WorldWideScience

Sample records for significant ionic disorder

  1. Significant Improvement of Catalytic Efficiencies in Ionic Liquids

    International Nuclear Information System (INIS)

    Song, Choong Eui; Yoon, Mi Young; Choi, Doo Seong

    2005-01-01

    The use of ionic liquids as reaction media can confer many advantages upon catalytic reactions over reactions in organic solvents. In ionic liquids, catalysts having polar or ionic character can easily be immobilized without additional structural modification and thus the ionic solutions containing the catalyst can easily be separated from the reagents and reaction products, and then, be reused. More interestingly, switching from an organic solvent to an ionic liquid often results in a significant improvement in catalytic performance (e.g., rate acceleration, (enantio)selectivity improvement and an increase in catalyst stability). In this review, some recent interesting results which can nicely demonstrate these positive 'ionic liquid effect' on catalysis are discussed

  2. Microscopic evidence for significant ionic disorder in the Yb sup 3 sup + -chain in Yb sub 4 (As sub 1 sub - sub x P sub x) sub 3 : sup 3 sup 1 P NMR studies

    CERN Document Server

    Tanida, H; Aoki, H; Ochiai, A

    2003-01-01

    We report unambiguous microscopic evidence from sup 3 sup 1 P NMR under H sub e sub x sub t approx = 7.3 T for significant ionic disorder in the Yb sup 3 sup + chain in Yb sub 4 (As sub 1 sub - sub x P sub x) sub 3 (x=0.05 and 0.40), which have similar characteristic chi(T) and C sub p (T, H sub e sub x sub t) behavior to the antiferromagnetic quantum spin chain (AFQSC) system Yb sub 4 As sub 3. Our conclusion is based on the observations only below the charge-ordering transition at T sub 0 approx = 292 K of clear structures in the spectrum, which can be fitted well by the superpositions of almost equally spaced five Gaussian components. Since perfect ordering of Yb sup 3 sup + in the chain sites would lead to a single-line spectrum also below T sub 0 , the structures should be ascribed to significant ionic disorder in the Yb sup 3 sup + chain and resulting distribution of local configurations of Yb sup 3 sup + in the eight nearest-neighboring Yb sites around sup 3 sup 1 P. Quantitative comparisons with a sim...

  3. Similar nature of ionic imbalances in cardiovascular and renal disorders

    International Nuclear Information System (INIS)

    Shahid, S.M.; Jawed, M.; Akram, H.; Mahboob, T.

    2004-01-01

    Background: Several studies have reported improper ionic environment in cardiovascular and renal patients but how the diseases are associated on ionic basis is still not clear. Objective: The present study was aimed to investigate sodium and potassium concentrations and their transport abnormalities in cardiovascular and renal patients. Patients and Methods: Thirty patients of various cardiovascular and thirty patients of various renal disorders (53.33% males, 46.67% females) were selected. Erythrocytes were isolated from freshly drawn blood samples, washed and used for the estimation of sodium and potassium levels using flame photometer (Corning 410). Serum sodium and potassium were measured by flame photometer. RBC membranes were prepared for the estimation of Na/sup +/-K/sup +/-ATPase activity in terms of inorganic phosphate released/mg protein/hour. Results: Intra-erythrocyte and serum sodium and potassium concentrations and Na/sup +/-K/sup +/-ATPase activity were different in cardiovascular and renal patients from controls. Intra-erythrocyte sodium level was increased significantly (P<0.01) in cardiovascular patients and non-significantly in renal patients as compared to controls. Na/sup +/-K/sup +/-ATPase activity and serum sodium level were decreased significantly (P<0.01) in both the groups as compared to controls. Serum potassium was found to be decreased significantly (P<0.01) in cardiovascular patients whereas it was raised significantly (P<0.01) in renal patients as compared to control subjects. Conclusion: The results indicated similar nature of ionic and electrolyte imbalances in cardiovascular and renal disorders resulting from impaired Na/sup +/-K/sup +/-ATPase system. Further investigations in the same area, may be of help to establish an understanding of the progression of diseases, associated complications and the preventive steps that should-be taken to arrest the progression of these disorders. (author)

  4. Water Phase Diagram Is Significantly Altered by Imidazolium Ionic Liquid

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    We report unusually large changes in the boiling temperature, saturated vapor pressure, and structure of the liquid-vapor interface for a range of 1-butyl-3-methyl tetrafluoroborate, [C4C1IM][BF4]-water mixtures. Even modest molar fractions of [C4C1IM][BF4] significantly affect the phase behavior...... of water, as represented, for instance, by strong negative deviations from Raoult's law, extending far beyond the standard descriptions. The investigation was carried out using classical molecular dynamics employing a specifically refined force field. The changes in the liquid-vapor interface and saturated...

  5. [Diagnostic Significance of BAT in Anaphylaxis to Non-ionic Contrast Media].

    Science.gov (United States)

    Zhang, Hao-yue; Xu, Su-jun; Tang, Xiao-xian; Niu, Ji-jun; Guo, Xiang-jie; Gao, Cai-rong

    2015-06-01

    To investigate the diagnostic significance of basophil activation test (BAT) in anaphylaxis to non-ionic contrast media through testing the content of CD63, mast cell-carboxypeptidase A3 (MC-CPA3), and terminal complement complex SC5b-9 of the individuals by testing their levels in the normal immune group and the anaphylaxis groups to β-lactam drugs and non -ionic contrast media. The CD63 expression of basophilic granulocyte in blood was detected by flow cytometry. The levels of MC-CPA3 in blood serum and SC5b-9 in blood plasma were detected by ELISA. The CD63 expression of basophilic granulocyte in blood, the levels of MC-CPA3 and SC5b-9 of anaphylaxis to non-ionic contrast media and β-lactam drugs were significantly higher than that in normal immune group (P contrast media. BAT can be used to diagnose the anaphylaxis to non-ionic contrast media.

  6. Origin of Colossal Ionic Conductivity in Oxide Multilayers: Interface Induced Sublattice Disorder

    International Nuclear Information System (INIS)

    Pennycook, Timothy J.; Pantelides, Sokrates T.; Beck, Matthew J.; Varga, Kalman; Varela, Maria; Pennycook, Stephen J.

    2010-01-01

    Oxide ionic conductors typically operate at high temperatures, which limits their usefulness. Colossal room-temperature ionic conductivity was recently discovered in multilayers of yttria-stabilized zirconia (YSZ) and SrTiO 3 . Here we report density-functional calculations that trace the origin of the effect to a combination of lattice-mismatch strain and O-sublattice incompatibility. Strain alone in bulk YSZ enhances O mobility at high temperatures by inducing extreme O disorder. In multilayer structures, O-sublattice incompatibility causes the same extreme disorder at room temperature.

  7. The significance of water ionic strength on aluminium toxicity in brown trout (Salmo trutta L.)

    International Nuclear Information System (INIS)

    Alstad, Nina E.W.; Kjelsberg, Birgitte M.; Voellestad, L. Asbjoern; Lydersen, Espen; Poleo, Antonio B.S.

    2005-01-01

    The toxicity of aluminium to fish is related to interactions between aluminium and the gill surface. We investigated the possible effect of water ionic strength on this interaction. The mortality of brown trout (Salmo trutta L.) exposed to three different degrees of Al polymerisation was compared in water with increased ionic strength (mean 7.31 x 10 -4 M) after additions of the base cations Ca 2+ , Mg 2+ , Na + or K + , and in water with no such addition (mean ionic strength 5.58 x 10 -4 M). Only a very slight ameliorating effect of increased ionic strength was observed, while the degree of Al polymerisation was of major importance in fish mortality. In addition, it was observed that smaller fish survived the Al exposures for a longer time than larger fish. We hypothesise that this is because larger fish are more susceptible to hypoxia than smaller fish. - Ionic strength has a slight ameliorating effect on Al toxicity in brown trout

  8. Scope and Significance of Eating Disorders.

    Science.gov (United States)

    Mitchell, James E.; Eckert, Elke D.

    1987-01-01

    Describes the increasing prevalence of anorexia nervosa and bulimia in many industrialized societies, and their association with significant morbidity and mortality. Discusses the genetic risks for the development of anorexia nervosa, and treatment strategies. Of these, pharmacotherapy and psychotherapy, particularly those incorporating…

  9. Short-range disorder in pseudobinary ionic alloys

    International Nuclear Information System (INIS)

    Di Cicco, Andrea; Principi, Emiliano; Filipponi, Adriano

    2002-01-01

    The short-range distribution functions of the RbBr 1-x I x solid and molten ionic alloys have been accurately measured using multiple-edge refinement of the K-edge extended x-ray absorption fine structure spectra (EXAFS). The local structure is characterized by two well-defined first-neighbor peaks associated with the Rb-I and Rb-Br distributions, both for solid and liquid alloys. The distribution of distances in solid alloys gives experimental evidence to available theoretical models. In the liquid, the two distance distributions are found to be practically independent of the concentration x. The effect of different effective charge screening of the ions is observed in the molten systems for limiting concentrations

  10. The significance of water ionic strength on aluminium toxicity in brown trout (Salmo trutta L.)

    Energy Technology Data Exchange (ETDEWEB)

    Alstad, Nina E.W. [Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo (Norway); Kjelsberg, Birgitte M. [Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo (Norway); Voellestad, L. Asbjoern [Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo (Norway); Lydersen, Espen [Norwegian Institute for Water Research, P.O. Box 173 Kjelsaas, N-0411 Oslo (Norway); Poleo, Antonio B.S. [Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo (Norway)]. E-mail: toni.poleo@bio.uio.no

    2005-01-01

    The toxicity of aluminium to fish is related to interactions between aluminium and the gill surface. We investigated the possible effect of water ionic strength on this interaction. The mortality of brown trout (Salmo trutta L.) exposed to three different degrees of Al polymerisation was compared in water with increased ionic strength (mean 7.31 x 10{sup -4} M) after additions of the base cations Ca{sup 2+}, Mg{sup 2+}, Na{sup +} or K{sup +}, and in water with no such addition (mean ionic strength 5.58 x 10{sup -4} M). Only a very slight ameliorating effect of increased ionic strength was observed, while the degree of Al polymerisation was of major importance in fish mortality. In addition, it was observed that smaller fish survived the Al exposures for a longer time than larger fish. We hypothesise that this is because larger fish are more susceptible to hypoxia than smaller fish. - Ionic strength has a slight ameliorating effect on Al toxicity in brown trout.

  11. Disorder-induced transition from grain boundary to bulk dominated ionic diffusion in pyrochlores

    International Nuclear Information System (INIS)

    Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.

    2017-01-01

    In this paper, we use molecular dynamics simulations to investigate the role of grain boundaries (GBs) on ionic diffusion in pyrochlores, as a function of the GB type, chemistry of the compound, and level of cation disorder. We observe that the presence of GBs promotes oxygen transport in ordered and low-disordered systems, as the GBs are found to have a higher concentration of mobile carriers with higher mobilities than in the bulk. Thus, in ordered samples, the ionic diffusion is 2D, localized along the grain boundary. When cation disorder is introduced, bulk carriers begin to contribute to the overall diffusion, while the GB contribution is only slightly enhanced. In highly disordered samples, the diffusive behavior at the GBs is bulk-like, and the two contributions (bulk vs. GB) can no longer be distinguished. There is thus a transition from 2D/GB dominated oxygen diffusivity to 3D/bulk dominated diffusivity versus disorder in pyrochlores. Finally, these results provide new insights into the possibility of using internal interfaces to enhance ionic conductivity in nanostructured complex oxides.

  12. Is Geometric Frustration-Induced Disorder a Recipe for High Ionic Conductivity?

    Science.gov (United States)

    Düvel, Andre; Heitjans, Paul; Fedorov, Pavel; Scholz, Gudrun; Cibin, Giannantonio; Chadwick, Alan V; Pickup, David M; Ramos, Silvia; Sayle, Lewis W L; Sayle, Emma K L; Sayle, Thi X T; Sayle, Dean C

    2017-04-26

    Ionic conductivity is ubiquitous to many industrially important applications such as fuel cells, batteries, sensors, and catalysis. Tunable conductivity in these systems is therefore key to their commercial viability. Here, we show that geometric frustration can be exploited as a vehicle for conductivity tuning. In particular, we imposed geometric frustration upon a prototypical system, CaF 2 , by ball milling it with BaF 2 , to create nanostructured Ba 1-x Ca x F 2 solid solutions and increased its ionic conductivity by over 5 orders of magnitude. By mirroring each experiment with MD simulation, including "simulating synthesis", we reveal that geometric frustration confers, on a system at ambient temperature, structural and dynamical attributes that are typically associated with heating a material above its superionic transition temperature. These include structural disorder, excess volume, pseudovacancy arrays, and collective transport mechanisms; we show that the excess volume correlates with ionic conductivity for the Ba 1-x Ca x F 2 system. We also present evidence that geometric frustration-induced conductivity is a general phenomenon, which may help explain the high ionic conductivity in doped fluorite-structured oxides such as ceria and zirconia, with application for solid oxide fuel cells. A review on geometric frustration [ Nature 2015 , 521 , 303 ] remarks that classical crystallography is inadequate to describe systems with correlated disorder, but that correlated disorder has clear crystallographic signatures. Here, we identify two possible crystallographic signatures of geometric frustration: excess volume and correlated "snake-like" ionic transport; the latter infers correlated disorder. In particular, as one ion in the chain moves, all the other (correlated) ions in the chain move simultaneously. Critically, our simulations reveal snake-like chains, over 40 Å in length, which indicates long-range correlation in our disordered systems. Similarly

  13. The liquid-glass-jamming transition in disordered ionic nanoemulsions.

    Science.gov (United States)

    Braibanti, Marco; Kim, Ha Seong; Şenbil, Nesrin; Pagenkopp, Matthew J; Mason, Thomas G; Scheffold, Frank

    2017-11-08

    In quenched disordered out-of-equilibrium many-body colloidal systems, there are important distinctions between the glass transition, which is related to the onset of nonergodicity and loss of low-frequency relaxations caused by crowding, and the jamming transition, which is related to the dramatic increase in elasticity of the system caused by the deformation of constituent objects. For softer repulsive interaction potentials, these two transitions become increasingly smeared together, so measuring a clear distinction between where the glass ends and where jamming begins becomes very difficult or even impossible. Here, we investigate droplet dynamics in concentrated silicone oil-in-water nanoemulsions using light scattering. For zero or low NaCl electrolyte concentrations, interfacial repulsions are soft and longer in range, this transition sets in at lower concentrations, and the glass and the jamming regimes are smeared. However, at higher electrolyte concentrations the interactions are stiffer, and the characteristics of the glass-jamming transition resemble more closely the situation of disordered elastic spheres having sharp interfaces, so the glass and jamming regimes can be distinguished more clearly.

  14. Cytochrome c oxidase inhibition by calcium at physiological ionic composition of the medium: Implications for physiological significance of the effect.

    Science.gov (United States)

    Vygodina, Tatiana V; Mukhaleva, Elizaveta; Azarkina, Natalia V; Konstantinov, Alexander A

    2017-12-01

    Cytochrome c oxidase (CcO) from mammalian mitochondria binds Ca 2+ and Na + in a special cation binding site. Binding of Ca 2+ brings about partial inhibition of the enzyme while Na + competes with Ca 2+ for the binding site and protects the enzyme from the inhibition [Vygodina, T., Kirichenko, A. and Konstantinov, A.A. (2013). Direct Regulation of Cytochrome c oxidase by Calcium Ions. PLoS One 8(9): e74436]. In the original studies, the inhibition was found to depend significantly on the ionic composition of the buffer. Here we describe inhibition of CcO by Ca 2+ in media containing the main ionic components of cytoplasm (150mM KCl, 12mM NaCl and 1mM MgCl 2 ). Under these conditions, Ca 2+ inhibits CcO with effective K i of 20-26μM, that is an order of magnitude higher than determined earlier in the absence of Na + . At physiological value of ionic strength, the inhibition can be observed at any turnover number of CcO, rather than only at low TN (calcium matches closely the known value of "K m " for Ca 2+ -induced activation of the mitochondrial calcium uniporter. The inhibition of CcO by Ca 2+ is proposed to modulate mitochondrial Ca 2+ -uptake via the mitochondrial calcium uniporter, promote permeability transition pore opening and induce reduction of Mia40 in the mitochondrial intermembrane space. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Clinical Significance of Autoantibodies in Some Thyroid Disorders

    International Nuclear Information System (INIS)

    Choi, Sung Kyu; Han, Sang Ho; Kim, Young Ju; Song, Jun Ho; Lee, Man Ho; Chung, Eul Sun; Lee, Sang Jong

    1984-01-01

    Clinical measurement of thyroid autoantibodies in sera of some thyroid disorders have been widely applied since about twenty years ago. We investigated the incidence and titers of both antimicrosomal and antithyroglobulin antibodies in forty eight cases with controls and one hundred and thirty three patients with some form of thyroid disorders. The results were as follows; 1) In controls, antimicrosomal antibodies were positive in 2% but antithyroglobulin antibodies were all negative. 2) In a series of one hundred and thirty three patients with thyroid disease, antimicrosomal antibodies were positive in 44% but antithyroglobulin antibodies were positive in only 15%. 3) The rate disclosing the positive results of antimicrosomal antibodies were 71% in Hashimoto disease, 60% in Graves' disease, and 38% in primary hypothyroidism, respectively. On the other hand, the positive results of antithyroglobulin antibodies showed 21% in Graves' disease, 19% in primary hypothyroidism, and 18% in Hashimoto, disease, respectively. Though there were relatively high rate of both antimicrosomal and antithyroglobulin antibodies in patients with nodular goiter, they were only seven cases in our series. 4) The rate with the extremely high titers of antimicrosomal and antithyroglobulin antibodies (>1 : 160 2 ) was 83% and 67% in Hashimoto's disease, 50% and 67% in primary hypothyroidism, and 41% and 18% in Graves' disease. Accordingly, the thyroid autoantibodies, were commonly found higher positive rate in patients with Hashimoto disease, primary hypothyroidism, and Graves' disease. Among these disorders, the extremely high positive rate of the thyroid autoantibodies was found in patients with Hashimoto's disease.

  16. Alstrom syndrome: A rare genetic disorder and its anaesthetic significance

    Directory of Open Access Journals (Sweden)

    Akhilesh Tiwari

    2010-01-01

    Full Text Available Alstrom syndrome is a rare autosomal recessive disorder that was first described in 1959, by Carl Henry Alstrom, characterised by multiorgan system involvement ranging from ocular, aural, endocrinal, hepatorenal, gastrointestinal, respiratory and cardiac to the musculoskeletal system, among many others. It exposes the patient to various risks ranging from pulmonary aspiration and increased cardiac morbidity to separational anxiety, and may necessitate postoperative elective ventilation. We hereby present the successful management of one such diagnosed case in a 12-year-old boy, who presented to us for incision and drainage of an abscess present over the nape of his neck, along with foreign body removal from his right ear.

  17. Hormonal Disorders as Significant Pathogenetic Factor of Acne in Women

    Directory of Open Access Journals (Sweden)

    L.O. Naumova

    2014-08-01

    Conclusions. Hormonal study of women with acne should include an assessment of the function of ovaries, adrenal glands, thyroid gland, determination of the level of prolactin in the blood plasma and glycated hemoglobin. Treatment should be aimed at management of hormonal and metabolic disorders, and topical treatment of acne. Before 30 years of age it is important to diagnose polycystic ovary syndrome and late forms of congenital dysfunction of the adrenal glands, after 30 — hyperprolactinemia syndrome, hypothyroidism, diabetes mellitus type 2, and after 40 years acne often manifests on the background of ovarian failure.

  18. Mediational Significance of PTSD in the Relationship of Sexual Trauma and Eating Disorders

    Science.gov (United States)

    Holzer, Sarah R.; Uppala, Saritha; Wonderlich, Stephen A.; Crosby, Ross D.; Simonich, Heather

    2008-01-01

    Objective: To examine the mediational significance of posttraumatic stress disorder (PTSD) and the development of eating disorder symptomatology following sexually traumatic experiences. Method: Seventy-one victims of sexual trauma and 25 control subjects completed interviews and questionnaires assessing eating disorder psychopathology and…

  19. The prevalence and significance of substance use disorders in bipolar type I and II disorder

    Directory of Open Access Journals (Sweden)

    Strakowski Stephen M

    2007-10-01

    Full Text Available Abstract The aim of this paper is to provide a systematic review of the literature examining the epidemiology, outcome, and treatment of patients with bipolar disorder and co-occurring substance use disorders (SUDs. Articles for this review were initially selected via a comprehensive Medline search and further studies were obtained from the references in these articles. Given the lack of research in this field, all relevant studies except case reports were included. Prior epidemiological research has consistently shown that substance use disorders (SUDs are extremely common in bipolar I and II disorders. The lifetime prevalence of SUDs is at least 40% in bipolar I patients. Alcohol and cannabis are the substances most often abused, followed by cocaine and then opioids. Research has consistently shown that co-occurring SUDs are correlated with negative effects on illness outcome including more frequent and prolonged affective episodes, decreased compliance with treatment, a lower quality of life, and increased suicidal behavior. Recent research on the causal relationship between the two disorders suggests that a subgroup of bipolar patients may develop a relatively milder form of affective illness that is expressed only after extended exposure to alcohol abuse. There has been very little treatment research specifically targeting this population. Three open label medication trials provide limited evidence that quetiapine, aripiprazole, and lamotrigine may be effective in treating affective and substance use symptoms in bipolar patients with cocaine dependence and that aripiprazole may also be helpful in patients with alcohol use disorders. The two placebo controlled trials to date suggest that valproate given as an adjunct to lithium in bipolar patients with co-occurring alcohol dependence improves both mood and alcohol use symptoms and that lithium treatment in bipolar adolescents improves mood and SUD symptoms. Given the high rate of SUD co

  20. Structural vs. intrinsic carriers: contrasting effects of cation chemistry and disorder on ionic conductivity in pyrochlores

    International Nuclear Information System (INIS)

    Perriot, Romain; Uberuaga, Blas P.

    2015-01-01

    We use molecular dynamics simulations to investigate the role of cation disorder on oxygen diffusion in Gd 2 Zr 2 O 7 (GZO) and Gd 2 Ti 2 O 7 (GTO) pyrochlores, a class of complex oxides which contain a structural vacancy relative to the basic fluorite structure. The introduction of disorder has distinct effects depending on the chemistry of the material, increasing the mobility of structural carriers by up to four orders of magnitude in GZO. In contrast, in GTO, there is no mobility at zero or low disorder on the ns timescale, but higher disorder liberates the otherwise immobile carriers, allowing diffusion with rates comparable to GZO for the fully disordered material. Here, we show that the cation disorder enhances the diffusivity by both increasing the concentration of mobile structural carriers and their individual mobility. The disorder also influences the diffusion in materials containing intrinsic carriers, such as additional vacancies VO or oxygen interstitials OI. And while in ordered GZO and GTO the contribution of the intrinsic carriers dominates the overall diffusion of oxygen, OI in GZO contributes along with structural carriers, and the total diffusion rate can be calculated by assuming simple additive contributions from the two sources. Although the disorder in the materials with intrinsic defects usually enhances the diffusivity as in the defect-free case, in low concentrations, cation antisites AB or BA, where A = Gd and B = Zr or Ti, can act as traps for fast intrinsic defects. The trapping results in a lowering of the diffusivity, and causes a non-monotonic behavior of the diffusivity with disorder. Conversely, in the case of slow intrinsic defects, the main effect of the disorder is to liberate the structural carriers, resulting in an increase of the diffusivity regardless of the defect trapping.

  1. Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target

    Directory of Open Access Journals (Sweden)

    Yutaka eKoyama

    2015-07-01

    Full Text Available Astrocytes play an essential role in supporting brain functions in physiological and pathological states. Modulation of their pathophysiological responses have beneficial actions on nerve tissue injured by brain insults and neurodegenerative diseases, therefore astrocytes are recognized as promising targets for neuroprotective drugs. Recent investigations have identified several astrocytic mechanisms for modulating synaptic transmission and neural plasticity. These include altered expression of transporters for neurotransmitters, release of gliotransmitters and neurotrophic factors, and intercellular communication through gap junctions. Investigation of patients with mental disorders shows morphological and functional alterations in astrocytes. According to these observations, manipulation of astrocytic function by gene mutation and pharmacological tools reproduce mental disorder-like behavior in experimental animals. Some drugs clinically used for mental disorders affect astrocyte function. As experimental evidence shows their role in the pathogenesis of mental disorders, astrocytes have gained much attention as drug targets for mental disorders. In this article, I review functional alterations of astrocytes in several mental disorders including schizophrenia, mood disorder, drug dependence, and neurodevelopmental disorders. The pharmacological significance of astrocytes in mental disorders is also discussed.

  2. Narcissistic personality disorder in DSM-V--in support of retaining a significant diagnosis.

    Science.gov (United States)

    Ronningstam, Elsa

    2011-04-01

    Narcissistic personality disorder, NPD, has been excluded as a diagnostic category and independent personality disorder type in the Personality and Personality Disorder Work Group's recent proposal for DSM-5 Personality and Personality Disorders. The aim of this paper is to present supporting evidence in favor of keeping NPD as a personality type with a set of separate diagnostic criteria in DSM-5. These include: the prevalence rate, extensive clinical and empirical reports and facts, its psychiatric, social and societal significance especially when associated to functional vocational and interpersonal impairment, social and moral adaptation, and acute suicidality. Proposals for a clinically relevant and empirically based definition of narcissism, a description of the narcissistic personality disorder type, and a set of diagnostic criteria for NPD are outlined.

  3. Biographical and intrinsic disorder in some ionic crystals according to EPR data

    International Nuclear Information System (INIS)

    Angelov, S.

    1989-01-01

    CO 0 2 -radicals stabilised in SrCO 3 are examined as an example of disorder in diamagnetic matrices containing isolated paramagnetic centers. The genesis, stabilisation and further recombination of CO - 2 is connected with a specific biographical disorder in SrCO 3 , depending on the rate of decomposition of the initial SrC 2 O 4 .H 2 O. Depending on the electronic configuration of the EPR-active ion and the structure of the matrix (interionic distances and angles between them), the biographical and intrinsic disorder may influence different parameters of the exchange-narrowed EPR singlet line. For example, Co 3 O 4 has a rigid structure, varying slightly with the preparation temperature. The disorder affects only the local zero-field splittings of the 4 A 2 state of the Co 2+ -ions, the exchange field being insensitive to it. In the more flexible structure of Fe 2 (MoO 4 ) 3 , the disorder due to small deviations from stoichiometry changes the exchange field between Fe(III) ions, while the second moment of the EPR line remains constant. (author)

  4. The Leu72Met polymorphism of the ghrelin gene is significantly associated with binge eating disorder.

    Science.gov (United States)

    Monteleone, Palmiero; Tortorella, Alfonso; Castaldo, Eloisa; Di Filippo, Carmela; Maj, Mario

    2007-02-01

    The pathophysiological mechanisms underlying binge eating disorder are poorly understood. Evidence exists for the fact that abnormalities in peptides involved in the regulation of appetite, including ghrelin, may play a role in binge eating behavior. Genes involved in the ghrelin physiology may therefore contribute to the biological vulnerability to binge eating disorder. We examined whether two polymorphisms of the ghrelin gene, the G152A (Arg51Gln) and C214A (Leu72Met), were associated with binge eating disorder. Ninety obese or nonobese women with binge eating disorder and 119 normal weight women were genotyped at the ghrelin gene. Statistical analyses showed that the Leu72Met ghrelin gene variant was significantly more frequent in binge eating disorder patients (chi2=5.940; d.f.=1, P=0.01) and was associated with a moderate, but significant risk to develop binge eating disorder (odds ratio=2.725, 95% confidence interval: 1.168-6.350). Although these data should be regarded as preliminary because of the small sample size, they suggest that the Leu72Met ghrelin gene variant may contribute to the genetic susceptibility to binge eating disorder.

  5. Cu ion disordering in high ionic conductor Rb4Cu16I7Cl13

    International Nuclear Information System (INIS)

    Kawaji, Hitoshi; Atake, Tooru; Kanno, Ryoji; Izumi, Fujio; Yamamoto, Osamu.

    1993-01-01

    The properties of a high ionic conductor Rb 4 Cu 16 I 7+x Cl 13-x were studied by neutron and X-ray diffraction, and heat capacity measurements. The structure parameters of Rb 4 Cu 16 I 7.2 Cl 12.8 were obtained by the Rietveld analysis of TOF neutron diffraction data between 50 and 300 K, which showed gradual excitation of migration of Cu ions from Cu(3) site into Cu(2) site with increasing temperature from about 100 K to room temperature. The heat capacity was measured between 10 and 300 K using a high precision adiabatic calorimeter. An abnormal increase was observed in the heat capacity curve above about 100 K. The excess heat capacity showed a broad anomaly with a maximum at about 190 K. The measurements were also made of Rb 4 Cu 16 I 7 Cl 13 which showed slight different properties from Rb 4 Cu 16 I 7.2 Cl 12.8 . (author)

  6. Suicidal Attempt in Bipolar Disorder:Low Significance of Comorbidity with Opioid Dependence

    Directory of Open Access Journals (Sweden)

    Morteza Naserbakht

    2009-04-01

    Full Text Available "nObjectives: The relationship between suicidal attempt and opioid use disorder in patients with bipolar disorder (BD is unknown. This study aimed at shedding some light on this issue. "nMethod:178 inpatients aged 18-65 with BD type I with or without opioid use disorders were face-to-face interviewed through the Persian Structured Clinical Interview for DSM-IV axis I disorders (SCID-I,  the Global Assessment of Functioning (GAF scale, and a questionnaire including demographic and some clinical factors. "nResults:Gender was the only demographic factor with a statistical significant difference between suicidal and non-suicidal bipolar patients. Also, comorbidity with anxiety disorders and the type of index and current mood episodes were significantly different between the two groups (p<0.05. But after using a logistic regression analysis, the only statistical significant different factors (p<0.05 between the two groups were gender, comorbidity with anxiety disorders, and GAF.  "nConclusion:Opioid dependence comorbidity can not be considered as a risk factor for suicidal attempt in patients with BD.

  7. Quantitative Linkage for Autism Spectrum Disorders Symptoms in Attention-Deficit/Hyperactivity Disorder: Significant Locus on Chromosome 7q11

    Science.gov (United States)

    Nijmeijer, Judith S.; Arias-Vásquez, Alejandro; Rommelse, Nanda N.; Altink, Marieke E.; Buschgens, Cathelijne J.; Fliers, Ellen A.; Franke, Barbara; Minderaa, Ruud B.; Sergeant, Joseph A.; Buitelaar, Jan K.; Hoekstra, Pieter J.; Hartman, Catharina A.

    2014-01-01

    We studied 261 ADHD probands and 354 of their siblings to assess quantitative trait loci associated with autism spectrum disorder symptoms (as measured by the Children's Social Behavior Questionnaire (CSBQ) using a genome-wide linkage approach, followed by locus-wide association analysis. A genome-wide significant locus for the CSBQ subscale…

  8. Childhood-compared to adolescent-onset bipolar disorder has more statistically significant clinical correlates.

    Science.gov (United States)

    Holtzman, Jessica N; Miller, Shefali; Hooshmand, Farnaz; Wang, Po W; Chang, Kiki D; Hill, Shelley J; Rasgon, Natalie L; Ketter, Terence A

    2015-07-01

    The strengths and limitations of considering childhood-and adolescent-onset bipolar disorder (BD) separately versus together remain to be established. We assessed this issue. BD patients referred to the Stanford Bipolar Disorder Clinic during 2000-2011 were assessed with the Systematic Treatment Enhancement Program for BD Affective Disorders Evaluation. Patients with childhood- and adolescent-onset were compared to those with adult-onset for 7 unfavorable bipolar illness characteristics with replicated associations with early-onset patients. Among 502 BD outpatients, those with childhood- (adolescent- (13-18 years, N=218) onset had significantly higher rates for 4/7 unfavorable illness characteristics, including lifetime comorbid anxiety disorder, at least ten lifetime mood episodes, lifetime alcohol use disorder, and prior suicide attempt, than those with adult-onset (>18 years, N=174). Childhood- but not adolescent-onset BD patients also had significantly higher rates of first-degree relative with mood disorder, lifetime substance use disorder, and rapid cycling in the prior year. Patients with pooled childhood/adolescent - compared to adult-onset had significantly higher rates for 5/7 of these unfavorable illness characteristics, while patients with childhood- compared to adolescent-onset had significantly higher rates for 4/7 of these unfavorable illness characteristics. Caucasian, insured, suburban, low substance abuse, American specialty clinic-referred sample limits generalizability. Onset age is based on retrospective recall. Childhood- compared to adolescent-onset BD was more robustly related to unfavorable bipolar illness characteristics, so pooling these groups attenuated such relationships. Further study is warranted to determine the extent to which adolescent-onset BD represents an intermediate phenotype between childhood- and adult-onset BD. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. A study of the disorder in heavily doped Ba1-xLaxF2+x by neutron scattering, ionic conductivity and specific heat measurements

    DEFF Research Database (Denmark)

    Andersen, Niels Hessel; Clausen, Kurt Nørgaard; Kjems, Jørgen

    1986-01-01

    The ionic disorder in single crystals of the fluorite-type solid solutions Ba1-xLaxF2+x (with x=0.209 and x=0.492) has been studied in the temperature range from room temperature to 800 degrees C by diffuse neutron scattering, ionic conductivity, and specific heat measurements. From the diffuse...... neutron scattering it was found that the disorder was dominated by 222 clusters, which at low temperatures (T>10-10s), in agreement with NMB results which suggest a jump frequency below 75 MHz. The temperatures at which the steepest slopes are found in the loss of correlations and in the conductivity...... coincide at approximately 650 degrees C. At this temperature no clear anomaly is observed in the specific heat. Based on these findings the authors propose a conduction mechanisms where F- ions are moving through the lattice by means of rearrangements of the 222 clusters....

  10. Avoidant personality disorder versus social phobia: the significance of childhood neglect.

    Science.gov (United States)

    Eikenaes, Ingeborg; Egeland, Jens; Hummelen, Benjamin; Wilberg, Theresa

    2015-01-01

    Avoidant personality disorder (AvPD) and social phobia (SP) are common disorders both in the community and in clinical settings. Whether the two disorders represent different severity levels of social anxiety disorder is currently in dispute. The relationship between AvPD and SP is probably more complex than previously assumed. Several environmental, temperamental, and constitutional factors may play a role in the etiology of AvPD and SP. Better knowledge about childhood experiences may shed light on similarities and differences between the two disorders. The aim of this study was to compare self-reported childhood experiences in AvPD and SP patients. This is a cross-sectional multi-site study of 91 adult patients with AvPD and/ or SP. We compared patients with AvPD with and without SP (AvPD group) to patients with SP without AvPD (SP group). The patients were examined using structured diagnostic interviews and self-report measures, including Child Trauma Questionnaire, Parental Bonding Instrument, and Adult Temperament Questionnaire. Both AvPD and SP were associated with negative childhood experiences. AvPD patients reported more severe childhood neglect than patients with SP, most pronounced for physical neglect. The difference between the disorders in neglect remained significant after controlling for temperamental factors and concurrent abuse. The study indicates that childhood neglect is a risk factor for AvPD and may be one contributing factor to phenomenological differences between AvPD and SP.

  11. Sleep disorders and their clinical significance in children with Down syndrome.

    Science.gov (United States)

    Stores, Gregory; Stores, Rebecca

    2013-02-01

    Our aim was to review basic aspects of sleep disorders in children with Down syndrome in the light of present-day findings of such disorders in children in general, including other groups of children with developmental disabilities. A literature search of adverse developmental effects of sleep disturbance, types of sleep disturbance in children with Down syndrome, their aetiology, including possible contributions of physical and psychiatric comorbidities and medication effects, principles of assessment and diagnosis, and treatment issues, was carried out. Sleep disturbance is particularly common in children with developmental disorders including Down syndrome. Although there are just three basic sleep problems (sleeplessness or insomnia, excessive daytime sleepiness, and parasomnias) there are many possible underlying causes (sleep disorders), the nature of which dictates the particular treatment required. In children with Down syndrome, in addition to the same influences in other children, various comorbid physical and psychiatric conditions are capable of disturbing sleep. Possible adverse medication effects also need to be considered. Screening for sleep disorders and their causes should be routine; positive findings call for detailed diagnosis. Management should acknowledge the likely multifactorial aetiology of the sleep disorders in Down syndrome. Successful treatment can be expected to alleviate significantly the difficulties of both child and family. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  12. Genome-wide significant locus for Research Diagnostic Criteria Schizoaffective Disorder Bipolar type.

    Science.gov (United States)

    Green, Elaine K; Di Florio, Arianna; Forty, Liz; Gordon-Smith, Katherine; Grozeva, Detelina; Fraser, Christine; Richards, Alexander L; Moran, Jennifer L; Purcell, Shaun; Sklar, Pamela; Kirov, George; Owen, Michael J; O'Donovan, Michael C; Craddock, Nick; Jones, Lisa; Jones, Ian R

    2017-12-01

    Studies have suggested that Research Diagnostic Criteria for Schizoaffective Disorder Bipolar type (RDC-SABP) might identify a more genetically homogenous subgroup of bipolar disorder. Aiming to identify loci associated with RDC-SABP, we have performed a replication study using independent RDC-SABP cases (n = 144) and controls (n = 6,559), focusing on the 10 loci that reached a p-value bipolar disorder sample. Combining the WTCCC and replication datasets by meta-analysis (combined RDC-SABP, n = 423, controls, n = 9,494), we observed genome-wide significant association at one SNP, rs2352974, located within the intron of the gene TRAIP on chromosome 3p21.31 (p-value, 4.37 × 10 -8 ). This locus did not reach genome-wide significance in bipolar disorder or schizophrenia large Psychiatric Genomic Consortium datasets, suggesting that it may represent a relatively specific genetic risk for the bipolar subtype of schizoaffective disorder. © 2017 Wiley Periodicals, Inc.

  13. The manic phase of Bipolar disorder significantly impairs theory of mind decoding.

    Science.gov (United States)

    Hawken, Emily R; Harkness, Kate L; Lazowski, Lauren K; Summers, David; Khoja, Nida; Gregory, James Gardner; Milev, Roumen

    2016-05-30

    Bipolar disorder is associated with significant deficits in the decoding of others' mental states in comparison to healthy participants. However, differences in theory of mind decoding ability among patients in manic, depressed, and euthymic phases of bipolar disorder is currently unknown. Fifty-nine patients with bipolar I or II disorder (13 manic, 25 depressed, 20 euthymic) completed the "Reading the Mind in the Eyes" Task (Eyes task) and the Animals Task developed to control for non-mentalistic response demands of the Eyes Task. Patients also completed self-report and clinician-rated measures of depression, mania, and anxiety symptoms. Patients in the manic phase were significantly less accurate than those in the depressed and euthymic phases at decoding mental states in the Eyes task, and this effect was strongest for eyes of a positive or neutral valence. Further Eyes task performance was negatively correlated with the symptoms of language/thought disorder, pressured speech, and disorganized thoughts and appearance. These effects held when controlling for accuracy on the Animals task, response times, and relevant demographic and clinical covariates. Results suggest that the state of mania, and particularly psychotic symptoms that may overlap with the schizophrenia spectrum, are most strongly related to social cognitive deficits in bipolar disorder. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. CNTNAP2 Is Significantly Associated With Speech Sound Disorder in the Chinese Han Population.

    Science.gov (United States)

    Zhao, Yun-Jing; Wang, Yue-Ping; Yang, Wen-Zhu; Sun, Hong-Wei; Ma, Hong-Wei; Zhao, Ya-Ru

    2015-11-01

    Speech sound disorder is the most common communication disorder. Some investigations support the possibility that the CNTNAP2 gene might be involved in the pathogenesis of speech-related diseases. To investigate single-nucleotide polymorphisms in the CNTNAP2 gene, 300 unrelated speech sound disorder patients and 200 normal controls were included in the study. Five single-nucleotide polymorphisms were amplified and directly sequenced. Significant differences were found in the genotype (P = .0003) and allele (P = .0056) frequencies of rs2538976 between patients and controls. The excess frequency of the A allele in the patient group remained significant after Bonferroni correction (P = .0280). A significant haplotype association with rs2710102T/+rs17236239A/+2538976A/+2710117A (P = 4.10e-006) was identified. A neighboring single-nucleotide polymorphism, rs10608123, was found in complete linkage disequilibrium with rs2538976, and the genotypes exactly corresponded to each other. The authors propose that these CNTNAP2 variants increase the susceptibility to speech sound disorder. The single-nucleotide polymorphisms rs10608123 and rs2538976 may merge into one single-nucleotide polymorphism. © The Author(s) 2015.

  15. What is the real significance and management of major thyroid disorders in bipolar patients?

    Science.gov (United States)

    Sierra, Pilar; Cámara, Rosa; Tobella, Helena; Livianos, Lorenzo

    2014-01-01

    Thyroid disfunction affects negatively emotional stability and worsens the clinical course of bipolar affective disorder. The main stabilizer used in this illness, lithium carbonate has numerous effects on the physiology of the thyroid, with the most significant being the inhibition of thyroid hormone release that may occur at therapeutic levels. These dysfunctions have also been reported most frequently in bipolar patients not undergoing treatment with lithium, and was not completely explained by the effects of this drug. Apart from the numerous medical complications and mood disturbances, the cognitive or perceptual system may also be affected. In fact, the presence of thyroid disease increases the rates of obsessive compulsive disorder, phobias, panic disorder, major depressive disorder, cyclothymia, or bipolar disorder. In severe cases of hypothyroidism, the clinical symptoms and signs can be similar to a melancholic depression or dementia. It is therefore important to know well all these possible complications in daily clinical practice. This review will cover the main thyroid dysfunctions present in bipolar patients, whether ot not produced by treatment with lithium carbonate, and will provide a series of recommendations for clinical management. Copyright © 2013 SEP y SEPB. Published by Elsevier España. All rights reserved.

  16. Fullerol ionic fluids

    Science.gov (United States)

    Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B.; Georgakilas, Vasilios; Giannelis, Emmanuel P.

    2010-09-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like).

  17. Vapor-liquid phase behavior of a size-asymmetric model of ionic fluids confined in a disordered matrix: The collective-variables-based approach

    Science.gov (United States)

    Patsahan, O. V.; Patsahan, T. M.; Holovko, M. F.

    2018-02-01

    We develop a theory based on the method of collective variables to study the vapor-liquid equilibrium of asymmetric ionic fluids confined in a disordered porous matrix. The approach allows us to formulate the perturbation theory using an extension of the scaled particle theory for a description of a reference system presented as a two-component hard-sphere fluid confined in a hard-sphere matrix. Treating an ionic fluid as a size- and charge-asymmetric primitive model (PM) we derive an explicit expression for the relevant chemical potential of a confined ionic system which takes into account the third-order correlations between ions. Using this expression, the phase diagrams for a size-asymmetric PM are calculated for different matrix porosities as well as for different sizes of matrix and fluid particles. It is observed that general trends of the coexistence curves with the matrix porosity are similar to those of simple fluids under disordered confinement, i.e., the coexistence region gets narrower with a decrease of porosity and, simultaneously, the reduced critical temperature Tc* and the critical density ρi,c * become lower. At the same time, our results suggest that an increase in size asymmetry of oppositely charged ions considerably affects the vapor-liquid diagrams leading to a faster decrease of Tc* and ρi,c * and even to a disappearance of the phase transition, especially for the case of small matrix particles.

  18. Avoidant personality disorder versus social phobia: the significance of childhood neglect.

    Directory of Open Access Journals (Sweden)

    Ingeborg Eikenaes

    Full Text Available Avoidant personality disorder (AvPD and social phobia (SP are common disorders both in the community and in clinical settings. Whether the two disorders represent different severity levels of social anxiety disorder is currently in dispute. The relationship between AvPD and SP is probably more complex than previously assumed. Several environmental, temperamental, and constitutional factors may play a role in the etiology of AvPD and SP. Better knowledge about childhood experiences may shed light on similarities and differences between the two disorders. The aim of this study was to compare self-reported childhood experiences in AvPD and SP patients.This is a cross-sectional multi-site study of 91 adult patients with AvPD and/ or SP. We compared patients with AvPD with and without SP (AvPD group to patients with SP without AvPD (SP group.The patients were examined using structured diagnostic interviews and self-report measures, including Child Trauma Questionnaire, Parental Bonding Instrument, and Adult Temperament Questionnaire.Both AvPD and SP were associated with negative childhood experiences. AvPD patients reported more severe childhood neglect than patients with SP, most pronounced for physical neglect. The difference between the disorders in neglect remained significant after controlling for temperamental factors and concurrent abuse.The study indicates that childhood neglect is a risk factor for AvPD and may be one contributing factor to phenomenological differences between AvPD and SP.

  19. Significant relationship between lifetime alcohol use disorders and suicide attempts in an Australian schizophrenia sample.

    Science.gov (United States)

    McLean, Duncan; Gladman, Beverley; Mowry, Bryan

    2012-02-01

    Suicide and attempted suicide are common in individuals with schizophrenia, and evidence exists for a link between substance use disorders and suicidality in this disorder. However, alcohol has not been consistently implicated. We examined the relationship between substance use disorders and suicide attempts in schizophrenia. We recruited a schizophrenia sample in Australia (n = 821) for genetic analyses. We analysed demographic and clinical variables, including substance use disorders, and their relationship to suicide attempts using generalised equation modelling. A significant association was identified between lifetime alcohol abuse/dependence and suicide attempts (OR = 1.66; 95% CI, 1.23 to 2.24; p = 0.001) after adjustment for potential confounders, but not between cannabis abuse/dependence and suicide attempts, nor between other illicit drug abuse/dependence and suicide attempts. Polysubstance abuse/dependence was also not implicated. These results suggest that the presence of alcohol abuse/dependence may be a risk factor for suicide attempts in individuals with schizophrenia, independent of comorbid substance abuse/dependence.

  20. Learning Ionic

    CERN Document Server

    Ravulavaru, Arvind

    2015-01-01

    This book is intended for those who want to learn how to build hybrid mobile applications using Ionic. It is also ideal for people who want to explore theming for Ionic apps. Prior knowledge of AngularJS is essential to complete this book successfully.

  1. Performance monitoring and error significance in patients with obsessive-compulsive disorder.

    Science.gov (United States)

    Endrass, Tanja; Schuermann, Beate; Kaufmann, Christan; Spielberg, Rüdiger; Kniesche, Rainer; Kathmann, Norbert

    2010-05-01

    Performance monitoring has been consistently found to be overactive in obsessive-compulsive disorder (OCD). The present study examines whether performance monitoring in OCD is adjusted with error significance. Therefore, errors in a flanker task were followed by neutral (standard condition) or punishment feedbacks (punishment condition). In the standard condition patients had significantly larger error-related negativity (ERN) and correct-related negativity (CRN) ampliudes than controls. But, in the punishment condition groups did not differ in ERN and CRN amplitudes. While healthy controls showed an amplitude enhancement between standard and punishment condition, OCD patients showed no variation. In contrast, group differences were not found for the error positivity (Pe): both groups had larger Pe amplitudes in the punishment condition. Results confirm earlier findings of overactive error monitoring in OCD. The absence of a variation with error significance might indicate that OCD patients are unable to down-regulate their monitoring activity according to external requirements. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity

    Science.gov (United States)

    Qin, Shiying; Zhu, Xiaohong; Jiang, Yue; Ling, Ming'en; Hu, Zhiwei; Zhu, Jiliang

    2018-03-01

    A highly self-textured Ga2O3-substituted Li7La3Zr2O12 (LLZO-Ga) solid electrolyte with a nominal composition of Li6.55Ga0.15La3Zr2O12 is obtained by a simple and low-cost solid-state reaction technique, requiring no seed crystals to achieve grain orientation. The as-prepared self-textured LLZO-Ga shows a strong (420) preferred orientation with a high Lotgering factor of 0.91. Coherently, a terrace-shaped microstructure consisting of many parallel layers, indicating a two-dimensional-like growth mode, is clearly observed in the self-textured sample. As a result, the highly self-textured garnet-type lithium-ion conducting solid electrolyte of LLZO-Ga exhibits an extremely high ionic conductivity, reaching a state-of-the-art level of 2.06 × 10-3 S cm-1 at room temperature (25 °C) and thus shedding light on an important strategy for improving the structure and ionic conductivity of solid electrolytes.

  3. Body Dysmorphic Disorder and Other Clinically Significant Body Image Concerns in Adolescent Psychiatric Inpatients: Prevalence and Clinical Characteristics

    Science.gov (United States)

    Dyl, Jennifer; Kittler, Jennifer; Phillips, Katharine A.; Hunt, Jeffrey I.

    2006-01-01

    Background: This study assessed prevalence and clinical correlates of body dysmorphic disorder (BDD), eating disorders (ED), and other clinically significant body image concerns in 208 consecutively admitted adolescent inpatients. It was hypothesized that adolescents with BDD would have higher levels of depression, anxiety, and suicidality.…

  4. Significance of personality disorders in the face of drop-outs from psychiatric hospitalizations. The case of selected psychiatric units.

    Science.gov (United States)

    Biała, Maja; Kiejna, Andrzej

    2017-06-18

    The World Health Organization's estimations indicate that about 50% of patients in well-developed countries may not adhere to long-term therapies. In the field of psychiatry, drop-outs from psychiatric treatment are particularly important. Personality disorders are a significant part of this sphere. The aim of this research was to empirically verify the hypothesis regarding the relation between comorbid personality disorders and drop-outs from treatment among patients of psychiatric wards. This study was a prospective cohort study. 110 patients, hospitalized in 3 different psychiatric wards, were included. Personality disorders were assessed with the Structured Clinical Interview For DSM-IV Personality Disorders (SCID-II). The research was financed by the Polish National Science Center (DEC-2011/01/N/NZ5/05364). The response rate was 89.1%. 72.56% of patients suffered from personality disorders (SCID-II) (among them the most prevalent were: personality disorder - not otherwise specified - 40.7% and borderline personality disorder - 12.38%; 22.95% of patients dropped out from treatment). However, occurrence of personality disorders was not relevant for those drop-outs. On the other hand, relationships at the level of certain criteria of borderline personality disorders and passive-aggressive personality have been revealed. These relationships became stronger when considered from the perspective of differences in the organization of treatment at individual wards. Some personality disorders may play an important role in drop-outs from psychiatric treatment. Presented results require further research.

  5. Focus Article: Oscillatory and long-range monotonic exponential decays of electrostatic interactions in ionic liquids and other electrolytes: The significance of dielectric permittivity and renormalized charges

    Science.gov (United States)

    Kjellander, Roland

    2018-05-01

    A unified treatment of oscillatory and monotonic exponential decays of interactions in electrolytes is displayed, which highlights the role of dielectric response of the fluid in terms of renormalized (effective) dielectric permittivity and charges. An exact, but physically transparent statistical mechanical formalism is thereby used, which is presented in a systematic, pedagogical manner. Both the oscillatory and monotonic behaviors are given by an equation for the decay length of screened electrostatic interactions that is very similar to the classical expression for the Debye length. The renormalized dielectric permittivities, which have similar roles for electrolytes as the dielectric constant has for pure polar fluids, consist in general of several entities with different physical meanings. They are connected to dielectric response of the fluid on the same length scale as the decay length of the screened interactions. Only in cases where the decay length is very long, these permittivities correspond approximately to a dielectric response in the long-wavelength limit, like the dielectric constant for polar fluids. Experimentally observed long-range exponentially decaying surface forces are analyzed as well as the oscillatory forces observed for short to intermediate surface separations. Both occur in some ionic liquids and in concentrated as well as very dilute electrolyte solutions. The coexisting modes of decay are in general determined by the bulk properties of the fluid and not by the solvation of the surfaces; in the present cases, they are given by the behavior of the screened Coulomb interaction of the bulk fluid. The surface-fluid interactions influence the amplitudes and signs or phases of the different modes of the decay, but not their decay lengths and wavelengths. The similarities between some ionic liquids and very dilute electrolyte solutions as regards both the long-range monotonic and the oscillatory decays are analyzed.

  6. Ionic Liquids in Tribology

    Directory of Open Access Journals (Sweden)

    Ichiro Minami

    2009-06-01

    Full Text Available Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  7. Ionic liquids in tribology.

    Science.gov (United States)

    Minami, Ichiro

    2009-06-24

    Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  8. High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary syndrome.

    Science.gov (United States)

    Lai, Hao; Jia, Xiao; Yu, Qiuxiao; Zhang, Chenglu; Qiao, Jie; Guan, Youfei; Kang, Jihong

    2014-11-01

    Polycystic ovary syndrome (PCOS) is the most common female endocrinopathy associated with both reproductive and metabolic disorders. Dehydroepiandrosterone (DHEA) is currently used to induce a PCOS mouse model. High-fat diet (HFD) has been shown to cause obesity and infertility in female mice. The possible effect of an HFD on the phenotype of DHEA-induced PCOS mice is unknown. The aim of the present study was to investigate both reproductive and metabolic features of DHEA-induced PCOS mice fed a normal chow or a 60% HFD. Prepubertal C57BL/6 mice (age 25 days) on the normal chow or an HFD were injected (s.c.) daily with the vehicle sesame oil or DHEA for 20 consecutive days. At the end of the experiment, both reproductive and metabolic characteristics were assessed. Our data show that an HFD did not affect the reproductive phenotype of DHEA-treated mice. The treatment of HFD, however, caused significant metabolic alterations in DHEA-treated mice, including obesity, glucose intolerance, dyslipidemia, and pronounced liver steatosis. These findings suggest that HFD induces distinct metabolic features in DHEA-induced PCOS mice. The combined DHEA and HFD treatment may thus serve as a means of studying the mechanisms involved in metabolic derangements of this syndrome, particularly in the high prevalence of hepatic steatosis in women with PCOS. © 2014 by the Society for the Study of Reproduction, Inc.

  9. The Physiological/Pathophysiological Significance of Vitamin D in Cancer, Cardiovascular Disorders and Beyond.

    Science.gov (United States)

    AlMatar, Manaf; AlMandeal, Husam; Makky, Essam A; Kayar, Begum; Yarar, Emel; Var, Isıl; Koksal, Fatih

    2017-01-01

    Vitamin D, a molecular precursor of the potent steroid hormone calcitriol, has crucial functions and roles in physiology and pathophysiology. Tellingly, calcitriol has been shown to regulate various cellular signalling networks and cascades that have crucial role in cancer biology and diagnostics. Mounting lines of evidences from previous clinical and preclinical investigations indicate that the deficiency of vitamin D may contribute to the carcinogenesis risk. Concomitantly, recent reports suggested that significant reduction in the cancer occurrence and progression is more likely to appear after vitamin D supplementation. Furthermore, a pivotal role functioned by vitamin D in cardiovascular physiology indicates that the deficiency of vitamin D is significantly correlated with enhanced prevalence of stroke, hypertension and myocardial infarction. Notably, vitamin D status is more likely to be used as a lifestyle biomarker, since poor and unhealthy lifestyles are correlated with the deficiency of vitamin D, a feature which may result in cardiovascular complications. Moreover, recent reports revealed that the effect of vitamin D is to cover not only cardiovascular system but also skeletal system. Herein, we are highlighting the recent knowledge of vitamin D roles and functions with respect to pathophysiological disorders such as cancer, cardiovascular diseases, rheumatoid arthritis (RA) and debate the potential avails of vitamin D on slowing cancer, cardiovascular disease and RA progression. The findings of this review confirm that the importance of vitamin D metabolites or analogues which can provide a helpful platform to target some kinds of cancer, particularly when used in combination with existing therapies. Moreover, the correlation between vitamin D deficiencies with cardiovascular diseases and rheumatoid arthritis (RA) progression might suggest a pivotal role of vitamin D in either initiation or progression of these diseases. Copyright© Bentham Science

  10. Examining the Role of Antisocial Personality Disorder in Intimate Partner Violence Among Substance Use Disorder Treatment Seekers With Clinically Significant Trauma Histories.

    Science.gov (United States)

    Dykstra, Rita E; Schumacher, Julie A; Mota, Natalie; Coffey, Scott F

    2015-08-01

    This study examined the associations among posttraumatic stress disorder (PTSD) symptom severity, antisocial personality disorder (ASPD) diagnosis, and intimate partner violence (IPV) in a sample of 145 substance abuse treatment-seeking men and women with positive trauma histories; sex was examined as a moderator. ASPD diagnosis significantly predicted both verbal and physical aggression; sex moderated the association between ASPD diagnosis and physical violence. PTSD symptom severity significantly predicted engaging in verbal, but not physical, aggression. Overall, these results suggest that an ASPD diagnosis may be an important risk factor for engaging in IPV among women seeking treatment for a substance use disorder. © The Author(s) 2015.

  11. Quantitative Linkage for Autism Spectrum Disorders Symptoms in Attention-Deficit/Hyperactivity Disorder : Significant Locus on Chromosome 7q11

    NARCIS (Netherlands)

    Nijmeijer, Judith; Arias-Vasquez, Alejandro; Rommelse, Nanda N. J.; Altink, Marieke E.; Buschgens, Cathelijne J. M.; Fliers, Ellen A.; Franke, Barbara; Minderaa, Rudolf; Sergeant, Joseph A.; Buitelaar, Jan K.; Hoekstra, Pieter J.; Hartman, Catharina A.

    We studied 261 ADHD probands and 354 of their siblings to assess quantitative trait loci associated with autism spectrum disorder symptoms (as measured by the Children's Social Behavior Questionnaire (CSBQ)) using a genome-wide linkage approach, followed by locus-wide association analysis. A

  12. The MRI features of placental adhesion disorder and their diagnostic significance: systematic review

    International Nuclear Information System (INIS)

    Rahaim, N.S.A.; Whitby, E.H.

    2015-01-01

    Aim: To identify the most frequently used MRI features in the diagnosis of placenta adhesion disorder (PAD) in the antenatal period and their significance. Materials and methods: The online databases Medline via PubMed and Ovid, Google Scholar, and Scopus were searched using the keywords and subject headings MRI*, magnetic resonance imaging*, prenatal diagnosis and placenta accreta*, morbidly adherent placenta* or placenta. Cases where MRI was carried out at/after 20 weeks gestation with detailed information available in relation to criteria and sequences used were included in the review. Exclusion criteria were case report study and studies that used intravenous contrast agents. Information regards sensitivity and specificity for each feature was taken, or calculated where possible, from the papers. Any new features were identified. The overall contribution of each feature to the diagnostic process was noted. Results: Six hundred and fourteen potentially relevant articles were identified of which only 11 met the inclusion criteria. The commonest MRI criteria used were T2 dark intraplacental bands, heterogeneity of placenta, abnormal uterine bulging, and disruption of the uteroplacental zone. A newly described criterion is disorganised vasculature of placenta. MRI sensitivity and specificity varied between 75–100% and 65–100% respectively. Conclusion: MRI diagnosis of PAD relies on unstandardised criteria of diagnosis that enable systematic image interpretation of invasion status in all studies and enable the reproducibility. However, it is still has a high diagnostic accuracy and frequently aids in surgical planning, emphasising its value in supporting ultrasound. Most studies are of a small sample size. Additional multicentre studies are recommended to enhance the generalisability of the findings and asses the value of the newly described criteria

  13. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil

    2010-01-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like). © 2010 The Royal Society of Chemistry.

  14. Significance of borderline personality-spectrum symptoms among adolescents with bipolar disorder.

    Science.gov (United States)

    Fonseka, Trehani M; Swampillai, Brenda; Timmins, Vanessa; Scavone, Antonette; Mitchell, Rachel; Collinger, Katelyn A; Goldstein, Benjamin I

    2015-01-01

    Little is known regarding correlates of borderline personality-spectrum symptoms (BPSS) among adolescents with bipolar disorder (BP). Participants were 90 adolescents, 13-19 years of age, who fulfilled DSM-IV-TR criteria for BP using semi-structured diagnostic interviews. BPSS status was ascertained using the Life Problems Inventory which assessed identity confusion, interpersonal problems, impulsivity, and emotional lability. Analyses compared adolescents with "high" versus "low" BPSS based on a median split. Participants with high, relative to low, BPSS were younger, and had greater current and past depressive episode severity, greater current hypo/manic episode severity, younger age of depression onset, and reduced global functioning. High BPSS participants were more likely to have BP-II, and had higher rates of social phobia, generalized anxiety disorder, conduct disorder, oppositional defiant disorder, homicidal ideation, assault of others, non-suicidal self-injury, suicidal ideation, and physical abuse. Despite greater illness burden, high BPSS participants reported lower rates of lithium use. The most robust independent predictors of high BPSS, identified in multivariate analyses, included lifetime social phobia, non-suicidal self-injury, reduced global functioning, and conduct and/or oppositional defiant disorder. The study design is cross-sectional and cannot determine causality. High BPSS were associated with greater mood symptom burden and functional impairment. Presence of high BPSS among BP adolescents may suggest the need to modify clinical monitoring and treatment practices. Future prospective studies are needed to examine the direction of observed associations, the effect of treatment on BPSS, and the effect of BPSS as a moderator or predictor of treatment response. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. CLINICAL SIGNIFICANCE OF IMMUNE IMBALANCE AND AUTOIMMUNITY IN NERVOUS SYSTEM DISORDERS (NSDs

    Directory of Open Access Journals (Sweden)

    Vijendra K. SINGH

    2015-11-01

    Full Text Available In recent years, the role of immune imbalance and autoimmunity has been experimentally demonstrated in nervous system disorders (NSDs that include Alzheimer’s disease, autism, obsessive-compulsive disorder (OCD, tics and Tourette’s syndrome, schizophrenia, and some other NSDs. And yet, these NSDs are never counted as autoimmune diseases. Deriving from the rapidly expanding knowledge of neuro-immunology and auto-immune diseases, for example multiple scle-rosis (MS, the author of this mini-review strongly recommends that these NSDs should be included while tallying the number of autoimmune diseases. This effort will help create an updated global database of all autoimmune diseases as well as it should help treat millions of patients who are suffering from debilitating NSDs for which there is no known cure or treatment currently.

  16. The presence, predictive utility, and clinical significance of body dysmorphic symptoms in women with eating disorders

    Science.gov (United States)

    2013-01-01

    Background Both eating disorders (EDs) and body dysmorphic disorder (BDD) are disorders of body image. This study aimed to assess the presence, predictive utility, and impact of clinical features commonly associated with BDD in women with EDs. Methods Participants recruited from two non-clinical cohorts of women, symptomatic and asymptomatic of EDs, completed a survey on ED (EDE-Q) and BDD (BDDE-SR) psychopathology, psychological distress (K-10), and quality of life (SF-12). Results A strong correlation was observed between the total BDDE-SR and the global EDE-Q scores (r = 0.79, p 0.05) measured appearance checking, reassurance-seeking, camouflaging, comparison-making, and social avoidance. In addition to these behaviors, inspection of sensitivity (Se) and specificity (Sp) revealed that BDDE-SR items measuring preoccupation and dissatisfaction with appearance were most predictive of ED cases (Se and Sp > 0.60). Higher total BDDE-SR scores were associated with greater distress on the K-10 and poorer quality of life on the SF-12 (all p < 0.01). Conclusions Clinical features central to the model of BDD are common in, predictive of, and associated with impairment in women with EDs. Practice implications are that these features be included in the assessment and treatment of EDs. PMID:24999401

  17. Significance, Nature, and Direction of the Association Between Child Sexual Abuse and Conduct Disorder: A Systematic Review.

    Science.gov (United States)

    Maniglio, Roberto

    2015-07-01

    To elucidate the significance, nature, and direction of the potential relationship between child sexual abuse and conduct disorder, all the pertinent studies were reviewed. Ten databases were searched. Blind assessments of study eligibility and quality were performed by two independent researchers. Thirty-six studies including 185,358 participants and meeting minimum quality criteria that were enough to ensure objectivity and to not invalidate results were analyzed. Across the majority of studies, conduct disorder was significantly and directly related to child sexual abuse, especially repeated sexual molestation and abuse involving penetration, even after controlling for various sociodemographic, family, and clinical variables. The association between child sexual abuse and conduct disorder was not confounded by other risk factors, such as gender, socioeconomic status, school achievement, substance problems, physical abuse, parental antisocial behavior or substance problems, parent-child relationships, and family disruption, conflict, or violence. Evidence for a significant interactive effect between child sexual abuse and monoamine oxidase A gene on conduct disorder was scant. Early sexual abuse might predispose to the subsequent onset of conduct disorder which, in turn, may lead to further sexual victimization through association with sexually abusive peers or involvement in dangerous situations or sexual survival strategies. © The Author(s) 2014.

  18. Immune disorders in sepsis and their treatment as a significant problem of modern intensive care

    Directory of Open Access Journals (Sweden)

    Lidia Łysenko

    2017-08-01

    Full Text Available Despite the great advances in the treatment of sepsis over the past 20 years, sepsis remains the main cause of death in intensive care units. In the context of new possibilities of treating sepsis, a comprehensive response of the immune system to the infection, immunosuppression, in particular, has in recent years gained considerable interest. There is vast evidence pointing to the correlation between comorbid immunosuppression and an increased risk of recurrent infections and death. Immune disorders may impact the clinical course of sepsis. This applies in particular to patients with deteriorated clinical response to infections. They usually suffer from comorbidities and conditions accompanied by immunosuppression. Sepsis disrupts innate and adaptive immunity. The key to diagnose the immune disorders in sepsis and undertake targeted immunomodulatory therapy is to define the right biomarkers and laboratory methods, which permit prompt “bedside” diagnosis. Flow cytometry is a laboratory tool that meets these criteria. Two therapeutic methods are currently being suggested to restore the immune homeostasis of sepsis patients. Excessive inflammatory response may be controlled through extracorporeal blood purification techniques, in large part derived from renal replacement therapy. These are such techniques as high-volume haemofiltration, cascade haemofiltration, plasma exchange, coupled plasma filtration and adsorption, high-absorption membranes, high cut-off membranes. The main task of theses techniques is the selective elimination of middle molecular weight molecules, such as cytokines. Pharmacotherapy with the use of such immunostimulants as interleukin 7, granulocyte-macrophage colony-stimulating factor, interferon gamma, PD-1, PD-L1 and CTLA-4 antagonists, intravenous immunoglobulins may help fight immunosuppressive immune disorders.

  19. Immune disorders in sepsis and their treatment as a significant problem of modern intensive care.

    Science.gov (United States)

    Łysenko, Lidia; Leśnik, Patrycja; Nelke, Kamil; Gerber, Hanna

    2017-08-22

    Despite the great advances in the treatment of sepsis over the past 20 years, sepsis remains the main cause of death in intensive care units. In the context of new possibilities of treating sepsis, a comprehensive response of the immune system to the infection, immunosuppression, in particular, has in recent years gained considerable interest. There is vast evidence pointing to the correlation between comorbid immunosuppression and an increased risk of recurrent infections and death. Immune disorders may impact the clinical course of sepsis. This applies in particular to patients with deteriorated clinical response to infections. They usually suffer from comorbidities and conditions accompanied by immunosuppression. Sepsis disrupts innate and adaptive immunity. The key to diagnose the immune disorders in sepsis and undertake targeted immunomodulatory therapy is to define the right biomarkers and laboratory methods, which permit prompt "bedside" diagnosis. Flow cytometry is a laboratory tool that meets these criteria. Two therapeutic methods are currently being suggested to restore the immune homeostasis of sepsis patients. Excessive inflammatory response may be controlled through extracorporeal blood purification techniques, in large part derived from renal replacement therapy. These are such techniques as high-volume haemofiltration, cascade haemofiltration, plasma exchange, coupled plasma filtration and adsorption, high-absorption membranes, high cut-off membranes. The main task of theses techniques is the selective elimination of middle molecular weight molecules, such as cytokines. Pharmacotherapy with the use of such immunostimulants as interleukin 7, granulocyte-macrophage colony-stimulating factor, interferon gamma, PD-1, PD-L1 and CTLA-4 antagonists, intravenous immunoglobulins may help fight immunosuppressive immune disorders.

  20. Clinical significance of mobile health assessed sleep duration and variability in bipolar disorder.

    Science.gov (United States)

    Kaufmann, Christopher N; Gershon, Anda; Eyler, Lisa T; Depp, Colin A

    2016-10-01

    Sleep disturbances are prevalent, persistent, and impairing features of bipolar disorder. However, the near-term and cumulative impact of the severity and variability of sleep disturbances on symptoms and functioning remains unclear. We examined self-reported daily sleep duration and variability in relation to mood symptoms, medication adherence, cognitive functioning, and concurrent daily affect. Forty-one outpatients diagnosed with bipolar disorder were asked to provide daily reports of sleep duration and affect collected via ecological momentary assessment with smartphones over eleven weeks. Measures of depressive and manic symptoms, medication adherence, and cognitive function were collected at baseline and concurrent assessment of affect were collected daily. Analyses examined whether sleep duration or variability were associated with baseline measures and changes in same-day or next-day affect. Greater sleep duration variability (but not average sleep duration) was associated with greater depressive and manic symptom severity, and lower medication adherence at baseline, and with lower and more variable ratings of positive affect and higher ratings of negative affect. Sleep durations shorter than 7-8 h were associated with lower same-day ratings of positive and higher same-day ratings of negative affect, however this did not extend to next-day affect. Greater cumulative day-to-day sleep duration variability, but not average sleep duration, was related to more severe mood symptoms, lower self-reported medication adherence and higher levels of negative affect. Bouts of short- or long-duration sleep had transient impact on affect. Day-to-day sleep variability may be important to incorporate into clinical assessment of sleep disturbances in bipolar disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. [Significance of roentgen cinematography in the diagnosis of functional disorders of the pharyngo-esophageal junction].

    Science.gov (United States)

    Augustiny, N; wolfensberger, M; Brühlmann, W

    1984-12-01

    Dysfunction of the pharyngo-oesophageal sphincter may escape detection by clinical examination, endoscopy, and routine barium studies. Cineradiographic examination of 300 patients with unexplained dysphagia revealed 57 cases of pharyngo-oesophageal dysfunction. In 25 cases an underlying disorder could be found, and 32 cases were considered idiopathic. Radiologically 3 types of dysfunction may be distinguished, namely late opening, incomplete relaxation, and early contraction of the pharyngo-oesophageal sphincter. Cineradiography was found to be an easy and reliable method of detecting pharyngo-oesophageal sphincter dysfunction.

  2. Pathophysiological Significance of Dermatan Sulfate Proteoglycans Revealed by Human Genetic Disorders

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2017-03-01

    Full Text Available The indispensable roles of dermatan sulfate-proteoglycans (DS-PGs have been demonstrated in various biological events including construction of the extracellular matrix and cell signaling through interactions with collagen and transforming growth factor-β, respectively. Defects in the core proteins of DS-PGs such as decorin and biglycan cause congenital stromal dystrophy of the cornea, spondyloepimetaphyseal dysplasia, and Meester-Loeys syndrome. Furthermore, mutations in human genes encoding the glycosyltransferases, epimerases, and sulfotransferases responsible for the biosynthesis of DS chains cause connective tissue disorders including Ehlers-Danlos syndrome and spondyloepimetaphyseal dysplasia with joint laxity characterized by skin hyperextensibility, joint hypermobility, and tissue fragility, and by severe skeletal disorders such as kyphoscoliosis, short trunk, dislocation, and joint laxity. Glycobiological approaches revealed that mutations in DS-biosynthetic enzymes cause reductions in enzymatic activities and in the amount of synthesized DS and also disrupt the formation of collagen bundles. This review focused on the growing number of glycobiological studies on recently reported genetic diseases caused by defects in the biosynthesis of DS and DS-PGs.

  3. Clinical Significance of REM Sleep Behavior Disorders and Other Non-motor Symptoms of Parkinsonism

    Institute of Scientific and Technical Information of China (English)

    Hong Jin; Jin-Ru Zhang; Yun Shen; Chun-Feng Liu

    2017-01-01

    Rapid eye movement sleep behavior disorder (RBD) is one of the most common non-motor symptoms of parkinsonism,and it may serve as a prodromal marker of neurodegenerative disease.The mechanism underlying RBD is unclear.Several prospective studies have reported that specific non-motor symptoms predict a conversion risk of developing a neurodegenerative disease,including olfactory dysfunction,abnormal color vision,autonomic dysfunction,excessive daytime sleepiness,depression,and cognitive impairment.Parkinson's disease (PD) with RBD exhibits clinical heterogeneity with respect to motor and non-motor symptoms compared with PD without RBD.In this review,we describe the main clinical and pathogenic features of RBD,focusing on its association with other non-motor symptoms of parkinsonism.

  4. Ionic thermometers

    International Nuclear Information System (INIS)

    Strnad, M.

    1975-01-01

    An original method of temperature measurement based on conductivity changes near the phase transition point of ionic compounds and suitable for the range from 200 to 700 0 C according to the thermometric compound used, is given. By choosing between two approaches it is posible to evaluate either a discrete value of temperature or continuous measurement in a range to about 50 0 C below the phase transition point of thermometric compounds. The extreme nonlinearity of conductivity of the chosen group of ionic crystals used as well as the technical applications developed in the laboratories have not previously been published. The aim of the research is the application of this measuring method for temperature indication in nuclear reactors. Preliminary tests in radiation fields in an experimental reactor are yielding a real hope in this direction. (author)

  5. Ionic polarization

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1992-01-01

    Ferroelectricity occurs in many different kinds of materials. Many of the technologically important solids, which are ferroelectric, can be classified as ionic. Any microscopic theory of ferroelectricity must contain a description of local polarization forces. We have collaborated in the development of a theory of ionic polarization which is quite successful. Its basic assumption is that the polarization is derived from the properties of the individual ions. We have applied this theory successfully to diverse subjects as linear and nonlinear optical response, phonon dispersion, and piezoelectricity. We have developed numerical methods using the local Density approximation to calculate the multipole polarizabilities of ions when subject to various fields. We have also developed methods of calculating the nonlinear hyperpolarizability, and showed that it can be used to explain light scattering experiments. This paper elaborates on this polarization theory

  6. Hysteria in ancient civilisations: A neurological review: Possible significance for the modern disorder.

    Science.gov (United States)

    Reynolds, Edward H

    2018-05-15

    The word hysteria originated in the Corpus Hippocraticum (c420 BCE) as a natural explanation for a variety of diseases in women linked in the Greco-Roman mind to an animate or inanimate womb, but which in the last five centuries has evolved to describe an elusive disorder of brain ± mind in men and women, currently referred to by neurologists as "functional neurological disorder". The Babylonians, Assyrians and Egyptians had no knowledge of brain or psychological function. Babylonian and Assyrian descriptions of disease and behaviour include only rare examples suggestive of modern hysteria. An earlier suggestion that the Greek concept of hysteria was transmitted from Egypt is not supported by recent evidence. The Greco-Roman civilisations had some knowledge of neuroanatomy, but little of nervous system function, conceived in terms of humors. The examples cited here suggestive of modern hysteria are relatively infrequent and fragmentary. The most plausible are attempts to separate the "sacred disease" from other causes of loss of consciousness. The great achievement of Greco-Roman medicine was in introducing natural causation, including causation linked to the womb, rather than gods or evil spirits. Nevertheless medicine, magic and religion have remained intertwined to varying degrees in all cultures up to the present time, despite the growth of modern scientific medicine. The study of hysteria in ancient civilisations adds interesting insight into the evolution of thinking about brain, psyche, mind and self. Babylonian and Egyptian medical and behavioural descriptions are based on observation. Greek and Roman accounts include some subjective aspects, probably linked to early attempts to understand identity, the psyche, intellectual and emotional functions. The great philosophical debate whether the latter resided in the head/brain (Plato) or the heart (Aristotle) has only been settled in the last few centuries, during which hysteria also became linked to

  7. Study on the measurement of serum thymidine kinase and its clinical significance in hematological neoplastic disorders

    Energy Technology Data Exchange (ETDEWEB)

    Torizumi, Kazutami; Aibata, Hirofumi; Yamada, Ryusaku; Shimizu, Eiji; Okamoto, Yukiharu; Tsujimoto, Masato; Tsuda, Tadaaki; Ota, Kiichiro

    1988-06-01

    A 'Prolifigen TK-REA' kit for measuring serum thymidine kinase (TK) was fundamentally and clinically evaluated. Laboratory findings for recovery, dilution, and reproducibility were satisfactory. There was no correlation between serum TK activity and serum lactic dehydrogenase, carcinoembryonic antigen, or ..cap alpha..-fetoprotein. The serum concentration of TK in normal volunteers ranged from 1.6 to 6.5 U/L. It was extremely high for chronic myeloid leukemia (CML) and acute myeloid leukemia (AML), as compared to the normal value. In the AML group, higher incidence of blasts in peripheral blood tended to be associated with higher serum concentration of TK. A similar tendency was seen in the case of acute lymphocytic leukemia (ALL) and myelodysplasia syndrome (MDS). A positive correlation between serum TK activity and the absolute counts of myeloblasts in peripheral blood existed in CML and AML patients. Since patients with hematological neoplastic disorders, who have abnormality in DNA metabolism, tended to have higher serum TK activity than did normal volunteers, serum TK activity may have a potential marker for abnormal DNA metabolism. (Namekawa, K.).

  8. The significance of anti-DFS70 antibodies in the diagnosis of autoimmune disorders

    Directory of Open Access Journals (Sweden)

    Barbara Nieradko-Iwanicka

    2017-06-01

    Full Text Available Background . Anti-DFS70 antibodies are a subgroup of antinuclear antibodies (ANA. They are connected with the dense fine speckled autoantigen of 70 kD, known as the lens epithelium-derived growth factor p75. Objectives. The objective of the review is to present the role of anti-DFS70 antibodies in the diagnosis of autoimmune diseases on the basis of recent publications. Material and methods . The authors searched for articles in the Pubmed database using the key words: anti-DFS70 antibodies, systemic autoimmune rheumatic diseases and autoimmune disorders. Results . Anti-DFS70 antibodies can be detected in eye diseases, atopic diseases, alopecia areata, fibromyalgia, asthma, chronic fatigue syndrome, tumors, Hashimoto’s disease, Graves’ disease, Behcet’s disease, inflammatory bowel diseases, neoplasms and in infectious diseases. These antibodies are sometimes detected in patients with ANA-associated rheumatic diseases (AARD . Up to 20% of serum samples from healthy individuals (HI are ANA-positive. This is probably due to the presence of monospecific anti-DFS70 antibodies. Monospecific anti-DFS70 antibodies are not associated with AARD , but mixed anti-DFS70 can be found in AARD . Conclusions . Family physicians usually do not order ANA, extractable nuclear antigens (ENA or anti-DFS70 antibodies, but they should be aware that anti-DFS70 antibodies are biomarkers that can discriminate AARD from non-AARD , save patients from unnecessary, potentially toxic treatment and save finances typically spent on retesting and visits to specialists.

  9. [The pathogenetic and clinical significance of disorders in hemostatic homeostasis in diabetics].

    Science.gov (United States)

    Lapchyns'ka, I I; Bielits'ka, H O; Kovalenko, S O

    1997-01-01

    DM patients who do not present with clinical manifestations of nephropathy exhibited significant reduction of urine fibrinolytic activity which is regarded as suggesting a preclinical stage of renal lesion in DM as well as hyperaggregation of platelets, enhanced activity of coagulative link of hemostasis and changes of different directions in the system of fibrinolysis. Among coagulologic methods, of most informative value is the turbidimetric method. In DM and low tolerability to glucosa, there is an increased incidence of gastroduodenal abnormalities, ulcer disease included, which fact warrants a gastroenterologic evaluation to be done in this patient population prior to prescribing anticoagulants.

  10. Reducing Eating Disorder Onset in a Very High Risk Sample with Significant Comorbid Depression: A Randomized Controlled Trial

    Science.gov (United States)

    Taylor, C. Barr; Kass, Andrea E.; Trockel, Mickey; Cunning, Darby; Weisman, Hannah; Bailey, Jakki; Sinton, Meghan; Aspen, Vandana; Schecthman, Kenneth; Jacobi, Corinna; Wilfley, Denise E.

    2015-01-01

    Objective Eating disorders (EDs) are serious problems among college-age women and may be preventable. An indicated on-line eating disorder (ED) intervention, designed to reduce ED and comorbid pathology, was evaluated. Method 206 women (M age = 20 ± 1.8 years; 51% White/Caucasian, 11% African American, 10% Hispanic, 21% Asian/Asian American, 7% other) at very high risk for ED onset (i.e., with high weight/shape concerns plus a history of being teased, current or lifetime depression, and/or non-clinical levels of compensatory behaviors) were randomized to a 10-week, Internet-based, cognitive-behavioral intervention or wait-list control. Assessments included the Eating Disorder Examination (EDE to assess ED onset), EDE-Questionnaire, Structured Clinical Interview for DSM Disorders, and Beck Depression Inventory-II. Results ED attitudes and behaviors improved more in the intervention than control group (p = 0.02, d = 0.31); although ED onset rate was 27% lower, this difference was not significant (p = 0.28, NNT = 15). In the subgroup with highest shape concerns, ED onset rate was significantly lower in the intervention than control group (20% versus 42%, p = 0.025, NNT = 5). For the 27 individuals with depression at baseline, depressive symptomatology improved more in the intervention than control group (p = 0.016, d = 0.96); although ED onset rate was lower in the intervention than control group, this difference was not significant (25% versus 57%, NNT = 4). Conclusions An inexpensive, easily disseminated intervention might reduce ED onset among those at highest risk. Low adoption rates need to be addressed in future research. PMID:26795936

  11. Reducing eating disorder onset in a very high risk sample with significant comorbid depression: A randomized controlled trial.

    Science.gov (United States)

    Taylor, C Barr; Kass, Andrea E; Trockel, Mickey; Cunning, Darby; Weisman, Hannah; Bailey, Jakki; Sinton, Meghan; Aspen, Vandana; Schecthman, Kenneth; Jacobi, Corinna; Wilfley, Denise E

    2016-05-01

    Eating disorders (EDs) are serious problems among college-age women and may be preventable. An indicated online eating disorder (ED) intervention, designed to reduce ED and comorbid pathology, was evaluated. 206 women (M age = 20 ± 1.8 years; 51% White/Caucasian, 11% African American, 10% Hispanic, 21% Asian/Asian American, 7% other) at very high risk for ED onset (i.e., with high weight/shape concerns plus a history of being teased, current or lifetime depression, and/or nonclinical levels of compensatory behaviors) were randomized to a 10-week, Internet-based, cognitive-behavioral intervention or waitlist control. Assessments included the Eating Disorder Examination (EDE, to assess ED onset), EDE-Questionnaire, Structured Clinical Interview for DSM Disorders, and Beck Depression Inventory-II. ED attitudes and behaviors improved more in the intervention than control group (p = .02, d = 0.31); although ED onset rate was 27% lower, this difference was not significant (p = .28, NNT = 15). In the subgroup with highest shape concerns, ED onset rate was significantly lower in the intervention than control group (20% vs. 42%, p = .025, NNT = 5). For the 27 individuals with depression at baseline, depressive symptomatology improved more in the intervention than control group (p = .016, d = 0.96); although ED onset rate was lower in the intervention than control group, this difference was not significant (25% vs. 57%, NNT = 4). An inexpensive, easily disseminated intervention might reduce ED onset among those at highest risk. Low adoption rates need to be addressed in future research. (c) 2016 APA, all rights reserved).

  12. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder.

    LENUS (Irish Health Repository)

    Williams, H J

    2011-04-01

    A recent genome-wide association study (GWAS) reported evidence for association between rs1344706 within ZNF804A (encoding zinc-finger protein 804A) and schizophrenia (P=1.61 × 10(-7)), and stronger evidence when the phenotype was broadened to include bipolar disorder (P=9.96 × 10(-9)). In this study we provide additional evidence for association through meta-analysis of a larger data set (schizophrenia\\/schizoaffective disorder N=18 945, schizophrenia plus bipolar disorder N=21 274 and controls N=38 675). We also sought to better localize the association signal using a combination of de novo polymorphism discovery in exons, pooled de novo polymorphism discovery spanning the genomic sequence of the locus and high-density linkage disequilibrium (LD) mapping. The meta-analysis provided evidence for association between rs1344706 that surpasses widely accepted benchmarks of significance by several orders of magnitude for both schizophrenia (P=2.5 × 10(-11), odds ratio (OR) 1.10, 95% confidence interval 1.07-1.14) and schizophrenia and bipolar disorder combined (P=4.1 × 10(-13), OR 1.11, 95% confidence interval 1.07-1.14). After de novo polymorphism discovery and detailed association analysis, rs1344706 remained the most strongly associated marker in the gene. The allelic association at the ZNF804A locus is now one of the most compelling in schizophrenia to date, and supports the accumulating data suggesting overlapping genetic risk between schizophrenia and bipolar disorder.

  13. Hydrogen bonding in ionic liquids.

    Science.gov (United States)

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-07

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak

  14. Sleep Disturbance in Children and Adolescents with Disorders of Development: Its Significance and Management. Clinics in Developmental Medicine.

    Science.gov (United States)

    Stores, Gregory, Ed.; Wiggs, Luci, Ed.

    The 30 papers in this collection are arranged in five sections which address general issues, neurodevelopmental disorders, other neurological conditions, non-neurological pediatric disorders, and psychiatric disorders. The papers are: (1) "Sleep Disturbance: A Serious, Widespread, Yet Neglected Problem in Disorders of Development"…

  15. Thermotropic Ionic Liquid Crystals

    Science.gov (United States)

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed. PMID:28879986

  16. Thermotropic Ionic Liquid Crystals.

    Science.gov (United States)

    Axenov, Kirill V; Laschat, Sabine

    2011-01-14

    The last five years' achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  17. Thermotropic Ionic Liquid Crystals

    OpenAIRE

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  18. Part-II: Exchange current density and ionic diffusivity studies on the ordered and disordered spinel LiNi0.5Mn1.5O4 cathode

    Science.gov (United States)

    Amin, Ruhul; Belharouak, Ilias

    2017-04-01

    Additive-free pellets of Li1-xNi0.5Mn1.5O4 have been prepared for the purpose of performing ionic diffusivity and exchange current density studies. Here we report on the characterization of interfacial charge transfer kinetics and ionic diffusivity of ordered (P4332) and disordered (Fd 3 bar m) Li1-xNi0.5Mn1.5O4 as a function of lithium content at ambient temperature. The exchange current density at the electrode/electrolyte interface is found to be continuously increased with increasing the degree of delithiation for ordered phase (∼0.21-6.5 mA/cm2) at (x = 0.01-0.60), in contrast the disordered phase exhibits gradually decrease of exchange current density in the initial delithiation at the 4 V plateau regime (x = 0.01-0.04) and again monotonously increases (0.65-6.8 mA/cm2) with further delithiation at (x = 0.04-0.60). The ionic diffusivity of ordered and disordered phase is found to be ∼5 × 10-10cm2s-1 and ∼10-9cm2s-1, respectively, and does not vary much with the degree of delithiation. From the obtained results it appears that the chemical diffusivity during electrochemical use is limited by lithium transport, but is fast enough over the entire state-of-charge range to allow charge/discharge of micron-scale particles at practical C-rates.

  19. Radiation Chemistry and Photochemistry of Ionic Liquids

    International Nuclear Information System (INIS)

    Wishart, J.F.; Takahaski, K.

    2010-01-01

    As our understanding of ionic liquids and their tunable properties has grown, it is possible to see many opportunities for ionic liquids to contribute to the sustainable use of energy. The potential safety and environmental benefits of ionic liquids, as compared to conventional solvents, have attracted interest in their use as processing media for the nuclear fuel cycle. Therefore, an understanding of the interactions of ionizing radiation and photons with ionic liquids is strongly needed. However, the radiation chemistry of ionic liquids is still a relatively unexplored topic although there has been a significant increase in the number of researchers in the field recently. This article provides a brief introduction to ionic liquids and their interesting properties, and recent advances in the radiation chemistry and photochemistry of ionic liquids. In this article, we will mainly focus on excess electron dynamics and radical reaction dynamics. Because solvation dynamics processes in ionic liquids are much slower than in molecular solvents, one of the distinguishing characteristics is that pre-solvated electrons play an important role in ionic liquid radiolysis. It will be also shown that the reaction dynamics of radical ions is significantly different from that observed in molecular solvents because of the Coulombic screening effects and electrostatic interactions in ionic liquids.

  20. Significant Changes in Plasma Alpha-Synuclein and Beta-Synuclein Levels in Male Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Wilaiwan Sriwimol

    2018-01-01

    Full Text Available Alpha-synuclein (α-synuclein and beta-synuclein (β-synuclein are presynaptic proteins playing important roles in neuronal plasticity and synaptic vesicle regulation. To evaluate the association of these two proteins and autism spectrum disorder (ASD, we investigated the plasma α-synuclein and β-synuclein levels in 39 male children with ASD (2 subgroups: 25 autism and 14 pervasive developmental disorder-not otherwise specified (PDD-NOS comparing with 29 sex- and age-matched controls by using enzyme-linked immunosorbent assay (ELISA. We first determined the levels of these two proteins in the ASD subgroups and found that there were no significant differences in both plasma α-synuclein and β-synuclein levels in the autism and PDD-NOS groups. Thus, we could combine the 2 subgroups into one ASD group. Interestingly, the mean plasma α-synuclein level was significantly lower (P<0.001 in the ASD children (10.82±6.46 ng/mL than in the controls (29.47±18.62 ng/mL, while the mean plasma β-synuclein level in the ASD children (1344.19±160.26 ng/mL was significantly higher (P<0.05 than in the controls (1219.16±177.10 ng/mL. This is the first study examining the associations between α-synuclein and β-synuclein and male ASD patients. We found that alterations in the plasma α-synuclein and β-synuclein levels might be implicated in the association between synaptic abnormalities and ASD pathogenesis.

  1. Prognostic significance of social network, social support and loneliness for course of major depressive disorder in adulthood and old age.

    Science.gov (United States)

    van den Brink, R H S; Schutter, N; Hanssen, D J C; Elzinga, B M; Rabeling-Keus, I M; Stek, M L; Comijs, H C; Penninx, B W J H; Oude Voshaar, R C

    2018-06-01

    Poor recovery from depressive disorder has been shown to be related to low perceived social support and loneliness, but not to social network size or frequency of social interactions. Some studies suggest that the significance of social relationships for depression course may be greater in younger than in older patients, and may differ between men and women. None of the studies examined to what extent the different aspects of social relationships have unique or overlapping predictive values for depression course. It is the aim of the present study to examine the differential predictive values of social network characteristics, social support and loneliness for the course of depressive disorder, and to test whether these predictive associations are modified by gender or age. Two naturalistic cohort studies with the same design and overlapping instruments were combined to obtain a study sample of 1474 patients with a major depressive disorder, of whom 1181 (80.1%) could be studied over a 2-year period. Social relational variables were assessed at baseline. Two aspects of depression course were studied: remission at 2-year follow-up and change in depression severity over the follow-up period. By means of logistic regression and random coefficient analysis, the individual and combined predictive values of the different social relational variables for depression course were studied, controlling for potential confounders and checking for effect modification by age (below 60 v. 60 years or older) and gender. Multiple aspects of the social network, social support and loneliness were related to depression course, independent of potential confounders - including depression severity - but when combined, their predictive values were found to overlap to a large extent. Only the social network characteristic of living in a larger household, the social support characteristic of few negative experiences with the support from a partner or close friend, and limited feelings of

  2. Supported Ionic Liquid Phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco

    2006-01-01

    Applications of ionic liquids to replace conventional solvents in homogeneous transition-metal catalysis have increased significantly during the last decade. Biphasic ionic liquid/organic liquid systems offer advantages with regard to product separation, catalyst stability, and recycling...... but utilise in the case of fast chemical reactions only a small amount of expensive ionic liquid and catalyst. The novel Supported Ionic Liquid Phase (SILP) catalysis concept overcomes these drawbacks and allows the use of fixed-bed reactors for continuous reactions. In this Microreview the SILP catalysis...

  3. Ionic and Molecular Liquids

    DEFF Research Database (Denmark)

    Chaban, Vitaly V.; Prezhdo, Oleg

    2013-01-01

    Because of their outstanding versatility, room-temperature ionic liquids (RTILs) are utilized in an ever increasing number of novel and fascinating applications, making them the Holy Grail of modern materials science. In this Perspective, we address the fundamental research and prospective...... applications of RTILs in combination with molecular liquids, concentrating on three significant areas: (1) the use of molecular liquids to decrease the viscosity of RTILs; (2) the role of RTIL micelle formation in water and organic solvents; and (3) the ability of RTILs to adsorb pollutant gases. Current...

  4. Acidic Ionic Liquids.

    Science.gov (United States)

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  5. Ionic Conductivity of Polyelectrolyte Hydrogels.

    Science.gov (United States)

    Lee, Chen-Jung; Wu, Haiyan; Hu, Yang; Young, Megan; Wang, Huifeng; Lynch, Dylan; Xu, Fujian; Cong, Hongbo; Cheng, Gang

    2018-02-14

    Polyelectrolytes have many important functions in both living organisms and man-made applications. One key property of polyelectrolytes is the ionic conductivity due to their porous networks that allow the transport of water and small molecular solutes. Among polyelectrolytes, zwitterionic polymers have attracted huge attention for applications that involve ion transport in a polyelectrolyte matrix; however, it is still unclear how the functional groups of zwitterionic polymer side chains affect their ion transport and swelling properties. In this study, zwitterionic poly(carboxybetaine acrylamide), poly(2-methacryloyloxyethyl phosphorylcholine), and poly(sulfobetaine methacrylate) hydrogels were synthesized and their ionic conductivity was studied and compared to cationic, anionic, and nonionic hydrogels. The change of the ionic conductivity of zwitterionic and nonionic hydrogels in different saline solutions was investigated in detail. Zwitterionic hydrogels showed much higher ionic conductivity than that of the widely used nonionic poly(ethylene glycol) methyl ether methacrylate hydrogel in all tested solutions. For both cationic and anionic hydrogels, the presence of mobile counterions led to high ionic conductivity in low salt solutions; however, the ionic conductivity of zwitterionic hydrogels surpassed that of cationic and ionic hydrogels in high salt solutions. Cationic and anionic hydrogels showed much higher water content than that of zwitterionic hydrogels in deionized water; however, the cationic hydrogels shrank significantly with increasing saline concentration. This work provides insight into the effects of polyelectrolyte side chains on ion transport. This can guide us in choosing better polyelectrolytes for a broad spectrum of applications, including bioelectronics, neural implants, battery, and so on.

  6. Thermotropic Ionic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Sabine Laschat

    2011-01-01

    Full Text Available The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  7. Clinical Significance of the Number of Depressive Symptoms in Major Depressive Disorder: Results from the CRESCEND Study.

    Science.gov (United States)

    Park, Seon-Cheol; Sakong, Jeongkyu; Koo, Bon Hoon; Kim, Jae-Min; Jun, Tae-Youn; Lee, Min-Soo; Kim, Jung-Bum; Yim, Hyeon-Woo; Park, Yong Chon

    2016-04-01

    Our study aimed to establish the relationship between the number of depressive symptoms and the clinical characteristics of major depressive disorder (MDD). This would enable us to predict the clinical significance of the number of depressive symptoms in MDD patients. Using data from the Clinical Research Center for Depression (CRESCEND) study in Korea, 853 patients with DSM-IV MDD were recruited. The baseline and clinical characteristics of groups with different numbers of depressive symptoms were compared using the χ(2) test for discrete variables and covariance (ANCOVA) for continuous variables. In addition, the scores of these groups on the measurement tools were compared by ANCOVA after adjusting the potential effects of confounding variables. After adjusting the effects of monthly income and history of depression, a larger number of depressive symptoms indicated higher overall severity of depression (F [4, 756] = 21.458, P depressive symptoms (F [4, 767] = 19.145, P depressive symptoms can be used as an index of greater illness burden in clinical psychiatry.

  8. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil; Dallas, Panagiotis; Rodriguez, Robert; Bourlinos, Athanasios B.; Georgakilas, Vasilios; Giannelis, Emmanuel P.

    2010-01-01

    ®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding

  9. Thermophysical properties of ionic liquids.

    Science.gov (United States)

    Rooney, David; Jacquemin, Johan; Gardas, Ramesh

    2010-01-01

    Low melting point salts which are often classified as ionic liquids have received significant attention from research groups and industry for a range of novel applications. Many of these require a thorough knowledge of the thermophysical properties of the pure fluids and their mixtures. Despite this need, the necessary experimental data for many properties is scarce and often inconsistent between the various sources. By using accurate data, predictive physical models can be developed which are highly useful and some would consider essential if ionic liquids are to realize their full potential. This is particularly true if one can use them to design new ionic liquids which maximize key desired attributes. Therefore there is a growing interest in the ability to predict the physical properties and behavior of ionic liquids from simple structural information either by using group contribution methods or directly from computer simulations where recent advances in computational techniques are providing insight into physical processes within these fluids. Given the importance of these properties this review will discuss the recent advances in our understanding, prediction and correlation of selected ionic liquid physical properties.

  10. Local fields in ionic crystals

    International Nuclear Information System (INIS)

    Claro, F.

    1981-08-01

    Local fields arising from the electronic distortion in perfect ionic crystals are described in terms of multipolar excitations. Field factors for the alkali halides and chalcogenide ions are found to differ significantly from the Lorentz value of 4π/3, the correction size following an exponential dependence on the difference in ionic radii. Local fields are only slightly modified by these corrections however, and together with the Clausius-Mossotti relation may be regarded as accurate to within 2% if the Lorentz value is adopted. (author)

  11. The mediational significance of negative/depressive affect in the relationship of childhood maltreatment and eating disorder features in adolescent psychiatric inpatients.

    Science.gov (United States)

    Hopwood, C J; Ansell, E B; Fehon, D C; Grilo, C M

    2011-03-01

    Childhood maltreatment is a risk factor for eating disorder and negative/depressive affect appears to mediate this relation. However, the specific elements of eating- and body-related psychopathology that are influenced by various forms of childhood maltreatment remain unclear, and investigations among adolescents and men/boys have been limited. This study investigated the mediating role of negative affect/depression across multiple types of childhood maltreatment and eating disorder features in hospitalized adolescent boys and girls. Participants were 148 adolescent psychiatric inpatients who completed an assessment battery including measures of specific forms of childhood maltreatment (sexual, emotional, and physical abuse), negative/depressive affect, and eating disorder features (dietary restriction, binge eating, and body dissatisfaction). Findings suggest that for girls, negative/depressive affect significantly mediates the relationships between childhood maltreatment and eating disorder psychopathology, although effects varied somewhat across types of maltreatment and eating disorder features. Generalization of mediation effects to boys was limited.

  12. Nonapnea Sleep Disorders in Patients Younger than 65 Years Are Significantly Associated with CKD: A Nationwide Population-Based Study.

    Directory of Open Access Journals (Sweden)

    Hugo You-Hsien Lin

    Full Text Available Nonapnea sleep disorders (NASD and sleep-related problems are associated with poor health outcomes. However, the association between NASD and the development and prognosis of chronic kidney disease (CKD has not been investigated thoroughly. We explored the association between CKD and NASD in Taiwan.We conducted a population-based study using the Taiwan National Health Insurance database with1,000,000 representative data for the period from January 1, 2000 to December 31, 2009. We investigated the incidence and risk of CKD in 7,006 newly diagnosed NASD cases compared with 21,018 people without NASD matched according to age, sex, index year, urbanization, region, and monthly income at a 1:3 ratio.The subsequent risk of CKD was 1.48-foldhigher in the NASD cohort than in the control cohort (95% confidence interval [CI] = 1.26-1.73, p< 0.001. Men, older age, type 2 diabetes mellitus, and gout were significant factors associated with the increased risk of CKD (p< 0.001. Among different types of NASDs, patients with insomnia had a 52% increased risk of developing CKD (95%CI = 1.23-1.84; P<0.01, whereas patients with sleep disturbance had a 49%increased risk of subsequent CKD (95% CI = 1.19-1.87; P<0.001. Younger women (aged < 65 years were at a high risk of CKD with NASD (adjusted hazard ratio, [HR] = 1.81; 95% CI = 1.35-2.40, p< 0.001.In this nationwide population-based cohort study, patients with NASD, particularly men of all ages and women aged younger than 65 years, were at high risk of CKD.

  13. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder

    NARCIS (Netherlands)

    Williams, H.J.; Norton, N.; Dwyer, S.; Moskvina, V.; Nikolov, I.; Carroll, L.; Georgieva, L.; Williams, N.M.; Morris, D.W.; Quinn, E.M.; Giegling, I.; Ikeda, M.; Wood, J.; Lencz, T.; Hultman, C.; Lichtenstein, P.; Thiselton, D.; Maher, B.S.; Malhotra, A.K.; Riley, B.; Kendler, K.S.; Gill, M.; Sullivan, P.; Sklar, P.; Purcell, S.; Nimgaonkar, V.L.; Kirov, G.; Holmans, P.; Corvin, A.; Rujescu, D.; Craddock, N.; Owen, M.J.; O'Donovan, M.C.; GROUP investigators, [No Value

    2011-01-01

    A recent genome-wide association study (GWAS) reported evidence for association between rs1344706 within ZNF804A (encoding zinc-finger protein 804A) and schizophrenia (P = 1.61 x 10(-7)), and stronger evidence when the phenotype was broadened to include bipolar disorder (P = 9.96 x 10(-9)). In this

  14. Nanoscale Ionic Liquids

    Science.gov (United States)

    2006-11-01

    Technical Report 11 December 2005 - 30 November 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Nanoscale Ionic Liquids 5b. GRANT NUMBER FA9550-06-1-0012...Title: Nanoscale Ionic Liquids Principal Investigator: Emmanuel P. Giannelis Address: Materials Science and Engineering, Bard Hall, Cornell University...based fluids exhibit high ionic conductivity. The NFs are typically synthesized by grafting a charged, oligomeric corona onto the nanoparticle cores

  15. IMPROVED SYNTHESIS OF ROOM TEMPERATURE IONIC LIQUIDS

    Science.gov (United States)

    Room temperature ionic liquids (RTILs), molten salts comprised of N-alkylimidazolium cations and various anions, have received significant attention due to their commercial potential in a variety of chemical applications especially as substitutes for conventional volatile organic...

  16. The Relationship between Obsessive Compulsive Personality and Obsessive Compulsive Disorder Treatment Outcomes: Predictive Utility and Clinically Significant Change.

    Science.gov (United States)

    Sadri, Shalane K; McEvoy, Peter M; Egan, Sarah J; Kane, Robert T; Rees, Clare S; Anderson, Rebecca A

    2017-09-01

    The evidence regarding whether co-morbid obsessive compulsive personality disorder (OCPD) is associated with treatment outcomes in obsessive compulsive disorder (OCD) is mixed, with some research indicating that OCPD is associated with poorer response, and some showing that it is associated with improved response. We sought to explore the role of OCPD diagnosis and the personality domain of conscientiousness on treatment outcomes for exposure and response prevention for OCD. The impact of co-morbid OCPD and conscientiousness on treatment outcomes was examined in a clinical sample of 46 participants with OCD. OCPD diagnosis and scores on conscientiousness were not associated with poorer post-treatment OCD severity, as indexed by Yale-Brown Obsessive Compulsive Scale (YBOCS) scores, although the relative sample size of OCPD was small and thus generalizability is limited. This study found no evidence that OCPD or conscientiousness were associated with treatment outcomes for OCD. Further research with larger clinical samples is required.

  17. Work activity in food service: The significance of customer relations, tipping practices and gender for preventing musculoskeletal disorders.

    Science.gov (United States)

    Laperrière, Ève; Messing, Karen; Bourbonnais, Renée

    2017-01-01

    Some evidence shows that food servers are exposed to an elevated risk of musculoskeletal disorders and injuries, and that their work activity varies by gender. Interviews of servers and observations of food service in Québec, Canada, were carried out in three restaurants and a questionnaire was administered to 64 workers from 44 other restaurants. The relationship with the customer has specific effects on work activity and transforms the physical, emotional and cognitive work. Strategies intended to speed service or otherwise related to the customer relationship can involve health risks. Women reported more direct food service (p work per week (p < 0.01). Women workers reported experiencing more sites of pain (p < 0.003). This exploratory study suggests that managing the server-customer relationship could be important in preventing musculoskeletal disorders in this population and that women are at particular risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Evaluation of diagnostic and prognostic significance of SPECT scintigraphy in hematologic disorders (a report of 136 cases)

    International Nuclear Information System (INIS)

    Zou Zhenghui; Yu Fei; Fu Jinxiang; Lu Wendong

    1994-06-01

    By using single photon emission computed tomography (SPECT), 136 patients with various hematologic diseases were investigated. Bone marrow imaging in 46 patients with aplastic anemia showed type I 28 cases, type II 9 cases, type III 3 cases, and type IV 6 cases. Among 28 patients with type I, 8 patients died. This result indicates that patients with character of type I has a poor prognosis. The results in 24 patients with idiopathic thrombocytopenia purpura (ITP) showed type I 7 cases, type II 2 cases, type III 12 cases, and type IV 3 cases. Bone marrow scintigraphy in 18 patients with Myelodysplastic syndrome (MDS) showed type I 2 cases, type II 8 cases, type III 2 cases, type IV 2 cases, and type V 4 cases. 5 out of 18 cases transformed to leukemia rapidly. The other hematologic disease had different imaging characters. The rate of conformation between lymphnodeimaging and pathological examination in 12 patients with enlargement lymph nodes were higher than 90%. With imaging, useful information for diagnosis of hematologic disorders can be obtained. The results showed that it is a safety, convenient, and non-invasive method for dynamic monitoring in some patients with hematologic disease. (1 tab., 5 figs.)

  19. Ionic liquids as electrolytes

    International Nuclear Information System (INIS)

    Galinski, Maciej; Lewandowski, Andrzej; Stepniak, Izabela

    2006-01-01

    Salts having a low melting point are liquid at room temperature, or even below, and form a new class of liquids usually called room temperature ionic liquids (RTIL). Information about RTILs can be found in the literature with such key words as: room temperature molten salt, low-temperature molten salt, ambient-temperature molten salt, liquid organic salt or simply ionic liquid. Their physicochemical properties are the same as high temperature ionic liquids, but the practical aspects of their maintenance or handling are different enough to merit a distinction. The class of ionic liquids, based on tetraalkylammonium cation and chloroaluminate anion, has been extensively studied since late 1970s of the XX century, following the works of Osteryoung. Systematic research on the application of chloroaluminate ionic liquids as solvents was performed in 1980s. However, ionic liquids based on aluminium halides are moisture sensitive. During the last decade an increasing number of new ionic liquids have been prepared and used as solvents. The general aim of this paper was to review the physical and chemical properties of RTILs from the point of view of their possible application as electrolytes in electrochemical processes and devices. The following points are discussed: melting and freezing, conductivity, viscosity, temperature dependence of conductivity, transport and transference numbers, electrochemical stability, possible application in aluminium electroplating, lithium batteries and in electrochemical capacitors

  20. Thermodynamics of interaction of ionic liquids with lipid monolayer.

    Science.gov (United States)

    Bhattacharya, G; Mitra, S; Mandal, P; Dutta, S; Giri, R P; Ghosh, S K

    2018-06-01

    Understanding the interaction of ionic liquids with cellular membrane becomes utterly important to comprehend the activities of these liquids in living organisms. Lipid monolayer formed at the air-water interface is employed as a model system to follow this interaction by investigating important thermodynamic parameters. The penetration kinetics of the imidazolium-based ionic liquid 1-decyl-3-methylimidazolium tetrafluoroborate ([DMIM][BF4]) into the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid layer is found to follow the Boltzmann-like equation that reveals the characteristic time constant which is observed to be the function of initial surface pressure. The enthalpy and entropy calculated from temperature-dependent pressure-area isotherms of the monolayer show that the added ionic liquids bring about a disordering effect in the lipid film. The change in Gibbs free energy indicates that an ionic liquid with longer chain has a far greater disordering effect compared to an ionic liquid with shorter chain. The differential scanning calorimetric measurement on a multilamellar vesicle system shows the main phase transition temperature to shift to a lower value, which, again, indicates the disordering effect of the ionic liquid on lipid membrane. All these studies fundamentally point out that, when ionic liquids interact with lipid molecules, the self-assembled structure of a cellular membrane gets perturbed, which may be the mechanism of these molecules having adverse effects on living organisms.

  1. Selective gas absorption by ionic liquids

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Kegnæs, Søren; Due-Hansen, Johannes

    2010-01-01

    Reversible absorption performance for the flue gas components CO 2, NO and SO2 has been tested for several different ionic liquids (ILs) at different temperatures and flue gas compositions. Furthermore, different porous, high surface area carriers have been applied as supports for the ionic liquids...... to obtain Supported Ionic Liquid-Phase (SILP) absorber materials. The use of solid SILP absorbers with selected ILs were found to significantly improve the absorption capacity and sorption dynamics at low flue gas concentration, thus making the applicability of ILs viable in technical, continuous flow...... processes for flue gas cleaning. The results show that CO 2, NO and SO2 can be reversible and selective absorbed using different ILs and that Supported Ionic Liquid-Phase (SILP) absorbers are promising materials for industrial flue gas cleaning. Absorption/desorption dynamics can be tuned by temperatures...

  2. Photophysics of ionic biochromophores

    CERN Document Server

    Brøndsted Nielsen, Steen

    2014-01-01

    This concise guide to studying ionic biochromophores features the first integrated overview of the photophysics of differing classes of biomolecules, from single amino acids to DNA. It includes an appraisal of the latest theories and experimental techniques.

  3. Balance disorder and increased risk of falls in osteoporosis and kyphosis: significance of kyphotic posture and muscle strength.

    Science.gov (United States)

    Sinaki, Mehrsheed; Brey, Robert H; Hughes, Christine A; Larson, Dirk R; Kaufman, Kenton R

    2005-08-01

    This controlled trial was designed to investigate the influence of osteoporosis-related kyphosis (O-K) on falls. Twelve community-dwelling women with O-K (Cobb angle, 50-65 degrees measured from spine radiographs) and 13 healthy women serving as controls were enrolled. Mean age of the O-K group was 76 years (+/-5.1), height 158 cm (+/-5), and weight 61 kg (+/-7.9), and mean age of the control group was 71 years (+/-4.6), height 161 cm (+/-3.8), and weight 66 kg (+/-11.7). Quantitative isometric strength data were collected. Gait was monitored during unobstructed level walking and during stepping over an obstacle of four different heights randomly assigned (2.5%, 5%, 10%, and 15% of the subject's height). Balance was objectively assessed with computerized dynamic posturography consisting of the sensory organization test. Back extensor strength, grip strength, and all lower extremity muscle groups were significantly weaker in the O-K group than the control group (P controls for all conditions of unobstructed and obstructed level walking. Obstacle height had a significant effect on all center-of-mass variables. The O-K subjects had significantly greater balance abnormalities on computerized dynamic posturography than the control group (P =0.002). Data show that thoracic hyperkyphosis on a background of reduced muscle strength plays an important role in increasing body sway, gait unsteadiness, and risk of falls in osteoporosis.

  4. Relation between the swelling and the disordering in ionic crystals irradiated by fast heavy ions; Relation entre le gonflement et la creation de defauts dans les cristaux ioniques irradies par des ions lourds rapides

    Energy Technology Data Exchange (ETDEWEB)

    Boccanfuso, M

    2001-12-01

    When fast heavy ions penetrate in matter, they slow down essentially by depositing their energy on the electrons. This can lead to strong electronic excitation densities in the solid and then to structural modifications. In this work, calcium fluoride (CaF{sub 2}) was used to look further into the damage induced by irradiation with fast heavy ions in ionic crystals. Four techniques were mainly employed to characterise this damage. These techniques of analysis are wide angle X-ray diffraction, surface profilometry, Rutherford backscattering spectrometry and UV-visible optical absorption spectroscopy. The results of this work show that CaF{sub 2} answers in a multiple way to the electronic excitations. For stopping powers higher than approximately 5 keV/nm, a polygonization seems to occur. This causes a structural disorder, a swelling of 0.27 % and the formation of fractures in the material. A second damage mechanism is caused above approximately 13 keV/nm and results in a loss of the initial crystalline structure. However, optical centres appear whatever the ion stopping power, which indicates that these defects cannot be the cause of the two above mentioned damage mechanisms. According to a thermal spike model, the two thresholds can be linked to melting and sublimation energy of the material, respectively. (author)

  5. Sensitivities of ionic explosives

    Science.gov (United States)

    Politzer, Peter; Lane, Pat; Murray, Jane S.

    2017-03-01

    We have investigated the relevance for ionic explosive sensitivity of three factors that have been demonstrated to be related to the sensitivities of molecular explosives. These are (1) the maximum available heat of detonation, (2) the amount of free space per molecule (or per formula unit) in the crystal lattice and (3) specific features of the electrostatic potential on the molecular or ionic surface. We find that for ionic explosives, just as for molecular ones, there is an overall tendency for impact sensitivity to increase as the maximum detonation heat release is greater. This means that the usual emphasis upon designing explosives with large heats of detonation needs to be tempered somewhat. We also show that a moderate detonation heat release does not preclude a high level of detonation performance for ionic explosives, as was already demonstrated for molecular ones. Relating the free space per formula unit to sensitivity may require a modified procedure for ionic explosives; this will continue to be investigated. Finally, an encouraging start has been made in linking impact sensitivities to the electrostatic potentials on ionic surfaces, although limited so far to ammonium salts.

  6. Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR) method.

    Science.gov (United States)

    Malashchonak, Mikalai V; Mazanik, Alexander V; Korolik, Olga V; Streltsov, Еugene А; Kulak, Anatoly I

    2015-01-01

    The photoelectrochemical properties of nanoheterostructures based on the wide band gap oxide substrates (ZnO, TiO2, In2O3) and CdS nanoparticles deposited by the successive ionic layer adsorption and reaction (SILAR) method have been studied as a function of the CdS deposition cycle number (N). The incident photon-to-current conversion efficiency (IPCE) passes through a maximum with the increase of N, which is ascribed to the competition between the increase in optical absorption and photocarrier recombination. The maximal IPCE values for the In2O3/CdS and ZnO/CdS heterostructures are attained at N ≈ 20, whereas for TiO2/CdS, the appropriate N value is an order of magnitude higher. The photocurrent and Raman spectroscopy studies of CdS nanoparticles revealed the occurrence of the quantum confinement effect, demonstrating the most rapid weakening with the increase of N in ZnO/CdS heterostructures. The structural disorder of CdS nanoparticles was characterized by the Urbach energy (E U), spectral width of the CdS longitudinal optical (LO) phonon band and the relative intensity of the surface optical (SO) phonon band in the Raman spectra. Maximal values of E U (100-120 meV) correspond to СdS nanoparticles on a In2O3 surface, correlating with the fact that the CdS LO band spectral width and intensity ratio for the CdS SO and LO bands are maximal for In2O3/CdS films. A notable variation in the degree of disorder of CdS nanoparticles is observed only in the initial stages of CdS growth (several tens of deposition cycles), indicating the preservation of the nanocrystalline state of CdS over a wide range of SILAR cycles.

  7. Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR method

    Directory of Open Access Journals (Sweden)

    Mikalai V. Malashchonak

    2015-11-01

    Full Text Available The photoelectrochemical properties of nanoheterostructures based on the wide band gap oxide substrates (ZnO, TiO2, In2O3 and CdS nanoparticles deposited by the successive ionic layer adsorption and reaction (SILAR method have been studied as a function of the CdS deposition cycle number (N. The incident photon-to-current conversion efficiency (IPCE passes through a maximum with the increase of N, which is ascribed to the competition between the increase in optical absorption and photocarrier recombination. The maximal IPCE values for the In2O3/CdS and ZnO/CdS heterostructures are attained at N ≈ 20, whereas for TiO2/CdS, the appropriate N value is an order of magnitude higher. The photocurrent and Raman spectroscopy studies of CdS nanoparticles revealed the occurrence of the quantum confinement effect, demonstrating the most rapid weakening with the increase of N in ZnO/CdS heterostructures. The structural disorder of CdS nanoparticles was characterized by the Urbach energy (EU, spectral width of the CdS longitudinal optical (LO phonon band and the relative intensity of the surface optical (SO phonon band in the Raman spectra. Maximal values of EU (100–120 meV correspond to СdS nanoparticles on a In2O3 surface, correlating with the fact that the CdS LO band spectral width and intensity ratio for the CdS SO and LO bands are maximal for In2O3/CdS films. A notable variation in the degree of disorder of CdS nanoparticles is observed only in the initial stages of CdS growth (several tens of deposition cycles, indicating the preservation of the nanocrystalline state of CdS over a wide range of SILAR cycles.

  8. Probing Lipid Bilayers under Ionic Imbalance.

    Science.gov (United States)

    Lin, Jiaqi; Alexander-Katz, Alfredo

    2016-12-06

    Biological membranes are normally under a resting transmembrane potential (TMP), which originates from the ionic imbalance between extracellular fluids and cytosols, and serves as electric power storage for cells. In cell electroporation, the ionic imbalance builds up a high TMP, resulting in the poration of cell membranes. However, the relationship between ionic imbalance and TMP is not clearly understood, and little is known about the effect of ionic imbalance on the structure and dynamics of biological membranes. In this study, we used coarse-grained molecular dynamics to characterize a dipalmitoylphosphatidylcholine bilayer system under ionic imbalances ranging from 0 to ∼0.06 e charges per lipid (e/Lip). We found that the TMP displayed three distinct regimes: 1) a linear regime between 0 and 0.045 e/Lip, where the TMP increased linearly with ionic imbalance; 2) a yielding regime between ∼0.045 and 0.060 e/Lip, where the TMP displayed a plateau; and 3) a poration regime above ∼0.060 e/Lip, where we observed pore formation within the sampling time (80 ns). We found no structural changes in the linear regime, apart from a nonlinear increase in the area per lipid, whereas in the yielding regime the bilayer exhibited substantial thinning, leading to an excess of water and Na + within the bilayer, as well as significant misalignment of the lipid tails. In the poration regime, lipid molecules diffused slightly faster. We also found that the fluid-to-gel phase transition temperature of the bilayer dropped below the normal value with increased ionic imbalances. Our results show that a high ionic imbalance can substantially alter the essential properties of the bilayer, making the bilayer more fluid like, or conversely, depolarization of a cell could in principle lead to membrane stiffening. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Comparative Analysis of the Clinical Significance of Oscillatory Components in the Rhythmic Structure of Pulse Signal in the Diagnostics of Psychosomatic Disorders in School Age Children.

    Science.gov (United States)

    Desova, A A; Dorofeyuk, A A; Anokhin, A M

    2017-01-01

    We performed a comparative analysis of the types of spectral density typical of various parameters of pulse signal. The experimental material was obtained during the examination of school age children with various psychosomatic disorders. We also performed a typological analysis of the spectral density functions corresponding to the time series of different parameters of a single oscillation of pulse signals; the results of their comparative analysis are presented. We determined the most significant spectral components for two disordersin children: arterial hypertension and mitral valve prolapse.

  10. Lewis Acidic Ionic Liquids.

    Science.gov (United States)

    Brown, Lucy C; Hogg, James M; Swadźba-Kwaśny, Małgorzata

    2017-08-21

    Until very recently, the term Lewis acidic ionic liquids (ILs) was nearly synonymous with halometallate ILs, with a strong focus on chloroaluminate(III) systems. The first part of this review covers the historical context in which these were developed, speciation of a range of halometallate ionic liquids, attempts to quantify their Lewis acidity, and selected recent applications: in industrial alkylation processes, in supported systems (SILPs/SCILLs) and in inorganic synthesis. In the last decade, interesting alternatives to halometallate ILs have emerged, which can be divided into two sub-sections: (1) liquid coordination complexes (LCCs), still based on halometallate species, but less expensive and more diverse than halometallate ionic liquids, and (2) ILs with main-group Lewis acidic cations. The two following sections cover these new liquid Lewis acids, also highlighting speciation studies, Lewis acidity measurements, and applications.

  11. Functional ionic liquids

    International Nuclear Information System (INIS)

    Baecker, Tobias

    2012-01-01

    In the thesis at hand, new functional ionic liquids were investigated. Main focus was attended to their structure property relations and the structural features leading to a decrease of the melting point. New compounds of the type 1-butyl-3-methylimidazolium tris(N,Ndialkyldithiocarbamato) uranylate with variously substituated dithiocarbamato ligands were synthesized and characterized. Ligands with asymmetrical substitution pattern proved to be most suitable for ionic liquid formation. The single-crystal X-ray structures revealed the interactions in the solid state. Here, the first spectroscopic investigation of the U-S bond in sulfur donated uranyl complexes, up to now only observed in single-crystal X-ray structures, is presented, and the participation of the uranium f-orbitals is shown by theoretical calculations. Electrochemical investigations showed the accessibility of the respective U V O 2 + compounds. As well, ionic liquids with [FeCl 4 ] - and [Cl 3 FeOFeCl 3 ] 2- as anion were synthesized. Both of these anions contain high-spin Fe(III) centres in distorted tetrahedral environment, but exhibit different magnetic behaviour. The tetrachloroferrates show the usual paramagnetism, the m-oxobis(trichloroferrate) exhibits unexpectedly strong antiferromagnetic coupling, as was observed by NMR experiments and susceptibility measurements. To investigate structure-property relations in functionalized ionic liquids, a set of protic, primary alkylammonium and aprotic, quarternary trimethylalkylammonium based ionic liquids was synthesized, and characterized. The length of the alkyl chain was systematically varied, and all compounds were synthesized with and without hydroxyl group, as well as formate and bis(triflyl)amide salts, aiming at getting insight into the influence of the different structure parts on the respective ionic liquid's properties.

  12. Generation and detection of the cyclohexadienyl radical in phosphonium ionic liquids.

    Science.gov (United States)

    Lauzon, J M; Arseneau, D J; Brodovitch, J C; Clyburne, J A C; Cormier, P; McCollum, B; Ghandi, K

    2008-10-21

    The formation of the cyclohexadienyl radical, C(6)H(6)Mu, in ionic and molecular solvents has been compared. This is the first time that a muoniated free radical is reported in an ionic liquid. In marked contrast to molecular liquids, free radical generation in ionic liquids is significantly enhanced. Comparison of the hyperfine interactions in the ionic liquid and in molecular solvents and with theoretical calculations, suggests significant and unforeseen solvent interaction with the cyclohexadienyl radical.

  13. Influence of the ionic liquid 1-butyl-3-methylimidazolium bromide on amyloid fibrillogenesis in lysozyme: Evidence from photophysical and imaging studies.

    Science.gov (United States)

    Basu, Anirban; Bhattacharya, Subhash Chandra; Kumar, Gopinatha Suresh

    2018-02-01

    Many proteins can abnormally fold to form pathological amyloid deposits/aggregates that are responsible for various degenerative disorders called amyloidosis. Here we have examined the anti-amyloidogenic potency of an ionic liquid, 1-butyl-3-methylimidazolium bromide, using lysozyme as a model system. Thioflavin T fluorescence assay demonstrated that the ionic liquid suppressed the formation of lysozyme fibrils significantly. This observation was further confirmed by the Congo red assay. Fluorescence microscopy, intrinsic fluorescence studies, nile red fluorescence assay, ANS binding assay and circular dichroism studies also testified diminishing of the fibrillogenesis in the presence of ionic liquid. Formation of amyloid fibrils was also characterized by α to β conformational transition. From far-UV circular dichroism studies it was observed that the β-sheet content of the lysozyme samples decreased in the presence of the ionic liquid which in turn implied that fibrillogenesis was supressed by the ionic liquid. Atomic force microscopy imaging unequivocally established that the ionic liquid attenuated fibrillogenesis in lysozyme. These results may be useful for the development of more effective therapeutics for amyloidosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Pretreatment of Oil Palm Frond (OPF) with Ionic Liquid

    Science.gov (United States)

    Azmi, I. S.; Azizan, A.; Salleh, R. Mohd

    2018-05-01

    Pretreatment is the key to unlock the recalcitrance of lignocellulose for cellulosic biofuel production. Increasing attention has been drawn to ionic liquids (ILs) for pretreatment of lignocellulosic biomass because this approach was considered as a green engineering method over other conventional methods. In this work, Oil palm frond (OPF) was pretreated by using the ionic liquid 1-ethyl-3-methylimidazolium acetate [EMIM] Ac at the temperature of 99˚C for 3 hours. The characterization of the untreated and pretreated OPF was conducted by using different techniques which are Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The pretreatment of OPF with [EMIM] Ac was demonstrated to be effective evidenced by the significant reduction of Lateral Order Index (LOI) from FTIR, reduction of Crystallinity Index (CI) based on XRD and the significant morphology changes indicated by SEM. The CI value for the pretreated OPF decreased from 0.47 (untreated sample) to 0.28 while the LOI value decreased from 1.10 to 0.24 after pretreatment with [EMIM]Ac and the SEM morphology showed that the pretreated OPF becomes distorted and disordered.

  15. Ionic liquids in chemical engineering.

    Science.gov (United States)

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter

    2010-01-01

    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.

  16. Making reasonable decisions: a qualitative study of medical decision making in the care of patients with a clinically significant haemoglobin disorder.

    Science.gov (United States)

    Crowther, Helen J; Kerridge, Ian

    2015-10-01

    Therapies utilized in patients with clinically significant haemoglobin disorders appear to vary between clinicians and units. This study aimed to investigate the processes of evidence implementation and medical decision making in the care of such patients in NSW, Australia. Using semi-structured interviews, 11 haematologists discussed their medical decision-making processes with particular attention paid to the use of published evidence. Transcripts were thematically analysed by a single investigator on a line-by-line basis. Decision making surrounding the care of patients with significant haemoglobin disorders varied and was deeply contextual. Three main determinants of clinical decision making were identified - factors relating to the patient and to their illness, factors specific to the clinician and the institution in which they were practising and factors related to the notion of evidence and to utility and role of evidence-based medicine in clinical practice. Clinicians pay considerable attention to medical decision making and evidence incorporation and attempt to tailor these to particular patient contexts. However, the patient context is often inferred and when discordant with the clinician's own contexture can lead to discomfort with decision recommendations. Clinicians strive to improve comfort through the use of experience and trustworthy evidence. © 2015 John Wiley & Sons, Ltd.

  17. Ionic liquids behave as dilute electrolyte solutions

    Science.gov (United States)

    Gebbie, Matthew A.; Valtiner, Markus; Banquy, Xavier; Fox, Eric T.; Henderson, Wesley A.; Israelachvili, Jacob N.

    2013-01-01

    We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force–distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin–Landau–Verwey–Overbeek theory with an additive repulsive steric (entropic) ion–surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high–free-ion density ionic liquids and ionic liquid blends. PMID:23716690

  18. Positrons in ionic crystals

    International Nuclear Information System (INIS)

    Pareja, R.

    1988-01-01

    Positron annihilation experiments in ionic crystals are reviewed and their results are arranged. A discussion about the positron states in these materials is made in the light of these results and the different proposed models. The positronium in alkali halides is specially considered. (Author)

  19. Ionic smoke detectors

    CERN Document Server

    2002-01-01

    Ionic smoke detectors are products incorporating radioactive material. This article summarises the process for their commercialization and marketing, and how the activity is controlled, according to regulations establishing strict design and production requisites to guarantee the absence of radiological risk associated both with their use and their final handling as conventional waste. (Author)

  20. Clinical trial of non-ionic contrast media -comparison of efficacy and safety between non-ionic iopromide (Ultravist) and ionic contrast media-

    International Nuclear Information System (INIS)

    Lee, Ghi Jai; Kim, Seung Hyup; Park, Jae Hyung; Chang, Kee Hyun; Han, Man Chung; Kim, Chu Wan

    1988-01-01

    Non-ionic contrast media, iopromide (Ultravist) was compared with ioxitalamate (Telebrix) and/or ioxaglate (Hexabrix) for efficacy and safety in 203 patients undergoing cardiac angiography, neurovascular angiography, peripheral and visceral angiography and intravenous pyelography. In all patients, adverse symptoms and signs including heat sense, pain, nausea, vomiting, etc. were checked during and after the injection. In addition, EKG and LV pressure were monitored during the cardiac angiography. And also CBC, UA, BUN and creatinine were checked before and 24 hours after the cardiac angiography. Serious adverse effect did not occur in any case. Minor effects, such as nausea and abdominal pain, were less frequently caused by non-ionic contrast media than by ionic contrast media, especially in cardiac angiography and intravenous pyelography. There was no significant difference between ionic and non-ionic contrast media in regard to electrophysiologic parameters such as EKG and LV pressure. In case of intravenous pyelography, nonionic contrast media seemed to be superior to ionic contrast media in image quality. It is suggested that, in spite of higher cost, non-ionic contrast media be needed for the safety and image quality, particularly in those patients at high risk of adverse effects by ionic contrast media

  1. Dynamic dielectrophoresis model of multi-phase ionic fluids.

    Directory of Open Access Journals (Sweden)

    Ying Yan

    Full Text Available Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.

  2. Dynamic dielectrophoresis model of multi-phase ionic fluids.

    Science.gov (United States)

    Yan, Ying; Luo, Jing; Guo, Dan; Wen, Shizhu

    2015-01-01

    Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.

  3. Computationally Efficient Prediction of Ionic Liquid Properties

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    Due to fundamental differences, room-temperature ionic liquids (RTIL) are significantly more viscous than conventional molecular liquids and require long simulation times. At the same time, RTILs remain in the liquid state over a much broader temperature range than the ordinary liquids. We exploit...... to ambient temperatures. We numerically prove the validity of the proposed concept for density and ionic diffusion of four different RTILs. This simple method enhances the computational efficiency of the existing simulation approaches as applied to RTILs by more than an order of magnitude....

  4. Binge Eating, But Not Other Disordered Eating Symptoms, Is a Significant Contributor of Binge Drinking Severity: Findings from a Cross-Sectional Study among French Students

    OpenAIRE

    Rolland, Benjamin; Naassila, Mickael; Duffau, Céline; Houchi, Hakim; Gierski, Fabien; André, Judith

    2017-01-01

    Many studies have suggested the co-occurrence of eating disorders and alcohol use disorders but in which extent binge eating (BE) and other disordered eating symptoms (DES) are associated with the severity of binge drinking (BD) remains unknown. We conducted a online cross-sectional study among 1,872 French students. Participants were asked their age, gender, tobacco and cannabis use status. They completed the Alcohol Use Questionnaire (AUQ), Eating Disorder Examination Questionnaire (EDE-Q),...

  5. Predicting meaningful outcomes to medication and self-help treatments for binge-eating disorder in primary care: The significance of early rapid response.

    Science.gov (United States)

    Grilo, Carlos M; White, Marney A; Masheb, Robin M; Gueorguieva, Ralitza

    2015-04-01

    We examined rapid response among obese patients with binge-eating disorder (BED) in a randomized clinical trial testing antiobesity medication and self-help cognitive-behavioral therapy (shCBT), alone and in combination, in primary-care settings. One hundred four obese patients with BED were randomly assigned to 1 of 4 treatments: sibutramine, placebo, shCBT + sibutramine, or shCBT + placebo. Treatments were delivered by generalist primary-care physicians and the medications were given double-blind. Independent assessments were performed by trained and monitored doctoral research clinicians monthly throughout treatment, posttreatment (4 months), and at 6- and 12-month follow-ups (i.e., 16 months after randomization). Rapid response, defined as ≥65% reduction in binge eating by the fourth treatment week, was used to predict outcomes. Rapid response characterized 47% of patients, was unrelated to demographic and baseline clinical characteristics, and was significantly associated, prospectively, with remission from binge eating at posttreatment (51% vs. 9% for nonrapid responders), 6-month (53% vs. 23.6%), and 12-month (46.9% vs. 23.6%) follow-ups. Mixed-effects model analyses revealed that rapid response was significantly associated with greater decreases in binge-eating or eating-disorder psychopathology, depression, and percent weight loss. Our findings, based on a diverse obese patient group receiving medication and shCBT for BED in primary-care settings, indicate that patients who have a rapid response achieve good clinical outcomes through 12-month follow-ups after ending treatment. Rapid response represents a strong prognostic indicator of clinically meaningful outcomes, even in low-intensity medication and self-help interventions. Rapid response has important clinical implications for stepped-care treatment models for BED. clinicaltrials.gov: NCT00537810 (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  6. Ionic Structure at Dielectric Interfaces

    Science.gov (United States)

    Jing, Yufei

    interfaces using molecular dynamics(MD) simulations and compared it with liquid state theory result. We explore the effects of high electrolyte concentrations, multivalent ions, and dielectric contrasts on the ionic distributions. We observe the presence of non-monotonous ionic density profiles leading to structure deformation in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of effective interaction between two interfaces. We show that, in concentrated electrolytes with confinement, it is imperative to take into account the finite-size of the ions as well as proper description of electrostatic interactions in heterogeneous media, which is not fully fulfilled by Poisson-Boltzmann based approaches. The effect of electric field at interface between two immiscible electrolyte solutions is studied as well. The classical Poisson-Boltzmann theory has been widely used to describe the corresponding ionic distribution, even though it neglects the polarization and ion correlations typical of these charged systems. Using Monte Carlo simulations, we provide an enhanced description of an oil-water interface in the presence of an electric field without needing any adjustable parameter, including realistic ionic sizes, ion correlations, and image charges. Our data agree with experimental measurements of excess surface tension for a wide range of electrolyte concentrations of LiCl and TBATPB (tetrabutylammonium-tetraphenylborate), contrasting with the result of the classical non-linear Poisson-Boltzmann theory. More importantly, we show that the size-asymmetry between small Li+ and large Cl- ions can significantly

  7. Nanoscale Ionic Materials

    KAUST Repository

    Rodriguez, Robert; Herrera, Rafael; Archer, Lynden A.; Giannelis, Emmanuel P.

    2008-01-01

    Polymer nanocomposites (nanoparticles dispersed in a polymer matrix) have been the subject of intense research for almost two decades in both academic and industrial settings. This interest has been fueled by the ability of nanocomposites to not only improve the performance of polymers, but also by their ability to introduce new properties. Yet, there are still challenges that polymer nanocomposites must overcome to reach their full potential. In this Research News article we discuss a new class of hybrids termed nanoparticle ionic materials (NIMS). NIMS are organic-inorganic hybrid materials comprising a nanoparticle core functionalized with a covalently tethered ionic corona. They are facilely engineered to display flow properties that span the range from glassy solids to free flowing liquids. These new systems have unique properties that can overcome some of the challenges facing nanocomosite materials. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

  8. Super ionic conductive glass

    Science.gov (United States)

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  9. Ionic liquid marbles.

    Science.gov (United States)

    Gao, Lichao; McCarthy, Thomas J

    2007-10-09

    Liquid marbles have been reported during this decade and have been argued to be potentially useful for microfluidic and lab-on-a-chip applications. The liquid marbles described to date have been composed of either water or glycerol as the liquid and hydrophobized lycopodium or silica as the stabilizing particles. Both of these components are potentially reactive and do not permit the use of organic chemistry; the liquids are volatile. We report the use of perfluoroalkyl particles (oligomeric (OTFE) and polymeric (PTFE) tetrafluoroethylene, which are unreactive) to support/stabilize a range of ionic liquid marbles. Ionic liquids are not volatile and have been demonstrated to be versatile solvents for chemical transformations. Water marbles prepared with OTFE are much more robust than those prepared with hydrophobized lycopodium or silica.

  10. Nanoscale Ionic Materials

    KAUST Repository

    Rodriguez, Robert

    2008-11-18

    Polymer nanocomposites (nanoparticles dispersed in a polymer matrix) have been the subject of intense research for almost two decades in both academic and industrial settings. This interest has been fueled by the ability of nanocomposites to not only improve the performance of polymers, but also by their ability to introduce new properties. Yet, there are still challenges that polymer nanocomposites must overcome to reach their full potential. In this Research News article we discuss a new class of hybrids termed nanoparticle ionic materials (NIMS). NIMS are organic-inorganic hybrid materials comprising a nanoparticle core functionalized with a covalently tethered ionic corona. They are facilely engineered to display flow properties that span the range from glassy solids to free flowing liquids. These new systems have unique properties that can overcome some of the challenges facing nanocomosite materials. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

  11. Excimer Formation Dynamics of Dipyrenyldecane in Structurally Different Ionic Liquids.

    Science.gov (United States)

    Yadav, Anita; Pandey, Siddharth

    2017-12-07

    Ionic liquids, being composed of ions alone, may offer alternative pathways for molecular aggregation. These pathways could be controlled by the chemical structure of the cation and the anion of the ionic liquids. Intramolecular excimer formation dynamics of a bifluorophoric probe, 1,3-bis(1-pyrenyl)decane [1Py(10)1Py], where the fluorophoric pyrene moieties are separated by a long decyl chain, is investigated in seven different ionic liquids in 10-90 °C temperature range. The long alkyl separator allows for ample interaction with the solubilizing milieu prior to the formation of the excimer. The ionic liquids are composed of two sets, one having four ionic liquids of 1-butyl-3-methylimidazolium cation ([bmim + ]) with different anions and the other having four ionic liquids of bis(trifluoromethylsulfonyl)imide anion ([Tf 2 N - ]) with different cations. The excimer-to-monomer emission intensity ratio (I E /I M ) is found to increase with increasing temperature in sigmoidal fashion. Chemical structure of the ionic liquid controls the excimer formation efficiency, as I E /I M values within ionic liquids with the same viscosities are found to be significantly different. The excited-state intensity decay kinetics of 1Py(10)1Py in ionic liquids do not adhere to a simplistic Birk's scheme, where only one excimer conformer forms after excitation. The apparent rate constants of excimer formation (k a ) in highly viscous ionic liquids are an order of magnitude lower than those reported in organic solvents. In general, the higher the viscosity of the ionic liquid, the more sensitive is the k a to the temperature with higher activation energy, E a . The trend in E a is found to be similar to that for activation energy of the viscous flow (E a,η ). Stokes-Einstein relationship is not followed in [bmim + ] ionic liquids; however, with the exception of [choline][Tf 2 N], it is found to be followed in [Tf 2 N - ] ionic liquids suggesting the cyclization dynamics of 1Py(10)1Py

  12. POSS Ionic Liquid.

    Science.gov (United States)

    Tanaka, Kazuo; Ishiguro, Fumiyasu; Chujo, Yoshiki

    2010-12-22

    We report the synthesis of a stable room-temperature ionic liquid consisting of an octacarboxy polyhedral oligomeric silsesquioxane (POSS) anion and an imidazolium cation. The introduction of the POSS moiety enhances the thermal stability and reduces the melting temperature. From an evaluation of the thermodynamic parameters during the melting, it was found that the rigidity and cubic structure of POSS can contribute to the enhancement of these thermal properties.

  13. Thermodynamic estimation: Ionic materials

    International Nuclear Information System (INIS)

    Glasser, Leslie

    2013-01-01

    Thermodynamics establishes equilibrium relations among thermodynamic parameters (“properties”) and delineates the effects of variation of the thermodynamic functions (typically temperature and pressure) on those parameters. However, classical thermodynamics does not provide values for the necessary thermodynamic properties, which must be established by extra-thermodynamic means such as experiment, theoretical calculation, or empirical estimation. While many values may be found in the numerous collected tables in the literature, these are necessarily incomplete because either the experimental measurements have not been made or the materials may be hypothetical. The current paper presents a number of simple and relible estimation methods for thermodynamic properties, principally for ionic materials. The results may also be used as a check for obvious errors in published values. The estimation methods described are typically based on addition of properties of individual ions, or sums of properties of neutral ion groups (such as “double” salts, in the Simple Salt Approximation), or based upon correlations such as with formula unit volumes (Volume-Based Thermodynamics). - Graphical abstract: Thermodynamic properties of ionic materials may be readily estimated by summation of the properties of individual ions, by summation of the properties of ‘double salts’, and by correlation with formula volume. Such estimates may fill gaps in the literature, and may also be used as checks of published values. This simplicity arises from exploitation of the fact that repulsive energy terms are of short range and very similar across materials, while coulombic interactions provide a very large component of the attractive energy in ionic systems. Display Omitted - Highlights: • Estimation methods for thermodynamic properties of ionic materials are introduced. • Methods are based on summation of single ions, multiple salts, and correlations. • Heat capacity, entropy

  14. Course on Ionic Channels

    CERN Document Server

    1986-01-01

    This book is based on a series of lectures for a course on ionic channels held in Santiago, Chile, on November 17-20, 1984. It is intended as a tutorial guide on the properties, function, modulation, and reconstitution of ionic channels, and it should be accessible to graduate students taking their first steps in this field. In the presentation there has been a deliberate emphasis on the spe­ cific methodologies used toward the understanding of the workings and function of channels. Thus, in the first section, we learn to "read" single­ channel records: how to interpret them in the theoretical frame of kinetic models, which information can be extracted from gating currents in re­ lation to the closing and opening processes, and how ion transport through an open channel can be explained in terms of fluctuating energy barriers. The importance of assessing unequivocally the origin and purity of mem­ brane preparations and the use of membrane vesicles and optical tech­ niques in the stUGY of ionic channels a...

  15. Vibrational Spectroscopy of Ionic Liquids.

    Science.gov (United States)

    Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-05-24

    Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.

  16. Assessment of Sexual Desire for Clinical Trials of Women With Hypoactive Sexual Desire Disorder: Measures, Desire-Related Behavior, and Assessment of Clinical Significance.

    Science.gov (United States)

    Pyke, Robert E; Clayton, Anita H

    2018-01-19

    The Female Sexual Function Index-desire subscale is the standard measure for clinical trials of hypoactive sexual desire disorder (HSDD), but lacks items assessing sexually related behaviors and attitudes toward partner. Counting satisfying sexual events is criticized, but sexual behavior remains important. Mean treatment differences cannot define clinical significance; responder and remitter analyses help. We reviewed measures on sexual desire and sexual behavior relevant to HSDD, and how to assess clinical significance. We conducted a literature review of measures of sexual desire comparing expert-proposed criteria for dysfunctional desire, expert-developed scales, and scales from patient input. Commonly recognized symptoms of HSDD were identified. Results of HSDD trials and scale validation studies were evaluated to extract responder and remitter values. The utility of distribution-based measures of responders and remitters was assessed. Symptom relevance was evaluated as the proportion of symptom sets that included the item; responder and remitter cut points were determined by distribution-based methods. 12 Validated rating scales, 5 scales primarily derived from expert recommendations and 7 scales initially from patient input, and 5 sets of diagnostic criteria for conditions like HSDD were compared. Content varied highly between scales despite compliance with U.S. Food and Drug Administration recommendations for patient-reported outcomes. This disunity favors an expert-recommended scale such as the Elements of Desire Questionnaire with each of the common items, plus a measure of frequency of sexual activity, eg, item in the Patient Reported Outcomes Measurement Information System. Registrational drug trials, but not psychological treatment trials, usually give responder/remitter analyses, using dichotomized global impressions or anchor-based definitions. Distribution-based methods are more uniformly applicable to define responder and remitter status. The

  17. Electrochemical behavior of ionically crosslinked polyampholytic gel electrolytes

    International Nuclear Information System (INIS)

    Chen Wanyu; Tang Haitao; Ou Ziwei; Wang Hong; Yang Yajiang

    2007-01-01

    An ionic complex of anionic and cationic monomers was obtained by protonation of (N,N-diethylamino)ethylmethacrylate (DEA) with acrylic acid (AAc). Free radical copolymerization of the ionic complex and acrylamide (AAm), yielded the ionically crosslinked polyampholytic gel electrolytes [poly(AAc-DEA-AAm), designated as PADA] using two types of organic solvents containing a lithium salt. The PADA gel electrolyte exhibited good thermal stability shown by the DSC thermogram. The impedance analysis at temperatures ranging from -30 to 75 deg. C indicated that the ionic conductivities of the PADA gel electrolytes were rather close to those of liquid electrolytes. The temperature dependence of the ionic conductivities was found to be in accord with the Arrhenius equation. Moreover, the ionic conductivities of PADA gel electrolytes increased with an increase of the molar ratios of cationic/anionic monomers. The ionic conductivities of PADA gels prepared in solvent mixtures of propylene carbonate, ethyl methyl ether and dioxolane (3:1:1, v/v) were higher than those of PADA gels prepared in propylene carbonate only. Significantly, the ionic conductivities of two kinds of PADA gel electrolytes were in the range of 10 -3 and 10 -4 S cm -1 even at -30 deg. C. The electrochemical windows of PADA gel electrolytes measured by cyclic voltammetry were in the range from -1 V to 4.5 V

  18. Structure, ionic Conductivity and mobile Carrier Density in Fast Ionic Conducting Chalcogenide Glasses

    International Nuclear Information System (INIS)

    Wenlong Yao

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M 2 S + (0.1 Ga 2 S 3 + 0.9 GeS 2 ) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga 2 S 3 + 0.9 GeS 2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M 2 S + (0.1Ga 2 S 3 + 0.9 GeS 2 ) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na 2 S + B 2 S 3 (x (le) 0.2) glasses by neutron and synchrotron x-ray diffraction. Similar results were obtained both in neutron and synchrotron x-ray diffraction experiments. The results provide direct

  19. Interactions in ion pairs of protic ionic liquids: Comparison with aprotic ionic liquids

    International Nuclear Information System (INIS)

    Tsuzuki, Seiji; Shinoda, Wataru; Miran, Md. Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi

    2013-01-01

    The stabilization energies for the formation (E form ) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G ** level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E form for the [dema][CF 3 SO 3 ] and [dmpa][CF 3 SO 3 ] complexes (−95.6 and −96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF 3 SO 3 ] complex (−81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl − , BF 4 − , TFSA − anions. The anion has contact with the N–H bond of the dema + or dmpa + cations in the most stable geometries of the dema + and dmpa + complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0–18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E form for the less stable geometries for the dema + and dmpa + complexes are close to those for the most stable etma + complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N–H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA − anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF 3 SO 3 ] ionic liquid

  20. Structure, ionic conductivity and mobile carrier density in fast ionic conducting chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Wenlong [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M2S + (0.1 Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga2S3 + 0.9 GeS2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M2S + (0.1Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na2S + B2S3 (x ≤ 0.2) glasses by neutron and synchrotron x-ray diffraction

  1. Graphene-ionic liquid composites

    Energy Technology Data Exchange (ETDEWEB)

    Aksay, Ilhan A.; Korkut, Sibel; Pope, Michael; Punckt, Christian

    2016-11-01

    Method of making a graphene-ionic liquid composite. The composite can be used to make elec-trodes for energy storage devices, such as batteries and supercapacitors. Dis-closed and claimed herein is method of making a graphene-ionic liquid com-posite, comprising combining a graphene source with at least one ionic liquid and heating the combination at a temperature of at least about 130 .degree. C.

  2. Clinically significant response to zolpidem in disorders of consciousness secondary to anti-N-methyl-D-aspartate receptor encephalitis in a teenager: a case report.

    Science.gov (United States)

    Appu, Merveen; Noetzel, Michael

    2014-03-01

    Anti-N-methyl-d-aspartate receptor encephalitis has been associated with a prolonged neuropsychiatric phase that may last for months to years. We report the case of a 16-year-old girl who was diagnosed with anti-N-methyl-d-aspartate receptor encephalitis resulting from left ovarian mature teratoma 2 weeks after presentation with psychosis. Following tumor removal and immunotherapy, recovery from a minimally conscious state was accelerated significantly by zolpidem that was used for her sleep disturbance. Our patient was discharged home 8 weeks after admission with marked improvement in her neurological function. Zolpidem has been reported to improve arousal in disorders of consciousness but there are no previous reports of its benefit among patients with anti-N-methyl-d-aspartate receptor encephalitis. Zolpidem would be a reasonable consideration as an adjunctive treatment in anti-N-methyl-d-aspartate receptor encephalitis after tumor removal and immunotherapy to accelerate recovery and rehabilitation. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. SIGNIFICANCE OF TARGETED EXOME SEQUENCING AND METHODS OF DATA ANALYSIS IN THE DIAGNOSIS OF GENETIC DISORDERS LEADING TO THE DEVELOPMENT OF EPILEPTIC ENCEPHALOPATHY

    Directory of Open Access Journals (Sweden)

    Tatyana Victorovna Kozhanova

    2017-08-01

    Full Text Available Epilepsy is the most common serious neurological disorder, and there is a genetic basis in almost 50% of people with epilepsy. The diagnosis of genetic epilepsies makes to estimate reasons of seizures in the patient. Last decade has shown tremendous growth in gene sequencing technologies, which have made genetic tests available. The aim is to show significance of targeted exome sequencing and methods of data analysis in the diagnosis of hereditary syndromes leading to the development of epileptic encephalopathy. We examined 27 patients with с early EE (resistant to antiepileptic drugs, psychomotor and speech development delay in the psycho-neurological department. Targeted exome sequencing was performed for patients without a previously identified molecular diagnosis using 454 Sequencing GS Junior sequencer (Roche and IlluminaNextSeq 500 platform. As a result of the analysis, specific epilepsy genetic variants were diagnosed in 27 patients. The greatest number of cases was due to mutations in the SCN1A gene (7/27. The structure of mutations for other genes (mutations with a minor allele frequency of less than 0,5% are presented: ALDH7A1 (n=1, CACNA1C (n=1, CDKL5 (n=1, CNTNAP2 (n=2, DLGAP2 (n=2, DOCK7 (n=2, GRIN2B (n=2, HCN1 (n=1, NRXN1 (n=3, PCDH19 (n=1, RNASEH2B (n=2, SLC2A1 (n=1, UBE3A (n=1. The use of the exome sequencing in the genetic practice allows to significantly improve the effectiveness of medical genetic counseling, as it made possible to diagnose certain variants of genetically heterogeneous groups of diseases with similar of clinical manifestations.

  4. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    Science.gov (United States)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  5. Impurity effects on ionic-liquid-based supercapacitors

    International Nuclear Information System (INIS)

    Liu, Kun; Lian, Cheng; Henderson, Douglas; Wu, Jianzhong

    2016-01-01

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface of a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. As a result, by comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.

  6. Impurity effects on ionic-liquid-based supercapacitors

    Science.gov (United States)

    Liu, Kun; Lian, Cheng; Henderson, Douglas; Wu, Jianzhong

    2017-02-01

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface of a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. By comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.

  7. Effects of Sublattice Symmetry and Frustration on Ionic Transport in Garnet Solid Electrolytes

    Science.gov (United States)

    Kozinsky, Boris; Akhade, Sneha A.; Hirel, Pierre; Hashibon, Adham; Elsässer, Christian; Mehta, Prateek; Logeat, Alan; Eisele, Ulrich

    2016-02-01

    We use rigorous group-theoretic techniques and molecular dynamics to investigate the connection between structural symmetry and ionic conductivity in the garnet family of solid Li-ion electrolytes. We identify new ordered phases and order-disorder phase transitions that are relevant for conductivity optimization. Ionic transport in this materials family is controlled by the frustration of the Li sublattice caused by incommensurability with the host structure at noninteger Li concentrations, while ordered phases explain regions of sharply lower conductivity. Disorder is therefore predicted to be optimal for ionic transport in this and other conductor families with strong Li interaction.

  8. Ionic liquids comprising heteraromatic anions

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, William F.; Brennecke, Joan F.; Maginn, Edward J.; Mindrup, Elaine; Gurkan, Burcu; Price, Erica; Goodrich, Brett

    2018-04-24

    Some embodiments described herein relate to ionic liquids comprising an anion of a heteraromatic compound such as optionally substituted pyrrolide, optionally substituted pyrazolide, optionally substituted indolide, optionally substituted phospholide, or optionally substituted imidazolide. Methods and devices for gas separation or gas absorption related to these ionic liquids are also described herein.

  9. Supercritical fluids in ionic liquids

    NARCIS (Netherlands)

    Kroon, M.C.; Peters, C.J.; Plechkova, N.V.; Seddon, K.R.

    2014-01-01

    Ionic liquids and supercritical fluids are both alternative environmentally benign solvents, but their properties are very different. Ionic liquids are non-volatile but often considered highly polar compounds, whereas supercritical fluids are non-polar but highly volatile compounds. The combination

  10. Clinical experience with a non-ionic contrast medium (ultravist) in left ventriculography

    International Nuclear Information System (INIS)

    Lee, Ghi Jai; Park, Jae Hyung; Soe, Gwy Suk; Hong, Ju Hee; Han, Man Chung

    1988-01-01

    Non-ionic contrast medium, iopromide (Ultravist), was compared with ionic contrast medium, ioxitalamate (Telebrix), for efficacy and safety in 63 patients undergoing left ventriculography. In all patients, adverse symptoms and signs including pain, heat sense, nausea, vomiting, etc., were checked during and shortly after the injection. Blood pressure, heart rate, EKG and left ventricular pressure were also monitored during the study, and CBC, UA, BUN and creatinine were checked before and 24 hours after the study. The cineangiographic films were analysed and compared by 2 radiologists for the quality. Serious adverse effect did not occur in any case. Minor effects, especially nausea, were lee frequently caused by non-ionic contrast medium than by ionic contrast medium, and heat sense to non-ionic contrast medium was less severe than to ionic contrast medium. Except slightly elevated LVEDP at 1,5 minutes after the study in patients given ionic contrast medium, there was no significant change of electrophysiologic parameters and laboratory findings in both groups. In regard to image quality, there was no significant difference between ionic and non-ionic contrast medium. Thus non-ionic contrast medium, iopromide, appears to be safer for use in left ventriculography than the conventional ionic contrast medium, particularly in those patients at high risk of adverse effects.

  11. Electroactive Ionic Soft Actuators with Monolithically Integrated Gold Nanocomposite Electrodes.

    Science.gov (United States)

    Yan, Yunsong; Santaniello, Tommaso; Bettini, Luca Giacomo; Minnai, Chloé; Bellacicca, Andrea; Porotti, Riccardo; Denti, Ilaria; Faraone, Gabriele; Merlini, Marco; Lenardi, Cristina; Milani, Paolo

    2017-06-01

    Electroactive ionic gel/metal nanocomposites are produced by implanting supersonically accelerated neutral gold nanoparticles into a novel chemically crosslinked ion conductive soft polymer. The ionic gel consists of chemically crosslinked poly(acrylic acid) and polyacrylonitrile networks, blended with halloysite nanoclays and imidazolium-based ionic liquid. The material exhibits mechanical properties similar to that of elastomers (Young's modulus ≈ 0.35 MPa) together with high ionic conductivity. The fabrication of thin (≈100 nm thick) nanostructured compliant electrodes by means of supersonic cluster beam implantation (SCBI) does not significantly alter the mechanical properties of the soft polymer and provides controlled electrical properties and large surface area for ions storage. SCBI is cost effective and suitable for the scaleup manufacturing of electroactive soft actuators. This study reports the high-strain electromechanical actuation performance of the novel ionic gel/metal nanocomposites in a low-voltage regime (from 0.1 to 5 V), with long-term stability up to 76 000 cycles with no electrode delamination or deterioration. The observed behavior is due to both the intrinsic features of the ionic gel (elasticity and ionic transport capability) and the electrical and morphological features of the electrodes, providing low specific resistance (<100 Ω cm -2 ), high electrochemical capacitance (≈mF g -1 ), and minimal mechanical stress at the polymer/metal composite interface upon deformation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. VOC and HAP recovery using ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Michael R. Milota : Kaichang Li

    2007-05-29

    During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy

  13. Binge Eating, But Not Other Disordered Eating Symptoms, Is a Significant Contributor of Binge Drinking Severity: Findings from a Cross-Sectional Study among French Students.

    Science.gov (United States)

    Rolland, Benjamin; Naassila, Mickael; Duffau, Céline; Houchi, Hakim; Gierski, Fabien; André, Judith

    2017-01-01

    Many studies have suggested the co-occurrence of eating disorders and alcohol use disorders but in which extent binge eating (BE) and other disordered eating symptoms (DES) are associated with the severity of binge drinking (BD) remains unknown. We conducted a online cross-sectional study among 1,872 French students. Participants were asked their age, gender, tobacco and cannabis use status. They completed the Alcohol Use Questionnaire (AUQ), Eating Disorder Examination Questionnaire (EDE-Q), and UPPS impulsive behavior questionnaire. BD score was calculated using the AUQ. Three items of the EDE-Q were used to construct a BE score. The predictors of the BD score were determined using a linear regression model. Our results showed that the BE score was correlated with the BD score (β 0 = 0.051 ± 0.022; p = 0.019), but no other DES was associated with BD, including purging behaviors. The severity of BD was also correlated with younger age, male gender, tobacco and cannabis use, and with the 'positive urgency,' 'premeditation,' and 'sensation seeking' UPPS subscores ( R 2 of the model: 25%). Within DES, BE appeared as an independent determinant of the BD severity. This is in line with the recent hypothesis that BE is not a subtype of DES, but more a general vulnerability factor of emotional dysregulation, which could be shared by different behavioral and addictive disorders.

  14. Binge Eating, But Not Other Disordered Eating Symptoms, Is a Significant Contributor of Binge Drinking Severity: Findings from a Cross-Sectional Study among French Students

    Directory of Open Access Journals (Sweden)

    Benjamin Rolland

    2017-10-01

    Full Text Available Many studies have suggested the co-occurrence of eating disorders and alcohol use disorders but in which extent binge eating (BE and other disordered eating symptoms (DES are associated with the severity of binge drinking (BD remains unknown. We conducted a online cross-sectional study among 1,872 French students. Participants were asked their age, gender, tobacco and cannabis use status. They completed the Alcohol Use Questionnaire (AUQ, Eating Disorder Examination Questionnaire (EDE-Q, and UPPS impulsive behavior questionnaire. BD score was calculated using the AUQ. Three items of the EDE-Q were used to construct a BE score. The predictors of the BD score were determined using a linear regression model. Our results showed that the BE score was correlated with the BD score (β0 = 0.051 ± 0.022; p = 0.019, but no other DES was associated with BD, including purging behaviors. The severity of BD was also correlated with younger age, male gender, tobacco and cannabis use, and with the ‘positive urgency,’ ‘premeditation,’ and ‘sensation seeking’ UPPS subscores (R2 of the model: 25%. Within DES, BE appeared as an independent determinant of the BD severity. This is in line with the recent hypothesis that BE is not a subtype of DES, but more a general vulnerability factor of emotional dysregulation, which could be shared by different behavioral and addictive disorders.

  15. CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength

    Science.gov (United States)

    Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.

  16. A classical density functional theory of ionic liquids.

    Science.gov (United States)

    Forsman, Jan; Woodward, Clifford E; Trulsson, Martin

    2011-04-28

    We present a simple, classical density functional approach to the study of simple models of room temperature ionic liquids. Dispersion attractions as well as ion correlation effects and excluded volume packing are taken into account. The oligomeric structure, common to many ionic liquid molecules, is handled by a polymer density functional treatment. The theory is evaluated by comparisons with simulations, with an emphasis on the differential capacitance, an experimentally measurable quantity of significant practical interest.

  17. A Review of Ionic Liquid Lubricants

    OpenAIRE

    Anthony E. Somers; Patrick C. Howlett; Douglas R. MacFarlane; Maria Forsyth

    2013-01-01

    Due to ever increasing demands on lubricants, such as increased service intervals, reduced volumes and reduced emissions, there is a need to develop new lubricants and improved wear additives. Ionic liquids (ILs) are room temperature molten salts that have recently been shown to offer many advantages in this area. The application of ILs as lubricants in a diverse range of systems has found that these materials can show remarkable protection against wear and significantly reduce friction in th...

  18. Physicochemical properties of fatty acid based ionic liquids

    International Nuclear Information System (INIS)

    Rocha, Marisa A.A.; Bruinhorst, Adriaan van den; Schröer, Wolffram; Rathke, Bernd; Kroon, Maaike C.

    2016-01-01

    Highlights: • Effects of a branched anion and a mono-unsaturated anion on the physicochemical properties have been explored. • Fatty acid based ionic liquids were synthesized and characterized. • Densities and viscosities at different temperatures have been measured. • The thermal operating window and thermal phase behavior have been evaluated. - Abstract: In this work a series of fatty acid based ionic liquids has been synthesized and characterized. Densities and viscosities at different temperatures have been measured in the temperature range from (293.15 to 363.15) K. The thermal operating window and thermal phase behavior have been evaluated. The effects of a branched anion and a mono-unsaturated anion on the physicochemical properties have been explored. It has been observed that the density (T = 298.15 K) decreases with the following sequence: methyltrioctylammonium 4-ethyloctanoate > methyltrioctylammonium oleate ≈ tetrahexylammonium oleate > tetraoctylammonium oleate, with no detectable dependency of the thermal expansion coefficients on the total number of carbons in the ionic liquid. An almost linear correlation between the molar volumes and the total number of carbons of the alkanes together with the studied ionic liquids was found. The experimental viscosity data were correlated using the Vogel–Fulcher–Tammann (VFT) equation, where a maximum relative deviation of 1.4% was achieved. The ionic liquid with branched alkyl chains on the anion presents the highest viscosity, and methyltrioctylammonium oleate has the highest viscosity compared to the rest of the oleate based ionic liquids. The short and long-term stability were evaluated for all ionic liquids, their long-term decomposition temperatures were found to be significantly lower than their short-term decomposition temperatures. From the long-term thermal analysis was concluded that the highest temperature at which these ionic liquids can be kept is 363 K. In addition, the thermal

  19. Lattice dynamics of ionic crystals

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1990-01-01

    The theory of lattice dynamics for ionic and rare-gas crystals is derived in the harmonic approximation. We start from a Hamiltonian and average over electron coordinates in order to obtain an effective interaction between ion displacements. We assume that electronic excitations are localized on a single ion, which limits the theory to ionic crystals. The deformation-dipole model and the indirect-ionic-interaction model are derived. These two contributions are closely linked, and together provide an accurate description of short-range forces

  20. Hydrogen production from glucose in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Assenbaum, D.W.; Taccardi, N.; Berger, M.E.M.; Boesmann, A.; Enzenberger, F.; Woelfel, R.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer chemische Reaktionstechnik

    2010-07-01

    technologies suffer from the fact that the overall reaction rates are often restricted by mass and heat transport problems. Lastly, there are severe limitations concerning the feedstock selection as for some important substrates, such as e.g. glucose, the process can only be operated in very diluted systems to avoid rapid tar formation [22,23,24]. In this contribution we describe for the first time a catalytic reaction system producing hydrogen from glucose in astonishingly high selectivities using a single reaction step under very mild conditions. The catalytic reaction system is characterized by its homogeneous nature and comprises a Ru-complex catalyst dissolved and stabilized in an ionic liquid medium. Ionic liquids are salts of melting points below 100 C [25]. These liquid materials have attracted much interest in the last decade as solvents for catalytic reactions [26] and separation technologies (extraction, distillation) [27,28,29,30,31,32]. Besides, these liquids have found industrial applications as process fluids for mechanic [33] and electrochemical applications [34]. Finally, from the pioneering work of Rogers and co-workers, it is known that ionic liquids are able to dissolve significant amounts of water-insoluble biopolymers (such as e.g. cellulose and chitin)[35] and even complex biopolymer mixtures, such as e.g. wood, have been completely dissolved in some ionic liquids [36]. In our specific application, the role of the ionic liquid is threefold: a) the ionic liquid dissolves the carbohydrate starting material thus expanding the range of applicable carbohydrate to water insoluble polymers; b) the ionic liquid provides a medium to dissolve and stabilize the catalyst; c) the ionic liquid dissolves hydrogen at a very low level, so inhibiting any possible collateral hydrogen-consuming process (detailed investigation of the hydrogen solubility in ionic liquids have been reported by e.g. Brennecke and coworkers [37]). (orig.)

  1. Ionic Liquid Crystals: Versatile Materials.

    Science.gov (United States)

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

  2. Acquiring a Pet Dog Significantly Reduces Stress of Primary Carers for Children with Autism Spectrum Disorder: A Prospective Case Control Study

    Science.gov (United States)

    Wright, H. F.; Hall, S.; Hames, A.; Hardiman, J.; Mills, R.; Mills, D. S.

    2015-01-01

    This study describes the impact of pet dogs on stress of primary carers of children with Autism Spectrum Disorder (ASD). Stress levels of 38 primary carers acquiring a dog and 24 controls not acquiring a dog were sampled at: Pre-intervention (17 weeks before acquiring a dog), post-intervention (3-10 weeks after acquisition) and follow-up…

  3. Ionic Liquid Epoxy Resin Monomers

    Science.gov (United States)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  4. Studies in solid state ionics

    International Nuclear Information System (INIS)

    Jakes, D.; Rosenkranz, J.

    1987-01-01

    Studies performed over 10 years by the high temperature chemistry group are reviewed. Attention was paid to different aspects of ionic solids from the point of view of practical as well as theoretical needs of nuclear technology. Thus ceramic fuel compound like uranates, urania-thoria system, solid electrolytes based on oxides and ionics transformations were studied under reactor irradiation. (author) 13 figs., 3 tabs., 46 refs

  5. The Royal Australian College of Radiologists (RACR) survey of reactions to intravenous ionic and non-ionic contrast media

    International Nuclear Information System (INIS)

    Palmer, J.F.

    1989-01-01

    The Royal Australian College of Radiologists (RACR) expressed concern as to medico-legal implications of the continued use of conventional ionic contrast media in view of the availability of the new low-osmolar media. The new agents had demonstrated significant advantages and it was anticipated that their use would be associated with a lower incidence of undesirable reactions and deaths. However, these new media are significantly more expensive than conventional ionic media and complete changes to these agents has considerable implications for health budgets. Since it was the view of the RACR that there was insufficient information available of the incidence of reactions in clinical use to justify a complete change, a prospective survey of reations to intravenous contrast media injections was initiated. Particpants were issued a simple form, which required for each patient a record of the presence or absence of risk factors, wether ionic or non-ionic contrast media were used, and of the severity of eventual reactions. The results of about 170.000 patients were reported. The survey demonstrated the relative safety of non-ionic media for intravenous use. Despite the relative high cost of these media the continued use of conventional ionic media will become increasingly difficult to justify. (H.W.). 9 refs.; 4 tabs

  6. Fluctuating hydrodynamics for ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, Konstantinos [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States); Wickham, Logan [Department of Computer Science, Washington State University, Richland, 99354 (United States); Voulgarakis, Nikolaos, E-mail: n.voulgarakis@wsu.edu [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States)

    2017-04-25

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids. - Highlights: • A new fluctuating hydrodynamics method for ionic liquids. • Description of ionic liquid morphology in bulk and near electrified surfaces. • Direct comparison with experimental measurements.

  7. Arterial and venous blood pressure and blood flow following femoral angiography with a new non-ionic contrast medium

    International Nuclear Information System (INIS)

    Nyman, U.; Almen, T.

    1978-01-01

    At femoral angiography in dogs the effects of a new non-ionic contrast medium (C29) were compared with those of one non-ionic medium (metrizamide) and one ionic medium (meglumine/sodium diatrizoate) in current use. In the leg subjected to angiography the pressure gradient over the peripheral vessels decreased and the femoral blood flow increased. The changes induced by the ionic medium were significantly greater than those induced by metrizamide and C29, whereas no significant difference between the two non-ionic media was recorded. (Auth.)

  8. Toward protic ionic liquid and organic ionic plastic crystal electrolytes for fuel cells

    International Nuclear Information System (INIS)

    Rana, Usman Ali; Forsyth, Maria; MacFarlane, Douglas R.; Pringle, Jennifer M.

    2012-01-01

    Highlights: ► Polymer electrolyte membrane fuel cells that can operate above 120 °C, without humidification, would be much more commercially viable. ► Protic ionic liquids and organic ionic plastic crystals are showing increasing promise as anhydrous proton conductors in fuel cells. ► Here we review the recent progress in these two areas. - Abstract: There is increasing demand for the development of anhydrous proton conducting electrolytes, most notably to allow the development of fuel cells that can operate at temperatures above 120 °C, without the need for constant and controlled humidification. The emerging field of protic ionic liquids (PILs) represents a promising new direction for this research and the development of these materials has made significant progress in recent years. In a related but as yet little-explored avenue, proton conducting organic ionic plastic crystals offer the potential advantage of providing a solid state matrix for anhydrous proton conductivity. Here we discuss the recent progress in these areas and identify the key challenges for future research.

  9. Fluorescent probe studies of polarity and solvation within room temperature ionic liquids: a review.

    Science.gov (United States)

    Pandey, Shubha; Baker, Sheila N; Pandey, Siddharth; Baker, Gary A

    2012-09-01

    Ionic liquids display an array of useful and sometimes unconventional, solvent features and have attracted considerable interest in the field of green chemistry for the potential they hold to significantly reduce environmental emissions. Some of these points have a bearing on the chemical reactivity of these systems and have also generated interest in the physical and theoretical aspects of solvation in ionic liquids. This review presents an introduction to the field of ionic liquids, followed by discussion of investigations into the solvation properties of neat ionic liquids or mixed systems including ionic liquids as a major or minor component. The ionic liquid based multicomponent systems discussed are composed of other solvents, other ionic liquids, carbon dioxide, surfactants or surfactant solutions. Although we clearly focus on fluorescence spectroscopy as a tool to illuminate ionic liquid systems, the issues discussed herein are of general relevance to discussions of polarity and solvent effects in ionic liquids. Transient solvation measurements carried out by means of time-resolved fluorescence measurements are particularly powerful for their ability to parameterize the kinetics of the solvation process in ionic liquids and are discussed as well.

  10. What we have changed our minds about: Part 2. Borderline personality disorder, epistemic trust and the developmental significance of social communication.

    Science.gov (United States)

    Fonagy, Peter; Luyten, Patrick; Allison, Elizabeth; Campbell, Chloe

    2017-01-01

    In Part 1 of this paper, we discussed emerging evidence suggesting that a general psychopathology or 'p' factor underlying the various forms of psychopathology should be conceptualized in terms of the absence of resilience, that is, the absence of positive reappraisal mechanisms when faced with adversity. These impairments in the capacity for positive reappraisal seem to provide a comprehensive explanation for the association between the p factor and comorbidity, future caseness, and the 'hard-to-reach' character of many patients with severe personality pathology, most notably borderline personality disorder (BPD). In this, the second part of the paper, we trace the development of the absence of resilience to disruptions in the emergence of human social communication, based on recent evolutionary and developmental psychopathology accounts. We argue that BPD and related disorders may be reconceptualized as a form of social understanding in which epistemic hypervigilance, distrust or outright epistemic freezing is an adaptive consequence of the social learning environment. Negative appraisal mechanisms become overriding, particularly in situations of attachment stress. This constitutes a shift towards a more socially oriented perspective on personality psychopathology in which the absence of psychological resilience is seen as a learned response to the transmission of social knowledge. This shift in our views has also forced us to reconsider the role of attachment in BPD. The implications for prevention and intervention of this novel approach are discussed.

  11. Ionic and non-ionic contrast media used for contrast-enhanced computed tomography in experimental pancreatitis

    International Nuclear Information System (INIS)

    Kivisaari, L.; Nuutinen, P.; Lehtola, A.; Saari, A.; Pitkaeranta, P.; Standertskjoeld-Nordenstam, C.G.; Lempinen, M.; Schroeder, T.; Helsinki Univ. Central Hospital

    1988-01-01

    Contrast enhancement of the pancreas was studied in pigs using dynamic computed tomography in experimental oedematous and haemorrhagic/necrotizing pancreatitis during the first two minutes after injection of an intravenous bolus of non-ionic contrast medium (iohexol). The prospects of separating the two forms of the disease, known to be possible with ionic contrast media, were tested with a non-ionic contrast medium. In the oedematous form, contrast enhancement after 5 hours of the disease was significantly higher than in the haemorrhagic/necrotizing form. Contrast enhancement after 30 hours of disease tended to vary with the severity of the disease, showing that the course of oedematous pancreatitis is dynamic. Intermediate forms occur and follow-up studies are needed during the disease. A non-ionic contrast medium proved as good for separating the two forms of the disease in the early phase as were ionic contrast media. In severely ill patients, non-ionic contrast media should therefore be used. (orig.)

  12. Ionic liquid-based materials: a platform to design engineered CO2 separation membranes.

    Science.gov (United States)

    Tomé, Liliana C; Marrucho, Isabel M

    2016-05-21

    During the past decade, significant advances in ionic liquid-based materials for the development of CO2 separation membranes have been accomplished. This review presents a perspective on different strategies that use ionic liquid-based materials as a unique tuneable platform to design task-specific advanced materials for CO2 separation membranes. Based on compilation and analysis of the data hitherto reported, we provide a judicious assessment of the CO2 separation efficiency of different membranes, and highlight breakthroughs and key challenges in this field. In particular, configurations such as supported ionic liquid membranes, polymer/ionic liquid composite membranes, gelled ionic liquid membranes and poly(ionic liquid)-based membranes are detailed, discussed and evaluated in terms of their efficiency, which is attributed to their chemical and structural features. Finally, an integrated perspective on technology, economy and sustainability is provided.

  13. Fast Measurement of Methanol Concentration in Ionic Liquids by Potential Step Method

    Directory of Open Access Journals (Sweden)

    Michael L. Hainstock

    2015-01-01

    Full Text Available The development of direct methanol fuel cells required the attention to the electrolyte. A good electrolyte should not only be ionic conductive but also be crossover resistant. Ionic liquids could be a promising electrolyte for fuel cells. Monitoring methanol was critical in several locations in a direct methanol fuel cell. Conductivity could be used to monitor the methanol content in ionic liquids. The conductivity of 1-butyl-3-methylimidazolium tetrafluoroborate had a linear relationship with the methanol concentration. However, the conductivity was significantly affected by the moisture or water content in the ionic liquid. On the contrary, potential step could be used in sensing methanol in ionic liquids. This method was not affected by the water content. The sampling current at a properly selected sampling time was proportional to the concentration of methanol in 1-butyl-3-methylimidazolium tetrafluoroborate. The linearity still stood even when there was 2.4 M water present in the ionic liquid.

  14. Predictive model for ionic liquid extraction solvents for rare earth elements

    International Nuclear Information System (INIS)

    Grabda, Mariusz; Oleszek, Sylwia; Panigrahi, Mrutyunjay; Kozak, Dmytro; Shibata, Etsuro; Nakamura, Takashi; Eckert, Franck

    2015-01-01

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF 3 -ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids’ ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effective extraction solvents for liquid-liquid extraction of DyF 3 were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests

  15. Detection of serum zinc and its significances in children with tic disorders%抽动障碍患者血清锌测定及意义

    Institute of Scientific and Technical Information of China (English)

    胡莲清; 周厚成; 郑璇; 蔡若吟; 许立德; 林旭妮; 陈楚虹

    2005-01-01

    目的了解抽动障碍(tic disorders)患者血清锌水平并探讨血清锌测定的意义.方法测定19例抽动障碍患者(病例组)空腹血清锌浓度,并与20例正常儿童(对照组)进行比较.结果病例组血清锌为(12.04±1.07)μmol/L,对照组为(13.21±1.13)μmol/L,两组血清锌均值比较,差异有显著意义(P<0.01).结论抽动障碍患者存在低血锌,推测低锌与抽动障碍的发病机制有关,治疗时应予考虑.

  16. Significance of saturation index of certain clay minerals in shallow ...

    Indian Academy of Sciences (India)

    Significance of saturation index of certain clay minerals in shallow ... The value of ionic activity product (IAP) for a mineral ... where γi is the activity coefficient of ionic species ...... Domenico P A and Schwartz W 1990 Physical and Chemical.

  17. A Narrow and Highly Significant Linkage Signal for Severe Bipolar Disorder in the Chromosome 5q33 Region in Latin American Pedigrees

    Science.gov (United States)

    Jasinska, A.J.; Service, S.; Jawaheer, D.; DeYoung, J.; Levinson, M.; Zhang, Z.; Kremeyer, B.; Muller, H.; Aldana, I.; Garcia, J.; Restrepo, G.; Lopez, C.; Palacio, C.; Duque, C.; Parra, M.; Vega, J.; Ortiz, D.; Bedoya, G.; Mathews, C.; Davanzo, P.; Fournier, E.; Bejarano, J.; Ramirez, M.; Ortiz, C. Araya; Araya, X.; Molina, J.; Sabatti, C.; Reus, V.; Ospina, J.; Macaya, G.; Ruiz-Linares, A.; Freimer, N.B.

    2016-01-01

    We previously reported linkage of bipolar disorder to 5q33-q34 in families from two closely related population isolates, the Central Valley of Costa Rica (CVCR) and Antioquia, Colombia (CO). Here we present follow up results from fine-scale mapping in large CVCR and CO families segregating severe bipolar disorder, BP-I, and in 343 population trios/duos from CVCR and CO. Employing densely spaced SNPs to fine map the prior linkage peak region increases linkage evidence and clarifies the position of the putative BP-I locus. We performed two-point linkage analysis with 1134 SNPs in an approximately 9 Mb region between markers D5S410 and D5S422. Combining pedigrees from CVCR and CO yields a LOD score of 4.9 at SNP rs10035961. Two other SNPs (rs7721142 and rs1422795) within the same 94 kb region also displayed LOD scores greater than 4. This linkage peak coincides with our prior microsatellite results and suggests a narrowed BP-I susceptibility regions in these families. To investigate if the locus implicated in the familial form of BP-I also contributes to disease risk in the population, we followed up the family results with association analysis in duo and trio samples, obtaining signals within 2 Mb of the peak linkage signal in the pedigrees; rs12523547 and rs267015 (P = 0.00004 and 0.00016, respectively) in the CO sample and rs244960 in the CVCR sample and the combined sample, with P = 0.00032 and 0.00016, respectively. It remains unclear whether these association results reflect the same locus contributing to BP susceptibility within the extended pedigrees. PMID:19319892

  18. Picosecond radiolysis of ionic liquids

    International Nuclear Information System (INIS)

    Funston, A.M.; Wishart, J.F.; Neta, P.; Lall, S.I.; Engel, R.

    2003-01-01

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in nuclear fuel and waste processing, energy production, improving the efficiency and safety of industrial chemical processes, and pollution prevention. Ionic liquids are completely nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. An understanding of the radiation chemistry of ionic liquids is important for development of their applications in radioactive material processing and for the application of pulse radiolysis techniques to the general study of chemical reactivity in ionic liquids. Kinetic studies with a picosecond electron accelerator, such as the BNL Laser-Electron Accelerator Facility (LEAF), allow one to observe primary radiation products and their reactions on short time scales. For example, the solvated electron lifetime in neat methyltributylammonium bis(trifluoromethylsulfonyl)imide is ∼300 ns and its absorption maximum is ∼1400 nm. Kinetic studies of primary radiolytic products and their reactivities will be described for several types of ionic liquids. Supported in part by the U.S. Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences, under contract DE-AC02-98-CH1088

  19. Nd{sub 2±x}Zr{sub 2∓x}O{sub 7±x/2} (−0.2≤x≤0.4) complex oxides: Effect of anion disorder on ionic conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anithakumari, P., E-mail: anithakumari21-02@yahoo.co.in; Grover, V.; Tyagi, A. K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India-400085 (India)

    2016-05-23

    In the present work, a series of Nd{sub 2±x}Zr{sub 2∓x}O{sub 7±x/2} (−0.2≤x≤0.4) was prepared by self assisted gel-combution method followed by high temperature sintering at 1673 K. Thorough structural characterizations were done by X-ray diffraction and Raman spectroscopic techniques. The nominal compositions Nd{sub 1.6}Zr{sub 2.4}O{sub 7.2} and Nd{sub 1.8}Zr{sub 2.2}O{sub 7.1} were found to possess single-phasic pyrochlore structure whereas Nd{sub 2.0}Zr{sub 2.0}O{sub 7} and Nd{sub 2.2}Zr{sub 1.8}O{sub 6.9} consisted of a pyrochlore phase and a small amount of hexagonal Nd{sub 2}O{sub 3} as an impurity phase. Electrical behavior of the samples was examined by AC impedance analysis. Even though the activation energies of all the samples are not very different, a high pre-exponential factor for the Nd{sub 1.6}Zr{sub 2.4}O{sub 7.2} composition resulted in high ionic conductivity (3.37 × 10{sup −3} Scm{sup −1} at 773 K). This high ionic conductivity value makes it a superior candidate as an electrolyte material for SOFC applications.

  20. Ionic conductivity in irradiated KCL

    International Nuclear Information System (INIS)

    Vignolo Rubio, J.

    1979-01-01

    The ionic conductivity of X and gamma irradiated KCl single crystals has been studied between room temperature and 600 deg C. The radiation induced damage resulting in a decrease of the conductivity heals by thermal annealing in two steps which are at about 350 and 550 deg C respectively. It has been found that the radiation induced colour centres are not involved in the observed decrease of the ionic conductivity. Howewer, it has been observed that the effects of quenching and plastic deformation on the conductivity of the samples are very similar to the effect induced by irradiation. It is suggested that small radiation induced dislocation loops might cause the ionic conductivity decrease observed in irradiated samples. (auth)

  1. Ionic conductivity in irradiated KCL

    International Nuclear Information System (INIS)

    Vignolo Rubio, J.

    1979-01-01

    The ionic conductivity of X and gamma irradiated KCL single crystals has been studied between room temperature and 600 degree centigree. the radiation induced damage resulting in a decrease of the conductivity heals by thermal annealing in two steps which are at about 350 and 550 degree centigree respectively. It has been found that the radiation induced colour centres are not involved in the observed decrease of the ionic conductivity. However. It has been observed that the effects of quenching and plastic deformation on the conductivity of the samples are very similar to the effect induced by irradiation. It is suggested that, samples radiation induced dislocation loops might cause the ionic conductivity decrease observed in irradiated samples. (Author)

  2. Ionic conducting poly-benzimidazoles

    International Nuclear Information System (INIS)

    Jouanneau, J.

    2006-11-01

    Over the last years, many research works have been focused on new clean energy systems. Hydrogen fuel cell seems to be the most promising one. However, the large scale development of this technology is still limited by some key elements. One of them is the polymer electrolyte membrane 'Nafion' currently used, for which the ratio performance/cost is too low. The investigations we carried out during this thesis work are related to a new class of ionic conducting polymer, the sulfonated poly-benzimidazoles (sPBI). Poly-benzimidazoles (PBI) are aromatic heterocyclic polymers well-known for their excellent thermal and chemical stability. Ionic conduction properties are obtained by having strong acid groups (sulfonic acid SO 3 H) on the macromolecular structure. For that purpose, we first synthesized sulfonated monomers. Their poly-condensation with an appropriate non-sulfonated co-monomer yields to sPBI with sulfonation range from 0 to 100 per cent. Three different sPBI structures were obtained, and verified by appropriate analytical techniques. We also showed that the protocol used for the synthesis resulted in high molecular weights polymers. We prepared ionic conducting membrane by casting sPBI solutions on glass plates. Their properties of stability, water swelling and ionic conductivity were investigated. Surprisingly, the behaviour of sPBI was quite different from the other sulfonated aromatic polymers with same amount of SO 3 H, their stability was much higher, but their water swelling and ionic conductivity were quite low. We attributed these differences to strong ionic interactions between the sulfonic acid groups and the basic benzimidazole groups of our polymers. However, we managed to solve this problem synthesizing very highly sulfonated PBI, obtaining membranes with a good balance between all the properties necessary. (author)

  3. Indicators of clinical significance among women in the community with binge-eating disorder symptoms: Delineating the roles of binge frequency, body mass index, and overvaluation.

    Science.gov (United States)

    Mitchison, Deborah; Rieger, Elizabeth; Harrison, Carmel; Murray, Stuart B; Griffiths, Scott; Mond, Jonathan

    2018-02-01

    This study aimed to investigate the relative contributions of binge eating, body image disturbance, and body mass index (BMI) to distress and disability in binge-eating disorder (BED). A community sample of 174 women with BED-type symptomatology provided demographic, weight, and height information, and completed measures of overvaluation of weight/shape and binge eating, general psychological distress and impairment in role functioning. Correlation and regression analyses examined the associations between predictors (binge eating, overvaluation, BMI), and outcomes (distress, functional impairment). Binge eating and overvaluation were moderately to strongly correlated with distress and functional impairment, whereas BMI was not correlated with distress and only weakly correlated with functional impairment. Regression analysis indicated that both overvaluation and binge eating were strong and unique predictors of both distress and impairment, the contribution of overvaluation to variance in functional impairment being particularly strong, whereas BMI did not uniquely predict functional impairment or distress. The findings support the inclusion of overvaluation as a diagnostic criterion or specifier in BED and the need to focus on body image disturbance in treatment and public health efforts in order to reduce the individual and community health burden of this condition. © 2017 Wiley Periodicals, Inc.

  4. Ionic liquid-tolerant cellulase enzymes

    Science.gov (United States)

    Gladden, John; Park, Joshua; Singer, Steven; Simmons, Blake; Sale, Ken

    2017-10-31

    The present invention provides ionic liquid-tolerant cellulases and method of producing and using such cellulases. The cellulases of the invention are useful in saccharification reactions using ionic liquid treated biomass.

  5. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    control the chemical speciation, electrochemical state, transport, and aboveground binding of mercury in order to manage this toxicant. To advance this mercury phytoremediation strategy, our planned research focuses on the following Specific Aims: (1) to increase the transport of mercury to aboveground tissue; (2) to identify small mercury binding peptides that enhance hyperaccumulation aboveground; (3) to test the ability of multiple genes acting together to enhance resistance and hyperaccumulation; (4) to construct a simple molecular system for creating male/female sterility, allowing engineered grass, shrub, and tree species to be released indefinitely at contaminated sites; (5) to test the ability of transgenic cottonwood and rice plants to detoxify ionic mercury and prevent methylmercury release from contaminated sediment; and (6) to initiate field testing with transgenic cottonwood and rice for the remediation of methylmercury and ionic mercury. The results of these experiments will enable the phytoremediation of methyl- and ionic mercury by a wide spectrum of deep-rooted, fast-growing plants adapted to diverse environments. We have made significant progress on all six of these specific aims as summarized below.

  6. Spectrum of antimicrobial activity associated with ionic colloidal silver.

    Science.gov (United States)

    Morrill, Kira; May, Kathleen; Leek, Daniel; Langland, Nicole; Jeane, La Deana; Ventura, Jose; Skubisz, Corey; Scherer, Sean; Lopez, Eric; Crocker, Ephraim; Peters, Rachel; Oertle, John; Nguyen, Krystine; Just, Scott; Orian, Michael; Humphrey, Meaghan; Payne, David; Jacobs, Bertram; Waters, Robert; Langland, Jeffrey

    2013-03-01

    Silver has historically and extensively been used as a broad-spectrum antimicrobial agent. However, the Food and Drug Administration currently does not recognize colloidal silver as a safe and effective antimicrobial agent. The goal of this study was to further evaluate the antimicrobial efficacy of colloidal silver. Several strains of bacteria, fungi, and viruses were grown under multicycle growth conditions in the presence or absence of ionic colloidal silver in order to assess the antimicrobial activity. For bacteria grown under aerobic or anaerobic conditions, significant growth inhibition was observed, although multiple treatments were typically required. For fungal cultures, the effects of ionic colloidal silver varied significantly between different genera. No viral growth inhibition was observed with any strains tested. The study data support ionic colloidal silver as a broad-spectrum antimicrobial agent against aerobic and anaerobic bacteria, while having a more limited and specific spectrum of activity against fungi.

  7. Solid State Ionics: from Michael Faraday to green energy-the European dimension.

    Science.gov (United States)

    Funke, Klaus

    2013-08-01

    Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag 2 S and PbF 2 and coined terms such as cation and anion , electrode and electrolyte . In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an 'evolving scheme of materials science', point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987.

  8. Solid State Ionics: from Michael Faraday to green energy—the European dimension

    Science.gov (United States)

    Funke, Klaus

    2013-01-01

    Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag2S and PbF2 and coined terms such as cation and anion, electrode and electrolyte. In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic) transport in ionic crystals became easy to visualize. In an ‘evolving scheme of materials science’, point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals), by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987. PMID:27877585

  9. Solid State Ionics: from Michael Faraday to green energy—the European dimension

    Directory of Open Access Journals (Sweden)

    Klaus Funke

    2013-01-01

    Full Text Available Solid State Ionics has its roots essentially in Europe. First foundations were laid by Michael Faraday who discovered the solid electrolytes Ag2S and PbF2 and coined terms such as cation and anion, electrode and electrolyte. In the 19th and early 20th centuries, the main lines of development toward Solid State Ionics, pursued in Europe, concerned the linear laws of transport, structural analysis, disorder and entropy and the electrochemical storage and conversion of energy. Fundamental contributions were then made by Walther Nernst, who derived the Nernst equation and detected ionic conduction in heterovalently doped zirconia, which he utilized in his Nernst lamp. Another big step forward was the discovery of the extraordinary properties of alpha silver iodide in 1914. In the late 1920s and early 1930s, the concept of point defects was established by Yakov Il'ich Frenkel, Walter Schottky and Carl Wagner, including the development of point-defect thermodynamics by Schottky and Wagner. In terms of point defects, ionic (and electronic transport in ionic crystals became easy to visualize. In an 'evolving scheme of materials science', point disorder precedes structural disorder, as displayed by the AgI-type solid electrolytes (and other ionic crystals, by ion-conducting glasses, polymer electrolytes and nano-composites. During the last few decades, much progress has been made in finding and investigating novel solid electrolytes and in using them for the preservation of our environment, in particular in advanced solid state battery systems, fuel cells and sensors. Since 1972, international conferences have been held in the field of Solid State Ionics, and the International Society for Solid State Ionics was founded at one of them, held at Garmisch-Partenkirchen, Germany, in 1987.

  10. Particle self-assembly at ionic liquid-based interfaces.

    Science.gov (United States)

    Frost, Denzil S; Nofen, Elizabeth M; Dai, Lenore L

    2014-04-01

    This review presents an overview of the nature of ionic liquid (IL)-based interfaces and self-assembled particle morphologies of IL-in-water, oil- and water-in-IL, and novel IL-in-IL Pickering emulsions with emphasis on their unique phenomena, by means of experimental and computational studies. In IL-in-water Pickering emulsions, particles formed monolayers at ionic liquid-water interfaces and were close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. Interestingly, other than equilibrating at the ionic liquid-water interfaces, microparticles with certain surface chemistries were extracted into the ionic liquid phase with a high efficiency. These experimental findings were supported by potential of mean force calculations, which showed large energy drops as hydrophobic particles crossed the interface into the IL phase. In the oil- and water-in-IL Pickering emulsions, microparticles with acidic surface chemistries formed monolayer bridges between the internal phase droplets rather than residing at the oil/water-ionic liquid interfaces, a significant deviation from traditional Pickering emulsion morphology. Molecular dynamics simulations revealed aspects of the mechanism behind this bridging phenomenon, including the role of the droplet phase, surface chemistry, and inter-particle film. Novel IL-in-IL Pickering emulsions exhibited an array of self-assembled morphologies including the previously observed particle absorption and bridging phenomena. The appearance of these morphologies depended on the particle surface chemistry as well as the ILs used. The incorporation of particle self-assembly with ionic liquid science allows for new applications at the intersection of these two fields, and have the potential to be numerous due to the tunability of the ionic liquids and particles incorporated, as well as the particle morphology by combining certain groups of particle surface chemistry, IL type (protic or aprotic), and whether oil

  11. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  12. Strong impact of ionic strength on the kinetics of fibrilar aggregation of bovine beta-lactoglobulin

    NARCIS (Netherlands)

    Arnaudov, L.N.; Vries, de R.J.

    2006-01-01

    We investigate the effect of ionic strength on the kinetics of heat-induced fibrilar aggregation of bovine -lactoglobulin at pH 2.0. Using in situ light scattering we find an apparent critical protein concentration below which there is no significant fibril formation for all ionic strengths studied.

  13. Fine tuning the ionic liquid-vacuum outer atomic surface using ion mixtures.

    Science.gov (United States)

    Villar-Garcia, Ignacio J; Fearn, Sarah; Ismail, Nur L; McIntosh, Alastair J S; Lovelock, Kevin R J

    2015-03-28

    Ionic liquid-vacuum outer atomic surfaces can be created that are remarkably different from the bulk composition. In this communication we demonstrate, using low-energy ion scattering (LEIS), that for ionic liquid mixtures the outer atomic surface shows significantly more atoms from anions with weaker cation-anion interactions (and vice versa).

  14. Cellulose ionics: switching ionic diode responses by surface charge in reconstituted cellulose films.

    Science.gov (United States)

    Aaronson, Barak D B; Wigmore, David; Johns, Marcus A; Scott, Janet L; Polikarpov, Igor; Marken, Frank

    2017-09-25

    Cellulose films as well as chitosan-modified cellulose films of approximately 5 μm thickness, reconstituted from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 μm thickness) film with a 5, 10, 20, or 40 μm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl. Reconstituted α-cellulose films provide "cationic diodes" (due to predominant cation conductivity) whereas chitosan-doped cellulose shows "anionic diode" effects (due to predominant anion conductivity). The current rectification, or "ionic diode" behaviour, is investigated as a function of NaCl concentration, pH, microhole diameter, and molecular weight of the chitosan dopant. Future applications are envisaged exploiting the surface charge induced switching of diode currents for signal amplification in sensing.

  15. Ionic-Liquid-Tethered Nanoparticles: Hybrid Electrolytes

    KAUST Repository

    Moganty, Surya S.

    2010-10-22

    A new class of solventless electrolytes was created by tethering ionic liquids to hard inorganic ZrO2 nanostructures (see picture; NIM=nanoscale ionic material). These hybrid fluids exhibit exceptional redox stability windows, excellent thermal stability, good lithium transference numbers, long-term interfacial stability in the presence of a lithium anode and, when doped with lithium salt, reasonable ionic conductivities.

  16. Continuum electrostatics for ionic solutions with non-uniform ionic sizes

    International Nuclear Information System (INIS)

    Li Bo

    2009-01-01

    This work concerns electrostatic properties of an ionic solution with multiple ionic species of possibly different ionic sizes. Such properties are described by the minimization of an electrostatic free-energy functional of ionic concentrations. Bounds are obtained for ionic concentrations with low electrostatic free energies. Such bounds are used to show that there exists a unique set of equilibrium ionic concentrations that minimizes the free-energy functional. The equilibrium ionic concentrations are found to depend sorely on the equilibrium electrostatic potential, resembling the classical Boltzmann distributions that relate the equilibrium ionic concentrations to the equilibrium electrostatic potential. Unless all the ionic and solvent molecular sizes are assumed to be the same, explicit formulae of such dependence are, however, not available in general. It is nevertheless proved that in equilibrium the ionic charge density is a decreasing function of the electrostatic potential. This determines a variational principle with a convex functional for the electrostatic potential

  17. Ion pairing in ionic liquids

    International Nuclear Information System (INIS)

    Kirchner, Barbara; Malberg, Friedrich; Firaha, Dzmitry S; Hollóczki, Oldamur

    2015-01-01

    In the present article we briefly review the extensive discussion in literature about the presence or absence of ion pair-like aggregates in ionic liquids. While some experimental studies point towards the presence of neutral subunits in ionic liquids, many other experiments cannot confirm or even contradict their existence. Ion pairs can be detected directly in the gas phase, but no direct method is available to observe such association behavior in the liquid, and the corresponding indirect experimental proofs are based on such assumptions as unity charges at the ions. However, we have shown by calculating ionic liquid clusters of different sizes that assuming unity charges for ILs is erroneous, because a substantial charge transfer is taking place between the ionic liquid ions that reduce their total charge. Considering these effects might establish a bridge between the contradicting experimental results on this matter. Beside these results, according to molecular dynamics simulations the lifetimes of ion–ion contacts and their joint motions are far too short to verify the existence of neutral units in these materials. (topical review)

  18. Catalysis in Molten Ionic Media

    DEFF Research Database (Denmark)

    Boghosian, Soghomon; Fehrmann, Rasmus

    2013-01-01

    This chapter deals with catalysis in molten salts and ionic liquids, which are introduced and reviewed briefly, while an in-depth review of the oxidation catalyst used for the manufacturing of sulfuric acid and cleaning of flue gas from electrical power plants is the main topic of the chapter...

  19. Design of guanidinium ionic liquid based microwave-assisted extraction for the efficient extraction of Praeruptorin A from Radix peucedani.

    Science.gov (United States)

    Ding, Xueqin; Li, Li; Wang, Yuzhi; Chen, Jing; Huang, Yanhua; Xu, Kaijia

    2014-12-01

    A series of novel tetramethylguanidinium ionic liquids and hexaalkylguanidinium ionic liquids have been synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids were confirmed by (1)H NMR spectroscopy and mass spectrometry. A green guanidinium ionic liquid based microwave-assisted extraction method has been developed with these guanidinium ionic liquids for the effective extraction of Praeruptorin A from Radix peucedani. After extraction, reversed-phase high-performance liquid chromatography with UV detection was employed for the analysis of Praeruptorin A. Several significant operating parameters were systematically optimized by single-factor and L9 (3(4)) orthogonal array experiments. The amount of Praeruptorin A extracted by [1,1,3,3-tetramethylguanidine]CH2CH(OH)COOH is the highest, reaching 11.05 ± 0.13 mg/g. Guanidinium ionic liquid based microwave-assisted extraction presents unique advantages in Praeruptorin A extraction compared with guanidinium ionic liquid based maceration extraction, guanidinium ionic liquid based heat reflux extraction and guanidinium ionic liquid based ultrasound-assisted extraction. The precision, stability, and repeatability of the process were investigated. The mechanisms of guanidinium ionic liquid based microwave-assisted extraction were researched by scanning electron microscopy and IR spectroscopy. All the results show that guanidinium ionic liquid based microwave-assisted extraction has a huge potential in the extraction of bioactive compounds from complex samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Application of Ionic Liquids in Hydrometallurgy

    Science.gov (United States)

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

  1. Capturing CO2: conventional versus ionic-liquid based technologies

    International Nuclear Information System (INIS)

    Privalova, E I; Mäki-Arvela, P; Murzin, Dmitry Yu; Mikkhola, J P

    2012-01-01

    Since CO 2 facilitates pipeline corrosion and contributes to a decrease of the calorific value of gaseous fuels, its removal has become an issue of significant economic importance. The present review discusses various types of traditional CO 2 capture technologies in terms of their efficiency, complexity in system design, costs and environmental impact. The focus is hereby not only on conventional approaches but also on emerging 'green' solvents such as ionic liquids. The suitability of different ionic liquids as gas separation solvents is discussed in the present review and a description on their synthesis and properties in terms of CO 2 capture is provided. The bibliography includes 136 references.

  2. USE OF IONIC LIQUIDS FOR IMPROVEMENT OF CELLULOSIC ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Qijun Wang

    2011-02-01

    Full Text Available Cellulosic ethanol production has drawn much attention in recent years. However, there remain significant technical challenges before such production can be considered as economically feasible at an industrial scale. Among them, the efficient conversion of carbohydrates in lignocellulosic biomass into fermentable sugars is one of the most challenging technical difficulties in cellulosic ethanol production. Use of ionic liquids has opened new avenues to solve this problem by two different pathways. One is pretreatment of lignocellulosic biomass using ionic liquids to increase its enzymatic hydrolysis efficiency. The other is to transform the hydrolysis process of lignocellulosic biomass from a heterogeneous reaction system to a homogeneous one by dissolving it into ionic liquids, thus improving its hydrolysis efficiency.

  3. Glass Transitions and Low-Frequency Dynamics of Room-Temperature Ionic Liquids

    International Nuclear Information System (INIS)

    Yamamuro, O.; Inamura, Y.; Hayashi, S.; Hamaguchi, H.

    2006-01-01

    We have measured the heat capacity and neutrion quasi- and inelastic scattering spectra of some salts of 1-butyl-3-methylimidazolium ion bmim+, which is a typical cation of room-temperature ionic liquids, and its derivatives. The heat capacity measurements revealed that the room-temperature ionic liquids have glass transitions as molecular liquids. The temperature dependence of configurational entropy demonstrated that the room-temperature ionic liquids are 'fragile liquids'. Both heat capacity and inelastic neutron scattering data revealed that the glassy phases exhibit large low-energy excitations usually called 'boson peak'. The quasielastic neutron scattering data showed that so-called 'fast process' appears around Tg as in molecular and polymer glasses. The temperature dependence of the self-diffusion coefficient derived from the neutron scattering data indicated that the orientation of bmim+ ions and/or butyl-groups of bmim+ ions is highly disordered and very flexible in an ionic liquid phase

  4. Nanoparticles in ionic liquids: interactions and organization.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2015-07-28

    Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.

  5. Ionic conductivity studies of gel polyelectrolyte based on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cha, E.H. [The Faculty of Liberal Arts (Chemistry), Hoseo University, Asan Choongnam 336-795 (Korea); Lim, S.A. [Functional Proteomics Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Park, J.H. [Department of Herbal Medicine, Hoseo University, Asan Choongnam 336-795 (Korea); Kim, D.W. [Department of Chemical Technology, Han Bat National University, Daejon 305-719 (Korea); Macfarlane, D.R. [School of Chemistry, Monash University, Clayton, Vic. 3800 (Australia)

    2008-04-01

    Novel lithium polyelectrolyte-ionic liquids have been prepared and characterized of their properties. Poly(lithium 2-acrylamido-2-methyl propanesulfonate) (PAMPSLi) and its copolymer with N-vinyl formamide (VF) also has been prepared as a copolymer. 1-Ethyl-3-methylimidazolium tricyanomethanide (emImTCM) and N,N-dimethyl-N-propyl-N-butyl ammonium tricyanomethanide (N{sub 1134}TCM) which are chosen because of the same with the anion of ionic liquid were prepared. The ionic conductivity of copolymer system (PAMPSLi/PVF/emImTCM: 5.43 x 10{sup -3} S cm{sup -1} at 25 C) exhibits about over four times higher than that of homopolymer system (PAMPSLi/emImTCM: 1.28 x 10{sup -3} S cm{sup -1} at 25 C). Introduction of vinyl formamide into the copolymer type can increase the dissociation of the lithium cations from the polymer backbone. The ionic conductivity of copolymer with emImTCM (PAMPSLi/PVF/emImTCM) exhibits the higher conductivity than that of PAMPSLi/PVF/N{sub 1134}TCM (2.48 x 10{sup -3} S cm{sup -1}). Because of using the polymerizable anion it is seen to maintain high flexibility of imidazolium cation effectively to exhibit the higher conductivity. And also the viscosity of emImTCM (19.56 cP) is lower than that of N{sub 1134}TCM (28.61 cP). Low viscosity leads to a fast rate of diffusion of redox species. (author)

  6. Ionic and Molecular Liquids

    DEFF Research Database (Denmark)

    Chaban, Vitaly V.; Prezhdo, Oleg

    2013-01-01

    applications of RTILs in combination with molecular liquids, concentrating on three significant areas: (1) the use of molecular liquids to decrease the viscosity of RTILs; (2) the role of RTIL micelle formation in water and organic solvents; and (3) the ability of RTILs to adsorb pollutant gases. Current...

  7. Ionic versus nonionic contrast media

    International Nuclear Information System (INIS)

    Zylak, C.J.; Gafni, A.

    1988-01-01

    The efficacy and effectiveness of the nonionic contrast media have been established. Widespread usage has been hampered because of the approximate tenfold increase in cost compared with the ionic media. An economic evaluation considering costs and consequences of both interventions (ionic vs nonionic contrast media) was performed; it is a cost effectiveness (CEA) and a cost-benefit analysis (CBA) for the Canadian experience. The results of the CEA demonstrate a value per life-year saved within an acceptable range when compared with value for quality-adjusted life years for programs such as treatment of severe (diastolic≥ 105 mm Hg) and mild (diastolic 95-104 mm Hg) hypertension in men aged 40. The CBA showed a net cost to society when benefits were measured as future treatment costs saved plus productivity gained. However, if people are willing to pay a small amount for the comfort of the new intervention, this will result in a break-even situation

  8. Biopolymer Processing Using Ionic Liquids

    Science.gov (United States)

    2014-08-07

    polymerization. Chitin is not only the main component of the shells of crustaceans, but also exists as a structural polysaccharide of insects, mushrooms...combination of the dissolution of the biomass with the acid catlaysts to depolymerize the biomass into feedstock type chemicals. By using an imidazolium...Technical Section Technical Objective Ionic liquids have demonstrated the ability to effectively dissolve biomass ,1,2 including chitin and

  9. Lipid processing in ionic liquids

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2007-01-01

    Ionic liquids (ILs) have been touted as “green” alternatives to traditional molecular solvents and have many unique properties which make them extremely desirable substitutes. Among their most attractive properties are their lack of vapour pressure, broad liquid range, strong solvating power and ...... and the ability to tailor properties of individual ILs to meet specific requirements. This article highlights current research as well as the vast potential of ILs for use as media for reactions, separation and processing in the lipid area....

  10. Ionic Liquids to Replace Hydrazine

    Science.gov (United States)

    Koelfgen, Syri; Sims, Joe; Forton, Melissa; Allan, Barry; Rogers, Robin; Shamshina, Julia

    2011-01-01

    A method for developing safe, easy-to-handle propellants has been developed based upon ionic liquids (ILs) or their eutectic mixtures. An IL is a binary combination of a typically organic cation and anion, which generally produces an ionic salt with a melting point below 100 deg C. Many ILs have melting points near, or even below, room temperature (room temperature ionic liquids, RTILs). More importantly, a number of ILs have a positive enthalpy of formation. This means the thermal energy released during decomposition reactions makes energetic ILs ideal for use as propellants. In this specific work, to date, a baseline set of energetic ILs has been identified, synthesized, and characterized. Many of the ILs in this set have excellent performance potential in their own right. In all, ten ILs were characterized for their enthalpy of formation, density, melting point, glass transition point (if applicable), and decomposition temperature. Enthalpy of formation was measured using a microcalorimeter designed specifically to test milligram amounts of energetic materials. Of the ten ILs characterized, five offer higher Isp performance than hydrazine, ranging between 10 and 113 seconds higher than the state-of-the-art propellant. To achieve this level of performance, the energetic cations 4- amino-l,2,4-triazolium and 3-amino-1,2,4-triazolium were paired with various anions in the nitrate, dicyanamide, chloride, and 3-nitro-l,2,4-triazole families. Protonation, alkylation, and butylation synthesis routes were used for creation of the different salts.

  11. Ionic Liquids in Biomass Processing

    Science.gov (United States)

    Tan, Suzie Su Yin; Macfarlane, Douglas R.

    Ionic liquids have been studied for their special solvent properties in a wide range of processes, including reactions involving carbohydrates such as cellulose and glucose. Biomass is a widely available and renewable resource that is likely to become an economically viable source of starting materials for chemical and fuel production, especially with the price of petroleum set to increase as supplies are diminished. Biopolymers such as cellulose, hemicellulose and lignin may be converted to useful products, either by direct functionalisation of the polymers or depolymerisation to monomers, followed by microbial or chemical conversion to useful chemicals. Major barriers to the effective conversion of biomass currently include the high crystallinity of cellulose, high reactivity of carbohydrates and lignin, insolubility of cellulose in conventional solvents, as well as heterogeneity in the native lignocellulosic materials and in lignin itself. This combination of factors often results in highly heterogeneous depolymerisation products, which make efficient separation difficult. Thus the extraction, depolymerisation and conversion of biopolymers will require novel reaction systems in order to be both economically attractive and environmentally benign. The solubility of biopolymers in ionic liquids is a major advantage of their use, allowing homogeneous reaction conditions, and this has stimulated a growing research effort in this field. This review examines current research involving the use of ionic liquids in biomass reactions, with perspectives on how it relates to green chemistry, economic viability, and conventional biomass processes.

  12. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-04-01

    Supported liquid membranes are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties as a direct guide in the development of a capture technology. These membranes also have the advantage of liquid phase diffusivities higher than those observed in polymeric membranes which grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high carbon dioxide solubility relative to light gases such as hydrogen, are an excellent candidate for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of several ionic liquids, including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide, 1-butyl-3-methyl-imidazolium nitrate, and 1-ethyl-3-methyl-imidazolium sulfate in supported ionic liquid membranes for the capture of carbon dioxide from streams containing hydrogen. In a joint project, researchers at the University of Notre Dame lent expertise in ionic liquid synthesis and characterization, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Initial results have been very promising with carbon dioxide permeabilities as high as 950 barrers and significant improvements in carbon dioxide/hydrogen selectivity over conventional polymers at 37C and at elevated temperatures. Results include a comparison of the performance of several ionic liquids and a number of supports as well as a discussion of innovative fabrication techniques currently under development.

  13. On the Chemical Stabilities of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Yen-Ho Chu

    2009-09-01

    Full Text Available Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transformations. However, synthetic chemists cannot ignore the stability data and intermolecular interactions, or even reactions that are directly applicable to organic reactions in ionic liquids. It is becoming evident from the increasing number of reports on use of ionic liquids as solvents, catalysts, and reagents in organic synthesis that they are not totally inert under many reaction conditions. While in some cases, their unexpected reactivity has proven fortuitous and in others, it is imperative that when selecting an ionic liquid for a particular synthetic application, attention must be paid to its compatibility with the reaction conditions. Even though, more than 200 room temperature ionic liquids are known, only a few reports have commented their effects on reaction mechanisms or rate/stability. Therefore, rather than attempting to give a comprehensive overview of ionic liquid chemistry, this review focuses on the non-innocent nature of ionic liquids, with a decided emphasis to clearly illuminate the ability of ionic liquids to affect the mechanistic aspects of some organic reactions thereby affecting and promoting the yield and selectivity.

  14. On the chemical stabilities of ionic liquids.

    Science.gov (United States)

    Sowmiah, Subbiah; Srinivasadesikan, Venkatesan; Tseng, Ming-Chung; Chu, Yen-Ho

    2009-09-25

    Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transformations. However, synthetic chemists cannot ignore the stability data and intermolecular interactions, or even reactions that are directly applicable to organic reactions in ionic liquids. It is becoming evident from the increasing number of reports on use of ionic liquids as solvents, catalysts, and reagents in organic synthesis that they are not totally inert under many reaction conditions. While in some cases, their unexpected reactivity has proven fortuitously advantageous in others is has been a problem, it is imperative that when selecting an ionic liquid for a particular synthetic application, attention be paid to its compatibility with the reaction conditions. Even though, more than 200 room temperature ionic liquids are known, only a few reports have commented their effects on reaction mechanisms or rate/stability. Therefore, rather than attempting to give a comprehensive overview of ionic liquid chemistry, this review focuses on the non-innocent nature of ionic liquids, with a decided emphasis to clearly illuminate the ability of ionic liquids to affect the mechanistic aspects of some organic reactions thereby affecting and promoting the yield and selectivity.

  15. A simulation study of CS2 solutions in two related ionic liquids with dications and monocations

    Science.gov (United States)

    Lynden-Bell, R. M.; Quitevis, E. L.

    2018-05-01

    Atomistic simulations of solutions of CS2 in an ionic liquid, [C8(C1im)2 ] [NTf2]2, with a divalent cation and in the corresponding ionic liquid with a monovalent cation, [C4C1im][NTf2], were carried out. The low-frequency librational density of states of the CS2 was of particular interest in view of recent optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). Compared to the monocation ionic liquid, the maximum shifts to higher frequencies in the dication ionic liquid under ambient conditions, but was found to be significantly pressure-dependent. CS2 molecules lie above and below the plane of the imidazolium rings and found to be close to the butyl tails of the monocation. The diffusion rates and embedding energies of solvent ions and CS2 in the two ionic liquids were measured.

  16. Evaluation of a novel task specific ionic liquid for actinide ion extraction

    International Nuclear Information System (INIS)

    Paramanik, M.; Ghosh, S.K.; Raut, D.R.; Mohapatra, P.K.

    2016-01-01

    Separation of U and Pu from nuclear waste is of great relevance for a sustainable closed fuel cycle point of view. Spent fuel reprocessing by the well known PUREX process is done world wide for the recovery of U and Pu using TBP as the extractant. Room temperature ionic liquids (RTILs) have shown significantly higher extraction of metal ions, particularly at lower acidity as compared to the molecular diluents. Functionalization of ionic liquids has resulted in highly efficient task specific ionic liquids (TSILs) with superior extraction properties than the analogous extractants dissolved in ionic liquids. The present paper reports the evaluation of a novel task specific ionic liquid (TSIL) containing >P=O functional group for the extraction of actinides like U(VI) and Pu(IV)

  17. Selective extraction of copper, mercury, silver and palladium ionsfrom water using hydrophobic ionic liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; VonStosch, Moritz; Prausnitz, John M.

    2007-06-25

    Extraction of dilute metal ions from water was performed near room temperature with a variety of ionic liquids. Distribution coefficients are reported for fourteen metal ions extracted with ionic liquids containing cations 1-octyl-4-methylpyridinium [4MOPYR]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPYRRO]{sup +} or 1-methyl-1-octylpiperidinium [MOPIP]{sup +}, and anions tetrafluoroborate [BF{sub 4}]{sup +}, trifluoromethyl sulfonate [TfO]{sup +} or nonafluorobutyl sulfonate [NfO]{sup +}. Ionic liquids containing octylpyridinium cations are very good for extracting mercury ions. However, other metal ions were not significantly extracted by any of these ionic liquids. Extractions were also performed with four new task-specific ionic liquids. Such liquids containing a disulfide functional group are efficient and selective for mercury and copper, whereas those containing a nitrile functional group are efficient and selective for silver and palladium.

  18. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine.

    Science.gov (United States)

    Egorova, Ksenia S; Gordeev, Evgeniy G; Ananikov, Valentine P

    2017-05-24

    Ionic liquids are remarkable chemical compounds, which find applications in many areas of modern science. Because of their highly tunable nature and exceptional properties, ionic liquids have become essential players in the fields of synthesis and catalysis, extraction, electrochemistry, analytics, biotechnology, etc. Apart from physical and chemical features of ionic liquids, their high biological activity has been attracting significant attention from biochemists, ecologists, and medical scientists. This Review is dedicated to biological activities of ionic liquids, with a special emphasis on their potential employment in pharmaceutics and medicine. The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems. Dedicated attention is given to a novel active pharmaceutical ingredient-ionic liquid (API-IL) concept, which suggests using traditional drugs in the form of ionic liquid species. The main aim of this Review is to attract a broad audience of chemical, biological, and medical scientists to study advantages of ionic liquid pharmaceutics. Overall, the discussed data highlight the importance of the research direction defined as "Ioliomics", studies of ions in liquids in modern chemistry, biology, and medicine.

  19. [The prognostic significance of brain-derived neurotrophic factor (BDNF) for phobic anxiety disorders, vegetative and cognitive impairments during conservative treatment including adaptol of some functional and organic diseases of nervous system].

    Science.gov (United States)

    Zhivolupov, S A; Samartsev, I N; Marchenko, A A; Puliatkina, O V

    2012-01-01

    We have studied the efficacy of adaptol in the treatment of 45 patients with somatoform dysfunction of the autonomic nervous system and 30 patients with closed head injury. The condition of patients during the treatment was evaluated with clinical and neuropsychological scales. The serum level of BDNF before and after the treatment has been studied as well. Adaptol has been shown to enhance the production of BDNF, reduce significantly the intensity of anxiety, autonomic disorders and improve intellectual processes. The dose-dependent effect of the drug has been demonstrated. In conclusion, adaptol can be recommended for treatment of diseases that demand stimulation of neuroplasticity in the CNS.

  20. High-Pressure Synthesis and Study of NO+NO3− and NO2+NO3− Ionic Solids

    Directory of Open Access Journals (Sweden)

    A. Yu. Kuznetsov

    2009-01-01

    Full Text Available Nitrosonium-nitrate NO+NO3− and dinitrogen pentoxide NO2+NO3− ionic crystals were synthesized by laser heating of a condensed oxygen-rich O2-N2 mixture compressed to different pressures, up to 40 GPa, in a diamond anvil cell (DAC. High-pressure/high-temperature Raman and X-ray diffraction studies of synthesized samples disclosed a transformation of NO+NO3− compound to NO2+NO3− crystal at temperatures above ambient and pressures below 9 GPa. High-pressure experiments revealed previously unreported bands in Raman spectra of NO+NO3− and NO2+NO3− ionic crystals. Structural properties of both ionic compounds are analyzed. Obtained experimental results support a hypothesis of a rotational disorder of NO+ complexes in NO+NO3− and indicate a rotational disorder of ionic complexes in NO2+NO3− solid.

  1. Clinical evaluation of an ionic tooth brush on oral hygiene status, gingival status, and microbial parameter

    Directory of Open Access Journals (Sweden)

    Deshmukh J

    2006-01-01

    Full Text Available It has long been recognised that the presence of dental plaque leads to gingivitis and periodontal disease, as well as dental caries. Today tooth brushing is the most widely accepted method of removing plaque. Hence this present clinical study was undertaken to evaluate the effectiveness of an ionic toothbrush on oral hygiene status. For this study, 20 dental students in the age group of 18-20 years were included. All the subjects after undergoing dental prophylaxis were then provided with ionic toothbrushes, either active (equipped with lithium battery or inactive (without lithium battery. Plaque index and gingival bleeding index were examined at 7th, 14th, and 21st day. Microbial assessment was done for detection of colony forming units (CFU from the plaque samples which were collected on 0 day and 21st day, both before brushing and after brushing. Results shown a significant reduction in all the parameters and the reduction was more significant in active and inactive ionic toothbrush users. It was concluded that both active and inactive ionic toothbrushes reduced the plaque index and gingival bleeding index scores significantly and active ionic tooth brushes were more effective as compared to inactive ionic toothbrushes. There was no soft tissue trauma following the use of both type of toothbrushes, which showed that ionic toothbrushes were equally safe for regular long-term use.

  2. Neutron Scattering Studies of the Ionic Conductor LiI D2O

    DEFF Research Database (Denmark)

    Andersen, N. H.; Kjems, Jørgen; Poulsen, Finn Willy

    1982-01-01

    The structural properties of the ionic conductor LiID2O have been studied by neutron scattering. The cubic room temperature α-phase, Pm3m, is disordered both with respect to the occupation of the Li+-positions and to the orientations of the water molecules. A first order phase transition from the α...

  3. Electroreduction Property and MD Simulation of Nitrobenzene in Ionic Liquid [BMim][Tf2N]/[BMim][BF4

    International Nuclear Information System (INIS)

    Zeng, Jianping; Zhang, Yinxu; Sun, Ruyao; Chen, Song

    2014-01-01

    Highlights: • The two different common accessible ionic liquids are mixed in a simple and economic way. • In some compound ratios, the dynamic performance of nitrobenzene is superior to either of ionic liquids. • Modification and functionalization of ionic liquids in electrochemical field is feasible. • The mass transfer of diffusion of nitrobenzene in ionic liquids can be simulated with molecular dynamics. • Molecular dynamics explains the improvement of nitrobenzene in composite ionic liquids. - Abstract: The two different common accessible ionic liquids [BMim][BF 4 ] and [BMim][Tf 2 N] were mixed each other in a simple and economic way. In some compound ratios, the dynamic performance of nitrobenzene in electric reduction was superior to that of any single kind of ionic liquid has been appeared. The interaction and mass transfer of diffusion of nitrobenzene in composite ionic liquids with different volume ratios were studied with molecular dynamics (MD) simulation. The improvement of the electroreduction performance of nitrobenzene in composite ionic liquids was verified and was tried to explain. This provides a new idea for the modification and functionalization of ionic liquids in electrochemical field. The experimental results showed that kinematic viscosity and electroconductibility of different ionic liquid systems display a regular change. And the change law has been basically unchanged after adding water. The two different functional ionic liquids were complemented each other in a simple and economic way, which has compensated for the disadvantage of mono-component ionic liquids. At 25 °C, electroreduction property of V [BMim][BF4] :V [BMim][Tf2N] = 1:1 is the best in cyclic voltammetry experiments of nitrobenzene in different composite ionic liquids. Its electrochemical behavior is significantly affected by scan rate, temperature, concentration of nitrobenzene and concentration of water. The MD simulation results showed most of interaction

  4. On the Chemical Stabilities of Ionic Liquids

    OpenAIRE

    Yen-Ho Chu; Ming-Chung Tseng; Venkatesan Srinivasadesikan; Subbiah Sowmiah

    2009-01-01

    Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transfor...

  5. Membrane separation of ionic liquid solutions

    Science.gov (United States)

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  6. Neptunium (V) Adsorption to a Halophilic Bacterium Under High Ionic Strength Conditions: A Surface Complexation Modeling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ams, David A [Los Alamos National Laboratory

    2012-06-11

    Rationale for experimental design: Np(V) -- important as analog for Pu(V) and for HLW scenarios; High ionic strength -- relevant to salt-based repositories such as the WIPP; Halophilic microorganisms -- representative of high ionic strength environments. For the first time showed: Significant adsorbant to halophilic microorganisms over entire pH range under high ionic strength conditions; Strong influence of ionic strength with increasing adsorption with increasing ionic strength (in contrast to trends of previous low ionic strength studies); Effect of aqueous Np(V) and bacterial surface site speciation on adsorption; and Developed thermodynamic models that can be incorporated into geochemical speciation models to aid in the prediction of the fate and transport of Np(V) in more complex systems.

  7. A critical review of ionic liquids for the pretreatment of lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Prashant Reddy

    2015-11-01

    Full Text Available Ionic liquids have been the subject of active research over the course of the last decade and have in the past been touted as one of the most promising technologies for revolutionising the chemical and petro-chemical industries. The sheer abundance of potential ionic liquid structures coupled with their tuneable physico-chemical properties has endeared ionic liquids to the scientific community across a broad range of disciplines with potential applications that include pharmaceuticals, electrolytes, thermal energy storage media and liquid mirror telescopes. Within the context of a biorefinery for the production of biofuels and other bio-based products from renewable resources, the unique abilities of some ionic liquids to selectively dissolve biomass components or whole native biomass have been demonstrated. This ability has sparked extensive investigations of ionic liquids for the pretreatment of different biomass types, particularly for the production of cellulosic biofuels. However, the esoteric nature of ionic liquids persists and constructing a fundamental framework for correlating ionic liquid structures with useful applications remains a significant challenge. In addition to the above, the more practical challenges of toxicity, high costs, high viscosities, low solids loading and complex recycling are key factors hindering the wide-scale uptake of ionic liquids as pretreatment solvents in a commercial biorefinery. This critical review provides insights from academic studies and the implications thereof for elevating ionic liquids from the status of �promising� to �commercialisable� in the pretreatment of biomass. It is vital that key hurdles for the commercialisation of ionic liquids in the form of high costs, high viscosities, poor water tolerance, toxicity, low solids loading and recovery/recycling be addressed.

  8. Screening in dense ionic fluids

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1991-01-01

    There has been great progress in recent years in determining and understanding the structure of molten salts. I focus on molten alkali halides and discuss two main points concerning their liquid structure and its relationship with static electrical response in these dense ionic conductors. These are (i) the nature of screening and the related definitions and properties of the screening length and of the dielectric function, and (ii) developments in integral equations techniques for the evaluation of molten salt structure and static screening from given pair potentials. (author). 26 refs, 3 figs, 2 tabs

  9. Ionic liquids at the surface of graphite: Wettability and structure

    Science.gov (United States)

    Bordes, Emilie; Douce, Laurent; Quitevis, Edward L.; Pádua, Agílio A. H.; Costa Gomes, Margarida

    2018-05-01

    The aim of this work is to provide a better understanding of the interface between graphite and different molecular and ionic liquids. Experimental measurements of the liquid surface tension and of the graphite-liquid contact angle for sixteen ionic liquids and three molecular liquids are reported. These experimental values allowed the calculation of the solid/liquid interfacial energy that varies, for the ionic liquids studied, between 14.5 mN m-1 for 1-ethyl-3-methylimidazolium dicyanamide and 37.8 mN m-1 for 3-dodecyl-1-(naphthalen-1-yl)-1H-imidazol-3-ium tetrafluoroborate. Imidazolium-based ionic liquids with large alkyl side-chains or functionalized with benzyl groups seem to interact more favourably with freshly peeled graphite surfaces. Even if the interfacial energy seems a good descriptor to assess the affinity of a liquid for a carbon-based solid material, we conclude that both the surface tension of the liquid and the contact angle between the liquid and the solid can be significant. Molecular dynamics simulations were used to investigate the ordering of the ions near the graphite surface. We conclude that the presence of large alkyl side-chains in the cations increases the ordering of ions at the graphite surface. Benzyl functional groups in the cations lead to a large affinity towards the graphite surface.

  10. Shape-Memory Behavior of Polylactide/Silica Ionic Hybrids

    KAUST Repository

    Odent, Jérémy

    2017-03-27

    Commercial polylactide (PLA) was converted and endowed with shape-memory properties by synthesizing ionic hybrids based on blends of PLA with imidazolium-terminated PLA and poly[ε-caprolactone-co-d,l-lactide] (P[CL-co-LA]) and surface-modified silica nanoparticles. The electrostatic interactions assist with the silica nanoparticle dispersion in the polymer matrix. Since nanoparticle dispersion in polymers is a perennial challenge and has prevented nanocomposites from reaching their full potential in terms of performance we expect this new design will be exploited in other polymers systems to synthesize well-dispersed nanocomposites. Rheological measurements of the ionic hybrids are consistent with the formation of a network. The ionic hybrids are also much more deformable compared to the neat PLA. More importantly, they exhibit shape-memory behavior with fixity ratio Rf ≈ 100% and recovery ratio Rr = 79%, for the blend containing 25 wt % im-PLA and 25 wt % im-P[CL-co-LA] and 5 wt % of SiO2–SO3Na. Dielectric spectroscopy and dynamic mechanical analysis show a second, low-frequency relaxation attributed to strongly immobilized polymer chains on silica due to electrostatic interactions. Creep compliance tests further suggest that the ionic interactions prevent permanent slippage in the hybrids which is most likely responsible for the significant shape-memory behavior observed.

  11. Shape-Memory Behavior of Polylactide/Silica Ionic Hybrids

    KAUST Repository

    Odent, Jé ré my; Raquez, Jean-Marie; Samuel, Cé dric; Barrau, Sophie; Enotiadis, Apostolos; Dubois, Philippe; Giannelis, Emmanuel P.

    2017-01-01

    Commercial polylactide (PLA) was converted and endowed with shape-memory properties by synthesizing ionic hybrids based on blends of PLA with imidazolium-terminated PLA and poly[ε-caprolactone-co-d,l-lactide] (P[CL-co-LA]) and surface-modified silica nanoparticles. The electrostatic interactions assist with the silica nanoparticle dispersion in the polymer matrix. Since nanoparticle dispersion in polymers is a perennial challenge and has prevented nanocomposites from reaching their full potential in terms of performance we expect this new design will be exploited in other polymers systems to synthesize well-dispersed nanocomposites. Rheological measurements of the ionic hybrids are consistent with the formation of a network. The ionic hybrids are also much more deformable compared to the neat PLA. More importantly, they exhibit shape-memory behavior with fixity ratio Rf ≈ 100% and recovery ratio Rr = 79%, for the blend containing 25 wt % im-PLA and 25 wt % im-P[CL-co-LA] and 5 wt % of SiO2–SO3Na. Dielectric spectroscopy and dynamic mechanical analysis show a second, low-frequency relaxation attributed to strongly immobilized polymer chains on silica due to electrostatic interactions. Creep compliance tests further suggest that the ionic interactions prevent permanent slippage in the hybrids which is most likely responsible for the significant shape-memory behavior observed.

  12. An electro-active paper actuator made with cellulose–polypyrrole–ionic liquid nanocomposite: influence of ionic liquid concentration, type of anion and humidity

    International Nuclear Information System (INIS)

    Mahadeva, Suresha K; Kim, Jaehwan

    2010-01-01

    This paper reports a cellulose–polypyrrole–ionic liquid (CPIL) nanocomposite that can produce large actuating displacement in a low humidity environment. The fabrication process and actuator performance of the CPIL nanocomposite actuator are illustrated. Experimental results revealed that the size of anion, concentration of ionic liquid and ambient humidity level have a significant influence on the actuator performance of the CPIL nanocomposite. The bending displacement of the CPIL nanocomposite actuator was enhanced with increasing anion size, ionic liquid concentration and humidity level. CPIL nanocomposite made with 4% BMIBF 4 ionic liquid exhibited a very large bending displacement with excellent durability under ambient conditions (30% relative humidity and 25 °C). This is probably the first report that cellulose based electro-active paper actuator can exhibit such a large bending displacement under ambient conditions. Experimental results revealed that the proposed CPIL nanocomposite actuator under study can be operated up to 70% humidity level

  13. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities

    Science.gov (United States)

    2017-01-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced, is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, cedIP, where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, cedC+A, where the ionic vapour constituents are isolated ions. A cedIP dataset is presented for 64 ILs. For the first time an experimental cedC+A, a measure of the strength of the total intermolecular interaction for an IL, is presented. cedC+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between cedIP and the inverse of the molecular volume. A good linear correlation is found between IL cedIP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to cedIP. These findings show that cedIP is very important for understanding IL intermolecular interactions, in spite of cedIP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined. PMID:29308254

  14. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities.

    Science.gov (United States)

    Lovelock, Kevin R J

    2017-12-01

    For ionic liquids (ILs), both the large number of possible cation + anion combinations and their ionic nature provide a unique challenge for understanding intermolecular interactions. Cohesive energy density, ced , is used to quantify the strength of intermolecular interactions for molecular liquids, and is determined using the enthalpy of vaporization. A critical analysis of the experimental challenges and data to obtain ced for ILs is provided. For ILs there are two methods to judge the strength of intermolecular interactions, due to the presence of multiple constituents in the vapour phase of ILs. Firstly, ced IP , where the ionic vapour constituent is neutral ion pairs, the major constituent of the IL vapour. Secondly, ced C+A , where the ionic vapour constituents are isolated ions. A ced IP dataset is presented for 64 ILs. For the first time an experimental ced C+A , a measure of the strength of the total intermolecular interaction for an IL, is presented. ced C+A is significantly larger for ILs than ced for most molecular liquids, reflecting the need to break all of the relatively strong electrostatic interactions present in ILs. However, the van der Waals interactions contribute significantly to IL volatility due to the very strong electrostatic interaction in the neutral ion pair ionic vapour. An excellent linear correlation is found between ced IP and the inverse of the molecular volume. A good linear correlation is found between IL ced IP and IL Gordon parameter (which are dependent primarily on surface tension). ced values obtained through indirect methods gave similar magnitude values to ced IP . These findings show that ced IP is very important for understanding IL intermolecular interactions, in spite of ced IP not being a measure of the total intermolecular interactions of an IL. In the outlook section, remaining challenges for understanding IL intermolecular interactions are outlined.

  15. Substitutional disorder in the ionic diorganoantimony halide adduct [bromido/chlorido(0.33/0.67][2-(dimethylaminomethylphenyl][2-(dimethylammoniomethylphenyl]antimony(III 0.75-bromide 0.25-chloride

    Directory of Open Access Journals (Sweden)

    Albert P. Soran

    2010-04-01

    Full Text Available The title complex, [SbBr0.33Cl0.67(C9H13N(C9H12N]Br0.75Cl0.25, exhibits substitutional disorder of both halogen atoms in the asymmetric unit, however, with different occupancies. Thus, the halogen atom bonded to Sb has 0.67 (4 occupancy for Cl and 0.33 (4 for Br, while the anionic halogen atom shows 0.75 (4 occupancy for Br and 0.25 (4 for Cl. An N—H...Cl/Br hydrogen bond is established between the cation and the halide anion. The coordination geometry of the Sb center in the cation is distorted pseudo-trigonal-bipyramidal as a result of the strong intramolecular N→Sb coordination trans to the Sb—Cl/Br bond. The pendant arm on the second ligand is twisted away from the metal center. The compound crystallizes as a racemate, i.e. a mixture of (RN2,CSb1 and (SN2,ASb1 isomers with respect to planar chirality induced by the coordinating N atom and chelate-induced Sb chirality. These isomers are associated through Cphenyl—H...Cl/Br hydrogen bonds, forming a three-dimensional architecture.

  16. Molecular Simulation of Ionic Polyimides and Composites with Ionic Liquids as Gas-Separation Membranes.

    Science.gov (United States)

    Abedini, Asghar; Crabtree, Ellis; Bara, Jason E; Turner, C Heath

    2017-10-24

    Polyimides are at the forefront of advanced membrane materials for CO 2 capture and gas-purification processes. Recently, ionic polyimides (i-PIs) have been reported as a new class of condensation polymers that combine structural components of both ionic liquids (ILs) and polyimides through covalent linkages. In this study, we report CO 2 and CH 4 adsorption and structural analyses of an i-PI and an i-PI + IL composite containing [C 4 mim][Tf 2 N]. The combination of molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) simulations is used to compute the gas solubility and the adsorption performance with respect to the density, fractional free volume (FFV), and surface area of the materials. Our results highlight the polymer relaxation process and its correlation to the gas solubility. In particular, the surface area can provide meaningful guidance with respect to the gas solubility, and it tends to be a more sensitive indicator of the adsorption behavior versus only considering the system density and FFV. For instance, as the polymer continues to relax, the density, FFV, and pore-size distribution remain constant while the surface area can continue to increase, enabling more adsorption. Structural analyses are also conducted to identify the nature of the gas adsorption once the ionic liquid is added to the polymer. The presence of the IL significantly displaces the CO 2 molecules from the ligand nitrogen sites in the neat i-PI to the imidazolium rings in the i-PI + IL composite. However, the CH 4 molecules move from the imidazolium ring sites in the neat i-PI to the ligand nitrogen atoms in the i-PI + IL composite. These molecular details can provide critical information for the experimental design of highly selective i-PI materials as well as provide additional guidance for the interpretation of the simulated adsorption systems.

  17. Regio and stereoselectivity in ionic cycloadditions

    Indian Academy of Sciences (India)

    WINTEC

    Though the reactions have both electrostatic control and frontier orbital control the former dominates in the initial stages of the reaction. Keywords. Stereoselectivity; ionic cycloaddition; density functional theory; acridizinium ion; methyl vinyl ether; 2,3-dimethylisoquinolinium ion. 1. Introduction. In polar or ionic cycloadditions ...

  18. Principle and applications of ionic thermometric detectors

    International Nuclear Information System (INIS)

    Rosenkranz, J.; Jakes, D.

    1989-01-01

    The basic principles of electric conductivity of ionic compounds as well as causes and the character of phase transformation in these systems are briefly explained. The design of ionic thermometric detectors, their function and some applications in thermometry are also described. (author). 3 figs., 1 tab., 7 refs

  19. Improved ionic model of liquid uranium dioxide

    NARCIS (Netherlands)

    Gryaznov, [No Value; Iosilevski, [No Value; Yakub, E; Fortov, [No Value; Hyland, GJ; Ronchi, C

    The paper presents a model for liquid uranium dioxide, obtained by improving a simplified ionic model, previously adopted to describe the equation of state of this substance [1]. A "chemical picture" is used for liquid UO2 of stoichiometric and non-stoichiometric composition. Several ionic species

  20. Aqueous solutions of ionic liquids: microscopic assembly

    NARCIS (Netherlands)

    Vicent-Luna, J.M.; Dubbeldam, D.; Gómez-Álvarez, P.; Calero, S.

    2016-01-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level

  1. Application of Ionic Liquids in Hydrometallurgy

    Directory of Open Access Journals (Sweden)

    Jesik Park

    2014-08-01

    Full Text Available Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry.

  2. Oxidative desulfurization of dibenzothiophene from model oil using ionic liquids as extracting agent

    Science.gov (United States)

    Taha, Mohd F.; Atikah, N.; Chong, F. K.; Shaharun, Maizatul S.

    2012-09-01

    The oxidative desulfurization of dibenzothiophene (DBT) from model oil (in n-dodecane) was carried out using ionic liquid as the extractant and catalyst, and hydrogen peroxide (H2O2) in combination with acetic acid (CH3COOH) and sulphuric acid (H2SO4) as the oxidant. The ionic liquids used were 1-butyl-3-methylimidazolium octyl sulphate ([Bmim][OcSO4]) and 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]). The effect of the amounts of H2O2 on oxidative desulphurization of model oil was first investigated without the usage of ionic liquids at room temperature. The results indicate that greater amount of H2O2 give higher desulfurization and the maximum desulfurization in this study, i.e. 34 %, was occurred when the molar ratio of H2O2 to sulfur was 5:1. With the usage of ionic liquid and the molar ratio of 5:1 (H2O2:sulfur), the efficiency of DBT removal from model oil was increased significantly in terms of percent removal and removal time. Ionic liquid of [Bmim][OcSO4] performed better than [Bmim][Ac] with 72 % DBT removal. When molar ratio of H2O2 to sulphur was 5:1, volume ratio of ionic liquid to model oil was 1:1 and mixing time was 60 min at room temperature. The results indicate the potential of ionic liquids as the extractant and catalyst for oxidative desulfurization of hydrocarbon fuels.

  3. Application of ionic liquids as an electrolyte additive on the electrochemical behavior of lead acid battery

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Behzad; Mallakpour, Shadpour; Taki, Mahmood [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran)

    2009-02-15

    Ionic liquids (ILs) belong to new branch of salts with unique properties which their applications have been increasing in electrochemical systems especially lithium-ion batteries. In the present work, for the first time, the effects of four ionic liquids as an electrolyte additive in battery's electrolyte were studied on the hydrogen and oxygen evolution overpotential and anodic layer formation on lead-antimony-tin grid alloy of lead acid battery. Cyclic and linear sweep voltammetric methods were used for this study in aqueous sulfuric acid solution. The morphology of grid surface after cyclic redox reaction was studied using scanning electron microscopy. The results show that most of added ionic liquids increase hydrogen overpotential and whereas they have no significant effect on oxygen overpotential. Furthermore ionic liquids increase antimony dissolution that might be related to interaction between Sb{sup 3+} and ionic liquids. Crystalline structure of PbSO{sub 4} layer changed with presence of ionic liquids and larger PbSO{sub 4} crystals were formed with some of them. These additives decrease the porosity of PbSO{sub 4} perm selective membrane layer at the surface of electrode. Also cyclic voltammogram on carbon-PbO paste electrode shows that with the presence of ionic liquids, oxidation and reduction peak current intensively increased. (author)

  4. CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength - Simple Conceptual Diagram

    Science.gov (United States)

    Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.

  5. CADDIS Volume 2. Sources, Stressors and Responses: Ionic Strength - Detailed Conceptual Diagram

    Science.gov (United States)

    Introduction to the ionic strength module, when to list ionic strength as a candidate cause, ways to measure ionic strength, simple and detailed conceptual diagrams for ionic strength, ionic strength module references and literature reviews.

  6. Comparison studies of rheological and thermal behaviors of ionic liquids and nanoparticle ionic liquids.

    Science.gov (United States)

    Xu, Yiting; Zheng, Qiang; Song, Yihu

    2015-08-14

    Novel nanoparticle ionic liquids (NILs) are prepared by grafting modified nanoparticles with long-chain ionic liquids (ILs). The NIL behaves like a liquid at ambient temperature. We studied the rheological behavior of the IL and NIL over the range of 10-55 °C and found an extraordinary difference between the IL and NIL: a small content of nanosilica (7%) moderately improves the crystallinity by 7% of the poly(ethylene glycol) (PEG) segment in the IL, and it improves the dynamic moduli significantly (by 5 times at room temperature). It retards the decay temperature (by 10 °C) of the dynamic moduli during heating as well. The thermal rheological hysteresis observed during heating-cooling temperature sweeps is ascribed to the melting-recrystallization of the PEG segments. Meanwhile, the IL and NIL express accelerated crystallization behavior in comparison with the oligomeric anion. For the first time, we find that ILs and NILs are able to form nanoparticle-containing spherulites at room temperature after long time aging.

  7. Infrared spectroscopy of ionic clusters

    International Nuclear Information System (INIS)

    Price, J.M.

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm -1 region. The species studied include: the hydrated hydronium ions, H 3 O + (H 2 O) 3 -10 , ammoniated ammonium ions, NH 4 + (NH 3 ) 1 -10 and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH 4 + (NH 3 ) n (H 2 O) m (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs

  8. Infrared spectroscopy of ionic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Price, J.M. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  9. Calculation of cut-off values based on the Autoimmune Bullous Skin Disorder Intensity Score (ABSIS) and Pemphigus Disease Area Index (PDAI) pemphigus scoring systems for defining moderate, significant and extensive types of pemphigus.

    Science.gov (United States)

    Boulard, C; Duvert Lehembre, S; Picard-Dahan, C; Kern, J S; Zambruno, G; Feliciani, C; Marinovic, B; Vabres, P; Borradori, L; Prost-Squarcioni, C; Labeille, B; Richard, M A; Ingen-Housz-Oro, S; Houivet, E; Werth, V P; Murrell, D F; Hertl, M; Benichou, J; Joly, P

    2016-07-01

    Two pemphigus severity scores, Autoimmune Bullous Skin Disorder Intensity Score (ABSIS) and Pemphigus Disease Area Index (PDAI), have been proposed to provide an objective measure of disease activity. However, the use of these scores in clinical practice is limited by the absence of cut-off values that allow differentiation between moderate, significant and extensive types of pemphigus. To calculate cut-off values defining moderate, significant and extensive pemphigus based on the ABSIS and PDAI scores. In 31 dermatology departments in six countries, consecutive patients with newly diagnosed pemphigus were assessed for pemphigus severity, using ABSIS, PDAI, Physician's Global Assessment (PGA) and Dermatology Life Quality Index (DLQI) scores. Cut-off values defining moderate, significant and extensive subgroups were calculated based on the 25th and 75th percentiles of the ABSIS and PDAI scores. The median ABSIS, PDAI, PGA and DLQI scores of the three severity subgroups were compared in order to validate these subgroups. Ninety-six patients with pemphigus vulgaris (n = 77) or pemphigus foliaceus (n = 19) were included. The median PDAI activity and ABSIS total scores were 27·5 (range 3-84) and 34·8 points (range 0·5-90·5), respectively. The respective cut-off values corresponding to the first and third quartiles of the scores were 15 and 45 for the PDAI, and 17 and 53 for ABSIS. The moderate, significant and extensive subgroups were thus defined, and had distinguishing median ABSIS (P cut-off values of 15 and 45 for PDAI and 17 and 53 for ABSIS, to distinguish moderate, significant and extensive pemphigus forms. Identifying these pemphigus activity subgroups should help physicians to classify and manage patients with pemphigus. © 2016 British Association of Dermatologists.

  10. Ionic liquids: radiation chemistry, solvation dynamics and reactivity patterns

    International Nuclear Information System (INIS)

    Wishart, J.F.; Funston, A.M.; Szreder, T.

    2006-01-01

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of energy production, chemical industry and environmental applications. Pulse radiolysis of [R 4 N][NTf 2 ] [R 4 N][N(CN) 2 ], and [R 4 P][N(CN) 2 ] ionic liquids produces solvated electrons that absorb over a broad range in the near infrared and persisting for hundreds of nanoseconds. Systematic cation variation shows that solvated electron's spectroscopic properties depend strongly on the lattice structure of the ionic liquid. Very early in our radiolysis studies it became evident that

  11. Recent development of ionic liquid membranes

    Directory of Open Access Journals (Sweden)

    Junfeng Wang

    2016-04-01

    Full Text Available The interest in ionic liquids (IL is motivated by its unique properties, such as negligible vapor pressure, thermal stability, wide electrochemical stability window, and tunability of properties. ILs have been highlighted as solvents for liquid–liquid extraction and liquid membrane separation. To further expand its application in separation field, the ionic liquid membranes (ILMs and its separation technology have been proposed and developed rapidly. This paper is to give a comprehensive overview on the recent applications of ILMs for the separation of various compounds, including organic compounds, mixed gases, and metal ions. Firstly, ILMs was classified into supported ionic liquid membranes (SILMs and quasi-solidified ionic liquid membranes (QSILMs according to the immobilization method of ILs. Then, preparation methods of ILMs, membrane stability as well as applications of ILMs in the separation of various mixtures were reviewed. Followed this, transport mechanisms of gaseous mixtures and organic compounds were elucidated in order to better understand the separation process of ILMs. This tutorial review intends to not only offer an overview on the development of ILMs but also provide a guide for ILMs preparations and applications. Keywords: Ionic liquid membrane, Supported ionic liquid membrane, Qusai-solidified ionic liquid membrane, Stability, Application

  12. Cycling performance of lithium polymer cells assembled by in situ polymerization of a non-flammable ionic liquid monomer

    International Nuclear Information System (INIS)

    Lee, Yoon-Sung; Kim, Dong-Won

    2013-01-01

    Highlights: • Gel polymer electrolytes were synthesized by in situ polymerization of ionic liquid in the lithium polymer cells. • Flammability of the electrolyte was significantly reduced by polymerizing electrolyte containing a non-flammable ionic liquid monomer. • The cells assembled with polymeric ionic liquid-based electrolytes exhibited reversible cycling behavior with good capacity retention. -- Abstract: Lithium polymer cells composed of a lithium negative electrode and a LiCoO 2 positive electrode were assembled with a gel polymer electrolyte obtained by in situ polymerization of an electrolyte solution containing an ionic liquid monomer with vinyl groups. The polymerization of the electrolyte solution containing the non-flammable ionic liquid monomer resulted in a significant reduction of the flammability of the gel polymer electrolytes. The lithium polymer cell assembled with the stable gel polymer electrolyte delivered a discharge capacity of 134.3 mAh g −1 at ambient temperature and exhibited good capacity retention

  13. Key Developments in Ionic Liquid Crystals

    OpenAIRE

    Fernandez, A.A.; Kouwer, P.H.J.

    2016-01-01

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a...

  14. Ionic conductivity and complexation in liquid dielectrics

    International Nuclear Information System (INIS)

    Zhakin, Anatolii I

    2003-01-01

    Electronic and ionic conductivity in nonpolar liquids is reviewed. Theoretical results on ionic complexation (formation of ion pairs and triplets, dipole-dipole chains, ion-dipole clusters) in liquid dielectrics in an intense external electric field are considered, and the relation between the complexation process and ionic conductivity is discussed. Experimental results supporting the possibility of complexation are presented and compared with theoretical calculations. Onsager's theory about the effect of an intense external electric field on ion-pair dissociation is corrected for the finite size of ions. (reviews of topical problems)

  15. Nanoarchitecture Control Enabled by Ionic Liquids

    Science.gov (United States)

    Murdoch, Heather A.; Limmer, Krista R.; Labukas, Joseph P.

    2017-04-01

    Ionic liquids have many advantages over traditional aqueous electrosynthesis for fabrication of functional nanoarchitectures, including enabling the integration of nanoparticles into traditional coatings, superhydrophobicity, nanofoams, and other hierarchical structures. Shape and size control through ionic liquid selection and processing conditions can synthesize nanoparticles and nanoarchitectures without the use of capping agents, surfactants, or templates that are often deleterious to the functionality of the resultant system. Here we give a brief overview of some recent and interesting applications of ionic liquids to the synthesis of nanoparticles and nanoarchitectures.

  16. Novel Fission-Product Separation Based on Room-Temperature Ionic Liquids

    International Nuclear Information System (INIS)

    Rogers, Robin D.

    2004-01-01

    This project has demonstrated that Sr2+ and Cs+ can be selectively extracted from aqueous solutions into ionic liquids using crown ethers and that unprecedented large distribution coefficients can be achieved for these fission products. The volume of secondary wastes can be significantly minimized with this new separation technology. Through the current EMSP funding, the solvent extraction technology based on ionic liquids has been shown to be viable and can potentially provide the most efficient separation of problematic fission products from high level wastes. The key results from the current funding period are the development of highly selective extraction process for cesium ions based on crown ethers and calixarenes, optimization of selectivities of extractants via systematic change of ionic liquids, and investigation of task-specific ionic liquids incorporating both complexant and solvent characteristics

  17. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Directory of Open Access Journals (Sweden)

    Eero eSalminen

    2014-02-01

    Full Text Available The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat benzalkonium [ADBA] (alkyldimethylbenzylammonium was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs. Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC. The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  18. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Science.gov (United States)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  19. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes

    International Nuclear Information System (INIS)

    Ogihara, Wataru; Sun Jiazeng; Forsyth, Maria; MacFarlane, Douglas R.; Yoshizawa, Masahiro; Ohno, Hiroyuki

    2004-01-01

    We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10 -4 to 10 -3 S cm -1 at room temperature. Gelation was found to cause little change in the 7 Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids

  20. Synthesis of hetero ionic compounds using dialkylcarbonate quaternization

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2018-04-03

    Methods of preparing hetero ionic complexes, and ionic liquids from bisulfate salts of heteroatomic compounds using dialkylcarbonates as a primary quaternizing reactant are disclosed. Also disclosed are methods of making electrochemical cells comprising the ionic liquids, and an electrochemical cell comprising an alkaline electrolyte and a hetero ionic complex additive.

  1. Ionic liquids, tuneable solvents for intensifying reactions and separations

    NARCIS (Netherlands)

    Meindersma, G.W.; Kuipers, N.J.M.; Haan, de A.B.

    2007-01-01

    An Ionic Liquid (IL), or a Room Temperature Ionic Liquid (RTIL), is commonly defined as a liquid entirely composed of ions, which is a fluid below 100 °C. Due to the fact that an ionic liquid is a salt, it has a negligible vapour pressure. Therefore, ionic liquids are not volatile at ambient process

  2. Streak artifacts on Kidney CT: Ionic vs nonionic contrast media

    International Nuclear Information System (INIS)

    Cho, Eun Ok; Kim, Won Hong; Jung, Myung Suk; Kim, Yong Hoon; Hur, Gham

    1993-01-01

    The authors reviewed findings of enhanced abdominal computed tomography (CT) scans to know the difference between a higher dose of conventional ionic contrast media(iothalamate meglumine) and a lower dose of a new, nonionic contrast material(ioversol). One hundred adult patients were divided into two groups. Each group consisted of 50 patients. Iothalamate meglumine and ioversol were intravenously administered in each group. The radio of the male to female in the former was 28:22, and the latter 29:21. We examine the degree of renal streak artifact and measure the Hounsfield number of urine in renal collecting system. There were significant differences of the degree of the streak artifact depending upon the osmolality of contrast media used and that was related with urine CT number(P value<0.005). We authors conclude that nonionic low osmolar contrast media is prone to cause streak artifacts and distortions of renal image than conventional ionic high osmolar contrast media

  3. Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns

    International Nuclear Information System (INIS)

    Wishart, J.F.

    2008-01-01

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate

  4. Enhanced Mixed Feedstock Processing Using Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake A [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2016-10-22

    Biomass pretreatment using certain ionic liquids (ILs) is very efficient, generally producing a substrate that is amenable to saccharification with fermentable sugar yields approaching theoretical limits. Although promising, several challenges must be addressed before IL pretreatment technology becomes commercially viable. Once of the most significant challenges is the affordable and scalable recovery and recycle or the IL itself. Pervaporation is a highly selective and scalable membrane separation process for quantitatively recovering volatile solutes or solvents directly from non-volatile solvents that could prove more versatile for IL dehydration than traditional solvent extraction processes, as well as efficient and energetically more advantageous than standard evaporative techniques. In this study we evaluated a commercially available pervaporation system for IL dehydration and recycling as part of an integrated IL pretreatment process using 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) that has been proven to be very effective as a biomass pretreatment solvent. We demonstrate that >99.9 wt% [C2C1Im][OAc] can be recovered from aqueous solution and recycled at least five times. A preliminary techno-economic analysis validated the promising role of pervaporation in improving overall biorefinery process economics, especially in the case where other IL recovery technologies might lead to significant losses. These findings establish the foundation for further development of pervaporation as an effective method of recovering and recycling ILs using a commercially viable process technology.

  5. Thioimidazolium Ionic Liquids as Tunable Alkylating Agents.

    Science.gov (United States)

    Guterman, Ryan; Miao, Han; Antonietti, Markus

    2018-01-19

    Alkylating ionic liquids based on the thioimidazolium structure combine the conventional properties of ionic liquids, including low melting point and nonvolatility, with the alkylating function. Alkyl transfer occurs exclusively from the S-alkyl position, thus allowing for easy derivatization of the structure without compromising specificity. We apply this feature to tune the electrophilicty of the cation to profoundly affect the reactivity of these alkylating ionic liquids, with a caffeine-derived compound possessing the highest reactivity. Anion choice was found to affect reaction rates, with iodide anions assisting in the alkylation reaction through a "shuttling" process. The ability to tune the properties of the alkylating agent using the toolbox of ionic liquid chemistry highlights the modular nature of these compounds as a platform for alkylating agent design and integration in to future systems.

  6. Thermodynamic Analysis of Ionic Compounds: Synthetic Applications.

    Science.gov (United States)

    Yoder, Claude H.

    1986-01-01

    Shows how thermodynamic cycles can be used to understand trends in heats of formation and aqueous solubilities and, most importantly, how they may be used to choose synthetic routes to new ionic compounds. (JN)

  7. Functionalized dicationic ionic liquids: Green and efficient ...

    Indian Academy of Sciences (India)

    have the advantages of liquid and solid phase together.11. Task-specific ionic liquids ... more attention as alternative reaction media in green chemistry than conventional ..... The reaction mixture was divided into two. Figure 3. Reusability of ...

  8. ELECTROCATALYSIS OF HEMOGLOBIN IN IONIC LIQUID ...

    African Journals Online (AJOL)

    Preferred Customer

    thermal stability, relatively high ionic conductivity, negligible vapor pressure and wide ... through the opposite end of the tube to establish an electrical contact and the ... support to assembly the Hb molecules and form a biocompatible porous ...

  9. Ionic Liquid Epoxy Composite Cryotanks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this work is to determine the optimal process for manufacturing lightweight linerless cryogenic storage tanks using ionic liquid epoxy composite...

  10. Polypyrrole for Artificial Muscles: Ionic Mechanisms

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2006-01-01

    the matrix of a polymer electrode – thereby causing volume expansion which can be converted into work. Solvent molecules are able to penetrate the polymer too. A precise description of the nature of these ionic and solvent movements is therefore important for understanding and improving the performance....... This work examines the influence of solvent, ionic species and electrolyte concentration on the fundamental question about the ionic mechanism involved: Is the actuation process driven by anion motion, cation motion, or a mixture of the two? In addition: What is the extent of solvent motion? The discussion...... is centered on polypyrrole (PPy), which is the material most used and studied. The tetraethyl ammonium cation (TEA) is shown to be able to move in and out of PPy(DBS) polymer films, in contrast to expectations. There is a switching between ionic mechanisms during cycling in TEACl electrolyte....

  11. Modeling electrokinetics in ionic liquids: General

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA; Bao, Jie [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA USA; Pan, Wenxiao [Department of Mechanical Engineering, University of Wisconsin-Madison, Madison WI USA; Sun, Xin [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA

    2017-04-07

    Using direct numerical simulations we provide a thorough study on the electrokinetics of ionic liquids. In particular, the modfied Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects that are the characteristics of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with the Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel plates, charging dynamics in a 2D straight-walled pore, electro-osmotic ow in a nano-channel, electroconvective instability on a plane ion-selective surface, and electroconvective ow on a curved ion-selective surface. We discuss how the crowding and overscreening effects and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.

  12. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying; Moganty, Surya S.; Schaefer, Jennifer L.; Archer, Lynden A.

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2

  13. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2-IL-TFSI). The ionic conductivity exhibits a pronounced maximum versus LiTFSI composition, and in mixtures containing 13.4 wt% LiTFSI, the room-temperature ionic conductivity is enhanced by over 3 orders of magnitude relative to either of the mixture components, without compromising lithium transference number. The SiO 2-IL-TFSI/LiTFSI hybrid electrolytes are thermally stable up to 400°C and exhibit tunable mechanical properties and attractive (4.25V) electrochemical stability in the presence of metallic lithium. We explain these observations in terms of ionic coupling between counterion species in the mobile and immobile (particle-tethered) phases of the electrolytes. © 2012 The Royal Society of Chemistry.

  14. Study of thioglycosylation in ionic liquids

    Directory of Open Access Journals (Sweden)

    Ragauskas Arthur

    2006-06-01

    Full Text Available Abstract A novel, green chemistry, glycosylation strategy was developed based upon the use of ionic liquids. Research studies demonstrated that thiomethyl glycosides could readily be activated with methyl trifluoromethane sulfonate, using 1-butyl-3-methylimidazolium tetrafluoroborate as a solvent. This green chemistry glycosylation strategy provided disaccharides with typical yields averaging 75%. The ionic liquid solvent could be readily reused for five sequential glycosylation reactions with no impact on product yield.

  15. Symmetric Imidazolium-Based Paramagnetic Ionic Liquids

    Science.gov (United States)

    2017-11-29

    Charts N/A Unclassified Unclassified Unclassified SAR 14 Kamran Ghiassi N/A 1 Symmetric Imidazolium-Based Paramagnetic Ionic Liquids Kevin T. Greeson...NUMBER (Include area code) 29 November 2017 Briefing Charts 01 November 2017 - 30 November 2017 Symmetric Imidazolium-Based Paramagnetic Ionic ... Liquids K. Greeson, K. Ghiassi, J. Alston, N. Redeker, J. Marcischak, L. Gilmore, A. Guenthner Air Force Research Laboratory (AFMC) AFRL/RQRP 9 Antares

  16. Ionic liquids in the synthesis of nanoobjects

    International Nuclear Information System (INIS)

    Tarasova, Natalia P; Smetannikov, Yurii V; Zanin, A A

    2010-01-01

    Data on the usage of the novel green solvents, ionic liquids, in the synthesis of nanoobjects and their stabilization are considered. The information is structured according to the resulting products of the synthetic processes: nanoparticles of noble metals, nanoparticles of non-metals, nanoparticles of metal oxides and chalcogenides, nanocomposites, and highly dispersed polymers. The conclusion is made that the ionic liquids might determine the structure and the properties of the nanoobjects, thus opening new fundamental and technological horizons in nanochemistry.

  17. Recent development of ionic liquid membranes

    OpenAIRE

    Wang, Junfeng; Luo, Jianquan; Feng, Shicao; Li, Haoran; Wan, Yinhua; Zhang, Xiangping

    2016-01-01

    The interest in ionic liquids (IL) is motivated by its unique properties, such as negligible vapor pressure, thermal stability, wide electrochemical stability window, and tunability of properties. ILs have been highlighted as solvents for liquidâliquid extraction and liquid membrane separation. To further expand its application in separation field, the ionic liquid membranes (ILMs) and its separation technology have been proposed and developed rapidly. This paper is to give a comprehensive ov...

  18. New electrolytes for aluminum production: Ionic liquids

    Science.gov (United States)

    Zhang, Mingming; Kamavarum, Venkat; Reddy, Ramana G.

    2003-11-01

    In this article, the reduction, refining/recycling, and electroplating of aluminum from room-temperature molten salts are reviewed. In addition, the characteristics of several non-conventional organic solvents, electrolytes, and molten salts are evaluated, and the applicability of these melts for production of aluminum is discussed with special attention to ionic liquids. Also reviewed are electrochemical processes and conditions for electrodeposition of aluminum using ionic liquids at near room temperatures.

  19. Ionic secondary emission SIMS principles and instrumentation

    International Nuclear Information System (INIS)

    Darque-Ceretti, E.; Migeon, H.N.; Aucouturier, M.

    1998-01-01

    The ionic analysis by secondary emission (SIMS) is one of material analysis based on the ions bombardment. That is micro-analysis method in taking into account that the dimensions of the analysed volume are under the micrometer. This paper details in a first part some ionic secondary emission principle to introduce a description of the instrumentation: microprobe, ions production, spectrometers. (A.L.B.)

  20. The Solubility Parameters of Ionic Liquids

    Science.gov (United States)

    Marciniak, Andrzej

    2010-01-01

    The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated. PMID:20559495

  1. The Solubility Parameters of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Andrzej Marciniak

    2010-04-01

    Full Text Available The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated.

  2. Polarization versus Temperature in Pyridinium Ionic Liquids

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    Electronic polarization and charge transfer effects play a crucial role in thermodynamic, structural, and transport properties of room-temperature ionic liquids (RTILs). These nonadditive interactions constitute a useful tool for tuning physical chemical behavior of RTILs. Polarization and charge...... interactions changes negligibly between 300 and 900 K, while the average dipole moment increases due to thermal fluctuations of geometries. Our results contribute to the fundamental understanding of electronic effects in the condensed phase of ionic systems and foster progress in physical chemistry...

  3. Effect of prostaglandin inhibition on the renal vascular response to ionic and non-ionic contrast media in the dog

    International Nuclear Information System (INIS)

    Lund, G.; Einzig, S.; Rysavy, J.; Salomonowitz, E.; Castaneda-Zuniga, W.; Amplatz, K.; Minnesota Univ., Minneapolis

    1984-01-01

    In an attempt to study the role of prostaglandins in the renal vascular response to contrast media in mongrel dogs, renal arterial injections of 6 ml of either the non-ionic contrast medium Iopamidol or the ionic medium diatrizoate meglumine/Na + were performed, before and after intravenous injection of a buffered solution of acetyl-salicylic acid (10 mg/kg) (ASA). Renal blood flow was recorded using non-occluding electromagnetic flow probes. The resting renal blood flow was significantly reduced after ASA. The usual biphasic response to contrast injection was observed both before and after ASA, and using either contrast medium. Analysis of the results failed to show any difference in degree of vasodilation or vasoconstriction after ASA. We conclude that prostaglandins may affect the resting level of renal blood flow but are not mediators of the instantaneous changes in response to contrast injection. (orig.)

  4. Ionic liquid gel materials: applications in green and sustainable chemistry

    OpenAIRE

    Marr, Patricia C.; Marr, Andrew C.

    2016-01-01

    Ionic liquid gel materials offer a way to further utilise ionic liquids in technological applications. Combining the controlled and directed assembly of gels, with the diverse applications of ionic liquids, enables the design of a heady combination of functional tailored materials, leading to the development of task specific / functional ionic liquid gels. This review introduces gels and gel classification, focusing on ionic liquid gels and their potential roles in a more sustainable future. ...

  5. Task-specific ionic liquids for solubilizing metal compounds

    OpenAIRE

    Thijs, Ben

    2007-01-01

    The main goal of this PhD thesis was to design new task-specific ionic liquids with the ability to dissolve metal compounds. Despite the large quantity of papers published on ionic liquids, not much is known about the mechanisms of dissolving metals in ionic liquids or about metal-containing ionic liquids. Additionally, many of the commercially available ionic liquids exhibit a very limited solubilizing power for metal compounds, although this is for many applications like electrodeposition a...

  6. Fast Ignition and Sustained Combustion of Ionic Liquids

    Science.gov (United States)

    Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)

    2016-01-01

    A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.

  7. Computational solvation analysis of biomolecules in aqueous ionic liquid mixtures : From large flexible proteins to small rigid drugs.

    Science.gov (United States)

    Zeindlhofer, Veronika; Schröder, Christian

    2018-06-01

    Based on their tunable properties, ionic liquids attracted significant interest to replace conventional, organic solvents in biomolecular applications. Following a Gartner cycle, the expectations on this new class of solvents dropped after the initial hype due to the high viscosity, hydrolysis, and toxicity problems as well as their high cost. Since not all possible combinations of cations and anions can be tested experimentally, fundamental knowledge on the interaction of the ionic liquid ions with water and with biomolecules is mandatory to optimize the solvation behavior, the biodegradability, and the costs of the ionic liquid. Here, we report on current computational approaches to characterize the impact of the ionic liquid ions on the structure and dynamics of the biomolecule and its solvation layer to explore the full potential of ionic liquids.

  8. Ionic liquids in drug delivery.

    Science.gov (United States)

    Shamshina, Julia L; Barber, Patrick S; Rogers, Robin D

    2013-10-01

    To overcome potential problems with solid-state APIs, such as polymorphism, solubility and bioavailability, pure liquid salt (ionic liquid) forms of active pharmaceutical ingredients (API-ILs) are considered here as a design strategy. After a critical review of the current literature, the recent development of the API-ILs strategy is presented, with a particular focus on the liquefaction of drugs. A variety of IL tools for control over the liquid salt state of matter are discussed including choice of counterion to produce an IL from a given API; the concept of oligomeric ions that enables liquefaction of solid ILs by changing the stoichiometry or complexity of the ions; formation of 'liquid co-crystals' where hydrogen bonding is the driving force in the liquefaction of a neutral acid-base complex; combining an IL strategy with the prodrug strategy to improve the delivery of solid APIs; using ILs as delivery agents via trapping a drug in a micelle and finally ILs designed with tunable hydrophilic-lipophilic balance that matches the structural requirements needed to solubilize poorly water-soluble APIs. The authors believe that API-IL approaches may save failed lead candidates, extend the patent life of current APIs, lead to new delivery options or even new pharmaceutical action. They encourage the pharmaceutical industry to invest more research into the API-IL platform as it could lead to fast-tracked approval based on similarities to the APIs already approved.

  9. The structure of ionic liquids

    CERN Document Server

    Gontrani, Lorenzo

    2014-01-01

    This volume describes the most recent findings on the structure of ILs interpreted through cutting-edge experimental and theoretical methods. Research in the field of ionic liquids (ILs) keeps a fast and steady pace. Since these new-generation molten salts first appeared in the chemistry and physics landscape, a large number of new compounds has been synthesized. Most of them display unexpected behaviour and possess stunning properties. The coverage in this book ranges from the mesoscopic structure of ILs to their interaction with proteins. The reader will learn how diffraction techniques (small and large angle X-Ray and neutron scattering, powder methods), X-Ray absorption spectroscopies (EXAFS/XANES), optical methods (IR, RAMAN), NMR and calorimetric methods can help the study of ILs, both as neat liquids and in mixtures with other compounds. It will enable the reader to choose the best method to suit their experimental needs. A detailed survey of theoretical methods, both quantum-chemical and classical, ...

  10. Fabrication of Greener Membranes from Ionic Liquid Solutions

    KAUST Repository

    Kim, DooLi

    2017-06-01

    Membrane technology plays a crucial role in different separation processes such as biotechnology, pharmaceutical, and food industries, drinking water supply, and wastewater treatment. However, there is a growing concern that solvents commonly used for membrane fabrication, such as dimethylformamide (DMF), dimethylacetamide (DMAc), and 1-methyl-2-pyrrolidone (NMP), are toxic to the environment and human health. To explore the possibility of substituting these toxic solvents by less toxic or safer solvents, polymers commonly used for membrane fabrication, such as polyacrylonitrile (PAN), cellulose acetate (CA), polyethersulfone (PES), and poly(ether imide sulfone) (EXTEMTM), were dissolved in ionic liquids. Flat sheet and hollow fiber membranes were then fabricated. The thermodynamics of the polymer solutions, the kinetics of phase inversion and other factors, which resulted in significant differences in the membrane structure, compared to those of membranes fabricated from more toxic solvents, were investigated. Higher water permeance with smaller pores, unique and uniform morphologies, and narrower pore size distribution, were observed in the ionic liquid-based membranes. Furthermore, comparable performance on separation of peptides and proteins with various molecular weights was achieved with the membranes fabricated from ionic liquid solutions. In summary, we propose less hazardous polymer solutions to the environment, which can be used for the membrane fabrication with better performance and more regular morphology.

  11. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    International Nuclear Information System (INIS)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R; Kolar, M

    2011-01-01

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  12. Antibacterial activity and toxicity of silver - nanosilver versus ionic silver

    Energy Technology Data Exchange (ETDEWEB)

    Kvitek, L; Panacek, A; Prucek, R; Soukupova, J; Vanickova, M; Zboril, R [Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, 17. Listopadu 12, 77146 Olomouc (Czech Republic); Kolar, M, E-mail: ales.panacek@upol.cz [Department of Microbiology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 77520 Olomouc (Czech Republic)

    2011-07-06

    The in vitro study of antibacterial activity of silver nanoparticles (NPs), prepared via modified Tollens process, revealed high antibacterial activity even at very low concentrations around several units of mg/L. These concentrations are comparable with concentrations of ionic silver revealing same antibacterial effect. However, such low concentrations of silver NPs did not show acute cytotoxicity to mammalian cells - this occurs at concentrations higher than 60 mg/L of silver, while the cytotoxic level of ionic silver is much more lower (approx. 1 mg/L). Moreover, the silver NPs exhibit lower acute ecotoxicity against the eukaryotic organisms such as Paramecium caudatum, Monoraphidium sp. and D. melanogaster. The silver NPs are toxic to these organisms at the concentrations higher than 30 mg/L of silver. On contrary, ionic silver retains its cytoxicity and ecotoxicity even at the concentration equal to 1 mg/L. The performed experiments demonstrate significantly lower toxicity of silver NPs against the eukaryotic organisms than against the prokaryotic organisms.

  13. Carbons, ionic liquids and quinones for electrochemical capacitors

    Directory of Open Access Journals (Sweden)

    Raul eDiaz

    2016-04-01

    Full Text Available Carbons are the main electrode materials used in electrochemical capacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density will improve their potential for commercial implementation. In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternatives to current state of the art acetonitrile-based electrolytes. Also, in terms of safety and sustainability ionic liquids are attractive electrolyte materials for electrochemical capacitors. In addition, it has been shown that the matching of the carbon pore size with the electrolyte ion size further increases the attainable electric double layer (EDL capacitance and energy density.The use of pseudocapacitive reactions can significantly increase the attainable energy density, and quinonic-based materials offer a potentially sustainable and cost effective research avenue for both the electrode and the electrolyte. This perspective will provide an overview of the current state of the art research on electrochemical capacitors based on combinations of carbons, ionic liquids and quinonic compounds, highlighting performances and challenges and discussing possible future research avenues. In this regard, current interest is mainly focused on strategies which may ultimately lead to commercially competitive sustainable high performance electrochemical capacitors for different applications including those requiring mechanical flexibility and biocompatibility.

  14. Ionic strength-induced formation of smectite quasicrystals enhances nitroaromatic compound sorption.

    Science.gov (United States)

    Li, Hui; Pereira, Tanya R; Teppen, Brian J; Laird, David A; Johnston, Cliff T; Boyd, Stephen A

    2007-02-15

    Sorption of organic contaminants by soils is a determinant controlling their transport and fate in the environment. The influence of ionic strength on nitroaromatic compound sorption by K+- and Ca2+ -saturated smectite was examined. Sorption of 1,3-dinitrobenzene by K-smectite increased as KCl ionic strength increased from 0.01 to 0.30 M. In contrast, sorption by Ca-smectite at CaCl2 ionic strengths of 0.015 and 0.15 M remained essentially the same. The "salting-out" effect on the decrease of 1,3-dinitrobenzene aqueous solubility within this ionic strength range was smectite with increasing KCl ionic strength. X-ray diffraction patterns and light absorbance of K-clay suspensions indicated the aggregation of clay particles and the formation of quasicrystal structures as KCI ionic strength increased. Sorption enhancement is attributed to the formation of better-ordered K-clay quasicrystals with reduced interlayer distances rather than to the salting-out effect. Dehydration of 1,3-dinitrobenzene is apparently a significant driving force for sorption, and we show for the first time that sorption of small, planar, neutral organic molecules, namely, 1,3-dinitrobenzene, causes previously expanded clay interlayers to dehydrate and collapse in aqueous suspension.

  15. Minor Actinide Separations Using Ion Exchangers Or Ionic Liquids

    International Nuclear Information System (INIS)

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-01-01

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  16. A Review of Ionic Liquid Lubricants

    Directory of Open Access Journals (Sweden)

    Anthony E. Somers

    2013-01-01

    Full Text Available Due to ever increasing demands on lubricants, such as increased service intervals, reduced volumes and reduced emissions, there is a need to develop new lubricants and improved wear additives. Ionic liquids (ILs are room temperature molten salts that have recently been shown to offer many advantages in this area. The application of ILs as lubricants in a diverse range of systems has found that these materials can show remarkable protection against wear and significantly reduce friction in the neat state. Recently, some researchers have shown that a small family of ILs can also be incorporated into non-polar base oils, replacing traditional anti-wear additives, with excellent performance of the neat IL being maintained. ILs consist of large asymmetrical ions that may readily adsorb onto a metal surface and produce a thin, protective film under boundary lubrication conditions. Under extreme pressure conditions, certain IL compounds can also react to form a protective tribofilm, in particular when fluorine, phosphorus or boron atoms are present in the constituent ions.

  17. Comparing two tetraalkylammonium ionic liquids. II. Phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.; Ribeiro, Mauro C. C., E-mail: mccribei@iq.usp.br [Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05513-970 São Paulo, SP (Brazil); Ferreira, Fabio F.; Costa, Fanny N. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP (Brazil); Giles, Carlos [Depto. de Física da Matéria Condensada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas, SP (Brazil)

    2016-06-14

    Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1114}][NTf{sub 2}], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1444}][NTf{sub 2}], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N{sub 1444}][NTf{sub 2}] experiences glass transition at low temperature, whereas [N{sub 1114}][NTf{sub 2}] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.

  18. IONIC LIQUIDS: RADIATION CHEMISTRY, SOLVATION DYNAMICS AND REACTIVITY PATTERNS

    International Nuclear Information System (INIS)

    WISHART, J.F.

    2007-01-01

    energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate the influence of ILs on charge transport processes. Methods. Picosecond pulse radiolysis studies at BNL

  19. Mechanical heterogeneity in ionic liquids

    Science.gov (United States)

    Veldhorst, Arno A.; Ribeiro, Mauro C. C.

    2018-05-01

    Molecular dynamics (MD) simulations of five ionic liquids based on 1-alkyl-3-methylimidazolium cations, [CnC1im]+, have been performed in order to calculate high-frequency elastic moduli and to evaluate heterogeneity of local elastic moduli. The MD simulations of [CnC1im][NO3], n = 2, 4, 6, and 8, assessed the effect of domain segregation when the alkyl chain length increases, and [C8C1im][PF6] assessed the effect of strength of anion-cation interaction. Dispersion curves of excitation energies of longitudinal and transverse acoustic, LA and TA, modes were obtained from time correlation functions of mass currents at different wavevectors. High-frequency sound velocity of LA modes depends on the alkyl chain length, but sound velocity for TA modes does not. High-frequency bulk and shear moduli, K∞ and G∞, depend on the alkyl chain length because of a density effect. Both K∞ and G∞ are strongly dependent on the anion. The calculation of local bulk and shear moduli was accomplished by performing bulk and shear deformations of the systems cooled to 0 K. The simulations showed a clear connection between structural and elastic modulus heterogeneities. The development of nano-heterogeneous structure with increasing length of the alkyl chain in [CnC1im][NO3] implies lower values for local bulk and shear moduli in the non-polar domains. The mean value and the standard deviations of distributions of local elastic moduli decrease when [NO3]- is replaced by the less coordinating [PF6]- anion.

  20. Ionic liquid processing of cellulose.

    Science.gov (United States)

    Wang, Hui; Gurau, Gabriela; Rogers, Robin D

    2012-02-21

    Utilization of natural polymers has attracted increasing attention because of the consumption and over-exploitation of non-renewable resources, such as coal and oil. The development of green processing of cellulose, the most abundant biorenewable material on Earth, is urgent from the viewpoints of both sustainability and environmental protection. The discovery of the dissolution of cellulose in ionic liquids (ILs, salts which melt below 100 °C) provides new opportunities for the processing of this biopolymer, however, many fundamental and practical questions need to be answered in order to determine if this will ultimately be a green or sustainable strategy. In this critical review, the open fundamental questions regarding the interactions of cellulose with both the IL cations and anions in the dissolution process are discussed. Investigations have shown that the interactions between the anion and cellulose play an important role in the solvation of cellulose, however, opinions on the role of the cation are conflicting. Some researchers have concluded that the cations are hydrogen bonding to this biopolymer, while others suggest they are not. Our review of the available data has led us to urge the use of more chemical units of solubility, such as 'g cellulose per mole of IL' or 'mol IL per mol hydroxyl in cellulose' to provide more consistency in data reporting and more insight into the dissolution mechanism. This review will also assess the greenness and sustainability of IL processing of biomass, where it would seem that the choices of cation and anion are critical not only to the science of the dissolution, but to the ultimate 'greenness' of any process (142 references).

  1. Effect of ionic and non-ionic contrast media on aggregation of red blood cells in vitro

    International Nuclear Information System (INIS)

    Raininko, R.; Ylinen, S.L.

    1987-01-01

    Fresh human blood without additives, and contrast medium were mixed and examined immediately by light microscopy in a non-flowing state. Sodium meglumine diatrizoate, meglumine diatrizoate, meglumine iodamide, sodium meglumine ioxaglate, iopromide, iopamidol, iohexol, and metrizamide were tested in concentrations of 300 mgI/ml. Physiologic saline and 5% glucose were used as controls. All media were tested in a randomized order with blood samples from 23 volunteers. No aggregation was detected in physiologic saline, and few rouleaux were found in ionic contrast media. Irregular red cell aggregates were found in all low-osmolal contrast media: in 17% of the specimens in ioxaglate, in 52% in metrizamide, and in 78 to 100% in other non-ionic media. Irregular aggregates were seen in all specimens with glucose. It remains to be domonstrated whether or not the irregular aggregation of human red cells in non-ionic contrast media has clinical significance. Iohexol was also tested with blood samples from several laboratory animals, but in nearly every case no aggregates were found. Results of animal experiments or tests with animal blood seem to be poorly applicable to man. (orig.)

  2. Green Imidazolium Ionics-From Truly Sustainable Reagents to Highly Functional Ionic Liquids.

    Science.gov (United States)

    Tröger-Müller, Steffen; Brandt, Jessica; Antonietti, Markus; Liedel, Clemens

    2017-09-04

    We report the synthesis of task-specific imidazolium ionic compounds and ionic liquids with key functionalities of organic molecules from electro-, polymer-, and coordination chemistry. Such products are highly functional and potentially suitable for technology applications even though they are formed without elaborate reactions and from cheap and potentially green reagents. We further demonstrate the versatility of the used synthetic approach by introducing different functional and green counterions to the formed ionic liquids directly during the synthesis or after metathesis reactions. The influence of different cation structures and different anions on the thermal and electrochemical properties of the resulting ionic liquids is discussed. Our goal is to make progress towards economically competitive and sustainable task-specific ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mesoporous Carbon Design for Ionic Liquid-Based, Double-Layer Supercapacitors

    OpenAIRE

    2010-01-01

    Abstract The use of pyrrolidinium-based ionic liquids (ILs) in asymmetric electric double-layer capacitors (AEDLC) with positive and negative carbon electrodes of different weight is a powerful strategy for developing safe, high specific-energy supercapacitors operating at > 3.5 V. The preparation and characterization of ordered (OTC) and disordered (DTC) template carbons, the latter obtained by a fast and low-cost method, are reported. The porosity and capacitance features of the ...

  4. Impact of water dilution and cation tail length on ionic liquid characteristics: Interplay between polar and non-polar interactions

    International Nuclear Information System (INIS)

    Hegde, Govind A.; Bharadwaj, Vivek S.; Kinsinger, Corey L.; Schutt, Timothy C.; Pisierra, Nichole R.; Maupin, C. Mark

    2016-01-01

    The recalcitrance of lignocellulosic biomass poses a major challenge that hinders the economical utilization of biomass for the production of biofuel, plastics, and chemicals. Ionic liquids have become a promising solvent that addresses many issues in both the pretreatment process and the hydrolysis of the glycosidic bond for the deconstruction of cellulosic materials. However, to make the use of ionic liquids economically viable, either the cost of ionic liquids must be reduced, or a less expensive solvent (e.g., water) may be added to reduce the overall amount of ionic liquid used in addition to reducing the viscosity of the binary liquid mixture. In this work, we employ atomistic molecular dynamics simulations to investigate the impact of water dilution on the overall liquid structure and properties of three imidazolium based ionic liquids. It is found that ionic liquid-water mixtures exhibit characteristics that can be grouped into two distinct regions, which are a function of the ionic liquid concentration. The trends observed in each region are found to correlate with the ordering in the local structure of the ionic liquid that arises from the dynamic interactions between the ion pairs. Simulation results suggest that there is a high level of local ordering in the molecular structure at high concentrations of ionic liquids that is driven by the aggregation of the cationic tails and the anion-water interactions. It is found that as the concentration of ionic liquids in the binary mixture is decreased, there is a point at which the competing self and cross interaction energies between the ionic liquid and water shifts away from a cation-anion dominated regime, which results in a significant change in the mixture properties. This break point, which occurs around 75% w/w ionic liquids, corresponds to the point at which water molecules percolate into the ionic liquid network disrupting the ionic liquids’ nanostructure. It is observed that as the cationic alkyl

  5. Improving lithium therapeutics by crystal engineering of novel ionic cocrystals.

    Science.gov (United States)

    Smith, Adam J; Kim, Seol-Hee; Duggirala, Naga K; Jin, Jingji; Wojtas, Lukasz; Ehrhart, Jared; Giunta, Brian; Tan, Jun; Zaworotko, Michael J; Shytle, R Douglas

    2013-12-02

    Current United States Food and Drug Administration (FDA)-approved lithium salts are plagued with a narrow therapeutic window. Recent attempts to find alternative drugs have identified new chemical entities, but lithium's polypharmacological mechanisms for treating neuropsychiatric disorders are highly debated and are not yet matched. Thus, re-engineering current lithium solid forms in order to optimize performance represents a low cost and low risk approach to the desired therapeutic outcome. In this contribution, we employed a crystal engineering strategy to synthesize the first ionic cocrystals (ICCs) of lithium salts with organic anions. We are unaware of any previous studies that have assessed the biological efficacy of any ICCs, and encouragingly we found that the new speciation did not negatively affect established bioactivities of lithium. We also observed that lithium ICCs exhibit modulated pharmacokinetics compared to lithium carbonate. Indeed, the studies detailed herein represent an important advancement in a crystal engineering approach to a new generation of lithium therapeutics.

  6. 60Co γ-irradiation induced polymerization of methyl methacrylate in imidazolium ionic liquids

    International Nuclear Information System (INIS)

    Qi Mingying; Wu Gongzhong; Liu Yaodong; Chen Shimou; Sha Maolin

    2006-01-01

    Room temperature ionic liquids (RTILs), as a class of novel environmental benign 'green solvents', have been used as reaction media for various polymerizations due to their unique properties of non-volatility, high polarity, ease of recycling and chirality. In radiation polymerization, the energetic photons or electrons result in the formation of solvated electron and radical ions in ionic liquids, which initiate polymerization of monomers without any chemical initiator. In this work, effects of gamma ray irradiation on pure ionic liquid [bmim][PF 6 ] was investigated in detail in a dose range of 5-400 kGy. The ionic liquids were quite stable under low dose irradiations, but underwent notable radiolysis with high doses. With the irradiated [bmim][PF 6 ], the UV-Vis absorbance increased and the fluorescence intensity decreased with increasing doses. Raman spectra proved that gamma radiation induced significant chemical scission of n-butyl group (e.g. C-H and C-C scission), along with damages to the [PF6] - anion. In cooled samples of the irradiated [bmim][PF 6 ] we found two coexist crystal structures, which had suffered a continuous destruction under high dose irradiation. After ensuring stability of the ionic liquids to low dose irradiation, radiation polymerization of methyl methacrylate (MMA) in ionic liquids and IL/organic solutions was performed. By adding the ionic liquids, the monomer conversion and molecular weight (Mw) of the polymer increased significant. Mw of PMMA in neat ionic liquid increased by about 60 times, from 3 x 10 4 with pure organic solvent to about 2 x 10 6 . Molecular weight of the polymer increased with the IL fraction in the IL/organic solutions, and it was dependent on ionic liquids and solvents used, too. It was also found that the polymer obtained in the existence of IL showed multi-modal broadened molecular weight distribution (MWD). A reasonable explanation is the inhomogeneous nature of the ionic liquid in micron scale and the

  7. Ionic association and solvation of the ionic liquid 1-hexyl-3-methylimidazolium chloride in molecular solvents revealed by vapor pressure osmometry, conductometry, volumetry, and acoustic measurements.

    Science.gov (United States)

    Sadeghi, Rahmat; Ebrahimi, Nosaibah

    2011-11-17

    interpreted in terms of ion association, ion-dipole interactions, and structural factors of the ionic liquid and investigated organic solvents. The ionic liquid is solvated to a different extent by the molecular solvents, and ionic association is affected significantly by ionic solvation.

  8. Ionic liquid stationary phases for gas chromatography.

    Science.gov (United States)

    Poole, Colin F; Poole, Salwa K

    2011-04-01

    This article provides a summary of the development of ionic liquids as stationary phases for gas chromatography beginning with early work on packed columns that established details of the retention mechanism and established working methods to characterize selectivity differences compared with molecular stationary phases through the modern development of multi-centered cation and cross-linked ionic liquids for high-temperature applications in capillary gas chromatography. Since there are many reviews on ionic liquids dealing with all aspects of their chemical and physical properties, the emphasis in this article is placed on the role of gas chromatography played in the design of ionic liquids of low melting point, high thermal stability, high viscosity, and variable selectivity for separations. Ionic liquids provide unprecedented opportunities for extending the selectivity range and temperature-operating range of columns for gas chromatography, an area of separation science that has otherwise been almost stagnant for over a decade. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Solid state ionics: a Japan perspective

    Science.gov (United States)

    Yamamoto, Osamu

    2017-12-01

    The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term 'solid state ionics' was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1-xYxO3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm-1 at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm-1 at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology.

  10. Counterion-induced swelling of ionic microgels

    Science.gov (United States)

    Denton, Alan R.; Tang, Qiyun

    2016-10-01

    Ionic microgel particles, when dispersed in a solvent, swell to equilibrium sizes that are governed by a balance between electrostatic and elastic forces. Tuning of particle size by varying external stimuli, such as pH, salt concentration, and temperature, has relevance for drug delivery, microfluidics, and filtration. To model swelling of ionic microgels, we derive a statistical mechanical theorem, which proves exact within the cell model, for the electrostatic contribution to the osmotic pressure inside a permeable colloidal macroion. Applying the theorem, we demonstrate how the distribution of counterions within an ionic microgel determines the internal osmotic pressure. By combining the electrostatic pressure, which we compute via both Poisson-Boltzmann theory and molecular dynamics simulation, with the elastic pressure, modeled via the Flory-Rehner theory of swollen polymer networks, we show how deswelling of ionic microgels with increasing concentration of particles can result from a redistribution of counterions that reduces electrostatic pressure. A linearized approximation for the electrostatic pressure, which proves remarkably accurate, provides physical insight and greatly eases numerical calculations for practical applications. Comparing with experiments, we explain why soft particles in deionized suspensions deswell upon increasing concentration and why this effect may be suppressed at higher ionic strength. The failure of the uniform ideal-gas approximation to adequately account for counterion-induced deswelling below close packing of microgels is attributed to neglect of spatial variation of the counterion density profile and the electrostatic pressure of incompletely neutralized macroions.

  11. Low Temperature Reduction of Alumina Using Fluorine Containing Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Dr. R. G. Reddy

    2007-09-01

    are understood and quantified. Multiscale numerical modeling nevertheless can help to bridge this gap. In conjunction with various scale experimental efforts, this project was aim to construct the basis for a strategy for innovation, by developing a generally applicable modeling methodology for understanding and controlling the electrochemical processes of aluminum electrodeposition in ionic liquids with the unifying characteristic that they are based on charge-driven mass transfer. The approaches developed in this project will not only be essential for the mass production of aluminum on any pilot scale or industrial level production processes, leading to the development of a new aluminum production technology, but also bring significant benefits to the society in terms of saving energy, reducing pollutants emission and recovering valuable metals.

  12. Reduction in ionic permeability of a silicone hydrogel contact lenses after one month of daily wear

    International Nuclear Information System (INIS)

    Ferreira da Silva, Ana Rita; González-Méijome, José M; Compañ, Vicente

    2015-01-01

    Purpose. To compare the ionic permeability using the ionoflux method of new and worn samples of a silicone hydrogel contact lens material. Methods. An ionoflux experimental setup was established to measure the ionic permeability (NaCl) of soft contact lenses. Samples of a silicone hydrogel lens (Comfilcon A, Coopervision, Pleasanton, CA) with optical powers of −1.00, −1.50 and −4.75 diopters (D) were used in this study. Three samples of each power were measured after being worn for one month on a daily wear basis. Lenses were cleaned and disinfected every night using multipurpose disinfecting solutions. Three samples of new lenses from the same batch and the same optical power were also measured to evaluate the effect of lens wear on the ionic permeability of the lens material. Before measurement, the lenses were equilibrated with a 1 M NaCl solution during one week before of each measurement. Results. Lens power had minimal effect on the ionic permeability of a modern silicone hydrogel contact lens with the −1.00 lens having a 15% lower permeability compared to the other two lenses. After one month of lens wear the apparent ionic permeability for lenses with −1.50 D decreased by 15%. In the case of −1.00 and −4.75 D lenses there was a decrease of 26%. Conclusions. The ionic permeability of silicone hydrogel lenses of different optical powers was not significantly different. Worn lenses present a significant reduction of the ionic permeability after a month of wear. The potential effect this reduction on lens movement and discomfort associated to lens wear should be further evaluated. (paper)

  13. Toxicity prediction of ionic liquids based on Daphnia magna by using density functional theory

    Science.gov (United States)

    Nu’aim, M. N.; Bustam, M. A.

    2018-04-01

    By using a model called density functional theory, the toxicity of ionic liquids can be predicted and forecast. It is a theory that allowing the researcher to have a substantial tool for computation of the quantum state of atoms, molecules and solids, and molecular dynamics which also known as computer simulation method. It can be done by using structural feature based quantum chemical reactivity descriptor. The identification of ionic liquids and its Log[EC50] data are from literature data that available in Ismail Hossain thesis entitled “Synthesis, Characterization and Quantitative Structure Toxicity Relationship of Imidazolium, Pyridinium and Ammonium Based Ionic Liquids”. Each cation and anion of the ionic liquids were optimized and calculated. The geometry optimization and calculation from the software, produce the value of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). From the value of HOMO and LUMO, the value for other toxicity descriptors were obtained according to their formulas. The toxicity descriptor that involves are electrophilicity index, HOMO, LUMO, energy gap, chemical potential, hardness and electronegativity. The interrelation between the descriptors are being determined by using a multiple linear regression (MLR). From this MLR, all descriptors being analyzed and the descriptors that are significant were chosen. In order to develop the finest model equation for toxicity prediction of ionic liquids, the selected descriptors that are significant were used. The validation of model equation was performed with the Log[EC50] data from the literature and the final model equation was developed. A bigger range of ionic liquids which nearly 108 of ionic liquids can be predicted from this model equation.

  14. Thermophysical properties of hydroxyl ammonium ionic liquids

    International Nuclear Information System (INIS)

    Kurnia, K.A.; Wilfred, C.D.; Murugesan, T.

    2009-01-01

    The thermophysical properties of hydroxyl ammonium ionic liquids: density ρ, T = (293.15 to 363.15) K; dynamic viscosity η, T = (298.2 to 348.2) K; and refractive indices n D , T = (293.15 to 333.15) K have been measured. The coefficients of thermal expansion α, values were calculated from the experimental density results using an empirical correlation for T = (293.15 to 363.15) K. The variation of volume expansion of ionic liquids studied was found to be independent of temperature within the range covered in the present work. The thermal decomposition temperature 'T d ' for all the six hydroxyl ammonium ionic liquids is also investigated using thermogravimetric analyzer (TGA)

  15. Key Developments in Ionic Liquid Crystals.

    Science.gov (United States)

    Alvarez Fernandez, Alexandra; Kouwer, Paul H J

    2016-05-16

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  16. Key Developments in Ionic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Alexandra Alvarez Fernandez

    2016-05-01

    Full Text Available Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  17. Desulfurization of oxidized diesel using ionic liquids

    Science.gov (United States)

    Wilfred, Cecilia D.; Salleh, M. Zulhaziman M.; Mutalib, M. I. Abdul

    2014-10-01

    The extraction of oxidized sulfur compounds from diesel were carried out using ten types of ionic liquids consisting of different cation and anion i.e. 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazoium thiocyanate, 1-butyl-3-methylimidazoium dicyanamide, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazoliumhexafluorophosphate, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate, trioctylmethylammonium chloride, 1-propionitrile-3-butylimidazolium thiocyanate, 1-propionitrile-3-butylimidazolium dicyanamide and 1-butyl-6-methylquinolinium dicyanamide. The oxidation of diesel was successfully done using phosphotungstic acid as the catalyst, hydrogen peroxide (H2O2) as the oxidant and trioctylmethylammonium chloride as the phase transfer agent. The oxidation of diesel changes the sulfur compounds into sulfone which increases its polarity and enhances the ionic liquid's extraction performance. Result showed that ionic liquid [C4mquin][N(CN)2] performed the highest sulfur removal (91% at 1:5 diesel:IL ratio) compared to the others.

  18. Synthesis and characterization of new ionic liquids

    International Nuclear Information System (INIS)

    Oliveira, L.M.C. de; Mattedi, S.; Boaventura, J.S.; Iglesias, M.; Universidad de Santiago de Compostela

    2010-01-01

    In recent years, ionic liquids have been highlighted for its potential in various industrial applications. Among them, the salts of Broensted has a promising profile for the low toxicity, low cost and simple synthesis. This paper presents the synthesis and characterization of new salts of Bronsted with branched (lactate) or large chain anions (oleate) for future use as additives promoters of proton conductivity in fuel cells of ethanol. Experimental data were measured for density, sound velocity and conductivity of pure ionic liquids and mixtures. The density decreases linearly with increasing temperature, and sound velocity shows a similar trend, but not linear. The conductivity increases according to the Arrhenius model with activation energy less than 10 J/mol. Tests NMR, FTIR and TGA confirm ionic structure and thermal stability up to 165 deg C. (author)

  19. BWR radiation buildup control with ionic zinc

    International Nuclear Information System (INIS)

    Marble, W.J.; Wood, C.J.; Leighty, C.E.; Green, T.A.

    1986-01-01

    In 1983 a hypothesis was disclosed which suggested that the presence of ionic zinc in the reactor water of the BWR could reduce radiation buildup. This hypothesis was developed from correlations of plant data, and subsequently, from laboratory experiments which demonstrated clearly that ionic zinc inhibits the corrosion of stainless steel. The benefits of zinc addition have been measured at the Vallecitos Nuclear Center under and EPRI/GE project. Experimentation and analyses have been performed to evaluate the impact of intentional zinc addition on the IGSCC characteristics of primary system materials and on the performance of the nuclear fuel. It has been concluded that no negative effects are expected. The author conclude that the intentional addition of ionic zinc to the BWR reactor water at a concentration of approximately 10 ppb will provide major benefits in controlling the Co-60 buildup on primary system stainless steel surfaces. The intentional addition of zinc is now a qualified technique for use in BWRs

  20. Selective Ionic Transport Pathways in Phosphorene.

    Science.gov (United States)

    Nie, Anmin; Cheng, Yingchun; Ning, Shoucong; Foroozan, Tara; Yasaei, Poya; Li, Wen; Song, Boao; Yuan, Yifei; Chen, Lin; Salehi-Khojin, Amin; Mashayek, Farzad; Shahbazian-Yassar, Reza

    2016-04-13

    Despite many theoretical predictions indicating exceptionally low energy barriers of ionic transport in phosphorene, the ionic transport pathways in this two-dimensional (2D) material has not been experimentally demonstrated. Here, using in situ aberration-corrected transmission electron microscopy (TEM) and density functional theory, we studied sodium ion transport in phosphorene. Our high-resolution TEM imaging complemented by electron energy loss spectroscopy demonstrates a precise description of anisotropic sodium ions migration along the [100] direction in phosphorene. This work also provides new insight into the effect of surface and the edge sites on the transport properties of phosphorene. According to our observation, the sodium ion transport is preferred in zigzag edge rather than the armchair edge. The use of this highly selective ionic transport property may endow phosphorene with new functionalities for novel chemical device applications.

  1. A short review on stable metal nanoparticles using ionic liquids, supported ionic liquids, and poly(ionic liquids)

    International Nuclear Information System (INIS)

    Manojkumar, Kasina; Sivaramakrishna, Akella; Vijayakrishna, Kari

    2016-01-01

    Metal nanoparticles (NPs) are a subject of global interest in research community due to their diverse applications in various fields of science. The stabilization of these metal NPs is of great concern in order to avoid their agglomerization during their applications. There is a huge pool of cations and anions available for the selection of ionic liquids (ILs) as stabilizers for the synthesis of metal NPs. ILs are known for their tunable nature allowing the fine tuning of NPs size and solubility by varying the substitutions on the heteroatom as well as the counter anions. However, there has been a debate over the stability of metal NPs stabilized by ILs over a long period of time and also upon their recycling and reuse in organocatalytic reactions. ILs covalently attached to solid supports (SILLPs) have given a new dimension for the stabilization of metal NPs as well as their separation, recovery, and reuse in organocatalytic reactions. Poly(ILs) (PILs) or polyelectrolytes have created a significant revolution in the polymer science owing to their characteristic properties of polymers as well as ILs. This dual behavior of PILs has facilitated the stabilization of PIL-stabilized metal NPs over a long period of time with negligible or no change in particle size, stability, and size distribution upon recycling in catalysis. This review provides an insight into the different types of imidazolium-based ILs, supported ILs, and PILs used so far for the stabilization of metal NPs and their applications as a function of their cations and counter anions.

  2. Correlations between phase behaviors and ionic conductivities of (ionic liquid + alcohol) systems

    International Nuclear Information System (INIS)

    Park, Nam Ku; Bae, Young Chan

    2010-01-01

    To understand the basic properties of ionic liquids (ILs), we examined the phase behavior and ionic conductivity characteristics using various compositions of different ionic liquids (1-ethyl-3-methylimidazolium hexafluorophosphate [emim] [PF6] and 1-benzyl-3-methylimidazolium hexafluorophosphate [bzmim] [PF6]) in several different alcohols (ethanol, propanol, 1-butanol, 2-butanol, and hexanol). We conducted a systematic study of the impact of different factors on the phase behavior of imidazolium-based ionic liquids in alcohols. Using a new experimental method with a liquid electrolyte system, we observed that the ionic conductivity of the ionic liquid/alcohol was sensitive to the surrounding temperature. We employed Chang et al.'s thermodynamic model [Chang et al. (1997, 1998) ] based on the lattice model. The obtained co-ordinated unit parameter from this model was used to describe the phase behavior and ionic conductivities of the given system. Good agreement with experimental data of various alcohol and ILs systems was obtained in the range of interest.

  3. Lattice mechanics of ionic crystals - unified study

    International Nuclear Information System (INIS)

    Sengupta, S.; Roy, D.; Basu, A.N.

    1979-01-01

    The up-to-date situation in the understanding of the mechanical properties of ionic solids is reviewed. These properties are determined by the Born-Oppenheimer (B-O) potential energy function. For ionic crystals this potential energy function can be written down with some precision. To keep the expression tractable, the dominant electron deformation, the dipolar deformation, is treated as an adiabatic variable and the energy then becomes a function of both the nuclear coordinates and the ionic dipole moments. All the well known models for ionic crystals are discussed in terms of the energy expression they imply. This makes the comparison straight forward and brings out the essential difference between the models clearly. Next various quantum mechanical treatments for ionic crystals are reviewed. An attempt is made to obtain the B-O potential energy expression using a Heitler-London approach. By comparing the various models one can arrive at some definitive conclusions about the degree of validity and the assumptions underlying these models. Finally a comprehensive review of the results of actual computation on various ionic crystals done by different authors is undertaken. The crucial quantitative results are examined and the success and shortcoming of each calculation are critically analysed. The guiding principle in this part is the unified approach. i.e. to see how far a model with a given set of parameters accounts for both the dynamic and static properties. The discussion is divided in three sections for crystals with sodium chloride, cesium chloride and zinc sulfide structures. Outstanding problems and difficulties in the present understanding are pointed out. (auth.)

  4. Thermoelectric Generators Based on Ionic Liquids

    Science.gov (United States)

    Laux, Edith; Uhl, Stefanie; Jeandupeux, Laure; López, Pilar Pérez; Sanglard, Pauline; Vanoli, Ennio; Marti, Roger; Keppner, Herbert

    2018-06-01

    Looking at energy harvesting using body or waste heat for portable electronic or on-board devices, Ionic liquids are interesting candidates as thermoactive materials in thermoelectric generators (TEGs) because of their outstanding properties. Two different kinds of ionic liquid, with alkylammonium and choline as cations, were studied, whereby different anions and redox couples were combined. This study focussed on the intention to find non-hazardous and environmentally friendly ionic liquids for TEGs to be selected among the thousands that can potentially be used. Seebeck coefficients (SEs) as high as - 15 mV/K were measured, in a particular case for an electrode temperature difference of 20 K. The bottleneck of our TEG device is still the abundance of negative SE liquids matching the internal resistance with the existing positive SE-liquids at series connections. In this paper, we show further progress in finding increased negative SE liquids. For current extraction from the TEG, the ionic liquid must be blended with a redox couple, allowing carrier exchange in a cyclic process under a voltage which is incuced by the asymmetry of the generator in terms of hot and cold electrodes. In our study, two types of redox pairs were tested. It was observed that a high SE of an ionic liquid/redox blend is not a sufficient condition for high power output. It appears that more complex effects between the ionic liquid and the electrode determine the magnitude of the final current/power output. The physico-chemical understanding of such a TEG cell is not yet available.

  5. Functional ionic liquids; Funktionelle ionische Fluessigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Baecker, Tobias

    2012-07-01

    In the thesis at hand, new functional ionic liquids were investigated. Main focus was attended to their structure property relations and the structural features leading to a decrease of the melting point. New compounds of the type 1-butyl-3-methylimidazolium tris(N,Ndialkyldithiocarbamato) uranylate with variously substituated dithiocarbamato ligands were synthesized and characterized. Ligands with asymmetrical substitution pattern proved to be most suitable for ionic liquid formation. The single-crystal X-ray structures revealed the interactions in the solid state. Here, the first spectroscopic investigation of the U-S bond in sulfur donated uranyl complexes, up to now only observed in single-crystal X-ray structures, is presented, and the participation of the uranium f-orbitals is shown by theoretical calculations. Electrochemical investigations showed the accessibility of the respective U{sup V}O{sub 2}{sup +} compounds. As well, ionic liquids with [FeCl{sub 4}]{sup -} and [Cl{sub 3}FeOFeCl{sub 3}]{sup 2-} as anion were synthesized. Both of these anions contain high-spin Fe(III) centres in distorted tetrahedral environment, but exhibit different magnetic behaviour. The tetrachloroferrates show the usual paramagnetism, the m-oxobis(trichloroferrate) exhibits unexpectedly strong antiferromagnetic coupling, as was observed by NMR experiments and susceptibility measurements. To investigate structure-property relations in functionalized ionic liquids, a set of protic, primary alkylammonium and aprotic, quarternary trimethylalkylammonium based ionic liquids was synthesized, and characterized. The length of the alkyl chain was systematically varied, and all compounds were synthesized with and without hydroxyl group, as well as formate and bis(triflyl)amide salts, aiming at getting insight into the influence of the different structure parts on the respective ionic liquid's properties.

  6. Effect of ionic strength on the kinetics of ionic and micellar reactions in aqueous solution

    International Nuclear Information System (INIS)

    Dung, M.H.; Kozak, J.J.

    1982-01-01

    The effect of electrostatic forces on the rate of reaction between ions in aqueous solutions of intermediate ionic strength is studied in this paper. We consider the kinetics of reactions involving simple ionic species (1--1 and 2--2 electrolyte systems) as well as kinetic processes mediated by the presence of micellar ions (or other charged organizates). In the regime of ionic strength considered, dielectric saturation of the solvent in the vicinity of the reacting ions must be taken into account and this is done by introducing several models to describe the recovery of the solvent from saturation to its continuum dielectric behavior. To explore the effects of ion size, charge number, and ionic strength on the overall rate constant for the process considered, we couple the traditional theory of ionic reactions in aqueous solution with calculations of the electrostatic potential obtained via solution of the nonlinear Poisson--Boltzmann equation. The great flexibility of the nonlinear Poisson--Boltzmann theory allows us to explore quantitatively the influence of each of these effects, and our simulations show that the short-range properties of the electrostatic potential affect primarily kinetically controlled processes (to varying degrees, depending on the ionic system considered) whereas the down-range properties of the potential play a (somewhat) greater role in influencing diffusion-controlled processes. A detailed examination is made of ionic strength effects over a broad range of ionic concentrations. In the regime of low ionic strength, the limiting slope and intercept of the curve describing the dependence of log k/sub D/ on I/sup 1/2//(1+I/sup 1/2/) may differ considerably from the usual Debye--Hueckel limiting relations, depending on the particular model chosen to describe local saturation effects

  7. Steven's orbital reduction factor in ionic clusters

    Science.gov (United States)

    Gajek, Z.; Mulak, J.

    1985-11-01

    General expressions for reduction coefficients of matrix elements of angular momentum operator in ionic clusters or molecular systems have been derived. The reduction in this approach results from overlap and covalency effects and plays an important role in the reconciling of magnetic and spectroscopic experimental data. The formulated expressions make possible a phenomenological description of the effect with two independent parameters for typical equidistant clusters. Some detailed calculations also suggest the possibility of a one-parameter description. The results of these calculations for some ionic uranium compounds are presented as an example.

  8. Response surface optimization of pH and ionic strength for emulsion characteristics of egg yolk.

    Science.gov (United States)

    Kurt, S; Zorba, O

    2009-11-01

    Effects of pH (3.5, 4.5, 6.0, 7.5, and 8.5) and ionic strength (0.05, 0.15, 0.30, 0.45, and 0.55 M NaCl) on emulsion capacity, emulsion stability (ES), apparent yield stress of emulsion (AYS), and emulsion density (ED) of egg yolk were studied by using a model system. Ionic strength and pH had significant (P emulsion characteristics of egg yolk. Their interaction effects also have been found significant on ES, AYS, and ED. Predicted solutions of ES, emulsion capacity, and ED were minimum. The critical point of ES was determined to be at pH 6.08 and an ionic strength of 0.49 (M NaCl). Predicted solution for AYS was a maximum, which was determined to be at pH 6.04 and an ionic strength of 0.29 (M NaCl). Optimum values of pH and ionic strenght were 4.61 to 7.43 and 0.10 to 0.47, respectively.

  9. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia

    DEFF Research Database (Denmark)

    Anney, Richard J.L.; Ripke, Stephan; Anttila, Verneri

    2017-01-01

    and CUEDC2 previously reported to be associated with social skills in an independent population cohort. We also observe overlap with regions previously implicated in schizophrenia which was further supported by a strong genetic correlation between these disorders (Rg = 0.23; P = 9 × 10-6). We further...

  10. Applications of ionic liquids in polymer science and technology

    CERN Document Server

    2015-01-01

    This book summarizes the latest knowledge in the science and technology of ionic liquids and polymers in different areas. Ionic liquids (IL) are actively being investigated in polymer science and technology for a number of different applications. In the first part of the book the authors present the particular properties of ionic liquids as speciality solvents. The state-of-the art in the use of ionic liquids in polymer synthesis and modification reactions including polymer recycling is outlined. The second part focuses on the use of ionic liquids as speciality additives such as plasticizers or antistatic agents.  The third part examines the use of ionic liquids in the design of functional polymers (usually called polymeric ionic liquids (PIL) or poly(ionic liquids)). Many important applications in diverse scientific and industrial areas rely on these polymers, like polymer electrolytes in electrochemical devices, building blocks in materials science, nanocomposites, gas membranes, innovative anion sensitive...

  11. Physical Chemistry of Reaction Dynamics in Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Maroncelli, Mark [Pennsylvania State Univ., University Park, PA (United States)

    2016-10-02

    Work completed over the past year mainly involves finishing studies related to solvation dynamics in ionic liquids, amplifying and extending our initial PFG-NMR work on solute diffusion, and learning how to probe rotational dynamics in ionic liquids.

  12. Ionic systems in materials research : new materials and processes based on ionic polymerizations and/or ionic liquids

    NARCIS (Netherlands)

    Guerrero-Sanchez, C.A.

    2007-01-01

    Systems based on ionic interactions are usually related to reversible processes and/or transitory chemical states and, nowadays, they are believed to be key factors for the understanding and for the development of processes in several branches of chemistry and materials research. During the last

  13. Characterization of polymer-type ionic conductors using nuclear magnetic resonance and thermal analysis. Humidity sensor

    International Nuclear Information System (INIS)

    Cavalcante, Maria Goretti.

    1992-04-01

    We report a study using Nuclear Magnetic Resonance (NMR), Thermogravimetry Analysis, Differential Scanning Calorimetry and Infrared Spectroscopy in polymeric complexes formed poly(ethylene oxide), (PEO), and lithium salts. These complexes have have shown a large potential for technological applications in batteries, sensors, etc. We developed and characterized humidity sensors and discussed how the humidity affects the conformation of the complexes, the mobility of ionic species, and the polymeric chains. The results indicate that the hydration affects the conformation of polymeric complexes by plasticizing the water, which induces a volumetric expansion in the PEO chain. The processes was completely reversible for the level of hydration studied. NMR was used to distinguish the movement of polymeric chains from the movement of the ionic species. From the analysis of the second moment of resonance lines from the study of the nuclear relaxation we were able to estimate the average distance between the ionic species and the proton in the complexes chains. The behaviour of spin -lattice relaxation of hydrogen and fluorine in the P(EO) - Li B F, as a function of temperature and frequency reflects the nature of the disorder and the complexity of the ionic conduction process in these materials. (author). 91 refs., 69 figs., 2 tabs

  14. Water in Room Temperature Ionic Liquids

    Science.gov (United States)

    Fayer, Michael

    2014-03-01

    Room temperature ionic liquids (or RTILs, salts with a melting point below 25 °C) have become a subject of intense study over the last several decades. Currently, RTIL application research includes synthesis, batteries, solar cells, crystallization, drug delivery, and optics. RTILs are often composed of an inorganic anion paired with an asymmetric organic cation which contains one or more pendant alkyl chains. The asymmetry of the cation frustrates crystallization, causing the salt's melting point to drop significantly. In general, RTILs are very hygroscopic, and therefore, it is of interest to examine the influence of water on RTIL structure and dynamics. In addition, in contrast to normal aqueous salt solutions, which crystallize at low water concentration, in an RTIL it is possible to examine isolated water molecules interacting with ions but not with other water molecules. Here, optical heterodyne-detected optical Kerr effect (OHD-OKE) measurements of orientational relaxation on a series of 1-alkyl-3-methylimidazolium tetrafluoroborate RTILs as a function of chain length and water concentration are presented. The addition of water to the longer alkyl chain RTILs causes the emergence of a long time bi-exponential orientational anisotropy decay. Such decays have not been seen previously in OHD-OKE experiments on any type of liquid and are analyzed here using a wobbling-in-a-cone model. The orientational relaxation is not hydrodynamic, with the slowest relaxation component becoming slower as the viscosity decreases for the longest chain, highest water content samples. The dynamics of isolated D2O molecules in 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) were examined using two dimensional infrared (2D IR) vibrational echo spectroscopy. Spectral diffusion and incoherent and coherent transfer of excitation between the symmetric and antisymmetric modes are examined. The coherent transfer experiments are used to address the nature of inhomogeneous

  15. Synthetic Organic Electrochemistry in Ionic Liquids: The Viscosity Question

    Directory of Open Access Journals (Sweden)

    Scott T. Handy

    2011-07-01

    Full Text Available Ionic liquids are obvious candidates for use in electrochemical applications due to their ionic character. Nevertheless, relatively little has been done to explore their application in electrosynthesis. We have studied the Shono oxidation of arylamines and carbamates using ionic liquids as recyclable solvents and have noted that the viscosity of the medium is a major problem, although with the addition of sufficient co-solvent, good results and excellent recovery and recycling of the ionic liquid can be achieved.

  16. Application of Ionic Liquids in Amperometric Gas Sensors.

    Science.gov (United States)

    Gębicki, Jacek; Kloskowski, Adam; Chrzanowski, Wojciech; Stepnowski, Piotr; Namiesnik, Jacek

    2016-01-01

    This article presents an analysis of available literature data on metrological parameters of the amperometric gas sensors containing ionic liquids as an electrolyte. Four mechanism types of signal generation in amperometric sensors with ionic liquid are described. Moreover, this article describes the influence of selected physico-chemical properties of the ionic liquids on the metrological parameters of these sensors. Some metrological parameters are also compared for amperometric sensors with GDE and SPE electrodes and with ionic liquids for selected analytes.

  17. Ionic Liquids as Extraction Media for Metal Ions

    Science.gov (United States)

    Hirayama, Naoki

    In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.

  18. Effect of Ionic Strength on Settling of Activated Sludge

    OpenAIRE

    M Ahmadi Moghadam, M Soheili, MM Esfahani

    2005-01-01

    Structural properties of activated sludge flocs were found to be sensitive to small changes in ionic strength. This study investigates the effect of ionic strength on settling of activated sludge. Samples were taken from activated sludge process of Ghazvin Sasan soft drink wastewater treatment plant, then treated with different ionic strengths of KCl and CaCl2 solution, after that the turbidity of supernatant was measured. The results indicated that low ionic strength resulted in a steeper sl...

  19. PEG-bis phosphonic acid based ionic supramolecular structures

    DEFF Research Database (Denmark)

    Gonzalez, Lidia; Skov, Anne Ladegaard; Hvilsted, Søren

    2014-01-01

    . The resulting ionic assemblies are very comprehensively characterized by ATR-FTIR, proton, and carbon-13 NMR spectroscopy that unequivocally demonstrate the ionic network formation through ammonium phophonates. The resulting salt and ionic networks are additionally analyzed by differential scanning calorimetry...... and thermogravimetric analysis. The conclusion is that mixing the virgin components at room temperature spontaneously form either a salt or ionic supramolecular networks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  20. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    Science.gov (United States)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  1. Development of an Ionic-Liquid Absorption Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Don

    2011-03-29

    Solar Fueled Products (SFP) is developing an innovative ionic-liquid absorption heat pump (ILAHP). The development of an ILAHP is extremely significant, as it could result in annual savings of more than 190 billion kW h of electrical energy and $19 billion. This absorption cooler uses about 75 percent less electricity than conventional cooling and heating units. The ILAHP also has significant environmental sustainability benefits, due to reduced CO2 emissions. Phase I established the feasibility and showed the economic viability of an ILAHP with these key accomplishments: • Used the breakthrough capabilities provided by ionic liquids which overcome the key difficulties of the common absorption coolers. • Showed that the theoretical thermodynamic performance of an ILAHP is similar to existing absorption-cooling systems. • Established that the half-effect absorption cycle reduces the peak generator temperature, improving collector efficiency and reducing collector area. • Component testing demonstrated that the most critical components, absorber and generator, operate well with conventional heat exchangers. • Showed the economic viability of an ILAHP. The significant energy savings, sustainability benefits, and economic viability are compelling reasons to continue the ILAHP development.

  2. Ionic conduction in polyether-based lithium arylfluorosulfonimide ionic melt electrolytes

    International Nuclear Information System (INIS)

    Herath, Mahesha B.; Creager, Stephen E.; Rajagopal, Rama V.; Geiculescu, Olt E.; DesMarteau, Darryl D.

    2009-01-01

    We report synthesis, characterization and ion transport in polyether-based ionic melt electrolytes consisting of Li salts of low-basicity anions covalently attached to polyether oligomers. Purity of the materials was investigated by HPLC analysis and electrospray ionization mass spectrometry. The highest ionic conductivity of 7.1 x 10 -6 S/cm at 30 deg. C was obtained for the sample consisting of a lithium salt of an arylfluorosulfonimide anion attached to a polyether oligomer with an ethyleneoxide (EO) to lithium ratio of 12. The conductivity order of various ionic melts having different polyether chain lengths suggests that at higher EO:Li ratios the conductivity of the electrolytes at room temperature is determined in part by the amount of crystallization of the polyether portion of the ionic melt.

  3. Supported ionic liquid-phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Wasserscheid, P.

    2005-01-01

    The concept of supported ionic liquid-phase (SILP) catalysis has been demonstrated for gas- and liquid-phase continuous fixed-bed reactions using rhodium phosphine catalyzed hydroformylation of propene and 1-octene as examples. The nature of the support had important influence on both the catalytic...

  4. Ionic conduction in the solid state

    Indian Academy of Sciences (India)

    Unknown

    Li+, its lower weight, ease of handling and its poten- tial use in high energy density batteries. Li2SiO4 is one of the .... that influence the ionic conductivity of a crystal the activation energy is of utmost importance since the .... fraction techniques are commonly employed to elu- cidate the structure features of superionic solids.

  5. High H⁻ ionic conductivity in barium hydride.

    Science.gov (United States)

    Verbraeken, Maarten C; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T S

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H(-)) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm(-1) at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  6. Ionic liquid based multifunctional double network gel

    Science.gov (United States)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  7. SANS analysis of aqueous ionic perfluoropolyether micelles

    CERN Document Server

    Gambi, C M C; Chittofrati, A; Pieri, R; Baglioni, P; Teixeira, J

    2002-01-01

    Preliminary SANS results of ionic chlorine terminated perfluoropolyether micelles in water are given. The experimental spectra have been analyzed by a two-shell ellipsoidal model for the micellar form factor and a screened Coulombic plus hard-sphere repulsion potential for the structure factor. (orig.)

  8. Tilts and Ionic Shifts in Rhombohedral Perovskites

    NARCIS (Netherlands)

    Noheda, Beatriz; Duan, Ning; Cereceda, Noé; Gonzalo, Julio A.

    1998-01-01

    We make a comparative analysis of rhombohedral perovskites (ABO3) with/without oxygen rotations and ionic shifts, within the framework of a generalised effective field approach. We analyse available data on LaAlO3 and LiTaO3 and new data on Zr-rich PZT, examples of three different ways of structural

  9. Mechanistic aspects of ionic reactions in flames

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.

    1993-01-01

    Some fundamentals of the ion chemistry of flames are summarized. Mechanistic aspects of ionic reactions in flames have been studied using a VG PlasmaQuad, the ICP-system being substituted by a simple quartz burner. Simple hydrocarbon flames as well as sulfur-containing flames have been investigated...

  10. Desalination of aqueous media using ionic liquids

    NARCIS (Netherlands)

    2014-01-01

    The present invention relates to a method for extracting metal and/or metalloid ions from an aqueous medium, comprising the steps of: a) mixing the aqueous medium with an ionic liquid comprising an aliphatic carboxylate anion having at least one unsaturated carbon-carbon bond, or and/or with a

  11. Analysis of ionic conductance of carbon nanotubes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Bazant, M.Z.

    2016-01-01

    We use space-charge (SC) theory (also called the capillary pore model) to describe the ionic conductance, G, of charged carbon nanotubes (CNTs). Based on the reversible adsorption of hydroxyl ions to CNT pore walls, we use a Langmuir isotherm for surface ionization and make calculations as a

  12. Vaporisation of a dicationic ionic liquid.

    Science.gov (United States)

    Lovelock, Kevin R J; Deyko, Alexey; Corfield, Jo-Anne; Gooden, Peter N; Licence, Peter; Jones, Robert G

    2009-02-02

    Highest heat of vaporization yet: The dicationic ionic liquid [C(3)(C(1)Im)(2)][Tf(2)N](2) evaporates as a neutral ion triplet. These neutral ion triplets can then be ionised to form singly and doubly charged ions. The mass spectrum exhibits the dication attached to one remaining anion, and the naked dication itself (see picture).

  13. Ionic conductivity of ternary electrolyte containing sodium salt and ionic liquid

    International Nuclear Information System (INIS)

    Egashira, Minato; Asai, Takahito; Yoshimoto, Nobuko; Morita, Masayuki

    2011-01-01

    Highlights: ► Ternary electrolyte containing NaBF 4 , polyether and ionic liquid has been prepared. ► The conductivity of the electrolytes has been evaluated toward content of ionic liquid. ► The conductivity shows maximum 1.2 mS cm −1 and is varied in relation to solution structure. - Abstract: For the development of novel non-aqueous sodium ion conductor with safety of sodium secondary cell, non-flammable ionic liquid is attractive as electrolyte component. A preliminary study has been carried out for the purpose of constructing sodium ion conducting electrolyte based on ionic liquid. The solubility of sodium salt such as NaBF 4 in ionic liquid is poor, thus the ternary electrolyte has been prepared where NaBF 4 with poly(ethylene glycol) dimethyl ether (PEGDME) as coordination former is dissolved with ionic liquid diethyl methoxyethyl ammonium tetrafluoroborate (DEMEBF 4 ). The maximum conductivity among the prepared solutions, ca. 1.2 mS cm −1 at 25 °C, was obtained when the molar ratio (ethylene oxide unit in PEGDME):NaBF 4 :DEMEBF 4 was 8:1:2. The relationship between the conductivity of the ternary electrolyte and its solution structure has been discussed.

  14. The shape-memory effect in ionic elastomers: fixation through ionic interactions.

    Science.gov (United States)

    González-Jiménez, Antonio; Malmierca, Marta A; Bernal-Ortega, Pilar; Posadas, Pilar; Pérez-Aparicio, Roberto; Marcos-Fernández, Ángel; Mather, Patrick T; Valentín, Juan L

    2017-04-19

    Shape-memory elastomers based on a commercial rubber cross-linked by both ionic and covalent bonds have been developed. The elastomeric matrix was a carboxylated nitrile rubber (XNBR) vulcanized with magnesium oxide (MgO) providing ionic interactions that form hierarchical structures. The so-named ionic transition is used as the unique thermal transition responsible for the shape-memory effect (SME) in these elastomers. These ionic interactions fix the temporary shape due to their behavior as dynamic cross-links with temperature changes. Covalent cross-links were incorporated with the addition of different proportions of dicumyl peroxide (DCP) to the ionic elastomer to establish and recover the permanent shape. In this article, the SME was modulated by modifying the degree of covalent cross-linking, while keeping the ionic contribution constant. In addition, different programming parameters, such as deformation temperature, heating/cooling rate, loading/unloading rate and percentage of tensile strain, were evaluated for their effects on shape-memory behavior.

  15. Ionic strength dependence of stability constants, complexation of Molybdenum(V I) with EDTA

    International Nuclear Information System (INIS)

    Zare, K.; Majlesi, K.; Teimoori, F.

    2002-01-01

    The stability constant of Mo (Vi) complexes with EDTA in aqueous solution has been determined by various authors using different techniques, but according to literature, no work has been reported on ionic strength dependence of these complexes. The present work describes the complexation of Mo (Vi) with EDTA in an ionic strength range of 0.1 to 1.0 moldm - 3 s odium perchlorate at 25 d ig C . The complexation of molybdenum (Vi) with EDTA was investigated in aqueous solution ranging in ph from 5 to 7 using UV spectrophotometric techniques. The composition of the complex was determined by the continuous variations method. It was shown that molybdenum (Vi) forms a 2:1 complex with EDTA of the type (MoO 3 ) 2 L - 4 a t ph =5.5 The parameters that define the dependence on ionic strength were analyzed with the aim of obtaining further information regarding to their variation as a function of the charges involved in the complex reaction. Moreover, a Debye-Huckel type equation makes it possible to estimate a stability constant at a fixed ionic strength when its value is known at another ionic media in the range of 0.1 3 . Therefore the evaluation may make a significant contribution solving many analytical and speciation problems

  16. Theoretical investigation of the Te{sub 4}Br{sub 2} molecule in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Elfgen, Roman [Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, 53115, Bonn (Germany); Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45413, Muehlheim an der Ruhr (Germany); Holloczki, Oldamur; Ray, Promit; Kirchner, Barbara [Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4+6, 53115, Bonn (Germany); Groh, Matthias F. [Department of Chemistry and Food Chemistry, Dresden University of Technology, 01062, Dresden (Germany); Ruck, Michael [Department of Chemistry and Food Chemistry, Dresden University of Technology, 01062, Dresden (Germany); Max Planck Institute for Chemical Physics of Solids, Noethnitzer Str. 40, 01187, Dresden (Germany)

    2017-01-15

    Material synthesis in ionic liquids, at or near room temperature, is currently a subject of immense academic interest. In order to illuminate molecular-level details and the underlying chemistry, we carried out molecular simulations of a single Te{sub 4}Br{sub 2} molecule dissolved in the ionic liquid 1-ethyl-3-methylimidazolium chloride, as well as in the ionic liquid mixed with aluminum chloride. Although the ethyl side chain is much too short to show detailed microheterogeneity, significant structuring with the small chloride anions is seen in case of the pure ionic liquid. In the case of the mixture, formation of larger anionic clusters is distinctly observed and analyzed. Due to the tendency of ionic liquids to dissociate, there is a pronounced shift to elongated Te-Br distances in both investigated solvents. However, only in the AlCl{sub 3}-containing liquid, we observe the reaction of the open chain-like Te{sub 4}Br{sub 2} molecule to a closed square-like Te{sub 4}Br{sup +} and AlCl{sub 3}Br{sup -} ion. The molecular arrangement of the [Te{sub 4}]{sup 2+} unit shows negligible deviation from that in the experimental crystal structure. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Theoretical investigation of the Te4Br2 molecule in ionic liquids

    International Nuclear Information System (INIS)

    Elfgen, Roman; Holloczki, Oldamur; Ray, Promit; Kirchner, Barbara; Groh, Matthias F.; Ruck, Michael

    2017-01-01

    Material synthesis in ionic liquids, at or near room temperature, is currently a subject of immense academic interest. In order to illuminate molecular-level details and the underlying chemistry, we carried out molecular simulations of a single Te 4 Br 2 molecule dissolved in the ionic liquid 1-ethyl-3-methylimidazolium chloride, as well as in the ionic liquid mixed with aluminum chloride. Although the ethyl side chain is much too short to show detailed microheterogeneity, significant structuring with the small chloride anions is seen in case of the pure ionic liquid. In the case of the mixture, formation of larger anionic clusters is distinctly observed and analyzed. Due to the tendency of ionic liquids to dissociate, there is a pronounced shift to elongated Te-Br distances in both investigated solvents. However, only in the AlCl 3 -containing liquid, we observe the reaction of the open chain-like Te 4 Br 2 molecule to a closed square-like Te 4 Br + and AlCl 3 Br - ion. The molecular arrangement of the [Te 4 ] 2+ unit shows negligible deviation from that in the experimental crystal structure. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. The effects of functional ionic liquid on properties of solid polymer electrolyte

    International Nuclear Information System (INIS)

    An Yongxin; Cheng Xinqun; Zuo Pengjian; Liao Lixia; Yin Geping

    2011-01-01

    Highlights: → The functional ionic liquid(IL)-polymer electrolytes were successfully prepared. → The ionic conductivity of PEO electrolytes was raised to above 10-4 S.cm-1 at room temperature by functional IL. → The cells using functional IL-PEO electrolyte show higher reversible capacity and long cycle life. - Abstract: Polyethylene oxide (PEO) based solid state electrolytes have been thought as promising electrolytes to replace the organic liquid electrolyte for lithium ion batteries. But the lower ionic conductivities at room temperature restrict their application. In this paper, functional ionic liquid and polymer mixed electrolytes are prepared from N-methyoxymethyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide (PP1.1O1TFSI) and polyethylene oxide. The PP1.1O1TFSI, a kind of room-temperature molten salt, was added to the conventional P(EO) 20 LiTFSI polymer electrolyte and resulted in a significant improvement of the ionic conductivity at room temperature. LiFePO 4 /Li and Li 4 Ti 5 O 12 /Li cells using this kind of electrolyte show high reversible capacity and stable cycle performance.

  19. Comparative Investigation of the Ionicity of Aprotic and Protic Ionic Liquids in Molecular Solvents by using Conductometry and NMR Spectroscopy.

    Science.gov (United States)

    Thawarkar, Sachin; Khupse, Nageshwar D; Kumar, Anil

    2016-04-04

    Electrical conductivity (σ), viscosity (η), and self-diffusion coefficient (D) measurements of binary mixtures of aprotic and protic imidazolium-based ionic liquids with water, dimethyl sulfoxide, and ethylene glycol were measured from 293.15 to 323.15 K. The temperature dependence study reveals typical Arrhenius behavior. The ionicities of aprotic ionic liquids were observed to be higher than those of protic ionic liquids in these solvents. The aprotic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmIm][BF4 ], displays 100 % ionicity in both water and ethylene glycol. The protic ionic liquids in both water and ethylene glycol are classed as good ionic candidates, whereas in DMSO they are classed as having a poor ionic nature. The solvation dynamics of the ionic species of the ionic liquids are illustrated on the basis of the (1) H NMR chemical shifts of the ionic liquids. The self-diffusion coefficients D of the cation and anion of [HmIm][CH3 COO] in D2 O and in [D6 ]DMSO are determined by using (1) H nuclei with pulsed field gradient spin-echo NMR spectroscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ionic thermocurrents and ionic conductivity of solid solutions of SrF2 and YbF3

    NARCIS (Netherlands)

    Meuldijk, J.; Hartog, den H.W.

    1983-01-01

    We report dielectric [ionic thermocurrent (!TC)] experiments and ionic conductivity of cubic solid solutions of the type Sr1-xYbxF2+x. These combined experiments provide us with new information concerning the ionic conductivity mechanisms which play an important role in solid solutions Sr1-xRxF2+x

  1. Anxiety Disorders

    Science.gov (United States)

    ... Registry Residents & Medical Students Residents Medical Students Patients & Families Mental Health Disorders/Substance Use Find a Psychiatrist Addiction and Substance Use Disorders ADHD Anxiety Disorders Autism Spectrum Disorder Bipolar Disorders Depression Eating Disorders Obsessive-Compulsive ...

  2. Mental Disorders

    Science.gov (United States)

    Mental disorders include a wide range of problems, including Anxiety disorders, including panic disorder, obsessive-compulsive disorder, ... disorders, including schizophrenia There are many causes of mental disorders. Your genes and family history may play ...

  3. Energy gaps, effective masses and ionicity of AlxGa1-xSb ternary semiconductor alloys

    Science.gov (United States)

    Bouarissa, N.; Boucenna, M.; Saib, S.; Siddiqui, S. A.

    2017-12-01

    A pseudopotential calculation of the electronic structure of AlxGa1-xSb ternary alloys in the zinc-blende structure has been performed. The compositional dependence of energy gaps, electron and heavy hole effective masses and ionicity of the material system of interest have been examined and discussed. Special attention has been given to the effect of the alloy disorder on the direct (Γ-Γ) bandgap energy. It is found that all features of interest vary monotonically with increasing the Al concentration x. Besides, bandgap bowing parameters and extent of the direct-to-indirect bandgap transition have been determined. Our findings agree generally well with the data reported in the literature. Trends in ionicity are found to be consistent with the Phillips ionicity scale.

  4. Phase Behavior of Mixtures of Ionic Liquids and Organic Solvents

    DEFF Research Database (Denmark)

    Abildskov, Jens; Ellegaard, Martin Dela; O’Connell, J.P.

    2010-01-01

    A corresponding-states form of the generalized van der Waals equation, previously developed for mixtures of an ionic liquid and a supercritical solute, is here extended to mixtures including an ionic liquid and a solvent (water or organic). Group contributions to characteristic parameters...... are implemented, leading to an entirely predictive method for densities of mixed compressed ionic liquids. Quantitative agreement with experimental data is obtained over wide ranges of conditions. Previously, the method has been applied to solubilities of sparingly soluble gases in ionic liquids and in organic...... solvents. Here we show results for heavier and more-than-sparingly solutes such as carbon dioxide and propane in ionic liquids....

  5. Supported ionic liquids: versatile reaction and separation media

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco

    2006-01-01

    The latest developments in supported ionic liquid phase (SILP) systems for catalysis and separation technology are surveyed. The SILP concept combines the advantages of homogeneous catalysis with heterogeneous process technology, and a variety of reactions have been studied where supported ionic ...... liquid catalysts proved to be more active and selective than common systems. In separation applications the use of supported ionic liquids can facilitate selective transport of substrates across membranes.......The latest developments in supported ionic liquid phase (SILP) systems for catalysis and separation technology are surveyed. The SILP concept combines the advantages of homogeneous catalysis with heterogeneous process technology, and a variety of reactions have been studied where supported ionic...

  6. SN2 fluorination reactions in ionic liquids: a mechanistic study towards solvent engineering.

    Science.gov (United States)

    Oh, Young-Ho; Jang, Hyeong Bin; Im, Suk; Song, Myoung Jong; Kim, So-Yeon; Park, Sung-Woo; Chi, Dae Yoon; Song, Choong Eui; Lee, Sungyul

    2011-01-21

    In the catalysis of S(N)2 fluorination reactions, the ionic liquid anion plays a key role as a Lewis base by binding to the counterion Cs(+) and thereby reducing the retarding Coulombic influence of Cs(+) on the nucleophile F(-). The reaction rates also depend critically on the structures of ionic liquid cation, for example, n-butyl imidazolium gives no S(N)2 products, whereas n-butylmethyl imidazolium works well. The origin of the observed phenomenal synergetic effects by the ionic liquid [mim-(t)OH][OMs], in which t-butanol is bonded covalently to the cation [mim], is that the t-butanol moiety binds to the leaving group of the substrate, moderating the retarding interactions between the acidic hydrogen and F(-). This work is a significant step toward designing and engineering solvents for promoting specific chemical reactions.

  7. Improvement of thermostability and activity of firefly luciferase through [TMG][Ac] ionic liquid mediator.

    Science.gov (United States)

    Ebrahimi, Mehdi; Hosseinkhani, Saman; Heydari, Akbar; Khavari-Nejad, Ramazan Ali; Akbari, Jafar

    2012-10-01

    Firefly luciferase catalyzes production of light from luciferin in the presence of Mg(2+)-ATP and oxygen. This enzyme has wide range of applications in biotechnology and development of biosensors. The low thermal stability of wild-type firefly luciferase is a limiting factor in most applications. Improvements in activity and stability of few enzymes in the presence of ionic liquids were shown in many reports. In this study, kinetic and thermal stability of firefly luciferase from Photinus pyralis in the presence of three tetramethylguanidine-based ionic liquids was investigated. The enzyme has shown improved activity in the presence of [1, 1, 3, 3-tetramethylguanidine][acetate], but in the presence of [TMG][trichloroacetate] and [TMG][triflouroacetate] activity, it decreased or unchanged significantly. Among these ionic liquids, only [TMG][Ac] has increased the thermal stability of luciferase. Incubation of [TMG][Ac] with firefly luciferase brought about with decrease of K(m) for ATP.

  8. High-throughput screening of ionic conductivity in polymer membranes

    International Nuclear Information System (INIS)

    Zapata, Pedro; Basak, Pratyay; Carson Meredith, J.

    2009-01-01

    Combinatorial and high-throughput techniques have been successfully used for efficient and rapid property screening in multiple fields. The use of these techniques can be an advantageous new approach to assay ionic conductivity and accelerate the development of novel materials in research areas such as fuel cells. A high-throughput ionic conductivity (HTC) apparatus is described and applied to screening candidate polymer electrolyte membranes for fuel cell applications. The device uses a miniature four-point probe for rapid, automated point-to-point AC electrochemical impedance measurements in both liquid and humid air environments. The conductivity of Nafion 112 HTC validation standards was within 1.8% of the manufacturer's specification. HTC screening of 40 novel Kynar poly(vinylidene fluoride) (PVDF)/acrylic polyelectrolyte (PE) membranes focused on varying the Kynar type (5x) and PE composition (8x) using reduced sample sizes. Two factors were found to be significant in determining the proton conducting capacity: (1) Kynar PVDF series: membranes containing a particular Kynar PVDF type exhibited statistically identical mean conductivity as other membranes containing different Kynar PVDF types that belong to the same series or family. (2) Maximum effective amount of polyelectrolyte: increments in polyelectrolyte content from 55 wt% to 60 wt% showed no statistically significant effect in increasing conductivity. In fact, some membranes experienced a reduction in conductivity.

  9. Study of Alginate-Supported Ionic Liquid and Pd Catalysts

    Directory of Open Access Journals (Sweden)

    Eric Guibal

    2012-01-01

    Full Text Available New catalytic materials, based on palladium immobilized in ionic liquid supported on alginate, were elaborated. Alginate was associated with gelatin for the immobilization of ionic liquids (ILs and the binding of palladium. These catalytic materials were designed in the form of highly porous monoliths (HPMs, in order to be used in a column reactor. The catalytic materials were tested for the hydrogenation of 4-nitroaniline (4-NA in the presence of formic acid as hydrogen donor. The different parameters for the elaboration of the catalytic materials were studied and their impact analyzed in terms of microstructures, palladium sorption properties and catalytic performances. The characteristics of the biopolymer (proportion of β-D-mannuronic acid (M and α-L-guluronic acid (G in the biopolymer defined by the M/G ratio, the concentration of the porogen agent, and the type of coagulating agent significantly influenced catalytic performances. The freezing temperature had a significant impact on structural properties, but hardly affected the catalytic rate. Cellulose fibers were incorporated as mechanical strengthener into the catalytic materials, and allowed to enhance mechanical properties and catalytic efficiency but required increasing the amount of hydrogen donor for catalysis.

  10. Schizoaffective disorder

    Science.gov (United States)

    ... or do not improve with treatment Thoughts of suicide or of harming others Alternative Names Mood disorder - schizoaffective disorder; Psychosis - schizoaffective disorder Images Schizoaffective disorder ...

  11. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    Science.gov (United States)

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  12. Thermodynamics of dilute aqueous solutions of imidazolium based ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Tejwant [Salt and Marine Chemicals Division, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar 364002 (India); Kumar, Arvind, E-mail: arvind@csmcri.or [Salt and Marine Chemicals Division, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar 364002 (India)

    2011-06-15

    Research highlights: The thermodynamic behaviour of aqueous imidazolium ILs has been investigated. Volumetric and ultrasonic results indicated the hydrophobic hydration of ILs. Viscometric studies revealed studied ionic liquids as water-structure makers. Hydration number increased with increase in alkyl chain length of the cation. - Abstract: Experimental measurements of density {rho}, speed of sound u, and viscosity {eta} of aqueous solutions of various 1-alkyl-3-methylimidazolium based ionic liquid (IL) solutions have been performed in dilute concentration regime at 298.15 K to get insight into hydration behaviour of ILs. The investigated ILs are based on 1-alkyl-3-methylimidazolium cation, [C{sub n}mim] having [BF{sub 4}]{sup -}, [Cl]{sup -}, [C{sub 1}OSO{sub 3}]{sup -}, and [C{sub 8}OSO{sub 3}]{sup -} as anions where n = 4 or 8. Several thermodynamic parameters like apparent molar volume {phi}{sub V}, isentropic compressibility {beta}{sub s}, and viscosity B-coefficients have been derived from experimental data. Limiting value of apparent molar volume has been discussed in terms of intrinsic molar volume (V{sub int}) molar electrostriction volume (V{sub elec}), molar disordered (V{sub dis}), and cage volume (V{sub cage}). Viscosity B-coefficients have been used to quantify the kosmotropic or chaotropic nature of ILs. Hydration number of ILs obtained using elctrostriction volume, isentropic compressibility, viscosity, and differential scanning calorimetry have been found to be comparative within the experimental error. The hydrophobic hydration has found to play an important role in hydration of ILs as compared to hydration due to hydrogen bonding and electrostriction. Limiting molar properties, hydration numbers, and B-coefficients have been discussed in terms of alkyl chain length of cation or nature of anion.

  13. Thermodynamics of dilute aqueous solutions of imidazolium based ionic liquids

    International Nuclear Information System (INIS)

    Singh, Tejwant; Kumar, Arvind

    2011-01-01

    Research highlights: → The thermodynamic behaviour of aqueous imidazolium ILs has been investigated. → Volumetric and ultrasonic results indicated the hydrophobic hydration of ILs. → Viscometric studies revealed studied ionic liquids as water-structure makers. → Hydration number increased with increase in alkyl chain length of the cation. - Abstract: Experimental measurements of density ρ, speed of sound u, and viscosity η of aqueous solutions of various 1-alkyl-3-methylimidazolium based ionic liquid (IL) solutions have been performed in dilute concentration regime at 298.15 K to get insight into hydration behaviour of ILs. The investigated ILs are based on 1-alkyl-3-methylimidazolium cation, [C n mim] having [BF 4 ] - , [Cl] - , [C 1 OSO 3 ] - , and [C 8 OSO 3 ] - as anions where n = 4 or 8. Several thermodynamic parameters like apparent molar volume φ V , isentropic compressibility β s , and viscosity B-coefficients have been derived from experimental data. Limiting value of apparent molar volume has been discussed in terms of intrinsic molar volume (V int ) molar electrostriction volume (V elec ), molar disordered (V dis ), and cage volume (V cage ). Viscosity B-coefficients have been used to quantify the kosmotropic or chaotropic nature of ILs. Hydration number of ILs obtained using elctrostriction volume, isentropic compressibility, viscosity, and differential scanning calorimetry have been found to be comparative within the experimental error. The hydrophobic hydration has found to play an important role in hydration of ILs as compared to hydration due to hydrogen bonding and electrostriction. Limiting molar properties, hydration numbers, and B-coefficients have been discussed in terms of alkyl chain length of cation or nature of anion.

  14. [Advances of poly (ionic liquid) materials in separation science].

    Science.gov (United States)

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.

  15. The ionic conductivity and local environment of cations in Bi9ReO17

    International Nuclear Information System (INIS)

    Thompson, M.; Herranz, T.; Santos, B.; Marco, J.F.; Berry, F.J.; Greaves, C.

    2010-01-01

    The influence of temperature on the structure of Bi 9 ReO 17 has been investigated using differential thermal analysis, variable temperature X-ray diffraction and neutron powder diffraction. The material undergoes an order-disorder transition at ∼1000 K on heating, to form a fluorite-related phase. The local environments of the cations in fully ordered Bi 9 ReO 17 have been investigated by Bi L III - and Re L III -edge extended X-ray absorption fine structure (EXAFS) measurements to complement the neutron powder diffraction information. Whereas rhenium displays regular tetrahedral coordination, all bismuth sites show coordination geometries which reflect the importance of a stereochemically active lone pair of electrons. Because of the wide range of Bi-O distances, EXAFS data are similar to those observed for disordered structures, and are dominated by the shorter Bi-O bonds. Ionic conductivity measurements indicate that ordered Bi 9 ReO 17 exhibits reasonably high oxide ion conductivity, corresponding to 2.9x10 -5 Ω -1 cm -1 at 673 K, whereas the disordered form shows higher oxide ion conductivity (9.1x10 -4 Ω -1 cm -1 at 673 K). - Graphical abstract: The structure of Bi 9 ReO 17 is discussed and related to the ionic conductivity of the ordered and disordered forms.

  16. Effect of ionic liquids on the dispersion of zinc oxide and silica nanoparticles, vulcanisation behaviour and properties of NBR composites

    Directory of Open Access Journals (Sweden)

    M. Maciejewska

    2014-12-01

    Full Text Available The aim of this work was to study the activity of several alkylpyrrolidinium, alkylpyridinium, alkylpiperidinium and benzylimidazolium ionic liquids (ILs for the purpose of improving the dispersion degree of vulcanisation activator and filler nanoparticles in the acrylonitrile-butadiene elastomer (NBR. The effect of the ionic liquids on the vulcanisation kinetics of the rubber compounds, crosslink density and mechanical properties of the vulcanisates and their resistance to thermo-oxidative and UV ageing was studied. The use of ionic liquids allowed for a homogeneous dispersion of nanoparticles in the elastomer without detrimental effects on the vulcanisation process. The physical properties and the thermal stability of the obtained vulcanisates were significantly improved. Ionic liquids increased the crosslink density of the vulcanisates and their damping properties. Pirydinium and piperidinium hexafluorophosphates were most effective at increasing the crosslink density and improving the properties of NBR composites.

  17. Comparison of soft tissue effects of conventional ionic, low osmolar ionic and nonionic iodine containing contrast material in experimental animals

    International Nuclear Information System (INIS)

    McAlister, W.H.; Kissane, J.M.

    1990-01-01

    Conventional, low osmolar, and non-ionic iodine containing contrast media and saline controls were placed in the paws, muscles, and subcutaneous tissues of Sprague-Dawley rat thighs. The paw injections were observed and photographed, while the thighs were examined histologically. Results showed that although the low osmolar and non-ionic agents did produce inflammatory reactions and focal necrosis in the soft tissues, they were much better tolerated than were the conventional ionic agents. A non-ionic or low osmolar ionic contrast agent should be strongly considered when a possibility for extravasation exists. (orig.)

  18. Catalytic Ionic-Liquid Membranes: The Convergence of Ionic-Liquid Catalysis and Ionic-Liquid Membrane Separation Technologies.

    Czech Academy of Sciences Publication Activity Database

    Izák, Pavel; Bobbink, F.D.; Hulla, M.; Klepic, M.; Friess, K.; Hovorka, Š.; Dyson, P.J.

    2018-01-01

    Roč. 83, č. 1 (2018), s. 7-18 ISSN 2192-6506 R&D Projects: GA ČR(CZ) GA17-00089S; GA ČR GA17-05421S Institutional support: RVO:67985858 Keywords : heterogeneous catalysis * ionic liquids * membranes Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.797, year: 2016

  19. Nontoxic Ionic Liquid Fuels for Exploration Applications

    Science.gov (United States)

    Coil, Millicent

    2015-01-01

    The toxicity of propellants used in conventional propulsion systems increases not only safety risks to personnel but also costs, due to special handling required during the entire lifetime of the propellants. Orbital Technologies Corporation (ORBITEC) has developed and tested novel nontoxic ionic liquid fuels for propulsion applications. In Phase I of the project, the company demonstrated the feasibility of several ionic liquid formulations that equaled the performance of conventional rocket propellant monomethylhydrazine (MMH) and also provided low volatility and low toxicity. In Phase II, ORBITEC refined the formulations, conducted material property tests, and investigated combustion behavior in droplet and microreactor experiments. The company also explored the effect of injector design on performance and demonstrated the fuels in a small-scale thruster. The ultimate goal is to replace propellants such as MMH with fuels that are simultaneously high-performance and nontoxic. The fuels will have uses in NASA's propulsion applications and also in a range of military and commercial functions.

  20. Supported ionic liquids fundamentals and applications

    CERN Document Server

    Fehrmann, Rasmus; Haumann, Marco

    2013-01-01

    This unique book gives a timely overview about the fundamentals and applications of supported ionic liquids in modern organic synthesis. It introduces the concept and synthesis of SILP materials and presents important applications in the field of catalysis (e.g. hydroformylation, hydrogenation, coupling reactions, fine chemical synthesis) as well as energy technology and gas separation. Written by pioneers in the field, this book is an invaluable reference book for organic chemists in academia or industry.

  1. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2005-06-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to

  2. Phytoremediation of Ionic and Methyl Mercury Pollution

    Energy Technology Data Exchange (ETDEWEB)

    Meagher, Richard B.

    2004-12-01

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of human and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems.

  3. Structural analysis of zwitterionic liquids vs. homologous ionic liquids

    Science.gov (United States)

    Wu, Boning; Kuroda, Kosuke; Takahashi, Kenji; Castner, Edward W.

    2018-05-01

    Zwitterionic liquids (Zw-ILs) have been developed that are homologous to monovalent ionic liquids (ILs) and show great promise for controlled dissolution of cellulosic biomass. Using both high energy X-ray scattering and atomistic molecular simulations, this article compares the bulk liquid structural properties for novel Zw-ILs with their homologous ILs. It is shown that the significant localization of the charges on Zw-ILs leads to charge ordering similar to that observed for conventional ionic liquids with monovalent anions and cations. A low-intensity first sharp diffraction peak in the liquid structure factor S(q) is observed for both the Zw-IL and the IL. This is unexpected since both the Zw-IL and IL have a 2-(2-methoxyethoxy)ethyl (diether) functional group on the cationic imidazolium ring and ether functional groups are known to suppress this peak. Detailed analyses show that this intermediate range order in the liquid structure arises for slightly different reasons in the Zw-IL vs. the IL. For the Zw-IL, the ether tails in the liquid are shown to aggregate into nanoscale domains.

  4. Canopy Dynamics in Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.

    2010-07-27

    Nanoscale ionic materials (NIMS) are organic - inorganic hybrids in which a core nanostructure is functionalized with a covalently attached corona and an ionically tethered organic canopy. NIMS are engineered to be liquids under ambient conditions in the absence of solvent and are of interest for a variety of applications. We have used nuclear magnetic resonance (NMR) relaxation and pulse-field gradient (PFG) diffusion experiments to measure the canopy dynamics of NIMS prepared from 18-nm silica cores modified by an alkylsilane monolayer possessing terminal sulfonic acid functionality, paired with an amine-terminated ethylene oxide/propylene oxide block copolymer canopy. Carbon NMR studies show that the block copolymer canopy is mobile both in the bulk and in the NIMS and that the fast (ns) dynamics are insensitive to the presence of the silica nanoparticles. Canopy diffusion in the NIMS is slowed relative to the neat canopy, but not to the degree predicted from the diffusion of hard-sphere particles. Canopy diffusion is not restricted to the surface of the nanoparticles and shows unexpected behavior upon addition of excess canopy. Taken together, these data indicate that the liquid-like behavior in NIMS is due to rapid exchange of the block copolymer canopy between the ionically modified nanoparticles. © 2010 American Chemical Society.

  5. Canopy Dynamics in Nanoscale Ionic Materials

    KAUST Repository

    Jespersen, Michael L.; Mirau, Peter A.; Meerwall, Ernst von; Vaia, Richard A.; Rodriguez, Robert; Giannelis, Emmanuel P.

    2010-01-01

    Nanoscale ionic materials (NIMS) are organic - inorganic hybrids in which a core nanostructure is functionalized with a covalently attached corona and an ionically tethered organic canopy. NIMS are engineered to be liquids under ambient conditions in the absence of solvent and are of interest for a variety of applications. We have used nuclear magnetic resonance (NMR) relaxation and pulse-field gradient (PFG) diffusion experiments to measure the canopy dynamics of NIMS prepared from 18-nm silica cores modified by an alkylsilane monolayer possessing terminal sulfonic acid functionality, paired with an amine-terminated ethylene oxide/propylene oxide block copolymer canopy. Carbon NMR studies show that the block copolymer canopy is mobile both in the bulk and in the NIMS and that the fast (ns) dynamics are insensitive to the presence of the silica nanoparticles. Canopy diffusion in the NIMS is slowed relative to the neat canopy, but not to the degree predicted from the diffusion of hard-sphere particles. Canopy diffusion is not restricted to the surface of the nanoparticles and shows unexpected behavior upon addition of excess canopy. Taken together, these data indicate that the liquid-like behavior in NIMS is due to rapid exchange of the block copolymer canopy between the ionically modified nanoparticles. © 2010 American Chemical Society.

  6. Understanding SO2 Capture by Ionic Liquids.

    Science.gov (United States)

    Mondal, Anirban; Balasubramanian, Sundaram

    2016-05-19

    Ionic liquids have generated interest for efficient SO2 absorption due to their low vapor pressure and versatility. In this work, a systematic investigation of the structure, thermodynamics, and dynamics of SO2 absorption by ionic liquids has been carried out through quantum chemical calculations and molecular dynamics (MD) simulations. MP2 level calculations of several ion pairs complexed with SO2 reveal its preferential interaction with the anion. Results of condensed phase MD simulations of SO2-IL mixtures manifested the essential role of both cations and anions in the solvation of SO2, where the solute is surrounded by the "cage" formed by the cations (primarily its alkyl tail) through dispersion interactions. These structural effects of gas absorption are substantiated by calculated Gibbs free energy of solvation; the dissolution is demonstrated to be enthalpy driven. The entropic loss of SO2 absorption in ionic liquids with a larger anion such as [NTf2](-) has been quantified and has been attributed to the conformational restriction of the anion imposed by its interaction with SO2. SO2 loading IL decreases its shear viscosity and enhances the electrical conductivity. This systematic study provides a molecular level understanding which can aid the design of task-specific ILs as electrolytes for efficient SO2 absorption.

  7. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids

    Science.gov (United States)

    Tiruye, Girum Ayalneh; Muñoz-Torrero, David; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2016-09-01

    Four Ionic Liquid based Polymer Electrolytes (IL-b-PE) were prepared by blending a Polymeric Ionic Liquid, Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PILTFSI), with four different ionic liquids: 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) (IL-b-PE1), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) (IL-b-PE2), 1-(2-hydroxy ethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HEMimTFSI) (IL-b-PE3), and 1-Butyl-1-methylpyrrolidinium dicyanamide, (PYR14DCA) (IL-b-PE4). Physicochemical properties of IL-b-PE such as ionic conductivity, thermal and electrochemical stability were found to be dependent on the IL properties. For instance, ionic conductivity was significantly higher for IL-b-PE2 and IL-b-PE4 containing IL with small size anions (FSI and DCA) than IL-b-PE1 and IL-b-PE3 bearing IL with bigger anion (TFSI). On the other hand, wider electrochemical stability window (ESW) was found for IL-b-PE1 and IL-b-PE2 having ILs with electrochemically stable pyrrolidinium cation and FSI and TFSI anions. Solid state Supercapacitors (SCs) were assembled with activated carbon electrodes and their electrochemical performance was correlated with the polymer electrolyte properties. Best performance was obtained with SC having IL-b-PE2 that exhibited a good compromise between ionic conductivity and electrochemical window. Specific capacitance (Cam), real energy (Ereal) & real power densities (Preal) as high as 150 F g-1, 36 Wh kg-1 & 1170 W kg-1 were found at operating voltage of 3.5 V.

  8. Clinical significance of neonatal menstruation.

    Science.gov (United States)

    Brosens, Ivo; Benagiano, Giuseppe

    2016-01-01

    Past studies have clearly shown the existence of a spectrum of endometrial progesterone responses in neonatal endometrium, varying from proliferation to full decidualization with menstrual-like shedding. The bleedings represent, similar to what occurs in adult menstruation, a progesterone withdrawal bleeding. Today, the bleeding is completely neglected and considered an uneventful episode of no clinical significance. Yet clinical studies have linked the risk of bleeding to a series of events indicating fetal distress. The potential link between the progesterone response and major adolescent disorders requires to be investigated by prospective studies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Controlling adsorption and passivation properties of bovine serum albumin on silica surfaces by ionic strength modulation and cross-linking.

    Science.gov (United States)

    Park, Jae Hyeon; Sut, Tun Naw; Jackman, Joshua A; Ferhan, Abdul Rahim; Yoon, Bo Kyeong; Cho, Nam-Joon

    2017-03-29

    Understanding the physicochemical factors that influence protein adsorption onto solid supports holds wide relevance for fundamental insights into protein structure and function as well as for applications such as surface passivation. Ionic strength is a key parameter that influences protein adsorption, although how its modulation might be utilized to prepare well-coated protein adlayers remains to be explored. Herein, we investigated how ionic strength can be utilized to control the adsorption and passivation properties of bovine serum albumin (BSA) on silica surfaces. As protein stability in solution can influence adsorption kinetics, the size distribution and secondary structure of proteins in solution were first characterized by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and circular dichroism (CD) spectroscopy. A non-monotonic correlation between ionic strength and protein aggregation was observed and attributed to colloidal agglomeration, while the primarily α-helical character of the protein in solution was maintained in all cases. Quartz crystal microbalance-dissipation (QCM-D) experiments were then conducted in order to track protein adsorption onto silica surfaces as a function of ionic strength, and the measurement responses indicated that total protein uptake at saturation coverage is lower with increasing ionic strength. In turn, the QCM-D data and the corresponding Voigt-Voinova model analysis support that the surface area per bound protein molecule is greater with increasing ionic strength. While higher protein uptake under lower ionic strengths by itself did not result in greater surface passivation under subsequent physiologically relevant conditions, the treatment of adsorbed protein layers with a gluteraldehyde cross-linking agent stabilized the bound protein in this case and significantly improved surface passivation. Collectively, our findings demonstrate that ionic strength modulation influences BSA adsorption

  10. Self-assembled thin film of imidazolium ionic liquid on a silicon surface: Low friction and remarkable wear-resistivity

    International Nuclear Information System (INIS)

    Gusain, Rashi; Kokufu, Sho; Bakshi, Paramjeet S.; Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki; Khatri, Om P.

    2016-01-01

    Graphical abstract: - Highlights: • Ionic liquid thin film is deposited on a silicon surface via covalent interaction. • Chemical and morphological features of ionic liquid thin film are probed by XPS and AFM. • Ionic liquid thin film exhibited low and steady friction along with remarkable wear-resistivity. - Abstract: Imidazolium-hexafluorophosphate (ImPF_6) ionic liquid thin film is prepared on a silicon surface using 3-chloropropyltrimethoxysilane as a bifunctional chemical linker. XPS result revealed the covalent grafting of ImPF_6 thin film on a silicon surface. The atomic force microscopic images demonstrated that the ImPF_6 thin film is composed of nanoscopic pads/clusters with height of 3–7 nm. Microtribological properties in terms of coefficient of friction and wear-resistivity are probed at the mean Hertzian contact pressure of 0.35–0.6 GPa under the rotational sliding contact. The ImPF_6 thin film exhibited low and steady coefficient of friction (μ = 0.11) along with remarkable wear-resistivity to protect the underlying silicon substrate. The low shear strength of ImPF_6 thin film, the covalent interaction between ImPF_6 ionic liquid thin film and underlying silicon substrate, and its regular grafting collectively reduced the friction and improved the anti-wear property. The covalently grafted ionic liquid thin film further shows immense potential to expand the durability and lifetime of M/NEMS based devices with significant reduction of the friction.

  11. A reversible conductivity modulation of azobenzene-based ionic liquids in aqueous solutions using UV/vis light.

    Science.gov (United States)

    Li, Zhiyong; Yuan, Xiaoqing; Feng, Ying; Chen, Yongkui; Zhao, Yuling; Wang, Huiyong; Xu, Qingli; Wang, Jianji

    2018-05-09

    Photo-induced conductivity modulation of stimuli-responsive materials is of great importance from the viewpoint of fundamental research and technology. In this work, 5 new kinds of azobenzene-based photo-responsive ionic liquids were synthesized and characterized, and UV/vis light modulation of their conductivity was investigated in an aqueous solution. The factors affecting the conductivity modulation of the photo-responsive fluids, such as photo-isomerization efficiency, photo-regulation aggregation, concentration and chemical structure of the ionic liquids, were examined systematically. It was found that the conductivity of the ionic liquids in water exhibited a significant increase upon UV light irradiation and the ionic liquids with a shorter alkyl spacer in the cation showed a more remarkable photo-induced conductivity enhancement with a maximum increase of 150%. In addition, the solution conductivity was restored (or very close) to the initial value upon an alternative irradiation with visible light. Thus, the solution conductivity can be modulated using alternative irradiation with UV and visible light. Although the reversible photo-isomerization of the azobenzene group under UV/vis irradiation is the origin of the conductivity modulation, the photo-regulated aggregation of the ionic liquid in water is indispensable for the maximum degree of conductivity modulation because UV irradiation can weaken, even break the aggregated cis-isomers of the ionic liquids in an aqueous solution.

  12. A Molecular Dynamics Study on Selective Cation Depletion from an Ionic Liquid Droplet under an Electric Field

    Science.gov (United States)

    Yang, Yudong; Ahn, Myungmo; Im, Dojin; Oh, Jungmin; Kang, Inseok

    2017-11-01

    General electrohydrodynamic behavior of ionic liquid droplets under an electric field is investigated using MD simulations. Especially, a unique behavior of ion depletion of an ionic liquid droplet under a uniform electric field is studied. Shape deformation due to electric stress and ion distributions inside the droplet are calculated to understand the ionic motion of imidazolium-based ionic liquid droplets with 200 ion pairs of 2 kinds of ionic liquids: EMIM-NTf2 and EMIM-ES. The intermolecular force between cations and anions can be significantly different due to the nature of the structure and charge distribution of the ions. Together with an analytical interpretation of the conducting droplet in an electric field, the MD simulation successfully explains the mechanism of selective ion depletion of an ionic liquid droplet in an electric field. The selective ion depletion phenomenon has been adopted to explain the experimentally observed retreating motion of a droplet in a uniform electric field. The effect of anions on the cation depletion phenomenon can be accounted for from a direct approach to the intermolecular interaction. This research was supproted by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2017R1D1A1B05035211).

  13. Neptunium(V) Adsorption to Bacteria at Low and High Ionic Strength

    Science.gov (United States)

    Ams, D.; Swanson, J. S.; Reed, D. T.

    2010-12-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO2+ aquo and associated complexed species, is readily soluble, interacts weakly with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface containment. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO2+) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacteria/Np mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria used were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. The observed adsorption behavior may be linked to similarities and differences in the characteristics of the moieties between the cell walls of common gram-negative soil and halophilic bacteria. Moreover, differences in adsorption behavior may also reflect ionic

  14. Neptunium(V) adsorption to bacteria at low and high ionic strength

    International Nuclear Information System (INIS)

    Ams, David A.; Swanson, Juliet S.; Reed, Donald T.; Fein, Jeremy B.

    2010-01-01

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO 2 + aquo and associated complexed species, is readily soluble, weakly interacting with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface contaminant. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO 2 + ) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacterialNp mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight the key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. Similarities in adsorption behavior may be linked to similarities in the characteristics of the moieties between all bacterial cell walls. Differences in adsorption behavior may reflect differences in ionic strength effects, rather than differences in bacteria

  15. Neptunium(V) adsorption to bacteria at low and high ionic strength

    Energy Technology Data Exchange (ETDEWEB)

    Ams, David A [Los Alamos National Laboratory; Swanson, Juliet S [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Fein, Jeremy B [UNIV OF NOTRE DAME

    2010-12-08

    Np(V) is expected to be the predominant oxidation state of neptunium in aerobic natural waters. Np(V), as the NpO{sub 2}{sup +} aquo and associated complexed species, is readily soluble, weakly interacting with geologic media, and has a high redox stability under a relatively wide range of subsurface conditions. These chemical properties, along with a long half-life make it a primary element of concern regarding long-term nuclear waste storage and subsurface contaminant. The fate and transport of neptunium in the environment may be influenced by adsorption onto bacterial surfaces. The adsorption of neptunium to bacterial surfaces ties the mobility of the contaminant to the mobility of the bacterium. In this study, the adsorption of the neptunyl (NpO{sub 2}{sup +}) ion was evaluated at low ionic strength on a common soil bacterium and at high ionic strength on a halophilic bacterium isolated from a briny groundwater near the Waste Isolation Pilot Plant (WIPP) in southeast New Mexico. Adsorption experiments were performed in batch reactors as a function of pH, ionic strength, and bacterialNp mass ratio. Np(V) adsorption was modeled using a surface complexation approach with the mathematical program FITEQL to determine functional group specific binding constants. The data from acid and base titrations of the bacteria were also modeled to estimate the concentrations and deprotonation constants of discrete bacterial surface functional groups. Bacterial functional group characteristics and Np(V) adsorption behavior between the soil bacterium and the halophilic bacterium were compared. These results highlight the key similarities and differences in actinide adsorption behavior in environments of significantly different ionic strength. Similarities in adsorption behavior may be linked to similarities in the characteristics of the moieties between all bacterial cell walls. Differences in adsorption behavior may reflect differences in ionic strength effects, rather than

  16. Chronic effects of the ionic liquid [C4mim][Cl] towards the microalga Scenedesmus quadricauda

    International Nuclear Information System (INIS)

    Deng, Yun; Beadham, Ian; Wu, Jie; Chen, Xiao-Di; Hu, Lan; Gu, Jun

    2015-01-01

    Chronic effects of the ionic liquid [C 4 mim][Cl] (mp 73 °C) towards the microalga, Scenedesmus quadricauda were studied by flow cytometry, monitoring multiple endpoints of cell density, esterase activity, membrane integrity, reactive oxygen species and chlorophyll fluorescence. Toxicity was clearly in evidence, and although increased esterase activity indicated hormesis during initial exposure to [C 4 mim][Cl], inhibition of both esterase activity and chlorophyll fluorescence became apparent after 3 days. Cell density was also decreased by culturing with [C 4 mim][Cl], but this effect was clearly concentration-dependent and only became significant during the second half of the experiment. In contrast, [C 4 mim][Cl] had only a modest effect on reactive oxygen species (ROS) and caused little damage to cell membranes. - Highlights: • Use of an advanced biological technique, flow cytometry, to elucidate ionic liquid toxicity. • Chronic effects of ionic liquid. • Membrane integrity and ROS studied. • Mechanism of ionic liquid toxicity. - [C 4 mim][Cl] significantly inhibited esterase activity, chlorophyll fluorescence and cell density, having only a modest effect on reactive oxygen species and cell membranes

  17. Clinical cardiovascular experiences with iopamidol: a new non-ionic contrast medium

    International Nuclear Information System (INIS)

    Partridge, J.B.; Robinson, P.J.; Turnbull, C.M.; Stoker, J.B.; Morrison, G.W.; Boyle, R.M.

    1981-01-01

    Iopamidol, a new non-ionic water-soluble contrast medium, has been compared with standard ionic media in a number of cardiovascular applications. It is stable in aqueous solution, is much less viscous and only slightly more osmolar than metrizamide. Compared to sodium meglumine diatrizoate in a series of 40 coronary arteriograms, it produced a consistent and highly significant decrease in the incidence and severity of hypotension and bradycardia following intracoronary injection. In the same group and in 62 children undergoing ventricular or great vessel angiocardiography, a subjective assessment of patient reaction showed that iopamidol was better tolerated than the ionic medium. There was a very strong patient preference for iopamidol in a group of 10 of the adult patients who had also consented to femoral artery injections of both media. Throughout these series there was no detectable difference in arterial image quality between the media. Venous phase opacification during arterioportography was assessed in 11 cases comparing iopamidol with sodium meglumine iothalamate. No significant difference was found. We conclude that iopamidol is clearly preferable to ionic media for routine cardiovascular applications. (author)

  18. Measurement and Correlation of the Ionic Conductivity of Ionic Liquid-Molecular Solvent Solutions

    Institute of Scientific and Technical Information of China (English)

    LI,Wen-Jing; HAN,Bu-Xing; TAO,Ran-Ting; ZHANG,Zhao-Fu; ZHANG,Jian-Ling

    2007-01-01

    The ionic conductivity of the solutions formed from 1-n-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) or 1-n-butyl-3-methylimidazolium hexafluorophosphate ([Bmim][PF6]) and different molecular solvents (MSs) were measured at 298.15 K. The molar conductivity of the ionic liquids (ILs) increased dramatically with increasing concentration of the MSs. It was found that the molar conductivity of the IL in the solutions studied in this work could be well correlated by the molar conductivity of the neat ILs and the dielectric constant and molar volume of the MSs.

  19. Ionic liquids for addressing unmet needs in healthcare

    Science.gov (United States)

    Agatemor, Christian; Ibsen, Kelly N.; Tanner, Eden E. L.

    2018-01-01

    Abstract Advances in the field of ionic liquids have opened new applications beyond their traditional use as solvents into other fields especially healthcare. The broad chemical space, rich with structurally diverse ions, and coupled with the flexibility to form complementary ion pairs enables task‐specific optimization at the molecular level to design ionic liquids for envisioned functions. Consequently, ionic liquids now are tailored as innovative solutions to address many problems in medicine. To date, ionic liquids have been designed to promote dissolution of poorly soluble drugs and disrupt physiological barriers to transport drugs to targeted sites. Also, their antimicrobial activity has been demonstrated and could be exploited to prevent and treat infectious diseases. Metal‐containing ionic liquids have also been designed and offer unique features due to incorporation of metals. Here, we review application‐driven investigations of ionic liquids in medicine with respect to current status and future potential. PMID:29376130

  20. Solid electrolytes Sr(Ba)6Nb(Ta)2O11 with structural disordering of oxygen sublattice

    International Nuclear Information System (INIS)

    Nejman, A.Ya.; Podkorytov, A.L.; Yurkovskaya, N.Yu.; Zhukovskij, V.M.

    1986-01-01

    Electric conductivity at alternating and direct current and ratio of ionic component of conductivity in M 2 O-M 2 5 O 5 systems (M 2 -Sr, Ba; M 5 -Nb, Ta) are measured. High ionic conductivity of M 6 2 M 2 5 O 11 compounds is shown to be conducted by structural disordering of oxygen sublattice

  1. Potentiostat for Characterizing Microstructures at Ionic Liquid/Electrode Interfaces

    Science.gov (United States)

    2015-10-10

    reviewed journals (N/A for none) C. Zibart, D. Parr, B. Egan, H. Morris, A. Tivanski, L. M. Haverhals, “Investigation of Structure at Gold- Ionic Liquid ...into our electrochemistry program. In short, the instrument has been of great service to characterize ionic liquid -based (IL-based) electrolyte...Aug-2014 14-Nov-2014 Approved for Public Release; Distribution Unlimited Final Report: Potentiostat for Characterizing Microstructures at Ionic Liquid

  2. Ionic Liquids in Polymer Design: From Energy to Health

    Science.gov (United States)

    2016-10-19

    of Papers published in non peer- reviewed journals: Final Report: Ionic Liquids in Polymer Design: From Energy to Health Report Title ACS Symposium...SECURITY CLASSIFICATION OF: ACS Symposium: Ionic Liquids in Polymer Design: From Energy to Health at Fall 2015 ACS Meeting in Boston, MA The...combination of ionic liquids and polymers has emerged as an active field of exploration in polymer science, where new materials have be realized for

  3. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    OpenAIRE

    Hoarfrost, Megan Lane

    2012-01-01

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the additio...

  4. Aerobic, catalytic oxidation of alcohols in ionic liquids

    Directory of Open Access Journals (Sweden)

    Souza Roberto F. de

    2006-01-01

    Full Text Available An efficient and simple catalytic system based on RuCl3 dissolved in ionic liquids has been developed for the oxidation of alcohols into aldehydes and ketones under mild conditions. A new fluorinated ionic liquid, 1-n-butyl-3-methylimidazolium pentadecafluorooctanoate, was synthesized and demonstrated better performance that the other ionic liquids employed. Moreover this catalytic system utilizes molecular oxygen as an oxidizing agent, producing water as the only by-product.

  5. Electronic, elastic, thermodynamic properties and structure disorder of {gamma}-AlON solid solution from ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuezhong, E-mail: wyzphysics@163.com [Department of Physics and Key Laboratory for Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Tianjin Jinhang Institute of Technical Physics, Tianjin 300192 (China); Lu, Tiecheng, E-mail: lutiecheng@scu.edu.cn [Department of Physics and Key Laboratory for Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); International Center for Material Physics, Chinese Academy of Sciences, Shenyang 110015 (China); Zhang, Rongshi [Tianjin Jinhang Institute of Technical Physics, Tianjin 300192 (China); Jiang, Shengli; Qi, Jianqi; Wang, Ying [Department of Physics and Key Laboratory for Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Chen, Qingyun [Department of Physics and Key Laboratory for Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); National Defense Key Discipline Laboratory of Nuclear Waste and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010 (China); Miao, Naihua [Physique Theorique des Materiaux, Universite de Liege, Sart Tilman B-4000 (Belgium); He, Duanwei [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610064 (China)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer We reassess the chemical bonding character of {gamma}-AlON which shows strong ionicity. Black-Right-Pointing-Pointer {gamma}-AlON single-crystals exhibit highly elastic anisotropy. Black-Right-Pointing-Pointer The thermodynamic properties are investigated in a wider temperature/pressure range. Black-Right-Pointing-Pointer {gamma}-AlON is an O/N partially disordered structure. - Abstract: Spinel aluminium oxynitride ({gamma}-AlON), as a kind of transparent ceramic material expectable, is studied using the ab initio density functional method, in terms of electronic, elastic, thermodynamic properties and structure disorder. The results show that {gamma}-AlON exhibits strong ionicity, as quantitatively expressed by (Al{sub O}{sup 2.43+}){sub 15}(Al{sub T}{sup 2.41+}){sub 8}(O{sup 1.64-}){sub 27}(N{sup 2.27-}){sub 5} from our reassessment of the ionic character. We summarize and speculate that the considered oxynitride single-crystals exhibit highly elastic anisotropy. The interpretation of the thermodynamic properties of {gamma}-AlON according to quasi-harmonic Debye model confirm the available experiments and are extended to a wider temperature/pressure range. This material holds high elastic strength under extreme environments, where dB/dT absolute value is less than 0.03 GPa/K, independent of the pressure. Finally, we study the O/N structure disorder character of {gamma}-AlON solid solution by investigating nine possible crystal structures. It is found that {gamma}-AlON should be partially disordered, and in fact, the O/N ordering has a significant effect on the properties.

  6. Electronic, elastic, thermodynamic properties and structure disorder of γ-AlON solid solution from ab initio calculations

    International Nuclear Information System (INIS)

    Wang, Yuezhong; Lu, Tiecheng; Zhang, Rongshi; Jiang, Shengli; Qi, Jianqi; Wang, Ying; Chen, Qingyun; Miao, Naihua; He, Duanwei

    2013-01-01

    Highlights: ► We reassess the chemical bonding character of γ-AlON which shows strong ionicity. ► γ-AlON single-crystals exhibit highly elastic anisotropy. ► The thermodynamic properties are investigated in a wider temperature/pressure range. ► γ-AlON is an O/N partially disordered structure. - Abstract: Spinel aluminium oxynitride (γ-AlON), as a kind of transparent ceramic material expectable, is studied using the ab initio density functional method, in terms of electronic, elastic, thermodynamic properties and structure disorder. The results show that γ-AlON exhibits strong ionicity, as quantitatively expressed by (Al O 2.43+ ) 15 (Al T 2.41+ ) 8 (O 1.64- ) 27 (N 2.27- ) 5 from our reassessment of the ionic character. We summarize and speculate that the considered oxynitride single-crystals exhibit highly elastic anisotropy. The interpretation of the thermodynamic properties of γ-AlON according to quasi-harmonic Debye model confirm the available experiments and are extended to a wider temperature/pressure range. This material holds high elastic strength under extreme environments, where dB/dT absolute value is less than 0.03 GPa/K, independent of the pressure. Finally, we study the O/N structure disorder character of γ-AlON solid solution by investigating nine possible crystal structures. It is found that γ-AlON should be partially disordered, and in fact, the O/N ordering has a significant effect on the properties.

  7. Use of ionic liquids as coordination ligands for organometallic catalysts

    Science.gov (United States)

    Li, Zaiwei [Moreno Valley, CA; Tang, Yongchun [Walnut, CA; Cheng,; Jihong, [Arcadia, CA

    2009-11-10

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  8. Lipid extraction from microalgae using a single ionic liquid

    Science.gov (United States)

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2013-05-28

    A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

  9. Ionic Liquids in HPLC and CE: A Hope for Future.

    Science.gov (United States)

    Ali, Imran; Suhail, Mohd; Sanagi, Mohd Marsin; Aboul-Enein, Hassan Y

    2017-07-04

    The ionic liquids (ILs) are salts with melting points below 100°C. These are called as ionic fluids, ionic melts, liquid electrolytes, fused salts, liquid salts, ionic glasses, designer solvents, green solvents and solvents of the future. These have a wide range of applications, including medical, pharmaceutical and chemical sciences. Nowadays, their use is increasing greatly in separation science, especially in chromatography and capillary electrophoresis due to their remarkable properties. The present article describes the importance of ILs in high-performance liquid chromatography and capillary electrophoresis. Efforts were also made to highlight the future expectations of ILs.

  10. Recent developments in biocatalysis in multiphasic ionic liquid reaction systems.

    Science.gov (United States)

    Meyer, Lars-Erik; von Langermann, Jan; Kragl, Udo

    2018-06-01

    Ionic liquids are well known and frequently used 'designer solvents' for biocatalytic reactions. This review highlights recent achievements in the field of multiphasic ionic liquid-based reaction concepts. It covers classical biphasic systems including supported ionic liquid phases, thermo-regulated multi-component solvent systems (TMS) and polymerized ionic liquids. These powerful concepts combine unique reaction conditions with a high potential for future applications on a laboratory and industrial scale. The presence of a multiphasic system simplifies downstream processing due to the distribution of the catalyst and reactants in different phases.

  11. Are Ionic Liquids Good Boundary Lubricants? A Molecular Perspective

    Directory of Open Access Journals (Sweden)

    Romain Lhermerout

    2018-01-01

    Full Text Available The application of ionic liquids as lubricants has attracted substantial interest over the past decade and this has produced a rich literature. The aim of this review is to summarize the main findings about frictional behavior of ionic liquids in the boundary lubrication regime. We first recall why the unusual properties of ionic liquids make them very promising lubricants, and the molecular mechanisms at the origin of their lubricating behavior. We then point out the main challenges to be overcome in order to optimise ionic liquid lubricant performance for common applications. We finally discuss their use in the context of electroactive lubrication.

  12. Ionic liquids used in extraction and separation of metal ions

    International Nuclear Information System (INIS)

    Shen Xinghai; Xu Chao; Liu Xinqi; Chu Taiwei

    2006-01-01

    Ionic liquids as green solvents now have become a research hotspot in the field of separation of metal ions by solvent extraction. Experimental results of extraction of various metal ions with ionic liquids as solvents, including that of alkali metals, alkaline earths, transition metals rare earths and actinides are introduced. The extraction of uranium, plutonium and fission products that are involved in spent nuclear fuel reprocessing is also reviewed. The possible extraction mechanisms are discussed. Finally, the prospect of replacement of volatile and/or toxic organic solvents with environmentally benign ionic liquids for solvent extraction and the potency of applications of ionic liquids in solvent extraction are also commented. (authors)

  13. Ionic liquid and nanoparticle hybrid systems: Emerging applications.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2017-06-01

    Having novel electronic and optical properties that emanate from their nano-scale dimensions, nanoparticles are central to numerous applications. Ionic liquids can confer to nanoparticle chemical protection and physicochemical property enhancement through intermolecular interactions and can consequently improve the stability and reusability of nanoparticle for various operations. With an aim to combine the novel properties of nanoparticles and ionic liquids, different structures have been generated, based on a balance of several intermolecular interactions. Such ionic liquid and nanoparticle hybrids are showing great potential in diverse applications. In this review, we first introduce various types of ionic liquid and nanoparticle hybrids, including nanoparticle colloidal dispersions in ionic liquids, ionic liquid-grafted nanoparticles, and nanoparticle-stabilized ionic liquid-based emulsions. Such hybrid materials exhibit interesting synergisms. We then highlight representative applications of ionic liquid and nanoparticle hybrids in the catalysis, electrochemistry and separations fields. Such hybrids can attain better stability and higher efficiency under a broad range of conditions. Novel and enhanced performance can be achieved in these applications by combining desired properties of ionic liquids and of nanoparticles within an appropriate hybrid nanostructure. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Ionic liquid electrolytes for dye-sensitized solar cells.

    Science.gov (United States)

    Gorlov, Mikhail; Kloo, Lars

    2008-05-28

    The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids leads to mass-transport limitations. Here we review recent developments in the application of different ionic liquids as solvents or components of liquid and quasi-solid electrolytes for dye-sensitized solar cells.

  15. Predictions of Physicochemical Properties of Ionic Liquids with DFT

    Directory of Open Access Journals (Sweden)

    Karl Karu

    2016-07-01

    Full Text Available Nowadays, density functional theory (DFT-based high-throughput computational approach is becoming more efficient and, thus, attractive for finding advanced materials for electrochemical applications. In this work, we illustrate how theoretical models, computational methods, and informatics techniques can be put together to form a simple DFT-based throughput computational workflow for predicting physicochemical properties of room-temperature ionic liquids. The developed workflow has been used for screening a set of 48 ionic pairs and for analyzing the gathered data. The predicted relative electrochemical stabilities, ionic charges and dynamic properties of the investigated ionic liquids are discussed in the light of their potential practical applications.

  16. Method for enhancing the thermal stability of ionic compounds

    DEFF Research Database (Denmark)

    2013-01-01

    This invention relates to a method for enhancing the thermal stability of ionic compounds including ionic liquids, by immobilization on porous solid support materials having a pore diameter of between about 20-200 AA, wherein the solid support does not have a pore size of 90 AA.......This invention relates to a method for enhancing the thermal stability of ionic compounds including ionic liquids, by immobilization on porous solid support materials having a pore diameter of between about 20-200 AA, wherein the solid support does not have a pore size of 90 AA....

  17. Improved Ionic Liquids as Space Lubricants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ionic liquids are candidate lubricant materials. However for application in low temperature space mechanisms their lubrication performance needs to be enhanced. UES...

  18. Large Lattice Discretization Effects on the Phase Coexistence of Ionic Fluids

    International Nuclear Information System (INIS)

    Panagiotopoulos, A.Z.; Kumar, S.K.

    1999-01-01

    We examine the phase behavior of lattice restricted primitive models for integer values of the ratio of ionic diameter to lattice spacing, ξ . For ξ≤2 , there is coexistence between a disordered phase and an antiferromagnetic phase, but no vapor-liquid equilibrium. For ξ≥3 , a region of normal vapor-liquid coexistence is found, with critical temperatures and densities which are very close to their continuous space counterparts. Our findings stress that lattice structure can result in qualitatively different physics from continuous space models, but that the two models converge even for relatively coarsely discretized lattices. copyright 1999 The American Physical Society

  19. Electronic and ionic conductivities and point defects in ytterbium sesquioxide at high temperature

    International Nuclear Information System (INIS)

    Carpentier, J.-L.; Lebrun, A.; Perdu, F.; Tellier, P.

    1982-01-01

    From the study of complex impedance diagrams applied to a symmetric cell Pt-Yb 2 O 3 -Pt, the authors have shown the mixed character of electrical conduction within the ytterbium sesquioxide. The measurements were performed at thermodynamic equilibrium in the temperature range from 1423 to 1623 K and the partial pressure of oxygen range from 10 -12 to 1 atm. The variations of ionic and electronic conductivity as a function of Psub(O 2 ) were interpreted in terms of four different point defects in the general case of a Frenkel disorder. The relative contributions and the activation energies of conduction of these different defects were determined. (author)

  20. Binge Eating Disorder

    Directory of Open Access Journals (Sweden)

    Senol Turan

    2015-12-01

    Full Text Available Binge Eating Disorder, characterized by frequent and persistent overeating episodes that are accompanied by feeling of loss of control over eating without regular compensatory behaviors and was identified in the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition as a new eating disorder category. Binge Eating Disorder is the most common eating disorder among adults. Binge Eating Disorder is associated with significant morbidity, including medical complications related to obesity, eating disorder psychopathology, psychiatric comorbidity; reduced quality of life, and impaired social functioning. Current treatments of Binge Eating Disorder include pharmacotherapy, psychotherapy and bariatric surgery. In this review, the definition, epidemiology, etiology, clinical features, and also mainly treatment of Binge Eating Disorder are discussed.

  1. Ionic structure of solutions of alkali metals and molten salts

    International Nuclear Information System (INIS)

    Chabrier, G.; Senatore, G.; Tosi, M.P.

    1982-02-01

    Neutron diffraction patterns from K-KCl and Rb-RbBr liquid solutions at various compositions are examined in an ionic-mixture model which neglects screening and aggregation due to the metallic electrons. The main feature of the observed diffraction patterns for wave number k above roughly 1A -1 are accounted for by the model. The approach to the metal-rich end of the phase diagram is analyzed in detail from different viewpoints in the K-KCl system. Short-range correlations of the potassium ions are described in this region by a metallic radius deduced from properties of the pure liquid metal, but a simple expanded-metal model must be supplemented by the assumption that considerable disorder is introduced in its structure by the halogen ions. Features of short-range ordering in the salt-rich region that are implied by a shoulder on the high-k side of the main peak in the diffraction pattern are also commented upon. (author)

  2. Ionic dependence of sulphur mustard cytotoxicity

    International Nuclear Information System (INIS)

    Sawyer, Thomas W.; Nelson, Peggy; Bjarnason, Stephen; Vair, Cory; Shei Yimin; Tenn, Catherine; Lecavalier, Pierre; Burczyk, Andrew

    2010-01-01

    The effect of ionic environment on sulphur mustard (bis 2-chloroethyl sulphide; HD) toxicity was examined in CHO-K1 cells. Cultures were treated with HD in different ionic environments at constant osmolar conditions (320 mOsM, pH 7.4). The cultures were refed with fresh culture medium 1 h after HD exposure, and viability was assessed. Little toxicity was apparent when HD exposures were carried out in ion-free sucrose buffer compared to LC 50 values of ∼ 100-150 μM when the cultures were treated with HD in culture medium. Addition of NaCl to the buffer increased HD toxicity in a salt concentration-dependent manner to values similar to those obtained in culture medium. HD toxicity was dependent on both cationic and anionic species with anionic environment playing a much larger role in determining toxicity. Substitution of NaI for NaCl in the treatment buffers increased HD toxicity by over 1000%. The activity of the sodium hydrogen exchanger (NHE) in recovering from cytosolic acidification in salt-free and in different chloride salts did not correlate with the HD-induced toxicity in these buffers. However, the inhibition by HD of intracellular pH regulation correlated with its toxicity in NaCl, NaI and sucrose buffers. Analytical chemical studies and the toxicity of the iodine mustard derivative ruled out the role of chemical reactions yielding differentially toxic species as being responsible for the differences in HD toxicity observed. This work demonstrates that the early events that HD sets into motion to cause toxicity are dependent on ionic environment, possibly due to intracellular pH deregulation.

  3. Computer simulation on molten ionic salts

    International Nuclear Information System (INIS)

    Kawamura, K.; Okada, I.

    1978-01-01

    The extensive advances in computer technology have since made it possible to apply computer simulation to the evaluation of the macroscopic and microscopic properties of molten salts. The evaluation of the potential energy in molten salts systems is complicated by the presence of long-range energy, i.e. Coulomb energy, in contrast to simple liquids where the potential energy is easily evaluated. It has been shown, however, that no difficulties are encountered when the Ewald method is applied to the evaluation of Coulomb energy. After a number of attempts had been made to approximate the pair potential, the Huggins-Mayer potential based on ionic crystals became the most often employed. Since it is thought that the only appreciable contribution to many-body potential, not included in Huggins-Mayer potential, arises from the internal electrostatic polarization of ions in molten ionic salts, computer simulation with a provision for ion polarization has been tried recently. The computations, which are employed mainly for molten alkali halides, can provide: (1) thermodynamic data such as internal energy, internal pressure and isothermal compressibility; (2) microscopic configurational data such as radial distribution functions; (3) transport data such as the diffusion coefficient and electrical conductivity; and (4) spectroscopic data such as the intensity of inelastic scattering and the stretching frequency of simple molecules. The computed results seem to agree well with the measured results. Computer simulation can also be used to test the effectiveness of a proposed pair potential and the adequacy of postulated models of molten salts, and to obtain experimentally inaccessible data. A further application of MD computation employing the pair potential based on an ionic model to BeF 2 , ZnCl 2 and SiO 2 shows the possibility of quantitative interpretation of structures and glass transformation phenomena

  4. Experimental validation of calculated atomic charges in ionic liquids

    Science.gov (United States)

    Fogarty, Richard M.; Matthews, Richard P.; Ashworth, Claire R.; Brandt-Talbot, Agnieszka; Palgrave, Robert G.; Bourne, Richard A.; Vander Hoogerstraete, Tom; Hunt, Patricia A.; Lovelock, Kevin R. J.

    2018-05-01

    A combination of X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy has been used to provide an experimental measure of nitrogen atomic charges in nine ionic liquids (ILs). These experimental results are used to validate charges calculated with three computational methods: charges from electrostatic potentials using a grid-based method (ChelpG), natural bond orbital population analysis, and the atoms in molecules approach. By combining these results with those from a previous study on sulfur, we find that ChelpG charges provide the best description of the charge distribution in ILs. However, we find that ChelpG charges can lead to significant conformational dependence and therefore advise that small differences in ChelpG charges (<0.3 e) should be interpreted with care. We use these validated charges to provide physical insight into nitrogen atomic charges for the ILs probed.

  5. Calculating the enthalpy of vaporization for ionic liquid clusters.

    Science.gov (United States)

    Kelkar, Manish S; Maginn, Edward J

    2007-08-16

    Classical atomistic simulations are used to compute the enthalpy of vaporization of a series of ionic liquids composed of 1-alkyl-3-methylimidazolium cations paired with the bis(trifluoromethylsulfonyl)imide anion. The calculations show that the enthalpy of vaporization is lowest for neutral ion pairs. The enthalpy of vaporization increases by about 40 kJ/mol with the addition of each ion pair to the vaporizing cluster. Non-neutral clusters have much higher vaporization enthalpies than their neutral counterparts and thus are not expected to make up a significant fraction of volatile species. The enthalpy of vaporization increases slightly as the cation alkyl chain length increases and as temperature decreases. The calculated vaporization enthalpies are consistent with two sets of recent experimental measurements as well as with previous atomistic simulations.

  6. A model for ionic polymer metal composites as sensors

    Science.gov (United States)

    Bonomo, C.; Fortuna, L.; Giannone, P.; Graziani, S.; Strazzeri, S.

    2006-06-01

    This paper introduces a comprehensive model of sensors based on ionic polymer metal composites (IPMCs) working in air. Significant quantities ruling the sensing properties of IPMC-based sensors are taken into account and the dynamics of the sensors are modelled. A large amount of experimental evidence is given for the excellent agreement between estimations obtained using the proposed model and the observed signals. Furthermore, the effect of sensor scaling is investigated, giving interesting support to the activities involved in the design of sensing devices based on these novel materials. We observed that the need for a wet environment is not a key issue for IPMC-based sensors to work well. This fact allows us to put IPMC-based sensors in a totally different light to the corresponding actuators, showing that sensors do not suffer from the same drawbacks.

  7. Study on epoxy resin modified by polyether ionic liquid

    Science.gov (United States)

    Jin, X. C.; Guo, L. Y.; Deng, L. L.; Wu, H.

    2017-06-01

    Chloride 1-carboxyl polyether-3-methyl imidazole ionic liquid (PIIL) was synthesized. Then blended with epoxy resin(EP) to prepare the composite materials of PIIL/EP, which cured with aniline curing agent. The structure and curing performance of PIIL/EP were determined by FT-IR and DSC. The effects of the content of PIIL on strength of EP were studied. The results show that the PIIL was the target product. The strength was improved significantly with increase of the PIIL content. The obvious rubber elasticity of PIIL/EP after cured was showed when the content of PIIL accounts for 40% and the impact strength was up to 15.95kJ/m2.

  8. Ionic Soft Matter Modern Trends in Theory and Applications

    CERN Document Server

    Henderson, Douglas; Trokhymchuk, Andrij

    2006-01-01

    This book is for researchers interested in the statistical mechanical modeling of charged substance as well as for those working in chemical physics, physical chemistry, biophysics and environmental science. The book consists of state of the art reviews of the recent experimental, theoretical and simulation studies on ionic criticality, polyelectrolytes, proton transport in fuel cell membranes, and the design of DNA arrays. A significant portion of the book deals with discussions of the fundamental and applied problems of important phenomena such as ion association, ion adsorption, ion solvation, electrical double layer, thin colloidal film stability, ion collective dynamics, ion screening, etc. using a level of argumentation that is common and understandable for mathematicians, physicists, chemists, biologists and engineers. The book concludes with chapter on physical properties of fuel-containing materials from the inside of the troubled Chornobyl sarcophagus.

  9. Notre Dame Geothermal Ionic Liquids Research: Ionic Liquids for Utilization of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Brennecke, Joan F. [Univ. of Notre Dame, IN (United States)

    2017-03-07

    The goal of this project was to develop ionic liquids for two geothermal energy related applications. The first goal was to design ionic liquids as high temperature heat transfer fluids. We identified appropriate compounds based on both experiments and molecular simulations. We synthesized the new ILs, and measured their thermal stability, measured storage density, viscosity, and thermal conductivity. We found that the most promising compounds for this application are aminopyridinium bis(trifluoromethylsulfonyl)imide based ILs. We also performed some measurements of thermal stability of IL mixtures and used molecular simulations to better understand the thermal conductivity of nanofluids (i.e., mixtures of ILs and nanoparticles). We found that the mixtures do not follow ideal mixture theories and that the addition of nanoparticles to ILs may well have a beneficial influence on the thermal and transport properties of IL-based heat transfer fluids. The second goal was to use ionic liquids in geothermally driven absorption refrigeration systems. We performed copious thermodynamic measurements and modeling of ionic liquid/water systems, including modeling of the absorption refrigeration systems and the resulting coefficients of performance. We explored some IL/organic solvent mixtures as candidates for this application, both with experimentation and molecular simulations. We found that the COPs of all of the IL/water systems were higher than the conventional system – LiBr/H2O. Thus, IL/water systems appear very attractive for absorption refrigeration applications.

  10. New Pyrazolium Salts as a Support for Ionic Liquid Crystals and Ionic Conductors.

    Science.gov (United States)

    Pastor, María Jesús; Sánchez, Ignacio; Campo, José A; Schmidt, Rainer; Cano, Mercedes

    2018-04-03

    Ionic liquid crystals (ILCs) are a class of materials that combine the properties of liquid crystals (LCs) and ionic liquids (ILs). This type of materials is directed towards properties such as conductivity in ordered systems at different temperatures. In this work, we synthesize five new families of ILCs containing symmetrical and unsymmetrical substituted pyrazolium cations, with different alkyl long-chains, and anions such as Cl - , BF₄ - , ReO₄ - , p -CH₃-₆H₄SO₃ - (PTS) and CF₃SO₃ - (OTf). We study their thermal behavior by polarized light optical microscopy (POM) and differential scanning calorimetry (DSC). All of them, except those with OTf as counteranion, show thermotropic mesomorphism. The observations by POM reveal textures of lamellar mesophases. Those agree with the arrangement observed in the X-ray crystal structure of [H₂pz R(4),R(4) ][ReO₄]. The nature of the mesophases is also confirmed by variable temperature powder X-ray diffraction. On the other hand, the study of the dielectric properties at variable temperature in mesomorphic (Cl - and BF₄ - ) and non-mesomorphic (OTf) salts indicates that the supramolecular arrangement of the mesophase favors a greater ionic mobility and therefore ionic conductivity.

  11. Simulations of phase transitions in ionic systems

    International Nuclear Information System (INIS)

    Panagiotopoulos, A Z

    2005-01-01

    A review of recent simulation work in the area of phase transitions in ionic systems is presented. The vapour-liquid transition for the restricted primitive model has been studied extensively in the past decade. The critical temperature is now known to excellent accuracy and the critical density to moderate accuracy. There is also strong simulation-based evidence that the model is in the Ising universality class. Discretized lattice versions of the model are reviewed. Other systems covered are size- and charge-asymmetric electrolytes, colloid-salt mixtures, realistic salt models and charged chains. Areas of future research needs are briefly discussed

  12. Isotope separation by ionic cyclotron resonance

    International Nuclear Information System (INIS)

    Compant La Fontaine, A.; Gil, C.; Louvet, P.

    1986-10-01

    The principle of the process of isotopic separation by ionic cyclotron resonance is explained succinctly. The theoretical calculation of the isotopic effect is given as functions of the electric and magnetic fields in the frame of single particle approximation and of plasma collective theory. Then, the main parts of the demonstration device which is in operation at the CEA, are described here: the supraconducting magnetic field, the used diagnostics, the principle of the source and the collecting apparatus. Some experimental results are given for chromium. The application of the process to ponderal separation of metal isotopes, as chromium, nickel and molybdenum is discussed in view of production of medical, structural and irradiation isotopes

  13. Pycnonuclear reaction rates for binary ionic mixtures

    Science.gov (United States)

    Ichimaru, S.; Ogata, S.; Van Horn, H. M.

    1992-01-01

    Through a combination of compositional scaling arguments and examinations of Monte Carlo simulation results for the interparticle separations in binary-ionic mixture (BIM) solids, we have derived parameterized expressions for the BIM pycnonuclear rates as generalizations of those in one-component solids obtained previously by Salpeter and Van Horn and by Ogata et al. We have thereby discovered a catalyzing effect of the heavier elements, which enhances the rates of reactions among the lighter elements when the charge ratio exceeds a critical value of approximately 2.3.

  14. Design of Separation Processes with Ionic Liquids

    DEFF Research Database (Denmark)

    Peng-noo, Worawit; Kulajanpeng, Kusuma; Gani, Rafiqul

    2015-01-01

    A systematic methodology for screening and designing of Ionic Liquid (IL)-based separation processes is proposed and demonstrated using several case studies of both aqueous and non-aqueous systems, for instance, ethanol + water, ethanol + hexane, benzene + hexane, and toluene + methylcyclohexane....... The best four ILs of each mixture are [mmim][dmp], [emim][bti], [emim][etso4] and [hmim][tcb], respectively. All of them were used as entrainers in the extractive distillation. A process simulation of each system was carried out and showed a lower both energy requirement and solvent usage as compared...

  15. Study of an ionic smoke sensor

    International Nuclear Information System (INIS)

    Mokhtari, Z; Holé, S; Lewiner, J

    2013-01-01

    Ionization smoke sensors are among the best smoke sensors; however, the little radioactive source they include is no longer desirable since it makes recycling more complicated. In this paper, we discuss an electrostatic system in which a corona discharge is used to generate the ions needed for smoke detection. We show how the velocity of ions is reduced in our system for a better interaction between smoke and drifting ions. The influence of smoke, temperature and moisture is studied. It is shown that the proposed sensor has good sensitivity compared with conventional ionic and optical smoke sensors. (paper)

  16. Study of an ionic smoke sensor

    Science.gov (United States)

    Mokhtari, Z.; Holé, S.; Lewiner, J.

    2013-05-01

    Ionization smoke sensors are among the best smoke sensors; however, the little radioactive source they include is no longer desirable since it makes recycling more complicated. In this paper, we discuss an electrostatic system in which a corona discharge is used to generate the ions needed for smoke detection. We show how the velocity of ions is reduced in our system for a better interaction between smoke and drifting ions. The influence of smoke, temperature and moisture is studied. It is shown that the proposed sensor has good sensitivity compared with conventional ionic and optical smoke sensors.

  17. Nonextensive statistical mechanics of ionic solutions

    International Nuclear Information System (INIS)

    Varela, L.M.; Carrete, J.; Munoz-Sola, R.; Rodriguez, J.R.; Gallego, J.

    2007-01-01

    Classical mean-field Poisson-Boltzmann theory of ionic solutions is revisited in the theoretical framework of nonextensive Tsallis statistics. The nonextensive equivalent of Poisson-Boltzmann equation is formulated revisiting the statistical mechanics of liquids and the Debye-Hueckel framework is shown to be valid for highly diluted solutions even under circumstances where nonextensive thermostatistics must be applied. The lowest order corrections associated to nonadditive effects are identified for both symmetric and asymmetric electrolytes and the behavior of the average electrostatic potential in a homogeneous system is analytically and numerically analyzed for various values of the complexity measurement nonextensive parameter q

  18. Change of hydrogen bonding structure in ionic liquid mixtures by anion type

    Science.gov (United States)

    Cha, Seoncheol; Kim, Doseok

    2018-05-01

    Ionic liquid mixtures have gained attention as a way of tuning material properties continuously with composition changes. For some mixture systems, physicochemical properties such as excess molar volume have been found to be significantly different from the value expected by linear interpolation, but the origin of this deviation is not well understood yet. The microstructure of the mixture, which can range from an ideal mixture of two initial consisting ionic liquids to a different structure from those of pure materials, has been suggested as the origin of the observed deviation. The structures of several different ionic liquid mixtures are studied by IR spectroscopy to confirm this suggestion, as a particular IR absorption band (νC(2)-D) for the moiety participating in the hydrogen bonding changes sensitively with the change of the anion in the ionic liquid. The absorbance of νC(2)-D changes proportionally with the composition, and a relatively small excess molar volume is observed for the mixtures containing an electronegative halide anion. By contrast, the absorbance changes nonlinearly, and the excess molar volumes are larger for the mixtures of which one of the anions has multiple interaction sites.

  19. Reduction of silanophilic interactions in liquid chromatography with the use of ionic liquids

    International Nuclear Information System (INIS)

    MarszaII, MichaI Piotr; Baczek, Tomasz; Kaliszan, Roman

    2005-01-01

    A suppression of silanophilic interactions by the selected ionic liquids added to the mobile phase in thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) is reported. Acetonitrile was used as the eluent, alone or with various concentrations of water and phosphoric buffer pH 3. Selectivity of the normal (NP) and the reversed (RP) stationary phase material was examined using a series of proton-acceptor basic drugs analytes. The ionic liquids studied appeared to significantly affect analyte retention in NP-TLC, RP-TLC and RP-HPLC systems tested. Consequently, the increased separation selectivity was attained. Due to ionic liquid additives to eluent even analytes could be chromatographed, which were not eluted from the silica-based stationary phase materials with 100% of acetonitrile in the mobile phase. Addition of ionic liquid already in very small concentration (0.5%, v/v) could reduce the amount of acetonitrile used during the optimization of basic analytes separations in TLC and HPLC systems. Moreover, the influence of temperature on the separation of basic analytes was demonstrated and considered in practical HPLC method development

  20. Reduction of silanophilic interactions in liquid chromatography with the use of ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    MarszaII, MichaI Piotr [Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk (Poland); Baczek, Tomasz [Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk (Poland); Kaliszan, Roman [Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gen. J. Hallera 107, 80-416 Gdansk (Poland)]. E-mail: roman.kaliszan@amg.gda.pl

    2005-08-22

    A suppression of silanophilic interactions by the selected ionic liquids added to the mobile phase in thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) is reported. Acetonitrile was used as the eluent, alone or with various concentrations of water and phosphoric buffer pH 3. Selectivity of the normal (NP) and the reversed (RP) stationary phase material was examined using a series of proton-acceptor basic drugs analytes. The ionic liquids studied appeared to significantly affect analyte retention in NP-TLC, RP-TLC and RP-HPLC systems tested. Consequently, the increased separation selectivity was attained. Due to ionic liquid additives to eluent even analytes could be chromatographed, which were not eluted from the silica-based stationary phase materials with 100% of acetonitrile in the mobile phase. Addition of ionic liquid already in very small concentration (0.5%, v/v) could reduce the amount of acetonitrile used during the optimization of basic analytes separations in TLC and HPLC systems. Moreover, the influence of temperature on the separation of basic analytes was demonstrated and considered in practical HPLC method development.

  1. Influences of porous reservoir Laplace pressure on emissions from passively fed ionic liquid electrospray sources

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, Daniel G., E-mail: dcourtney@alum.mit.edu; Shea, Herbert [Ecole Polytechnique Federale de Lausanne (EPFL), Microsystems for Space Technologies Laboratory (LMTS), Neuchatel CH-2002 (Switzerland)

    2015-09-07

    Passively fed ionic liquid electrospray sources are capable of efficiently emitting a variety of ion beams with promising applications to spacecraft propulsion and as focused ion beams. Practical devices will require integrated or coupled ionic liquid reservoirs; the effects of which have not been explored in detail. Porous reservoirs are a simple, scalable solution. However, we have shown that their pore size can dramatically alter the beam composition. Emitting the ionic liquid 1-ethyl-3-methylimidazolium bis(triflouromethylsulfonyl)amide, the same device was shown to yield either an ion or droplet dominated beam when using reservoirs of small or large pore size, respectively; with the latter having a mass flow in excess of 15 times larger than the former at negative polarity. Another source, emitting nearly purely ionic beams of 1-ethyl-3-methylimidazolium tetrafluoroborate, was similarly shown to emit a significant droplet population when coupled to reservoirs of large (>100 μm) pores; constituting a reduction in propulsive efficiency from greater than 70% to less than 30%. Furthermore, we show that reservoir selection can alter the voltage required to obtain and sustain emission, increasing with smaller pore size.

  2. Cardiovascular responses to the intracarotid injections of ionic contrast media and iohexol in the dog

    International Nuclear Information System (INIS)

    Hayakawa, K.; Morris, T.W.; Katzberg, R.W.; Fischer, H.W.

    1986-01-01

    Hypotension and bradycardia are the most significant cardiovascular responses resulting from intracarotid injections of hypertonic contrast media (CM). We have assessed both local and systemic vascular responses to the selective intracarotid injections of ionic and non-ionic CM in twelve pentobarbital anesthetized dogs. Alterations in blood pressure, heart rate, and femoral, renal and carotid blood flows were monitored following right common carotid artery injections of ionic contrast media (282-288 mg I/ml), isotonic saline, and iohexol (300 mg I/ml). Ionic CM led to early (0 to 10 s) decreases in blood pressure, heart rate and femoral vascular resistance. Isotonic saline induced no significant early changes in these same parameters while iohexol caused a decrease in heart rate. Our observations suggest that the early (0 to 10 s) decreases in femoral vascular resistance, heart rate and pressure that occur with the intracarotid injection of hypertonic CM are mediated via the autonomic nervous system and initiated from a site in the carotid circulation. During the 15 to 40 s period when the CM has reached the systemic circulation, iohexol produced smaller effects on systemic blood pressure and peripheral vascular resistances than did the ionic CM. During this 15 to 40 s period there were decreased vascular resistances in the carotid and renal vascular beds that probably result from local effects of the CM, however, the femoral resistance was actually increased. This later increase in femoral resistance probably represents the results of increased symphathetic nervous system activity working to offset the decrease in renal and carotid resistances and thus maintain pressure at baseline values. The vascular resistance changes observed demonstrate a complexity of responses to CM not previously appreciated. (orig.)

  3. Synthesis of flower-like Boehmite (γ-AlOOH) via a one-step ionic liquid-assisted hydrothermal route

    International Nuclear Information System (INIS)

    Tang, Zhe; Liang, Jilei; Li, Xuehui; Li, Jingfeng; Guo, Hailing; Liu, Yunqi; Liu, Chenguang

    2013-01-01

    A simple and novel synthesis process, one-step ionic liquid-assisted hydrothermal synthesis route, has been developed in the work to synthesize Bohemithe (γ-AlOOH) with flower-like structure. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscope (SEM). Ionic liquid [Omim] + Cl − , as a template, plays an important role in the morphology and pore structure of the products due to its strong interactions with reaction particles. With the increase in the dosage of ionic liquid [Omim] + Cl − , the morphology of the γ-AlOOH was changed from initial bundles of nanosheets (without ionic liquid) into final well-developed monodispersed 3D flower-like architectures ([Omim] + Cl − =72 mmol). The pore structure was also altered gradually from initial disordered slit-like pore into final relatively ordered ink-bottle pore. Furthermore, the proposed formation mechanism and other influencing factors such as reaction temperature and urea on formation and morphology of the γ-AlOOH have also been investigated. - Graphical abstract: The flower-like γ-AlOOH architectures composed by nanosheets with narrow size distribution (1.6–2.2 μm) and uniform pore size (6.92 nm) have been synthesized via a one-step ionic liquid-assisted hydrothermal route. - Highlights: • The γ-AlOOH microflowers were synthesized via an ionic liquid-assisted hydrothermal route. • Ionic liquid plays an important role on the morphology and porous structure of the products. • Ionic liquid can be easily removed from the products and reused in recycling experiments. • A “aggregation–recrystallization–Ostwald Ripening“formation mechanism may occur

  4. Detecting Novelty and Significance

    Science.gov (United States)

    Ferrari, Vera; Bradley, Margaret M.; Codispoti, Maurizio; Lang, Peter J.

    2013-01-01

    Studies of cognition often use an “oddball” paradigm to study effects of stimulus novelty and significance on information processing. However, an oddball tends to be perceptually more novel than the standard, repeated stimulus as well as more relevant to the ongoing task, making it difficult to disentangle effects due to perceptual novelty and stimulus significance. In the current study, effects of perceptual novelty and significance on ERPs were assessed in a passive viewing context by presenting repeated and novel pictures (natural scenes) that either signaled significant information regarding the current context or not. A fronto-central N2 component was primarily affected by perceptual novelty, whereas a centro-parietal P3 component was modulated by both stimulus significance and novelty. The data support an interpretation that the N2 reflects perceptual fluency and is attenuated when a current stimulus matches an active memory representation and that the amplitude of the P3 reflects stimulus meaning and significance. PMID:19400680

  5. Significant NRC Enforcement Actions

    Data.gov (United States)

    Nuclear Regulatory Commission — This dataset provides a list of Nuclear Regulartory Commission (NRC) issued significant enforcement actions. These actions, referred to as "escalated", are issued by...

  6. Ionic diffusion in superionic-conductor melts

    International Nuclear Information System (INIS)

    Tankeshwar, K.; Tosi, M.P.

    1991-03-01

    The self-diffusion coefficients D + and D - of the two ionic species in molten AgI, CuCl, CuBr and CuI are evaluated and contrasted with those calculated for molten NaCl. The evaluation adopts a simple model for liquid state dynamics, earlier proposed by Zwanzig to justify the Stokes-Einstein formula for monatomic fluids, and by suitable approximations relates the self-diffusion coefficients to pair potentials and to the pair structure of the melt. The results offer an interpretation for molecular dynamics data showing that, whereas for a ''normal'' system such as NaCl the ratio D + /D - in the melt is of the order unity, a sizable difference between D + and D - persists in salts melting from a fast-cation conducting solid. This difference is explicitly related to liquid structure through differences in the structural backscattering of cations by cations and of halogens by halogens. The calculated magnitudes of D + /D - are quite satisfactory, while the absolute magnitudes of D + and D - are in good agreement with the data only for those salts (AgI, CuBr and NaCl) in which the masses of the two ionic species are not greatly different. (author). 21 refs, 2 tabs

  7. Aerogels from Chitosan Solutions in Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Gonzalo Santos-López

    2017-12-01

    Full Text Available Chitosan aerogels conjugates the characteristics of nanostructured porous materials, i.e., extended specific surface area and nano scale porosity, with the remarkable functional properties of chitosan. Aerogels were obtained from solutions of chitosan in ionic liquids (ILs, 1-butyl-3-methylimidazolium acetate (BMIMAc, and 1-ethyl-3-methyl-imidazolium acetate (EMIMAc, in order to observe the effect of the solvent in the structural characteristics of this type of materials. The process of elaboration of aerogels comprised the formation of physical gels through anti-solvent vapor diffusion, liquid phase exchange, and supercritical CO2 drying. The aerogels maintained the chemical identity of chitosan according to Fourier transform infrared spectrophotometer (FT-IR spectroscopy, indicating the presence of their characteristic functional groups. The internal structure of the obtained aerogels appears as porous aggregated networks in microscopy images. The obtained materials have specific surface areas over 350 m2/g and can be considered mesoporous. According to swelling experiments, the chitosan aerogels could absorb between three and six times their weight of water. However, the swelling and diffusion coefficient decreased at higher temperatures. The structural characteristics of chitosan aerogels that are obtained from ionic liquids are distinctive and could be related to solvation dynamic at the initial state.

  8. Furfural production using ionic liquids: A review.

    Science.gov (United States)

    Peleteiro, Susana; Rivas, Sandra; Alonso, José Luis; Santos, Valentín; Parajó, Juan Carlos

    2016-02-01

    Furfural, a platform chemical with a bright future, is commercially obtained by acidic processing of xylan-containing biomass in aqueous media. Ionic liquids (ILs) can be employed in processed for furfural manufacture as additives, as catalysts and/or as reaction media. Depending on the IL utilized, externally added catalysts (usually, Lewis acids, Brönsted acids and/or solid acid catalysts) can be necessary to achieve high reaction yields. Oppositely, acidic ionic liquids (AILs) can perform as both solvents and catalysts, enabling the direct conversion of suitable substrates (pentoses, pentosans or xylan-containing biomass) into furfural. Operating in IL-containing media, the furfural yields can be improved when the product is continuously removed along the reaction (for example, by stripping or extraction), to avoid unwanted side-reactions leading to furfural consumption. These topics are reviewed, as well as the major challenges involved in the large scale utilization of ILs for furfural production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Magnetic ionic liquids: synthesis and characterization

    International Nuclear Information System (INIS)

    Medeiros, Anderson M.M.S.; Parize, Alexandre L.; Oliveira, Vanda M.; Neto, Brenno A.D.; Rubim, Joel C.

    2010-01-01

    The synthesis of magnetic ionic liquids (MILs) based on the stable dispersions of magnetic nanoparticles (MNPs) of γ-Fe 2 O 3 , Fe 3 O 4 , and CoFe 2 O 4 in the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf 2 ) is reported. The MNPs were obtained by the coprecipitation method. The surface of the α-Fe 2 O 3 , Fe 3 O 4 , and CoFe 2 O 4 MNPs with mean sizes (XRD) of 9.3, 12.3, and 11.0 nm, respectively were functionalized by 1-n-butyl-3-(3'-trimethoxypropylsilane)- imidazolium chloride. The non functionalized and functionalized MNPs were further characterized by Raman, FTIR-ATR, and FTNIR spectroscopy and by TGA. The stability of the MILs was assigned to the formation of at least one monolayer of the surface modifier agent that mimics the structure of the BMI.NTf 2 IL. (author)

  10. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, Sara

    2015-05-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. By these methods porous supports could be easily coated with semi-crystalline cellulose. The membranes were hydrophilic with contact angles as low as 22.0°, molecular weight cut-off as low as 3000 g mol-1 with corresponding water permeance of 13.8 Lm−2 h−1 bar−1. Self-standing cellulose membranes were also manufactured without porous substrate, using only ionic liquid as green solvent. This membrane was insoluble in water, tetrahydrofuran, hexane, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide.

  11. Strain induced ionic conductivity enhancement in epitaxial Ce0.9Gd0.1O22d

    DEFF Research Database (Denmark)

    Kant, K. Mohan; Esposito, Vincenzo; Pryds, Nini

    2012-01-01

    -plane ionic conductivity in CGO epitaxial thin films. The ionic conductivity is found to increase with decrease in buffer layer thickness. The tailored ionic conductivity enhancement is explained in terms of close relationships among epitaxy, strain, and ionic conductivity....

  12. Ionic Liquid-Based Ultrasonic/Microwave-Assisted Extraction of ...

    African Journals Online (AJOL)

    Conclusion: Compared with traditional methods, IL-UMAE method uses Ionic liquid-solvent which greatly shortens the extraction time. IL-UMAE as a simple, effective and environmentally friendly approach shows a broad prospect for active ingredient extraction. Keywords: Dioscorea zingiberensis Steroidal saponins, Ionic ...

  13. Synergistic extraction of europium(III) in ammonium ionic liquid

    International Nuclear Information System (INIS)

    Rout, Alok; Venkatesan, K.A.; Antony, M.P.

    2016-01-01

    Room temperature ionic liquids have been receiving increased attention for possible applications in the area of nuclear fuel reprocessing and waste management due to their fascinating properties such as good ionicity, high solvation capability, properties tunable etc. Most of the studies in the literature on the extraction of metal ions with molecular extractants dissolved in ionic liquid diluents are making use of the hydrophobic ionic liquids containing imidazolium cations such as the 1-alkyl-3-methylimidazolium ion. From an environmental point of view, such ionic liquids are not suitable as the primary mode of the metal extraction is by cation exchange mechanism wherein ionic liquid cation is lost to the aqueous phase leading to aqueous contamination and issue of recyclability of organic phase. However, there are some hydrophobic ionic liquids such as trioctylmethylammonium chloride ((N 1888 )(Cl)), and trihexyl(tetradecyl)phoshonium chloride (Cyphos IL 101) that exhibit no cation exchange in the aqueous phase during extraction. In this context, the extraction behavior of europium(III) using a neutral extractant, octyl, phenyl-N.N-diisobutylmethylcarbamoylphophinoxide (CMPO) and/or an acidic extractant bis(ethylhexyl)phosphoric acid (D2EHPA) dissolved in the ammonium ionic liquid diluent, trioctylmethylammonium bis(trifluoromethanesulfonyl)imide, (N 1888 )(NTf 2 ). The extraction behavior of CMPO (or D2EHPA)/(N 1888 )((Tf 2 ) system was investigated as a function of different extraction parameters such as feed acidity, extractant concentration, equilibration time etc.

  14. Antimicrobial polyurethane coatings based on ionic liquid quaternary ammonium compounds

    NARCIS (Netherlands)

    Yagci, M.B.; Bolca, S.; Heuts, J.P.A.; Ming, W.; With, de G.

    2011-01-01

    The antimicrobial effect of ionic liquids (ILs) as comonomers in polyurethane surface coatings was investigated. Ionic liquid-containing coatings were prepared from a hydroxyl end-capped liquid oligoester and a triisocyanate crosslinker. Three different commercially available hydroxyl end-capped

  15. Alternative route to metal halide free ionic liquids

    International Nuclear Information System (INIS)

    Takao, Koichiro; Ikeda, Yasuhisa

    2008-01-01

    An alternative synthetic route to metal halide free ionic liquids using trialkyloxonium salt is proposed. Utility of this synthetic route has been demonstrated by preparing 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid through the reaction between 1-methylimidazole and triethyloxonium tetra-fluoroborate in anhydrous ether. (author)

  16. Ionic Liquids and Green Chemistry: A Lab Experiment

    Science.gov (United States)

    Stark, Annegret; Ott, Denise; Kralisch, Dana; Kreisel, Guenter; Ondruschka, Bernd

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few investigations have actually assessed the degree of…

  17. Thermochemistry of ionic liquid heat-transfer fluids

    International Nuclear Information System (INIS)

    Van Valkenburg, Michael E.; Vaughn, Robert L.; Williams, Margaret; Wilkes, John S.

    2005-01-01

    Large-scale solar energy collectors intended for electric power generation require a heat-transfer fluid with a set of properties not fully met by currently available commercial materials. Ionic liquids have thermophysical and chemical properties that may be suitable for heat transfer and short heat term storage in power plants using parabolic trough solar collectors. Ionic liquids are salts that are liquid at or near room temperature. Thermal properties important for heat transfer applications are melting point, boiling point, liquidus range, heat capacity, heat of fusion, vapor pressure, and thermal conductivity. Other properties needed to evaluate the usefulness of ionic liquids are density, viscosity and chemical compatibility with certain metals. Three ionic liquids were chosen for study based on their range of solvent properties. The solvent properties correlate with solubility of water in the ionic liquids. The thermal and chemical properties listed above were measured or compiled from the literature. Contamination of the ionic liquids by impurities such as water, halides, and metal ions often affect physical properties. The ionic liquids were analyzed for those impurities, and the impact of the contamination was evaluated by standard addition. The conclusion is that the ionic liquids have some very favorable thermal properties compared to targets established by the Department of Energy for solar collector applications

  18. An Ionic Liquid Solution of Chitosan as Organocatalyst

    Directory of Open Access Journals (Sweden)

    René Wilhelm

    2013-11-01

    Full Text Available Chitosan, which is derived from the biopolymer chitin, can be readily dissolved in different ionic liquids. The resulting homogeneous solutions were applied in an asymmetric Aldol reaction. Depending on the type of ionic liquid used, high asymmetric inductions were found. The influence of different additives was also studied. The best results were obtained in [BMIM][Br] without an additive.

  19. Multi-responsive ionic liquid emulsions stabilized by microgels

    NARCIS (Netherlands)

    Monteillet, H.; Workamp, M.; Li, X.; Schuur, Boelo; Kleijn, J.M.; Leermakers, F.; Sprakel, J.

    2014-01-01

    We present a complete toolbox to use responsive ionic liquid (IL) emulsions for extraction purposes. IL emulsions stabilized by responsive microgels are shown to allow rapid extraction and reversible breaking and re-emulsification. Moreover, by using a paramagnetic ionic liquid, droplets can be

  20. Thermal annealing and ionic abrasion in ZnTe

    International Nuclear Information System (INIS)

    Bensahel, D.

    1975-01-01

    Thermal annealing of the ZnTe crystal is studied first in order to obtain information on the aspect of the penetration profile. Ionic abrasion is then investigated to find out whether it produces the same effects as ionic implantation, especially for luminescence [fr

  1. The Hildebrand Solubility Parameters of Ionic Liquids—Part 2

    Science.gov (United States)

    Marciniak, Andrzej

    2011-01-01

    The Hildebrand solubility parameters have been calculated for eight ionic liquids. Retention data from the inverse gas chromatography measurements of the activity coefficients at infinite dilution were used for the calculation. From the solubility parameters, the enthalpies of vaporization of ionic liquids were estimated. Results are compared with solubility parameters estimated by different methods. PMID:21747694

  2. The Hildebrand solubility parameters of ionic liquids-part 2.

    Science.gov (United States)

    Marciniak, Andrzej

    2011-01-01

    The Hildebrand solubility parameters have been calculated for eight ionic liquids. Retention data from the inverse gas chromatography measurements of the activity coefficients at infinite dilution were used for the calculation. From the solubility parameters, the enthalpies of vaporization of ionic liquids were estimated. Results are compared with solubility parameters estimated by different methods.

  3. The Hildebrand Solubility Parameters of Ionic Liquids—Part 2

    Directory of Open Access Journals (Sweden)

    Andrzej Marciniak

    2011-06-01

    Full Text Available The Hildebrand solubility parameters have been calculated for eight ionic liquids. Retention data from the inverse gas chromatography measurements of the activity coefficients at infinite dilution were used for the calculation. From the solubility parameters, the enthalpies of vaporization of ionic liquids were estimated. Results are compared with solubility parameters estimated by different methods.

  4. Absorption of Flue-Gas Components by Ionic Liquids

    DEFF Research Database (Denmark)

    Kolding, Helene; Thomassen, Peter Langelund; Mossin, Susanne

    2014-01-01

    Gas separation by ionic liquids (ILs) is a promising new research field with several potential applications of industrial interest. Thus cleaning of industrial off gases seems to be attractive by use of ILs and Supported Ionic Liquid Phase (SILP) materials. The potential of selected ILs...

  5. Interfacial Structure and Double Layer Capacitance of Ionic Liquids

    NARCIS (Netherlands)

    Jitvisate, Monchai

    2018-01-01

    Ionic liquids are organic salts that are in liquid phase at room temperature. Their wide liquidus range, particularly at room temperature, results from the liquids’ large and asymmetric molecular geometry. This leads to a collection of unique properties, such as, high ionic strength, extremely low

  6. Synthesis and polymerization of vinyl triazolium ionic liquids

    Science.gov (United States)

    Luebke, David; Nulwala, Hunaid; Matyjaszewski, Krzysztof; Adzima, Brian

    2018-05-15

    Herein, we describe polymerized ionic liquids, demonstrate the synthesis of polymerized ionic liquids, and demonstrate the polymerization of triazolium monomers. One embodiment shows the polymeriazation of the triazolium monomers with bis(trifluoromethanesulfonyl)imide anions. In another embodiment we show the feasibility of copolymerizing with commodity monomers such as styrene using free radical polymerization techniques.

  7. Near-wall molecular ordering of dilute ionic liquids

    NARCIS (Netherlands)

    Jitvisate, Monchai; Seddon, James Richard Thorley

    2017-01-01

    The interfacial behavior of ionic liquids promises tunable lubrication as well as playing an integral role in ion diffusion for electron transfer. Diluting the ionic liquids optimizes bulk parameters, such as electric conductivity, and one would expect dilution to disrupt the near-wall molecular

  8. Reversible physical absorption of SO2 by ionic liquids

    DEFF Research Database (Denmark)

    Huang, Jun; Riisager, Anders; Fehrmann, Rasmus

    2006-01-01

    Ionic liquids can reversibly absorb large amounts of molecular SO2 gas under ambient conditions with the gas captured in a restricted configuration, possibly allowing SO2 to probe the internal cavity structures in ionic liquids besides being useful for SO2 removal in pollution control....

  9. Polymer synthesis in ionic liquids : towards a green industry

    NARCIS (Netherlands)

    Guerrero-Sanchez, C.A.; Schubert, U.S.

    2004-01-01

    The screening of six ionic liqs. used as reaction media in free radical polymn. of Me methacrylate and styrene was performed. AIBN was used as initiator for the polymn. of Me methacrylate and benzoyl peroxide in the case of styrene. Soly. of the used ionic liqs. in these monomers and water was also

  10. Selective Oxidative Carbonylation of Aniline to Diphenylurea with Ionic Liquids

    DEFF Research Database (Denmark)

    Zahrtmann, Nanette; Claver, Carmen; Godard, Cyril

    2018-01-01

    A catalytic system for the selective oxidative carbonylation of aniline to diphenylurea based on Pd complexes in combination with imidazolium ionic liquids is presented. Both oxidants, Pd complexes and ionic liquids affect the activity of the reaction while the choice of oxidant determines...

  11. CO2 sorption by supported amino acid ionic liquids

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns the absorption and desorption behaviour of carbon dioxide (CO2) using ionic liquids derived from amino acids adsorbed on porous carrier materials.......The present invention concerns the absorption and desorption behaviour of carbon dioxide (CO2) using ionic liquids derived from amino acids adsorbed on porous carrier materials....

  12. Ionic liquids and green chemistry : a lab experiment

    NARCIS (Netherlands)

    Stark, A.; Ott-Reinhardt, D.; Kralisch, D.; Kreisel, G.; Ondruschka, B.

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few

  13. Molecular simulation of ionic liquids: current status and future opportunities

    International Nuclear Information System (INIS)

    Maginn, E J

    2009-01-01

    Ionic liquids are salts that are liquid near ambient conditions. Interest in these unusual compounds has exploded in the last decade, both at the academic and commercial level. Molecular simulations based on classical potentials have played an important role in helping researchers understand how condensed phase properties of these materials are linked to chemical structure and composition. Simulations have also predicted many properties and unexpected phenomena that have subsequently been confirmed experimentally. The beneficial impact molecular simulations have had on this field is due in large part to excellent timing. Just when computing power and simulation methods matured to the point where complex fluids could be studied in great detail, a new class of materials virtually unknown to experimentalists came on the scene and demanded attention. This topical review explores some of the history of ionic liquid molecular simulations, and then gives examples of the recent use of molecular dynamics and Monte Carlo simulation in understanding the structure of ionic liquids, the sorption of small molecules in ionic liquids, the nature of ionic liquids in the vapor phase and the dynamics of ionic liquids. This review concludes with a discussion of some of the outstanding problems facing the ionic liquid modeling community and how condensed phase molecular simulation experts not presently working on ionic liquids might help advance the field. (topical review)

  14. Absorption and oxidation of no in ionic liquids

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns the absorption and in situ oxidation of nitric oxide (NO) in the presence of water and oxygen in ionic liquid compositions at ambient temperature.......The present invention concerns the absorption and in situ oxidation of nitric oxide (NO) in the presence of water and oxygen in ionic liquid compositions at ambient temperature....

  15. Natural gas purification using supported ionic liquid membrane

    NARCIS (Netherlands)

    Althuluth, M.A.M.; Overbeek, J.P.; Wees, H.J.; Zubeir, L.F.; Haije, W.G.; Berrouk, A.S.; Peters, C.J.; Kroon, M.C.

    2015-01-01

    This paper examines the possibility of the application of a supported ionic liquid membrane (SILM) for natural gas purification. The ionic liquid (IL) 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([emim][FAP]) was impregnated successfully in the ¿-alumina layer of a tubular

  16. Dysphagia disorders in patients with cancer of the oropharynx are significantly affected by the radiation therapy dose to the superior and middle constrictor muscle: A dose-effect relationship

    International Nuclear Information System (INIS)

    Levendag, Peter C.; Teguh, David N.; Voet, Peter; Est, Henri van der; Noever, Inge; Kruijf, Wilhelmus J.M. de; Kolkman-Deurloo, Inger-Karine; Prevost, Jean-Briac; Poll, Johan; Schmitz, Paul I.M.; Heijmen, Ben J.

    2007-01-01

    Purpose/Objective: To assess the relationship between the radiation therapy (RT) dose received by the muscular components of the swallowing (sw) apparatus and - dysphagia related - quality of life (QoL) in oropharyngeal cancer. Materials/Methods: Between 2000 and 2005, 81 patients with SCC of the oropharynx were treated by 3DCRT or IMRT, with or without concomitant chemotherapy (CHT); 43 out of these 81 patients were boosted by brachytherapy (BT). Charts of 81 patients were reviewed with regard to late dysphagia complaints; 23% experienced severe dysphagia. Seventeen patients expired. Fifty-six out of 64 (88%) responded to quality of life (QoL) questionnaires; that is, the Performance Status Scales of List, EORTC H and N35, and the M.D. Anderson Dysphagia Inventory. The superior (scm), middle (mcm), and inferior constrictor muscle (icm), the cricopharyngeus muscle and the inlet of the esophagus, are considered of paramount importance for swallowing. The mean dose was calculated in the muscular structures. Univariate analysis and multivariate analysis were performed using the proportional odds model. Results: Mean follow-up was 18 months (range 2-34) for IMRT, and 46 months for 3DCRT (range 2-72). At 3-years, a LRC of 84%, DFS of 78% and OS of 77% were observed. A significant correlation was observed between the mean dose in the scm and mcm, and severe dysphagia complaints (univariate analysis). A steep dose-effect relationship, with an increase of the probability of dysphagia of 19% with every additional 10 Gy, was established. In the multivariate analysis, BT (dose) was the only significant factor. Conclusion: A dose-effect relationship between dose and swallowing complaints was observed. One way to improve the QoL is to constrain the dose to be received by the swallowing muscles

  17. Corrosion behavior of construction materials for ionic liquid hydrogen compressor

    DEFF Research Database (Denmark)

    Arjomand Kermani, Nasrin; Petrushina, Irina; Nikiforov, Aleksey Valerievich

    2016-01-01

    The corrosion behavior of various commercially available stainless steels and nickel-based alloys as possible construction materials for components which are in direct contact with one of five different ionic liquids was evaluated. The ionic liquids, namely: 1-ethyl-3-methylimidazolium triflate, 1...... liquid hydrogen compressor. An electrochemical cell was specially designed, and steady-state cyclic voltammetry was used to measure the corrosion resistance of the alloys in the ionic liquids at 23 °C, under atmospheric pressure. The results showed a very high corrosion resistance and high stability...... for all the alloys tested. The two stainless steels, AISI 316L and AISI 347 showed higher corrosion resistance compared to AISI 321 in all the ionic liquids tested. It was observed that small addition of molybdenum, tantalum, and niobium to the alloys increased the corrosion stability in the ionic liquids...

  18. Recent development of ionic liquid stationary phases for liquid chromatography.

    Science.gov (United States)

    Shi, Xianzhe; Qiao, Lizhen; Xu, Guowang

    2015-11-13

    Based on their particular physicochemical characteristics, ionic liquids have been widely applied in many fields of analytical chemistry. Many types of ionic liquids were immobilized on a support like silica or monolith as stationary phases for liquid chromatography. Moreover, different approaches were developed to bond covalently ionic liquids onto the supporting materials. The obtained ionic liquid stationary phases show multi-mode mechanism including hydrophobic, hydrophilic, hydrogen bond, anion exchange, π-π, and dipole-dipole interactions. Therefore, they could be used in different chromatographic modes including ion-exchange, RPLC, NPLC and HILIC to separate various classes of compounds. This review mainly summarizes the immobilized patterns and types of ionic liquid stationary phases, their retention mechanisms and applications in the recent five years. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Characterization and Functionality of Immidazolium Ionic Liquids Modified Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ying Li

    2013-01-01

    Full Text Available 1,3-Dialkylimidazolium-based ionic liquids were chemically synthesized and bonded on the surface of magnetic nanoparticles (MNPs with easy one-step reaction. The obtained six kinds of ionic liquid modified MNPs were characterized with transmission electron microscopy, thermogravimetric analysis, magnetization, and FTIR, which owned the high adsorption capacity due to the nanometer size and high-density modification with ionic liquids. Functionality of MNPs with ionic liquids greatly influenced the solubility of the MNPs with organic solvents depending on the alkyl chain length and the anions of the ionic liquids. Moreover, the obtained MNPs showed the specific extraction efficiency to organic pollutant, polycyclic aromatic hydrocarbons, while superparamagnetic property of the MNPs facilitated the convenient separation of MNPs from the bulks water samples.

  20. Visualization of ionic wind in laminar jet flames

    KAUST Repository

    Park, Daegeun

    2017-07-03

    Electric field, when it is applied to hydrocarbon flames, generates ionic wind due to the electric body force on charge carrying species. Ionic wind has been shown to influence soot emission, propagation speed, and stability of flames; however, a detailed behavior of ionic wind and its effects on flames is still not clear. Here, we investigated the dynamic behaviors of flames and ionic wind in the presence of direct current (DC) and alternating current (AC) electric fields in nonpremixed and premixed jet flames with a jet nozzle placed between two parallel electrodes. We observed a skewed flame toward a lower potential electrode with DC and lower frequency AC (e.g., 10Hz) and a steady flame with higher frequencies AC (1000Hz), while we found that the ionic wind blew toward both the anode and cathode regardless of flame type (nonpremixed or premixed) or the source of the electric field (DC and AC).

  1. Simultaneous Design of Ionic Liquids and Azeotropic Separation Processes

    DEFF Research Database (Denmark)

    Roughton, Brock C.; White, John; Camarda, Kyle V.

    2011-01-01

    A methodology for the design of azeotrope separation processes using ionic liquids as entrainers is outlined. A Hildebrand solubility parameter group contribution model has been developed to screen for or design an ionic liquid entrainer that is soluble with the azeotropic components. Using the b...... % [BMPy][BF4] added. The driving force concept is used to design an extractive distillation process that minimizes energy inputs. The methodology given can be expanded to the use of ionic liquids as entrainers in any azeotropic system of interest.......A methodology for the design of azeotrope separation processes using ionic liquids as entrainers is outlined. A Hildebrand solubility parameter group contribution model has been developed to screen for or design an ionic liquid entrainer that is soluble with the azeotropic components. Using...

  2. Absorption and oxidation of nitrogen oxide in ionic liquids

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Thomassen, Peter Langelund; Riisager, Anders

    2016-01-01

    A new strategy for capturing nitrogen oxide, NO, from the gas phase is presented. Dilute NO gas is removed from the gas phase by ionic liquids under ambient conditions. The nitrate anion of the ionic liquid catalyzes the oxidation of NO to nitric acid by atmospheric oxygen in the presence of water....... The nitric acid is absorbed in the ionic liquid up to approximately one mole HNO3 per mole of the ionic liquid due to the formation of hydrogen bonds. The nitric acid can be desorbed by heating, thereby regenerating the ionic liquid with excellent reproducibility. Here, time-resolved in-situ spectroscopic...... investigations of the reaction and products are presented. The procedure reveals a new vision for removing the pollutant NO by absorption into a non-volatile liquid and converting it into a useful bulk chemical, that is, HNO3....

  3. Protic Cationic Oligomeric Ionic Liquids of the Urethane Type

    DEFF Research Database (Denmark)

    Shevchenko, V. V.; Stryutsky, A. V.; Klymenko, N. S.

    2014-01-01

    Protic oligomeric cationic ionic liquids of the oligo(ether urethane) type are synthesized via the reaction of an isocyanate prepolymer based on oligo(oxy ethylene)glycol with M = 1000 with hexamethylene-diisocyanate followed by blocking of the terminal isocyanate groups with the use of amine...... derivatives of imidazole, pyridine, and 3-methylpyridine and neutralization of heterocycles with ethanesulfonic acid and p-toluenesulfonic acid. The structures and properties of the synthesized oligomeric ionic liquids substantially depend on the structures of the ionic groups. They are amorphous at room...... temperature, but ethanesulfonate imidazolium and pyridinium oligomeric ionic liquids form a low melting crystalline phase. The proton conductivities of the oligomeric ionic liquids are determined by the type of cation in the temperature range 80-120 degrees C under anhydrous conditions and vary within five...

  4. Hot exozodiacal dust resolved around Vega with IOTA/IONIC

    Science.gov (United States)

    Defrère, D.; Absil, O.; Augereau, J.-C.; di Folco, E.; Berger, J.-P.; Coudé du Foresto, V.; Kervella, P.; Le Bouquin, J.-B.; Lebreton, J.; Millan-Gabet, R.; Monnier, J. D.; Olofsson, J.; Traub, W.

    2011-10-01

    Context. Although debris discs have been detected around a significant number of main-sequence stars, only a few of them are known to harbour hot dust in their inner part where terrestrial planets may have formed. Thanks to infrared interferometric observations, it is possible to obtain a direct measurement of these regions, which are of prime importance for preparing future exo-Earth characterisation missions. Aims: We resolve the exozodiacal dust disc around Vega with the help of infrared stellar interferometry and estimate the integrated H-band flux originating from the first few AUs of the debris disc. Methods: Precise H-band interferometric measurements were obtained on Vega with the 3-telescope IOTA/IONIC interferometer (Mount Hopkins, Arizona). Thorough modelling of both interferometric data (squared visibility and closure phase) and spectral energy distribution was performed to constrain the nature of the near-infrared excess emission. Results: Resolved circumstellar emission within ~6 AU from Vega is identified at the 3-σ level. The most straightforward scenario consists in a compact dust disc producing a thermal emission that is largely dominated by small grains located between 0.1 and 0.3 AU from Vega and accounting for 1.23 ± 0.45% of the near-infrared stellar flux for our best-fit model. This flux ratio is shown to vary slightly with the geometry of the model used to fit our interferometric data (variations within ± 0.19%). Conclusions: The presence of hot exozodiacal dust in the vicinity of Vega, initially revealed by K-band CHARA/FLUOR observations, is confirmed by our H-band IOTA/IONIC measurements. Whereas the origin of the dust is still uncertain, its presence and the possible connection with the outer disc suggest that the Vega system is currently undergoing major dynamical perturbations.

  5. Viscosity, Conductivity, and Electrochemical Property of Dicyanamide Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Wen-Li Yuan

    2018-03-01

    Full Text Available The instructive structure-property relationships of ionic liquids (ILs can be put to task-specific design of new functionalized ILs. The dicyanamide (DCA ILs are typical CHN type ILs which are halogen free, chemical stable, low-viscous, and fuel-rich. The transport properties of DCA ionic liquids are significant for their applications as solvents, electrolytes, and hypergolic propellants. This work systematically investigates several important transport properties of four DCA ILs ([C4mim][N(CN2], [C4m2im][N(CN2], N4442[N(CN2], and N8444[N(CN2] including viscosity, conductivity, and electrochemical property at different temperatures. The melting points, temperature-dependent viscosities and conductivities reveal the structure-activity relationship of four DCA ILs. From the Walden plots, the imidazolium cations exhibit stronger cation–anion attraction than the ammonium cations. DCA ILs have relatively high values of electrochemical windows (EWs, which indicates that the DCA ILs are potential candidates for electrolytes in electrochemical applications. The cyclic voltammograms of Eu(III in these DCA ILs at GC working electrode at various temperatures 303–333 K consists of quasi-reversible waves. The electrochemical properties of the DCA ILs are also dominated by the cationic structures. The current intensity (ip, the diffusion coefficients (Do, the charge transfer rate constants (ks of Eu(III in DCA ILs all increased with the molar conductivities increased. The cationic structure-transport property relationships of DCA ILs were constructed for designing novel functionalized ILs to fulfill specific demands.

  6. Improved ionic conductivity of lithium-zinc-tellurite glass-ceramic electrolytes

    Science.gov (United States)

    Widanarto, W.; Ramdhan, A. M.; Ghoshal, S. K.; Effendi, M.; Cahyanto, W. T.; Warsito

    An enhancement in the secondary battery safety demands the optimum synthesis of glass-ceramics electrolytes with modified ionic conductivity. To achieve improved ionic conductivity and safer operation of the battery, we synthesized Li2O included zinc-tellurite glass-ceramics based electrolytes of chemical composition (85-x)TeO2·xLi2O·15ZnO, where x = 0, 5, 10, 15 mol%. Samples were prepared using the melt quenching method at 800 °C followed by thermal annealing at 320 °C for 3 h and characterized. The effects of varying temperature, alternating current (AC) frequency and Li2O concentration on the structure and ionic conductivity of such glass-ceramics were determined. The SEM images of the annealed glass-ceramic electrolytes displayed rough surface with a uniform distribution of nucleated crystal flakes with sizes less than 1 μm. X-ray diffraction analysis confirmed the well crystalline nature of achieved electrolytes. Incorporation of Li2O in the electrolytes was found to generate some new crystalline phases including hexagonal Li6(TeO6), monoclinic Zn2Te3O8 and monoclinic Li2Te2O5. The estimated crystallite size of the electrolyte was ranged from ≈40 to 80 nm. AC impedance measurement revealed that the variation in the temperatures, Li2O contents, and high AC frequencies have a significant influence on the ionic conductivity of the electrolytes. Furthermore, electrolyte doped with 15 mol% of Li2O exhibited the optimum performance with an ionic conductivity ≈2.4 × 10-7 S cm-1 at the frequency of 54 Hz and in the temperature range of 323-473 K. This enhancement in the conductivity was attributed to the sizable alteration in the ions vibration and ruptures of covalent bonds in the electrolytes network structures.

  7. Theoretical and Experimental Study of the Friction Behavior of Halogen-Free Ionic Liquids in Elastohydrodynamic Regime

    Directory of Open Access Journals (Sweden)

    Karthik Janardhanan

    2016-05-01

    Full Text Available Ionic Liquids have emerged as effective lubricants and additives to lubricants, in the last decade. Halogen-free ionic liquids have recently been considered as more environmentally stable than their halogenated counterparts, which tend to form highly toxic and corrosive acids when exposed to moisture. Most of the studies using ionic liquids as lubricants or additives of lubricants have been done experimentally. Due to the complex nature of the lubrication mechanism of these ordered fluids, the development of a theoretical model that predicts the ionic liquid lubrication ability is currently one of the biggest challenges in tribology. In this study, a suitable and existing friction model to describe lubricating ability of ionic liquids in the elastohydrodynamic lubrication regime is identified and compared to experimental results. Two phosphonium-based, halogen-free ionic liquids are studied as additives to a Polyalphaolefin base oil in steel–steel contacts using a ball-on-flat reciprocating tribometer. Experimental conditions (speed, load and roughness are selected to ensure that operations are carried out in the elastohydrodynamic regime. Wear volume was also calculated for tests at high speed. A good agreement was found between the model and the experimental results when [THTDP][Phos] was used as an additive to the base oil, but some divergence was noticed when [THTDP][DCN] was added, particularly at the highest speed studied. A significant decrease in the steel disks wear volume is observed when 2.5 wt. % of the two ionic liquids were added to the base lubricant.

  8. Sleep disorders in children with attention-deficit/hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Medina Permatawati

    2018-03-01

    Conclusion The proportion of sleep disorder in children with ADHD is relatively high, with the majority having a disorder of initiating and maintaining sleep. Children with combined type ADHD experience a higher amount of sleep disorder than those with either the inattention or hyperactive-impulsive types of ADHD. Children with poor sleep hygiene have significantly more severe sleep disorders.

  9. Recent applications of ionic liquids in the sol-gel process for polymer-silica nanocomposites with ionic interfaces

    Czech Academy of Sciences Publication Activity Database

    Donato, K. Z.; Matějka, Libor; Mauler, R. S.; Donato, R. K.

    2017-01-01

    Roč. 1, č. 1 (2017), s. 1-25, č. článku 5. E-ISSN 2504-5377 Institutional support: RVO:61389013 Keywords : ionic liquids * sol-gel * ionic interfaces Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science

  10. Diffusion of ionic and non-ionic contrast agents in articular cartilage with increased cross-linking--contribution of steric and electrostatic effects.

    Science.gov (United States)

    Kulmala, K A M; Karjalainen, H M; Kokkonen, H T; Tiitu, V; Kovanen, V; Lammi, M J; Jurvelin, J S; Korhonen, R K; Töyräs, J

    2013-10-01

    To investigate the effect of threose-induced collagen cross-linking on diffusion of ionic and non-ionic contrast agents in articular cartilage. Osteochondral plugs (Ø=6mm) were prepared from bovine patellae and divided into two groups according to the contrast agent to be used in contrast enhanced computed tomography (CECT) imaging: (I) anionic ioxaglate and (II) non-ionic iodixanol. The groups I and II contained 7 and 6 sample pairs, respectively. One of the paired samples served as a reference while the other was treated with threose to induce collagen cross-linking. The equilibrium partitioning of the contrast agents was imaged after 24h of immersion. Fixed charge density (FCD), water content, contents of proteoglycans, total collagen, hydroxylysyl pyridinoline (HP), lysyl pyridinoline (LP) and pentosidine (Pent) cross-links were determined as a reference. The equilibrium partitioning of ioxaglate (group I) was significantly (p=0.018) lower (-23.4%) in threose-treated than control samples while the equilibrium partitioning of iodixanol (group II) was unaffected by the threose-treatment. FCD in the middle and deep zones of the cartilage (pionic iodixanol showed no changes in partition after cross-linking, in contrast to anionic ioxaglate, we conclude that the cross-linking induced changes in charge distribution have greater effect on diffusion compared to the cross-linking induced changes in steric hindrance. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Myelography in the dog with non-ionic contrast media at different iodine concentrations

    International Nuclear Information System (INIS)

    Fatone, G.; Lamagna, F.; Pasolini, M.P.; Potena, A.; Brunetti, A.

    1997-01-01

    Image quality and side effects were evaluated retrospectively in a series of 183 myelographic studies performed with two non-ionic contrast media (iohexol and iopamidol) at different concentrations. Side effects during and following the procedure were recorded. Image quality was assessed using an arbitrary scoring system and statistical analysis was performed with the cross-tabulation test (4 times 2 table) by comparing two groups receiving contrast medium at higher and lower concentrations. No significant differences in side effects were observed between the two groups but the ratings for image quality were significantly higher in the group receiving contrast medium at the higher concentration than in the group receiving the lower concentration. The results suggest that a high concentration of non-ionic contrast media can safely be used in dogs and may improve image quality

  12. Chronic Effect of Aspartame on Ionic Homeostasis and Monoamine Neurotransmitters in the Rat Brain.

    Science.gov (United States)

    Abhilash, M; Alex, Manju; Mathews, Varghese V; Nair, R Harikumaran

    2014-07-01

    Aspartame is one of the most widely used artificial sweeteners globally. Data concerning acute neurotoxicity of aspartame is controversial, and knowledge on its chronic effect is limited. In the current study, we investigated the chronic effects of aspartame on ionic homeostasis and regional monoamine neurotransmitter concentrations in the brain. Our results showed that aspartame at high dose caused a disturbance in ionic homeostasis and induced apoptosis in the brain. We also investigated the effects of aspartame on brain regional monoamine synthesis, and the results revealed that there was a significant decrease of dopamine in corpus striatum and cerebral cortex and of serotonin in corpus striatum. Moreover, aspartame treatment significantly alters the tyrosine hydroxylase activity and amino acids levels in the brain. Our data suggest that chronic use of aspartame may affect electrolyte homeostasis and monoamine neurotransmitter synthesis dose dependently, and this might have a possible effect on cognitive functions. © The Author(s) 2014.

  13. The effect of B-site substitution on structural transformation and ionic conductivity in Ho2(ZryTi1−y)2O7

    International Nuclear Information System (INIS)

    Shafique, Muhammad; Kennedy, Brenden J.; Iqbal, Yaseen; Ubic, Rick

    2016-01-01

    Compounds in the pyrochlore system Ho 2 (Zr y Ti 1−y ) 2 O 7 exhibit an order-disorder transition from pyrochlore to a defect-fluorite type structure. Compositions in this system were prepared via mechanical milling, followed by a two-step sintering process. Structural characterization was carried out via Rietveld refinements using neutron powder diffraction data, supported by X-ray diffraction to determine the phase and location of the pyrochlore-fluorite transformation. Unit-cell parameters were determined for the whole series using Rietveld refinements as well as the Nelson–Riley function. The neutron refinement results confirmed that the cation disorder was independent of the anion Frenkel disorder. The relation between the x-parameter in the oxygen 48f position and anion Frenkel disorder was found to be linear for the pyrochlore structure. The ionic conductivity studies were undertaken via AC impedance analysis to determine the electronic behaviour and its relation to the structural change in the temperature range 300°C–700 °C. The trends in ionic conductivity and activation energy were explained structurally via neutron powder diffraction and X-ray diffraction data. The pyrochlore-fluorite boundary composition (at y = 0.5) exhibited the lowest activation energy and highest ionic conductivity. - Highlights: • Ho 2 (Zr y Ti 1-y ) 2 O 7 structure changed from ordered pyrochlore to defect-fluorite at y = 0.6. • Ho 2 (Zr 0.5 Ti 0.5 ) 2 O 7 exhibited high ionic conductivity and low activation energy. • Doping improved stability in ionic conductivity behaviour at lower temperature.

  14. Clinical application and side effects of non-ionic, low-osmolar contrast media: Iopromide (Ultavist)

    International Nuclear Information System (INIS)

    Lee, Jong Tae; Suh, Jung Ho; Suh, Jin Suk; Lee, Yeon Hee

    1988-01-01

    Generally non-ionic, water-soluble contrast media has been known to be considerably better than the conventional ionic contrast agents, because of its physiochemical properties which are more hydrophilic, lower in osmolality than the ionic agents of equivalent iodine concentration. It means that the non-ionic agent has less side reaction and better general tolerance. Iopromide (Ultavist) is a newly developed non-ionic contrast media that is suitable for angiography. Some non-ionic contrast media such as Metrizamide and lopamidol were clinically introduced and proved tobe the most compromising agents for neuroradiographic study, but lopromide is not yet freely available in the vascular study. In order to evaluate the clinical fitness and its side effects of lopromide for angiography various type of angiography were done in 136 patients using lopromide and 51 received Diatrizoate meglumine (DTM). Similar volumes of the contrast media was administered at similar rate to both groups. The results were as the follows: 1. In celiac angiography of 31 patients with lopromide (Ultravist 370) and 18 with DTM 60, there were observed 9.7% mild pain and 25.8% mild heat sensation in lopromide. In DTM 60 mild pain was approximately 3 times more frequently observed than lopromide. Heat sensation is mild and similar in frequency of both groups. There was no clinically significant side effects related to the osmolality and its difference between two groups. 2. In peripheral angiography of 47 patients with lopromide 300 and 24 with DTM 60, there were observed 19.1% mild, 6.4 moderate in pain and 46.8% mild, 1% moderate heat sensation in lopromide. But in DTM there were 33.3% mild, 58.3% moderate and 8.3% severe pain, and also 70.8% mild and 16.7% moderate heat sensation in DTM were observed. lopromide is more advantageous and better contrast agents than the DTM for peripheral vascular study on the point of low side effect related to osmolality. 3. In renal angiography, there was no

  15. Synthesis and Characterization of Branched Ionomers for Performance in Ionic Liquid â Swollen Ionic Polymer Transducers

    OpenAIRE

    Duncan, Andrew Jay

    2009-01-01

    Ionic polymer transducers (IPT) are a class of electroactive polymer devices that exhibit electromechanical coupling through charge transport in ionomeric membranes that contain a charge mobilizing diluent and are interfaced with conducting electrodes. Applications of these active materials have been broadly developed in the field of actuators and sensors. Advances in fundamental understanding of IPT performance mechanisms and tuning of the device components has primarily focused on transduce...

  16. Combustible ionic liquids by design: is laboratory safety another ionic liquid myth?

    Science.gov (United States)

    Smiglak, Marcin; Reichert, W Mathew; Holbrey, John D; Wilkes, John S; Sun, Luyi; Thrasher, Joseph S; Kirichenko, Kostyantyn; Singh, Shailendra; Katritzky, Alan R; Rogers, Robin D

    2006-06-28

    The non-flammability of ionic liquids (ILs) is often highlighted as a safety advantage of ILs over volatile organic compounds (VOCs), but the fact that many ILs are not flammable themselves does not mean that they are safe to use near fire and/or heat sources; a large group of ILs (including commercially available ILs) are combustible due to the nature of their positive heats of formation, oxygen content, and decomposition products.

  17. Protic Organic Ionic Plastic Crystals: Fast Solid-State Proton Conductors

    DEFF Research Database (Denmark)

    Luo, Jiangshui; Aili, David; Pan, Chao

    2016-01-01

    High temperature polymer electrolyte membrane fuel cells (PEMFCs) operating between 100 °C and 200 °C are desirable because they offer significant benefits, such as improved electrode kinetics, simpler water and heat management, and better tolerance to fuel impurities, leading to higher overall...... system efficiencies [1]. However, state-of-the-art high temperature PEMFCs suffer from leakage problems associated with liquid electrolytes, such as H3PO4 and protic ionic liquids....

  18. Study on the electrochemical of the metal deposition from ionic liquids for lithium, titanium and dysprosium

    International Nuclear Information System (INIS)

    Berger, Claudia A.

    2017-01-01

    The thesis was aimed to the characterization of electrochemically deposited film of lithium, titanium and dysprosium on Au(111) from different ionic liquids, finally dysprosium on neodymium-iron-boron magnate for industrial applications. The investigation of the deposits were performed using cyclic voltametry, in-situ scanning tunneling microscopy, electrochemical quartz microbalance, XPS and Auger electron spectroscopy. The sample preparation is described in detail. The deposition rate showed a significant temperature dependence.

  19. Ionic Adsorption and Desorption of CNT Nanoropes

    Directory of Open Access Journals (Sweden)

    Jun-Jun Shang

    2016-09-01

    Full Text Available A nanorope is comprised of several carbon nanotubes (CNTs with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment.

  20. Thermodynamics of ionic processes in solutions

    International Nuclear Information System (INIS)

    Krestov, G.A.

    1984-01-01

    The present nitions about the mechanism of solvation of atomic-molecular particles and the structure of electrolyte and non electrolyte solutions are given. From common positions a wide range of interrelated problems (general and thermodynamic characteristic of ions, thermodynamic characteristic of ion solvation and various ionic reactions in solutions, structural changes of the solvent in the above processes etc...) is considered. The latest scientific data including those on the effect on the thermodynamio properties of low temperatures, various impurities (air, water), large ions, peculiarities of the structure of solvent molecules reflected. Considerable attention is given to new conceptions definitions, structural notions as well as theoretical and experimental methods of obtaining quantitative characteristics of ion solvation