other hand, the solubility of irradiated starch increased significantly at the high pH. The granule structure of irradiated starch easily disintegrated at alkaline pH. Remarkable dissolution from the surface of the irradiated starch granules was observed after heating at high pH only a filamentous network frame remained, but the unirradiated one collapsed and folded. It was seen that alkali treatment after irradiation reduces the required dose to obtain low viscosity starch. The required dose to produce a low viscosity starch, for example Ajinomoto Essan Sizer 600 grade, was ca. 3 Mrad at pH 11.0 and ca. 5 Mrad at pH 7.0, whereas it was ca. 7 Mrad without pH adjustment. (author)

  11. A Dual Sensor for pH and Hydrogen Peroxide Using Polymer-Coated Optical Fibre Tips.

    Science.gov (United States)

    Purdey, Malcolm S; Thompson, Jeremy G; Monro, Tanya M; Abell, Andrew D; Schartner, Erik P

    2015-12-17

    This paper demonstrates the first single optical fibre tip probe for concurrent detection of both hydrogen peroxide (H₂O₂) concentration and pH of a solution. The sensor is constructed by embedding two fluorophores: carboxyperoxyfluor-1 (CPF1) and seminaphtharhodafluor-2 (SNARF2) within a polymer matrix located on the tip of the optical fibre. The functionalised fibre probe reproducibly measures pH, and is able to accurately detect H₂O₂ over a biologically relevant concentration range. This sensor offers potential for non-invasive detection of pH and H₂O₂ in biological environments using a single optical fibre.

  12. In vivo imaging of the morphology and changes in pH along the gastrointestinal tract of Japanese medaka by photonic band-gap hydrogel microspheres

    International Nuclear Information System (INIS)

    Du, Xuemin; Lei, Ngai-Yu; Hu, Peng; Lei, Zhang; Ong, Daniel Hock-Chun; Ge, Xuewu; Zhang, Zhicheng; Lam, Michael Hon-Wah

    2013-01-01

    Graphical abstract: -- Highlights: •Fabrication of pH-responsive photonic colloidal crystalline microspheres. •Specific photonic band-gap responses occurred in the pH range of 4–5. •Remarkably low in vivo toxicity to Japanese medaka (Oryzia latipes). •In vivo imaging of the morphology and pH along GI tract of Japanese medaka. •Demonstrates bio-imaging potentials of stimuli-responsive photonic materials. -- Abstract: Colloidal crystalline microspheres with photonic band-gap properties responsive to media pH have been developed for in vivo imaging purposes. These colloidal crystalline microspheres were constructed from monodispersed core–shell nano-size particles with poly(styrene-co-acrylic acid) (PS-co-PAA) cores and poly(acrylic acid-co-N-isopropylacrylamide) (PAA-co-PNIPAM) hydrogel shells cross-linked by N,N′-methylenebisacrylamide. A significant shift in the photonic band-gap properties of these colloidal crystalline microspheres was observed in the pH range of 4–5. This was caused by the discontinuous volume phase transition of the hydrogel coating, due to the protonation/deprotonation of its acrylic acid moieties, on the core–shell nano-sized particles within the microspheres. The in vivo imaging capability of these pH-responsive photonic microspheres was demonstrated on a test organism – Japanese medaka, Oryzia latipes – in which the morphology and change in pH along their gastrointestinal (GI) tracts were revealed under an ordinary optical microscope. This work illustrates the potential of stimuli-responsive photonic band-gap materials in tissue-/organ-level in vivo bio-imaging

  13. Effect of external pH on the cytoplasmic and vacuolar pHs in Mung bean root-tip cells

    International Nuclear Information System (INIS)

    Torimitsu, Keiichi; Yazaki, Yoshiaki; Nagasuka, Kinuyo; Ohta, Eiji; Sakata, Makoto

    1984-01-01

    The effect of the external pH on the intracellular pH in mung bean (Vigna mungo (L.) Hepper) root-tip cells was investigated with the 31 P nuclear magnetic resonance (NMR) method. The 31 P NMR spectra showed three peaks caused by cytoplasmic G-6-P, cytoplasmic Psub(i) and vacuolar Psub(i). The cytoplasmic and vacuolar pHs could be determined by comparing the Psub(i) chemical shifts with the titration curve. When the external pH was changed over a range from pH 3 to 10, the cytoplasmic pH showed smaller changes than the vacuolar pH, suggesting that the former is regulated more strictly than the latter. The H + -ATPase inhibitor, DCCD, caused the breakdown of the mechanism that regulates the intracellular pH. H + -ATPase appears to have an important part in the regulation of the intracellular pH. (author)

  14. Imaging intracellular pH in a reef coral and symbiotic anemone.

    Science.gov (United States)

    Venn, A A; Tambutté, E; Lotto, S; Zoccola, D; Allemand, D; Tambutté, S

    2009-09-29

    The challenges corals and symbiotic cnidarians face from global environmental change brings new urgency to understanding fundamental elements of their physiology. Intracellular pH (pHi) influences almost all aspects of cellular physiology but has never been described in anthozoans or symbiotic cnidarians, despite its pivotal role in carbon concentration for photosynthesis and calcification. Using confocal microscopy and the pH sensitive probe carboxy SNARF-1, we mapped pHi in short-term light and dark-incubated cells of the reef coral Stylophora pistillata and the symbiotic anemone Anemonia viridis. In all cells isolated from both species, pHi was markedly lower than the surrounding seawater pH of 8.1. In cells that contained symbiotic algae, mean values of pHi were significantly higher in light treated cells than dark treated cells (7.41 +/- 0.22 versus 7.13 +/- 0.24 for S. pistillata; and 7.29 +/- 0.15 versus 7.01 +/- 0.27 for A. viridis). In contrast, there was no significant difference in pHi in light and dark treated cells without algal symbionts. Close inspection of the interface between host cytoplasm and algal symbionts revealed a distinct area of lower pH adjacent to the symbionts in both light and dark treated cells, possibly associated with the symbiosome membrane complex. These findings are significant developments for the elucidation of models of inorganic carbon transport for photosynthesis and calcification and also provide a cell imaging procedure for future investigations into how pHi and other fundamental intracellular parameters in corals respond to changes in the external environment such as reductions in seawater pH.

  15. Establishing blood gas ranges in healthy bovine neonates differentiated by age, sex, and breed type.

    Science.gov (United States)

    Dillane, Patrick; Krump, Lea; Kennedy, Aideen; Sayers, Ríona G; Sayers, Gearóid P

    2018-04-01

    Calf mortality and morbidity commonly occurs within the first month of life postpartum. Standard health ranges are invaluable aids in diagnostic veterinary medicine to confirm normal or the degree and nature of abnormal parameters in (sub)clinically ill animals. Extensive research has indicated significant differences between the physiologies of neonate and adult cattle, particularly for blood parameters such as pH, base excess, anion gap, and bicarbonate (HCO 3 - ). The objective of this research was to determine the influence of age, sex, and breed type, in addition to environmental factors, on the normal blood gas profiles of neonatal calves, and thus develop a scientifically validated reference range accounting for any significant factors. The study was conducted on healthy neonatal calves (n = 288), and completed over a 2-yr period. Individual calf blood gas analysis was conducted for parameters of pH, base excess, Na + , K + , Ca 2+ , Cl - , glucose, total hemoglobin, HCO 3 - , pCO 2 , anion gap, strong ion difference, and hematocrit levels. Regression procedures examined the combined effect of year, farm, age, breed type, sex, and hours postfeeding on each variable. Significant effects were observed for age, sex, and breed type on several of the blood gas variables. Furthermore, year, farm, and hours postfeeding appeared to have less of an influence on neonatal bovine blood gas profiles. Consequently, specific ranges based on the neonate's age, sex, and breed type will allow for more detailed and accurate diagnosis of health and ill health in neonatal calves. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  16. Esophageal pH monitoring

    Science.gov (United States)

    pH monitoring - esophageal; Esophageal acidity test ... Esophageal pH monitoring is used to check how much stomach acid is entering the esophagus. It also checks how well the acid is cleared downward into the ...

  17. Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios

    Directory of Open Access Journals (Sweden)

    Byrne Robert H

    2002-01-01

    Full Text Available Assessments of inorganic elemental speciation in seawater span the past four decades. Experimentation, compilation and critical review of equilibrium data over the past forty years have, in particular, considerably improved our understanding of cation hydrolysis and the complexation of cations by carbonate ions in solution. Through experimental investigations and critical evaluation it is now known that more than forty elements have seawater speciation schemes that are strongly influenced by pH. In the present work, the speciation of the elements in seawater is summarized in a manner that highlights the significance of pH variations. For elements that have pH-dependent species concentration ratios, this work summarizes equilibrium data (S = 35, t = 25°C that can be used to assess regions of dominance and relative species concentrations. Concentration ratios of complex species are expressed in the form log[A]/[B] = pH - C where brackets denote species concentrations in solution, A and B are species important at higher (A and lower (B solution pH, and C is a constant dependent on salinity, temperature and pressure. In the case of equilibria involving complex oxy-anions (MOx(OHy or hydroxy complexes (M(OHn, C is written as pKn = -log Kn or pKn* = -log Kn* respectively, where Kn and Kn* are equilibrium constants. For equilibria involving carbonate complexation, the constant C is written as pQ = -log(K2lKn [HCO3-] where K2l is the HCO3 - dissociation constant, Kn is a cation complexation constant and [HCO3-] is approximated as 1.9 × 10-3 molar. Equilibrium data expressed in this manner clearly show dominant species transitions, ranges of dominance, and relative concentrations at any pH.

  18. Intraoral pH and temperature during sleep with and without mouth breathing.

    Science.gov (United States)

    Choi, J E; Waddell, J N; Lyons, K M; Kieser, J A

    2016-05-01

    To measure and compare the intraoral pH and temperature of individuals during sleep with and without mouth breathing. Ten healthy participants [mean age = 25·8 (± 4·3)] wore a custom-made appliance fitted with a pH probe and thermocouple for two sets of 48 h. Continuous pH and temperature measurements were taken from the palatal aspect of the upper central incisors. To simulate mouth breathing during sleep, participants wore a nose clip for two nights of the four, with the first group (n = 5) wearing the nose clip during the first night and the rest (n = 5) wearing the nose clip during the second night of sleep to balance any potential bias from the wearing sequence. Both qualitative and quantitative analyses were conducted. The mean intraoral pH during daytime was 7·3 (± 0·4) and during sleep was 7·0 (± 0·5). The mean intraoral pH during sleep with mouth breathing was 6·6 (± 0·5), which was statistically significant compared with the normal sleep condition (P pH decreased slowly over the hours of sleep in all participants. When sleeping with forced mouth breathing, intraoral pH showed a greater fall over a longer period of time. The mean intraoral temperature was 33·1 °C (± 5·2) during daytime and 33·3 °C (± 6·1) during sleep, with no statistical significance between sleep with and without mouth breathing (P > 0·05). The results suggest that mouth breathing during sleep is related to a decrease in intraoral pH compared with normal breathing during sleep, and this has been proposed as a causal factor for dental erosion and caries. © 2015 John Wiley & Sons Ltd.

  19. EFFECT OF pH ON ELECTROLESS Ni-P COATING OF CONDUCTIVE AND NON-CONDUCTIVE MATERIALS

    Directory of Open Access Journals (Sweden)

    Subrata Roy

    2011-12-01

    Full Text Available Electroless nickel-phosphorus (Ni-P coating of carbon steel as well as a polypropylene substrate was conducted using sodium hypophosphite as a reducing agent in alkaline media. The influence of pH on coating appearances and the properties of the coatings for both steel and the polypropylene substrate were studied. A nickel-phosphorus coating of good appearance was obtained in the pH range between 5.5 and 12.5 on the carbon steel substrate and between 8.5 and 12 on the polypropylene substrate. The percentage of Ni content in the coating increased with increasing pH of the bath solution. A smooth, uniform microstructure was found in the coating deposited in relatively lower pH solutions compared to higher pH baths. The microhardness of the Ni-P coating decreased with an increasing percentage Ni content in the deposit.

  20. Industrial PhD report: Sustainable Innovation

    DEFF Research Database (Denmark)

    Olesen, Gitte Gylling Hammershøj

    2011-01-01

    Erhvervs PhD rapport udarbejdet i tilknytning til Erhvervs PhD kurset der er obligatorisk for Erhvervs PhD studerende. Rapporten omhandler relationer melllem den akademiske verden og industrien i sammenhæng med PhD projektet, betragtet og analyseret gennem teori om bæredygtig innovation....