WorldWideScience

Sample records for significant aerosol profiles

  1. Comparisons of Airborne HSRL and Modeled Aerosol Profiles

    Science.gov (United States)

    Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Ismail, S.; Rogers, R. R.; Notari, A.; Berkoff, T.; Butler, C. F.; Collins, J. E., Jr.; Fenn, M. A.; Scarino, A. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Fast, J. D.; Berg, L. K.; Randles, C. A.; Colarco, P. R.; daSilva, A.

    2014-12-01

    Aerosol profiles derived from a regional and a global model are compared with aerosol profiles acquired by NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidars (HSRLs) during recent field missions. We compare simulated aerosol profiles obtained from the WRF-Chem regional model with those measured by the airborne HSRL-2 instrument over the Atlantic Ocean east of Cape Cod in July 2012 during the Department of Energy Two-Column Aerosol Project (TCAP). While deployed on the LaRC King Air during TCAP, HSRL-2 acquired profiles of aerosol extinction at 355 and 532 nm, as well as aerosol backscatter and depolarization at 355, 532, and 1064 nm. Additional HSRL-2 data products include profiles of aerosol type, mixed layer depth, and aerosol microphysical parameters (e.g. effective radius, concentration). The HSRL-2 and WRF-Chem aerosol profiles are compared along the aircraft flight tracks. HSRL-2 profiles acquired during the NASA Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission over Houston during September 2013 are compared with the NASA Goddard Earth Observing System global model, version 5 (GEOS-5) profiles. In addition to comparing backscatter and extinction profiles, the fraction of aerosol extinction and optical thickness from various aerosol species from GEOS-5 are compared with aerosol extinction and optical thickness contributed by aerosol types derived from HSRL-2 data. We also compare aerosol profiles modeled by GEOS-5 with those measured by the airborne LaRC DIAL/HSRL instrument during August and September 2013 when it was deployed on the NASA DC-8 for the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) mission. DIAL/HSRL measured extinction (532 nm), backscatter (532 and 1064 nm), and depolarization profiles (532 and 1064 nm) in both nadir and zenith directions during long transects over the

  2. Aerosol Extinction Profile Mapping with Lognormal Distribution Based on MPL Data

    Science.gov (United States)

    Lin, T. H.; Lee, T. T.; Chang, K. E.; Lien, W. H.; Liu, G. R.; Liu, C. Y.

    2017-12-01

    This study intends to challenge the profile mapping of aerosol vertical distribution by mathematical function. With the similarity in distribution pattern, lognormal distribution is examined for mapping the aerosol extinction profile based on MPL (Micro Pulse LiDAR) in situ measurements. The variables of lognormal distribution are log mean (μ) and log standard deviation (σ), which will be correlated with the parameters of aerosol optical depht (AOD) and planetary boundary layer height (PBLH) associated with the altitude of extinction peak (Mode) defined in this study. On the base of 10 years MPL data with single peak, the mapping results showed that the mean error of Mode and σ retrievals are 16.1% and 25.3%, respectively. The mean error of σ retrieval can be reduced to 16.5% under the cases of larger distance between PBLH and Mode. The proposed method is further applied to MODIS AOD product in mapping extinction profile for the retrieval of PM2.5 in terms of satellite observations. The results indicated well agreement between retrievals and ground measurements when aerosols under 525 meters are well-mixed. The feasibility of proposed method to satellite remote sensing is also suggested by the case study. Keyword: Aerosol extinction profile, Lognormal distribution, MPL, Planetary boundary layer height (PBLH), Aerosol optical depth (AOD), Mode

  3. Vertical profiles of aerosol optical properties over central Illinois and comparison with surface and satellite measurements

    Directory of Open Access Journals (Sweden)

    P. J. Sheridan

    2012-12-01

    scattering Ångström exponent suggest that the fraction of smaller particles in the aerosol is larger near the surface than at high altitudes. The observed dependence of scattering on size, wavelength, angular integration range, and relative humidity, together with the spectral dependence of absorption, show that the aerosol at higher altitudes is larger, less hygroscopic, and more strongly absorbing at shorter wavelengths, suggesting an increased contribution from dust or organic aerosols. The aerosol profiles show significant differences among seasons. The largest amounts of aerosol (as determined by median light extinction profile measurements throughout most of the sampled column were observed during summer, with the lowest amounts in the winter and intermediate values in the spring and fall. The highest three profile levels (3.1, 3.7, 4.6 km, however, showed larger median extinction values in the spring, which could reflect long-range transport of dust or smoke aerosols. The aerosols in the mixed layer were darkest (i.e., lowest single-scattering albedo in the fall, in agreement with surface measurements at Bondville and other continental sites in the US. In situ profiles of aerosol radiative forcing efficiency showed little seasonal or vertical variability. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP

  4. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    Science.gov (United States)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to

  5. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    Science.gov (United States)

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  6. Retrieval of aerosol profiles combining sunphotometer and ceilometer measurements in GRASP code

    Science.gov (United States)

    Román, R.; Benavent-Oltra, J. A.; Casquero-Vera, J. A.; Lopatin, A.; Cazorla, A.; Lyamani, H.; Denjean, C.; Fuertes, D.; Pérez-Ramírez, D.; Torres, B.; Toledano, C.; Dubovik, O.; Cachorro, V. E.; de Frutos, A. M.; Olmo, F. J.; Alados-Arboledas, L.

    2018-05-01

    In this paper we present an approach for the profiling of aerosol microphysical and optical properties combining ceilometer and sun/sky photometer measurements in the GRASP code (General Retrieval of Aerosol and Surface Properties). For this objective, GRASP is used with sun/sky photometer measurements of aerosol optical depth (AOD) and sky radiances, both at four wavelengths and obtained from AErosol RObotic NETwork (AERONET), and ceilometer measurements of range corrected signal (RCS) at 1064 nm. A sensitivity study with synthetic data evidences the capability of the method to retrieve aerosol properties such as size distribution and profiles of volume concentration (VC), especially for coarse particles. Aerosol properties obtained by the mentioned method are compared with airborne in-situ measurements acquired during two flights over Granada (Spain) within the framework of ChArMEx/ADRIMED (Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) 2013 campaign. The retrieved aerosol VC profiles agree well with the airborne measurements, showing a mean bias error (MBE) and a mean absolute bias error (MABE) of 0.3 μm3/cm3 (12%) and 5.8 μm3/cm3 (25%), respectively. The differences between retrieved VC and airborne in-situ measurements are within the uncertainty of GRASP retrievals. In addition, the retrieved VC at 2500 m a.s.l. is shown and compared with in-situ measurements obtained during summer 2016 at a high-atitude mountain station in the framework of the SLOPE I campaign (Sierra Nevada Lidar AerOsol Profiling Experiment). VC from GRASP presents high correlation (r = 0.91) with the in-situ measurements, but overestimates them, MBE and MABE being equal to 23% and 43%.

  7. Measurements of stratospheric Pinatubo aerosol extinction profiles by a Raman lidar

    International Nuclear Information System (INIS)

    Abo, Makoto; Nagasawa, Chikao.

    1992-01-01

    The Raman lidar has been used for remote measurements of water vapor, ozone and atmospheric temperature in the lower troposphere because the Raman cross section is three orders smaller than the Rayleigh cross section. The authors estimated the extinction coefficients of the Pinatubo volcanic aerosol in the stratosphere using a Raman lidar. If the precise aerosol extinction coefficients are derived, the backscatter coefficient of a Mie scattering lidar will be more accurately estimated. The Raman lidar has performed to measure density profiles of some species using Raman scattering. Here the authors used a frequency-doubled Nd:YAG laser for transmitter and received nitrogen vibrational Q-branch Raman scattering signal. Ansmann et al. (1990) derived tropospherical aerosol extinction profiles with a Raman lidar. The authors think that this method can apply to dense stratospheric aerosols such as Pinatubo volcanic aerosols. As dense aerosols are now accumulated in the stratosphere by Pinatubo volcanic eruption, the error of Ramen lidar signal regarding the fluctuation of air density can be ignored

  8. Biomass burning aerosols characterization from ground based and profiling measurements

    Science.gov (United States)

    Marin, Cristina; Vasilescu, Jeni; Marmureanu, Luminita; Ene, Dragos; Preda, Liliana; Mihailescu, Mona

    2018-04-01

    The study goal is to assess the chemical and optical properties of aerosols present in the lofted layers and at the ground. The biomass burning aerosols were evaluated in low level layers from multi-wavelength lidar measurements, while chemical composition at ground was assessed using an Aerosol Chemical Speciation Monitor (ACSM) and an Aethalometer. Classification of aerosol type and specific organic markers were used to explore the potential to sense the particles from the same origin at ground base and on profiles.

  9. Seasonal differences in the vertical profiles of aerosol optical properties over rural Oklahoma

    Directory of Open Access Journals (Sweden)

    E. Andrews

    2011-10-01

    Full Text Available A small airplane made 597 aerosol optical property (light absorption and light scattering vertical profile measurements over a rural Oklahoma site between March 2000 and December 2007. The aerosol profiles obtained during these 8 yr of measurements suggest significant seasonal differences in aerosol loading (scattering and absorption. The highest amounts of scattering and absorbing aerosol are observed during the summer and the lowest loading occurs during the winter. The relative contribution of aerosol absorption is highest in the winter (i.e., single scattering albedo is lowest in winter, particularly aloft. Aerosol absorption generally decreased with altitude below ~1.5 km and then was relatively constant or decreased more gradually above that. Aerosol scattering decreased sharply with altitude below ~1.5 km but, unlike absorption, also decreased at higher altitudes, albeit less sharply. Scattering Ångström exponents suggest that the aerosol was dominated by sub-micron aerosol during the summer at all altitudes, but that larger particles were present, especially in the spring and winter above 1 km. The seasonal variability observed for aerosol loading is consistent with AERONET aerosol optical depth (AOD although the AOD values calculated from in situ adjusted to ambient conditions and matching wavelengths are up to a factor of two lower than AERONET AOD values depending on season. The column averaged single scattering albedo derived from in situ airplane measurements are similar in value to the AERONET single scattering albedo inversion product but the seasonal patterns are different – possibly a consequence of the strict constraints on obtaining single scattering albedo from AERONET data. A comparison of extinction Ångström exponent and asymmetry parameter from the airplane and AERONET platforms suggests similar seasonal variability with smaller particles observed in the summer and fall and larger particles observed in spring and

  10. The Cloud-Aerosol Transport System (CATS): A New Lidar for Aerosol and Cloud Profiling from the International Space Station

    Science.gov (United States)

    Welton, Ellsworth J.; McGill, Mathew J.; Yorks. John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.

    2012-01-01

    Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064,532,355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time (NRT) data capability ofthe ISS will enable CATS to support operational applications such as aerosol and air quality forecasting and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a

  11. Retrieval method of aerosol extinction coefficient profile by an integral lidar system and case study

    Science.gov (United States)

    Shan, Huihui; Zhang, Hui; Liu, Junjian; Wang, Shenhao; Ma, Xiaomin; Zhang, Lianqing; Liu, Dong; Xie, Chenbo; Tao, Zongming

    2018-02-01

    Aerosol extinction coefficient profile is an essential parameter for atmospheric radiation model. But it is difficult to get the full aerosol extinction profile from the ground to the tropopause especially in near ground precisely using backscattering lidar. A combined measurement of side-scattering, backscattering and Raman-scattering lidar is proposed to retrieve the aerosol extinction coefficient profile from the surface to the tropopause which covered a dynamic range of 5 orders. The side-scattering technique solves the dead zone and the overlap problem caused by the traditional lidar in the near range. Using the Raman-scattering the aerosol lidar ratio (extinction to backscatter ratio) can be obtained. The cases studies in this paper show the proposed method is reasonable and feasible.

  12. Simulation of Cloud-aerosol Lidar with Orthogonal Polarization (CALIOP Attenuated Backscatter Profiles Using the Global Model of Aerosol Processes (GLOMAP

    Directory of Open Access Journals (Sweden)

    Young Stuart

    2016-01-01

    Full Text Available To permit the calculation of the radiative effects of atmospheric aerosols, we have linked our aerosol-chemical transport model (CTMGLOMAP to a new radiation module (UKCARADAER. In order to help assess and improve the accuracy of the radiation code, in particular the height dependence of the predicted scattering, we have developed a module that simulates attenuated backscatter (ABS profiles that would be measured by the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP if it were to sample an atmosphere with the same aerosol loading as predicted by the CTM. Initial results of our comparisons of the predicted ABS profiles with actual CALIOP data are encouraging but some differences are noted, particularly in marine boundary layers where the scattering is currently under-predicted and in dust layers where it is often over-predicted. The sources of these differences are being investigated.

  13. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    Science.gov (United States)

    Raut, J.-C.; Chazette, P.

    2008-02-01

    A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(±0.02)-i0.017(±0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  14. Modeling of Aerosol Vertical Profiles Using GIS and Remote Sensing

    Directory of Open Access Journals (Sweden)

    Kwon Ho Lee

    2009-06-01

    Full Text Available The use of Geographic Information Systems (GIS and Remote Sensing (RS by climatologists, environmentalists and urban planners for three dimensional modeling and visualization of the landscape is well established. However no previous study has implemented these techniques for 3D modeling of atmospheric aerosols because air quality data is traditionally measured at ground points, or from satellite images, with no vertical dimension. This study presents a prototype for modeling and visualizing aerosol vertical profiles over a 3D urban landscape in Hong Kong. The method uses a newly developed technique for the derivation of aerosol vertical profiles from AERONET sunphotometer measurements and surface visibility data, and links these to a 3D urban model. This permits automated modeling and visualization of aerosol concentrations at different atmospheric levels over the urban landscape in near-real time. Since the GIS platform permits presentation of the aerosol vertical distribution in 3D, it can be related to the built environment of the city. Examples are given of the applications of the model, including diagnosis of the relative contribution of vehicle emissions to pollution levels in the city, based on increased near-surface concentrations around weekday rush-hour times. The ability to model changes in air quality and visibility from ground level to the top of tall buildings is also demonstrated, and this has implications for energy use and environmental policies for the tall mega-cities of the future.

  15. Three-beam aerosol backscatter correlation lidar for wind profiling

    Science.gov (United States)

    Prasad, Narasimha S.; Radhakrishnan Mylapore, Anand

    2017-03-01

    The development of a three-beam aerosol backscatter correlation (ABC) light detection and ranging (lidar) to measure wind characteristics for wake vortex and plume tracking applications is discussed. This is a direct detection elastic lidar that uses three laser transceivers, operating at 1030-nm wavelength with ˜10-kHz pulse repetition frequency and nanosec class pulse widths, to directly obtain three components of wind velocities. By tracking the motion of aerosol structures along and between three near-parallel laser beams, three-component wind speed profiles along the field-of-view of laser beams are obtained. With three 8-in. transceiver modules, placed in a near-parallel configuration on a two-axis pan-tilt scanner, the lidar measures wind speeds up to 2 km away. Optical flow algorithms have been adapted to obtain the movement of aerosol structures between the beams. Aerosol density fluctuations are cross-correlated between successive scans to obtain the displacements of the aerosol features along the three axes. Using the range resolved elastic backscatter data from each laser beam, which is scanned over the volume of interest, a three-dimensional map of aerosol density can be generated in a short time span. The performance of the ABC wind lidar prototype, validated using sonic anemometer measurements, is discussed.

  16. Vertical profile of aerosols in the Himalayan region using an ultralight aircraft platform

    Science.gov (United States)

    Singh, A.; Mahata, K.; Rupakheti, M.; Lawrence, M. G.; Junkermann, W.

    2017-12-01

    Indo-gangetic plain (IGP) and Himalayan foothills have large spatial and temporal heterogeneity in aerosols characteristics. Regional meteorology around 850-500 mb plays an important role in the transformation and transportation of aerosols from west Asia to IGP, into Himalayan foothill, as well to high-altitude region of the Himalayas. In order to quantify the vertical and horizontal variation of aerosol properties in the Himalayan , an airborne campaign was carried out in the Pokhara Valley/Nepal (83°50'-84°10' E, 25°7'-28°15' N, 815 masl ) in two phases: test flights during May 2016 and an intensive airborne sampling flight in December-January 2017. This paper provides an overview of airborne measurement campaign from the first phase of measurements in May 2016. A two-seater microlight aircraft (IKARUS C 42) was used as the aerial platform. This was deemed the feasible option in Nepal for an aerial campaign; technical specification of the aircraft include an approximately 6 hrs of flying time, short-take off run, > 100 kgs of payload, suitable for spiral upward and downward profiling. The instrument package consist of GRIMM 1.108 for particle size distribution from 0.3 to 20 um at 6 seconds time resolution, and TSI CPC 3375 for total ultrafine particle (UFP) concentration at 1 s. The package also includes a Magee Scientific Aethalometer (AE42) for aerosol absorption at seven different wavelengths. Meteorological parameters include temperature and dew point at a sampling rate of 1 Hz or higher. The paper provides a snapshot of observed vertical profile (from 800 to 4500masl) of aerosols size, number and black carbon over one of populated mountain valley in Nepal during the pre-monsoon season. During the airborne measurement, local fires- mostly agriculture burn were observed, however no large scale forest fire was captured. Sharp morning and afternoon gradients were observed in the vertical profile for aerosol number and size, mostly dominated by 2000 masl

  17. Lidar sprectroscopy instrument (LISSI: An infrastructure facility for chemical aerosol profiling at the University of Hertfordshire

    Directory of Open Access Journals (Sweden)

    Tesche Matthias

    2018-01-01

    The new facility will open new avenues for chemical profiling of aerosol pollution from measurements of Raman scattering by selected chemical compounds, provide data that allow to close the gap between optical and microphysical aerosol profiling with lidar and enables connecting lidar measurements to parameters used in atmospheric modelling.

  18. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    Science.gov (United States)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  19. Lidar sprectroscopy instrument (LISSI): An infrastructure facility for chemical aerosol profiling at the University of Hertfordshire

    Science.gov (United States)

    Tesche, Matthias; Tatarov, Boyan; Noh, Youngmin; Müller, Detlef

    2018-04-01

    The lidar development at the University of Hertfordshire explores the feasibility of using Raman backscattering for chemical aerosol profiling. This paper provides an overview of the new facility. A high-power Nd:YAG/OPO setup is used to excite Raman backscattering at a wide range of wavelengths. The receiver combines a spectrometer with a 32-channel detector or an ICCD camera to resolve Raman signals of various chemical compounds. The new facility will open new avenues for chemical profiling of aerosol pollution from measurements of Raman scattering by selected chemical compounds, provide data that allow to close the gap between optical and microphysical aerosol profiling with lidar and enables connecting lidar measurements to parameters used in atmospheric modelling.

  20. Near Real Time Vertical Profiles of Clouds and Aerosols from the Cloud-Aerosol Transport System (CATS) on the International Space Station

    Science.gov (United States)

    Yorks, J. E.; McGill, M. J.; Nowottnick, E. P.

    2015-12-01

    Plumes from hazardous events, such as ash from volcanic eruptions and smoke from wildfires, can have a profound impact on the climate system, human health and the economy. Global aerosol transport models are very useful for tracking hazardous plumes and predicting the transport of these plumes. However aerosol vertical distributions and optical properties are a major weakness of global aerosol transport models, yet a key component of tracking and forecasting smoke and ash. The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar designed to provide vertical profiles of clouds and aerosols while also demonstrating new in-space technologies for future Earth Science missions. CATS has been operating on the Japanese Experiment Module - Exposed Facility (JEM-EF) of the International Space Station (ISS) since early February 2015. The ISS orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three-day repeat cycle. The ISS orbit also provides CATS with excellent coverage over the primary aerosol transport tracks, mid-latitude storm tracks, and tropical convection. Data from CATS is used to derive properties of clouds and aerosols including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The measurements of atmospheric clouds and aerosols provided by the CATS payload have demonstrated several science benefits. CATS provides near-real-time observations of cloud and aerosol vertical distributions that can be used as inputs to global models. The infrastructure of the ISS allows CATS data to be captured, transmitted, and received at the CATS ground station within several minutes of data collection. The CATS backscatter and vertical feature mask are part of a customized near real time (NRT) product that the CATS processing team produces within 6 hours of collection. The continuous near real time CATS data

  1. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    Science.gov (United States)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  2. Vertical profiles of aerosol absorption coefficient from micro-Aethalometer data and Mie calculation over Milan.

    Science.gov (United States)

    Ferrero, L; Mocnik, G; Ferrini, B S; Perrone, M G; Sangiorgi, G; Bolzacchini, E

    2011-06-15

    Vertical profiles of aerosol number-size distribution and black carbon (BC) concentration were measured between ground-level and 500m AGL over Milan. A tethered balloon was fitted with an instrumentation package consisting of the newly-developed micro-Aethalometer (microAeth® Model AE51, Magee Scientific, USA), an optical particle counter, and a portable meteorological station. At the same time, PM(2.5) samples were collected both at ground-level and at a high altitude sampling site, enabling particle chemical composition to be determined. Vertical profiles and PM(2.5) data were collected both within and above the mixing layer. Absorption coefficient (b(abs)) profiles were calculated from the Aethalometer data: in order to do so, an optical enhancement factor (C), accounting for multiple light-scattering within the filter of the new microAeth® Model AE51, was determined for the first time. The value of this parameter C (2.05±0.03 at λ=880nm) was calculated by comparing the Aethalometer attenuation coefficient and aerosol optical properties determined from OPC data along vertical profiles. Mie calculations were applied to the OPC number-size distribution data, and the aerosol refractive index was calculated using the effective medium approximation applied to aerosol chemical composition. The results compare well with AERONET data. The BC and b(abs) profiles showed a sharp decrease at the mixing height (MH), and fairly constant values of b(abs) and BC were found above the MH, representing 17±2% of those values measured within the mixing layer. The BC fraction of aerosol volume was found to be lower above the MH: 48±8% of the corresponding ground-level values. A statistical mean profile was calculated, both for BC and b(abs), to better describe their behaviour; the model enabled us to compute their average behaviour as a function of height, thus laying the foundations for valid parametrizations of vertical profile data which can be useful in both remote sensing

  3. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2016-01-01

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of aerosol optical depths (AODs) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to

  4. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    Directory of Open Access Journals (Sweden)

    Y. Feng

    2016-01-01

    Full Text Available Aerosol radiative effects and thermodynamic responses over South Asia are examined with the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem for March 2012. Model results of aerosol optical depths (AODs and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in northern India. The WRF-Chem model is found to heavily underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model's low bias is due to aerosol extinctions below  ∼  2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AOD and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I, the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to −0.7 K day−1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation and thermodynamic processes (water vapor and

  5. Diurnally resolved particulate and VOC measurements at a rural site: indication of significant biogenic secondary organic aerosol formation

    Science.gov (United States)

    Sjostedt, S. J.; Slowik, J. G.; Brook, J. R.; Chang, R. Y.-W.; Mihele, C.; Stroud, C. A.; Vlasenko, A.; Abbatt, J. P. D.

    2011-06-01

    We report simultaneous measurements of volatile organic compound (VOC) mixing ratios including C6 to C8 aromatics, isoprene, monoterpenes, acetone and organic aerosol mass loadings at a rural location in southwestern Ontario, Canada by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and Aerosol Mass Spectrometry (AMS), respectively. During the three-week-long Border Air Quality and Meteorology Study in June-July 2007, air was sampled from a range of sources, including aged air from the polluted US Midwest, direct outflow from Detroit 50 km away, and clean air with higher biogenic input. After normalization to the diurnal profile of CO, a long-lived tracer, diurnal analyses show clear photochemical loss of reactive aromatics and production of oxygenated VOCs and secondary organic aerosol (SOA) during the daytime. Biogenic VOC mixing ratios increase during the daytime in accord with their light- and temperature-dependent sources. Long-lived species, such as hydrocarbon-like organic aerosol and benzene show little to no photochemical reactivity on this timescale. From the normalized diurnal profiles of VOCs, an estimate of OH concentrations during the daytime, measured O3 concentrations, and laboratory SOA yields, we calculate integrated local organic aerosol production amounts associated with each measured SOA precursor. Under the assumption that biogenic precursors are uniformly distributed across the southwestern Ontario location, we conclude that such precursors contribute significantly to the total amount of SOA formation, even during the period of Detroit outflow. The importance of aromatic precursors is more difficult to assess given that their sources are likely to be localized and thus of variable impact at the sampling location.

  6. Aerosol characteristics inversion based on the improved lidar ratio profile with the ground-based rotational Raman-Mie lidar

    Science.gov (United States)

    Ji, Hongzhu; Zhang, Yinchao; Chen, Siying; Chen, He; Guo, Pan

    2018-06-01

    An iterative method, based on a derived inverse relationship between atmospheric backscatter coefficient and aerosol lidar ratio, is proposed to invert the lidar ratio profile and aerosol extinction coefficient. The feasibility of this method is investigated theoretically and experimentally. Simulation results show the inversion accuracy of aerosol optical properties for iterative method can be improved in the near-surface aerosol layer and the optical thick layer. Experimentally, as a result of the reduced insufficiency error and incoherence error, the aerosol optical properties with higher accuracy can be obtained in the near-surface region and the region of numerical derivative distortion. In addition, the particle component can be distinguished roughly based on this improved lidar ratio profile.

  7. Vertical profiles of aerosol and black carbon in the Arctic: a seasonal phenomenology along 2 years (2011–2012 of field campaigns

    Directory of Open Access Journals (Sweden)

    L. Ferrero

    2016-10-01

    Full Text Available We present results from a systematic study of vertical profiles of aerosol number size distribution and black carbon (BC concentrations conducted in the Arctic, over Ny-Ålesund (Svalbard. The campaign lasted 2 years (2011–2012 and resulted in 200 vertical profiles measured by means of a tethered balloon (up to 1200 m a.g.l. during the spring and summer seasons. In addition, chemical analysis of filter samples, aerosol size distribution and a full set of meteorological parameters were determined at ground. The collected experimental data allowed a classification of the vertical profiles into different typologies, which allowed us to describe the seasonal phenomenology of vertical aerosol properties in the Arctic. During spring, four main types of profiles were found and their behavior was related to the main aerosol and atmospheric dynamics occurring at the measuring site. Background conditions generated homogenous profiles. Transport events caused an increase of aerosol concentration with altitude. High Arctic haze pollution trapped below thermal inversions promoted a decrease of aerosol concentration with altitude. Finally, ground-based plumes of locally formed secondary aerosol determined profiles with decreasing aerosol concentration located at different altitude as a function of size. During the summer season, the impact from shipping caused aerosol and BC pollution plumes to be constrained close to the ground, indicating that increasing shipping emissions in the Arctic could bring anthropogenic aerosol and BC in the Arctic summer, affecting the climate.

  8. Stratospheric aerosols

    International Nuclear Information System (INIS)

    Rosen, J.; Ivanov, V.A.

    1993-01-01

    Stratospheric aerosol measurements can provide both spatial and temporal data of sufficient resolution to be of use in climate models. Relatively recent results from a wide range of instrument techniques for measuring stratospheric aerosol parameters are described. Such techniques include impactor sampling, lidar system sensing, filter sampling, photoelectric particle counting, satellite extinction-sensing using the sun as a source, and optical depth probing, at sites mainly removed from tropospheric aerosol sources. Some of these techniques have also had correlative and intercomparison studies. The main methods for determining the vertical profiles of stratospheric aerosols are outlined: lidar extinction measurements from satellites; impactor measurements from balloons and aircraft; and photoelectric particle counter measurements from balloons, aircraft, and rockets. The conversion of the lidar backscatter to stratospheric aerosol mass loading is referred to. Absolute measurements of total solar extinction from satellite orbits can be used to extract the aerosol extinction, and several examples of vertical profiles of extinction obtained with the SAGE satellite are given. Stratospheric mass loading can be inferred from extinction using approximate linear relationships but under restrictive conditions. Impactor sampling is essentially the only method in which the physical nature of the stratospheric aerosol is observed visually. Vertical profiles of stratospheric aerosol number concentration using impactor data are presented. Typical profiles using a dual-size-range photoelectric dustsonde particle counter are given for volcanically disturbed and inactive periods. Some measurements of the global distribution of stratospheric aerosols are also presented. Volatility measurements are described, indicating that stratospheric aerosols are composed primarily of about 75% sulfuric acid and 25% water

  9. Characteristics of aerosol vertical profiles in Tsukuba, Japan, and their impacts on the evolution of the atmospheric boundary layer

    Science.gov (United States)

    Kudo, Rei; Aoyagi, Toshinori; Nishizawa, Tomoaki

    2018-05-01

    Vertical profiles of the aerosol physical and optical properties, with a focus on seasonal means and on transport events, were investigated in Tsukuba, Japan, by a synergistic remote sensing method that uses lidar and sky radiometer data. The retrieved aerosol vertical profiles of the springtime mean and five transport events were input to our developed one-dimensional atmospheric model, and the impacts of the aerosol vertical profiles on the evolution of the atmospheric boundary layer (ABL) were studied by numerical sensitivity experiments. The characteristics of the aerosol vertical profiles in Tsukuba are as follows: (1) the retrieval results in the spring showed that aerosol optical thickness at 532 nm in the free atmosphere (FA) was 0.13, greater than 0.08 in the ABL owing to the frequent occurrence of transported aerosols in the FA. In other seasons, optical thickness in the FA was almost the same as that in the ABL. (2) The aerosol optical and physical properties in the ABL showed a dependency on the extinction coefficient. With an increase in the extinction coefficient from 0.00 to 0.24 km-1, the Ångström exponent increased from 0.0 to 2.0, the single-scattering albedo increased from 0.87 to 0.99, and the asymmetry factor decreased from 0.75 to 0.50. (3) The large variability in the physical and optical properties of aerosols in the FA were attributed to transport events, during which the transported aerosols consisted of varying amounts of dust and smoke particles depending on where they originated (China, Mongolia, or Russia). The results of the numerical sensitivity experiments using the aerosol vertical profiles of the springtime mean and five transport events in the FA are as follows: (1) numerical sensitivity experiments based on simulations conducted with and without aerosols showed that aerosols caused the net downward radiation and the sensible and latent heat fluxes at the surface to decrease. The decrease in temperature in the ABL (-0.2 to -0

  10. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    Science.gov (United States)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  11. Vertical profiles of fine and coarse aerosol particles over Cyprus: Comparison between in-situ drone measurements and remote sensing observations

    Science.gov (United States)

    Mamali, Dimitra; Marinou, Eleni; Pikridas, Michael; Kottas, Michael; Binietoglou, Ioannis; Kokkalis, Panagiotis; Tsekeri, Aleksandra; Amiridis, Vasilis; Sciare, Jean; Keleshis, Christos; Engelmann, Ronny; Ansmann, Albert; Russchenberg, Herman W. J.; Biskos, George

    2017-04-01

    Vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) measurements were compared to airborne dried optical particle counter (OPC MetOne; Model 212) measurements during the INUIT-BACCHUS-ACTRIS campaign. The campaign took place in April 2016 and its main focus was the study of aerosol dust particles. During the campaign the NOA Polly-XT Raman lidar located at Nicosia (35.08° N, 33.22° E) was providing round-the-clock vertical profiles of aerosol optical properties. In addition, an unmanned aerial vehicle (UAV) carrying an OPC flew on 7 days during the first morning hours. The flights were performed at Orounda (35.1018° N, 33.0944° E) reaching altitudes of 2.5 km a.s.l, which allows comparison with a good fraction of the recorded lidar data. The polarization lidar photometer networking method (POLIPHON) was used for the estimation of the fine (non-dust) and coarse (dust) mode aerosol mass concentration profiles. This method uses as input the particle backscatter coefficient and the particle depolarization profiles of the lidar at 532 nm wavelength and derives the aerosol mass concentration. The first step in this approach makes use of the lidar observations to separate the backscatter and extinction contributions of the weakly depolarizing non-dust aerosol components from the contributions of the strongly depolarizing dust particles, under the assumption of an externally mixed two-component aerosol. In the second step, sun photometer retrievals of the fine and the coarse modes aerosol optical thickness (AOT) and volume concentration are used to calculate the associated concentrations from the extinction coefficients retrieved from the lidar. The estimated aerosol volume concentrations were converted into mass concentration with an assumption for the bulk aerosol density, and compared with the OPC measurements. The first results show agreement within the experimental uncertainty. This project received funding from the

  12. The Influence of Aerosol Hygroscopicity on Retrieving the Aerosol Extincting Coefficient from MPL Data

    Science.gov (United States)

    Zhao, G.; Zhao, C.

    2016-12-01

    Micro-pulse Lidar (MPL) measurements have been widely used to profile the ambient aerosol extincting coefficient(). Lidar Ratio (LR) ,which highly depends on the particle number size distribution (PNSD) and aerosol hygroscopicity, is the most important factor to retrieve the profile. A constant AOD constrained LR is usually used in current algorithms, which would lead to large bias when the relative humidity (RH) in the mixed layer is high. In this research, the influences of PNSD, aerosol hygroscopicity and RH profiles on the vertical variation of LR were investigated based on the datasets from field measurements in the North China Plain (NCP). Results show that LR can have an enhancement factor of more than 120% when the RH reaches to 92%. A new algorithm of retrieving the profile is proposed based on the variation of LR due to aerosol hygroscopicity. The magnitude and vertical structures of retrieved using this method can be significantly different to that of the fiexed LR method. The relative difference can reach up to 40% when the RH in the mixed layer is higher than 90% . Sensitivity studies show that RH profile and PNSD affect most on the retrieved by fiexed LR method. In view of this, a scheme of LR enhancement factor by RH is proposed in the NCP. The relative differnce of the calculated between using this scheme and the new algorithm with the variable LR can be less than 10%.

  13. Significance of Future Biogenic and Fire Emissions on Regional Aerosol Burden

    Science.gov (United States)

    Lim, A.; Tai, A. P. K.; Val Martin, M.

    2017-12-01

    Land-use and land cover changes have been found to substantially affect atmospheric aerosols and climate worldwide1,2, but the complex mechanisms and pathways involved in the interactions between terrestrial processes and aerosols are not well understood. Here we use a global coupled aerosol chemistry-climate-land model (CESM with CAM5 using Modal Aerosol Module 3 and CLM4.5 in Satellite Phenology mode) to investigate how aerosols respond to future climate and land-use changes, and in turn, affects cloud cover and other hydrometeorological variables in the long term. Time-sliced simulations are conducted for a base year (2000) as a base case; then three future projected scenarios for year 2050 driven by land-use and climate projections following the Representative Concentration Pathways RCP8.53 are conducted. The first scenario considers future projected biogenic emissions, allowing us to investigate the effect of increased plant activity and enhanced biogenic emissions due to future land-use and climate on aerosol burden. The second scenario considers future biomass burning emissions, allowing us to investigate the effect of increased biomass burning emissions due to future land-use and climate on aerosol burden. The third scenario combines the projected changes in the two emissions. We find that both biogenic and biomass burning emissions contribute significantly to local aerosol and cloud condensation nuclei (CCN) concentrations. The contribution from biogenic emissions to local aerosol burden is smaller in magnitude (10% to 20%), but the effects are ubiquitous in many places globally. Meanwhile, the contribution from biomass burning emissions can be much higher in magnitude (63%)4, but concentrated in heavily burned regions and occurs only during burning season. Effects of both emissions are not additive since a larger flux of emissions causes greater deposition. The resulting further impacts of land-use change on regional hydrometeorology are also explored

  14. MAX-DOAS observations of aerosols, formaldehyde and nitrogen dioxide in the Beijing area: comparison of two profile retrieval approaches

    Directory of Open Access Journals (Sweden)

    T. Vlemmix

    2015-02-01

    Full Text Available A 4-year data set of MAX-DOAS observations in the Beijing area (2008–2012 is analysed with a focus on NO2, HCHO and aerosols. Two very different retrieval methods are applied. Method A describes the tropospheric profile with 13 layers and makes use of the optimal estimation method. Method B uses 2–4 parameters to describe the tropospheric profile and an inversion based on a least-squares fit. For each constituent (NO2, HCHO and aerosols the retrieval outcomes are compared in terms of tropospheric column densities, surface concentrations and "characteristic profile heights" (i.e. the height below which 75% of the vertically integrated tropospheric column density resides. We find best agreement between the two methods for tropospheric NO2 column densities, with a standard deviation of relative differences below 10%, a correlation of 0.99 and a linear regression with a slope of 1.03. For tropospheric HCHO column densities we find a similar slope, but also a systematic bias of almost 10% which is likely related to differences in profile height. Aerosol optical depths (AODs retrieved with method B are 20% high compared to method A. They are more in agreement with AERONET measurements, which are on average only 5% lower, however with considerable relative differences (standard deviation ~ 25%. With respect to near-surface volume mixing ratios and aerosol extinction we find considerably larger relative differences: 10 ± 30, −23 ± 28 and −8 ± 33% for aerosols, HCHO and NO2 respectively. The frequency distributions of these near-surface concentrations show however a quite good agreement, and this indicates that near-surface concentrations derived from MAX-DOAS are certainly useful in a climatological sense. A major difference between the two methods is the dynamic range of retrieved characteristic profile heights which is larger for method B than for method A. This effect is most pronounced for HCHO, where retrieved profile shapes with method

  15. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  16. Retrieval method of aerosol extinction coefficient profile based on backscattering, side-scattering and Raman-scattering lidar

    Science.gov (United States)

    Shan, Huihui; Zhang, Hui; Liu, Junjian; Tao, Zongming; Wang, Shenhao; Ma, Xiaomin; Zhou, Pucheng; Yao, Ling; Liu, Dong; Xie, Chenbo; Wang, Yingjian

    2018-03-01

    Aerosol extinction coefficient profile is an essential parameter for atmospheric radiation model. It is difficult to get higher signal to noise ratio (SNR) of backscattering lidar from the ground to the tropopause especially in near range. Higher SNR problem can be solved by combining side-scattering and backscattering lidar. Using Raman-scattering lidar, aerosol extinction to backscatter ratio (lidar ratio) can be got. Based on side-scattering, backscattering and Raman-scattering lidar system, aerosol extinction coefficient is retrieved precisely from the earth's surface to the tropopause. Case studies show this method is reasonable and feasible.

  17. Aerosol extinction profiles at 525 nm and 1020 nm derived from ACE imager data: comparisons with GOMOS, SAGE II, SAGE III, POAM III, and OSIRIS

    Directory of Open Access Journals (Sweden)

    F. Vanhellemont

    2008-04-01

    Full Text Available The Canadian ACE (Atmospheric Chemistry Experiment mission is dedicated to the retrieval of a large number of atmospheric trace gas species using the solar occultation technique in the infrared and UV/visible spectral domain. However, two additional solar disk imagers (at 525 nm and 1020 nm were added for a number of reasons, including the retrieval of aerosol and cloud products. In this paper, we present first comparison results for these imager aerosol/cloud optical extinction coefficient profiles, with the ones derived from measurements performed by 3 solar occultation instruments (SAGE II, SAGE III, POAM III, one stellar occultation instrument (GOMOS and one limb sounder (OSIRIS. The results indicate that the ACE imager profiles are of good quality in the upper troposphere/lower stratosphere, although the aerosol extinction for the visible channel at 525 nm contains a significant negative bias at higher altitudes, while the relative differences indicate that ACE profiles are almost always too high at 1020 nm. Both problems are probably related to ACE imager instrumental issues.

  18. Tropospheric Vertical Profiles of Aerosol Optical, Microphysical and Concentration Properties in the Frame of the Hygra-CD Campaign (Athens, Greece 2014: A Case Study of Long-Range Transport of Mixed Aerosols

    Directory of Open Access Journals (Sweden)

    Papayannis Alexandros

    2016-01-01

    Full Text Available Combined multi-wavelength aerosol Raman lidar and sun photometry measurements were performed during the HYGRA-CD campaign over Athens, Greece during May-June 2014. The retrieved aerosol optical properties (3 aerosol backscatter at 355-532-1064 nm and 2 aerosol extinction profiles at 355-532 nm were used as input to an inversion code to retrieve the aerosol microphysical properties (effective radius reff and number concentration N using regularization techniques. Additionally, the volume concentration profile was derived for fine particles using the LIRIC code. In this paper we selected a complex case study of long-range transport of mixed aerosols (biomass burning particles mixed with dust arriving over Athens between 10-12 June 2014 in the 1.5-4 km height. Between 2-3 km height we measured mean lidar ratios (LR ranging from 45 to 58 sr (at 355 and 532 nm, while the Ångström exponent (AE aerosol extinction-related values (355nm/532nm ranged between 0.8-1.3. The retrieved values of reff and N ranged from 0.19±0.07 to 0.22±0.07 μm and 460±230 to 2200±2800 cm-3, respectively. The aerosol linear depolarization ratio (δ at 532 nm was lower than 5-7% (except for the Saharan dust cases, where δ~10-15%.

  19. Description of test facilities bound to the research on sodium aerosols - some significant results

    Energy Technology Data Exchange (ETDEWEB)

    Dolias, M; Lafon, A; Vidard, M; Schaller, K H [DRNR/STRS - Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1977-01-01

    This communication is dedicated to the description of the CEA (French Atomic Energy Authority) testing located at CADARACHE and which are utilized for the study of sodium aerosols behavior. These testing loops are necessary for studying the operating of equipment such as filters, sodium vapour traps, condensers and separators. It is also possible to study the effect of characteristics parameters on formation, coagulation and carrying away of sodium aerosols in the cover gas. Sodium aerosols deposits in a vertical annular space configuration with a cold area in its upper part are also studied. Some significant results emphasize the importance of operating conditions on the formation of aerosols. (author)

  20. ACTRIS aerosol vertical profile data and observations: potentiality and first examples of integrated studies with models

    Science.gov (United States)

    Mona, Lucia; Benedetti, Angela; D'Amico, Giuseppe; Myhre, Cathrine Lund; Schulz, Michael; Wandinger, Ulla; Laj, Paolo; Pappalardo, Gelsomina

    2016-04-01

    The ACTRIS-2 project, funded by Horizon 2020, addresses the scope of integrating state-of-the-art European ground-based stations for long term observations of aerosols, clouds and short lived gases, capitalizing on the work of FP7-ACTRIS. It aims at achieving the construction of a user-oriented RI, unique in the EU-RI landscape for providing 4-D integrated high-quality data from near-surface to high altitude (vertical profiles and total-column) which are relevant to climate and air-quality research. ACTRIS-2 develops and implements, in a large network of stations in Europe and beyond, observational protocols that permit the harmonization of collected data and their dissemination. ACTRIS secures provision and dissemination of a unique set of data and data-products that would not otherwise be available with the same level of quality and standardization. This results from a 10-year plus effort in constructing a research infrastructure capable of responding to community needs and requirements, and has been engaged since the start of the FP5 EU commission program. ACTRIS ensures compliance with reporting requirements (timing, format, traceability) defined by the major global observing networks. EARLINET (European Aerosol research Lidar NETwork), the aerosol vertical profiling component of ACTRIS, is providing since May 2000 vertical profiles of aerosol extinction and backscatter over Europe. A new structure of the EARLINET database has been designed in a more user oriented approach reporting new data products which are more effective for specific uses of different communities. In particular, a new era is starting with the Copernicus program during which the aerosol vertical profiling capability will be fundamental for assimilation and validation purposes. The new data products have been designed thanks to a strong link with EARLINET data users, first of all modeling and satellite communities, established since the beginning of EARLINET and re-enforced within ACTRIS2

  1. Ceilometer Aerosol Profiling versus Raman Lidar in the Frame of Interact Campaign of Actris

    Directory of Open Access Journals (Sweden)

    Madonna F.

    2016-01-01

    Full Text Available In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol properties through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60 N, 15.72 E, in the framework of ACTRIS (Aerosol Clouds Trace gases Research InfraStructure FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of six month. The comparison of the attenuated backscatter coefficient profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K reveals differences due to the expected discrepancy in the SNR but also due to effect of changes in the ambient temperature on the stability of ceilometer calibration over short and mid-term. Technological improvements of ceilometers towards their operational use in the monitoring of the atmospheric aerosol in the low and free troposphere are likely needed.

  2. Vertical Profiles of Aerosol Optical and Microphysical Properties During a Rare Case of Long-range Transport of Mixed Biomass Burning-polluted Dust Aerosols from the Russian Federation-kazakhstan to Athens, Greece

    Directory of Open Access Journals (Sweden)

    Papayannis Alexandros

    2016-01-01

    Full Text Available Multi-wavelength aerosol Raman lidar measurements with elastic depolarization at 532 nm were combined with sun photometry during the HYGRA-CD campaign over Athens, Greece, on May-June 2014. We retrieved the aerosol optical [3 aerosol backscatter profiles (baer at 355-532-1064 nm, 2 aerosol extinction (aaer profiles at 355-532 nm and the aerosol linear depolarization ratio (δ at 532 nm] and microphysical properties [effective radius (reff, complex refractive index (m, single scattering albedo (ω]. We present a case study of a long distance transport (~3.500-4.000 km of biomass burning particles mixed with dust from the Russian Federation-Kazakhstan regions arriving over Athens on 21-23 May 2014 (1.7-3.5 km height. On 23 May, between 2-2.75 km we measured mean lidar ratios (LR of 35 sr (355 nm and 42 sr (532 nm, while the mean Ångström exponent (AE aerosol backscatter-related values (355nm/532nm and 532nm/1064nm were 2.05 and 1.22, respectively; the mean value of δ at 532 nm was measured to be 9%. For that day the retrieved mean aerosol microphysical properties at 2-2.75 km height were: reff=0.26 μm (fine mode, reff=2.15 μm (coarse mode, m=1.36+0.00024i, ω=0.999 (355 nm, fine mode, ω=0.992(355 nm, coarse mode, ω=0.997 (532 nm, fine mode, and ω=0.980 (532 nm, coarse mode.

  3. Quasi-periodic oscillations of aerosol backscatter profiles and surface meteorological parameters during winter nights over a tropical station

    Directory of Open Access Journals (Sweden)

    M. G. Manoj

    2011-03-01

    Full Text Available Atmospheric gravity waves, which are a manifestation of the fluctuations in buoyancy of the air parcels, are well known for their direct influence on concentration of atmospheric trace gases and aerosols, and also on oscillations of meteorological variables such as temperature, wind speed, visibility and so on. The present paper reports quasi-periodic oscillations in the lidar backscatter signal strength due to aerosol fluctuations in the nocturnal boundary layer, studied with a high space-time resolution polarimetric micro pulse lidar and concurrent meteorological parameters over a tropical station in India. The results of the spectral analysis of the data, archived on some typical clear-sky conditions during winter months of 2008 and 2009, exhibit a prominent periodicity of 20–40 min in lidar-observed aerosol variability and show close association with those observed in the near-surface temperature and wind at 5% statistical significance. Moreover, the lidar aerosol backscatter signal strength variations at different altitudes, which have been generated from the height-time series of the one-minute interval profiles at 2.4 m vertical resolution, indicate vertical propagation of these waves, exchanging energy between lower and higher height levels. Such oscillations are favoured by the stable atmospheric background condition and peculiar topography of the experimental site. Accurate representation of these buoyancy waves is essential in predicting the sporadic fluctuations of weather in the tropics.

  4. Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events

    Science.gov (United States)

    Mamali, Dimitra; Marinou, Eleni; Sciare, Jean; Pikridas, Michael; Kokkalis, Panagiotis; Kottas, Michael; Binietoglou, Ioannis; Tsekeri, Alexandra; Keleshis, Christos; Engelmann, Ronny; Baars, Holger; Ansmann, Albert; Amiridis, Vassilis; Russchenberg, Herman; Biskos, George

    2018-05-01

    In situ measurements using unmanned aerial vehicles (UAVs) and remote sensing observations can independently provide dense vertically resolved measurements of atmospheric aerosols, information which is strongly required in climate models. In both cases, inverting the recorded signals to useful information requires assumptions and constraints, and this can make the comparison of the results difficult. Here we compare, for the first time, vertical profiles of the aerosol mass concentration derived from light detection and ranging (lidar) observations and in situ measurements using an optical particle counter on board a UAV during moderate and weak Saharan dust episodes. Agreement between the two measurement methods was within experimental uncertainty for the coarse mode (i.e. particles having radii > 0.5 µm), where the properties of dust particles can be assumed with good accuracy. This result proves that the two techniques can be used interchangeably for determining the vertical profiles of aerosol concentrations, bringing them a step closer towards their systematic exploitation in climate models.

  5. LASE measurements of water vapor and aerosol profiles during the Plains Elevated Convection at Night (PECAN) field experiment

    Science.gov (United States)

    Nehrir, A. R.; Ferrare, R. A.; Kooi, S. A.; Butler, C. F.; Notari, A.; Hair, J. W.; Collins, J. E., Jr.; Ismail, S.

    2015-12-01

    The Lidar Atmospheric Sensing Experiment (LASE) system was deployed on the NASA DC-8 aircraft during the Plains Elevated Convection At Night (PECAN) field experiment, which was conducted during June-July 2015 over the central and southern plains. LASE is an active remote sensor that employs the differential absorption lidar (DIAL) technique to measure range resolved profiles of water vapor and aerosols above and below the aircraft. The DC-8 conducted nine local science flights from June 30- July 14 where LASE sampled water vapor and aerosol fields in support of the PECAN primary science objectives relating to better understanding nocturnal Mesoscale Convective Systems (MCSs), Convective Initiation (CI), the Low Level Jet (LLJ), bores, and to compare different airborne and ground based measurements. LASE observed large spatial and temporal variability in water vapor and aerosol distributions in advance of nocturnal MCSs, across bores resulting from MCS outflow boundaries, and across the LLJ associated with the development of MCSs and CI. An overview of the LASE data collected during the PECAN field experiment will be presented where emphasis will be placed on variability of water vapor profiles in the vicinity of severe storms and intense convection in the central and southern plains. Preliminary comparisons show good agreement between coincident LASE and radiosonde water vapor profiles. In addition, an advanced water vapor DIAL system being developed at NASA Langley will be discussed.

  6. Development of the Multi-Angle Stratospheric Aerosol Radiometer (MASTAR) Instrument

    Science.gov (United States)

    DeLand, M. T.; Colarco, P. R.; Kowalewski, M. G.; Gorkavyi, N.; Ramos-Izquierdo, L.

    2017-12-01

    Aerosol particles in the stratosphere ( 15-25 km altitude), both produced naturally and perturbed by volcanic eruptions and anthropogenic emissions, continue to be a source of significant uncertainty in the Earth's energy budget. Stratospheric aerosols can offset some of the warming effects caused by greenhouse gases. These aerosols are currently monitored using measurements from the Ozone Mapping and Profiling Suite (OMPS) Limb Profiler (LP) instrument on the Suomi NPP satellite. In order to improve the sensitivity and spatial coverage of these aerosol data, we are developing an aerosol-focused compact version of the OMPS LP sensor called Multi-Angle Stratospheric Aerosol Radiometer (MASTAR) to fly on a 3U Cubesat satellite, using a NASA Instrument Incubator Program (IIP) grant. This instrument will make limb viewing measurements of the atmosphere in multiple directions simultaneously, and uses only a few selected wavelengths to reduce size and cost. An initial prototype version has been constructed using NASA GSFC internal funding and tested in the laboratory. Current design work is targeted towards a preliminary field test in Spring 2018. We will discuss the scientific benefits of MASTAR and the status of the project.

  7. Annual cycle of size-resolved organic aerosol characterization in an urbanized desert environment

    Science.gov (United States)

    Cahill, Thomas M.

    2013-06-01

    Studies of size-resolved organic speciation of aerosols are still relatively rare and are generally only conducted over short durations. However, size-resolved organic data can both suggest possible sources of the aerosols and identify the human exposure to the chemicals since different aerosol sizes have different lung capture efficiencies. The objective of this study was to conduct size-resolved organic aerosol speciation for a calendar year in Phoenix, Arizona to determine the seasonal variations in both chemical concentrations and size profiles. The results showed large seasonal differences in combustion pollutants where the highest concentrations were observed in winter. Summertime aerosols have a greater proportion of biological compounds (e.g. sugars and fatty acids) and the biological compounds represent the largest fraction of the organic compounds detected. These results suggest that standard organic carbon (OC) measurements might be heavily influenced by primary biological compounds particularly if the samples are PM10 and TSP samples. Several large dust storms did not significantly alter the organic aerosol profile since Phoenix resides in a dusty desert environment, so the soil and plant tracer of trehalose was almost always present. The aerosol size profiles showed that PAHs were generally most abundant in the smallest aerosol size fractions, which are most likely to be captured by the lung, while the biological compounds were almost exclusively found in the coarse size fraction.

  8. Characterizing the Vertical Profile of Aerosol Particle Extinction and Linear Depolarization over Southeast Asia and the Maritime Continent: The 2007-2009 View from CALIOP

    Science.gov (United States)

    Campbell, James R.; Reid, Jeffrey S.; Westphal, Douglas L.; Zhang, Jianglong; Tackett, Jason L.; Chew, Boon Ning; Welton, Ellsworth J.; Shimizu, Atsushi; Sugimoto, Nobuo; Aoki, Kazuma; hide

    2012-01-01

    Vertical profiles of 0.532 µm aerosol particle extinction coefficient and linear volume depolarization ratio are described for Southeast Asia and the Maritime Continent. Quality-screened and cloud-cleared Version 3.01 Level 2 NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) 5-km Aerosol Profile datasets are analyzed from 2007 to 2009. Numerical simulations from the U.S. Naval Aerosol Analysis and Predictive System (NAAPS), featuring two-dimensional variational assimilation of NASA Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging Spectro- Radiometer quality-assured datasets, combined with regional ground-based lidar measurements, are considered for assessing CALIOP retrieval performance, identifying bias, and evaluating regional representativeness. CALIOP retrievals of aerosol particle extinction coefficient and aerosol optical depth (AOD) are high over land and low over open waters relative to NAAPS (0.412/0.312 over land for all data points inclusive, 0.310/0.235 when the per bin average is used and each is treated as single data points; 0.102/0.151 and 0.086/0.124, respectively, over ocean). Regional means, however, are very similar (0.180/0.193 for all data points and 0.155/0.159 when averaged per normalized bin), as the two factors offset one another. The land/ocean offset is investigated, and discrepancies attributed to interpretation of particle composition and a-priori assignment of the extinction-to-backscatter ratio ("lidar ratio") necessary for retrieving the extinction coefficient from CALIOP signals. Over land, NAAPS indicates more dust present than CALIOP algorithms are identifying, indicating a likely assignment of a higher lidar ratio representative of more absorptive particles. NAAPS resolvesmore smoke overwater than identified with CALIOP, indicating likely usage of a lidar ratio characteristic of less absorptive particles to be applied that biases low AOD there. Over open waters except within the Bay of Bengal

  9. Black carbon's contribution to aerosol absorption optical depth over S. Korea

    Science.gov (United States)

    Lamb, K.; Perring, A. E.; Beyersdorf, A. J.; Anderson, B. E.; Segal-Rosenhaimer, M.; Redemann, J.; Holben, B. N.; Schwarz, J. P.

    2017-12-01

    Aerosol absorption optical depth (AAOD) monitored by ground-based sites (AERONET, SKYNET, etc.) is used to constrain climate radiative forcing from black carbon (BC) and other absorbing aerosols in global models, but few validation studies between in situ aerosol measurements and ground-based AAOD exist. AAOD is affected by aerosol size distributions, composition, mixing state, and morphology. Megacities provide appealing test cases for this type of study due to their association with very high concentrations of anthropogenic aerosols. During the KORUS-AQ campaign in S. Korea, which took place in late spring and early summer of 2016, in situ aircraft measurements over the Seoul Metropolitan Area and Taehwa Research Forest (downwind of Seoul) were repeated three times per flight over a 6 week period, providing significant temporal coverage of vertically resolved aerosol properties influenced by different meteorological conditions and sources. Measurements aboard the NASA DC-8 by the NOAA Humidified Dual Single Particle Soot Photometers (HD-SP2) quantified BC mass, size distributions, mixing state, and the hygroscopicity of BC containing aerosols. The in situ BC mass vertical profiles are combined with estimated absorption enhancement calculated from observed optical size and hygroscopicity using Mie theory, and then integrated over the depth of the profile to calculate BC's contribution to AAOD. Along with bulk aerosol size distributions and hygroscopicity, bulk absorbing aerosol optical properties, and on-board sky radiance measurements, these measurements are compared with ground-based AERONET site measurements of AAOD to evaluate closure between in situ vertical profiles of BC and AAOD measurements. This study will provide constraints on the relative importance of BC (including lensing and hygroscopicity effects) and non-BC components to AAOD over S. Korea.

  10. Long-term Aerosol Lidar Measurements At CNR-IMAA

    Science.gov (United States)

    Mona, L.; Amodeo, A.; D'Amico, G.; Pandolfi, M.; Pappalardo, G.

    2006-12-01

    Actual estimations of the aerosol effect on the radiation budget are affected by a large uncertainties mainly due to the high inhomogeneity and variability of atmospheric aerosol, in terms of concentration, shape, size distribution, refractive index and vertical distribution. Long-term measurements of vertical profiles of aerosol optical properties are needed to reduce these uncertainties. At CNR-IMAA (40° 36'N, 15° 44' E, 760 m above sea level), a lidar system for aerosol study is operative since May 2000 in the framework of EARLINET (European Aerosol Research Lidar Network). Until August 2005, it provided independent measurements of aerosol extinction and backscatter at 355 nm and aerosol backscatter profiles at 532 nm. After an upgrade of the system, it provides independent measurements of aerosol extinction and backscatter profiles at 355 and 532 nm, and of aerosol backscatter profiles at 1064 nm and depolarization ratio at 532 nm. For these measurements, lidar ratio at 355 and 532 nm and Angstrom exponent profiles at 355/532 nm are also obtained. Starting on May 2000, systematic measurements are performed three times per week according to the EARLINET schedule and further measurements are performed in order to investigate particular events, like dust intrusions, volcanic eruptions and forest fires. A climatological study has been carried out in terms of the seasonal behavior of the PBL height and of the aerosol optical properties calculated inside the PBL itself. In the free troposphere, an high occurrences of Saharan dust intrusions (about 1 day of Saharan dust intrusion every 10 days) has been observed at CNR-IMAA because of the short distance from the Sahara region. During 6 years of observations, very peculiar cases of volcanic aerosol emitted by Etna volcano and aerosol released by large forest fires burning occurred in Alaska and Canada have been observed in the free troposphere at our site. Particular attention is devoted to lidar ratio both for the

  11. Vertical Distribution of Dust and Water Ice Aerosols from CRISM Limb-geometry Observations

    Science.gov (United States)

    Smith, Michael Doyle; Wolff, Michael J.; Clancy, Todd; Kleinbohl, Armin; Murchie, Scott L.

    2013-01-01

    [1] Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb enables the vertical distribution of both dust and water ice aerosols to be retrieved. More than a dozen sets of CRISM limb observations have been taken so far providing pole-to-pole cross sections, spanning more than a full Martian year. Radiative transfer modeling is used to model the observations taking into account multiple scattering from aerosols and the spherical geometry of the limb observations. Both dust and water ice vertical profiles often show a significant vertical structure for nearly all seasons and latitudes that is not consistent with the well-mixed or Conrath-v assumptions that have often been used in the past for describing aerosol vertical profiles for retrieval and modeling purposes. Significant variations are seen in the retrieved vertical profiles of dust and water ice aerosol as a function of season. Dust typically extends to higher altitudes (approx. 40-50km) during the perihelion season than during the aphelion season (water ice clouds are common, and water ice aerosols are observed to cap the dust layer in all seasons.

  12. Aerosol optical properties in the southeastern United States in summer – Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters

    Directory of Open Access Journals (Sweden)

    C. A. Brock

    2016-04-01

    Full Text Available Aircraft observations of meteorological, trace gas, and aerosol properties were made between May and September 2013 in the southeastern United States (US. Regionally representative aggregate vertical profiles of median and interdecile ranges of the measured parameters were constructed from 37 individual aircraft profiles made in the afternoon when a well-mixed boundary layer with typical fair-weather cumulus was present (Wagner et al., 2015. We use these 0–4 km aggregate profiles and a simple model to calculate the sensitivity of aerosol optical depth (AOD to changes in dry aerosol mass, relative humidity, mixed-layer height, the central diameter and width of the particle size distribution, hygroscopicity, and dry and wet refractive index, while holding the other parameters constant. The calculated sensitivity is a result of both the intrinsic sensitivity and the observed range of variation in these parameters. These observationally based sensitivity studies indicate that the relationship between AOD and dry aerosol mass in these conditions in the southeastern US can be highly variable and is especially sensitive to relative humidity (RH. For example, calculated AOD ranged from 0.137 to 0.305 as the RH was varied between the 10th and 90th percentile profiles with dry aerosol mass held constant. Calculated AOD was somewhat less sensitive to aerosol hygroscopicity, mean size, and geometric standard deviation, σg. However, some chemistry–climate models prescribe values of σg substantially larger than we or others observe, leading to potential high biases in model-calculated AOD of  ∼  25 %. Finally, AOD was least sensitive to observed variations in dry and wet aerosol refractive index and to changes in the height of the well-mixed surface layer. We expect these findings to be applicable to other moderately polluted and background continental air masses in which an accumulation mode between 0.1–0.5 µm diameter dominates

  13. Degradation of fly ash concrete under the coupled effect of carbonation and chloride aerosol ingress

    International Nuclear Information System (INIS)

    Liu, Jun; Qiu, Qiwen; Chen, Xiaochi; Wang, Xiaodong; Xing, Feng; Han, Ningxu; He, Yijian

    2016-01-01

    Highlights: • Carbonation affects the chloride profile in concrete under chloride aerosol attack. • The chloride binding capacity can be reduced by the presence of carbonation. • Carbonation increases the rate of chloride diffusion for chloride aerosol ingress. • Chloride aerosol ingress reduces the carbonation depth and increases the pH value. • The use of fly ash in concrete enhances the resistance of chloride aerosol ingress. - Abstract: This paper presents an experimental investigation regarding the coupled effect of carbonation and chloride aerosol ingress on the durability performance of fly ash concrete. Test results demonstrate that carbonation significantly affects the chloride ingress profile, reduces the chloride binding capacity, and accelerates the rate of chloride ion diffusion. On the other hand, the carbonation rate of fly ash concrete is reduced by the presence of chlorides aerosol. The interaction nature between concrete carbonation and chloride aerosol ingress is also demonstrated by the microscopic analysis results obtained from scanning electron microscope and mercury intrusion porosimetry.

  14. The Potential of The Synergy of Sunphotometer and Lidar Data to Validate Vertical Profiles of The Aerosol Mass Concentration Estimated by An Air Quality Model

    Directory of Open Access Journals (Sweden)

    Siomos N.

    2016-01-01

    Full Text Available Vertical profiles of the aerosol mass concentration derived by the Lidar/Radiometer Inversion Code (LIRIC, that uses combined sunphotometer and lidar data, were used in order to validate the aerosol mass concentration profiles estimated by the air quality model CAMx. Lidar and CIMEL measurements performed at the Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki, Greece (40.5N, 22.9E from the period 2013-2014 were used in this study.

  15. Aerosol absorption profiling from the synergy of lidar and sun-photometry: the ACTRIS-2 campaigns in Germany, Greece and Cyprus

    Directory of Open Access Journals (Sweden)

    Tsekeri Alexandra

    2018-01-01

    Full Text Available Aerosol absorption profiling is crucial for radiative transfer calculations and climate modelling. Here, we utilize the synergy of lidar with sun-photometer measurements to derive the absorption coefficient and single scattering albedo profiles during the ACTRIS-2 campaigns held in Germany, Greece and Cyprus. The remote sensing techniques are compared with in situ measurements in order to harmonize and validate the different methodologies and reduce the absorption profiling uncertainties.

  16. Experimental Characterization of Radiation Forcing due to Atmospheric Aerosols

    Science.gov (United States)

    Sreenivas, K. R.; Singh, D. K.; Ponnulakshmi, V. K.; Subramanian, G.

    2011-11-01

    Micro-meteorological processes in the nocturnal atmospheric boundary layer (NBL) including the formation of radiation-fog and the development of inversion layers are controlled by heat transfer and the vertical temperature distribution close to the ground. In a recent study, it has been shown that the temperature profile close to the ground in stably-stratified, NBL is controlled by the radiative forcing due to suspended aerosols. Estimating aerosol forcing is also important in geo-engineering applications to evaluate the use of aerosols to mitigate greenhouse effects. Modeling capability in the above scenarios is limited by our knowledge of this forcing. Here, the design of an experimental setup is presented which can be used for evaluating the IR-radiation forcing on aerosols under either Rayleigh-Benard condition or under conditions corresponding to the NBL. We present results indicating the effect of surface emissivities of the top and bottom boundaries and the aerosol concentration on the temperature profiles. In order to understand the observed enhancement of the convection-threshold, we have determined the conduction-radiation time constant of an aerosol laden air layer. Our results help to explain observed temperature profiles in the NBL, the apparent stability of such profiles and indicate the need to account for the effect of aerosols in climatic/weather models.

  17. Evidence for a significant proportion of Secondary Organic Aerosol from isoprene above a maritime tropical forest

    Directory of Open Access Journals (Sweden)

    N. H. Robinson

    2011-02-01

    Full Text Available Isoprene is the most abundant non-methane biogenic volatile organic compound (BVOC, but the processes governing secondary organic aerosol (SOA formation from isoprene oxidation are only beginning to become understood and selective quantification of the atmospheric particulate burden remains difficult. Organic aerosol above a tropical rainforest located in Danum Valley, Borneo, Malaysia, a high isoprene emission region, was studied during Summer 2008 using Aerosol Mass Spectrometry and offline detailed characterisation using comprehensive two dimensional gas chromatography. Observations indicate that a substantial fraction (up to 15% by mass of atmospheric sub-micron organic aerosol was observed as methylfuran (MF after thermal desorption. This observation was associated with the simultaneous measurements of established gas-phase isoprene oxidation products methylvinylketone (MVK and methacrolein (MACR. Observations of MF were also made during experimental chamber oxidation of isoprene. Positive matrix factorisation of the AMS organic mass spectral time series produced a robust factor which accounts for an average of 23% (0.18 μg m−3, reaching as much as 53% (0.50 μg m−3 of the total oraganic loading, identified by (and highly correlated with a strong MF signal. Assuming that this factor is generally representative of isoprene SOA, isoprene derived aerosol plays a significant role in the region. Comparisons with measurements from other studies suggest this type of isoprene SOA plays a role in other isoprene dominated environments, albeit with varying significance.

  18. Aerosol Properties of the Atmospheres of Extrasolar Giant Planets

    Energy Technology Data Exchange (ETDEWEB)

    Lavvas, P. [Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims Champagne Ardenne, Reims (France); Koskinen, T., E-mail: panayotis.lavvas@univ-reims.fr [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ (United States)

    2017-09-20

    We use a model of aerosol microphysics to investigate the impact of high-altitude photochemical aerosols on the transmission spectra and atmospheric properties of close-in exoplanets, such as HD 209458 b and HD 189733 b. The results depend strongly on the temperature profiles in the middle and upper atmospheres, which are poorly understood. Nevertheless, our model of HD 189733 b, based on the most recently inferred temperature profiles, produces an aerosol distribution that matches the observed transmission spectrum. We argue that the hotter temperature of HD 209458 b inhibits the production of high-altitude aerosols and leads to the appearance of a clearer atmosphere than on HD 189733 b. The aerosol distribution also depends on the particle composition, photochemical production, and atmospheric mixing. Due to degeneracies among these inputs, current data cannot constrain the aerosol properties in detail. Instead, our work highlights the role of different factors in controlling the aerosol distribution that will prove useful in understanding different observations, including those from future missions. For the atmospheric mixing efficiency suggested by general circulation models, we find that the aerosol particles are small (∼nm) and probably spherical. We further conclude that a composition based on complex hydrocarbons (soots) is the most likely candidate to survive the high temperatures in hot-Jupiter atmospheres. Such particles would have a significant impact on the energy balance of HD 189733 b’s atmosphere and should be incorporated in future studies of atmospheric structure. We also evaluate the contribution of external sources to photochemical aerosol formation and find that their spectral signature is not consistent with observations.

  19. Flavourings significantly affect inhalation toxicity of aerosol generated from electronic nicotine delivery systems (ENDS).

    Science.gov (United States)

    Leigh, Noel J; Lawton, Ralph I; Hershberger, Pamela A; Goniewicz, Maciej L

    2016-11-01

    E-cigarettes or electronic nicotine delivery systems (ENDS) are designed to deliver nicotine-containing aerosol via inhalation. Little is known about the health effects of flavoured ENDS aerosol when inhaled. Aerosol from ENDS was generated using a smoking machine. Various types of ENDS devices or a tank system prefilled with liquids of different flavours, nicotine carrier, variable nicotine concentrations and with modified battery output voltage were tested. A convenience sample of commercial fluids with flavour names of tobacco, piña colada, menthol, coffee and strawberry were used. Flavouring chemicals were identified using gas chromatography/mass spectrometry. H292 human bronchial epithelial cells were directly exposed to 55 puffs of freshly generated ENDS aerosol, tobacco smoke or air (controls) using an air-liquid interface system and the Health Canada intense smoking protocol. The following in vitro toxicological effects were assessed: (1) cell viability, (2) metabolic activity and (3) release of inflammatory mediators (cytokines). Exposure to ENDS aerosol resulted in decreased metabolic activity and cell viability and increased release of interleukin (IL)-1β, IL-6, IL-10, CXCL1, CXCL2 and CXCL10 compared to air controls. Cell viability and metabolic activity were more adversely affected by conventional cigarettes than most tested ENDS products. Product type, battery output voltage and flavours significantly affected toxicity of ENDS aerosol, with a strawberry-flavoured product being the most cytotoxic. Our data suggest that characteristics of ENDS products, including flavours, may induce inhalation toxicity. Therefore, ENDS users should use the products with caution until more comprehensive studies are performed. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  20. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    Science.gov (United States)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  1. The effect of actuator nozzle designs on the electrostatic charge generated in pressurised metered dose inhaler aerosols.

    Science.gov (United States)

    Chen, Yang; Young, Paul M; Fletcher, David F; Chan, Hak Kim; Long, Edward; Lewis, David; Church, Tanya; Traini, Daniela

    2015-04-01

    To investigate the influence of different actuator nozzle designs on aerosol electrostatic charges and aerosol performances for pressurised metered dose inhalers (pMDIs). Four actuator nozzle designs (flat, curved flat, cone and curved cone) were manufactured using insulating thermoplastics (PET and PTFE) and conducting metal (aluminium) materials. Aerosol electrostatic profiles of solution pMDI formulations containing propellant HFA 134a with different ethanol concentration and/or model drug beclomethasone dipropionate (BDP) were studied using a modified electrical low-pressure impactor (ELPI) for all actuator designs and materials. The mass of the deposited drug was analysed using high performance liquid chromatography (HPLC). Both curved nozzle designs for insulating PET and PTFE actuators significantly influenced aerosol electrostatics and aerosol performance compared with conducting aluminium actuator, where reversed charge polarity and higher throat deposition were observed with pMDI formulation containing BDP. Results are likely due to the changes in plume geometry caused by the curved edge nozzle designs and the bipolar charging nature of insulating materials. This study demonstrated that actuator nozzle designs could significantly influence the electrostatic charges profiles and aerosol drug deposition pattern of pMDI aerosols, especially when using insulating thermoplastic materials where bipolar charging is more dominant.

  2. The dependence of entrainment and drizzle in marine stratiform clouds on biomass burning aerosols derived from stable isotope and thermodynamic profiles

    Science.gov (United States)

    Henze, D.; Noone, D.

    2017-12-01

    A third of the world's biomass burning aerosol (BBA) particles are generated in southern Africa, and these particles are swept into the midlevel troposphere over the southeast Atlantic Ocean. The presence of these aerosols over the marine environment of the south east Atlantic offers a unique natural laboratory for studying aerosol effects on climate, and specifically a modification to the hydrologic cycle and microphysical characteristics of clouds. Different rates of condensation with high aerosol numbers change the precipitation rates in drizzling stratiform clouds, while the mixing of aerosols into the cloud layer is synonymous with entrainment from above cloud top near the top of the subtropical inversion. To better understanding the magnitude of the aerosol influence on southeast Atlantic boundary layer clouds we analyze the cloud-top entrainment and drizzle as a function of aerosol loading to determine the impact of BBA. Entrainment was determined from mixing line analysis based on profile measurements of moist static energy, total water, and the two most common heavy isotopes of water - HDO and H218O. Data was collected on the P-3 Orion aircraft during the NASA 2017 ORACLES campaign. Using these measurements, a box model was constructed using the combined conservation laws associated with all four of these quantities to estimate the entrainment and rainout of cloud liquid. The population of profiles sampled by the aircraft over the course of the 30 day mission spans varying concentrations of BBA. Initial plots of the water isotope mixing lines show where and to what degree the BBA air mass has mixed into the boundary layer air mass from above. This is demonstrated by the fact that the mixing end-members are the same for the different areas sampled, but the rate at which the various mixing lines are traversed as a function of altitude varies. Further, the mixing lines as a function of height traverse back and forth between end members multiple times over one

  3. Intermittent aerosol delivery to the lungs during high-flow nasal cannula therapy.

    Science.gov (United States)

    Golshahi, Laleh; Longest, P Worth; Azimi, Mandana; Syed, Aamer; Hindle, Michael

    2014-10-01

    Use of submicrometer particles combined with condensational growth techniques has been proposed to reduce drug losses within components of high-flow nasal cannula therapy systems and to enhance the dose reaching the lower respiratory tract. These methods have been evaluated using continuous inhalation flow rather than realistic inhalation/exhalation breathing cycles. The goal of this study was to evaluate in vitro aerosol drug delivery using condensational growth techniques during high-flow nasal cannula therapy using realistic breathing profiles and incorporating intermittent aerosol delivery techniques. A mixer-heater combined with a vibrating mesh nebulizer was used to generate a submicrometer aerosol using a formulation of 0.2% albuterol sulfate and 0.2% sodium chloride in water. Delivery efficiency of the aerosol for 1 min through a nasal cannula was considered using an intermittent delivery regime with aerosol being emitted for either the entire inhalation time (2 s) or half of the inhalation period (1 s) and compared with continuous delivery. The deposition of the aerosol was evaluated in the nasal delivery components (ventilator tubing and cannula) and an in vitro adult nose-mouth-throat (NMT) model using 3 realistic breathing profiles. Significant improvements in dose delivered to the exit of the NMT model (ex-NMT) were observed for both condensational growth methods using intermittent aerosol delivery compared with continuous delivery, and increasing the tidal volume was found useful. The combination of the largest tidal volume with the shortest intermittent delivery time resulted in the lowest respiration losses and the highest ex-NMT delivered dose. Intermittent aerosol delivery using realistic breathing profiles of submicrometer condensational growth aerosols was found to be efficient in delivering nasally administered drugs in an in vitro airway model. Copyright © 2014 by Daedalus Enterprises.

  4. Profiling of aerosol microphysical properties at several EARLINET/AERONET sites during the July 2012 ChArMEx/EMEP campaign

    Directory of Open Access Journals (Sweden)

    M. J. Granados-Muñoz

    2016-06-01

    Full Text Available The simultaneous analysis of aerosol microphysical properties profiles at different European stations is made in the framework of the ChArMEx/EMEP 2012 field campaign (9–11 July 2012. During and in support of this campaign, five lidar ground-based stations (Athens, Barcelona, Bucharest, Évora, and Granada performed 72 h of continuous lidar measurements and collocated and coincident sun-photometer measurements. Therefore it was possible to retrieve volume concentration profiles with the Lidar Radiometer Inversion Code (LIRIC. Results indicated the presence of a mineral dust plume affecting the western Mediterranean region (mainly the Granada station, whereas a different aerosol plume was observed over the Balkans area. LIRIC profiles showed a predominance of coarse spheroid particles above Granada, as expected for mineral dust, and an aerosol plume composed mainly of fine and coarse spherical particles above Athens and Bucharest. Due to the exceptional characteristics of the ChArMEx database, the analysis of the microphysical properties profiles' temporal evolution was also possible. An in-depth analysis was performed mainly at the Granada station because of the availability of continuous lidar measurements and frequent AERONET inversion retrievals. The analysis at Granada was of special interest since the station was affected by mineral dust during the complete analyzed period. LIRIC was found to be a very useful tool for performing continuous monitoring of mineral dust, allowing for the analysis of the dynamics of the dust event in the vertical and temporal coordinates. Results obtained here illustrate the importance of having collocated and simultaneous advanced lidar and sun-photometer measurements in order to characterize the aerosol microphysical properties in both the vertical and temporal coordinates at a regional scale. In addition, this study revealed that the use of the depolarization information as input in LIRIC in the

  5. Interpretation of DIAL Measurements of Lower Stratospheric Ozone in Regions with Pinatubo Aerosols

    Science.gov (United States)

    Grant, William B.; Browell, Edward V.; Fenn, Marta A.; Butler, Carolyn F.; Brackett, Vincent G.; Veiga, Robert E.; Mayor, Shane D.; Fishman, Jack; Nganga, D.; Minga, A.

    1992-01-01

    The influence of volcanic aerosols on stratospheric ozone is a topic of current interest, especially with the June 15, 1991 eruption of Mt. Pinatubo in the Philippines. Lidar has been used in the past to provide aerosol profiles which could be compared with ozone profiles measured using ozonesondes to look for coincidences between volcanic aerosols and ozone decreases. The differential absorption lidar (DIAL) technique has the advantages of being able to measure ozone and aerosol profiles simultaneously as well as being able to cover large geographical regions rapidly. While there are problems associated with correcting the ozone profiles for the presence of aerosols, the corrections can be made reliably when the wavelengths are closely spaced and the Bernoulli method is applied. The DIAL measurements considered in this paper are those obtained in the tropical stratosphere in January 1992 during the Airborne Arctic Stratospheric Expedition (AASE-II). The determination of ozone profiles in the presence of Pinatubo aerosols is discussed in a companion paper.

  6. The impact of aerosol vertical distribution on aerosol optical depth retrieval using CALIPSO and MODIS data: Case study over dust and smoke regions

    Science.gov (United States)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2017-08-01

    Global quantitative aerosol information has been derived from MODerate Resolution Imaging SpectroRadiometer (MODIS) observations for decades since early 2000 and widely used for air quality and climate change research. However, the operational MODIS Aerosol Optical Depth (AOD) products Collection 6 (C6) can still be biased, because of uncertainty in assumed aerosol optical properties and aerosol vertical distribution. This study investigates the impact of aerosol vertical distribution on the AOD retrieval. We developed a new algorithm by considering dynamic vertical profiles, which is an adaptation of MODIS C6 Dark Target (C6_DT) algorithm over land. The new algorithm makes use of the aerosol vertical profile extracted from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements to generate an accurate top of the atmosphere (TOA) reflectance for the AOD retrieval, where the profile is assumed to be a single layer and represented as a Gaussian function with the mean height as single variable. To test the impact, a comparison was made between MODIS DT and Aerosol Robotic Network (AERONET) AOD, over dust and smoke regions. The results show that the aerosol vertical distribution has a strong impact on the AOD retrieval. The assumed aerosol layers close to the ground can negatively bias the retrievals in C6_DT. Regarding the evaluated smoke and dust layers, the new algorithm can improve the retrieval by reducing the negative biases by 3-5%.

  7. Vertical profiles of atmospheric fluorescent aerosols observed by a mutil-channel lidar spectrometer system

    Science.gov (United States)

    Huang, Z.; Huang, J.; Zhou, T.; Sugimoto, N.; Bi, J.

    2015-12-01

    Zhongwei Huang1*, Jianping Huang1, Tian Zhou1, Nobuo Sugimoto2, Jianrong Bi1 and Jinsen Shi11Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China. 2Atmospheric Environment Division, National Institutes for Environmental Studies, Tsukuba, Japan Email: huangzhongwei@lzu.edu.cn Abstract Atmospheric aerosols have a significant impact on regional and globe climate. The challenge in quantifying aerosol direct radiative forcing and aerosol-cloud interactions arises from large spatial and temporal heterogeneity of aerosol concentrations, compositions, sizes, shape and optical properties (IPCC, 2007). Lidar offers some remarkable advantages for determining the vertical structure of atmospheric aerosols and their related optical properties. To investigate the characterization of atmospheric aerosols (especially bioaerosols) with high spatial and temporal resolution, we developed a Raman/fluorescence/polarization lidar system employed a multi-channel spectrometer, with capabilities of providing measurements of Raman scattering and laser-induced fluorescence excitation at 355 nm from atmospheric aerosols. Meanwhile, the lidar system operated polarization measurements both at 355nm and 532nm wavelengths, aiming to obtain more information of aerosols. It employs a high power pulsed laser and a received telescope with 350mm diameter. The receiver could simultaneously detect a wide fluorescent spectrum about 178 nm with spectral resolution 5.7 nm, mainly including an F/3.7 Crossed Czerny-Turner spectrograph, a grating (1200 gr/mm) and a PMT array with 32 photocathode elements. Vertical structure of fluorescent aerosols in the atmosphere was observed by the developed lidar system at four sites across northwest China, during 2014 spring field observation that conducted by Lanzhou University. It has been proved that the developed lidar could detect the fluorescent aerosols with high temporal and

  8. Characterizing the Vertical Distribution of Aerosols using Ground-based Multiwavelength Lidar Data

    Science.gov (United States)

    Ferrare, R. A.; Thorsen, T. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Burton, S. P.; Goldsmith, J.; Holz, R.; Kuehn, R.; Eloranta, E. W.; Marais, W.; Newsom, R. K.; Liu, X.; Sawamura, P.; Holben, B. N.; Hostetler, C. A.

    2016-12-01

    Observations of aerosol optical and microphysical properties are critical for developing and evaluating aerosol transport model parameterizations and assessing global aerosol-radiation impacts on climate. During the Combined HSRL And Raman lidar Measurement Study (CHARMS), we investigated the synergistic use of ground-based Raman lidar and High Spectral Resolution Lidar (HSRL) measurements to retrieve aerosol properties aloft. Continuous (24/7) operation of these co-located lidars during the ten-week CHARMS mission (mid-July through September 2015) allowed the acquisition of a unique, multiwavelength ground-based lidar dataset for studying aerosol properties above the Southern Great Plains (SGP) site. The ARM Raman lidar measured profiles of aerosol backscatter, extinction and depolarization at 355 nm as well as profiles of water vapor mixing ratio and temperature. The University of Wisconsin HSRL simultaneously measured profiles of aerosol backscatter, extinction and depolarization at 532 nm and aerosol backscatter at 1064 nm. Recent advances in both lidar retrieval theory and algorithm development demonstrate that vertically-resolved retrievals using such multiwavelength lidar measurements of aerosol backscatter and extinction can help constrain both the aerosol optical (e.g. complex refractive index, scattering, etc.) and microphysical properties (e.g. effective radius, concentrations) as well as provide qualitative aerosol classification. Based on this work, the NASA Langley Research Center (LaRC) HSRL group developed automated algorithms for classifying and retrieving aerosol optical and microphysical properties, demonstrated these retrievals using data from the unique NASA/LaRC airborne multiwavelength HSRL-2 system, and validated the results using coincident airborne in situ data. We apply these algorithms to the CHARMS multiwavelength (Raman+HSRL) lidar dataset to retrieve aerosol properties above the SGP site. We present some profiles of aerosol effective

  9. Evaluation of operational forecast model of aerosol transportation using ceilometer network measurements

    Science.gov (United States)

    Chan, Ka Lok; Wiegner, Matthias; Flentje, Harald; Mattis, Ina; Wagner, Frank; Gasteiger, Josef; Geiß, Alexander

    2017-04-01

    Due to technical improvements of ceilometers in recent years, ceilometer measurements are not only limited to determine cloud base heights but also providing information on the vertical aerosol distribution. Therefore, several national weather services implemented ceilometer networks. These measurements are e.g. valuable for the evaluation of the chemical transport model simulations. In this study, we present comparisons of European Centre for Medium-Range Weather Forecast Integrated Forecast System (ECMWF-IFS) model simulation of aerosol backscatter coefficients with ceilometer network measurements operated by the German weather service (DWD) . Five different types of aerosol are available in the model simulations which include two natural aerosols, sea salt and dust. The other three aerosol types, i.e. sulfate, organic carbon and black carbon, have significant anthropogenic contributions. As the model output provides mass mixing ratios of the above mentioned types of aerosol and the ceilometers measure attenuated backscatter (β∗) provided that calibration took place, it is necessary to determine a common physical quantity for the comparison. We have chosen the aerosol backscatter coefficient (β) for this purpose. The β-profiles are calculated from the mass mixing ratios of the model output assuming the inherent aerosol microphysics properties. It shall be emphasized that in the model calculations, all particles are assumed to be spherical. We have examined the sensitivity of the intercomparison on the hygroscopic growth of particles and on the role of particle shape. Our results show that the hygroscopic growth of particle is crucial (up to a factor of 22) in converting the model output to backscatter coefficient profiles whereas the effect of non-sphericity of dust particles is comparably small (˜44%). Furthermore, the calibration of the ceilometer signals can be an issue. The agreements between modeled and retrieved β-profiles show different

  10. [Research on source profile of aerosol organic compounds in leather plant].

    Science.gov (United States)

    Wang, Bo-Guang; Zhou, Yan; Feng, Zhi-Cheng; Liu, Hui-Xuan

    2009-04-15

    Through investigating current air pollution condition for PM10 in every factories of different style leather plants in Pearl River Delta, characteristic profile of semi-volatile organic compounds in PM10 emitted from leather factories and their contents were researched by using ultrasonic and gas chromatography and mass spectrum technology. The 6 types of organic compounds containing 46 species in total were found in the collected samples, including phenyl compounds, alcohols, PAHs, acids, esters and amides. The concentrations of PM10 in leather tanning plant, leather dying plant and man-made leather plant were 678.5, 454.5, 498.6 microgm x m(-3) respectively, and concentration of organic compounds in PM10 were 10.04, 6.89, 14.21 microg x m(-3) in sequence. The more important type of pollutants in each leather plants had higher contribution to total organic mass as follows, esters and amides in tanning plants profile account for 43.47% and 36.51% respectively; esters and alcohols in dying plants profiles account for 52.52% and 16.16% respectively; esters and amide in man-made leather plant have the highest content and account for 57.07% and 24.17% respectively. In the aerosol organic source profiles of tested leather plants, 9-octadecenamide was the abundant important species with the weight of 26.15% in tanning plant, and Bis(2-ethylhexyl) phthalate was up to 44.19% in the dying plant, and Bis(2-ethylhexyl) maleate and 1-hydroxy-piperidine had obviously higher weight in man-made plant than the other two plants.

  11. Measurement of phase function of aerosol at different altitudes by CCD Lidar

    Science.gov (United States)

    Sun, Peiyu; Yuan, Ke'e.; Yang, Jie; Hu, Shunxing

    2018-02-01

    The aerosols near the ground are closely related to human health and climate change, the study on which has important significance. As we all know, the aerosol is inhomogeneous at different altitudes, of which the phase function is also different. In order to simplify the retrieval algorithm, it is usually assumed that the aerosol is uniform at different altitudes, which will bring measurement error. In this work, an experimental approach is demonstrated to measure the scattering phase function of atmospheric aerosol particles at different heights by CCD lidar system, which could solve the problem of the traditional CCD lidar system in assumption of phase function. The phase functions obtained by the new experimental approach are used to retrieve the aerosol extinction coefficient profiles. By comparison of the aerosol extinction coefficient retrieved by Mie-scattering aerosol lidar and CCD lidar at night, the reliability of new experimental approach is verified.

  12. Lidar Investigation of Aerosol Pollution Distribution near a Coal Power Plant

    Science.gov (United States)

    Mitsev, TS.; Kolarov, G.

    1992-01-01

    Using aerosol lidars with high spatial and temporal resolution with the possibility of real-time data interpretation can solve a large number of ecological problems related to the aerosol-field distribution and variation and the structure of convective flows. Significantly less expensive specialized lidars are used in studying anthropogenic aerosols in the planetary boundary layer. Here, we present results of lidar measurements of the mass-concentration field around a coal-fired power plant with intensive local aerosol sources. We studied the pollution evolution as a function of the emission dynamics and the presence of retaining layers. The technique used incorporates complex analysis of three types of lidar mapping: horizontal map of the aerosol field, vertical cross-section map, and a series of profiles along a selected path. The lidar-sounding cycle was performed for the time of atmosphere's quasi-stationarity.

  13. Lidar investigation of aerosol pollution distribution near a coal power plant

    International Nuclear Information System (INIS)

    Mitsev, T.S.; Kolarov, G.

    1992-01-01

    Using aerosol lidars with high spatial and temporal resolution with the possibility of real-time data interpretation can solve a large number of ecological problems related to the aerosol-field distribution and variation and the structure of convective flows. Significantly less expensive specialized lidars are used in studying anthropogenic aerosols in the planetary boundary layer. Here, results are presented of lidar measurements of the mass-concentration field around a coal-fired power plant with intensive local aerosol sources. The authors studied the pollution evolution as a function of the emission dynamics and the presence of retaining layers. The technique used incorporates complex analysis of three types of lidar mapping: horizontal map of the aerosol field, vertical cross-section map, and a series of profiles along a selected path. The lidar-sounding cycle was performed for the time of atmosphere's quasi-stationarity

  14. CATS Aerosol Typing and Future Directions

    Science.gov (United States)

    McGill, Matt; Yorks, John; Scott, Stan; Palm, Stephen; Hlavka, Dennis; Hart, William; Nowottnick, Ed; Selmer, Patrick; Kupchock, Andrew; Midzak, Natalie; hide

    2016-01-01

    The Cloud Aerosol Transport System (CATS), launched in January of 2015, is a lidar remote sensing instrument that will provide range-resolved profile measurements of atmospheric aerosols and clouds from the International Space Station (ISS). CATS is intended to operate on-orbit for at least six months, and up to three years. Status of CATS Level 2 and Plans for the Future:Version. 1. Aerosol Typing (ongoing): Mode 1: L1B data released later this summer; L2 data released shortly after; Identify algorithm biases (ex. striping, FOV (field of view) biases). Mode 2: Processed Released Currently working on correcting algorithm issues. Version 2 Aerosol Typing (Fall, 2016): Implementation of version 1 modifications Integrate GEOS-5 aerosols for typing guidance for non spherical aerosols. Version 3 Aerosol Typing (2017): Implementation of 1-D Var Assimilation into GEOS-5 Dynamic lidar ratio that will evolve in conjunction with simulated aerosol mixtures.

  15. Evaluation of the atmospheric significance of multiphase reactions in atmospheric secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    Gelencsér

    2005-01-01

    Full Text Available In a simple conceptual cloud-aerosol model the mass of secondary organic aerosol (SOA that may be formed in multiphase reaction in an idealized scenario involving two cloud cycles separated with a cloud-free period is evaluated. The conditions are set to those typical of continental clouds, and each parameter used in the model calculations is selected as a mean of available observational data of individual species for which the multiphase SOA formation route has been established. In the idealized setting gas and aqueous-phase reactions are both considered, but only the latter is expected to yield products of sufficiently low volatility to be retained by aerosol particles after the cloud dissipates. The key variable of the model is the Henry-constant which primarily determines how important multiphase reactions are relative to gas-phase photooxidation processes. The precursor considered in the model is assumed to already have some affinity to water, i.e. it is a compound having oxygen-containing functional group(s. As a principal model output an aerosol yield parameter is calculated for the multiphase SOA formation route as a function of the Henry-constant, and has been found to be significant already above H~103 M atm-1. Among the potential precursors that may be eligible for this mechanism based on their Henry constants, there are a suite of oxygenated compounds such as primary oxidation products of biogenic and anthropogenic hydrocarbons, including, for example, pinonaldehyde. Finally, the analogy of multiphase SOA formation to in-cloud sulfate production is exploited.

  16. Electronic cigarette aerosol induces significantly less cytotoxicity than tobacco smoke

    Science.gov (United States)

    Azzopardi, David; Patel, Kharishma; Jaunky, Tomasz; Santopietro, Simone; Camacho, Oscar M.; McAughey, John; Gaça, Marianna

    2016-01-01

    Abstract Electronic cigarettes (E-cigarettes) are a potential means of addressing the harm to public health caused by tobacco smoking by offering smokers a less harmful means of receiving nicotine. As e-cigarettes are a relatively new phenomenon, there are limited scientific data on the longer-term health effects of their use. This study describes a robust in vitro method for assessing the cytotoxic response of e-cigarette aerosols that can be effectively compared with conventional cigarette smoke. This was measured using the regulatory accepted Neutral Red Uptake assay modified for air–liquid interface (ALI) exposures. An exposure system, comprising a smoking machine, traditionally used for in vitro tobacco smoke exposure assessments, was adapted for use with e-cigarettes to expose human lung epithelial cells at the ALI. Dosimetric analysis methods using real-time quartz crystal microbalances for mass, and post-exposure chemical analysis for nicotine, were employed to detect/distinguish aerosol dilutions from a reference Kentucky 3R4F cigarette and two commercially available e-cigarettes (Vype eStick and ePen). ePen aerosol induced 97%, 94% and 70% less cytotoxicity than 3R4F cigarette smoke based on matched EC50 values at different dilutions (1:5 vs. 1:153 vol:vol), mass (52.1 vs. 3.1 μg/cm2) and nicotine (0.89 vs. 0.27 μg/cm2), respectively. Test doses where cigarette smoke and e-cigarette aerosol cytotoxicity were observed are comparable with calculated daily doses in consumers. Such experiments could form the basis of a larger package of work including chemical analyses, in vitro toxicology tests and clinical studies, to help assess the safety of current and next generation nicotine and tobacco products. PMID:27690199

  17. Model representations of aerosol layers transported from North America over the Atlantic Ocean during the Two-Column Aerosol Project

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; Easter, Richard C.; Ferrare, Richard A.; Hair, John; Hostetler, Chris A.; Liu, Ying; Ortega, Ivan; Sedlacek, Art; Shilling, John E.; Shrivastava, ManishKumar B.; Springston, Stephen R.; Tomlinson, Jason M.; Volkamer, Rainer M.; Wilson, Jacqueline M.; Zaveri, Rahul A.; Zelenyuk-Imre, Alla

    2016-08-22

    The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurements during July, and two days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.

  18. Significant atmospheric aerosol pollution caused by world food cultivation

    Science.gov (United States)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2017-04-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to it s sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  19. Significant Atmospheric Aerosol Pollution Caused by World Food Cultivation

    Science.gov (United States)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2016-01-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  20. Influences of in-cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5-HAM

    Directory of Open Access Journals (Sweden)

    B. Croft

    2010-02-01

    Full Text Available A diagnostic cloud nucleation scavenging scheme, which determines stratiform cloud scavenging ratios for both aerosol mass and number distributions, based on cloud droplet, and ice crystal number concentrations, is introduced into the ECHAM5-HAM global climate model. This scheme is coupled with a size-dependent in-cloud impaction scavenging parameterization for both cloud droplet-aerosol, and ice crystal-aerosol collisions. The aerosol mass scavenged in stratiform clouds is found to be primarily (>90% scavenged by cloud nucleation processes for all aerosol species, except for dust (50%. The aerosol number scavenged is primarily (>90% attributed to impaction. 99% of this impaction scavenging occurs in clouds with temperatures less than 273 K. Sensitivity studies are presented, which compare aerosol concentrations, burdens, and deposition for a variety of in-cloud scavenging approaches: prescribed fractions, a more computationally expensive prognostic aerosol cloud processing treatment, and the new diagnostic scheme, also with modified assumptions about in-cloud impaction and nucleation scavenging. Our results show that while uncertainties in the representation of in-cloud scavenging processes can lead to differences in the range of 20–30% for the predicted annual, global mean aerosol mass burdens, and near to 50% for accumulation mode aerosol number burden, the differences in predicted aerosol mass concentrations can be up to one order of magnitude, particularly for regions of the middle troposphere with temperatures below 273 K where mixed and ice phase clouds exist. Different parameterizations for impaction scavenging changed the predicted global, annual mean number removal attributed to ice clouds by seven-fold, and the global, annual dust mass removal attributed to impaction by two orders of magnitude. Closer agreement with observations of black carbon profiles from aircraft (increases near to one order of magnitude for mixed phase clouds

  1. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    Science.gov (United States)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  2. Inter-comparison of lidar and ceilometer retrievals for aerosol and Planetary Boundary Layer profiling over Athens, Greece

    Directory of Open Access Journals (Sweden)

    G. Tsaknakis

    2011-06-01

    Full Text Available This study presents an inter-comparison of two active remote sensors (lidar and ceilometer to determine the mixing layer height and structure of the Planetary Boundary Layer (PBL and to retrieve tropospheric aerosol vertical profiles over Athens, Greece. This inter-comparison was performed under various strongly different aerosol loads/types (urban air pollution, biomass burning and Saharan dust event, implementing two different lidar systems (one portable Raymetrics S.A. lidar system running at 355 nm and one multi-wavelength Raman lidar system running at 355 nm, 532 nm and 1064 nm and one CL31 Vaisala S.A. ceilometer (running at 910 nm. Spectral conversions of the ceilometer's data were performed using the Ångström exponent estimated by ultraviolet multi-filter radiometer (UV-MFR measurements. The inter-comparison was based on two parameters: the mixing layer height determined by the presence of the suspended aerosols and the attenuated backscatter coefficient. Additionally, radiosonde data were used to derive the PBL height. In general, a good agreement was found between the ceilometer and the lidar techniques in both inter-compared parameters in the height range from 500 m to 5000 m, while the limitations of each instrument are also examined.

  3. Aerosol Climate Time Series in ESA Aerosol_cci

    Science.gov (United States)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  4. CALIPSO-Inferred Aerosol Direct Radiative Effects: Bias Estimates Using Ground-Based Raman Lidars

    Science.gov (United States)

    Thorsen, Tyler; Fu, Qiang

    2016-01-01

    Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at midlatitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detect all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30-50%. Therefore, global estimates of the aerosol DRE inferred from CALIPSO observations are likely too weak.

  5. Uncertainty from the choice of microphysics scheme in convection-permitting models significantly exceeds aerosol effects

    Directory of Open Access Journals (Sweden)

    B. White

    2017-10-01

    Full Text Available This study investigates the hydrometeor development and response to cloud droplet number concentration (CDNC perturbations in convection-permitting model configurations. We present results from a real-data simulation of deep convection in the Congo basin, an idealised supercell case, and a warm-rain large-eddy simulation (LES. In each case we compare two frequently used double-moment bulk microphysics schemes and investigate the response to CDNC perturbations. We find that the variability among the two schemes, including the response to aerosol, differs widely between these cases. In all cases, differences in the simulated cloud morphology and precipitation are found to be significantly greater between the microphysics schemes than due to CDNC perturbations within each scheme. Further, we show that the response of the hydrometeors to CDNC perturbations differs strongly not only between microphysics schemes, but the inter-scheme variability also differs between cases of convection. Sensitivity tests show that the representation of autoconversion is the dominant factor that drives differences in rain production between the microphysics schemes in the idealised precipitating shallow cumulus case and in a subregion of the Congo basin simulations dominated by liquid-phase processes. In this region, rain mass is also shown to be relatively insensitive to the radiative effects of an overlying layer of ice-phase cloud. The conversion of cloud ice to snow is the process responsible for differences in cold cloud bias between the schemes in the Congo. In the idealised supercell case, thermodynamic impacts on the storm system using different microphysics parameterisations can equal those due to aerosol effects. These results highlight the large uncertainty in cloud and precipitation responses to aerosol in convection-permitting simulations and have important implications not only for process studies of aerosol–convection interaction, but also for

  6. Deriving aerosol scattering ratio using range-resolved lidar ratio

    Indian Academy of Sciences (India)

    2014-02-13

    Feb 13, 2014 ... ratio (LDR) are used to suggest the type of aerosols. The altitude-dependent ... to the station and the experimentally measured lidar data. The 'model ... The integrated aerosol extinction profile with altitude-dependent S and k.

  7. The Effect of Aerosol on Gravity Wave Characteristics above the Boundary Layer over a Tropical Location

    Science.gov (United States)

    Rakshit, G.; Jana, S.; Maitra, A.

    2017-12-01

    The perturbations of temperature profile over a location give an estimate of the potential energy of gravity waves propagating through the atmosphere. Disturbances in the lower atmosphere due to tropical deep convection, orographic effects and various atmospheric disturbances generates of gravity waves. The present study investigates the gravity wave energy estimated from fluctuations in temperature profiles over the tropical location Kolkata (22°34' N, 88°22' E). Gravity waves are most intense during the pre-monsoon period (March-June) at the present location, the potential energy having high values above the boundary layer (2-4 km) as observed from radiosonde profiles. An increase in temperature perturbation, due to high ambient temperature in the presence of heat absorbing aerosols, causes an enhancement in potential energy. As the present study location is an urban metropolitan city experiencing high level of pollution, pollutant aerosols can go much above the normal boundary layer during daytime due to convection causing an extended boundary layer. The Aerosol Index (AAI) obtained from Global Ozone Monitoring Experiment-2 (GOME-2) on MetOp-A platform at 340 nm and 380 nm confirms the presence of absorbing aerosol particles over the present location. The Hysplit back trajectory analysis shows that the aerosol particles at those heights are of local origin and are responsible for depleting liquid water content due to cloud burning. The aerosol extinction coefficient obtained from CALIPSO data exhibits an increasing trend during 2006-2016 accompanied by a similar pattern of gravity wave energy. Thus the absorbing aerosols have a significant role in increasing the potential energy of gravity wave at an urban location in the tropical region.

  8. Influence of Saharan dust outbreaks and atmospheric stability upon vertical profiles of size-segregated aerosols and water vapor

    Science.gov (United States)

    Giménez, Joaquín; Pastor, Carlos; Castañer, Ramón; Nicolás, José; Crespo, Javier; Carratalá, Adoración

    2010-01-01

    Vertical profiles of aerosols and meteorological parameters were obtained using a hot air balloon and motorized paraglider. They were studied under anticyclonic conditions in four different contexts. Three flights occurred near sunrise, and one took place in the central hours of the day. The effects of North African dust intrusions were analyzed, whose entrance to the study area took place above the Stable Boundary Layer (SBL) in flight 1 and below it in flight 2. These flights have been compared with a non-intrusion situation (flight 3). A fourth flight characterized the profiles in the central hours of the day with a well-formed Convective Boundary Layer (CBL). With respect to the particle number distribution, the results show that not all sizes increase within the presence of an intrusion; during the first flight the smallest particles were not affected. The particle sizes affected in the second flight fell within the 0.35-2.5 μm interval. Under situations of convective dynamics, the reduction percentage of the particle number concentration reduces with increasing altitude, independently of their size, with respect to stability conditions. The negative vertical gradient for aerosols and water vapor, characteristic of a highly stable SBL (flight 3) becomes a constant profile within a CBL (flight 4). There are two situations that seem to alter the negative vertical gradient of the water vapor mixing ratio within the SBL: the presence of an intrusion and the possible stratification of the SBL based on different degrees of stability.

  9. Evidence of a tropospheric aerosol backscatter background mode

    Science.gov (United States)

    Rothermel, Jeffry; Bowdle, David A.; Vaughan, J. Michael; Post, Madison J.

    1989-01-01

    Vertical profiles of atmospheric aerosol backscatter coefficients at 10.6 microns obtained with airborne and ground-based lidar are compared. Both sets of profiles show a high frequency of occurrence of low backscatter over a limited range of values in the middle and upper troposphere. It is suggested that this narrow range indicates a ubiquitous background mode for atmospheric backscatter around the globe. Implications of such a mode for global scale aerosol models and for the design of satellite-borne lidar-based sensors are discussed.

  10. Comparing Simultaneous Stratospheric Aerosol and Ozone Lidar Measurements with SAGE 2 Data after the Mount Pinatubo Eruption

    Science.gov (United States)

    Yue, G. K.; Poole, L. R.; McCormick, M. P.; Veiga, R. E.; Wang, P.-H.; Rizi, V.; Masci, F.; DAltorio, A.; Visconti, G.

    1995-01-01

    Stratospheric aerosol and ozone profiles obtained simultaneously from the lidar station at the University of L'Aquila (42.35 deg N, 13.33 deg E, 683 m above sea level) during the first 6 months following the eruption of Mount Pinatubo are compared with corresponding nearby Stratospheric Aerosol and Gas Experiment (SAGE) 2 profiles. The agreement between the two data sets is found to be reasonably good. The temporal change of aerosol profiles obtained by both techniques showed the intrusion and growth of Pinatubo aerosols. In addition, ozone concentration profiles derived from an empirical time-series model based on SAGE 2 ozone data obtained before the Pinatubo eruption are compared with measured profiles. Good agreement is shown in the 1991 profiles, but ozone concentrations measured in January 1992 were reduced relative to time-series model estimates. Possible reasons for the differences between measured and model-based ozone profiles are discussed.

  11. SAM II aerosol profile measurements, Poker Flat, Alaska; July 16-19, 1979

    Science.gov (United States)

    Mccormick, M. P.; Chu, W. P.; Mcmaster, L. R.; Grams, G. W.; Herman, B. M.; Pepin, T. J.; Russell, P. B.; Swissler, T. J.

    1981-01-01

    SAM II satellite measurements during the July 1979 Poker Flat mission, yielded an aerosol extinction coefficient of 0.0004/km at 1.0 micron wavelength, in the region of the stratospheric aerosol mixing ratio peak (12-16 km). The stratospheric aerosol optical depth for these data, calculated from the tropopause through 30 km, is approximately 0.001. These results are consistent with the average 1979 summertime values found throughout the Arctic.

  12. Aerosol layer height from synergistic use of VIIRS and OMPS

    Science.gov (United States)

    Lee, J.; Hsu, N. Y. C.; Sayer, A. M.; Kim, W.; Seftor, C. J.

    2017-12-01

    This study presents an Aerosol Single-scattering albedo and Height Estimation (ASHE) algorithm, which retrieves the height of UV-absorbing aerosols by synergistically using the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Ozone Mapping and Profiler Suite (OMPS). ASHE provides height information over a much broader area than ground-based or spaceborne lidar measurements by benefitting from the wide swaths of the two instruments used. As determination of single-scattering albedo (SSA) of the aerosol layer is the most critical part for the performance and coverage of ASHE, here we demonstrate three different strategies to constrain the SSA. First, ASHE is able to retrieve the SSA of UV-absorbing aerosols when Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) provides vertical profiles of the aerosol layer of interest. Second, Aerosol Robotic Network (AERONET) inversions can directly constrain the SSA of the aerosol layer when collocated with VIIRS or OMPS. Last, a SSA climatology from ASHE, AERONET, or other data sources can be used for large-scale, aged aerosol events, for which climatological SSA is well-known, at the cost of a slight decrease in retrieval accuracy. The same algorithm can be applied to measurements of similar type, such as those made by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI), for a long-term, consistent data record.

  13. Correlative measurements of the stratospheric aerosols

    Science.gov (United States)

    Santer, R.; Brogniez, C.; Herman, M.; Diallo, S.; Ackerman, M.

    1992-12-01

    Joint experiments were organized or available during stratospheric flights of a photopolarimeter, referred to as RADIBAL (radiometer balloon). In May 1984, RADIBAL flew simultaneously with another balloonborne experiment conducted by the Institut d'Aeronomie Spatiale de Belgique (IASB), which provides multiwavelength vertical profiles of the aerosol scattering coefficient. At this time, the El Chichon layer was observable quite directly from mountain sites. A ground-based station set up at Pic du Midi allowed an extensive description of the aerosol optical properties. The IASB and the Pic du Midi observations are consistent with the aerosol properties derived from the RADIBAL measurement analysis.

  14. Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfeld, Daniel [Hebrew Univ. of Jerusalem (Israel)

    2015-12-23

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.

  15. Aerosol typing - key information from aerosol studies

    Science.gov (United States)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  16. SAGE aerosol measurements. Volume 1, February 21, 1979 to December 31, 1979

    International Nuclear Information System (INIS)

    Mccormick, M.P.

    1985-10-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) satellite system, launched on February 18, 1979, provides profiles of aerosol extinction, ozone concentration, and nitrogen dioxide concentration between about 80 N and 80 S. Zonal averages, separated into sunrise and sunset events, and seasonal averages of the aerosol extinction at 1.00 microns and 0.45 microns ratios of the aerosol extinction to the molecular extinction at 1.00 microns, and ratios of the aerosol extinction at 0.45 microns to the aerosol extinction at 1.00 microns are given. The averages for 1979 are shown in tables and in profile and contour plots (as a function of altitude and latitude). In addition, temperature data provided by the National Oceanic and Atmospheric Administration (NOAA) for the time and location of each SAGE measurement are averaged and shown in a similar format. Typical values of the peak aerosol extinction were 0.0001 to 0.0002 km at 1.00 microns depth values for the 1.00 microns channel varied between 0.001 and 0.002 over all latitudes

  17. Sensitivity of warm-frontal processes to cloud-nucleating aerosol concentrations

    Science.gov (United States)

    Igel, Adele L.; Van Den Heever, Susan C.; Naud, Catherine M.; Saleeby, Stephen M.; Posselt, Derek J.

    2013-01-01

    An extratropical cyclone that crossed the United States on 9-11 April 2009 was successfully simulated at high resolution (3-km horizontal grid spacing) using the Colorado State University Regional Atmospheric Modeling System. The sensitivity of the associated warm front to increasing pollution levels was then explored by conducting the same experiment with three different background profiles of cloud-nucleating aerosol concentration. To the authors' knowledge, no study has examined the indirect effects of aerosols on warm fronts. The budgets of ice, cloud water, and rain in the simulation with the lowest aerosol concentrations were examined. The ice mass was found to be produced in equal amounts through vapor deposition and riming, and the melting of ice produced approximately 75% of the total rain. Conversion of cloud water to rain accounted for the other 25%. When cloud-nucleating aerosol concentrations were increased, significant changes were seen in the budget terms, but total precipitation remained relatively constant. Vapor deposition onto ice increased, but riming of cloud water decreased such that there was only a small change in the total ice production and hence there was no significant change in melting. These responses can be understood in terms of a buffering effect in which smaller cloud droplets in the mixed-phase region lead to both an enhanced vapor deposition and decreased riming efficiency with increasing aerosol concentrations. Overall, while large changes were seen in the microphysical structure of the frontal cloud, cloud-nucleating aerosols had little impact on the precipitation production of the warm front.

  18. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements

  19. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-05-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in

  20. Aerosol observation using multi-wavelength Mie-Raman lidars of the Ad-Net and aerosol component analysis

    Directory of Open Access Journals (Sweden)

    Nishizawa Tomoaki

    2018-01-01

    Full Text Available We deployed multi-wavelength Mie-Raman lidars (MMRL at three sites of the AD-Net and have conducted continuous measurements using them since 2013. To analyze the MMRL data and better understand the externally mixing state of main aerosol components (e.g., dust, sea-salt, and black carbon in the atmosphere, we developed an integrated package of aerosol component retrieval algorithms, which have already been developed or are being developed, to estimate vertical profiles of the aerosol components. This package applies to the other ground-based lidar network data (e.g., EARLINET and satellite-borne lidar data (e.g., CALIOP/CALIPSO and ATLID/EarthCARE as well as the other lidar data of the AD-Net.

  1. Aerosol observation using multi-wavelength Mie-Raman lidars of the Ad-Net and aerosol component analysis

    Science.gov (United States)

    Nishizawa, Tomoaki; Sugimoto, Nobuo; Shimizu, Atsushi; Uno, Itsushi; Hara, Yukari; Kudo, Rei

    2018-04-01

    We deployed multi-wavelength Mie-Raman lidars (MMRL) at three sites of the AD-Net and have conducted continuous measurements using them since 2013. To analyze the MMRL data and better understand the externally mixing state of main aerosol components (e.g., dust, sea-salt, and black carbon) in the atmosphere, we developed an integrated package of aerosol component retrieval algorithms, which have already been developed or are being developed, to estimate vertical profiles of the aerosol components. This package applies to the other ground-based lidar network data (e.g., EARLINET) and satellite-borne lidar data (e.g., CALIOP/CALIPSO and ATLID/EarthCARE) as well as the other lidar data of the AD-Net.

  2. Vertical Profiles and Chemical Properties of Aerosol Particles upon Ny-Ålesund (Svalbard Islands

    Directory of Open Access Journals (Sweden)

    B. Moroni

    2015-01-01

    Full Text Available Size-segregated particle samples were collected in the Arctic (Ny-Ålesund, Svalbard in April 2011 both at ground level and in the free atmosphere exploiting a tethered balloon equipped also with an optical particle counter (OPC and meteorological sensors. Individual particle properties were investigated by scanning electron microscopy coupled with energy dispersive microanalysis (SEM-EDS. Results of the SEM-EDS were integrated with particle size and optical measurements of the aerosols properties at ground level and along the vertical profiles. Detailed analysis of two case studies reveals significant differences in composition despite the similar structure (layering and the comparable texture (grain size distribution of particles in the air column. Differences in the mineral chemistry of samples point at both local (plutonic/metamorphic complexes in Svalbard and remote (basic/ultrabasic magmatic complexes in Greenland and/or Iceland geological source regions for dust. Differences in the particle size and shape are put into relationship with the mechanism of particle formation, that is, primary (well sorted, small or secondary (idiomorphic, fine to coarse grained origin for chloride and sulfate crystals and transport/settling for soil (silicate, carbonate and metal oxide particles. The influence of size, shape, and mixing state of particles on ice nucleation and radiative properties is also discussed.

  3. Stratospheric Aerosol and Gas Experiments 1 and 2: Comparisons with ozonesondes

    Science.gov (United States)

    Veiga, Robert E.; Cunnold, Derek M.; Chu, William P.; McCormick, M. Patrick

    1995-01-01

    Ozone profiles measured by the Stratospheric Aerosol and Gas Experiments (SAGE) 1 and 2 are compared with ozonesonde profiles at 24 stations over the period extending from 1979 through 1991. Ozonesonde/satellite differences at 21 stations with SAGE 2 overpasses were computed down to 11.5 km in midlatitudes, to 15.5 km in the lower latitudes, and for nine stations with SAGE 1 overpasses down to 15.5 km. The set of individual satellite and ozonesonde profile comparisons most closely colocated in time and space shows mean absolute differences relative to the satellite measurement of 6 +/- 2% for SAGE 2 and 8 +/- 3% for SAGE 1. The ensemble of ozonesonde/satellite differences, when averaged over all altitudes, shows that for SAGE 2, 70% were less than 5%, whereas for SAGE 1, 50% were less than 5%. The best agreement occurred in the altitude region near the ozone density maximum where almost all the relative differences were less than 5%. Most of the statistically significant differences occurred below the ozone maximum down to the tropopause in the region of steepest ozone gradients and typically ranged between 0 and -20%. Correlations between ozone and aerosol extinction in the northern midlatitudes indicate that aerosols had no discernible impact on the ozonesonde/satellite differences and on the SAGE 2 ozone retrieval for the levels of extinction encountered in the lower stratosphere during 1984 to mid-1991.

  4. Correlation of Secondary Organic Aerosol with Odd Oxygen in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Herndon, Scott C.; Onasch, Timothy B.; Wood, Ezra C.; Kroll, Jesse H.; Canagaratna, M. R.; Jayne, John T.; Zavala, Miguel A.; Knighton, W. Berk; Mazzoleni, Claudio; Dubey, Manvendra K.; Ulbrich, Ingrid M.; Jimenez, Jose L.; Seila, Robert; de Gouw, Joost A.; de Foy, B.; Fast, Jerome D.; Molina, Luisa T.; Kolb, C. E.; Worsnop, Douglas R.

    2008-08-05

    Data collected from a mountain location within the Mexico City limits are used to demonstrate a correlation between secondary organic aerosol and odd-oxygen (O3 + NO2). Positive matrix factorization techniques are employed to separate organic aerosol components: hydrocarbon-like organic aerosol; oxidized-organic aerosol; and biomass burning organic aerosol. The measured hydrocarbon-like organic aerosol is correlated with urban CO (8±1) µg m-3 ppmv-1. The measured oxidized-organic aerosol is associated with photochemical oxidation products and correlates with odd-oxygen with an apparent slope of (70-120) µg m-3 ppmv-1. The dependence of the oxidized-organic aerosol to odd-oxygen correlation on the nature of the gas-phase hydrocarbon profile is discussed.

  5. An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling

    Directory of Open Access Journals (Sweden)

    H. Baars

    2016-04-01

    Full Text Available A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63° N to 52° S and 72° W to 124° E has been achieved within the Raman and polarization lidar network PollyNET. This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly for automated and continuous 24/7 observations of clouds and aerosols. PollyNET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at http://polly.tropos.de/. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the PollyNET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of PollyNET to support the establishment of a global aerosol climatology that covers the entire troposphere.

  6. Coarse mode aerosols in the High Arctic

    Science.gov (United States)

    Baibakov, K.; O'Neill, N. T.; Chaubey, J. P.; Saha, A.; Duck, T. J.; Eloranta, E. W.

    2014-12-01

    Fine mode (submicron) aerosols in the Arctic have received a fair amount of scientific attention in terms of smoke intrusions during the polar summer and Arctic haze pollution during the polar winter. Relatively little is known about coarse mode (supermicron) aerosols, notably dust, volcanic ash and sea salt. Asian dust is a regular springtime event whose optical and radiative forcing effects have been fairly well documented at the lower latitudes over North America but rarely reported for the Arctic. Volcanic ash, whose socio-economic importance has grown dramatically since the fear of its effects on aircraft engines resulted in the virtual shutdown of European civil aviation in the spring of 2010 has rarely been reported in the Arctic in spite of the likely probability that ash from Iceland and the Aleutian Islands makes its way into the Arctic and possibly the high Arctic. Little is known about Arctic sea salt aerosols and we are not aware of any literature on the optical measurement of these aerosols. In this work we present preliminary results of the combined sunphotometry-lidar analysis at two High Arctic stations in North America: PEARL (80°N, 86°W) for 2007-2011 and Barrow (71°N,156°W) for 2011-2014. The multi-years datasets were analyzed to single out potential coarse mode incursions and study their optical characteristics. In particular, CIMEL sunphotometers provided coarse mode optical depths as well as information on particle size and refractive index. Lidar measurements from High Spectral Resolution lidars (AHSRL at PEARL and NSHSRL at Barrow) yielded vertically resolved aerosol profiles and gave an indication of particle shape and size from the depolarization ratio and color ratio profiles. Additionally, we employed supplementary analyses of HYSPLIT backtrajectories, OMI aerosol index, and NAAPS (Navy Aerosol Analysis and Prediction System) outputs to study the spatial context of given events.

  7. Odin-OSIRIS stratospheric aerosol data product and SAGE III intercomparison

    Directory of Open Access Journals (Sweden)

    A. E. Bourassa

    2012-01-01

    Full Text Available The scattered sunlight measurements made by the Optical Spectrograph and InfraRed Imaging System (OSIRIS on the Odin spacecraft are used to retrieve vertical profiles of stratospheric aerosol extinction at 750 nm. The recently released OSIRIS Version 5 data product contains the first publicly released stratospheric aerosol extinction retrievals, and these are now available for the entire Odin mission, which extends from the present day back to launch in 2001. A proof-of-concept study for the retrieval of stratospheric aerosol extinction from limb scatter measurements was previously published and the Version 5 data product retrievals are based on this work, but incorporate several important improvements to the algorithm. One of the primary changes is the use of a new retrieval vector that greatly improves the sensitivity to aerosol scattering by incorporating a forward modeled calculation of the radiance from a Rayleigh atmosphere. Additional improvements include a coupled retrieval of the effective albedo, a new method for normalization of the retrieval vector to improve signal-to-noise, and the use of an initial guess that is representative of very low background aerosol loading conditions, which allows for maximal retrieval range. Furthermore, the Version 5 data set is compared to Stratospheric Aerosol and Gas Experiment (SAGE III 755 nm extinction profiles during the almost four years of mission overlap from 2002 to late 2005. The vertical structure in coincident profile measurements is well correlated and the statistics on a relatively large set of tight coincident measurements show agreement between the measurements from the two instruments to within approximately 10% throughout the 15 to 25 km altitude range, which covers the bulk of the stratospheric aerosol layer for the mid and high latitude cases studied here.

  8. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-09-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA

  9. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Directory of Open Access Journals (Sweden)

    G. R. McMeeking

    2011-09-01

    Full Text Available Black carbon (BC aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2 measurements of refractory BC (rBC mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA operated by the Facility for Airborne Atmospheric Measurements (FAAM. We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS and used positive matrix factorization to separate hydrocarbon-like (HOA and oxygenated organic aerosols (OOA. We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA did change for

  10. Radiation forcing by the atmospheric aerosols in the nocturnal boundary layer

    Science.gov (United States)

    Singh, D. K.; Ponnulakshami, V. K.; Mukund, V.; Subramanian, G.; Sreenivas, K. R.

    2013-05-01

    We have conducted experimental and theoretical studies on the radiation forcing due to suspended aerosols in the nocturnal boundary layer. We present radiative, conductive and convective equilibrium profile for different bottom boundaries where calculated Rayleigh number is higher than the critical Rayleigh number in laboratory conditions. The temperature profile can be fitted using an exponential distribution of aerosols concentration field. We also present the vertical temperature profiles in a nocturnal boundary in the presence of fog in the field. Our results show that during the presence of fog in the atmosphere, the ground temperature is greater than the dew-point temperature. The temperature profiles before and after the formation of fog are also observed to be different.

  11. Global aerosol transport and consequences for the radiation budget

    International Nuclear Information System (INIS)

    Newiger, M.; Grassl, H.; Schussel, P.; Rehkopf, J.

    1984-01-01

    Man's activities may influence global climate by changing the atmospheric composition and surface characteristics and by waste heat. Most prominent within this discussion is the increase or decrease of radiatively active trace gases like CO/sub 2/, N/sub 2/O, O/sub 3/, and others. The general opinion is converging towards a greenhouse effect as a combined action of all trace gases, whose exact magnitude is uncertain mainly because of the unknown reaction of water cycle. The aim of our global 2-D (resolving latitude and height) aerosol transport model is the calculation of aerosol particle number density profiles as a function of latitude for present natural plus anthropogenic emissions. The aerosol transport model uses prescribed meridonal circulation, diffusivity factors and cloud climatology for January as well as July. All these latitude and height dependent input parameters were taken from well known sources. The fixed climatology excludes the feedback of aerosol particle parameter changes on mean circulation. However, the radiative parameters of six clouds types are modified, although they possess by adoption of the Telegadas and London (1954) cloud climatology prescribed amount and height. The inclusion of the feedback on mean circulation seems premature at present. Adding particles either accounting for natural emissions or natural anthropogenic emission and removing particles by all known sinks outside and within clouds gives us - for the stationary state - vertical profiles of aerosol number density in three sizes classes as a function of latitude. These profiles in turn are input for radiation flux calculations in clear and cloudy areas in order to assess net flux changes caused by the present aerosol load in comparison to a scenario without anthropogenic emissions. The net flux changes finally are compared to those calculated for increased CO/sub 2/ levels

  12. Impact of cloud-borne aerosol representation on aerosol direct and indirect effects

    Directory of Open Access Journals (Sweden)

    S. J. Ghan

    2006-01-01

    Full Text Available Aerosol particles attached to cloud droplets are much more likely to be removed from the atmosphere and are much less efficient at scattering sunlight than if unattached. Models used to estimate direct and indirect effects of aerosols employ a variety of representations of such cloud-borne particles. Here we use a global aerosol model with a relatively complete treatment of cloud-borne particles to estimate the sensitivity of simulated aerosol, cloud and radiation fields to various approximations to the representation of cloud-borne particles. We find that neglecting transport of cloud-borne particles introduces little error, but that diagnosing cloud-borne particles produces global mean biases of 20% and local errors of up to 40% for aerosol, droplet number, and direct and indirect radiative forcing. Aerosol number, aerosol optical depth and droplet number are significantly underestimated in regions and seasons where and when wet removal is primarily by stratiform rather than convective clouds (polar regions during winter, but direct and indirect effects are less biased because of the limited sunlight there and then. A treatment that predicts the total mass concentration of cloud-borne particles for each mode yields smaller errors and runs 20% faster than the complete treatment. The errors are much smaller than current estimates of uncertainty in direct and indirect effects of aerosols, which suggests that the treatment of cloud-borne aerosol is not a significant source of uncertainty in estimates of direct and indirect effects.

  13. Elevated Aerosol Layers and Their Radiative Impact over Kanpur During Monsoon Onset Period

    Science.gov (United States)

    Sarangi, Chandan; Tripathi, S. N.; Mishra, A. K.; Welton, E. J.

    2016-01-01

    Accurate information about aerosol vertical distribution is needed to reduce uncertainties in aerosol radiative forcing and its effect on atmospheric dynamics. The present study deals with synergistic analyses of aerosol vertical distribution and aerosol optical depth (AOD) with meteorological variables using multisatellite and ground-based remote sensors over Kanpur in central Indo-Gangetic Plain (IGP). Micro-Pulse Lidar Network-derived aerosol vertical extinction (sigma) profiles are analyzed to quantify the interannual and daytime variations during monsoon onset period (May-June) for 2009-2011. The mean aerosol profile is broadly categorized into two layers viz., a surface layer (SL) extending up to 1.5 km (where sigma decreased exponentially with height) and an elevated aerosol layer (EAL) extending between 1.5 and 5.5 km. The increase in total columnar aerosol loading is associated with relatively higher increase in contribution from EAL loading than that from SL. The mean contributions of EALs are about 60%, 51%, and 50% to total columnar AOD during 2009, 2010, and 2011, respectively. We observe distinct parabolic EALs during early morning and late evening but uniformly mixed EALs during midday. The interannual and daytime variations of EALs are mainly influenced by long-range transport and convective capacity of the local emissions, respectively. Radiative flux analysis shows that clear-sky incoming solar radiation at surface is reduced with increase in AOD, which indicates significant cooling at surface. Collocated analysis of atmospheric temperature and aerosol loading reveals that increase in AOD not only resulted in surface dimming but also reduced the temperature (approximately 2-3 C) of lower troposphere (below 3 km altitude). Radiative transfer simulations indicate that the reduction of incoming solar radiation at surface is mainly due to increased absorption by EALs (with increase in total AOD). The observed cooling in lower troposphere in high

  14. Sensing Aerosol Height in the O2 A and B Bands from Lagrange-1 Point

    Science.gov (United States)

    Xu, X.; Wang, J.; Wang, Y.; Zeng, J.; Torres, O.; Yang, Y.; Marshak, A.; Reid, J. S.; Miller, S. D.

    2017-12-01

    Aerosol vertical distribution is an important but poorly constrained variable that determines the impacts of aerosols on earth's climate and environment. Detailed aerosol profile can be probed by space-borne Lidar such as the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization), but its spatial coverage is limited as a "curtain" captured along the Lidar's sub-orbital track. Passive techniques, though of less accuracy, can add an important augmentation due to the better spatial coverage. In this study, we present an algorithm for sensing aerosol height and optical depth using radiance measured in the oxygen A and B bands by the Earth Polychromatic Imaging Camera (EPIC), an instrument aboard the Deep Space Climate Observatory (DSCOVR) residing at Lagrange-1 point. The algorithm was applied to EPIC imagery of dust plumes over the North Atlantic Ocean. Retrieved aerosol heights and optical depths were evaluated against counterparts observed by CALIOP, Moderate Resolution Imaging Spectroradiometer (MODIS), and Aerosol Robotic Network (AERONET). The accuracies in EIPC retrieved aerosol heights and optical depths are found better than ±0.5 km and ±(0.1+10%), respectively. This study demonstrates the potential of EPIC measurements for retrieving global aerosol height multiple times daily, which are essential for evaluating aerosol profile simulated in climate models and for better estimating aerosol radiative effects.

  15. Airborne Lidar Measurements of Aerosol Optical Properties During SAFARI-2000

    Science.gov (United States)

    McGill, M. J.; Hlavka, D. L.; Hart, W. D.; Welton, E. J.; Campbell, J. R.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The Cloud Physics Lidar (CPL) operated onboard the NASA ER-2 high altitude aircraft during the SAFARI-2000 field campaign. The CPL provided high spatial resolution measurements of aerosol optical properties at both 1064 nm and 532 nm. We present here results of planetary boundary layer (PBL) aerosol optical depth analysis and profiles of aerosol extinction. Variation of optical depth and extinction are examined as a function of regional location. The wide-scale aerosol mapping obtained by the CPL is a unique data set that will aid in future studies of aerosol transport. Comparisons between the airborne CPL and ground-based MicroPulse Lidar Network (MPL-Net) sites are shown to have good agreement.

  16. Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model

    Directory of Open Access Journals (Sweden)

    C. L. Heald

    2011-12-01

    Full Text Available The global organic aerosol (OA budget is highly uncertain and past studies suggest that models substantially underestimate observed concentrations. Few of these studies have examined the vertical distribution of OA. Furthermore, many model-measurement comparisons have been performed with different models for single field campaigns. We synthesize organic aerosol measurements from 17 aircraft campaigns from 2001–2009 and use these observations to consistently evaluate a GEOS-Chem model simulation. Remote, polluted and fire-influenced conditions are all represented in this extensive dataset. Mean observed OA concentrations range from 0.2–8.2 μg sm−3 and make up 15 to 70% of non-refractory aerosol. The standard GEOS-Chem simulation reproduces the observed vertical profile, although observations are underestimated in 13 of the 17 field campaigns (the median observed to simulated ratio ranges from 0.4 to 4.2, with the largest model bias in anthropogenic regions. However, the model is best able to capture the observed variability in these anthropogenically-influenced regions (R2=0.18−0.57, but has little skill in remote or fire-influenced regions. The model bias increases as a function of relative humidity for 11 of the campaigns, possibly indicative of missing aqueous phase SOA production. However, model simulations of aqueous phase SOA suggest a pronounced signature in the mid-troposphere (2–6 km which is not supported in the observations examined here. Spracklen et al. (2011 suggest adding ~100 Tg yr−1 source of anthropogenically-controlled SOA to close the measurement-model gap, which we add as anthropogenic SOA. This eliminates the model underestimate near source, but leads to overestimates aloft in a few regions and in remote regions, suggesting either additional sinks of OA or higher volatility aerosol at colder temperatures. Sensitivity simulations indicate that fragmentation of organics upon

  17. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore–Washington, D.C. region

    Directory of Open Access Journals (Sweden)

    A. J. Beyersdorf

    2016-01-01

    Full Text Available In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites and mass measurements of aerosol loading (PM2.5 used for air quality monitoring must be understood. This connection varies with many factors including those specific to the aerosol type – such as composition, size, and hygroscopicity – and to the surrounding atmosphere, such as temperature, relative humidity (RH, and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality project, extensive in situ atmospheric profiling in the Baltimore, MD–Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 % and organics (57 %. A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs. The average black carbon concentrations were 240 ng m−3 in the lowest 1 km, decreasing to 35

  18. An overview of UAE2 flight operations: Observations of summertime atmospheric thermodynamic and aerosol profiles of the southern Arabian Gulf

    Science.gov (United States)

    Reid, Jeffrey S.; Piketh, Stuart J.; Walker, Annette L.; Burger, Roelof P.; Ross, Kristy E.; Westphal, Douglas L.; Bruintjes, Roelof T.; Holben, Brent N.; Hsu, Christina; Jensen, Tara L.; Kahn, Ralph A.; Kuciauskas, Arunas P.; Al Mandoos, Abdulla; Al Mangoosh, Abdulla; Miller, Steven D.; Porter, John N.; Reid, Elizabeth A.; Tsay, Si-Chee

    2008-07-01

    In August through September 2004 the United Arab Emirates Unified Aerosol Experiment (UAE2) was conducted in the southern Arabian Gulf region. We present atmospheric thermodynamic and aerosol data collected on 18 flights by the South African Aerocommander aircraft. In the first few kilometers, we observed high concentrations of both regional dust (from 100 to 300 μg m-3 in background, to over 1.5 mg m-3 in events) and ubiquitous sulfate based pollution from the Gulf's prevalent petroleum industry (10-100 μg m-3). Smoke and pollution from Europe and possibly Africa were found at levels between 1.5 and 5 km. Inland, classic deep over desert boundary layer characteristics were found. Over the Arabian Gulf, dust and pollution were most often either trapped below or sequestered above a strong stable boundary. However, there were cases where a well-distributed aerosol layer crossed the inversion uniformly. Data suggest that the observed vertical profiles can be explained by the rapid formation of stable marine boundary layers as air moves offshore. This can decouple aerosol layers from within the boundary layer to those aloft in regions of vertical wind shear. In the case of pollution, the ability of flaring plumes to penetrate the inversion may also in part determine layering. In coastal regions without vertical wind shear, uniform concentrations with height across the inversion are a result of internal boundary layer development. We conclude that the bulk of the observed variability in particle vertical distribution appear to be controlled by mesoscale and microscale processes, such as the sea/land breeze.

  19. Zonal Aerosol Direct and Indirect Radiative Forcing using Combined CALIOP, CERES, CloudSat, and CERES Data

    Science.gov (United States)

    Miller, W. F.; Kato, S.; Rose, F. G.; Sun-Mack, S.

    2009-12-01

    Under the NASA Energy and Water Cycle System (NEWS) program, cloud and aerosol properties derived from CALIPSO, CloudSat, and MODIS data then matched to the CERES footprint are used for irradiance profile computations. Irradiance profiles are included in the publicly available product, CCCM. In addition to the MODIS and CALIPSO generated aerosol, aerosol optical thickness is calculated over ocean by processing MODIS radiance through the Stowe-Ignatov algorithm. The CERES cloud mask and properties algorithm are use with MODIS radiance to provide additional cloud information to accompany the actively sensed data. The passively sensed data is the only input to the standard CERES radiative flux products. The combined information is used as input to the NASA Langley Fu-Liou radiative transfer model to determine vertical profiles and Top of Atmosphere shortwave and longwave flux for pristine, all-sky, and aerosol conditions for the special data product. In this study, the three sources of aerosol optical thickness will be compared directly and their influence on the calculated and measured TOA fluxes. Earlier studies indicate that the largest uncertainty in estimating direct aerosol forcing using aerosol optical thickness derived from passive sensors is caused by cloud contamination. With collocated CALIPSO data, we are able to estimate frequency of occurrence of cloud contamination, effect on the aerosol optical thickness and direct radiative effect estimates.

  20. Significant influence of fungi on coarse carbonaceous and potassium aerosols in a tropical rainforest

    International Nuclear Information System (INIS)

    Zhang, Zhisheng; Tao, Jun; Engling, Guenter; Zhang, Leiming; Kawamura, Kimitaka; Yang, Yihong; Zhang, Renjian; Chan, Chuen-yu; Li, Yide

    2015-01-01

    Fungal spores are ubiquitous in the Earth’s atmosphere, especially in the environment of tropical rainforests with intense biological activities. To assess the impact of fungi on chemical components of atmospheric aerosols at a Chinese tropical rainforest site, size-segregated fungal spore tracers (i.e. arabitol and mannitol) were measured along with major aerosol components, including carbonaceous species and water-soluble inorganic ions. The fungal spore tracers were found to be predominately associated with coarse particles, in which organic carbon (OC) and potassium (K + ) were also present at significant levels. Enhanced amounts of fungal spore tracers were closely linked to rainfall events. Moreover, fungal spore tracers exhibited positive correlations with relative humidity and negative correlations with wind speed, temperature or radiation. The relationships between fungal spore tracers and meteorological factors are consistent with the emission features of actively discharged fungal spores, which are generally associated with sugar alcohols and by-products such as the inorganic ion K + . The excellent correlations between fungal spore tracers and OC or K + in the coarse particles further suggested their common emission sources. Absolute principal factor analysis further identified fungi as the largest contributor to coarse OC and K + (both at ∼66%) in this rainforest. (letter)

  1. Is the aerosol emission detectable in the thermal infrared?

    Science.gov (United States)

    Hollweg, H.-D.; Bakan, S.; Taylor, J. P.

    2006-08-01

    The impact of aerosols on the thermal infrared radiation can be assessed by combining observations and radiative transfer calculations. Both have uncertainties, which are discussed in this paper. Observational uncertainties are obtained for two FTIR instruments operated side by side on the ground during the LACE 1998 field campaign. Radiative transfer uncertainties are assessed using a line-by-line model taking into account the uncertainties of the HITRAN 2004 spectroscopic database, uncertainties in the determination of the atmospheric profiles of water vapor and ozone, and differences in the treatment of the water vapor continuum absorption by the CKD 2.4.1 and MT_CKD 1.0 algorithms. The software package OPAC was used to describe the optical properties of aerosols for climate modeling. The corresponding radiative signature is a guideline to the assessment of the uncertainty ranges of observations and models. We found that the detection of aerosols depends strongly on the measurement accuracy of atmospheric profiles of water vapor and ozone and is easier for drier conditions. Within the atmospheric window, only the forcing of downward radiation at the surface by desert aerosol emerges clearly from the uncertainties of modeling and FTIR measurement. Urban and polluted continental aerosols are only partially detectable depending on the wave number and on the atmospheric water vapor amount. Simulations for the space-borne interferometer IASI show that only upward radiation above transported mineral dust aloft emerges out of the uncertainties. The detection of aerosols with weak radiative impact by FTIR instruments like ARIES and OASIS is made difficult by noise as demonstrated by the signal to noise ratio for clean continental aerosols. Altogether, the uncertainties found suggest that it is difficult to detect the optical depths of nonmineral and unpolluted aerosols.

  2. Assessment of Aerosol Distributions from GEOS-5 Using the CALIPSO Feature Mask

    Science.gov (United States)

    Welton, Ellsworth

    2010-01-01

    A-train sensors such as MODIS, MISR, and CALIPSO are used to determine aerosol properties, and in the process a means of estimating aerosol type (e.g. smoke vs. dust). Correct classification of aerosol type is important for climate assessment, air quality applications, and for comparisons and analysis with aerosol transport models. The Aerosols-Clouds-Ecosystems (ACE) satellite mission proposed in the NRC Decadal Survey describes a next generation aerosol and cloud suite similar to the current A-train, including a lidar. The future ACE lidar must be able to determine aerosol type effectively in conjunction with modeling activities to achieve ACE objectives. Here we examine the current capabilities of CALIPSO and the NASA Goddard Earth Observing System general circulation model and data assimilation system (GEOS-5), to place future ACE needs in context. The CALIPSO level 2 feature mask includes vertical profiles of aerosol layers classified by type. GEOS-5 provides global 3D aerosol mass for sulfate, sea salt, dust, and black and organic carbon. A GEOS aerosol scene classification algorithm has been developed to provide estimates of aerosol mixtures and extinction profiles along the CALIPSO orbit track. In previous work, initial comparisons between GEOS-5 derived aerosol mixtures and CALIPSO derived aerosol types were presented for July 2007. In general, the results showed that model and lidar derived aerosol types did not agree well in the boundary layer. Agreement was poor over Europe, where CALIPSO indicated the presence of dust and pollution mixtures yet GEOS-5 was dominated by pollution with little dust. Over the ocean in the tropics, the model appeared to contain less sea salt than detected by CALIPSO, yet at high latitudes the situation was reserved. Agreement between CALIPSO and GEOS-5, aerosol types improved above the boundary layer, primarily in dust and smoke dominated regions. At higher altitudes (> 5 km), the model contained aerosol layers not detected

  3. Earth cloud, aerosol, and radiation explorer optical payload development status

    Science.gov (United States)

    Hélière, A.; Wallace, K.; Pereira do Carmo, J.; Lefebvre, A.

    2017-09-01

    The European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) are co-operating to develop as part of ESA's Living Planet Programme, the third Earth Explorer Core Mission, EarthCARE, with the ojective of improving the understanding of the processes involving clouds, aerosols and radiation in the Earth's atmosphere. EarthCARE payload consists of two active and two passive instruments: an ATmospheric LIDar (ATLID), a Cloud Profiling Radar (CPR), a Multi-Spectral Imager (MSI) and a Broad-Band Radiometer (BBR). The four instruments data are processed individually and in a synergetic manner to produce a large range of products, which include vertical profiles of aerosols, liquid water and ice, observations of cloud distribution and vertical motion within clouds, and will allow the retrieval of profiles of atmospheric radiative heating and cooling. MSI is a compact instrument with a 150 km swath providing 500 m pixel data in seven channels, whose retrieved data will give context to the active instrument measurements, as well as providing cloud and aerosol information. BBR measures reflected solar and emitted thermal radiation from the scene. Operating in the UV range at 355 nm, ATLID provides atmospheric echoes from ground to an altitude of 40 km. Thanks to a high spectral resolution filtering, the lidar is able to separate the relative contribution of aerosol and molecular scattering, which gives access to aerosol optical depth. Co-polarised and cross-polarised components of the Mie scattering contribution are measured on dedicated channels. This paper will provide a description of the optical payload implementation, the design and characterisation of the instruments.

  4. Variability of aerosol vertical distribution in the Sahel

    Directory of Open Access Journals (Sweden)

    O. Cavalieri

    2010-12-01

    continent by the monsoon flow.

    During summer months, the entire Sahelian region is under the influence of Saharan dust aerosols: the air masses in low levels arrive from West Africa crossing the Sahara desert or from the Southern Hemisphere crossing the Guinea Gulf while in the upper layers air masses still originate from North, North-East. The maximum of the desert dust activity is observed in this period which is characterized by large AOD (above 0.2 and backscattering values. It also corresponds to a maximum in the extension of the aerosol vertical distribution (up to 6 km of altitude. In correspondence, a progressive cleaning up of the lowermost layers of the atmosphere is occurring, especially evident in the Banizoumbou and Cinzana sites.

    Summer is in fact characterized by extensive and fast convective phenomena.

    Lidar profiles show at times large dust events loading the atmosphere with aerosol from the ground up to 6 km of altitude. These events are characterized by large total attenuated backscattering values, and alternate with very clear profiles, sometimes separated by only a few hours, indicative of fast removal processes occurring, likely due to intense convective and rain activity.

    The inter-annual variability in the three year monitoring period is not very significant. An analysis of the aerosol transport pathways, aiming at detecting the main source regions, revealed that air originated from the Saharan desert is present all year long and it is observed in the lower levels of the atmosphere at the beginning and at the end of the year. In the central part of the year it extends upward and the lower levels are less affected by air masses from Saharan desert when the monsoon flow carries air from the Guinea Gulf and the Southern Hemisphere inland.

  5. Plutonium-aerosol emission rates and human pulmonary deposition calculations for Nuclear Site 201, Nevada Test Site

    International Nuclear Information System (INIS)

    Shinn, J.H.; Homan, D.N.

    1982-01-01

    This study determined the plutonium-aerosol fluxes from the soil to quantify (1) the extent of potential human exposure by deep-lung retention of alpha-emitting particles; (2) the source term should there be any significant, long-term, transport of plutonium aerosols; and (3) the resuspension factor and rate so that, for the first time at any nuclear site, one may calculate how long it will take for wind erosion to carry away a significant amount of the contaminated soil. High-volume air samplers and cascade impactors were used to characterize the plutonium aerosols. Meteorological flux-profile methods were used to calculate dust and plutonium aerosol emission rates. A floorless wind tunnel (10-m long) was used to examine resuspension under steady-state, high wind speed. The resuspension factor was two orders of magnitude lower than the other comparable sites at NTS and elsewhere, and the average resuspension rate of 5.3 x 10 -8 /d was also very low, so that the half-time for resuspension by wind erosion was about 36,000 y

  6. Satellite studies of the stratospheric aerosol

    International Nuclear Information System (INIS)

    McCormick, M.P.; Hamill, P.; Pepin, T.J.; Chu, W.P.; Swissler, T.J.; McMaster, L.R.

    1979-01-01

    The potential climatological and environmental importance of the stratospheric aerosol layer has prompted great interest in measuring the properties of this aerosol. In this paper we report on two recently deployed NASA satellite systems (SAM II and SAGE) that are monitoring the stratospheric aerosol. The satellite orbits are such that nearly global coverage is obtained. The instruments mounted in the spacecraft are sun photometers that measure solar intensity at specific wavelengths as it is moderated by atmospheric particulates and gases during each sunrise and sunset encountered by the satellites. The data obtained are ''inverted'' to yield vertical aerosol and gaseous (primarily ozone) extinction profiles with 1 km vertical resolution. Thus, latitudinal, longitudinal, and temporal variations in the aerosol layer can be evaluated. The satellite systems are being validated by a series of ground truth experiments using airborne and ground lidar, balloon-borne dustsondes, aircraft-mounted impactors, and other correlative sensors. We describe the SAM II and SAGE satellite systems, instrument characteristics, and mode of operation; outline the methodology of the experiments; and describe the ground truth experiments. We present preliminary results from these measurements

  7. Multi-compartment Aerosol Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Joshua Allen; Santarpia, Joshua; Brotherton, Christopher M.; Omana, Michael Alexis; Rivera, Danielle; Lucero, Gabriel Anthony

    2017-06-01

    A simple aerosol transport model was developed for a multi-compartmented cleanroom. Each compartment was treated as a well-mixed volume with ventilating supply and return air. Gravitational settling, intercompartment transport, and leakage of exterior air into the system were included in the model. A set of first order, coupled, ordinary differential equations was derived from the conservation equations of aerosol mass and air mass. The system of ODEs was then solved in MATLAB using pre-existing numerical methods. The model was verified against cases of (1) constant inlet-duct concentration, and (2) exponentially decaying inlet-duct concentration. Numerical methods resulted in normalized error of less than 10 -9 when model solutions were compared to analytical solutions. The model was validated against experimental measurements from a single field test and showed good agreement in the shape and magnitude of the aerosol concentration profile with time.

  8. Demonstration of a diode-laser-based high spectral resolution lidar (HSRL) for quantitative profiling of clouds and aerosols.

    Science.gov (United States)

    Hayman, Matthew; Spuler, Scott

    2017-11-27

    We present a demonstration of a diode-laser-based high spectral resolution lidar. It is capable of performing calibrated retrievals of aerosol and cloud optical properties at a 150 m range resolution with less than 1 minute integration time over an approximate range of 12 km during day and night. This instrument operates at 780 nm, a wavelength that is well established for reliable semiconductor lasers and detectors, and was chosen because it corresponds to the D2 rubidium absorption line. A heated vapor reference cell of isotopic rubidium 87 is used as an effective and reliable aerosol signal blocking filter in the instrument. In principle, the diode-laser-based high spectral resolution lidar can be made cost competitive with elastic backscatter lidar systems, yet delivers a significant improvement in data quality through direct retrieval of quantitative optical properties of clouds and aerosols.

  9. Lessons learned and way forward from 6 years of Aerosol_cci

    Science.gov (United States)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2017-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve and qualify algorithms for the retrieval of aerosol information from European sensors. Meanwhile, several validated (multi-) decadal time series of different aerosol parameters from complementary sensors are available: Aerosol Optical Depth (AOD), stratospheric extinction profiles, a qualitative Absorbing Aerosol Index (AAI), fine mode AOD, mineral dust AOD; absorption information and aerosol layer height are in an evaluation phase and the multi-pixel GRASP algorithm for the POLDER instrument is used for selected regions. Validation (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account in an iterative evolution cycle. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. The use of an ensemble method was tested, where several algorithms are applied to the same sensor. The presentation will summarize and discuss the lessons learned from the 6 years of intensive collaboration and highlight major achievements (significantly improved AOD quality, fine mode AOD, dust AOD, pixel level uncertainties, ensemble approach); also limitations and remaining deficits shall be discussed. An outlook will discuss the way forward for the continuous algorithm improvement and re-processing together with opportunities for time series extension with successor instruments of the Sentinel family and the complementarity of the different satellite aerosol products.

  10. Multistatic Aerosol Cloud Lidar in Space: A Theoretical Perspective

    Science.gov (United States)

    Mishchenko, Michael I.; Alexandrov, Mikhail D.; Cairns, Brian; Travis, Larry D.

    2016-01-01

    Accurate aerosol and cloud retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. In this Perspective, we formulate in general terms an aerosol and aerosol-cloud interaction space mission concept intended to provide detailed horizontal and vertical profiles of aerosol physical characteristics as well as identify mutually induced changes in the properties of aerosols and clouds. We argue that a natural and feasible way of addressing the ill-posedness of the inverse scattering problem while having an exquisite vertical-profiling capability is to fly a multistatic (including bistatic) lidar system. We analyze theoretically the capabilities of a formation-flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and one or more additional platforms each hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar; address the ill-posedness of the inverse problem caused by the highly limited information content of monostatic lidar measurements; address the ill-posedness of the inverse problem caused by vertical integration and surface reflection in passive photopolarimetric measurements; relax polarization accuracy requirements; eliminate the need for exquisite radiative-transfer modeling of the atmosphere-surface system in data analyses; yield the day-and-night observation capability; provide direct characterization of ground-level aerosols as atmospheric pollutants; and yield direct measurements of polarized bidirectional surface reflectance. We demonstrate, in particular, that supplementing the conventional backscattering lidar with just one additional receiver flown in formation at a scattering angle close to 170deg can dramatically increase the information content of the

  11. Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth

    Science.gov (United States)

    Sič, Bojan; El Amraoui, Laaziz; Piacentini, Andrea; Marécal, Virginie; Emili, Emanuele; Cariolle, Daniel; Prather, Michael; Attié, Jean-Luc

    2016-11-01

    In this study, we describe the development of the aerosol optical depth (AOD) assimilation module in the chemistry transport model (CTM) MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle). Our goal is to assimilate the spatially averaged 2-D column AOD data from the National Aeronautics and Space Administration (NASA) Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and to estimate improvements in a 3-D CTM assimilation run compared to a direct model run. Our assimilation system uses 3-D-FGAT (first guess at appropriate time) as an assimilation method and the total 3-D aerosol concentration as a control variable. In order to have an extensive validation dataset, we carried out our experiment in the northern summer of 2012 when the pre-ChArMEx (CHemistry and AeRosol MEditerranean EXperiment) field campaign TRAQA (TRAnsport à longue distance et Qualité de l'Air dans le bassin méditerranéen) took place in the western Mediterranean basin. The assimilated model run is evaluated independently against a range of aerosol properties (2-D and 3-D) measured by in situ instruments (the TRAQA size-resolved balloon and aircraft measurements), the satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument and ground-based instruments from the Aerosol Robotic Network (AERONET) network. The evaluation demonstrates that the AOD assimilation greatly improves aerosol representation in the model. For example, the comparison of the direct and the assimilated model run with AERONET data shows that the assimilation increased the correlation (from 0.74 to 0.88), and reduced the bias (from 0.050 to 0.006) and the root mean square error in the AOD (from 0.12 to 0.07). When compared to the 3-D concentration data obtained by the in situ aircraft and balloon measurements, the assimilation consistently improves the model output. The best results as expected occur when the shape of the vertical profile is correctly simulated by the direct model. We

  12. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  13. Gradient Correlation Method for the Stabilization of Inversion Results of Aerosol Microphysical Properties Retrieved from Profiles of Optical Data

    Directory of Open Access Journals (Sweden)

    Kolgotin Alexei

    2016-01-01

    Full Text Available Correlation relationships between aerosol microphysical parameters and optical data are investigated. The results show that surface-area concentrations and extinction coefficients are linearly correlated with a correlation coefficient above 0.99 for arbitrary particle size distribution. The correlation relationships that we obtained can be used as constraints in our inversion of optical lidar data. Simulation studies demonstrate a significant stabilization of aerosol microphysical data products if we apply the gradient correlation method in our traditional regularization technique.

  14. Aerosol climate time series from ESA Aerosol_cci (Invited)

    Science.gov (United States)

    Holzer-Popp, T.

    2013-12-01

    Within the ESA Climate Change Initiative (CCI) the Aerosol_cci project (mid 2010 - mid 2013, phase 2 proposed 2014-2016) has conducted intensive work to improve algorithms for the retrieval of aerosol information from European sensors AATSR (3 algorithms), PARASOL, MERIS (3 algorithms), synergetic AATSR/SCIAMACHY, OMI and GOMOS. Whereas OMI and GOMOS were used to derive absorbing aerosol index and stratospheric extinction profiles, respectively, Aerosol Optical Depth (AOD) and Angstrom coefficient were retrieved from the other sensors. Global datasets for 2008 were produced and validated versus independent ground-based data and other satellite data sets (MODIS, MISR). An additional 17-year dataset is currently generated using ATSR-2/AATSR data. During the three years of the project, intensive collaborative efforts were made to improve the retrieval algorithms focusing on the most critical modules. The team agreed on the use of a common definition for the aerosol optical properties. Cloud masking was evaluated, but a rigorous analysis with a pre-scribed cloud mask did not lead to improvement for all algorithms. Better results were obtained using a post-processing step in which sudden transitions, indicative of possible occurrence of cloud contamination, were removed. Surface parameterization, which is most critical for the nadir only algorithms (MERIS and synergetic AATSR / SCIAMACHY) was studied to a limited extent. The retrieval results for AOD, Ångström exponent (AE) and uncertainties were evaluated by comparison with data from AERONET (and a limited amount of MAN) sun photometer and with satellite data available from MODIS and MISR. Both level2 and level3 (gridded daily) datasets were validated. Several validation metrics were used (standard statistical quantities such as bias, rmse, Pearson correlation, linear regression, as well as scoring approaches to quantitatively evaluate the spatial and temporal correlations against AERONET), and in some cases

  15. Characterization of urban aerosol in Cork city (Ireland) using aerosol mass spectrometry

    Science.gov (United States)

    Dall'Osto, M.; Ovadnevaite, J.; Ceburnis, D.; Martin, D.; Healy, R. M.; O'Connor, I. P.; Kourtchev, I.; Sodeau, J. R.; Wenger, J. C.; O'Dowd, C.

    2013-05-01

    Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic aerosol as the most abundant species (62%), followed by nitrate (15%), sulphate (9%) and ammonium (9%), and chloride (5%). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA) comprised 18%, "biomass burning" organic aerosol (BBOA) comprised 23%, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA) comprised 21%, and finally a species type characterized by primary {m/z} peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively).

  16. Characterization of urban aerosol in Cork city (Ireland using aerosol mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. Dall'Osto

    2013-05-01

    Full Text Available Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC, sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS and was also found to comprise organic aerosol as the most abundant species (62%, followed by nitrate (15%, sulphate (9% and ammonium (9%, and chloride (5%. Positive matrix factorization (PMF was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA comprised 18%, "biomass burning" organic aerosol (BBOA comprised 23%, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA comprised 21%, and finally a species type characterized by primary extit{m/z}~peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA, but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively.

  17. Evolution of biomass burning aerosol over the Amazon: airborne measurements of aerosol chemical composition, microphysical properties, mixing state and optical properties during SAMBBA

    Science.gov (United States)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Liu, D.; O'Shea, S.; Bauguitte, S.; Szpek, K.; Johnson, B.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2013-12-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. On regional scales, the impacts are substantial, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated in the Cerrado. This led to significant differences in aerosol chemical composition, particularly in terms of the BC content, with BC being enhanced in the Cerrado

  18. Containment aerosol behaviour simulation studies in the BARC nuclear aerosol test facility

    International Nuclear Information System (INIS)

    Mayya, Y.S.; Sapra, B.K.; Khan, Arshad; Sunny, Faby; Nair, R.N.; Raghunath, Radha; Tripathi, R.M.; Markandeya, S.G.; Puranik, V.D.; Ghosh, A.K.; Kushwaha, H.S.; Shreekumar, K.P.; Padmanabhan, P.V.A.; Murthy, P.S.S.; Venlataramani, N.

    2005-02-01

    A Nuclear Aerosol Test Facility (NATF) has been built and commissioned at Bhabha Atomic Research Centre to carry out simulation studies on the behaviour of aerosols released into the reactor containment under accident conditions. This report also discusses some new experimental techniques for estimation of density of metallic aggregates. The experimental studies have shown that the dynamic densities of aerosol aggregates are far lower than their material densities as expected by the well-known fractal theory of aggregates. In the context of codes, this has significant bearing in providing a mechanistic basis for the input density parameter used in estimating the aerosol evolution characteristics. The data generated under the quiescent and turbulent conditions and the information on aggregate densities are now being subjected to the validation of the aerosol behaviour codes. (author)

  19. Aerosol retrieval experiments in the ESA Aerosol_cci project

    Directory of Open Access Journals (Sweden)

    T. Holzer-Popp

    2013-08-01

    photometer observations for the different versions of each algorithm globally (land and coastal and for three regions with different aerosol regimes. The analysis allowed for an assessment of sensitivities of all algorithms, which helped define the best algorithm versions for the subsequent round robin exercise; all algorithms (except for MERIS showed some, in parts significant, improvement. In particular, using common aerosol components and partly also a priori aerosol-type climatology is beneficial. On the other hand the use of an AATSR-based common cloud mask meant a clear improvement (though with significant reduction of coverage for the MERIS standard product, but not for the algorithms using AATSR. It is noted that all these observations are mostly consistent for all five analyses (global land, global coastal, three regional, which can be understood well, since the set of aerosol components defined in Sect. 3.1 was explicitly designed to cover different global aerosol regimes (with low and high absorption fine mode, sea salt and dust.

  20. A Statistical Review of CALIOP Version 3 and Version 4 Cloud Aerosol Discrimination

    Science.gov (United States)

    Zeng, S.

    2016-12-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission has now delivered a 10-year record of high-resolution profiles of backscatter at 532 nm and 1064 nm and linear depolarization at 532 nm. These long-term active sensor measurements at global scale have led to significant advances in our understanding of the vertical distribution of clouds and aerosols in the atmosphere. In the fall of 2016, the CALIPSO science team is scheduled to release a new version of their cloud and aerosol data products. The new cloud and aerosol discrimination products are derived using updated probability density functions that account for numerous improvements to the CALIOP calibration and the use of the GMAO MERRA-2 meteorological data. Moreover, the CAD algorithm is now applied to all layers detected, thus greatly improving the identification of such features as overshooting convective clouds, stratospheric aerosol layers, and high intensity dust storms. Post-processing modules are added to the standard CAD algorithm to ensure proper identification of (for example) the tenuous edges of cirrus clouds and water clouds lying beneath optically dense smoke layers. This work presents statistical comparisons between the CALIOP version 3 and version 4 data sets. Areas of improvement are highlighted, sources of continuing uncertainty are discussed and a list of best practices for data users is provided.

  1. UAS as a Support for Atmospheric Aerosols Research: Case Study

    Science.gov (United States)

    Chiliński, Michał T.; Markowicz, Krzysztof M.; Kubicki, Marek

    2018-01-01

    Small drones (multi-copters) have the potential to deliver valuable data for atmospheric research. They are especially useful for collecting vertical profiles of optical and microphysical properties of atmospheric aerosols. Miniaturization of sensors, such as aethalometers and particle counters, allows for collecting profiles of black carbon concentration, absorption coefficient, and particle size distribution. Vertical variability of single-scattering properties has a significant impact on radiative transfer and Earth's climate, but the base of global measurements is very limited. This results in high uncertainties of climate/radiation models. Vertical range of modern multi-copters is up to 2000 m, which is usually enough to study aerosols up to the top of planetary boundary layer on middle latitudes. In this study, we present the benefits coming from usage of small drones in atmospheric research. The experiment, described as a case study, was conducted at two stations (Swider and Warsaw) in Poland, from October 2014 to March 2015. For over 6 months, photoacoustic extinctiometers collected data at both stations. This enabled us to compare the stations and to establish ground reference of black carbon concentrations for vertical profiles collected by ceilometer and drone. At Swider station, we used Vaisala CL-31 ceilometer. It delivered vertical profiles of range corrected signal, which were analysed together with profiles acquired by micro-aethalometer AE-51 and Vaisala RS92-SGP radiosonde carried by a hexacopter drone. Near to the surface, black carbon gradient of ≈ 400 (\\upmu g/m^3 )/100 m was detected, which was below the ceilometer minimal altitude of detection. This confirmed the usefulness of drones and potential of their support for remote sensing techniques.

  2. Volcanic eruptions and the increases in the stratospheric aerosol content: Lidar measurements from 1982 to 1986

    Science.gov (United States)

    Hayashida, S.; Iikura, Y.; Shimizu, H.; Sasano, Y.; Nakane, H.; Sugimoto, N.; Matsui, I.; Takeuchi, N.

    1986-01-01

    The results of the observation for stratospheric aerosols which were carried out since the autumn of 1982 by using the NIES large lidar are described. Specifications of the lidar system are shown. The lidar has two wavelenghts of 1.06 and 0.53 micrometers. The 0.53 micrometer is mainly used for the stratospheric aerosols, because the PMT for 0.53 micrometers has higher sensitivity that that for 1.06 micrometers and the total efficiency is higher in the former. A switching circuit is used to control the PMT gain for avoiding signal induced noise in PMT. For the last four years, the stratospheric aerosol layer which was significantly perturbed by the El Chichon volcanic eruption was observed. The scattering ratio profiles observed from 1982 through 1983 are given.

  3. Cirrus and aerosol lidar profilometer - analysis and results

    Energy Technology Data Exchange (ETDEWEB)

    Spinhirne, J.D.; Scott, V.S. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Reagan, J.A.; Galbraith, A. [Univ. of Arizona, Tucson, AZ (United States)

    1996-04-01

    A cloud and aerosol lidar set from over a year of near continuous operation of a micro pulse lidar (MPL) instrument at the Cloud and Radiation Testbed (CART) site has been established. MPL instruments are to be included in the Ames Research Center (ARC) instrument compliments for the SW Pacific and Arctic ARM sites. Operational processing algorithms are in development for the data sets. The derived products are to be cloud presence and classification, base height, cirrus thickness, cirrus optical thickness, cirrus extinction profile, aerosol optical thickness and profile, and planetary boundary layer (PBL) height. A cloud presence and base height algorithm is in use, and a data set from the CART site is available. The scientific basis for the algorithm development of the higher level data products and plans for implementation are discussed.

  4. Volatile properties of atmospheric aerosols during nucleation events ...

    Indian Academy of Sciences (India)

    J. Earth Syst. ... position of nucleated particles, cloud condensa- ... the air sample heated by heating section, and (c) temperature profile inside ..... els of precursors and chemistry of aerosols affect ... global climate modeling: A review; Atmos.

  5. The regional aerosol-climate model REMO-HAM

    Directory of Open Access Journals (Sweden)

    J.-P. Pietikäinen

    2012-11-01

    Full Text Available REMO-HAM is a new regional aerosol-climate model. It is based on the REMO regional climate model and includes most of the major aerosol processes. The structure for aerosol is similar to the global aerosol-climate model ECHAM5-HAM, for example the aerosol module HAM is coupled with a two-moment stratiform cloud scheme. On the other hand, REMO-HAM does not include an online coupled aerosol-radiation nor a secondary organic aerosol module. In this work, we evaluate the model and compare the results against ECHAM5-HAM and measurements. Four different measurement sites were chosen for the comparison of total number concentrations, size distributions and gas phase sulfur dioxide concentrations: Hyytiälä in Finland, Melpitz in Germany, Mace Head in Ireland and Jungfraujoch in Switzerland. REMO-HAM is run with two different resolutions: 50 × 50 km2 and 10 × 10 km2. Based on our simulations, REMO-HAM is in reasonable agreement with the measured values. The differences in the total number concentrations between REMO-HAM and ECHAM5-HAM can be mainly explained by the difference in the nucleation mode. Since we did not use activation nor kinetic nucleation for the boundary layer, the total number concentrations are somewhat underestimated. From the meteorological point of view, REMO-HAM represents the precipitation fields and 2 m temperature profile very well compared to measurement. Overall, we show that REMO-HAM is a functional aerosol-climate model, which will be used in further studies.

  6. In Vitro Tests for Aerosol Deposition. V: Using Realistic Testing to Estimate Variations in Aerosol Properties at the Trachea.

    Science.gov (United States)

    Wei, Xiangyin; Hindle, Michael; Delvadia, Renishkumar R; Byron, Peter R

    2017-10-01

    The dose and aerodynamic particle size distribution (APSD) of drug aerosols' exiting models of the mouth and throat (MT) during a realistic inhalation profile (IP) may be estimated in vitro and designated Total Lung Dose, TLD in vitro , and APSD TLDin vitro , respectively. These aerosol characteristics likely define the drug's regional distribution in the lung. A general method was evaluated to enable the simultaneous determination of TLD in vitro and APSD TLDin vitro for budesonide aerosols' exiting small, medium and large VCU-MT models. Following calibration of the modified next generation pharmaceutical impactor (NGI) at 140 L/min, variations in aerosol dose and size exiting MT were determined from Budelin ® Novolizer ® across the IPs reported by Newman et al., who assessed drug deposition from this inhaler by scintigraphy. Values for TLD in vitro from the test inhaler determined by the general method were found to be statistically comparable to those using a filter capture method. Using new stage cutoffs determined by calibration of the modified NGI at 140 L/min, APSD TLDin vitro profiles and mass median aerodynamic diameters at the MT exit (MMAD TLDin vitro ) were determined as functions of MT geometric size across Newman's IPs. The range of mean values (n ≥ 5) for TLD in vitro and MMAD TLDin vitro for this inhaler extended from 6.2 to 103.0 μg (3.1%-51.5% of label claim) and from 1.7 to 3.6 μm, respectively. The method enables reliable determination of TLD in vitro and APSD TLDin vitro for aerosols likely to enter the trachea of test subjects in the clinic. By simulating realistic IPs and testing in different MT models, the effects of major variables on TLD in vitro and APSD TLDin vitro may be studied using the general method described in this study.

  7. CATS Version 2 Aerosol Feature Detection and Applications for Data Assimilation

    Science.gov (United States)

    Nowottnick, Ed; Yorks, John; McGill, Matt; Scott, Stan; Palm, Stephen; Hlavka, Dennis; Hart, William; Selmer, Patrick; Kupchock, Andrew; Pauly, Rebecca

    2017-01-01

    Using GEOS-5, we are developing a 1D ENS approach for assimilating CATS near real time observations of total attenuated backscatter at 1064 nm: a) After performing a 1-ENS assimilation of a cloud-free profile, the GEOS-5 analysis closely followed observed total attenuated backscatter. b) Vertical localization length scales were varied for the well-mixed PBL and the free troposphere After assimilating a cloud free segment of a CATS granule, the fine detail of a dust event was obtained in the GEOS-5 analysis for both total attenuated backscatter and extinction. Future Work: a) Explore horizontal localization and test within a cloudy aerosol layer. b) Address noisy analysis increments in the free troposphere where both CATS and GEOS-5 aerosol loadings are low. c) Develop a technique to screen CATS ground return from profiles. d) "Dynamic" lidar ratio that will evolve in conjunction with simulated aerosol mixtures.

  8. Enhanced Iron Solubility at Low pH in Global Aerosols

    Directory of Open Access Journals (Sweden)

    Ellery D. Ingall

    2018-05-01

    Full Text Available The composition and oxidation state of aerosol iron were examined using synchrotron-based iron near-edge X-ray absorption spectroscopy. By combining synchrotron-based techniques with water leachate analysis, impacts of oxidation state and mineralogy on aerosol iron solubility were assessed for samples taken from multiple locations in the Southern and the Atlantic Oceans; and also from Noida (India, Bermuda, and the Eastern Mediterranean (Crete. These sampling locations capture iron-containing aerosols from different source regions with varying marine, mineral dust, and anthropogenic influences. Across all locations, pH had the dominating influence on aerosol iron solubility. When aerosol samples were approximately neutral pH, iron solubility was on average 3.4%; when samples were below pH 4, the iron solubility increased to 35%. This observed aerosol iron solubility profile is consistent with thermodynamic predictions for the solubility of Fe(III oxides, the major iron containing phase in the aerosol samples. Source regions and transport paths were also important factors affecting iron solubility, as samples originating from or passing over populated regions tended to contain more soluble iron. Although the acidity appears to affect aerosol iron solubility globally, a direct relationship for all samples is confounded by factors such as anthropogenic influence, aerosol buffer capacity, mineralogy and physical processes.

  9. Meteorological support for aerosol radiometers: special aerosol sources

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.

    1988-07-01

    A new method is described for transfer of the measure of unit volume activity of radioactive aerosols from the state special standard to the working instruments in the stage of regular operation. The differences from existing methods are examined. The principal distinction of the new method is the possibility of direct (rather than through the conversion factor) determination and subsequent testing of the fundamental meteorological characteristics of the instrument by means of special aerosol sources, which fosters a significant reduction in individual components of the indicated errors.

  10. Aged organic aerosol in the Eastern Mediterranean: the Finokalia Aerosol Measurement Experiment – 2008

    Directory of Open Access Journals (Sweden)

    L. Hildebrandt

    2010-05-01

    Full Text Available Aged organic aerosol (OA was measured at a remote coastal site on the island of Crete, Greece during the Finokalia Aerosol Measurement Experiment-2008 (FAME-2008, which was part of the EUCAARI intensive campaign of May 2008. The site at Finokalia is influenced by air masses from different source regions, including long-range transport of pollution from continental Europe. A quadrupole aerosol mass spectrometer (Q-AMS was employed to measure the size-resolved chemical composition of non-refractory submicron aerosol (NR-PM1, and to estimate the extent of oxidation of the organic aerosol. Factor analysis was used to gain insights into the processes and sources affecting the OA composition. The particles were internally mixed and liquid. The largest fraction of the dry NR-PM1 sampled was ammonium sulfate and ammonium bisulfate, followed by organics and a small amount of nitrate. The variability in OA composition could be explained with two factors of oxygenated organic aerosol (OOA with differing extents of oxidation but similar volatility. Hydrocarbon-like organic aerosol (HOA was not detected. There was no statistically significant diurnal variation in the bulk composition of NR-PM1 such as total sulfate or total organic aerosol concentrations. However, the OA composition exhibited statistically significant diurnal variation with more oxidized OA in the afternoon. The organic aerosol was highly oxidized, regardless of the source region. Total OA concentrations also varied little with source region, suggesting that local sources had only a small effect on OA concentrations measured at Finokalia. The aerosol was transported for about one day before arriving at the site, corresponding to an OH exposure of approximately 4×1011 molecules cm−3 s. The constant extent of oxidation suggests that atmospheric aging results in a highly oxidized OA at these OH exposures, regardless of the aerosol source.

  11. Sensitivity of tropospheric heating rates to aerosols: A modeling study

    International Nuclear Information System (INIS)

    Hanna, A.F.; Shankar, U.; Mathur, R.

    1994-01-01

    The effect of aerosols on the radiation balance is critical to the energetics of the atmosphere. Because of the relatively long residence of specific types of aerosols in the atmosphere and their complex thermal and chemical interactions, understanding their behavior is crucial for understanding global climate change. The authors used the Regional Particulate Model (RPM) to simulate aerosols in the eastern United States in order to identify the aerosol characteristics of specific rural and urban areas these characteristics include size, concentration, and vertical profile. A radiative transfer model based on an improved δ-Eddington approximation with 26 spectral intervals spanning the solar spectrum was then used to analyze the tropospheric heating rates associated with these different aerosol distributions. The authors compared heating rates forced by differences in surface albedo associated with different land-use characteristics, and found that tropospheric heating and surface cooling are sensitive to surface properties such as albedo

  12. Compact LIDAR for Aerosol Extinction Profiling from Small UAV's, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — It is increasingly recognized that the Arctic is a bellwether for climate change. As the Arctic region responds to climate forcings, monitoring how aerosol...

  13. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    Science.gov (United States)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; hide

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  14. The Explicit-Cloud Parameterized-Pollutant hybrid approach for aerosol-cloud interactions in multiscale modeling framework models: tracer transport results

    International Nuclear Information System (INIS)

    Jr, William I Gustafson; Berg, Larry K; Easter, Richard C; Ghan, Steven J

    2008-01-01

    All estimates of aerosol indirect effects on the global energy balance have either completely neglected the influence of aerosol on convective clouds or treated the influence in a highly parameterized manner. Embedding cloud-resolving models (CRMs) within each grid cell of a global model provides a multiscale modeling framework for treating both the influence of aerosols on convective as well as stratiform clouds and the influence of clouds on the aerosol, but treating the interactions explicitly by simulating all aerosol processes in the CRM is computationally prohibitive. An alternate approach is to use horizontal statistics (e.g., cloud mass flux, cloud fraction, and precipitation) from the CRM simulation to drive a single-column parameterization of cloud effects on the aerosol and then use the aerosol profile to simulate aerosol effects on clouds within the CRM. Here, we present results from the first component of the Explicit-Cloud Parameterized-Pollutant parameterization to be developed, which handles vertical transport of tracers by clouds. A CRM with explicit tracer transport serves as a benchmark. We show that this parameterization, driven by the CRM's cloud mass fluxes, reproduces the CRM tracer transport significantly better than a single-column model that uses a conventional convective cloud parameterization

  15. The Explicit-Cloud Parameterized-Pollutant hybrid approach for aerosol-cloud interactions in multiscale modeling framework models: tracer transport results

    Energy Technology Data Exchange (ETDEWEB)

    Jr, William I Gustafson; Berg, Larry K; Easter, Richard C; Ghan, Steven J [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, PO Box 999, MSIN K9-30, Richland, WA (United States)], E-mail: William.Gustafson@pnl.gov

    2008-04-15

    All estimates of aerosol indirect effects on the global energy balance have either completely neglected the influence of aerosol on convective clouds or treated the influence in a highly parameterized manner. Embedding cloud-resolving models (CRMs) within each grid cell of a global model provides a multiscale modeling framework for treating both the influence of aerosols on convective as well as stratiform clouds and the influence of clouds on the aerosol, but treating the interactions explicitly by simulating all aerosol processes in the CRM is computationally prohibitive. An alternate approach is to use horizontal statistics (e.g., cloud mass flux, cloud fraction, and precipitation) from the CRM simulation to drive a single-column parameterization of cloud effects on the aerosol and then use the aerosol profile to simulate aerosol effects on clouds within the CRM. Here, we present results from the first component of the Explicit-Cloud Parameterized-Pollutant parameterization to be developed, which handles vertical transport of tracers by clouds. A CRM with explicit tracer transport serves as a benchmark. We show that this parameterization, driven by the CRM's cloud mass fluxes, reproduces the CRM tracer transport significantly better than a single-column model that uses a conventional convective cloud parameterization.

  16. Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS

    Science.gov (United States)

    Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens

    2007-01-01

    Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

  17. Study of MPLNET-Derived Aerosol Climatology over Kanpur, India, and Validation of CALIPSO Level 2 Version 3 Backscatter and Extinction Products

    Science.gov (United States)

    Misra, Amit; Tripathi, S. N.; Kaul, D. S.; Welton, Ellsworth J.

    2012-01-01

    The level 2 aerosol backscatter and extinction profiles from the NASA Micropulse Lidar Network (MPLNET) at Kanpur, India, have been studied from May 2009 to September 2010. Monthly averaged extinction profiles from MPLNET shows high extinction values near the surface during October March. Higher extinction values at altitudes of 24 km are observed from April to June, a period marked by frequent dust episodes. Version 3 level 2 Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol profile products have been compared with corresponding data from MPLNET over Kanpur for the above-mentioned period. Out of the available backscatter profiles, the16 profiles used in this study have time differences less than 3 h and distances less than 130 km. Among these profiles, four cases show good comparison above 400 m with R2 greater than 0.7. Comparison with AERONET data shows that the aerosol type is properly identified by the CALIOP algorithm. Cloud contamination is a possible source of error in the remaining cases of poor comparison. Another source of error is the improper backscatter-to-extinction ratio, which further affects the accuracy of extinction coefficient retrieval.

  18. Aerosol Observability and Predictability: From Research to Operations for Chemical Weather Forecasting. Lagrangian Displacement Ensembles for Aerosol Data Assimilation

    Science.gov (United States)

    da Silva, Arlindo

    2010-01-01

    A challenge common to many constituent data assimilation applications is the fact that one observes a much smaller fraction of the phase space that one wishes to estimate. For example, remotely sensed estimates of the column average concentrations are available, while one is faced with the problem of estimating 3D concentrations for initializing a prognostic model. This problem is exacerbated in the case of aerosols because the observable Aerosol Optical Depth (AOD) is not only a column integrated quantity, but it also sums over a large number of species (dust, sea-salt, carbonaceous and sulfate aerosols. An aerosol transport model when driven by high-resolution, state-of-the-art analysis of meteorological fields and realistic emissions can produce skillful forecasts even when no aerosol data is assimilated. The main task of aerosol data assimilation is to address the bias arising from inaccurate emissions, and Lagrangian misplacement of plumes induced by errors in the driving meteorological fields. As long as one decouples the meteorological and aerosol assimilation as we do here, the classic baroclinic growth of error is no longer the main order of business. We will describe an aerosol data assimilation scheme in which the analysis update step is conducted in observation space, using an adaptive maximum-likelihood scheme for estimating background errors in AOD space. This scheme includes e explicit sequential bias estimation as in Dee and da Silva. Unlikely existing aerosol data assimilation schemes we do not obtain analysis increments of the 3D concentrations by scaling the background profiles. Instead we explore the Lagrangian characteristics of the problem for generating local displacement ensembles. These high-resolution state-dependent ensembles are then used to parameterize the background errors and generate 3D aerosol increments. The algorithm has computational complexity running at a resolution of 1/4 degree, globally. We will present the result of

  19. A framework for cloud - Aerosol interaction study

    NARCIS (Netherlands)

    Sarna, K.; Russchenberg, H.W.J.

    2012-01-01

    Aerosols can indirectly influence climate either by cloud albedo or lifetime effect. In order to have better understanding of these processes it is crucial to measure detailed vertical profiles of the radiative transfer and the microphysical evolution of clouds. Best results can be achieved by using

  20. Seasonal variation of spherical aerosols distribution in East Asia based on ground and space Lidar observation and a Chemical transport model

    Science.gov (United States)

    Hara, Y.; Yumimoto, K.; Uno, I.; Shimizu, A.; Sugimoto, N.; Ohara, T.

    2009-12-01

    The anthropogenic aerosols largely impact on not only human health but also global climate system, therefore air pollution in East Asia due to a rapid economic growth has been recognized as a significant environmental problem. Several international field campaigns had been conducted to elucidate pollutant gases, aerosols characteristics and radiative forcing in East Asia. (e.g., ACE-Asia, TRACE-P, ADEC, EAREX 2005). However, these experiments were mainly conducted in springtime, therefore seasonal variation of aerosols distribution has not been clarified well yet. National Institute for Environmental Studies (NIES) has been constructing a lidar networks by automated dual wavelength / polarization Mie-lidar systems to observe the atmospheric environment in Asian region since 2001. Furthermore, from June 2006, space-borne backscatter lidar, Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), onboard NASA/CALIPSO satellite, measures continuous global aerosol and cloud vertical distribution with very high spatial resolution. In this paper, we will show the seasonal variation of aerosols distribution in East Asia based on the NIES lidar network observation, Community Multi-scale Air Quality Modeling System (CMAQ) chemical transport model simulation and CALIOP observation over the period from July 2006 to December 2008. We found that CMAQ result explains the typical seasonal aerosol characteristics by lidar observations. For example, CMAQ and ground lidar showed a summertime peak of aerosol optical thickness (AOT) at Beijing, an autumn AOT peak at Guangzhou and summertime AOT trough at Hedo, Okinawa. These characteristics are mainly controlled by seasonal variations of Asian summer/winter monsoon system. We also examined the CMAQ seasonal average aerosol extinction profiles with ground lidar and CALIOP extinction data. These comparisons clarified that the CMAQ reproduced the observed aerosol layer depth well in the downwind region. Ground lidar and CALIOP seasonal

  1. Comparison of Aerosol Classification Results from Airborne High Spectral Resolution Lidar (HSRL) Measurements and the Calipso Vertical Feature Mask

    Science.gov (United States)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.; hide

    2012-01-01

    Knowledge of the vertical profile, composition, concentration, and size of aerosols is required for assessing the direct impact of aerosols on radiation, the indirect effects of aerosols on clouds and precipitation, and attributing these effects to natural and anthropogenic aerosols. Because anthropogenic aerosols are predominantly submicrometer, fine mode fraction (FMF) retrievals from satellite have been used as a tool for deriving anthropogenic aerosols. Although column and profile satellite retrievals of FMF have been performed over the ocean, such retrievals have not yet been been done over land. Consequently, uncertainty in satellite estimates of the anthropogenic component of the aerosol direct radiative forcing is greatest over land, due in large part to uncertainties in the FMF. Satellite measurements have been used to detect and evaluate aerosol impacts on clouds; however, such efforts have been hampered by the difficulty in retrieving vertically-resolved cloud condensation nuclei (CCN) concentration, which is the most direct parameter linking aerosol and clouds. Recent studies have shown correlations between average satellite derived column aerosol optical thickness (AOT) and in situ measured CCN. However, these same studies, as well as others that use detailed airborne in situ measurements have noted that vertical variability of the aerosol distribution, impacts of relative humidity, and the presence of coarse mode aerosols such as dust introduce large uncertainties in such relations.

  2. Optical characterization of metallic aerosols

    International Nuclear Information System (INIS)

    Sun Wenbo; Lin Bing

    2006-01-01

    Airborne metallic particulates from industry and urban sources are highly conducting aerosols. The characterization of these pollutant particles is important for environment monitoring and protection. Because these metallic particulates are highly reflective, their effect on local weather or regional radiation budget may also need to be studied. In this work, light scattering characteristics of these metallic aerosols are studied using exact solutions on perfectly conducting spherical and cylindrical particles. It is found that for perfectly conducting spheres and cylinders, when scattering angle is larger than ∼90 o the linear polarization degree of the scattered light is very close to zero. This light scattering characteristics of perfectly conducting particles is significantly different from that of other aerosols. When these perfectly conducting particles are immersed in an absorbing medium, this light scattering characteristics does not show significant change. Therefore, measuring the linear polarization of scattered lights at backward scattering angles can detect and distinguish metallic particulates from other aerosols. This result provides a great potential of metallic aerosol detection and monitoring for environmental protection

  3. In situ airborne measurements of aerosol optical properties during photochemical pollution events

    Science.gov (United States)

    Mallet, M.; van Dingenen, R.; Roger, J. C.; Despiau, S.; Cachier, H.

    2005-02-01

    Dry aerosol optical properties (scattering, absorbing coefficients, and single scattering albedo) were derived from in situ airborne measurements during two photochemical pollution events (25 and 26 June) observed during the Experience sur Site pour Contraindre les Modeles de Pollution atmospherique et de Transport d'Emissions (ESCOMPTE) experiment. Two flights were carried out during daytime (one during the morning and one at noon) over a domain, allowing the investigation of how an air pollution event affects the particle optical properties. Both horizontal distribution and vertical profiles are presented. Results from the horizontal mapping show that plumes of enhanced scattering and absorption are formed in the planetary boundary layer (PBL) during the day in the sea breeze-driven outflow of the coastal urban-industrial area of Marseille-Fos de Berre. The domain-averaged scattering coefficient (at 550 nm) over land σs changes from 35 (28) Mm-1 during land breeze to 63 (43) Mm-1 during sea breeze on 25 June (26 June), with local maxima reaching > 100 Mm-1. The increase in the scattering coefficient is associated with new particle formation, indicative of secondary aerosol formation. Simultaneously, the domain-averaged absorption coefficient increases from 5.6 (3.4) Mm-1 to 9.3 (8.0) Mm-1. The pollution plume leads to strong gradients in the single scattering albedo ωo over the domain studied, with local values as low as 0.73 observed inside the pollution plume. The role of photochemistry and secondary aerosol formation during the 25 June case is shown to increase ωo and to make the aerosol more `reflecting' while the plume moves away from the sources. The lower photochemical activity, observed in the 26 June case, induces a relatively higher contribution of black carbon, making the aerosol more absorbing. Results from vertical profiles at a single near-urban location in the domain indicate that the changes in optical properties happen almost entirely within

  4. Carbonaceous aerosols over China--review of observations, emissions, and climate forcing.

    Science.gov (United States)

    Wang, Linpeng; Zhou, Xuehua; Ma, Yujie; Cao, Zhaoyu; Wu, Ruidong; Wang, Wenxing

    2016-01-01

    Carbonaceous aerosols have been attracting attention due to the influence on visibility, air quality, and regional climate. Statistical analyses based on concentration levels, spatial-temporal variations, correlations, and organic carbon (OC) to element carbon (EC) ratios from published data of OC and EC in particulate matter (PM2.5 and PM10) were carried out in order to give a carbonaceous aerosol profile in China. The results showed maxima for OC of 29.5 ± 18.2 μg C m(-3) and for EC of 8.4 ± 6.3 μg C m(-3) in winter and minima for OC of 12.9 ± 7.7 μg C m(-3) in summer and for EC of 4.6 ± 2.8 μg C m(-3) in spring. In addition, OC and EC both had higher concentrations in urban than those in rural sites. Carbonaceous aerosol levels in China are about three to seven times higher compared to those in the USA and Europe. OC and EC occupied 20 ± 6 and 7 ± 3% of PM2.5 mass and 17 ± 7 and 5 ± 3% of PM10 mass, respectively, implying that carbonaceous aerosols are the main component of PM, especially OC. Secondary organic carbon (SOC) was a significant portion of PM and contributed 41 ± 26% to OC and 8 ± 6% to PM2.5 mass. The OC/EC ratio was 3.63 ± 1.73, which, along with the good correlation between OC and EC and the OC to EC slope of 2.29, signifies that coal combustion and/or vehicular exhaust is the dominated carbonaceous aerosol source in China. These provide a primary observation-based understanding of carbonaceous aerosol pollution in China and have a great significance in improving the emission inventory and climate forcing evaluation.

  5. Current Research in Lidar Technology Used for the Remote Sensing of Atmospheric Aerosols

    Science.gov (United States)

    Comerón, Adolfo; Muñoz-Porcar, Constantino; Rocadenbosch, Francesc; Rodríguez-Gómez, Alejandro; Sicard, Michaël

    2017-01-01

    Lidars are active optical remote sensing instruments with unique capabilities for atmospheric sounding. A manifold of atmospheric variables can be profiled using different types of lidar: concentration of species, wind speed, temperature, etc. Among them, measurement of the properties of aerosol particles, whose influence in many atmospheric processes is important but is still poorly stated, stands as one of the main fields of application of current lidar systems. This paper presents a review on fundamentals, technology, methodologies and state-of-the art of the lidar systems used to obtain aerosol information. Retrieval of structural (aerosol layers profiling), optical (backscatter and extinction coefficients) and microphysical (size, shape and type) properties requires however different levels of instrumental complexity; this general outlook is structured following a classification that attends these criteria. Thus, elastic systems (detection only of emitted frequencies), Raman systems (detection also of Raman frequency-shifted spectral lines), high spectral resolution lidars, systems with depolarization measurement capabilities and multi-wavelength instruments are described, and the fundamentals in which the retrieval of aerosol parameters is based is in each case detailed. PMID:28632170

  6. Spatial Interpolation of Aerosol Optical Depth Pollution: Comparison of Methods for the Development of Aerosol Distribution

    Science.gov (United States)

    Safarpour, S.; Abdullah, K.; Lim, H. S.; Dadras, M.

    2017-09-01

    Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD) values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's Terra satellites, for the 10 years period of 2000 - 2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE) and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs) yielded the best results for spring, summer and winter and ordinary kriging yielded the best results for fall.

  7. SPATIAL INTERPOLATION OF AEROSOL OPTICAL DEPTH POLLUTION: COMPARISON OF METHODS FOR THE DEVELOPMENT OF AEROSOL DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    S. Safarpour

    2017-09-01

    Full Text Available Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical depth (AOD. The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or scattering. Seasonal aerosol optical depth (AOD values at 550 nm derived from the Moderate Resolution Imaging Spectroradiometer (MODIS sensor onboard NASA’s Terra satellites, for the 10 years period of 2000 - 2010 were used to test 7 different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as well as independent validation based on basic statistics, such as root mean square error (RMSE and correlation coefficient. Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs yielded the best results for spring, summer and winter and ordinary kriging yielded the best results for fall.

  8. Explicit and Observation-based Aerosol Treatment in Tropospheric NO2 Retrieval over China from the Ozone Monitoring Instrument

    Science.gov (United States)

    Liu, M.; Lin, J.; Boersma, F.; Pinardi, G.; Wang, Y.; Chimot, J.; Wagner, T.; Xie, P.; Eskes, H.; Van Roozendael, M.; Hendrick, F.

    2017-12-01

    Satellite retrieval of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) is influenced by aerosols substantially. Aerosols affect the retrieval of "effective cloud fraction (CF)" and "effective cloud top pressure (CP)" that are used in the subsequent NO2 retrieval to account for the presentence of clouds. And aerosol properties and vertical distributions directly affect the NO2 air mass factor (AMF) calculations. Our published POMINO algorithm uses a parallelized LIDORT-driven AMFv6 code to derive CF, CP and NO2 VCD. Daily information on aerosol optical properties are taken from GEOS-Chem simulations, with aerosol optical depth (AOD) further constrained by monthly MODIS AOD. However, the published algorithm does not include an observation-based constraint of aerosol vertical distribution. Here we construct a monthly climatological observation dataset of aerosol extinction profiles, based on Level-2 CALIOP data over 2007-2015, to further constrain aerosol vertical distributions. GEOS-Chem captures the temporal variations of CALIOP aerosol layer heights (ALH) but has an overall underestimate by about 0.3 km. It tends to overestimate the aerosol extinction by 10% below 2 km but with an underestimate by 30% above 2 km, leading to a low bias by 10-30% in the retrieved tropospheric NO2 VCD. After adjusting GEOS-Chem aerosol extinction profiles by the CALIOP monthly ALH climatology, the retrieved NO2 VCDs increase by 4-16% over China on a monthly basis in 2012. The improved NO2 VCDs are better correlated to independent MAX-DOAS observations at three sites than POMINO and DOMINO are - especially for the polluted cases, R2 reaches 0.76 for the adjusted POMINO, much higher than that for the published POMINO (0.68) and DOMINO (0.38). The newly retrieved CP increases by 60 hPa on average, because of a stronger aerosol screening effect. Compared to the CF used in DOMINO, which implicitly includes aerosol information, our improved CF is much lower and can

  9. The impact of precipitation evaporation on the atmospheric aerosol distribution in EC-Earth v3.2.0

    Science.gov (United States)

    de Bruine, Marco; Krol, Maarten; van Noije, Twan; Le Sager, Philippe; Röckmann, Thomas

    2018-04-01

    The representation of aerosol-cloud interaction in global climate models (GCMs) remains a large source of uncertainty in climate projections. Due to its complexity, precipitation evaporation is either ignored or taken into account in a simplified manner in GCMs. This research explores various ways to treat aerosol resuspension and determines the possible impact of precipitation evaporation and subsequent aerosol resuspension on global aerosol burdens and distribution. The representation of aerosol wet deposition by large-scale precipitation in the EC-Earth model has been improved by utilising additional precipitation-related 3-D fields from the dynamical core, the Integrated Forecasting System (IFS) general circulation model, in the chemistry and aerosol module Tracer Model, version 5 (TM5). A simple approach of scaling aerosol release with evaporated precipitation fraction leads to an increase in the global aerosol burden (+7.8 to +15 % for different aerosol species). However, when taking into account the different sizes and evaporation rate of raindrops following Gong et al. (2006), the release of aerosols is strongly reduced, and the total aerosol burden decreases by -3.0 to -8.5 %. Moreover, inclusion of cloud processing based on observations by Mitra et al. (1992) transforms scavenged small aerosol to coarse particles, which enhances removal by sedimentation and hence leads to a -10 to -11 % lower aerosol burden. Finally, when these two effects are combined, the global aerosol burden decreases by -11 to -19 %. Compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, aerosol optical depth (AOD) is generally underestimated in most parts of the world in all configurations of the TM5 model and although the representation is now physically more realistic, global AOD shows no large improvements in spatial patterns. Similarly, the agreement of the vertical profile with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP

  10. Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment system.

    Science.gov (United States)

    Liu, Z; Voelger, P; Sugimoto, N

    2000-06-20

    We carried out a simulation study for the observation of clouds and aerosols with the Japanese Experimental Lidar in Space Equipment (ELISE), which is a two-wavelength backscatter lidar with three detection channels. The National Space Development Agency of Japan plans to launch the ELISE on the Mission Demonstrate Satellite 2 (MDS-2). In the simulations, the lidar return signals for the ELISE are calculated for an artificial, two-dimensional atmospheric model including different types of clouds and aerosols. The signal detection processes are simulated realistically by inclusion of various sources of noise. The lidar signals that are generated are then used as input for simulations of data analysis with inversion algorithms to investigate retrieval of the optical properties of clouds and aerosols. The results demonstrate that the ELISE can provide global data on the structures and optical properties of clouds and aerosols. We also conducted an analysis of the effects of cloud inhomogeneity on retrievals from averaged lidar profiles. We show that the effects are significant for space lidar observations of optically thick broken clouds.

  11. Properties of arctic haze aerosol from lidar observations during iarea 2015 campaign on spitsbergen

    Science.gov (United States)

    Stachlewska, Iwona S.; Ritter, Christoph; Böckmann, Christine; Engelmann, Ronny

    2018-04-01

    Arctic Haze event was observed on 5-8 April 2015 using simultaneously Near-range Aerosol Raman Lidar of IGFUW and Koldewey Aerosol Raman Lidar of AWI, both based at AWIPEV German-French station in Ny-Ålesund, Spitsbergen. The alterations in particle abundance and altitude of the aerosol load observed on following days of the event is analyzed. The daytime profiles of particle optical properties were obtained for both lidars, and then served as input for microphysical parameters inversion. The results indicate aerosol composition typical for the Arctic Haze. However, in some layers, a likely abundance of aqueous aerosol or black carbon originating in biomass burning over Siberia, changes measurably the Arctic Haze properties.

  12. How important is organic aerosol hygroscopicity to aerosol indirect forcing?

    International Nuclear Information System (INIS)

    Liu Xiaohong; Wang Jian

    2010-01-01

    Organics are among the most abundant aerosol components in the atmosphere. However, there are still large uncertainties with emissions of primary organic aerosol (POA) and volatile organic compounds (VOCs) (precursor gases of secondary organic aerosol, SOA), formation of SOA, and chemical and physical properties (e.g., hygroscopicity) of POA and SOA. All these may have significant impacts on aerosol direct and indirect forcing estimated from global models. In this study a modal aerosol module (MAM) in the NCAR community atmospheric model (CAM) is used to examine sensitivities of aerosol indirect forcing to hygroscopicity (represented by a single parameter 'κ' ) of POA and SOA. Our model simulation indicates that in the present-day (PD) condition changing the 'κ' value of POA from 0 to 0.1 increases the number concentration of cloud condensational nuclei (CCN) at supersaturation S = 0.1% by 40-80% over the POA source regions, while changing the 'κ' value of SOA by ± 50% (from 0.14 to 0.07 and 0.21) changes the CCN concentration within 40%. There are disproportionally larger changes in CCN concentration in the pre-industrial (PI) condition. Due to the stronger impact of organics hygroscopicity on CCN and cloud droplet number concentration at PI condition, global annual mean anthropogenic aerosol indirect forcing (AIF) between PD and PI conditions reduces with the increase of the hygroscopicity of organics. Global annual mean AIF varies by 0.4 W m -2 in the sensitivity runs with the control run of - 1.3 W m -2 , highlighting the need for improved understanding of organics hygroscopicity and its representation in global models.

  13. The Naval Ocean Vertical Aerosol Model : Progress Report

    NARCIS (Netherlands)

    Leeuw, G. de; Gathman, S.G.; Davidson, K.L.; Jensen, D.R.

    1990-01-01

    The Naval Oceanic Vertical Aerosol Model (NOVAM) has been formulated to estimate the vertical structure of the optical and infrared extinction coefficients in the marine atmospheric boundary layer (MABL). NOVAM was designed to predict the non-uniform and non-logarithmic extinction profiles which are

  14. Development of Raman-Mie lidar system for aerosol and water vapor profiling

    Science.gov (United States)

    Deng, Qian; Wang, Zhenzhu; Xu, Jiwei; Tan, Min; Wu, Decheng; Xie, Chenbo; Liu, Dong; Wang, Yingjian

    2018-03-01

    Aerosol and water vapor are two important atmospheric parameters. The accurate quantification of diurnal variation of these parameters are very useful for environment assessment and climate change studies. A moveable, compact and unattended lidar system based on modular design is developed for aerosol extinction coefficients and water vapor mixing ratios measurements. In the southern suburbs of Beijing, the continuous observation was carried out by this lidar since the middle of the year of 2017. The lidar equipment is presented and the case study is also described in this paper. The observational results show that the lidar kept a very good status from the long-time continuous measurements which is suitable for networking especially in meteorological research field.

  15. Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece

    Directory of Open Access Journals (Sweden)

    R. E. Mamouri

    2009-09-01

    Full Text Available We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite- Level 1 attenuated backscatter coefficient profiles, using coincident observations performed with a ground-based lidar in Athens, Greece (37.9° N, 23.6° E. A multi-wavelength ground-based backscatter/Raman lidar system is operating since 2000 at the National Technical University of Athens (NTUA in the framework of the European Aerosol Research LIdar NETwork (EARLINET, the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 40 coincidental aerosol ground-based lidar measurements were performed over Athens during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground–based lidar measurements was approximately two hours, centred on the satellite overpass time. From the analysis of the ground-based/satellite correlative lidar measurements, a mean bias of the order of 22% for daytime measurements and of 8% for nighttime measurements with respect to the CALIPSO profiles was found for altitudes between 3 and 10 km. The mean bias becomes much larger for altitudes lower that 3 km (of the order of 60% which is attributed to the increase of aerosol horizontal inhomogeneity within the Planetary Boundary Layer, resulting to the observation of possibly different air masses by the two instruments. In cases of aerosol layers underlying Cirrus clouds, comparison results for aerosol tropospheric profiles become worse. This is attributed to the significant multiple scattering effects in Cirrus clouds experienced by CALIPSO which result in an attenuation which is less than that measured by the ground-based lidar.

  16. High Altitude Emissions of Black Carbon Aerosols: Potential Climate Implications

    Science.gov (United States)

    Satheesh, S. K.

    2017-12-01

    Synthesizing a series of ground-based and airborne measurements of aerosols over the Indian region during summer and pre-monsoon seasons have revealed the persistence of elevated absorbing aerosol layers over most of the Indian region; more than 50% of which located above clouds. Subsequent, in situ measurements of black carbon (BC) using high-altitude balloons, showed surprising layers with high concentrations in the middle and upper troposphere even at an altitude of 8 to 10 kms. Simultaneous measurements of the vertical thermal structure have shown localized warming due to BC absorption leading to large reduction in lapse rate and sharp temperature inversion, which in turn increases the atmospheric stability. This aerosol-induced stable layer is conducive for maintaining the black carbon layer longer at that level, leading thereby to further solar absorption and subsequently triggering dry convection. These observations support the `solar escalator' concept through which absorption-warming-convection cycles lead to self-lifting of BC to upper troposphere or even to lower stratosphere under favorable conditions in a matter of a few days. Employing an on-line regional chemistry transport model (WRF-Chem), incorporating aircraft emissions, it is shown that emissions from high-flying aircrafts as the most likely source of these elevated black carbon layers. These in-situ injected particles, produce significant warming of the thin air in those heights and lift these layers to even upper tropospheric/lower stratospheric heights, aided by the strong monsoonal convection occurring over the region, which are known to overshoot the tropical tropopause leading to injection of tropospheric air mass (along with its constituent aerosols) into the stratosphere, especially during monsoon season when the tropical tropopause layer is known to be thinnest. These simulations are further supported by the CALIPSO space-borne LIDAR derived extinction coefficient profiles. Based on

  17. Time resolved aerosol monitoring in the urban centre of Soweto

    Science.gov (United States)

    Formenti, P.; Annegarn, H. J.; Piketh, S. J.

    1998-03-01

    A programme of aerosol sampling was conducted from 1982 to 1984 in the urban area of Soweto, Johannesburg, South Africa. The particulate matter (aerodynamic diameter source apportionment of crustal elements between coal smoke and traffic induced road dust, based on chemical elemental measurements. A novel technique is demonstrated for processing PIXE-derived time sequence elemental concentration vectors. Slowly varying background components have been extracted from sulphur and crustal aerosol components, using alternatively two digital filters: a moving minimum, and a moving average. The residuals of the crustal elements, assigned to locally generated aerosol components, were modelled using surrogate tracers: sulphur as a surrogate for coal smoke; and Pb as a surrogate for traffic activity. Results from this source apportionment revealed coal emissions contributed between 40% and 50% of the aerosol mineral matter, while 18-22% originated from road dust. Background aerosol, characteristic of the regional winter aerosol burden over the South African Highveld, was between 12% and 21%. Minor contributors identified included a manganese smelter, located 30 km from the sampling site, and informal trash burning, as the source of intermittent heavy metals (Cu, Zn). Elemental source profiles derived for these various sources are presented.

  18. Remote sensing of aerosols by synergy of caliop and modis

    OpenAIRE

    Kudo Rei; Nishizawa Tomoaki; Higurashi Akiko; Oikawa Eiji

    2018-01-01

    For the monitoring of the global 3-D distribution of aerosol components, we developed the method to retrieve the vertical profiles of water-soluble, light absorbing carbonaceous, dust, and sea salt particles by the synergy of CALIOP and MODIS data. The aerosol product from the synergistic method is expected to be better than the individual products of CALIOP and MODIS. We applied the method to the biomass-burning event in Africa and the dust event in West Asia. The reasonable results were obt...

  19. Raman Lidar Measurements of Aerosol Extinction and Backscattering. Report 2; Derivation of Aerosol Real Refractive Index, Single-Scattering Albedo, and Humidification Factor using Raman Lidar and Aircraft Size Distribution

    Science.gov (United States)

    Ferrare, R. A.; Melfi, S. H.; Whiteman, D. N.; Evans, K. D.; Poellot, M.; Kaufman, Y. J.

    1998-01-01

    Aerosol backscattering and extinction profiles measured by the NASA Goddard Space Flight Center Scanning Raman Lidar (SRL) during the remote cloud sensing (RCS) intensive operations period (IOP) at the Department of Energy Atmospheric Radiation Measurement (ARM) southern Great Plains (SGP) site during two nights in April 1994 are discussed. These profiles are shown to be consistent with the simultaneous aerosol size distribution measurements made by a PCASP (Passive Cavity Aerosol Spectrometer Probe) optical particle counter flown on the University of North Dakota Citation aircraft. We describe a technique which uses both lidar and PCASP measurements to derive the dependence of particle size on relative humidity, the aerosol real refractive index n, and estimate the effective single-scattering albedo Omega(sub 0). Values of n ranged between 1.4-1.5 (dry) and 1.37-1.47 (wet); Omega(sub 0) varied between 0.7 and 1.0. The single-scattering albedo derived from this technique is sensitive to the manner in which absorbing particles are represented in the aerosol mixture; representing the absorbing particles as an internal mixture rather than the external mixture assumed here results in generally higher values of Omega(sub 0). The lidar measurements indicate that the change in particle size with relative humidity as measured by the PCASP can be represented in the form discussed by Hattel with the exponent gamma = 0.3 + or - 0.05. The variations in aerosol optical and physical characteristics captured in the lidar and aircraft size distribution measurements are discussed in the context of the meteorological conditions observed during the experiment.

  20. Whole-body nanoparticle aerosol inhalation exposures.

    Science.gov (United States)

    Yi, Jinghai; Chen, Bean T; Schwegler-Berry, Diane; Frazer, Dave; Castranova, Vince; McBride, Carroll; Knuckles, Travis L; Stapleton, Phoebe A; Minarchick, Valerie C; Nurkiewicz, Timothy R

    2013-05-07

    Inhalation is the most likely exposure route for individuals working with aerosolizable engineered nano-materials (ENM). To properly perform nanoparticle inhalation toxicology studies, the aerosols in a chamber housing the experimental animals must have: 1) a steady concentration maintained at a desired level for the entire exposure period; 2) a homogenous composition free of contaminants; and 3) a stable size distribution with a geometric mean diameter generation of aerosols containing nanoparticles is quite challenging because nanoparticles easily agglomerate. This is largely due to very strong inter-particle forces and the formation of large fractal structures in tens or hundreds of microns in size (6), which are difficult to be broken up. Several common aerosol generators, including nebulizers, fluidized beds, Venturi aspirators and the Wright dust feed, were tested; however, none were able to produce nanoparticle aerosols which satisfy all criteria (5). A whole-body nanoparticle aerosol inhalation exposure system was fabricated, validated and utilized for nano-TiO2 inhalation toxicology studies. Critical components: 1) novel nano-TiO2 aerosol generator; 2) 0.5 m(3) whole-body inhalation exposure chamber; and 3) monitor and control system. Nano-TiO2 aerosols generated from bulk dry nano-TiO2 powders (primary diameter of 21 nm, bulk density of 3.8 g/cm(3)) were delivered into the exposure chamber at a flow rate of 90 LPM (10.8 air changes/hr). Particle size distribution and mass concentration profiles were measured continuously with a scanning mobility particle sizer (SMPS), and an electric low pressure impactor (ELPI). The aerosol mass concentration (C) was verified gravimetrically (mg/m(3)). The mass (M) of the collected particles was determined as M = (Mpost-Mpre), where Mpre and Mpost are masses of the filter before and after sampling (mg). The mass concentration was calculated as C = M/(Q*t), where Q is sampling flowrate (m(3)/min), and t is the sampling

  1. Aerosol Chemical Composition and its Effects on Cloud-Aerosol Interactions during the 2007 CHAPS Experiment

    Science.gov (United States)

    Lee, Y.; Alexander, L.; Newburn, M.; Jayne, J.; Hubbe, J.; Springston, S.; Senum, G.; Andrews, B.; Ogren, J.; Kleinman, L.; Daum, P.; Berg, L.; Berkowitz, C.

    2007-12-01

    Chemical composition of submicron aerosol particles was determined using an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (AMS) outfitted on the DOE G-1 aircraft during the Cumulus Humilis Aerosol Processing Study (CHAPS) conducted in Oklahoma City area in June 2007. The primary objective of CHAPS was to investigate the effects of urban emissions on cloud aerosol interactions as a function of processing of the emissions. Aerosol composition was typically determined at three different altitudes: below, in, and above cloud, in both upwind and downwind regions of the urban area. Aerosols were sampled from an isokinetic inlet with an upper size cut-off of ~1.5 micrometer. During cloud passages, the AMS also sampled particles that were dried from cloud droplets collected using a counter-flow virtual impactor (CVI) sampler. The aerosol mass concentrations were typically below 10 microgram per cubic meter, and were dominated by organics and sulfate. Ammonium was often less than required for complete neutralization of sulfate. Aerosol nitrate levels were very low. We noted that nitrate levels were significantly enhanced in cloud droplets compared to aerosols, most likely resulting from dissolution of gaseous nitric acid. Organic to sulfate ratios appeared to be lower in cloud droplets than in aerosols, suggesting cloud condensation nuclei properties of aerosol particles might be affected by loading and nature of the organic components in aerosols. In-cloud formation of sulfate was considered unimportant because of the very low SO2 concentration in the region. A detailed examination of the sources of the aerosol organic components (based on hydrocarbons determined using a proton transfer reaction mass spectrometer) and their effects on cloud formation as a function of atmospheric processing (based on the degree of oxidation of the organic components) will be presented.

  2. Long-term systematic profiling of dust aerosol optical properties using the EOLE NTUA lidar system over Athens, Greece (2000-2016)

    Science.gov (United States)

    Soupiona, O.; Papayannis, A.; Kokkalis, P.; Mylonaki, M.; Tsaknakis, G.; Argyrouli, A.; Vratolis, S.

    2018-06-01

    We present a comprehensive analysis of the seasonal variability of the vertical profiles of the optical and geometrical properties of Saharan dust aerosols, observed in the height region between 1000 and 6000 m, over the city of Athens, Greece, from February 2000 to December 2016. These observations were performed by a multi-wavelength (355-387-532-1064 nm) Raman lidar system under cloud-free conditions. The statistical analysis (using aerosol monthly mean values) is based on nighttime vertical Raman measurements of range-resolved aerosol optical properties (backscatter and extinction coefficients, lidar ratio, Ångström exponent) at 355 nm (57 dust events during more than 80 measurement hours). We found that the number of dust events was highest in spring, summer, and early autumn periods and that during spring the dust layers were moved at higher altitudes (∼4500 m) than in other seasons. The number of the forecasted dusty days (on monthly basis) by the BSC-DREAM8b model compared to those of the performed lidar measurements were found to have a quite strong correlation (R2 = 0.81), with a maximum occurrence predicted for the spring season. In the worst case scenario, at least 50% of the model-forecasted dust events can be observed by lidar under cloudless skies over Athens. For the sampled dust plumes we found mean lidar ratios of 52 ± 13 sr at 355 nm in the height range 2000-4000 m a.s.l. Moreover, the dust layers had a mean thickness of 2497 ± 1026 m and a center of mass of 2699 ± 1017 m. An analysis performed regarding the air mass back-trajectories arriving over Athens revealed two main clusters: one pathway from south-west to north-east, with dust emission areas in Tunisia, Algeria and Libya and a second one from south, across the Mediterranean Sea with emission areas over Libya and the remaining part of Algeria and Tunisia. This clustering enabled us to differentiate between the aerosol optical properties between the two clusters, based on their

  3. Depolarization Ratio Profiles Calibration and Observations of Aerosol and Cloud in the Tibetan Plateau Based on Polarization Raman Lidar

    Directory of Open Access Journals (Sweden)

    Guangyao Dai

    2018-03-01

    Full Text Available A brief description of the Water vapor, Cloud and Aerosol Lidar (WACAL system is provided. To calibrate the volume linear depolarization ratio, the concept of “ Δ 90 ° -calibration” is applied in this study. This effective and accurate calibration method is adjusted according to the design of WACAL. Error calculations and analysis of the gain ratio, calibrated volume linear depolarization ratio and particle linear depolarization ratio are provided as well. In this method, the influences of the gain ratio, the rotation angle of the plane of polarization and the polarizing beam splitter are discussed in depth. Two groups of measurements with half wave plate (HWP at angles of (0 ° , 45 ° and (22.5 ° , −22.5 ° are operated to calibrate the volume linear depolarization ratio. Then, the particle linear depolarization ratios measured by WACAL and CALIOP (the Cloud-Aerosol Lidar with Orthogonal Polarization during the simultaneous observations were compared. Good agreements are found. The calibration method was applied in the third Tibetan Plateau Experiment of Atmospheric Sciences (TIPEX III in 2013 and 2014 in China. Vertical profiles of the particle depolarization ratio of clouds and aerosol in the Tibetan Plateau were measured with WACAL in Litang (30.03° N, 100.28° E, 3949 m above sea level (a.s.l. in 2013 and Naqu (31.48° N, 92.06° E, 4508 m a.s.l. in 2014. Then an analysis on the polarizing properties of the aerosol, clouds and cirrus over the Tibetan Plateau is provided. The particle depolarization ratio of cirrus clouds varies from 0.36 to 0.52, with a mean value of 0.44 ± 0.04. Cirrus clouds occurred between 5.2 and 12 km above ground level (a.g.l.. The cloud thickness ranges from 0.12 to 2.55 km with a mean thickness of 1.22 ± 0.70 km. It is found that the particle depolarization ratio of cirrus clouds become larger as the height increases. However, the increase rate of the particle depolarization ratio becomes smaller as

  4. Observational evidence for the aerosol impact on ice cloud properties regulated by cloud/aerosol types

    Science.gov (United States)

    Zhao, B.; Gu, Y.; Liou, K. N.; Jiang, J. H.; Li, Q.; Liu, X.; Huang, L.; Wang, Y.; Su, H.

    2017-12-01

    The interactions between aerosols and ice clouds (consisting only of ice) represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. The observational evidence for the aerosol impact on ice cloud properties has been quite limited and showed conflicting results, partly because previous observational studies did not consider the distinct features of different ice cloud and aerosol types. Using 9-year satellite observations, we find that, for ice clouds generated from deep convection, cloud thickness, cloud optical thickness (COT), and ice cloud fraction increase and decrease with small-to-moderate and high aerosol loadings, respectively. For in-situ formed ice clouds, however, the preceding cloud properties increase monotonically and more sharply with aerosol loadings. The case is more complicated for ice crystal effective radius (Rei). For both convection-generated and in-situ ice clouds, the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters, but the sensitivities of Rei to aerosols under the same water vapor amount differ remarkably between the two ice cloud types. As a result, overall Rei slightly increases with aerosol loading for convection-generated ice clouds, but decreases for in-situ ice clouds. When aerosols are decomposed into different types, an increase in the loading of smoke aerosols generally leads to a decrease in COT of convection-generated ice clouds, while the reverse is true for dust and anthropogenic pollution. In contrast, an increase in the loading of any aerosol type can significantly enhance COT of in-situ ice clouds. The modulation of the aerosol impacts by cloud/aerosol types is demonstrated and reproduced by simulations using the Weather Research and Forecasting (WRF) model. Adequate and accurate representations of the impact of different cloud/aerosol types in climate models are crucial for reducing the

  5. Chemical, optical and radiative characteristics of aerosols during haze episodes of winter in the North China Plain

    Science.gov (United States)

    Ding, Jing; Zhang, Yufen; Han, Suqin; Xiao, Zhimei; Wang, Jiao; Feng, Yinchang

    2018-05-01

    Aerosol and water vapor radiative forcings, shortwave atmospheric heating rates and longwave atmospheric cooling rates were determined based on in situ physical and chemical measurements of aerosol, associated with the Mie theory and a radiative transfer model, LOWTRAN7, during the two haze episodes in the winter of 2013 in Tianjin, China. The aerosol types considered in LOWTRAN7 included rural, urban, marine, desert and custom aerosols. The default ratio of the absorption coefficient to the extinction coefficient for urban aerosol in LOWTRAN7 was approximately double of those found in this work, implying the weaker absorption ability of aerosols in the North China Plain (NCP). Moreover, the aerosol is assumed to be evenly distributed below 1 km of planetary boundary layer (PBL) on hazy days in LOWTRAN7. If the default urban aerosol optical properties and extinction profile in LOWTRAN7 is employed directly, a larger energy imbalance between the atmosphere and surface is generated and the warming effect of the aerosol is magnified. Hence, modified urban aerosol optical properties were established to replace the corresponding parameters' database in LOWTRAN7. The aerosol extinction profiles were obtained based on a 255-m meteorological tower and observed results from the studies about Tianjin. In the NCP, the aerosol had little impact on atmospheric counter radiation. The water vapor is the crucial factor that affects atmospheric counter radiation. Both modified high shortwave heating rates and longwave cooling rates occur near the surface due to the abundance of aerosol and water vapor. The modified net atmospheric heating rate near the surface is 1.2 K d-1 on hazy days and 0.3 K d-1 on non-hazy days. Compared with the default urban aerosol optical properties and its vertical distribution in LOWTRAN7, the feedback effect of the modified urban aerosol on the boundary layer may not necessarily result in a stable lower atmosphere, but depends on the aerosol light

  6. Aerosol delivery in intubated, mechanically ventilated patients

    International Nuclear Information System (INIS)

    MacIntyre, N.R.; Silver, R.M.; Miller, C.W.; Schuler, F.; Coleman, R.E.

    1985-01-01

    To study the effects of respiratory failure and mechanical ventilation on aerosol delivery to the lungs, nuclear scans were performed after aerosolization of 5 to 9 mCi of Tc-99m diethylenetriamine pentaacetic acid in seven stable, intubated, and mechanically ventilated patients. The radioactivity reaching the lungs was 2.9 +/- .7% (mean +/- SD) of the administered dose, an amount significantly less than that in three healthy nonintubated subjects and also less than what would be expected in nonintubated subjects from other published reports. A subsequent study was performed in 15 additional mechanically ventilated patients who were receiving aerosolized bronchodilators through their endotracheal tube. In these patients, heart rate and lung mechanical function values before and after treatment were not significantly different. It is concluded from these studies that aerosol delivery in mechanically ventilated patients is significantly reduced and that this is probably due to a combination of suboptimal breathing pattern, intrinsic airway disease, and the endotracheal tube functioning as both a site for aerosol deposition through impaction as well as a barrier to gastrointestinal absorption

  7. Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters - Part 2: Aerosols

    Science.gov (United States)

    Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-07-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  8. Multi-Sensor Cloud and Aerosol Retrieval Simulator and Remote Sensing from Model Parameters . Part 2; Aerosols

    Science.gov (United States)

    Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-01-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a simulated radiance product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers. This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled. In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model sub grid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  9. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    Science.gov (United States)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  10. Global volcanic aerosol properties derived from emissions, 1990-2014, using CESM1(WACCM): VOLCANIC AEROSOLS DERIVED FROM EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Michael J. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Schmidt, Anja [School of Earth and Environment, University of Leeds, Leeds UK; Easter, Richard [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Solomon, Susan [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge Massachusetts USA; Kinnison, Douglas E. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Neely, Ryan R. [School of Earth and Environment, University of Leeds, Leeds UK; National Centre for Atmospheric Science, University of Leeds, Leeds UK; Marsh, Daniel R. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Conley, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Bardeen, Charles G. [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA; Gettelman, Andrew [Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder Colorado USA

    2016-03-06

    Accurate representation of global stratospheric aerosol properties from volcanic and non-volcanic sulfur emissions is key to understanding the cooling effects and ozone-loss enhancements of recent volcanic activity. Attribution of climate and ozone variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the apparent rate of global average temperature increases, and variable recovery of the Antarctic ozone hole. We have developed a climatology of global aerosol properties from 1990 to 2014 calculated based on volcanic and non-volcanic emissions of sulfur sources. We have complied a database of volcanic SO2 emissions and plume altitudes for eruptions between 1990 and 2014, and a new prognostic capability for simulating stratospheric sulfate aerosols in version 5 of the Whole Atmosphere Community Climate Model, a component of the Community Earth System Model. Our climatology shows remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD), and with in situ measurements of aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD climatology represents a significant improvement over satellite-based analyses, which ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at mid- and high-latitudes. Our SAD climatology significantly improves on that provided for the Chemistry-Climate Model Initiative, which misses 60% of the SAD measured in situ. Our climatology of aerosol properties is publicly available on the Earth System Grid.

  11. Secondary organic aerosols: Formation potential and ambient data

    DEFF Research Database (Denmark)

    Barthelmie, R.J.; Pryor, S.C.

    1997-01-01

    Organic aerosols comprise a significant fraction of the total atmospheric particle loading and are associated with radiative forcing and health impacts. Ambient organic aerosol concentrations contain both a primary and secondary component. Herein, fractional aerosol coefficients (FAC) are used...... in conjunction with measurements of volatile organic compounds (VOC) to predict the formation potential of secondary organic aerosols (SOA) in the Lower Fraser Valley (LEV) of British Columbia. The predicted concentrations of SOA show reasonable accord with ambient aerosol measurements and indicate considerable...

  12. Changes in the physico-chemical properties of Amazonian aerosols from background conditions due to urban impacts in Central Amazonia.

    Science.gov (United States)

    Artaxo, P.; Barbosa, H. M.; Brito, J.; Carbone, S.; Fiorese, C.; Andre, B.; Rizzo, L. V.; Ditas, F.; Pöhlker, C.; Pöhlker, M. L.; Saturno, J.; Holanda, B. A.; Wang, J.; Souza, R. A. F. D.; Machado, L.; Andreae, M. O.; Martin, S. T.

    2016-12-01

    The GoAmazon 2014/15 experiment (Observations and Modeling of the Green Ocean Amazon) was a great opportunity to study how urbanization can change aerosol properties under pristine conditions in a tropical rain forest. The experiment took place from January 2014 to December 2015 in the vicinity of Manaus, Brazil, where several sampling stations were operated. Natural biogenic aerosol properties were studied in 3 sampling stations upwind of Manaus (ATTO (T0a), ZF2 (T0z) and EMBRAPA (T0e)). Urban impacted aerosols were analysed in two downwind sampling stations at Tiwa (T2) and Manacapuru (T3). Properties analysed were size distribution, scattering and absorption, composition, vertical profiles and others. Remote sensing measurements were done using AERONET and MODIS, while extensive ground based measurements were done in all sampling stations. Remote sensing measurements shows important changes in aerosol optical depth (AOD), especially in the aerosol absorption component. It was also observed a reduction in cloud droplet size downwind of Manaus for liquid phase clouds. Changes in particle number and size were also very significant, that reflected in changes in the aerosol radiative forcing (RF) before and after Manaus plume. In the dry season, an average RF of -24 w/m² was observed upwind, while -17 w/m² was observed downwind, due to large scale biomass burning aerosols. Single scattering albedo (SSA) at 550 nm changed from a high value of 0.96 upwind to 0.84 downwind due to the increase in absorbing aerosols in the wet season. In the dry season, SSA at 550nm changed from 0.95 to 0.87. Aerosol composition showed a large dominance of organic aerosols for all sites, accounting for 65-75% of PM1 non refractory aerosol. Most of these were secondary organic aerosol (SOA), with very low sulfate and nitrate concentrations. The influence of the Manaus plume on aerosol properties was more intense during the wet season, because in the dry season a significant amount of

  13. A sensitivity analysis of volcanic aerosol dispersion in the stratosphere. [Mt. Fuego, Guatemala eruptions

    Science.gov (United States)

    Butler, C. F.

    1979-01-01

    A computer sensitivity analysis was performed to determine the uncertainties involved in the calculation of volcanic aerosol dispersion in the stratosphere using a 2 dimensional model. The Fuego volcanic event of 1974 was used. Aerosol dispersion processes that were included are: transport, sedimentation, gas phase sulfur chemistry, and aerosol growth. Calculated uncertainties are established from variations in the stratospheric aerosol layer decay times at 37 latitude for each dispersion process. Model profiles are also compared with lidar measurements. Results of the computer study are quite sensitive (factor of 2) to the assumed volcanic aerosol source function and the large variations in the parameterized transport between 15 and 20 km at subtropical latitudes. Sedimentation effects are uncertain by up to a factor of 1.5 because of the lack of aerosol size distribution data. The aerosol chemistry and growth, assuming that the stated mechanisms are correct, are essentially complete in several months after the eruption and cannot explain the differences between measured and modeled results.

  14. Climatology of Aerosol Optical Properties in Southern Africa

    Science.gov (United States)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  15. Organic aerosols

    International Nuclear Information System (INIS)

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN

  16. Secondary inorganic aerosols in Europe: sources and the significant influence of biogenic VOC emissions, especially on ammonium nitrate

    Science.gov (United States)

    Aksoyoglu, Sebnem; Ciarelli, Giancarlo; El-Haddad, Imad; Baltensperger, Urs; Prévôt, André S. H.

    2017-06-01

    Contributions of various anthropogenic sources to the secondary inorganic aerosol (SIA) in Europe as well as the role of biogenic emissions on SIA formation were investigated using the three-dimensional regional model CAMx (comprehensive air quality model with extensions). Simulations were carried out for two periods of EMEP field campaigns, February-March 2009 and June 2006, which are representative of cold and warm seasons, respectively. Biogenic volatile organic compounds (BVOCs) are known mainly as precursors of ozone and secondary organic aerosol (SOA), but their role on inorganic aerosol formation has not attracted much attention so far. In this study, we showed the importance of the chemical reactions of BVOCs and how they affect the oxidant concentrations, leading to significant changes, especially in the formation of ammonium nitrate. A sensitivity test with doubled BVOC emissions in Europe during the warm season showed a large increase in secondary organic aerosol (SOA) concentrations (by about a factor of two), while particulate inorganic nitrate concentrations decreased by up to 35 %, leading to a better agreement between the model results and measurements. Sulfate concentrations decreased as well; the change, however, was smaller. The changes in inorganic nitrate and sulfate concentrations occurred at different locations in Europe, indicating the importance of precursor gases and biogenic emission types for the negative correlation between BVOCs and SIA. Further analysis of the data suggested that reactions of the additional terpenes with nitrate radicals at night were responsible for the decline in inorganic nitrate formation, whereas oxidation of BVOCs with OH radicals led to a decrease in sulfate. Source apportionment results suggest that the main anthropogenic source of precursors leading to formation of particulate inorganic nitrate is road transport (SNAP7; see Table 1 for a description of the categories), whereas combustion in energy and

  17. Temporal Variability and Characterization of Aerosols across the Pakistan Region during the Winter Fog Periods

    Directory of Open Access Journals (Sweden)

    Muhammad Fahim Khokhar

    2016-05-01

    Full Text Available Fog is a meteorological/environmental phenomenon which happens across the Indo-Gangetic Plains (IGP and leads to significant social and economic problems, especially posing significant threats to public health and causing disruptions in air and road traffic. Meteorological stations in Pakistan provide limited information regarding fog episodes as these provide only point observations. Continuous monitoring, as well as a spatially coherent picture of fog distribution, is possible through the use of satellite observations. This study focuses on the 2012–2015 winter fog episodes over the Pakistan region using the Moderate Resolution Image Spectrometer (MODIS, the Ozone Monitoring Instrument and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO products. The main objective of the study was to map the spatial distribution of aerosols, their types, and to identify the aerosol origins during special weather conditions like fog in Pakistan. The study also included ground monitoring of particulate matter (PM concentrations, which were conducted during the 2014–2015 winter period only. Overall, this study is part of a multi-country project supported by the International Centre for Integrated Mountain Development (ICIMOD, started in 2014–2015 winter period, whereby scientists from Bangladesh, India and Nepal have also conducted measurements at their respective sites. A significant correlation between MODIS (AOD and AERONET Station (AOD data from Lahore was identified. Mass concentration of PM10 at all sampling sites within Lahore city exceeded the National Environmental Quality Standards (NEQS levels on most of the occasions. Smoke and absorbing aerosol were found to be major constituents of winter fog in Pakistan. Furthermore, an extended span of winter fog was also observed in Lahore city during the winter of 2014–2015. The Vertical Feature Mask (VFM provided by CALIPSO satellite confirmed the low-lying aerosol

  18. Seasonal dependence of aerosol processing in urban Philadelphia

    Science.gov (United States)

    Avery, A. M.; Waring, M. S.; DeCarlo, P. F.

    2017-12-01

    Urban aerosols pose an important threat to human health due to the conflation of emissions and concentrated population exposed. Winter and summer aerosol and trace gas measurements were taken in downtown Philadelphia in 2016. Measurements included aerosol composition and size with an Aerodyne Aerosol Mass Spectrometer (AMS), particle size distributions with an SMPS, and an aethalometer. Trace gas measurements of O3, NO, CH4, CO, and CO2 were taken concurrently. Sampling in seasonal extremes provided contrast in aerosol and trace gas composition, aerosol processing, and emission factors. Inorganic aerosol components contributed approximately 60% of the submicron aerosol mass, while summertime aerosol composition was roughly 70% organic matter. Positive Matrix Factorization (PMF) on the organic aerosol (OA) matrix revealed three factors in common in each season, including an oxygenated organic aerosol (OOA) factor with different temporal behavior in each season. In summertime, OOA varied diurnally with ozone and daytime temperature, but in the wintertime, it was anti-correlated with ozone and temperature, and instead trended with calculated liquid water, indicating a seasonally-dependent processing of organic aerosol in Philadelphia's urban environment. Due to the inorganic dominant winter aerosol, liquid water much higher (2.65 μg/m3) in winter than in summer (1.54 μg/m3). Diurnally varying concentrations of background gas phase species (CH4, CO2) were higher in winter and varied less as a result of boundary layer conditions; ozone was also higher in background in winter than summer. Winter stagnation events with low windspeed showed large buildup of trace gases CH4, CO, CO2, and NO. Traffic related aerosol was also elevated with black carbon and hydrocarbon-like OA (HOA) plumes of each at 3-5 times higher than the winter the average value for each. Winter ratios of HOA to black carbon were significantly higher in the winter than the summer due to lower

  19. Research on aerosol formation, aerosol behaviour, aerosol filtration, aerosol measurement techniques and sodium fires at the Laboratory for Aerosol Physics and Filter Technology at the Nuclear Research Center Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, S; Schikarski, W; Schoeck, W [Gesellschaft fuer Kernforschung mbH, Karlsruhe (Germany)

    1977-01-01

    The behaviour of aerosols in LMFBR plant systems is of great importance for a number of problems, both normal operational and accident kind. This paper covers the following: aerosol modelling for LMFBR containment systems; aerosol size spectrometry by laser light scattering; experimental facilities and experimental results concerned with aerosol release under accident conditions; filtration of sodium oxide aerosols by multilayer sand bed filters.

  20. Research on aerosol formation, aerosol behaviour, aerosol filtration, aerosol measurement techniques and sodium fires at the Laboratory for Aerosol Physics and Filter Technology at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Jordan, S.; Schikarski, W.; Schoeck, W.

    1977-01-01

    The behaviour of aerosols in LMFBR plant systems is of great importance for a number of problems, both normal operational and accident kind. This paper covers the following: aerosol modelling for LMFBR containment systems; aerosol size spectrometry by laser light scattering; experimental facilities and experimental results concerned with aerosol release under accident conditions; filtration of sodium oxide aerosols by multilayer sand bed filters

  1. Aerosols in Northern Morocco: Input pathways and their chemical fingerprint

    Science.gov (United States)

    Benchrif, A.; Guinot, B.; Bounakhla, M.; Cachier, H.; Damnati, B.; Baghdad, B.

    2018-02-01

    The Mediterranean basin is one of the most sensitive regions in the world regarding climate change and air quality. Deserts and marine aerosols combine with combustion aerosols from maritime traffic, large urban centers, and at a larger scale from populated industrialized regions in Europe. From Tetouan city located in the North of Morocco, we attempted to better figure out the main aerosol transport pathways and their respective aerosol load and chemical profile by examining air mass back trajectory patterns and aerosol chemical compositions from May 2011 to April 2012. The back trajectory analysis throughout the sampling period led to four clusters, for which meteorological conditions and aerosol chemical characteristics have been investigated. The most frequent cluster (CL3: 39%) corresponds to polluted air masses coming from the Mediterranean Basin, characterized by urban and marine vessels emissions out of Spain and of Northern Africa. Two other polluted clusters were characterized. One is of local origin (CL1: 22%), with a marked contribution from urban aerosols (Rabat, Casablanca) and from biomass burning aerosols. The second (CL2: 32%) defines air masses from the near Atlantic Ocean, affected by pollutants emitted from the Iberian coast. A fourth cluster (CL4: 7%) is characterized by rather clean, fast and rainy oceanic air masses, influenced during their last 24 h before reaching Tetouan by similar sources with those affecting CL2, but to a lesser extent. The chemical data show that carbonaceous species are found in the fine aerosols fraction and are generally from local primary sources (low OC/EC) rather than long-range transported. In addition to fresh traffic and maritime vessel aerosols, our results suggest the contribution of local biomass burning.

  2. Aerosol Activation Properties within and above Mixing Layer in the North China Plain

    Science.gov (United States)

    Deng, Z.; Ran, L.

    2013-12-01

    Aerosol particles, serving as cloud condensation nuclei (CCN), may modify the properties of clouds and have an impact on climate. The vertical distribution of aerosols and their activation properties is critical to quantify the effect of aerosols on clouds. An intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP 2013), was conducted in the North China Plain during the late July and early August 2013 to measure the vertical profiles of atmospheric components in this polluted region and estimate their effects on atmospheric environment and climate. Aerosols were measured with in-situ instruments and Lidar. Particularly, the aerosols were collected at 1000 m height with a 1 m3 bag sampler attached to a tethered balloon, and subsequently measured with combined scanning mobility particle sizer (SMPS) and CCN counter. Comparisons of size-resolved activation ratios at ground level and 1000 m height showed that aerosols in upper atmosphere were not only less concentrated, but also less CCN-active than those at the surface. The difference in aerosol properties between upper atmosphere and the ground indicates that the analysis of impacts of aerosols on cloud might be misleading in heavily polluted region based on the relationship of cloud properties and surface aerosols or column without considering the vertical distribution of aerosol activation abilities.

  3. Aerosol effects in radiation transfer

    International Nuclear Information System (INIS)

    Binenko, V.I.; Harshvardhan, H.

    1993-01-01

    The radiative properties and effects of aerosols are assessed for the following aerosol sources: relatively clean background aerosol, dust storms and dust outbreaks, anthropogenic pollution, and polluted cloud layers. Studies show it is the submicron aerosol fraction that plays a dominant radiative role in the atmosphere. The radiative effect of the aerosol depends not only on its loading but also on the underlying surface albedo and on solar zenith angle. It is only with highly reflecting surfaces such as Arctic ice that aerosols have a warming effect. Radiometric, microphysical, mineral composition, and refractive index measurements are presented for dust and in particular for the Saharan aerosol layer (SAL). Short-wave radiative heating of the atmosphere is caused by the SAL and is due mainly to absorption. However, the SAL does not contribute significantly to the long-wave thermal radiation budget. Field program studies of the radiative effects of aerosols are described. Anthropogenic aerosols deplete the incoming solar radiation. A case field study for a regional Ukrainian center is discussed. The urban aerosol causes a cooling of metropolitan centers, compared with outlying areas, during the day, which is followed by a warming trend at night. In another study, an increase in turbidity by a factor of 3 due to increased industrialization for Mexico City is noted, together with a drop in atmospheric transmission by 10% over a 50-year period. Numerous studies are cited that demonstrate that anthropogenic aerosols affect both the microphysical and radiative properties of clouds, which in turn affect regional climate. Particles acting as cloud nuclei are considered to have the greatest indirect effect on cloud absorptivity of short-wave radiation. Satellite observations show that low-level stratus clouds contaminated by ship exhaust at sea lead to an increase in cloud albedo

  4. Study on aerosol optical properties and radiative effect in cloudy weather in the Guangzhou region

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Tao, E-mail: tdeng@grmc.gov.cn [Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, China Meteorological Administration, Guangzhou 510080 (China); Deng, XueJiao; Li, Fei [Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, China Meteorological Administration, Guangzhou 510080 (China); Wang, ShiQiang [Zhuhai Meteorological Administration, Zhuhai 519000 (China); Wang, Gang [Haizhu Meteorological Administration, Guangzhou, 510000 (China)

    2016-10-15

    Currently, Guangzhou region was facing the problem of severe air pollution. Large amount of aerosols in the polluted air dramatically attenuated solar radiation. This study investigated the vertical optical properties of aerosols and inverted the height of boundary layer in the Guangzhou region using the lidar. Simultaneously, evaluated the impact of different types of clouds on aerosol radiation effects using the SBDART. The results showed that the height of the boundary layer and the surface visibility changed consistently, the average height of the boundary layer on the hazy days was only 61% of that on clear days. At the height of 2 km or lower, the aerosol extinction coefficient profile distribution decreased linearly along with height on clear days, but the haze days saw an exponential decrease. When there was haze, the changing of heating rate of atmosphere caused by the aerosol decreased from 3.72 K/d to 0.9 K/d below the height of 2 km, and the attenuation of net radiation flux at the ground surface was 97.7 W/m{sup 2}, and the attenuation amplitude was 11.4%; when there were high clouds, the attenuation was 125.2 W/m{sup 2} and the attenuation amplitude was 14.6%; where there were medium cloud, the attenuation was 286.4 W/m{sup 2} and the attenuation amplitude was 33.4%. Aerosol affected mainly shortwave radiation, and affected long wave radiation very slightly. - Highlights: • Large amount of aerosols dramatically attenuated solar radiation in Guangzhou region. • Investigated the aerosol extinction coefficient profile distribution and inverted the height of boundary layer using the lidar • Evaluated the impact of different types of clouds on aerosol radiation effects.

  5. Receptor modeling of near-roadway aerosol mass spectrometer data in Las Vegas, Nevada, with EPA PMF

    Directory of Open Access Journals (Sweden)

    S. G. Brown

    2012-01-01

    Full Text Available Ambient non-refractory PM1 aerosol particles were measured with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-AMS at an elementary school 18 m from the US 95 freeway soundwall in Las Vegas, Nevada, during January 2008. Additional collocated continuous measurements of black carbon (BC, carbon monoxide (CO, nitrogen oxides (NOx, and meteorological data were collected. The US~Environmental Protection Agency's (EPA positive matrix factorization (PMF data analysis tool was used to apportion organic matter (OM as measured by HR-AMS, and rotational tools in EPA PMF were used to better characterize the solution space and pull resolved factors toward known source profiles. Three- to six-factor solutions were resolved. The four-factor solution was the most interpretable, with the typical AMS PMF factors of hydrocarbon-like organic aerosol (HOA, low-volatility oxygenated organic aerosol (LV-OOA, biomass burning organic aerosol (BBOA, and semi-volatile oxygenated organic aerosol (SV-OOA. When the measurement site was downwind of the freeway, HOA composed about half the OM, with SV-OOA and LV-OOA accounting for the rest. Attempts to pull the PMF factor profiles toward source profiles were successful but did not qualitatively change the results, indicating that these factors are very stable. Oblique edges were present in G-space plots, suggesting that the obtained rotation may not be the most plausible one. Since solutions found by pulling the profiles or using Fpeak retained these oblique edges, there appears to be little rotational freedom in the base solution. On average, HOA made up 26% of the OM, while LV-OOA was highest in the afternoon and accounted for 26% of the OM. BBOA occurred in the evening hours, was predominantly from the residential area to the north, and on average constituted 12% of the OM; SV-OOA accounted for the remaining third of the OM. Use of the pulling techniques

  6. Development of an aerosol chamber for calibration of 220Rn progeny detectors

    Science.gov (United States)

    Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Tokonami, Shinji

    2014-09-01

    This paper describes an aerosol chamber system that can be used for calibrations and performance experiments of passive 220Rn progeny detectors. For the purpose of this study, an aerosol generation system using carnauba wax as the aerosol material was mounted into the 220Rn chamber. We used the chamber to measure characteristics of the equilibrium factor (F) of 220Rn and unattached fraction (fp) of 220Rn progeny, which are important parameters for dose estimation. The first experiment showed that continuous and stable generation of the unattached and aerosol-attached 220Rn progeny concentrations was obtained. We observed that the spatial distributions in the chamber of the vertical profiles of the unattached and aerosol-attached 220Rn progeny concentrations were homogeneous, as were the particle number concentration and count median diameter. The values of F and fp and their characteristics observed in this study were in the same range as the values reported from indoor measurements. We found that the characteristics of F and fp were dependent on the aerosol conditions (particle diameter and particle number concentration).

  7. An Integrated Cloud-Aerosol-Radiation Product Using CERES, MODIS, CALIPSO and CloudSat Data

    Science.gov (United States)

    Sun-Mack, S.; Gibson, S.; Chen, Y.; Wielicki, B.; Minnis, P.

    2006-12-01

    The goal of this paper is to provide the first integrated data set of global vertical profiles of aerosols, clouds, and radiation using the combined NASA A-Train data from Aqua CERES and MODIS, CALIPSO, and CloudSat. All of these instruments are flying in formation as part of the Aqua Train, or A-Train. This paper will present the preliminary results of merging aerosol and cloud data from the CALIPSO active lidar, cloud data from CloudSat, integrated column aerosol and cloud data from the MODIS CERES analyses, and surface and top-of-atmosphere broadband radiation fluxes from CERES. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.

  8. Elevated aerosol layers modify the O2–O2 absorption measured by ground-based MAX-DOAS

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Ivan; Berg, Larry K.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Volkamer, Rainer

    2016-06-01

    The oxygen collisional complex (O2-O2, or O4) is a greenhouse gas, and a calibration trace gas used to infer aerosol and cloud properties by Differential Optical Absorption Spectroscopy (DOAS). Recent reports suggest the need for an O4 correction factor (CFO4) when comparing simulated and measured O4 differential slant column densities (dSCD) by passive DOAS. We investigate the sensitivity of O4 dSCD simulations at ultraviolet (360 nm) and visible (477 nm) wavelengths towards separately measured aerosol extinction profiles. Measurements were conducted by the University of Colorado 2D-MAX-DOAS instrument and NASA’s multispectral High Spectral Resolution Lidar (HSRL-2) during the Two Column Aerosol Project (TCAP) at Cape Cod, MA in July 2012. During two case study days with (1) high aerosol load (17 July, AOD ~ 0.35 at 477 nm), and (2) near molecular scattering conditions (22 July, AOD < 0.10 at 477 nm) the measured and calculated O4 dSCDs agreed within 6.4±0.4% (360 nm) and 4.7±0.6% (477 nm) if the HSRL-2 profiles were used as input to the calculations. However, if in the calculations the aerosol is confined to the surface layer (while keeping AOD constant) we find 0.53aerosol layers, unless accounted for, can cause negative bias in the simulated O4 dSCDs that can explain CFO4. The air density and aerosol profile aloft needs to be taken into account when interpreting the O4 from ground-based MAX-DOAS. Opportunities to identify and better characterize these layers are also discussed.

  9. Reduction of photosynthetically active radiation under extreme stratospheric-aerosol loads

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Zardecki, A.

    1981-01-01

    The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10 16 g is sufficient to reduce photosynthesis to 10 3 of normal. We also infer from this result that the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al., is thus shown to be a possible extinction mechanism, even with smaller size asteroids or comets than previously estimated

  10. Reduction of photosynthetically active radiation under extreme stratospheric aerosol loads

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Zardecki, A.

    1981-08-01

    The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10 1 g is sufficient to reduce photosynthesis to 10 -3 of normal. We also infer from this result tha the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al. is thus shown to be a possible extinction mechanism, even with smaller size asteroids of comets than previously estimated

  11. Calibration of aerosol radiometers. Special aerosol sources

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.

    1988-01-01

    Problems of calibration of artificial aerosol radiometry and information-measurement systems of radiometer radiation control, in particular, are considered. Special aerosol source is suggested, which permits to perform certification and testing of aerosol channels of the systems in situ without the dismantling

  12. Assessment of aerosol models to AOD retrieval from HJ1 Satellites

    International Nuclear Information System (INIS)

    Yuhuan, Zhang; Zhengqiang, Li; Weizhen, Hou; Ying, Zhang; Yan, Ma; Li Donghui

    2014-01-01

    The Chinese environmental satellites HJ1 A and B can play a significant role in the aerosol retrieval due to their high spatial and temporal resolution. The current Aerosol Optical Depth (AOD) retrieval methods from HJ1-CCD are almost based on the LUT (Look-Up Table), by selecting the best fitting result to determine the AOD. However, aerosol model selection has an important impact on the retrieval results when creating the lookup table; inappropriate choice of aerosol model will significantly affect the accuracy and applicability of the method. This paper determined the local aerosol physical properties (such as complex refractive index, and size distribution) based on the observational data, thus we defined the aerosol type and retrieved the AOD of the local aerosol. Furthermore we compared the results retrieved from the measurement aerosol model with those retrieved from the inherent aerosol model in the radiative transfer model and then evaluate its effect on the aerosol type

  13. Topics in current aerosol research (part2)

    CERN Document Server

    Hidy, G M

    1972-01-01

    Topics in Current Aerosol Research, Part 2 contains some selected articles in the field of aerosol study. The chosen topics deal extensively with the theory of diffusiophoresis and thermophoresis. Also covered in the book is the mathematical treatment of integrodifferential equations originating from the theory of aerosol coagulation. The book is the third volume of the series entitled International Reviews in Aerosol Physics and Chemistry. The text offers significant understanding of the methods employed to develop a theory for thermophoretic and diffusiophoretic forces acting on spheres in t

  14. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    Science.gov (United States)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  15. Strengths and limitations of the NATALI code for aerosol typing from multiwavelength Raman lidar observations

    Directory of Open Access Journals (Sweden)

    Nicolae Doina

    2018-01-01

    Full Text Available A Python code was developed to automatically retrieve the aerosol type (and its predominant component in the mixture from EARLINET’s 3 backscatter and 2 extinction data. The typing relies on Artificial Neural Networks which are trained to identify the most probable aerosol type from a set of mean-layer intensive optical parameters. This paper presents the use and limitations of the code with respect to the quality of the inputed lidar profiles, as well as with the assumptions made in the aerosol model.

  16. Use of the NASA GEOS-5 SEAC4RS Meteorological and Aerosol Reanalysis for assessing simulated aerosol optical properties as a function of smoke age

    Science.gov (United States)

    Randles, C. A.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Buchard, V.; Govindaraju, R.; Chen, G.; Hair, J. W.; Russell, P. B.; Shinozuka, Y.; Wagner, N.; Lack, D.

    2014-12-01

    The NASA Goddard Earth Observing System version 5 (GEOS-5) Earth system model, which includes an online aerosol module, provided chemical and weather forecasts during the SEAC4RS field campaign. For post-mission analysis, we have produced a high resolution (25 km) meteorological and aerosol reanalysis for the entire campaign period. In addition to the full meteorological observing system used for routine NWP, we assimilate 550 nm aerosol optical depth (AOD) derived from MODIS (both Aqua and Terra satellites), ground-based AERONET sun photometers, and the MISR instrument (over bright surfaces only). Daily biomass burning emissions of CO, CO2, SO2, and aerosols are derived from MODIS fire radiative power retrievals. We have also introduced novel smoke "age" tracers, which provide, for a given time, a snapshot histogram of the age of simulated smoke aerosol. Because GEOS-5 assimilates remotely sensed AOD data, it generally reproduces observed (column) AOD compared to, for example, the airborne 4-STAR instrument. Constraining AOD, however, does not imply a good representation of either the vertical profile or the aerosol microphysical properties (e.g., composition, absorption). We do find a reasonable vertical structure for aerosols is attained in the model, provided actual smoke injection heights are not much above the planetary boundary layer, as verified with observations from DIAL/HRSL aboard the DC8. The translation of the simulated aerosol microphysical properties to total column AOD, needed in the aerosol assimilation step, is based on prescribed mass extinction efficiencies that depend on wavelength, composition, and relative humidity. Here we also evaluate the performance of the simulated aerosol speciation by examining in situ retrievals of aerosol absorption/single scattering albedo and scattering growth factor (f(RH)) from the LARGE and AOP suite of instruments. Putting these comparisons in the context of smoke age as diagnosed by the model helps us to

  17. The direct radiative effect of biomass burning aerosols over southern Africa

    Directory of Open Access Journals (Sweden)

    S. J. Abel

    2005-01-01

    Full Text Available A multi-column radiative transfer code is used to assess the direct radiative effect of biomass burning aerosols over the southern African region during September. The horizontal distribution of biomass smoke is estimated from two sources; i General Circulation Model (GCM simulations combined with measurements from the Aerosol Robotic Network (AERONET of Sun photometers; ii data from the Moderate resolution Imaging Spectrometer (MODIS satellite. Aircraft and satellite measurements are used to constrain the cloud fields, aerosol optical properties, vertical structure, and land surface albedo included in the model. The net regional direct effect of the biomass smoke is -3.1 to -3.6 Wm-2 at the top of atmosphere, and -14.4 to -17.0 Wm-2 at the surface for the MODIS and GCM distributions of aerosol. The direct radiative effect is shown to be highly sensitive to the prescribed vertical profiles and aerosol optical properties. The diurnal cycle of clouds and the spectral dependency of surface albedo are also shown to play an important role.

  18. An accuracy assessment of the CALIOP/CALIPSO version 2/version 3 daytime aerosol extinction product based on a detailed multi-sensor, multi-platform case study

    Directory of Open Access Journals (Sweden)

    M. Kacenelenbogen

    2011-04-01

    Full Text Available The Cloud Aerosol LIdar with Orthogonal Polarization (CALIOP, on board the CALIPSO platform, has measured profiles of total attenuated backscatter coefficient (level 1 products since June 2006. CALIOP's level 2 products, such as the aerosol backscatter and extinction coefficient profiles, are retrieved using a complex succession of automated algorithms. The goal of this study is to help identify potential shortcomings in the CALIOP version 2 level 2 aerosol extinction product and to illustrate some of the motivation for the changes that have been introduced in the next version of CALIOP data (version 3, released in June 2010. To help illustrate the potential factors contributing to the uncertainty of the CALIOP aerosol extinction retrieval, we focus on a one-day, multi-instrument, multiplatform comparison study during the CALIPSO and Twilight Zone (CATZ validation campaign on 4 August 2007. On that day, we observe a consistency in the Aerosol Optical Depth (AOD values recorded by four different instruments (i.e. space-borne MODerate Imaging Spectroradiometer, MODIS: 0.67 and POLarization and Directionality of Earth's Reflectances, POLDER: 0.58, airborne High Spectral Resolution Lidar, HSRL: 0.52 and ground-based AErosol RObotic NETwork, AERONET: 0.48 to 0.73 while CALIOP AOD is a factor of two lower (0.32 at 532 nm. This case study illustrates the following potential sources of uncertainty in the CALIOP AOD: (i CALIOP's low signal-to-noise ratio (SNR leading to the misclassification and/or lack of aerosol layer identification, especially close to the Earth's surface; (ii the cloud contamination of CALIOP version 2 aerosol backscatter and extinction profiles; (iii potentially erroneous assumptions of the aerosol extinction-to-backscatter ratio (Sa used in CALIOP's extinction retrievals; and (iv calibration coefficient biases in the CALIOP daytime attenuated backscatter coefficient profiles. The use of version 3 CALIOP extinction

  19. What Controls the Vertical Distribution of Aerosol? Relationships Between Process Sensitivity in HadGEM3-UKCA and Inter-Model Variation from AeroCom Phase II

    Science.gov (United States)

    Kipling, Zak; Stier, Philip; Johnson, Colin E.; Mann, Graham W.; Bellouin, Nicolas; Bauer, Susanne E.; Bergman, Tommi; Chin, Mian; Diehl, Thomas; Ghan, Steven J.; hide

    2016-01-01

    The vertical profile of aerosol is important for its radiative effects, but weakly constrained by observations on the global scale, and highly variable among different models. To investigate the controlling factors in one particular model, we investigate the effects of individual processes in HadGEM3-UKCA and compare the resulting diversity of aerosol vertical profiles with the inter-model diversity from the AeroCom Phase II control experiment. In this way we show that (in this model at least) the vertical profile is controlled by a relatively small number of processes, although these vary among aerosol components and particle sizes. We also show that sufficiently coarse variations in these processes can produce a similar diversity to that among different models in terms of the global-mean profile and, to a lesser extent, the zonal-mean vertical position. However, there are features of certain models' profiles that cannot be reproduced, suggesting the influence of further structural differences between models. In HadGEM3-UKCA, convective transport is found to be very important in controlling the vertical profile of all aerosol components by mass. In-cloud scavenging is very important for all except mineral dust. Growth by condensation is important for sulfate and carbonaceous aerosol (along with aqueous oxidation for the former and ageing by soluble material for the latter). The vertical extent of biomass-burning emissions into the free troposphere is also important for the profile of carbonaceous aerosol. Boundary-layer mixing plays a dominant role for sea salt and mineral dust, which are emitted only from the surface. Dry deposition and below-cloud scavenging are important for the profile of mineral dust only. In this model, the microphysical processes of nucleation, condensation and coagulation dominate the vertical profile of the smallest particles by number (e.g. total CN >3 nm), while the profiles of larger particles (e.g. CN>100 nm) are controlled by the

  20. A model of aerosol evaporation kinetics in a thermodenuder

    Directory of Open Access Journals (Sweden)

    C. D. Cappa

    2010-05-01

    Full Text Available Aerosol thermodenuders provide a measure of particle volatility. The information provided by a thermodenuder is fundamentally related to the kinetics of evaporation and condensation within the device. Here, a time-dependent, multi-component model of particle and gas-phase mass transfer in a thermodenuder is described. This model empirically accounts for the temperature profile along the length of a typical thermodenuder and distinguishes between the influence of the heating section and of the adsorbent denuder section. It is shown that "semi-volatile" aerosol is particularly sensitive to the inclusion of an adsorbent denuder in the model. As expected, the mass loss from evaporation of particles as they pass through the thermodenuder is directly related to the compound vapor pressure, although the assumptions regarding the enthalpy of vaporization are shown to also have a large influence on the overall calculated mass thermograms. The model has been validated by comparison with previously measured mass thermograms for single-component aerosols and is shown to provide reasonable semi-quantitative agreement. The model that has been developed here can be used to provide quantitative understanding of aerosol volatility measurements of single and multi-component aerosol made using thermodenuders that include adsorbent denuder sections.

  1. Simulation of the Ozone Monitoring Instrument aerosol index using the NASA Goddard Earth Observing System aerosol reanalysis products

    Science.gov (United States)

    Colarco, Peter R.; Gassó, Santiago; Ahn, Changwoo; Buchard, Virginie; da Silva, Arlindo M.; Torres, Omar

    2017-11-01

    We provide an analysis of the commonly used Ozone Monitoring Instrument (OMI) aerosol index (AI) product for qualitative detection of the presence and loading of absorbing aerosols. In our analysis, simulated top-of-atmosphere (TOA) radiances are produced at the OMI footprints from a model atmosphere and aerosol profile provided by the NASA Goddard Earth Observing System (GEOS-5) Modern-Era Retrospective Analysis for Research and Applications aerosol reanalysis (MERRAero). Having established the credibility of the MERRAero simulation of the OMI AI in a previous paper we describe updates in the approach and aerosol optical property assumptions. The OMI TOA radiances are computed in cloud-free conditions from the MERRAero atmospheric state, and the AI is calculated. The simulated TOA radiances are fed to the OMI near-UV aerosol retrieval algorithms (known as OMAERUV) is compared to the MERRAero calculated AI. Two main sources of discrepancy are discussed: one pertaining to the OMI algorithm assumptions of the surface pressure, which are generally different from what the actual surface pressure of an observation is, and the other related to simplifying assumptions in the molecular atmosphere radiative transfer used in the OMI algorithms. Surface pressure assumptions lead to systematic biases in the OMAERUV AI, particularly over the oceans. Simplifications in the molecular radiative transfer lead to biases particularly in regions of topography intermediate to surface pressures of 600 and 1013.25 hPa. Generally, the errors in the OMI AI due to these considerations are less than 0.2 in magnitude, though larger errors are possible, particularly over land. We recommend that future versions of the OMI algorithms use surface pressures from readily available atmospheric analyses combined with high-spatial-resolution topographic maps and include more surface pressure nodal points in their radiative transfer lookup tables.

  2. Advances In Global Aerosol Modeling Applications Through Assimilation of Satellite-Based Lidar Measurements

    Science.gov (United States)

    Campbell, James; Hyer, Edward; Zhang, Jianglong; Reid, Jeffrey; Westphal, Douglas; Xian, Peng; Vaughan, Mark

    2010-05-01

    Modeling the instantaneous three-dimensional aerosol field and its downwind transport represents an endeavor with many practical benefits foreseeable to air quality, aviation, military and science agencies. The recent proliferation of multi-spectral active and passive satellite-based instruments measuring aerosol physical properties has served as an opportunity to develop and refine the techniques necessary to make such numerical modeling applications possible. Spurred by high-resolution global mapping of aerosol source regions, and combined with novel multivariate data assimilation techniques designed to consider these new data streams, operational forecasts of visibility and aerosol optical depths are now available in near real-time1. Active satellite-based aerosol profiling, accomplished using lidar instruments, represents a critical element for accurate analysis and transport modeling. Aerosol source functions, alone, can be limited in representing the macrophysical structure of injection scenarios within a model. Two-dimensional variational (2D-VAR; x, y) assimilation of aerosol optical depth from passive satellite observations significantly improves the analysis of the initial state. However, this procedure can not fully compensate for any potential vertical redistribution of mass required at the innovation step. The expense of an inaccurate vertical analysis of aerosol structure is corresponding errors downwind, since trajectory paths within successive forecast runs will likely diverge with height. In this paper, the application of a newly-designed system for 3D-VAR (x,y,z) assimilation of vertical aerosol extinction profiles derived from elastic-scattering lidar measurements is described [Campbell et al., 2009]. Performance is evaluated for use with the U. S. Navy Aerosol Analysis and Prediction System (NAAPS) by assimilating NASA/CNES satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) 0.532 μm measurements [Winker et al., 2009

  3. Attachment behavior of fission products to solution aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Takamiya, Koichi; Tanaka, Toru; Nitta, Shinnosuke; Itosu, Satoshi; Sekimoto, Shun; Oki, Yuichi; Ohtsuki, Tsutomu [Research Reactor Institute, Kyoto University, Osaka (Japan)

    2016-12-15

    Various characteristics such as size distribution, chemical component and radioactivity have been analyzed for radioactive aerosols released from Fukushima Daiichi Nuclear Power Plant. Measured results for radioactive aerosols suggest that the potential transport medium for radioactive cesium was non-sea-salt sulfate. This result indicates that cesium isotopes would preferentially attach with sulfate compounds. In the present work the attachment behavior of fission products to aqueous solution aerosols of sodium salts has been studied using a generation system of solution aerosols and spontaneous fission source of {sup 248}Cm. Attachment ratios of fission products to the solution aerosols were compared among the aerosols generated by different solutions of sodium salt. A significant difference according as a solute of solution aerosols was found in the attachment behavior. The present results suggest the existence of chemical effects in the attachment behavior of fission products to solution aerosols.

  4. Persistence of urban organic aerosols composition: Decoding their structural complexity and seasonal variability

    International Nuclear Information System (INIS)

    Matos, João T.V.; Duarte, Regina M.B.O.; Lopes, Sónia P.; Silva, Artur M.S.; Duarte, Armando C.

    2017-01-01

    Organic Aerosols (OAs) are typically defined as highly complex matrices whose composition changes in time and space. Focusing on time vector, this work uses two-dimensional nuclear magnetic resonance (2D NMR) techniques to examine the structural features of water-soluble (WSOM) and alkaline-soluble organic matter (ASOM) sequentially extracted from fine atmospheric aerosols collected in an urban setting during cold and warm seasons. This study reveals molecular signatures not previously decoded in NMR-related studies of OAs as meaningful source markers. Although the ASOM is less hydrophilic and structurally diverse than its WSOM counterpart, both fractions feature a core with heteroatom-rich branched aliphatics from both primary (natural and anthropogenic) and secondary origin, aromatic secondary organics originated from anthropogenic aromatic precursors, as well as primary saccharides and amino sugar derivatives from biogenic emissions. These common structures represent those 2D NMR spectral signatures that are present in both seasons and can thus be seen as an “annual background” profile of the structural composition of OAs at the urban location. Lignin-derived structures, nitroaromatics, disaccharides, and anhydrosaccharides signatures were also identified in the WSOM samples only from periods identified as smoke impacted, which reflects the influence of biomass-burning sources. The NMR dataset on the H–C molecules backbone was also used to propose a semi-quantitative structural model of urban WSOM, which will aid efforts for more realistic studies relating the chemical properties of OAs with their atmospheric behavior. - Highlights: • 2D NMR spectroscopy was used to decode urban organic aerosols. • Water and alkaline soluble components of urban organic aerosols have been compared. • Persistence of urban organic aerosols composition across different seasons. • Annual background profile of the structural features of urban organic aerosols. • Semi

  5. Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas

    Science.gov (United States)

    Stone, Elizabeth A.; Schauer, James J.; Pradhan, Bidya Banmali; Dangol, Pradeep Man; Habib, Gazala; Venkataraman, Chandra; Ramanathan, V.

    2010-03-01

    This study focuses on improving source apportionment of carbonaceous aerosol in South Asia and consists of three parts: (1) development of novel molecular marker-based profiles for real-world biofuel combustion, (2) application of these profiles to a year-long data set, and (3) evaluation of profiles by an in-depth sensitivity analysis. Emissions profiles for biomass fuels were developed through source testing of a residential stove commonly used in South Asia. Wood fuels were combusted at high and low rates, which corresponded to source profiles high in organic carbon (OC) or high in elemental carbon (EC), respectively. Crop wastes common to the region, including rice straw, mustard stalk, jute stalk, soybean stalk, and animal residue burnings, were also characterized. Biofuel profiles were used in a source apportionment study of OC and EC in Godavari, Nepal. This site is located in the foothills of the Himalayas and was selected for its well-mixed and regionally impacted air masses. At Godavari, daily samples of fine particulate matter (PM2.5) were collected throughout the year of 2006, and the annual trends in particulate mass, OC, and EC followed the occurrence of a regional haze in South Asia. Maximum concentrations occurred during the dry winter season and minimum concentrations occurred during the summer monsoon season. Specific organic compounds unique to aerosol sources, molecular markers, were measured in monthly composite samples. These markers implicated motor vehicles, coal combustion, biomass burning, cow dung burning, vegetative detritus, and secondary organic aerosol as sources of carbonaceous aerosol. A molecular marker-based chemical mass balance (CMB) model provided a quantitative assessment of primary source contributions to carbonaceous aerosol. The new profiles were compared to widely used biomass burning profiles from the literature in a sensitivity analysis. This analysis indicated a high degree of stability in estimates of source

  6. Commissioning of the Winfrith Aerosol Deposition and Pipe Flow Facility (ADPFF)

    International Nuclear Information System (INIS)

    Ball, M.H.E.; Mitchell, J.P.; Brighton, F.R.

    1991-02-01

    A facility has been constructed to investigate the turbulent deposition behaviour of micron-sized particles in large pipes. These studies are designed to generate suitable data to test and develop the ATLAS code, being developed by the AEA Safety and Reliability Business, to model aerosol transport through reactor components in certain severe accident sequences. The design specification of the Aerosol Deposition and Pipe Flow Facility (ADPFF) is described, together with the basic control instrumentation and commissioning trials. A preliminary assessment of the air velocity profiles measured at a Reynolds number of 10 5 is also included. The ADPFF meets the design specification and is available for the start of the first series of experiments to study aerosol deposition behaviour. (author)

  7. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  8. LOCAL AIR: Local Aerosol monitoring combining in-situ and Remote Sensing observations

    Science.gov (United States)

    Mona, Lucia; Caggiano, Rosa; Donvito, Angelo; Giannini, Vincenzo; Papagiannopoulos, Nikolaos; Sarli, Valentina; Trippetta, Serena

    2015-04-01

    The atmospheric aerosols have effects on climate, environment and health. Although the importance of the study of aerosols is well recognized, the current knowledge of the characteristics and their distribution is still insufficient, and there are large uncertainties in the current understanding of the role of aerosols on climate and the environment, both on a regional and local level. Overcoming these uncertainties requires a search strategy that integrates data from multiple platforms (eg, terrestrial, satellite, ships and planes) and the different acquisition techniques (for example, in situ measurements, remote sensing, modeling numerical and data assimilation) (Yu et al., 2006). To this end, in recent years, there have been many efforts such as the creation of networks dedicated to systematic observation of aerosols (eg, European Monitoring and Evaluation Programme-EMEP, European Aerosol Research Lidar NETwork-EARLINET, MicroPulse Lidar Network- MPLNET, and Aerosol Robotic NETwork-AERONET), the development and implementation of new satellite sensors and improvement of numerical models. The recent availability of numerous data to the ground, columnar and profiles of aerosols allows to investigate these aspects. An integrated approach between these different techniques could be able to provide additional information, providing greater insight into the properties of aerosols and their distribution and overcoming the limits of each single technique. In fact, the ground measurements allow direct determination of the physico-chemical properties of aerosols, but cannot be considered representative for large spatial and temporal scales and do not provide any information about the vertical profile of aerosols. On the other hand, the remote sensing techniques from the ground and satellite provide information on the vertical distribution of atmospheric aerosols both in the Planetary Boundary Layer (PBL), mainly characterized by the presence of aerosols originating from

  9. Retrieving aerosol in a cloudy environment: aerosol product availability as a function of spatial resolution

    Directory of Open Access Journals (Sweden)

    L. A. Remer

    2012-07-01

    Full Text Available The challenge of using satellite observations to retrieve aerosol properties in a cloudy environment is to prevent contamination of the aerosol signal from clouds, while maintaining sufficient aerosol product yield to satisfy specific applications. We investigate aerosol retrieval availability at different instrument pixel resolutions using the standard MODIS aerosol cloud mask applied to MODIS data and supplemented with a new GOES-R cloud mask applied to GOES data for a domain covering North America and surrounding oceans. Aerosol product availability is not the same as the cloud free fraction and takes into account the techniques used in the MODIS algorithm to avoid clouds, reduce noise and maintain sufficient numbers of aerosol retrievals. The inherent spatial resolution of each instrument, 0.5×0.5 km for MODIS and 1×1 km for GOES, is systematically degraded to 1×1, 2×2, 1×4, 4×4 and 8×8 km resolutions and then analyzed as to how that degradation would affect the availability of an aerosol retrieval, assuming an aerosol product resolution at 8×8 km. The analysis is repeated, separately, for near-nadir pixels and those at larger view angles to investigate the effect of pixel growth at oblique angles on aerosol retrieval availability. The results show that as nominal pixel size increases, availability decreases until at 8×8 km 70% to 85% of the retrievals available at 0.5 km, nadir, have been lost. The effect at oblique angles is to further decrease availability over land but increase availability over ocean, because sun glint is found at near-nadir view angles. Finer resolution sensors (i.e., 1×1, 2×2 or even 1×4 km will retrieve aerosols in partly cloudy scenes significantly more often than sensors with nadir views of 4×4 km or coarser. Large differences in the results of the two cloud masks designed for MODIS aerosol and GOES cloud products strongly reinforce that cloud masks must be developed with specific purposes in mind and

  10. The physico-chemical evolution of atmospheric aerosols and the gas-particle partitioning of inorganic aerosol during KORUS-AQ

    Science.gov (United States)

    Lee, T.; Park, T.; Lee, J. B.; Lim, Y. J.; Ahn, J.; Park, J. S.; Soo, C. J.; Desyaterik, Y.; Collett, J. L., Jr.

    2017-12-01

    Aerosols influence climate change directly by scattering and absorption and indirectly by acting as cloud condensation nuclei and some of the effects of aerosols are reduction in visibility, deterioration of human health, and deposition of pollutants to ecosystems. Urban area is large source of aerosols and aerosol precursors. Aerosol sources are both local and from long-range transport. Long-range transport processed aerosol are often dominant sources of aerosol pollution in Korea. To improve our knowledge of aerosol chemistry, Korea and U.S-Air Quality (KORUS-AQ) of Aircraft-based aerosol measurement took place in and around Seoul, Korea during May and June 2016. KORUS-AQ campaigns were conducted to study the chemical characterization and processes of pollutants in the Seoul Metropolitan area to regional scales of Korean peninsula. Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on aircraft platforms on-board DC-8 (NASA) aircraft. We characterized aerosol chemical properties and mass concentrations of sulfate, nitrate, ammonium and organics in polluted air plumes and investigate the spatial and vertical distribution of the species. The results of studies show that organics is predominant in Aerosol and a significant fraction of the organics is oxygenated organic aerosol (OOA) at the high altitude. Both Nitrate and sulfate can partition between the gas and particle phases. The ratios for HNO3/(N(V) (=gaseous HNO3 + particulate Nitrate) and SO2/(SO2+Sulfate) were found to exhibit quite different distributions between the particles and gas phase for the locations during KORUS-AQ campaign, representing potential for formation of additional particulate nitrate and sulfate. The results of those studies can provide highly resolved temporal and spatial air pollutant, which are valuable for air quality model input parameters for aerosol behaviour.

  11. Constraining the instantaneous aerosol influence on cloud albedo.

    Science.gov (United States)

    Gryspeerdt, Edward; Quaas, Johannes; Ferrachat, Sylvaine; Gettelman, Andrew; Ghan, Steven; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Wang, Minghuai; Zhang, Kai

    2017-05-09

    Much of the uncertainty in estimates of the anthropogenic forcing of climate change comes from uncertainties in the instantaneous effect of aerosols on cloud albedo, known as the Twomey effect or the radiative forcing from aerosol-cloud interactions (RFaci), a component of the total or effective radiative forcing. Because aerosols serving as cloud condensation nuclei can have a strong influence on the cloud droplet number concentration ( N d ), previous studies have used the sensitivity of the N d to aerosol properties as a constraint on the strength of the RFaci. However, recent studies have suggested that relationships between aerosol and cloud properties in the present-day climate may not be suitable for determining the sensitivity of the N d to anthropogenic aerosol perturbations. Using an ensemble of global aerosol-climate models, this study demonstrates how joint histograms between N d and aerosol properties can account for many of the issues raised by previous studies. It shows that if the anthropogenic contribution to the aerosol is known, the RFaci can be diagnosed to within 20% of its actual value. The accuracy of different aerosol proxies for diagnosing the RFaci is investigated, confirming that using the aerosol optical depth significantly underestimates the strength of the aerosol-cloud interactions in satellite data.

  12. Physical metrology of aerosols; Metrologie physique des aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Boulaud, D.; Vendel, J. [CEA Saclay, 91 - Gif-sur-Yvette (France). Inst. de Protection et de Surete Nucleaire

    1996-12-31

    The various detection and measuring methods for aerosols are presented, and their selection is related to aerosol characteristics (size range, concentration or mass range), thermo-hydraulic conditions (carrier fluid temperature, pressure and flow rate) and to the measuring system conditions (measuring frequency, data collection speed, cost...). Methods based on aerosol dynamic properties (inertial, diffusional and electrical methods) and aerosol optical properties (localized and integral methods) are described and their performances and applications are compared

  13. Utilization of O4 Slant Column Density to Derive Aerosol Layer Height from a Spaceborne UV-Visible Hyperspectral Sensor: Sensitivity and Case Study

    Science.gov (United States)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-01-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(exp 40) sq molecules cm(exp -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80% of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  14. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  15. Impact of aerosol intrusions on sea-ice melting rates and the structure Arctic boundary layer clouds

    Science.gov (United States)

    Cotton, W.; Carrio, G.; Jiang, H.

    2003-04-01

    The Los Alamos National Laboratory sea-ice model (LANL CICE) was implemented into the real-time and research versions of the Colorado State University-Regional Atmospheric Modeling System (RAMS@CSU). The original version of CICE was modified in its structure to allow module communication in an interactive multigrid framework. In addition, some improvements have been made in the routines involved in the coupling, among them, the inclusion of iterative methods that consider variable roughness lengths for snow-covered ice thickness categories. This version of the model also includes more complex microphysics that considers the nucleation of cloud droplets, allowing the prediction of mixing ratios and number concentrations for all condensed water species. The real-time version of RAMS@CSU automatically processes the NASA Team SSMI F13 25km sea-ice coverage data; the data are objectively analyzed and mapped to the model grid configuration. We performed two types of cloud resolving simulations to assess the impact of the entrainment of aerosols from above the inversion on Arctic boundary layer clouds. The first series of numerical experiments corresponds to a case observed on May 4 1998 during the FIRE-ACE/SHEBA field experiment. Results indicate a significant impact on the microstructure of the simulated clouds. When assuming polluted initial profiles above the inversion, the liquid water fraction of the cloud monotonically decreases, the total condensate paths increases and downward IR tends to increase due to a significant increase in the ice water path. The second set of cloud resolving simulations focused on the evaluation of the potential effect of aerosol concentration above the inversion on melting rates during spring-summer period. For these multi-month simulations, the IFN and CCN profiles were also initialized assuming the 4 May profiles as benchmarks. Results suggest that increasing the aerosol concentrations above the boundary layer increases sea-ice melting

  16. A Raman Lidar as Operational Tool for Long-Term Water Vapor, Temperature and Aerosol Profiling in the Swiss Meteorological Office

    Science.gov (United States)

    Simeonov, Dr; Dinoev, Dr; Serikov, Dr; Calpini, Dr; Bobrovnikov, Dr; Arshinov, Dr; Ristori, Dr; van den Bergh, Dr; Parlange, Dr

    2010-09-01

    To satisfy the rising demands on the quality and frequency of atmospheric water vapor, temperature and aerosol measurements used for numerical weather prediction models, climate change observations and special events (volcanoes, dust and smoke transport) monitoring, MeteoSwiss decided to implement a lidar at his main aerological station in Payerne. The instrument is narrow field of view, narrowband UV Raman lidar designed for continuous day and night operational profiling of tropospheric water vapor, aerosol and temperature The lidar was developed and built by the Swiss Federal Institute of Technology- Lausanne (EPFL) within a joint project with MeteoSwiss. To satisfy the requirements for operational exploitation in a meteorological network the lidar had to satisfy a number of criteria, the most important of which are: accuracy and precision, traceability of the measurement, long-term data consistency, long-term system stability, automated operation, requiring minimal maintenance by a technician, and eye safety. All this requirements were taken into account during the design phase of the lidar. After a ten months test phase of the lidar at Payerne it has been in regular operation since August 2008. Selected data illustrating interesting atmospheric phenomena captured by the lidar as well as long-term intercomparison with collocated microwave radiometer, GPS, radiosonding and an airborne DIAL will be presented and discussed. The talk will address also the technical availability, alignment and calibration stabilities of the instrument.

  17. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    Science.gov (United States)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  18. Ambient Aerosol in Southeast Asia: High Resolution Aerosol Mass Spectrometer Measurements Over Oil Palm (Elaeis guineensis)

    Science.gov (United States)

    Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.

    2008-12-01

    The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the

  19. Electrostatic charge characteristics of jet nebulized aerosols.

    Science.gov (United States)

    Kwok, Philip Chi Lip; Trietsch, Sebastiaan J; Kumon, Michiko; Chan, Hak-Kim

    2010-06-01

    Liquid droplets can be spontaneously charged in the absence of applied electric fields by spraying. It has been shown by computational simulation that charges may influence particle deposition in the airways. The electrostatic properties of jet nebulized aerosols and their potential effects on lung deposition have hardly been studied. A modified electrical low pressure impactor (ELPI) was employed to characterize the aerosol charges generated from jet nebulized commercial products. The charge and size measurements were conducted at 50% RH and 22 degrees C with a modified ELPI. Ventolin, Bricanyl, and Atrovent were nebulized using PARI LC Plus jet nebulizers coupled to a DeVilbiss Pulmo-Aide compressor. The aerosols were sampled in 30-sec durations. The drug deposits on the impactor stages were assayed chemically using high-performance liquid chromatography (HPLC). The charges of nebulized deionized water, isotonic saline, and the three commercial products diluted with saline were also measured to analyze the contributions of the major nebule ingredients on charging. No mass assays were performed on these runs. All three commercial nebules generated net negative charges. The magnitude of the charges reduced over the period of nebulization. Ventolin and Bricanyl yielded similar charge profiles. Highly variable charges were produced from deionized water. On the other hand, nebulized saline reproducibly generated net positive charges. Diluted commercial nebules showed charge polarity inversion. The charge profiles of diluted salbutamol and terbutaline solutions resembled those of saline, while the charges from diluted ipratropium solutions fluctuated near neutrality. The charge profiles were shown to be influenced by the concentration and physicochemical properties of the drugs, as well as the history of nebulization. The drugs may have unique isoelectric concentrations in saline at which the nebulized droplets would carry near-zero charges. According to results from

  20. Diurnal cycling of urban aerosols under different weather regimes

    Science.gov (United States)

    Gregorič, Asta; Drinovec, Luka; Močnik, Griša; Remškar, Maja; Vaupotič, Janja; Stanič, Samo

    2016-04-01

    A one month measurement campaign was performed in summer 2014 in Ljubljana, the capital of Slovenia (population 280,000), aiming to study temporal and spatial distribution of urban aerosols and the mixing state of primary and secondary aerosols. Two background locations were chosen for this purpose, the first one in the city center (urban background - KIS) and the second one in the suburban background (Brezovica). Simultaneous measurements of black carbon (BC) and particle number size distribution of submicron aerosols (PM1) were conducted at both locations. In the summer season emission from traffic related sources is expected to be the main local contribution to BC concentration. Concentrations of aerosol species and gaseous pollutants within the planetary boundary layer are controlled by the balance between emission sources of primary aerosols and gases, production of secondary aerosols, chemical reactions of precursor gases under solar radiation and the rate of dilution by mixing within the planetary boundary layer (PBL) as well as with tropospheric air. Only local emission sources contribute to BC concentration during the stable PBL with low mixing layer height, whereas during the time of fully mixed PBL, regionally transported BC and other aerosols can contribute to the surface measurements. The study describes the diurnal behaviour of the submicron aerosol at the urban and suburban background location under different weather regimes. Particles in three size modes - nucleation (humidity, wind speed and direction), diurnal profile differs for sunny, cloudy and rainy days. Nucleation mode particles were found to be subjected to lower daily variation and only slightly influenced by weather, as opposed to Aitken and accumulation mode particles. The highest correlation between BC and particle number concentration is observed during stable atmospheric conditions in the night and morning hours and is attributed to different particle size modes, depending on the

  1. BAECC Biogenic Aerosols - Effects on Clouds and Climate

    Energy Technology Data Exchange (ETDEWEB)

    Petäjä, Tuukka [Univ. of Helsinki (Finland); Moisseev, Dmitri [Univ. of Helsinki (Finland); Sinclair, Victoria [Univ. of Helsinki (Finland); O' Connor, Ewan J. [Finnish Meteorological Institute, Helsinki (Finland); Manninen, Antti J. [Univ. of Helsinki (Finland); Levula, Janne [Univ. of Helsinki (Finland); Väänänen, Riikka [Univ. of Helsinki (Finland); Heikkinen, Liine [Univ. of Helsinki (Finland); Äijälä, Mikko [Univ. of Helsinki (Finland); Aalto, Juho [Univ. of Helsinki (Finland); Bäck, Jaana [University of Helsinki, Finland

    2015-11-01

    “Biogenic Aerosols - Effects on Clouds and Climate (BAECC)”, featured the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program’s 2nd Mobile Facility (AMF2) in Hyytiälä, Finland. It operated for an 8-month intensive measurement campaign from February to September 2014. The main research goal was to understand the role of biogenic aerosols in cloud formation. One of the reasons to perform BAECC study in Hyytiälä was the fact that it hosts SMEAR-II (Station for Measuring Forest Ecosystem-Atmosphere Relations), which is one of the world’s most comprehensive surface in-situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions and an extensive suite of parameters relevant to atmosphere-biosphere interactions continuously since 1996. The BAECC enables combining vertical profiles from AMF2 with surface-based in-situ SMEAR-II observations and allows the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. With the inclusion of extensive surface precipitation measurements, and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations of AMF2 and SMEAR-II provide a unique opportunity for investigating aerosol-cloud interactions, and cloud-to-precipitation processes. The BAECC dataset will initiate new opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary-layer structures.

  2. A lidar study of atmospheric aerosols during two contrasting monsoon seasons

    Energy Technology Data Exchange (ETDEWEB)

    Devara, P.C.S.; Raj, P.E. [Indian Institute of Tropical Meteorology (India)

    1998-10-01

    The vertical profiles of the boundary-layer aerosols obtained with a bistatic argon ion lidar system at the Indian Institute of Tropical Meteorology (IITM), Pune, India, during two contrasting, successive south-west (summer) monsoon seasons of 1987 (weak monsoon year) and 1988 (active monsoon year) have been examined. The concurrent meteorological parameters such as temperature, relative humidity and rainfall over Pune have also been studied. It is noticed that the aerosol columnar content (integration of vertical profile throughout the height range) is greater during the active monsoon months and less during the weak monsoon months. Thus the monsoon season total rainfall during 1987 and 1988, apart from other meteorological parameters, shows close correspondence with the aerosol columnar content over the experimental station. A brief description of the lidar experimental setup and the database is given. The observed association between the aerosol columnar content and the monsoon activity is explained in terms of the environmental and meteorological conditions prevailing over Pune. [Spanish] Los perfiles verticales de los aerosoles de la capa fronteriza obtenidos mediante un sistema de Lidar biestatico de iones de argon en el Instituto de Meteorologia Tropical (IITM) en Pune, India, durante dos estaciones contrastantes y suscesivas del monzon del SW (verano) de 1987 (ano de monzon debil) y 1988 (ano activo de monzon) han sido estudiados. Los parametros meteorologicos concurrentes tales como temperatura, humedad relativa y lluvia en Pune, han sido tambien estudiados. Se observa que el contenido columnar de aerosoles (integracion del perfil vertical en toda la gama de alturas) es mayor durante los meses del monzon activo y menor en los meses del monzon debil. De manera que, el total de la lluvia monzonica durante 1987 y 1988, aparte de otros parametros meteorologicos, muestran una correspondencia intima con el contenido columnar de a erosoles sobre la estacion

  3. Utilization of O4 Slant Column Density to Derive Aerosol Layer Height from a Space-Borne UV-Visible Hyperspectral Sensor: Sensitivity and Case Study

    Science.gov (United States)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-01-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(sup 40) molecules (sup 2) per centimeters(sup -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nanometers, the O4 absorption band at 477 nanometers is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nanometers is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 meters for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 percent of retrieved aerosol effective heights are within the error range of 1 kilometer compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  4. Factor analysis of combined organic and inorganic aerosol mass spectra from high resolution aerosol mass spectrometer measurements

    Directory of Open Access Journals (Sweden)

    Y. L. Sun

    2012-09-01

    Full Text Available Positive matrix factorization (PMF was applied to the merged high resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer (AMS measurements to investigate the sources and evolution processes of submicron aerosols in New York City in summer 2009. This new approach is able to study the distribution of organic and inorganic species in different types of aerosols, the acidity of organic aerosol (OA factors, and the fragment ion patterns related to photochemical processing. In this study, PMF analysis of the unified AMS spectral matrix resolved 8 factors. The hydrocarbon-like OA (HOA and cooking OA (COA factors contain negligible amounts of inorganic species. The two factors that are primarily ammonium sulfate (SO4-OA and ammonium nitrate (NO3-OA, respectively, are overall neutralized. Among all OA factors the organic fraction of SO4-OA shows the highest degree of oxidation (O/C = 0.69. Two semi-volatile oxygenated OA (OOA factors, i.e., a less oxidized (LO-OOA and a more oxidized (MO-OOA, were also identified. MO-OOA represents local photochemical products with a diurnal profile exhibiting a pronounced noon peak, consistent with those of formaldehyde (HCHO and Ox(= O3 + NO2. The NO+/NO2+ ion ratio in MO-OOA is much higher than that in NO3-OA and in pure ammonium nitrate, indicating the formation of organic nitrates. The nitrogen-enriched OA (NOA factor contains ~25% of acidic inorganic salts, suggesting the formation of secondary OA via acid-base reactions of amines. The size distributions of OA factors derived from the size-resolved mass spectra show distinct diurnal evolving behaviors but overall a progressing evolution from smaller to larger particle mode as the oxidation degree of OA increases. Our results demonstrate that PMF analysis of the unified aerosol mass spectral matrix which contains both

  5. SAGE II observations of a previously unreported stratospheric volcanic aerosol cloud in the northern polar summer of 1990

    Science.gov (United States)

    Yue, Glenn K.; Veiga, Robert E.; Wang, Pi-Huan

    1994-01-01

    Analysis of aerosol extinction profiles obtained by the spaceborne SAGE II sensor reveals that there was an anomalous increase of aerosol extinction below 18.5 km at latitudes poleward of 50 deg N from July 28 to September 9, 1990. This widespread increase of aerosol extinction in the lower stratosphere was apparently due to a remote high-latitude volcanic eruption that has not been reported to date. The increase in stratospheric optical depth in the northern polar region was about 50% in August and had diminished by October 1990. This eruption caused an increase in stratospheric aerosol mass of about 0.33 x 10(exp 5) tons, assuming the aerosol was composed of sulfuric acid and water.

  6. What is the impact of natural variability and aerosol-cloud interaction on the effective radiative forcing of anthropogenic aerosol?

    Science.gov (United States)

    Fiedler, S.; Stevens, B.; Mauritsen, T.

    2017-12-01

    State-of-the-art climate models have persistently shown a spread in estimates of the effective radiative forcing (ERF) associated with anthropogenic aerosol. Different reasons for the spread are known, but their relative importance is poorly understood. In this presentation we investigate the role of natural atmospheric variability, global patterns of aerosol radiative effects, and magnitudes of aerosol-cloud interaction in controlling the ERF of anthropogenic aerosol (Fiedler et al., 2017). We use the Earth system model MPI-ESM1.2 for conducting ensembles of atmosphere-only simulations and calculate the shortwave ERF of anthropogenic aerosol at the top of the atmosphere. The radiative effects are induced with the new parameterisation MACv2-SP (Stevens et al., 2017) that prescribes observationally constrained anthropogenic aerosol optical properties and an associated Twomey effect. Firstly, we compare the ERF of global patterns of anthropogenic aerosol from the mid-1970s and today. Our results suggest that such a substantial pattern difference has a negligible impact on the global mean ERF, when the natural variability of the atmosphere is considered. The clouds herein efficiently mask the clear-sky contributions to the forcing and reduce the detectability of significant anthropogenic aerosol radiative effects in all-sky conditions. Secondly, we strengthen the forcing magnitude through increasing the effect of aerosol-cloud interaction by prescribing an enhanced Twomey effect. In that case, the different spatial pattern of aerosol radiative effects from the mid-1970s and today causes a moderate change (15%) in the ERF of anthropogenic aerosol in our model. This finding lets us speculate that models with strong aerosol-cloud interactions would show a stronger ERF change with anthropogenic aerosol patterns. Testing whether the anthropogenic aerosol radiative forcing is model-dependent under prescribed aerosol conditions is currently ongoing work using MACv2-SP in

  7. Estimation of Downwelling Surface Longwave Radiation under Heavy Dust Aerosol Sky

    Directory of Open Access Journals (Sweden)

    Chunlei Wang

    2017-02-01

    Full Text Available The variation of aerosols, especially dust aerosol, in time and space plays an important role in climate forcing studies. Aerosols can effectively reduce land surface longwave emission and re-emit energy at a colder temperature, which makes it difficult to estimate downwelling surface longwave radiation (DSLR with satellite data. Using the latest atmospheric radiative transfer code (MODTRAN 5.0, we have simulated the outgoing longwave radiation (OLR and DSLR under different land surface types and atmospheric profile conditions. The results show that dust aerosol has an obvious “warming” effect to longwave radiation compared with other aerosols; that aerosol longwave radiative forcing (ALRF increased with the increasing of aerosol optical depth (AOD; and that the atmospheric water vapor content (WVC is critical to the understanding of ALRF. A method is proposed to improve the accuracy of DSLR estimation from satellite data for the skies under heavy dust aerosols. The AOD and atmospheric WVC under cloud-free conditions with a relatively simple satellite-based radiation model yielding the high accurate DSLR under heavy dust aerosol are used explicitly as model input to reduce the effects of dust aerosol on the estimation of DSLR. Validations of the proposed model with satellites data and field measurements show that it can estimate the DSLR accurately under heavy dust aerosol skies. The root mean square errors (RMSEs are 20.4 W/m2 and 24.2 W/m2 for Terra and Aqua satellites, respectively, at the Yingke site, and the biases are 2.7 W/m2 and 9.6 W/m2, respectively. For the Arvaikheer site, the RMSEs are 23.2 W/m2 and 19.8 W/m2 for Terra and Aqua, respectively, and the biases are 7.8 W/m2 and 10.5 W/m2, respectively. The proposed method is especially applicable to acquire relatively high accurate DSLR under heavy dust aerosol using MODIS data with available WVC and AOD data.

  8. The European aerosol budget in 2006

    Directory of Open Access Journals (Sweden)

    J. M. J. Aan de Brugh

    2011-02-01

    Full Text Available This paper presents the aerosol budget over Europe in 2006 calculated with the global transport model TM5 coupled to the size-resolved aerosol module M7. Comparison with ground observations indicates that the model reproduces the observed concentrations quite well with an expected slight underestimation of PM10 due to missing emissions (e.g. resuspension. We model that a little less than half of the anthropogenic aerosols emitted in Europe are exported and the rest is removed by deposition. The anthropogenic aerosols are removed mostly by rain (95% and only 5% is removed by dry deposition. For the larger natural aerosols, especially sea salt, a larger fraction is removed by dry processes (sea salt: 70%, mineral dust: 35%. We model transport of aerosols in the jet stream in the higher atmosphere and an import of Sahara dust from the south at high altitudes. Comparison with optical measurements shows that the model reproduces the Ångström parameter very well, which indicates a correct simulation of the aerosol size distribution. However, we underestimate the aerosol optical depth. Because the surface concentrations are close to the observations, the shortage of aerosol in the model is probably at higher altitudes. We show that the discrepancies are mainly caused by an overestimation of wet-removal rates. To match the observations, the wet-removal rates have to be scaled down by a factor of about 5. In that case the modelled ground-level concentrations of sulphate and sea salt increase by 50% (which deteriorates the match, while other components stay roughly the same. Finally, it is shown that in particular events, improved fire emission estimates may significantly improve the ability of the model to simulate the aerosol optical depth. We stress that discrepancies in aerosol models can be adequately analysed if all models would provide (regional aerosol budgets, as presented in the current study.

  9. Sensitive detection of aerosol effect on simulated IASI spectral radiance

    International Nuclear Information System (INIS)

    Quan, X.; Huang, H.-L.; Zhang, L.; Weisz, E.; Cao, X.

    2013-01-01

    Guided by radiative transfer modeling of the effects of dust (aerosol) on satellite thermal infrared radiance by many different imaging radiometers, in this article, we present the aerosol-effected satellite radiative signal changes in the top of atmosphere (TOA). The simulation of TOA radiance for Infrared Atmospheric Sounding Interferometer (IASI) is performed by using the RTTOV fast radiative transfer model. The model computation is carried out with setting representative geographical atmospheric models and typical default aerosol climatological models under clear sky condition. The radiative differences (in units of equivalent black body brightness temperature differences (BTDs)) between simulated radiances without consideration of the impact of aerosol (Aerosol-free) and with various aerosol models (Aerosol-modified) are calculated for the whole IASI spectrum between 3.62 and 15.5 μm. The comparisons of BTDs are performed through 11 aerosol models in 5 classified atmospheric models. The results show that the Desert aerosol model has the most significant impact on IASI spectral simulated radiances than the other aerosol models (Continental, Urban, Maritime types and so on) in Mid-latitude Summer, contributing to the mineral aerosol components contained. The value of BTDs could reach up to 1 K at peak points. The atmospheric window spectral region between 900 and 1100 cm −1 (9.09–11.11 μm) is concentrated after the investigation for the largest values of aerosol-affected radiance differences. BTDs in IASI spectral region between 645 and 1200 cm −1 occupies the largest oscillation and the major part of the whole spectrum. The IASI highest window peak-points channels (such as 9.4 and 10.2 μm) are obtained finally, which are the most sensitive ones to the simulated IASI radiance. -- Highlights: ► Sensitive study of aerosol effect on simulated IASI spectral radiance is performed. ► The aerosol components have influenced IASI spectral regions

  10. Total and regional deposition of inhaled aerosols in supine healthy subjects and subjects with mild-to-moderate COPD

    Energy Technology Data Exchange (ETDEWEB)

    Darquenne, Chantal; Lamm, Wayne J.; Fine, Janelle M.; Corley, Richard A.; Glenny, Robb W.

    2016-09-01

    Despite substantial development of sophisticated subject-specific computational models of aerosol transport and deposition in human lungs, experimental validation of predic- tions from these new models is sparse. We collected aerosol retention and exhalation profiles in seven healthy volunteers and six subjects with mild-to-moderate COPD (FEV1 ¼ 50–80%predicted) in the supine posture. Total deposition was measured during continuous breathing of 1 and 2.9 mm-diameter particles (tidal volume of 1 L, flow rate of 0.3 L/s and 0.75 L/s). Bolus inhalations of 1 mm particles were performed to penetration volumes of 200, 500 and 800 mL (flow rate of 0.5 L/s). Aerosol bolus dispersion (H), deposition, and mode shift (MS) were calculated from these data. There was no significant difference in total deposition between healthy subjects and those with COPD. Total deposition increased with increasing particle size and also with increasing flow rate. Similarly, there was no significant difference in aerosol bolus deposition between subject groups. Yet, the rate of increase in dispersion and of decrease in MS with increasing penetration volume was higher in subjects with COPD than in healthy volunteers (H: 0.79870.205 vs. 0.52770.122 mL/mL, p¼ 0.01; MS: - 0.27170.129 vs. - 0.145 70.076 mL/mL, p¼ 0.05) indicating larger ventilation inhomogeneities (based on H) and increased flow sequencing (based on MS) in the COPD than in the healthy group. In conclusion, in the supine posture, deposition appears to lack sensitivity for assessing the effect of lung morphology and/or ventilation distribution alteration induced by mild-to- moderate lung disease on the fate of inhaled aerosols. However, other parameters such as aerosol bolus dispersion and mode shift may be more sensitive parameters for evaluating models of lungs with moderate disease.

  11. Recent increase in aerosol loading over the Australian arid zone

    Science.gov (United States)

    Mitchell, R. M.; Campbell, S. K.; Qin, Y.

    2009-10-01

    Collocated sun photometer and nephelometer measurements at Tinga Tingana in the Australian Outback over the decade 1997-2007 show a significant increase in aerosol loading following the onset of severe drought conditions in 2002. The mean mid-visible scattering coefficient obtained from nephelometer measurements over the period 2003-2007 is approximately double that recorded over the preceding 5 yr, with consistent trends in the column aerosol optical depth derived from the sun photometer. This increase is confined to the season of dust activity, particularly September to March. In contrast, background aerosol levels during May, June and July remained stable. The enhanced aerosol loadings during the latter 5 yr of the study period can be understood as a combination of dune destabilisation through loss of ephemeral vegetation and surface crust, and the changing supply of fluvial sediments to ephemeral lakes and floodplains within the Lake Eyre Basin. Major dust outbreaks are generally highly localised, although significant dust activity was observed at Tinga Tingana on 50% of days when a major event occurred elsewhere in the Lake Eyre Basin, suggesting frequent basin-wide dust mobilisation. Combined analysis of aerosol optical depth and scattering coefficient shows weak correlation between the surface and column aerosol (R2=0.24). The aerosol scale height is broadly distributed with a mode typically between 2-3 km, with clearly defined seasonal variation. Climatological analysis reveals bimodal structure in the annual cycle of aerosol optical depth, with a summer peak related to maximal dust activity, and a spring peak related to lofted fine-mode aerosol. There is evidence for an increase in near-surface aerosol during the period 2003-2007 relative to 1997-2002, consistent with an increase in dust activity. This accords with an independent finding of increasing aerosol loading over the Australian region as a whole, suggesting that rising dust activity over the Lake

  12. Physicochemical and toxicological characteristics of urban aerosols during a recent Indonesian biomass burning episode.

    Science.gov (United States)

    Pavagadhi, Shruti; Betha, Raghu; Venkatesan, Shriram; Balasubramanian, Rajasekhar; Hande, Manoor Prakash

    2013-04-01

    Air particulate matter (PM) samples were collected in Singapore from 21 to 29 October 2010. During this time period, a severe regional smoke haze episode lasted for a few days (21-23 October). Physicochemical and toxicological characteristics of both haze and non-haze aerosols were evaluated. The average mass concentration of PM2.5 (PM with aerodynamic diameter of ≤2.5 μm) increased by a factor of 4 during the smoke haze period (107.2 μg/m(3)) as compared to that during the non-smoke haze period (27.0 μg/m(3)). The PM2.5 samples were analyzed for 16 priority polycyclic aromatic hydrocarbons (PAHs) listed by the United States Environmental Protection Agency and 10 transition metals. Out of the seven PAHs known as potential or suspected carcinogens, five were found in significantly higher levels in smoke haze aerosols as compared to those in the background air. Metal concentrations were also found to be higher in haze aerosols. Additionally, the toxicological profile of the PM2.5 samples was evaluated using a human epithelial lung cell line (A549). Cell viability and death counts were measured after a direct exposure of PM2.5 samples to A459 cells for a period of 48 h. The percentage of metabolically active cells decreased significantly following a direct exposure to PM samples collected during the haze period. To provide further insights into the toxicological characteristics of the aerosol particles, glutathione levels, as an indirect measure of oxidative stress and caspase-3/7 levels as a measure of apoptotic death, were also evaluated.

  13. Biomass burning aerosol transport and vertical distribution over the South African-Atlantic region: Aerosol Transport Over SE Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sampa [Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette Indiana USA; Harshvardhan, H. [Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette Indiana USA; Bian, Huisheng [Joint Center for Earth Systems Technology, UMBC, Baltimore Maryland USA; NASA Goddard Space Flight Center, Greenbelt Maryland USA; Chin, Mian [NASA Goddard Space Flight Center, Greenbelt Maryland USA; Curci, Gabriele [Department of Physical and Chemical Sciences, University of L' Aquila, L' Aquila Italy; Center of Excellence in Telesensing of Environment and Model Prediction of Severe events, University of L' Aquila, L' Aquila Italy; Protonotariou, Anna P. [Department of Physics, University of Athens, Athens Greece; Mielonen, Tero [Finnish Meteorological Institute, Kuopio Finland; Zhang, Kai [Pacific Northwest National Laboratory, Richland Washington USA; Wang, Hailong [Pacific Northwest National Laboratory, Richland Washington USA; Liu, Xiaohong [Department of Atmospheric Science, University of Wyoming, Laramie Wyoming USA

    2017-06-21

    Aerosols from wild-land fires could significantly perturb the global radiation balance and induce the climate change. In this study, the Community Atmospheric Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative forcings of wildfire aerosols including black carbon (BC) and particulate organic matter (POM). The global annual mean direct radiative forcing (DRF) of all fire aerosols is 0.15 W m-2, mainly due to the absorption of fire BC (0.25 W m-2), while fire POM induces a weak negative forcing (-0.05 W m-2). Strong positive DRF is found in the Arctic and in the oceanic regions west of South Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean cloud radiative forcing due to all fire aerosols is -0.70 W m-2, resulting mainly from the fire POM indirect forcing (-0.59 W m-2). The large cloud liquid water path over land areas of the Arctic favors the strong fire aerosol indirect forcing (up to -15 W m-2) during the Arctic summer. Significant surface cooling, precipitation reduction and low-level cloud amount increase are also found in the Arctic summer as a result of the fire aerosol indirect effect. The global annual mean surface albedo forcing over land areas (0.03 W m-2) is mainly due to the fire BC-on-snow forcing (0.02 W m-2) with the maximum albedo forcing occurring in spring (0.12 W m-2) when snow starts to melt.

  14. Photo-polarimetric sensitivities to layering and mixing of absorbing aerosols

    Directory of Open Access Journals (Sweden)

    O. V. Kalashnikova

    2011-09-01

    Full Text Available We investigate to what extent multi-angle polarimetric measurements are sensitive to vertical mixing/layering of absorbing aerosols, adopting calibration uncertainty of 1.5% in intensity and 0.5% in the degree of linear polarization of Multiangle Spectro-Polarimetric Imager (MSPI. Employing both deterministic and Monte Carlo radiative transfer codes with polarization, we conduct modeling experiments to determine how the measured Stokes vector elements are affected at UV and short visible wavelengths by the vertical distribution, mixing and layering of smoke and dust aerosols for variety of microphysical parameters. We find that multi-angular polarimetry holds the potential to infer dust-layer heights and thicknesses at blue visible channel due to its lesser sensitivity to changes in dust coarse mode optical properties, but higher sensitivity to the dust vertical profiles. Our studies quantify requirements for obtaining simultaneous information on aerosol layer height and absorption under MSPI measurement uncertainties.

  15. Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: airborne measurements in North-Western Europe

    Directory of Open Access Journals (Sweden)

    W. T. Morgan

    2010-09-01

    substantial reductions in sulphur dioxide emissions have yet to occur. Anticipated reductions in sulphur dioxide in polluted regions will result in an increase in the availability of ammonia to form ammonium nitrate as opposed to ammonium sulphate. This will be most important where intensive agricultural practises occur. Our observations over North-Western Europe, a region where sulphur dioxide emissions have already been reduced, indicate that failure to include the semi-volatile behaviour of ammonium nitrate will result in significant errors in predicted aerosol direct radiative forcing. Such errors will be particularly significant on regional scales.

  16. Tropospheric Aerosols

    Science.gov (United States)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  17. Improvements to the WRF-Chem 3.5.1 model for quasi-hemispheric simulations of aerosols and ozone in the Arctic

    Science.gov (United States)

    Marelle, Louis; Raut, Jean-Christophe; Law, Kathy S.; Berg, Larry K.; Fast, Jerome D.; Easter, Richard C.; Shrivastava, Manish; Thomas, Jennie L.

    2017-10-01

    In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone) in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols) (1) a correction to the sedimentation of aerosols, (2) dimethyl sulfide (DMS) oceanic emissions and gas-phase chemistry, (3) an improved representation of the dry deposition of trace gases over seasonal snow, and (4) an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5) correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6) couple and further test the recent KF-CuP (Kain-Fritsch + Cumulus Potential) cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC), sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs) for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone), the improved surface temperatures over sea ice (surface ozone, BC, and sulfate), and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone). DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.

  18. A perspective on SOA generated in aerosol water from glyoxal and methylglyoxal and its impacts on climate-relevant aerosol properties

    Science.gov (United States)

    Sareen, N.; McNeill, V. F.

    2011-12-01

    In recent years, glyoxal and methylglyoxal have emerged to be potentially important SOA precursors with significant implications for climate-related aerosol properties. Here we will discuss how the chemistry of these and similar organic compounds in aerosol water can affect the aerosol optical and cloud formation properties. Aqueous-phase SOA production from glyoxal and methylglyoxal is a potential source of strongly light-absorbing organics, or "brown carbon". We characterized the kinetics of brown carbon formation from these precursors in mixtures of ammonium sulfate and water using UV-Vis spectrophotometry. This mechanism has been incorporated into a photochemical box model with coupled gas phase-aqueous aerosol chemistry. Methylglyoxal and related compounds also may impact an aerosol's ability to act as a cloud condensation nucleus. We recently showed via pendant drop tensiometry and aerosol chamber studies that uptake of methylglyoxal from the gas phase driven by aqueous-phase oligomerization chemistry is a potentially significant, previously unidentified source of surface-active organic material in aerosols. Results from pendant drop tensiometry showed significantly depressed surface tension in methylglyoxal-ammonium sulfate solutions. We further found that ammonium sulfate particles exposed to gas-phase methylglyoxal in a 3.5 m3 aerosol reaction chamber activate into cloud droplets at sizes up to 15% lower at a given supersaturation than do pure ammonium sulfate particles. The observed enhancement exceeds that predicted based on Henry's Law and our measurements of surface tension depression in bulk solutions, suggesting that surface adsorption of methylglyoxal plays a role in determining CCN activity. Methylglyoxal and similar gas-phase surfactants may be an important and overlooked source of enhanced CCN activity in the atmosphere. To characterize the SOA products formed in these solutions, an Aerosol Chemical Ionization Mass Spectrometer (CIMS) was used

  19. Premonsoon Aerosol Characterization and Radiative Effects Over the Indo-Gangetic Plains: Implications for Regional Climate Warming

    Science.gov (United States)

    Gautam, Ritesh; Hsu, N. Christina; Lau, K.-M.

    2010-01-01

    The Himalayas have a profound effect on the South Asian climate and the regional hydrological cycle, as it forms a barrier for the strong monsoon winds and serves as an elevated heat source, thus controlling the onset and distribution of precipitation during the Indian summer monsoon. Recent studies have suggested that radiative heating by absorbing aerosols, such as dust and black carbon over the Indo-Gangetic Plains (IGP) and slopes of the Himalayas, may significantly accelerate the seasonal warming of the Hindu Kush-Himalayas-Tibetan Plateau (HKHT) and influence the subsequent evolution of the summer monsoon. This paper presents a detailed characterization of aerosols over the IGP and their radiative effects during the premonsoon season (April-May-June) when dust transport constitutes the bulk of the regional aerosol loading, using ground radiometric and spaceborne observations. During the dust-laden period, there is a strong response of surface shortwave flux to aerosol absorption indicated by the diurnally averaged forcing efficiency of -70 W/sq m per unit optical depth. The simulated aerosol single-scattering albedo, constrained by surface flux and aerosol measurements, is estimated to be 0.89+/- 0.01 (at approx.550 nm) with diurnal mean surface and top-of-atmosphere forcing values ranging from -11 to -79.8 W/sq m and +1.4 to +12 W/sq m, respectively, for the premonsoon period. The model-simulated solar heating rate profile peaks in the lower troposphere with enhanced heating penetrating into the middle troposphere (5-6 km), caused by vertically extended aerosols over the IGP with peak altitude of approx.5 km as indicated by spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization observations. On a long-term climate scale, our analysis, on the basis of microwave satellite measurements of tropospheric temperatures from 1979 to 2007, indicates accelerated annual mean warming rates found over the Himalayan-Hindu Kush region (0.21 C/decade+/-0.08 C

  20. A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2005-01-01

    Full Text Available A GLObal Model of Aerosol Processes (GLOMAP has been developed as an extension to the TOMCAT 3-D Eulerian off-line chemical transport model. GLOMAP simulates the evolution of the global aerosol size distribution using a sectional two-moment scheme and includes the processes of aerosol nucleation, condensation, growth, coagulation, wet and dry deposition and cloud processing. We describe the results of a global simulation of sulfuric acid and sea spray aerosol. The model captures features of the aerosol size distribution that are well established from observations in the marine boundary layer and free troposphere. Modelled condensation nuclei (CN>3nm vary between about 250–500 cm-3 in remote marine boundary layer regions and are generally in good agreement with observations. Modelled continental CN concentrations are lower than observed, which may be due to lack of some primary aerosol sources or the neglect of nucleation mechanisms other than binary homogeneous nucleation of sulfuric acid-water particles. Remote marine CN concentrations increase to around 2000–10 000 cm (at standard temperature and pressure in the upper troposphere, which agrees with typical observed vertical profiles. Cloud condensation nuclei (CCN at 0.2% supersaturation vary between about 1000 cm-3 in polluted regions and between 10 and 500 cm-3 in the remote marine boundary layer. New particle formation through sulfuric acid-water binary nucleation occurs predominantly in the upper troposphere, but the model results show that these particles contribute greatly to aerosol concentrations in the marine boundary layer. For this sulfur-sea salt system it is estimated that sea spray emissions account for only ~10% of CCN in the tropical marine boundary layer, but between 20 and 75% in the mid-latitude Southern Ocean. In a run with only natural sulfate and sea salt emissions the global mean surface CN concentration is more than 60% of that from a run with 1985 anthropogenic

  1. DSMC multicomponent aerosol dynamics: Sampling algorithms and aerosol processes

    Science.gov (United States)

    Palaniswaamy, Geethpriya

    The post-accident nuclear reactor primary and containment environments can be characterized by high temperatures and pressures, and fission products and nuclear aerosols. These aerosols evolve via natural transport processes as well as under the influence of engineered safety features. These aerosols can be hazardous and may pose risk to the public if released into the environment. Computations of their evolution, movement and distribution involve the study of various processes such as coagulation, deposition, condensation, etc., and are influenced by factors such as particle shape, charge, radioactivity and spatial inhomogeneity. These many factors make the numerical study of nuclear aerosol evolution computationally very complicated. The focus of this research is on the use of the Direct Simulation Monte Carlo (DSMC) technique to elucidate the role of various phenomena that influence the nuclear aerosol evolution. In this research, several aerosol processes such as coagulation, deposition, condensation, and source reinforcement are explored for a multi-component, aerosol dynamics problem in a spatially homogeneous medium. Among the various sampling algorithms explored the Metropolis sampling algorithm was found to be effective and fast. Several test problems and test cases are simulated using the DSMC technique. The DSMC results obtained are verified against the analytical and sectional results for appropriate test problems. Results show that the assumption of a single mean density is not appropriate due to the complicated effect of component densities on the aerosol processes. The methods developed and the insights gained will also be helpful in future research on the challenges associated with the description of fission product and aerosol releases.

  2. MPL-Net Measurements of Aerosol and Cloud Vertical Distributions at Co-Located AERONET Sites

    Science.gov (United States)

    Welton, Ellsworth J.; Campbell, James R.; Berkoff, Timothy A.; Spinhirne, James D.; Tsay, Si-Chee; Holben, Brent; Starr, David OC. (Technical Monitor)

    2002-01-01

    In the early 1990s, the first small, eye-safe, and autonomous lidar system was developed, the Micropulse Lidar (MPL). The MPL acquires signal profiles of backscattered laser light from aerosols and clouds. The signals are analyzed to yield multiple layer heights, optical depths of each layer, average extinction-to-backscatter ratios for each layer, and profiles of extinction in each layer. In 2000, several MPL sites were organized into a coordinated network, called MPL-Net, by the Cloud and Aerosol Lidar Group at NASA Goddard Space Flight Center (GSFC) using funding provided by the NASA Earth Observing System. tn addition to the funding provided by NASA EOS, the NASA CERES Ground Validation Group supplied four MPL systems to the project, and the NASA TOMS group contributed their MPL for work at GSFC. The Atmospheric Radiation Measurement Program (ARM) also agreed to make their data available to the MPL-Net project for processing. In addition to the initial NASA and ARM operated sites, several other independent research groups have also expressed interest in joining the network using their own instruments. Finally, a limited amount of EOS funding was set aside to participate in various field experiments each year. The NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project also provides funds to deploy their MPL during ocean research cruises. All together, the MPL-Net project has participated in four major field experiments since 2000. Most MPL-Net sites and field experiment locations are also co-located with sunphotometers in the NASA Aerosol Robotic Network. (AERONET). Therefore, at these locations data is collected on both aerosol and cloud vertical structure as well as column optical depth and sky radiance. Real-time data products are now available from most MPL-Net sites. Our real-time products are generated at times of AERONET aerosol optical depth (AOD) measurements. The AERONET AOD is used as input to our

  3. Potentialities and Limits of ICESAT-2 Observation for Atmospheric Aerosol Investigation

    Directory of Open Access Journals (Sweden)

    Mona L.

    2016-01-01

    Full Text Available ICESat-2(Ice, Cloud, and land Elevation Satellite-2, slated for launch in 2017, will continue the important observations of ice-sheet elevation change, sea-ice freeboard, and vegetation canopy height begun by ICESat in 2003. Among the other potential applications, ICESat-2 could provide some information about atmospheric aerosol over Polar Regions thanks to the lidar instrument. In this context, it is essential to demonstrate the ICESat-2 capability of providing vertical profiles of the aerosol backscatter coefficient and to define its potentialities and limits. First results of this investigation are reported and will be presented at the conference.

  4. Lidar observation of aerosol stratification in the lower troposphere ...

    Indian Academy of Sciences (India)

    S K Saha, S M Sonbawne, S M Deshpande, P C S Devara,. Y Jaya Rao .... The lidar system operated in bistatic mode essen- tially comprises a .... with this system at 1700hrs Local Time (LT) on all the ..... Pune in operating the wind profiler system and. Dr. (Mrs.) ... 1995 Real-time monitoring of atmospheric aerosols using a ...

  5. Vertical profiles of BC direct radiative effect over Italy: high vertical resolution data and atmospheric feedbacks

    Science.gov (United States)

    Močnik, Griša; Ferrero, Luca; Castelli, Mariapina; Ferrini, Barbara S.; Moscatelli, Marco; Grazia Perrone, Maria; Sangiorgi, Giorgia; Rovelli, Grazia; D'Angelo, Luca; Moroni, Beatrice; Scardazza, Francesco; Bolzacchini, Ezio; Petitta, Marcello; Cappelletti, David

    2016-04-01

    Black carbon (BC), and its vertical distribution, affects the climate. Global measurements of BC vertical profiles are lacking to support climate change research. To fill this gap, a campaign was conducted over three Italian basin valleys, Terni Valley (Appennines), Po Valley and Passiria Valley (Alps), to characterize the impact of BC on the radiative budget under similar orographic conditions. 120 vertical profiles were measured in winter 2010. The BC vertical profiles, together with aerosol size distribution, aerosol chemistry and meteorological parameters, have been determined using a tethered balloon-based platform equipped with: a micro-Aethalometer AE51 (Magee Scientific), a 1.107 Grimm OPC (0.25-32 μm, 31 size classes), a cascade impactor (Siuotas SKC), and a meteorological station (LSI-Lastem). The aerosol chemical composition was determined from collected PM2.5 samples. The aerosol absorption along the vertical profiles was measured and optical properties calculated using the Mie theory applied to the aerosol size distribution. The aerosol optical properties were validated with AERONET data and then used as inputs to the radiative transfer model libRadtran. Vertical profiles of the aerosol direct radiative effect, the related atmospheric absorption and the heating rate were calculated. Vertical profile measurements revealed some common behaviors over the studied basin valleys. From below the mixing height to above it, a marked concentration drop was found for both BC (from -48.4±5.3% up to -69.1±5.5%) and aerosol number concentration (from -23.9±4.3% up to -46.5±7.3%). These features reflected on the optical properties of the aerosol. Absorption and scattering coefficients decreased from below the MH to above it (babs from -47.6±2.5% up to -71.3±3.0% and bsca from -23.5±0.8% up to -61.2±3.1%, respectively). Consequently, the Single Scattering Albedo increased above the MH (from +4.9±2.2% to +7.4±1.0%). The highest aerosol absorption was

  6. Evaluation and application of passive and active optical remote sensing methods for the measurement of atmospheric aerosol properties

    Energy Technology Data Exchange (ETDEWEB)

    Mielonen, T.

    2010-07-01

    Atmospheric aerosol particles affect the atmosphere's radiation balance by scattering and absorbing sunlight. Moreover, the particles act as condensation nuclei for clouds and affect their reflectivity. In addition, aerosols have negative health effects and they reduce visibility. Aerosols are emitted into the atmosphere from both natural and anthropogenic sources. Different types of aerosols have different effects on the radiation balance, thus global monitoring and typing of aerosols is of vital importance. In this thesis, several remote sensing methods used in the measurement of atmospheric aerosols are evaluated. Remote sensing of aerosols can be done with active and passive instruments. Passive instruments measure radiation emitted by the sun and the Earth while active instruments have their own radiation source, for example a black body radiator or laser. The instruments utilized in these studies were sun photometers (PFR, Cimel), lidars (POLLYXT, CALIOP), transmissiometer (OLAF) and a spectroradiometer (MODIS). Retrieval results from spaceborne instruments (MODIS, CALIOP) were evaluated with ground based measurements (PFR, Cimel). In addition, effects of indicative aerosol model assumptions on the calculated radiative transfer were studied. Finally, aerosol particle mass at the ground level was approximated from satellite measurements and vertical profiles of aerosols measured with a lidar were analyzed. For the evaluation part, these studies show that the calculation of aerosol induced attenuation of radiation based on aerosol size distribution measurements is not a trivial task. In addition to dry aerosol size distribution, the effect of ambient relative humidity on the size distribution and the optical properties of the aerosols need to be known in order to achieve correct results from the calculations. Furthermore, the results suggest that aerosol size parameters retrieved from passive spaceborne measurements depend heavily on surgace reflectance

  7. Optical, microphysical and radiative properties of aerosols over a tropical rural site in Kenya, East Africa: Source identification, modification and aerosol type discrimination

    Science.gov (United States)

    Boiyo, Richard; Kumar, K. Raghavendra; Zhao, Tianliang

    2018-03-01

    A better understanding of aerosol optical, microphysical and radiative properties is a crucial challenge for climate change studies. In the present study, column-integrated aerosol optical and radiative properties observed at a rural site, Mbita (0.42°S, 34.20 °E, and 1125 m above sea level) located in Kenya, East Africa (EA) are investigated using ground-based Aerosol Robotic Network (AERONET) data retrieved during January, 2007 to December, 2015. The annual mean aerosol optical depth (AOD500 nm), Ångström exponent (AE440-870 nm), fine mode fraction of AOD500 nm (FMF500 nm), and columnar water vapor (CWV, cm) were found to be 0.23 ± 0.08, 1.01 ± 0.16, 0.60 ± 0.07, and 2.72 ± 0.20, respectively. The aerosol optical properties exhibited a unimodal distribution with substantial seasonal heterogeneity in their peak values being low (high) during the local wet (dry) seasons. The observed data showed that Mbita and its environs are significantly influenced by various types of aerosols, with biomass burning and/or urban-industrial (BUI), mixed (MXD), and desert dust (DDT) aerosol types contributing to 37.72%, 32.81%, and 1.40%, respectively during the local dry season (JJA). The aerosol volume size distribution (VSD) exhibited bimodal lognormal structure with a geometric mean radius of 0.15 μm and 3.86-5.06 μm for fine- and coarse-mode aerosols, respectively. Further, analysis of single scattering albedo (SSA), asymmetry parameter (ASY) and refractive index (RI) revealed dominance of fine-mode absorbing aerosols during JJA. The averaged aerosol direct radiative forcing (ARF) retrieved from the AERONET showed a strong cooling effect at the bottom of the atmosphere (BOA) and significant warming within the atmosphere (ATM), representing the important role of aerosols played in this rural site of Kenya. Finally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model revealed that aerosols from distinct sources resulted in enhanced loading

  8. Estimation of Uncertainty in Aerosol Concentration Measured by Aerosol Sampling System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Chan; Song, Yong Jae; Jung, Woo Young; Lee, Hyun Chul; Kim, Gyu Tae; Lee, Doo Yong [FNC Technology Co., Yongin (Korea, Republic of)

    2016-10-15

    FNC Technology Co., Ltd has been developed test facilities for the aerosol generation, mixing, sampling and measurement under high pressure and high temperature conditions. The aerosol generation system is connected to the aerosol mixing system which injects SiO{sub 2}/ethanol mixture. In the sampling system, glass fiber membrane filter has been used to measure average mass concentration. Based on the experimental results using main carrier gas of steam and air mixture, the uncertainty estimation of the sampled aerosol concentration was performed by applying Gaussian error propagation law. FNC Technology Co., Ltd. has been developed the experimental facilities for the aerosol measurement under high pressure and high temperature. The purpose of the tests is to develop commercial test module for aerosol generation, mixing and sampling system applicable to environmental industry and safety related system in nuclear power plant. For the uncertainty calculation of aerosol concentration, the value of the sampled aerosol concentration is not measured directly, but must be calculated from other quantities. The uncertainty of the sampled aerosol concentration is a function of flow rates of air and steam, sampled mass, sampling time, condensed steam mass and its absolute errors. These variables propagate to the combination of variables in the function. Using operating parameters and its single errors from the aerosol test cases performed at FNC, the uncertainty of aerosol concentration evaluated by Gaussian error propagation law is less than 1%. The results of uncertainty estimation in the aerosol sampling system will be utilized for the system performance data.

  9. Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modeling of complete high time-resolution aerosol mass spectra

    Science.gov (United States)

    McGuire, M. L.; Chang, R. Y.-W.; Slowik, J. G.; Jeong, C.-H.; Healy, R. M.; Lu, G.; Mihele, C.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2014-08-01

    Receptor modeling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's Canadian Regional and Urban Investigation System for Environmental Research (CRUISER) mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach compared to the more common method of analyzing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulfate- and oxygenated organic aerosol-containing factor (Sulfate-OA); an ammonium nitrate- and oxygenated organic aerosol-containing factor (Nitrate-OA); an ammonium chloride-containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analyzing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case the Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this

  10. Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modelling of complete high time-resolution aerosol mass spectra

    Science.gov (United States)

    McGuire, M. L.; Chang, R. Y.-W.; Slowik, J. G.; Jeong, C.-H.; Healy, R. M.; Lu, G.; Mihele, C.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2014-02-01

    Receptor modelling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's CRUISER mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach was compared to the more common method of analysing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulphate and oxygenated organic aerosol containing factor (Sulphate-OA); an ammonium nitrate and oxygenated organic aerosol containing factor (Nitrate-OA); an ammonium chloride containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analysing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case, an Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this method would be even more useful for HR-ToF-AMS data, due to the ability

  11. Atmospheric Aerosol Analysis using Lightweight Mini GC, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The major components of manmade aerosols are created by the burning of coal and oil. Aerosols are recognized to significantly impact the climate through their...

  12. Aerosol and monsoon climate interactions over Asia: AEROSOL AND MONSOON CLIMATE INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhanqing [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Lau, W. K. -M. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Ramanathan, V. [Department of Atmospheric and Climate Sciences, University of California, San Diego California USA; Wu, G. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Ding, Y. [National Climate Center, China Meteorological Administration, Beijing China; Manoj, M. G. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Liu, J. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Qian, Y. [Pacific Northwest National Laboratory, Richland Washington USA; Li, J. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Zhou, T. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Fan, J. [Pacific Northwest National Laboratory, Richland Washington USA; Rosenfeld, D. [Institute of Earth Sciences, Hebrew University, Jerusalem Israel; Ming, Y. [Geophysical Fluid Dynamic Laboratory, NOAA, Princeton New Jersey USA; Wang, Y. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena California USA; Huang, J. [College of Atmospheric Sciences, Lanzhou University, Lanzhou China; Wang, B. [Department of Atmospheric Sciences, University of Hawaii, Honolulu Hawaii USA; School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing China; Xu, X. [Chinese Academy of Meteorological Sciences, Beijing China; Lee, S. -S. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Cribb, M. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Zhang, F. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Yang, X. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Zhao, C. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Takemura, T. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka Japan; Wang, K. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Xia, X. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Yin, Y. [School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing China; Zhang, H. [National Climate Center, China Meteorological Administration, Beijing China; Guo, J. [Chinese Academy of Meteorological Sciences, Beijing China; Zhai, P. M. [Chinese Academy of Meteorological Sciences, Beijing China; Sugimoto, N. [National Institute for Environmental Studies, Tsukuba Japan; Babu, S. S. [Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram India; Brasseur, G. P. [Max Planck Institute for Meteorology, Hamburg Germany

    2016-11-15

    Asian monsoons and aerosols have been studied extensively which are intertwined in influencing the climate of Asia. This paper provides a comprehensive review of ample studies on Asian aerosol, monsoon and their interactions. The region is the primary source of aerosol emissions of varies species, influenced by distinct weather and climatic regimes. On continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulation. The atmospheric thermodynamic state may also be altered by the aerosol serving as cloud condensation nuclei or ice nuclei. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of numerous monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcings of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections.

  13. Modeling LIDAR Detection of Biological Aerosols to Determine Optimum Implementation Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, David M.; Aker, Pam M.

    2007-09-19

    This report summarizes work performed for a larger multi-laboratory project named the Background Interferent Measurement and Standards project. While originally tasked to develop algorithms to optimize biological warfare agent detection using UV fluorescence LIDAR, the current uncertainties in the reported fluorescence profiles and cross sections the development of any meaningful models. It was decided that a better approach would be to model the wavelength-dependent elastic backscattering from a number of ambient background aerosol types, and compare this with that generated from representative sporulated and vegetative bacterial systems. Calculations in this report show that a 266, 355, 532 and 1064 nm elastic backscatter LIDAR experiment will allow an operator to immediately recognize when sulfate, VOC-based or road dust (silicate) aerosols are approaching, independent of humidity changes. It will be more difficult to distinguish soot aerosols from biological aerosols, or vegetative bacteria from sporulated bacteria. In these latter cases, the elastic scattering data will most likely have to be combined with UV fluorescence data to enable a more robust categorization.

  14. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008

    Directory of Open Access Journals (Sweden)

    B. H. Lee

    2010-12-01

    Full Text Available A variable residence time thermodenuder (TD was combined with an Aerodyne Aerosol Mass Spectrometer (AMS and a Scanning Mobility Particle Sizer (SMPS to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008. A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model.

    Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements.

    The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 or more orders of magnitude less volatile than fresh laboratory-generated monoterpene (α-pinene, β-pinene and limonene under low NOx conditions secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species. This analysis is based on the assumption that there were no significant reactions taking place inside the thermodenuder.

  15. Evaluating aerosol indirect effect through marine stratocumulus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Kogan, Z.N.; Kogan, Y.L.; Lilly, D.K. [Univ. of Oklahoma, Norman, OK (United States)

    1996-04-01

    During the last decade much attention has been focused on anthropogenic aerosols and their radiative influence on the global climate. Charlson et al. and Penner et al. have demonstrated that tropospheric aerosols and particularly anthropogenic sulfate aerosols may significantly contribute to the radiative forcing exerting a cooling influence on climate (-1 to -2 W/m{sup 2}) which is comparable in magnitude to greenhouse forcing, but opposite in sign. Aerosol particles affect the earth`s radiative budget either directly by scattering and absorption of solar radiation by themselves or indirectly by altering the cloud radiative properties through changes in cloud microstructure. Marine stratocumulus cloud layers and their possible cooling influence on the atmosphere as a result of pollution are of special interest because of their high reflectivity, durability, and large global cover. We present an estimate of thet aerosol indirect effect, or, forcing due to anthropogenic sulfate aerosols.

  16. Long-term profiling of mineral dust and pollution aerosol with multiwavelength polarization Raman lidar at the Central Asian site of Dushanbe, Tajikistan: case studies

    Directory of Open Access Journals (Sweden)

    J. Hofer

    2017-12-01

    Full Text Available For the first time, continuous vertically resolved aerosol measurements were performed by lidar in Tajikistan, Central Asia. Observations with the multiwavelength polarization Raman lidar PollyXT were conducted during CADEX (Central Asian Dust EXperiment in Dushanbe, Tajikistan, from March 2015 to August 2016. Co-located with the lidar, a sun photometer was also operated. The goal of CADEX is to provide an unprecedented data set on vertically resolved aerosol optical properties in Central Asia, an area highly affected by climate change but largely missing vertically resolved aerosol measurements. During the 18-month measurement campaign, mineral dust was detected frequently from ground to the cirrus level height. In this study, an overview of the measurement period is given and four typical but different example measurement cases are discussed in detail. Three of them are dust cases and one is a contrasting pollution aerosol case. Vertical profiles of the measured optical properties and the calculated dust and non-dust mass concentrations are presented. Dust source regions were identified by means of backward trajectory analyses. A lofted layer of Middle Eastern dust with an aerosol optical thickness (AOT of 0.4 and an extinction-related Ångström exponent of 0.41 was measured. In comparison, two near-ground dust cases have Central Asian sources. One is an extreme dust event with an AOT of 1.5 and Ångström exponent of 0.12 and the other one is a most extreme dust event with an AOT of above 4 (measured by sun photometer and an Ångström exponent of −0.08. The observed lidar ratios (and particle linear depolarization ratios in the presented dust cases range from 40.3 to 46.9 sr (and 0.18–0.29 at 355 nm and from 35.7 to 42.9 sr (0.31–0.35 at 532 nm wavelength. The particle linear depolarization ratios indicate almost unpolluted dust in the case of a lofted dust layer and pure dust in the near-ground dust cases. The lidar ratio

  17. Can Aerosol Offset Urban Heat Island Effect?

    Science.gov (United States)

    Jin, M. S.; Shepherd, J. M.

    2009-12-01

    The Urban Heat Island effect (UHI) refers to urban skin or air temperature exceeding the temperatures in surrounding non-urban regions. In a warming climate, the UHI may intensify extreme heat waves and consequently cause significant health and energy problems. Aerosols reduce surface insolation via the direct effect, namely, scattering and absorbing sunlight in the atmosphere. Combining the National Aeronautics and Space Administration (NASA) AERONET (AErosol RObotic NETwork) observations over large cities together with Weather Research and Forecasting Model (WRF) simulations, we find that the aerosol direct reduction of surface insolation range from 40-100 Wm-2, depending on seasonality and aerosol loads. As a result, surface skin temperature can be reduced by 1-2C while 2-m surface air temperature by 0.5-1C. This study suggests that the aerosol direct effect is a competing mechanism for the urban heat island effect (UHI). More importantly, both aerosol and urban land cover effects must be adequately represented in meteorological and climate modeling systems in order to properly characterize urban surface energy budgets and UHI.

  18. Constraining the instantaneous aerosol influence on cloud albedo

    Energy Technology Data Exchange (ETDEWEB)

    Gryspeerdt, Edward; Quaas, Johannes; Ferrachat, Sylvaine; Gettelman, Andrew; Ghan, Steven; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G.; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Wang, Minghuai; Zhang, Kai

    2017-04-26

    Much of the uncertainty in estimates of the anthropogenic forcing of climate change comes from uncertainties in the instantaneous effect of aerosols on cloud albedo, known as the Twomey effect or the radiative forcing from aerosol–cloud interactions (RFaci), a component of the total or effective radiative forcing. Because aerosols serving as cloud condensation nuclei can have a strong influence on the cloud droplet number concentration (Nd), previous studies have used the sensitivity of the Nd to aerosol properties as a constraint on the strength of the RFaci. However, recent studies have suggested that relationships between aerosol and cloud properties in the present-day climate may not be suitable for determining the sensitivity of the Nd to anthropogenic aerosol perturbations. Using an ensemble of global aerosol–climate models, this study demonstrates how joint histograms between Nd and aerosol properties can account for many of the issues raised by previous studies. It shows that if the anthropogenic contribution to the aerosol is known, the RFaci can be diagnosed to within 20% of its actual value. The accuracy of different aerosol proxies for diagnosing the RFaci is investigated, confirming that using the aerosol optical depth significantly underestimates the strength of the aerosol–cloud interactions in satellite data.

  19. The aerosols and the greenhouse effect; Aerosoler og klimaeffekten

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, Trond; Kirkevaag, Alf; Seland, Oeyvind; Debernard, Jens Boldingh; Kristjansson, Jon Egill; Storelvmo, Trude

    2008-07-01

    The article discussed the aerosol effects on the climatic changes and points out that the climate models do not incorporate these components satisfactorily mostly due to insufficient knowledge of the aerosol pollution sources. The direct and indirect effects of aerosols are mentioned as well as the climate response (tk)

  20. Effects on stratospheric moistening by rates of change of aerosol optical depth and ozone due to solar activity in extra-tropics

    Science.gov (United States)

    Saha, U.; Maitra, A.

    2014-11-01

    The solar-induced changes in ozone and aerosol optical depth have relative effects on stratospheric moistening at upper troposphere/lower stratosphere region. Wavelet-based multi-scale principal component analysis technique has been applied to de-noise component of quasi-biennial oscillation and El Niño-Southern Oscillation from ozone and aerosol optical depth variations. Rate of change of aerosol optical depth sharply increases indicating a positive gradient whereas rate of change of ozone sharply decreases indicating a negative gradient with solar activity during the years 2004-2010. It is also observed that with increase of rate of change of aerosol optical depth, there is a sharp increase of stratospheric moistening caused by enhanced deep convection. On the contrary, with the increase of stratospheric moistening, there is a sharp decrease of rate of change of ozone resulting in a cross-over between the two parameters. An increase in aerosol optical depth may cause a significant increase in the gradient of vertical temperature profile, as well as formation of cloud condensation nuclei, clouds and hence rainfall. This may lead to formation of strong convective system in the atmosphere that is essential for vertical transfer of water vapour in the tropics percolating tropical tropopause layer and depleting stratospheric ozone in the extra-tropics.

  1. How accurately can the instantaneous aerosol effect on cloud albedo be constrained?

    Science.gov (United States)

    Gryspeerdt, E.; Quaas, J.; Ferrachat, S.; Gettelman, A.; Ghan, S. J.; Lohmann, U.; Neubauer, D.; Morrison, H.; Partridge, D.; Stier, P.; Takemura, T.; Wang, H.; Wang, M.; Zhang, K.

    2017-12-01

    Aerosol-cloud interactions are the most uncertain component of the anthropogenic radiative forcing, with a significant fraction of this uncertainty coming from uncertainty in the radiative forcing due to instantaneous changes in cloud albedo (the RFaci). Aerosols can have a strong influence on the cloud droplet number concentration (CDNC), so previous studies have used the sensitivity of CDNC to aerosol properties as a method of estimating the RFaci. However, recent studies have suggested that this sensitivity is unsuitable as a constraint on the RFaci, as it differs in the present day and pre-industrial atmosphere. This would place significant limits on our ability to constrain the RFaci from satellite observations. In this study, a selection of global aerosol-climate models are used to investigate the suitability of various aerosol proxies and methods for calculating the RFaci from present day data. A linear-regression based sensitivity of CDNC to aerosol perturbations can lead to large errors in the diagnosed RFaci, as can the use of the aerosol optical depth (AOD) as an aerosol proxy. However, we show that if suitable choices of aerosol proxy are made and the anthropogenic aerosol contribution is known, it is possible to diagnose the anthropogenic change in CDNC, and so the RFaci, using present day aerosol-cloud relationships.

  2. Aerosol Indirect Effect on Warm Clouds over Eastern China Using Combined CALIOP and MODIS Observations

    Science.gov (United States)

    Guo, Jianping; Wang, Fu; Huang, Jingfeng; Li, Xiaowen

    2015-04-01

    Aerosol, one of key components of the climate system, is highly variable, both temporally and spatially. It often exerts great influences on the cloud-precipitation chain processes by serving as CCN/IN, altering cloud microphysics and its life cycle. Yet, the aerosol indirect effect on clouds remains largely unknown, because the initial changes in clouds due to aerosols may be enhanced or dampened by such feedback processes as modified cloud dynamics, or evaporation of the smaller droplets due to the competition for water vapor. In this study, we attempted to quantify the aerosol effects on warm cloud over eastern China, based on near-simultaneous retrievals from MODIS/AQUA, CALIOP/CALIPSO and CPR/CLOUDSAT during the period 2006 to 2010. The seasonality of aerosol from ground-based PM10 is quite different from that estimated from MODIS AOD. This result is corroborated by lower level profile of aerosol occurrence frequency from CALIOP, indicating the significant role CALIOP could play in aerosol-cloud interaction. The combined use of CALIOP and CPR facilitate the process to exactly determine the (vertical) position of warm cloud relative to aerosol, out of six scenarios in terms of aerosol-cloud mixing status in terms of aerosol-cloud mixing status, which shows as follows: AO (Aerosol only), CO (Cloud only), SASC (Single aerosol-single cloud), SADC (single aerosol-double cloud), DASC (double aerosol-single cloud), and others. Results shows that about 54% of all the cases belong to mixed status, among all the collocated aerosol-cloud cases. Under mixed condition, a boomerang shape is observed, i.e., reduced cloud droplet radius (CDR) is associated with increasing aerosol at moderate aerosol pollution (AODcases. We categorize dataset into warm-season and cold-season subsets to figure out how the boomerang shape varies with season. For moderate aerosol loading (AODMixed" cases is greater during cold season (denoted by a large slope), as compared with that during warm

  3. Attachment of radon progeny to cigarette-smoke aerosols

    International Nuclear Information System (INIS)

    Biermann, A.H.; Sawyer, S.R.

    1995-05-01

    The daughter products of radon gas are now recognized as a significant contributor to radiation exposure to the general public. It is also suspected that a synergistic effect exists with the combination cigarette smoking and radon exposure. We have conducted an experimental investigation to determine the physical nature of radon progeny interactions with cigarette smoke aerosols. The size distributions of the aerosols are characterized and attachment rates of radon progeny to cigarette-smoke aerosols are determined. Both the mainstream and sidestream portions of the smoke aerosol are investigated. Unattached radon progeny are very mobile and, in the presence of aerosols, readily attach to the particle surfaces. In this study, an aerosol chamber is used to contain the radon gas, progeny and aerosol mixture while allowing the attachment process to occur. The rate of attachment is dependent on the size distribution, or diffusion coefficient, of the radon progeny as well as the aerosol size distribution. The size distribution of the radon daughter products is monitored using a graded-screen diffusion battery. The diffusion battery also enables separation of the unattached radon progeny from those attached to the aerosol particles. Analysis of the radon decay products is accomplished using alpha spectrometry. The aerosols of interest are size fractionated with the aid of a differential mobility analyzer and cascade impactor. The measured attachment rates of progeny to the cigarette smoke are compared to those found in similar experiments using an ambient aerosol. The lowest attachment coefficients observed, ∼10 -6 cm 3 /s, occurred for the ambient aerosol. The sidestream and mainstream smoke aerosols exhibited higher attachment rates in that order. The results compared favorably with theories describing the coagulation process of aerosols

  4. Radiative Effect of Springtime Biomass-Burning Aerosols over Northern Indochina During 7-SEAS Baseline 2013 Campaign

    Science.gov (United States)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Lee, Chung-Te; Tsay, Si-Chee; Holben, Brent N.; Janjai, Serm; Hsiao, Ta-Chih; Chuang, Ming-Tung; Chantara, Somporn

    2016-01-01

    The direct aerosol radiative effects of biomass-burning (BB) aerosols over northern Indochina were estimated by using aerosol properties (physical, chemical, and optical) along with the vertical profile measurements from ground-based measurements with integration of an optical and a radiative transfer model during the Seven South East Asian Studies Biomass-Burning Aerosols Stratocumulus Environment: Lifecycles Interactions Experiment (7-SEASBASELInE) conducted in spring 2013. Cluster analysis of backward trajectories showed the air masses arriving at mountainous background site (Doi Ang Khang; 19.93degN, 99.05degE, 1536 m above mean sea level) in northern Indochina, mainly from near-source inland BB activities and being confined in the planetary boundary layer. The PM(sub10) and black carbon (BC)mass were 87 +/- 28 and 7 +/- 2 micrograms m(exp -3), respectively. The aerosol optical depth (AOD (sub 500) was found to be 0.26--1.13 (0.71 +/- 0.24). Finer (fine mode fraction is approximately or equal to 0.95, angstrom-exponent at 440-870 nm is approximately or equal to 1.77) and significantly absorbing aerosols(single scattering albedo is approximately or equal to 0.89, asymmetry-parameter is approximately or equal to 0.67, and absorption AOD 0.1 at 440 nm) dominated over this region. BB aerosols (water soluble and BC) were the main contributor to the aerosol radiative forcing (ARF), while others (water insoluble, sea salt and mineral dust) were negligible mainly due to their low extinction efficiency. BC contributed only 6 to the surface aerosol mass but its contribution to AOD was 12 (2 times higher). The overall mean ARF was 8.0 and -31.4 W m(exp -2) at top-of-atmosphere (TOA) and at the surface (SFC), respectively. Likely, ARF due to BC was +10.7 and -18.1 W m(exp -2) at TOA and SFC, respectively. BC imposed the heating rate of +1.4 K d(exp -1) within the atmosphere and highlighting its pivotal role in modifying the radiation budget. We propose that to upgrade our

  5. Sources of light-absorbing aerosol in arctic snow and their seasonal variation

    Directory of Open Access Journals (Sweden)

    Dean A. Hegg

    2010-11-01

    Full Text Available Two data sets consisting of measurements of light absorbing aerosols (LAA in arctic snow together with suites of other corresponding chemical constituents are presented; the first from Siberia, Greenland and near the North Pole obtained in 2008, and the second from the Canadian arctic obtained in 2009. A preliminary differentiation of the LAA into black carbon (BC and non-BC LAA is done. Source attribution of the light absorbing aerosols was done using a positive matrix factorization (PMF model. Four sources were found for each data set (crop and grass burning, boreal biomass burning, pollution and marine. For both data sets, the crops and grass biomass burning was the main source of both LAA species, suggesting the non-BC LAA was brown carbon. Depth profiles at most of the sites allowed assessment of the seasonal variation in the source strengths. The biomass burning sources dominated in the spring but pollution played a more significant (though rarely dominant role in the fall, winter and, for Greenland, summer. The PMF analysis is consistent with trajectory analysis and satellite fire maps.

  6. Lidar Observations of Tropospheric Aerosols Over Northeastern South Africa During the ARREX and SAFARI-2000 Dry Season Experiments

    Science.gov (United States)

    Campbell, James R.; Welton, Ellsworth J.; Spinhirne, James D.; Ji, Qiang; Tsay, Si-Chee; Piketh, Stuart J.; Barenbrug, Marguerite; Holben, Brent; Starr, David OC. (Technical Monitor)

    2002-01-01

    During the ARREX-1999 and SAFARI-2000 Dry Season experiments a micropulse lidar (523 nm) instrument was operated at the Skukuza Airport in northeastern South Africa. The Mar was collocated with a diverse array of passive radiometric equipment. For SAFARI-2000 the processed Mar data yields a daytime time-series of layer mean/derived aerosol optical properties, including extinction-to-backscatter ratios and vertical extinction cross-section profile. Combined with 523 run aerosol optical depth and spectral Angstrom exponent calculations from available CIMEL sun-photometer data and normalized broadband flux measurements the temporal evolution of the near surface aerosol layer optical properties is analyzed for climatological trends. For the densest smoke/haze events the extinction-to-backscatter ratio is found to be between 60-80/sr, and corresponding Angstrom exponent calculations near and above 1.75. The optical characteristics of an evolving smoke event from SAFARI-2000 are extensively detailed. The advecting smoke was embedded within two distinct stratified thermodynamic layers, causing the particulate mass to advect over the instrument array in an incoherent manner on the afternoon of its occurrence. Surface broadband flux forcing due to the smoke is calculated, as is the evolution in the vertical aerosol extinction profile as measured by the Han Finally, observations of persistent elevated aerosol during ARREX-1999 are presented and discussed. The lack of corroborating observations the following year makes these observation; both unique and noteworthy in the scope of regional aerosol transport over southern Africa.

  7. Estimating marine aerosol particle volume and number from Maritime Aerosol Network data

    Directory of Open Access Journals (Sweden)

    A. M. Sayer

    2012-09-01

    Full Text Available As well as spectral aerosol optical depth (AOD, aerosol composition and concentration (number, volume, or mass are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The "average solution" MODIS dataset agrees more closely with MAN than the "best solution" dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data. However, without accurate AOD data and prior knowledge of

  8. Comparing multiple model-derived aerosol optical properties to spatially collocated ground-based and satellite measurements

    Science.gov (United States)

    Ocko, Ilissa B.; Ginoux, Paul A.

    2017-04-01

    Anthropogenic aerosols are a key factor governing Earth's climate and play a central role in human-caused climate change. However, because of aerosols' complex physical, optical, and dynamical properties, aerosols are one of the most uncertain aspects of climate modeling. Fortunately, aerosol measurement networks over the past few decades have led to the establishment of long-term observations for numerous locations worldwide. Further, the availability of datasets from several different measurement techniques (such as ground-based and satellite instruments) can help scientists increasingly improve modeling efforts. This study explores the value of evaluating several model-simulated aerosol properties with data from spatially collocated instruments. We compare aerosol optical depth (AOD; total, scattering, and absorption), single-scattering albedo (SSA), Ångström exponent (α), and extinction vertical profiles in two prominent global climate models (Geophysical Fluid Dynamics Laboratory, GFDL, CM2.1 and CM3) to seasonal observations from collocated instruments (AErosol RObotic NETwork, AERONET, and Cloud-Aerosol Lidar with Orthogonal Polarization, CALIOP) at seven polluted and biomass burning regions worldwide. We find that a multi-parameter evaluation provides key insights on model biases, data from collocated instruments can reveal underlying aerosol-governing physics, column properties wash out important vertical distinctions, and improved models does not mean all aspects are improved. We conclude that it is important to make use of all available data (parameters and instruments) when evaluating aerosol properties derived by models.

  9. Impact of aerosols on ice crystal size

    Science.gov (United States)

    Zhao, Bin; Liou, Kuo-Nan; Gu, Yu; Jiang, Jonathan H.; Li, Qinbin; Fu, Rong; Huang, Lei; Liu, Xiaohong; Shi, Xiangjun; Su, Hui; He, Cenlin

    2018-01-01

    The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei), which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol-cloud radiative forcing produced by ice clouds.

  10. Integrated cloud-aerosol-radiation product using CERES, MODIS, CALIPSO, and CloudSat data

    Science.gov (United States)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Gibson, Sharon; Yi, Yuhong; Trepte, Qing; Wielicki, Bruce; Kato, Seiji; Winker, Dave; Stephens, Graeme; Partain, Philip

    2007-10-01

    This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3-dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.

  11. Dark Targets, Aerosols, Clouds and Toys

    Science.gov (United States)

    Remer, L. A.

    2015-12-01

    Today if you use the Thomson-Reuters Science Citations Index to search for "aerosol*", across all scientific disciplines and years, with no constraints, and you sort by number of citations, you will find a 2005 paper published in the Journal of the Atmospheric Sciences in the top 20. This is the "The MODIS Aerosol Algorithm, Products and Validation". Although I am the first author, there are in total 12 co-authors who each made a significant intellectual contribution to the paper or to the algorithm, products and validation described. This paper, that algorithm, those people lie at the heart of a lineage of scientists whose collaborations and linked individual pursuits have made a significant contribution to our understanding of radiative transfer and climate, of aerosol properties and the global aerosol system, of cloud physics and aerosol-cloud interaction, and how to measure these parameters and maximize the science that can be obtained from those measurements. The 'lineage' had its origins across the globe, from Soviet Russia to France, from the U.S. to Israel, from the Himalayas, the Sahel, the metropolises of Sao Paulo, Taipei, and the cities of east and south Asia. It came together in the 1990s and 2000s at the NASA Goddard Space Flight Center, using cultural diversity as a strength to form a common culture of scientific creativity that continues to this day. The original algorithm has spawned daughter algorithms that are being applied to new satellite and airborne sensors. The original MODIS products have been fundamental to analyses as diverse as air quality monitoring and aerosol-cloud forcing. AERONET, designed originally for the need of validation, is now its own thriving institution, and the lineage continues to push forward to provide new technology for the coming generations.

  12. Remote sensing of aerosols by synergy of caliop and modis

    Directory of Open Access Journals (Sweden)

    Kudo Rei

    2018-01-01

    Full Text Available For the monitoring of the global 3-D distribution of aerosol components, we developed the method to retrieve the vertical profiles of water-soluble, light absorbing carbonaceous, dust, and sea salt particles by the synergy of CALIOP and MODIS data. The aerosol product from the synergistic method is expected to be better than the individual products of CALIOP and MODIS. We applied the method to the biomass-burning event in Africa and the dust event in West Asia. The reasonable results were obtained; the much amount of the water-soluble and light absorbing carbonaceous particles were estimated in the biomass-burning event, and the dust particles were estimated in the dust event.

  13. Remote sensing of aerosols by synergy of caliop and modis

    Science.gov (United States)

    Kudo, Rei; Nishizawa, Tomoaki; Higurashi, Akiko; Oikawa, Eiji

    2018-04-01

    For the monitoring of the global 3-D distribution of aerosol components, we developed the method to retrieve the vertical profiles of water-soluble, light absorbing carbonaceous, dust, and sea salt particles by the synergy of CALIOP and MODIS data. The aerosol product from the synergistic method is expected to be better than the individual products of CALIOP and MODIS. We applied the method to the biomass-burning event in Africa and the dust event in West Asia. The reasonable results were obtained; the much amount of the water-soluble and light absorbing carbonaceous particles were estimated in the biomass-burning event, and the dust particles were estimated in the dust event.

  14. Vertical profiles of black carbon concentration and particle number size distribution in the North China Plain

    Science.gov (United States)

    Ran, L.; Deng, Z.

    2013-12-01

    The vertical distribution of aerosols is of great importance to our understanding in the impacts of aerosols on radiation balance and climate, as well as air quality and public health. To better understand and estimate the effects of atmospheric components including trace gases and aerosols on atmospheric environment and climate, an intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP), was carried out from late July to early August 2013 over a rural site in the polluted NCP. During the campaign, vertical profiles of black carbon (BC) concentration and particle number size distribution were measured respectively by a micro-Aethalometer and an optical particle counter attached to a tethered balloon within 1000 m height. Meteorological parameters, including temperature, relative humidity, wind speed and wind direction, were measured simultaneously by a radiosonde also attached to the tethered balloon. Preliminary results showed distinct diurnal variations of the vertical distribution of aerosol total number concentration and BC concentration, following the development of the mixing layer. Generally, there was a well mixing of aerosols within the mixing layer and a sharp decrease above the mixing layer. Particularly, a small peak of BC concentrations was observed around 400-500 m height for several profiles. Further analysis would be needed to explain such phenomenon. It was also found that measured vertical profiles of BC using the filter-based method might be affected by the vertical distribution of relative humidity.

  15. Aerosol properties over the western Mediterranean basin: temporal and spatial variability

    OpenAIRE

    H. Lyamani; A. Valenzuela; D. Perez-Ramirez; C. Toledano; M. J. Granados-Muñoz; F. J. Olmo; L. Alados-Arboledas

    2015-01-01

    This study focuses on the analysis of AERONET aerosol data obtained over Alborán Island (35.95° N, 3.01° W, 15 m a.s.l.) in the western Mediterranean from July 2011 to January 2012. Additional aerosol data from three nearest AERONET stations and the Maritime Aerosol Network (MAN) were also analyzed in order to investigate the aerosol temporal and spatial variations over this scarcely explored region. Aerosol load over Alborán was significantly larger than that reported for o...

  16. Characterization of Wildfire-Induced Aerosol Emissions From the Maritime Continent Peatland and Central African Dry Savannah with MISR and CALIPSO Aerosol Products

    Science.gov (United States)

    Lee, Huikyo; Jeong, Su-Jong; Kalashnikova, Olga; Tosca, Mika; Kim, Sang-Woo; Kug, Jong-Seong

    2018-03-01

    Aerosol plumes from wildfires affect the Earth's climate system through regulation of the radiative budget and clouds. However, optical properties of aerosols from individual wildfire smoke plumes and their resultant impact on regional climate are highly variable. Therefore, there is a critical need for observations that can constrain the partitioning between different types of aerosols. Here we present the apparent influence of regional ecosystem types on optical properties of wildfire-induced aerosols based on remote sensing observations from two satellite instruments and three ground stations. The independent observations commonly show that the ratio of the absorbing aerosols is significantly lower in smoke plumes from the Maritime Continent than those from Central Africa, so that their impacts on regional climate are different. The observed light-absorbing properties of wildfire-induced aerosols are explained by dominant ecosystem types such as wet peatlands for the Maritime Continent and dry savannah for Central Africa, respectively. These results suggest that the wildfire-aerosol-climate feedback processes largely depend on the terrestrial environments from which the fires originate. These feedbacks also interact with climate under greenhouse warming. Our analysis shows that aerosol optical properties retrieved based on satellite observations are critical in assessing wildfire-induced aerosols forcing in climate models. The optical properties of carbonaceous aerosol mixtures used by state-of-the-art chemistry climate models may overestimate emissions for absorbing aerosols from wildfires over the Maritime Continent.

  17. Aerosol-Induced Changes of Convective Cloud Anvils Produce Strong Climate Warming

    Science.gov (United States)

    Koren, I.; Remer, L. A.; Altaratz, O.; Martins, J. V.; Davidi, A.

    2010-01-01

    The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm(exp-2) . Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing. We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvi1 clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming) at top-of-atmosphere. Furthermore we introduce the cloud optical depth (r), cloud height (Z) forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene. Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds; increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.

  18. Aerosol-induced changes of convective cloud anvils produce strong climate warming

    Directory of Open Access Journals (Sweden)

    I. Koren

    2010-05-01

    Full Text Available The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm−2. Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing.

    We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvil clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming at top-of-atmosphere.

    Furthermore we introduce the cloud optical depth (τ, cloud height (Z forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene.

    Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds, increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.

  19. Radioactive aerosols

    International Nuclear Information System (INIS)

    Chamberlain, A.C.

    1991-01-01

    Radon. Fission product aerosols. Radioiodine. Tritium. Plutonium. Mass transfer of radioactive vapours and aerosols. Studies with radioactive particles and human subjects. Index. This paper explores the environmental and health aspects of radioactive aerosols. Covers radioactive nuclides of potential concern to public health and applications to the study of boundary layer transport. Contains bibliographic references. Suitable for environmental chemistry collections in academic and research libraries

  20. The effect of cloud screening on MAX-DOAS aerosol retrievals.

    Science.gov (United States)

    Gielen, Clio; Van Roozendael, Michel; Hendrik, Francois; Fayt, Caroline; Hermans, Christian; Pinardi, Gaia; De Backer, Hugo; De Bock, Veerle; Laffineur, Quentin; Vlemmix, Tim

    2014-05-01

    In recent years, ground-based multi-axis differential absorption spectroscopy (MAX-DOAS) has shown to be ideally suited for the retrieval of tropospheric trace gases and deriving information on the aerosol properties. These measurements are invaluable to our understanding of the physics and chemistry of the atmospheric system, and the impact on the Earth's climate. Unfortunately, MAX-DOAS measurements are often performed under strong non-clear-sky conditions, causing strong data quality degradation and uncertainties on the retrievals. Here we present the result of our cloud-screening method, using the colour index (CI), on aerosol retrievals from MAX-DOAS measurements (AOD and vertical profiles). We focus on two large data sets, from the Brussels and Beijing area. Using the CI we define 3 different sky conditions: bad (=full thick cloud cover/extreme aerosols), mediocre (=thin clouds/aerosols) and good (=clear sky). We also flag the presence of broken/scattered clouds. We further compare our cloud-screening method with results from cloud-cover fractions derived from thermic infrared measurements. In general, our method shows good results to qualify the sky and cloud conditions of MAX-DOAS measurements, without the need for other external cloud-detection systems. Removing data under bad-sky and broken-cloud conditions results in a strongly improved agreement, in both correlation and slope, between the MAX-DOAS aerosol retrievals and data from other instruments (e.g. AERONET, Brewer). With the improved AOD retrievals, the seasonal and diurnal variations of the aerosol content and vertical distribution at both sites can be investigated in further detail. By combining with additional information derived by other instruments (Brewer, lidar, ...) operated at the stations, we will further study the observed aerosol characteristics, and their influence on and by meteorological conditions such as clouds and/or the boundary layer height.

  1. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    Science.gov (United States)

    Mazurek, Monica A.; Cofer, Wesley R., III; Levine, Joel S.

    1991-01-01

    During the boreal forest burn studied, the ambient concentrations for the particle carbon smoke aerosol are highest for the full-fire burn conditions and vary significantly throughout the burn. Collection strategies must accordingly define ranges in the smoke aerosol concentrations produced. While the highest elemental C concentrations are observed during full-fire conditions, the great majority of smoke aerosol particles are in the form of organic C particles irrespective of fire temperature. The formation of organic C light-scattering particles was a significant process in the burn studied.

  2. Origins of atmospheric aerosols. Basic concepts on aerosol main physical properties; L`aerosol atmospherique: ses origines quelques notions sur les principales proprietes physiques des aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Renoux, A. [Paris-12 Univ., 94 - Creteil (France). Laboratoire de Physique des aerosols et de transferts des contaminations

    1996-12-31

    Natural and anthropogenic sources of atmospheric aerosols are reviewed and indications of their concentrations and granulometry are given. Calculation of the lifetime of an atmospheric aerosol of a certain size is presented and the various modes of aerosol granulometry and their relations with photochemical and physico-chemical processes in the atmosphere are discussed. The main physical, electrical and optical properties of aerosols are also presented: diffusion coefficient, dynamic mobility and relaxation time, Stokes number, limit rate of fall, electrical mobility, optical diffraction

  3. Using satellites and global models to investigate aerosol-cloud interactions

    Science.gov (United States)

    Gryspeerdt, E.; Quaas, J.; Goren, T.; Sourdeval, O.; Mülmenstädt, J.

    2017-12-01

    Aerosols are known to impact liquid cloud properties, through both microphysical and radiative processes. Increasing the number concentration of aerosol particles can increase the cloud droplet number concentration (CDNC). Through impacts on precipitation processes, this increase in CDNC may also be able to impact the cloud fraction (CF) and the cloud liquid water path (LWP). Several studies have looked into the effect of aerosols on the CDNC, but as the albedo of a cloudy scene depends much more strongly on LWP and CF, an aerosol influence on these properties could generate a significant radiative forcing. While the impact of aerosols on cloud properties can be seen in case studies involving shiptracks and volcanoes, producing a global estimate of these effects remains challenging due to the confounding effect of local meteorology. For example, relative humidity significantly impacts the aerosol optical depth (AOD), a common satellite proxy for CCN, as well as being a strong control on cloud properties. This can generate relationships between AOD and cloud properties, even when there is no impact of aerosol-cloud interactions. In this work, we look at how aerosol-cloud interactions can be distinguished from the effect of local meteorology in satellite studies. With a combination global climate models and multiple sources of satellite data, we show that the choice of appropriate mediating variables and case studies can be used to develop constraints on the aerosol impact on CF and LWP. This will lead to improved representations of clouds in global climate models and help to reduce the uncertainty in the global impact of anthropogenic aerosols on cloud properties.

  4. Aerosols, clouds and their climatic impacts

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, M; Laaksonen, A; Korhonen, P [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    The increasing atmospheric concentrations of greenhouse gases such as carbon dioxide and methane may drive a significant warming of the earth`s climate. However, a topic of more recent attention is the possibility that increased atmospheric concentrations of aerosol particles might drive a cooling of the planet. There are two distinct cooling mechanisms related to the enhanced concentrations of aerosol particles: the increase in the direct reflection of solar radiation (the direct effect), and the increase in cloud reflectivity caused by greater numbers of cloud condensation nuclei available (the indirect effect). Aerosols and clouds play a major role in the scattering and absorption of radiation in the Earth`s atmosphere. Locally the net effect can vary because of different kinds of surfaces. But according to measurements, the global net effect of clouds (and aerosols) on the atmosphere is net cooling and thus in opposition to the effect of greenhouse gases. The prediction of the future evolution of the climate involves substantial uncertainties. Clouds have a major effect on the radiation balance of the Earth and the prediction of amount and radiative properties of clouds is very difficult. Also the formation mechanisms and residence times of aerosol particles in the atmosphere involve large uncertainties. Thus the most serious difficulties arise in the area of the physics of clouds and aerosols

  5. Aerosols, clouds and their climatic impacts

    Energy Technology Data Exchange (ETDEWEB)

    Kulmala, M.; Laaksonen, A.; Korhonen, P. [Helsinki Univ. (Finland). Dept. of Physics

    1995-12-31

    The increasing atmospheric concentrations of greenhouse gases such as carbon dioxide and methane may drive a significant warming of the earth`s climate. However, a topic of more recent attention is the possibility that increased atmospheric concentrations of aerosol particles might drive a cooling of the planet. There are two distinct cooling mechanisms related to the enhanced concentrations of aerosol particles: the increase in the direct reflection of solar radiation (the direct effect), and the increase in cloud reflectivity caused by greater numbers of cloud condensation nuclei available (the indirect effect). Aerosols and clouds play a major role in the scattering and absorption of radiation in the Earth`s atmosphere. Locally the net effect can vary because of different kinds of surfaces. But according to measurements, the global net effect of clouds (and aerosols) on the atmosphere is net cooling and thus in opposition to the effect of greenhouse gases. The prediction of the future evolution of the climate involves substantial uncertainties. Clouds have a major effect on the radiation balance of the Earth and the prediction of amount and radiative properties of clouds is very difficult. Also the formation mechanisms and residence times of aerosol particles in the atmosphere involve large uncertainties. Thus the most serious difficulties arise in the area of the physics of clouds and aerosols

  6. Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during a European pollution outbreak of ACE-2[Special issue with manuscripts related to the second Aerosol Characterization Experiment (ACE-2), 16 June-25 July 1997

    Energy Technology Data Exchange (ETDEWEB)

    Flamant, Cyrille; Pelon, Jaques; Trouillet, Vincent; Bruneau, Didier [CNRS-UPMC-UVSQ, Paris (France). Service d' Aeronomie; Chazette, Patrick; Leon, J.F. [CEA-CNRS, Gif-sur-Yvette (France). Lab. des Sciences du Climat et de l' Environment; Quinn, P.K.; Bates, T.S.; Johnson, James [National Oceanic and Atmospheric Administration, Seattle, WA (United States). Pacific Marine Environmental Lab.; Frouin, Robert [Scripps Inst. of Oceanography, La Jolla, CA (United States); Livingston, John [SRI International, Menlo Park, CA (United States)

    2000-04-01

    Airborne lidar measurements of the aerosol spatial distribution and optical properties associated with an European pollution outbreak which occurred during the Second Aerosol Characterization Experiment (ACE-2) are presented. Size distribution spectra measured over the ocean near Sagres (Portugal), on-board the Research Vessel Vodyanitsky and on-board the Avion de Recherche Atmospherique et Teledetection (ARAT) have been used to parameterize the aerosol vertical distribution. This parameterization, which is essential to the analysis of airborne lidar measurements, has been validated via closure experiments on extinction coefficient profiles and aerosol optical depth (AOD). During the studied event, AOD's retrieved from lidar measurements at 0.73 {mu}m range between 0.055 and 0.10. The parameterized aerosol vertical distribution has been used to shift AOD retrievals from 0.73 to 0.55 {mu}m to enable comparison with other remote sensing instruments. At the latter wavelength, AOD's retrieved from lidar measurements range between 0.08 and 0.14. An agreement better than 20% is obtained between AOD's derived from lidar and sunphotometer measurements made at the same time and place over the ocean near the coast. However, large differences are observed with the AOD estimated from Meteosat imagery in the same area. These differences are thought to be caused by large uncertainties associated with the Meteosat sensitivity for small AOD's or by the presence of thin scattered clouds. Lidar-derived particulate extinction profiles and scattering coefficient profiles measured by a nephelometer mounted on the ARAT, in a different part of the plume, were found in good agreement, which could be an indication that absorption by pollution aerosols is small and/or that soot is present in small amounts in the European pollution plume. Lidar measurements have also been used to differentiate the contribution of different aerosol layers to the total AOD. It is shown that

  7. Labeling suspended aerosol particles with short-lived radionuclides for determination of particle deposition

    International Nuclear Information System (INIS)

    Smith, M.F.; Bryant, S.; Welch, S.; Digenis, G.A.

    1984-01-01

    Radiotracer techniques were developed to examine parameters that characterize pressurized aerosols designed to deliver insoluble particles suspended in the aerosol formulation. Microaggregated bovine serum albumin microspheres that were to be suspended were labeled with iodine-131 (t1/2 . 8 d). This iodination procedure (greater than 80% effective) is also applicable to iodine-123, which possesses superior characteristics for external imaging and further in vivo studies. This report shows that for pressurized aerosols containing suspended particles, each metered dose is approximately equal (not including the priming doses and the emptying doses). Increase in the delivery of the albumin particles out of the canister was best achieved by pretreating the valve assembly with a solution of 2% (w/v) bovine serum albumin in phosphate buffer. Use of a cascade impactor delineated the particle size distribution of the micropheres, with the majority of particles ranging in size from 2 to 8 microns. The data disclosed here indicate that the techniques developed with short-lived radionuclides can be used to quantitate each metered dose, characterize the particle size distribution profile of the aerosol contents, and determine the extent of deposition of the particles in the aerosol canister and all of its components

  8. Improving correlations between MODIS aerosol optical thickness and ground-based PM 2.5 observations through 3D spatial analyses

    Science.gov (United States)

    Hutchison, Keith D.; Faruqui, Shazia J.; Smith, Solar

    The Center for Space Research (CSR) continues to focus on developing methods to improve correlations between satellite-based aerosol optical thickness (AOT) values and ground-based, air pollution observations made at continuous ambient monitoring sites (CAMS) operated by the Texas commission on environmental quality (TCEQ). Strong correlations and improved understanding of the relationships between satellite and ground observations are needed to formulate reliable real-time predictions of air quality using data accessed from the moderate resolution imaging spectroradiometer (MODIS) at the CSR direct-broadcast ground station. In this paper, improvements in these correlations are demonstrated first as a result of the evolution in the MODIS retrieval algorithms. Further improvement is then shown using procedures that compensate for differences in horizontal spatial scales between the nominal 10-km MODIS AOT products and CAMS point measurements. Finally, airborne light detection and ranging (lidar) observations, collected during the Texas Air Quality Study of 2000, are used to examine aerosol profile concentrations, which may vary greatly between aerosol classes as a result of the sources, chemical composition, and meteorological conditions that govern transport processes. Further improvement in correlations is demonstrated with this limited dataset using insights into aerosol profile information inferred from the vertical motion vectors in a trajectory-based forecast model. Analyses are ongoing to verify these procedures on a variety of aerosol classes using data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (Calipso) lidar.

  9. Aerosol studies

    International Nuclear Information System (INIS)

    Cristy, G.A.; Fish, M.E.

    1978-01-01

    As part of the continuing studies of the effects of very severe reactor accidents, an effort was made to develop, test, and improve simple, effective, and inexpensive methods by which the average citizen, using only materials readily available, could protect his residence, himself, and his family from injury by toxic aerosols. The methods for protection against radioactive aerosols should be equally effective against a clandestine biological attack by terrorists. The results of the tests to date are limited to showing that spores of the harmless bacterium, bacillus globegii (BG), can be used as a simulant for the radioactive aerosols. An aerosol generator of Lauterbach type was developed which will produce an essentially monodisperse aerosol at the rate of 10 9 spores/min. Analytical techniques have been established which give reproducible results. Preliminary field tests have been conducted to check out the components of the system. Preliminary tests of protective devices, such as ordinary vacuum sweepers, have given protection factors of over 1000

  10. Scanning vertical distributions of typical aerosols along the Yangtze River using elastic lidar.

    Science.gov (United States)

    Fan, Shidong; Liu, Cheng; Xie, Zhouqing; Dong, Yunsheng; Hu, Qihou; Fan, Guangqiang; Chen, Zhengyi; Zhang, Tianshu; Duan, Jingbo; Zhang, Pengfei; Liu, Jianguo

    2018-07-01

    In recent years, China has experienced heavy air pollution, especially haze caused by particulate matter (PM). The compositions, horizontal distributions, transport, and chemical formation mechanisms of PM and its precursors have been widely investigated in China based on near-ground measurements. However, the understanding of the distributions and physical and chemical processes of PM in the vertical direction remains limited. In this study, an elastic lidar was employed to investigate the vertical profiles of aerosols along the Yangtze River during the Yangtze River Campaign of winter 2015. Some typical aerosols were identified and some events were analyzed in three cases. Dust aerosols can be transported from the Gobi Desert to the Yangtze River basin across a long distance at both low and high altitudes in early December. The transport route was perpendicular to the ship track, suggesting that the dust aerosols may have affected a large area. Moreover, during transport, some dust was also affected by the areas below its transport route since some anthropogenic pollutants were mixed with the dust and changed some of its optical properties. Biomass-burning aerosols covering a distant range along the Yangtze River were identified. This result directly shows the impact areas of biomass-burning aerosols in some agricultural fields. Some directly emitted aerosol plumes were observed, and direct effects of such plumes were limited both temporally and spatially. In addition, an aerosol plume with very low linear depolarization ratios, probably formed through secondary processes, was also observed. These results can help us better understand aerosols in large spatial scales in China and can be useful to regional haze studies. Copyright © 2018. Published by Elsevier B.V.

  11. Characteristics and direct radiative effect of mid-latitude continental aerosols: the ARM case

    Directory of Open Access Journals (Sweden)

    M. G. Iziomon

    2003-01-01

    Full Text Available A multi-year field measurement analysis of the characteristics and direct radiative effect of aerosols at the Southern Great Plains (SGP central facility of the Atmospheric Radiation Measurement (ARM Program is presented. Inter-annual mean and standard deviation of submicrometer scattering fraction (at 550 nm and Ångström exponent å (450 nm, 700 nm at the mid-latitude continental site are indicative of the scattering dominance of fine mode aerosol particles, being 0.84±0.03 and 2.25±0.09, respectively. We attribute the diurnal variation of submicron aerosol concentration to coagulation, photochemistry and the evolution of the boundary layer. Precipitation does not seem to play a role in the observed afternoon maximum in aerosol concentration. Submicron aerosol mass at the site peaks in the summer (12.1±6.7mg m-3, with the summer value being twice that in the winter. Of the chemically analyzed ionic components (which exclude carbonaceous aerosols, SO4= and NH4+ constitute the dominant species at the SGP seasonally, contributing 23-30% and 9-12% of the submicron aerosol mass, respectively. Although a minor species, there is a notable rise in NO3- mass fraction in winter. We contrast the optical properties of dust and smoke haze. The single scattering albedo w0 shows the most remarkable distinction between the two aerosol constituents. We also present aircraft measurements of vertical profiles of aerosol optical properties at the site. Annually, the lowest 1.2 km contributes 70% to the column total light scattering coefficient. Column-averaged and surface annual mean values of hemispheric backscatter fraction (at 550 nm, w0 (at 550 nm and å (450 nm, 700 nm agree to within 5% in 2001. Aerosols produce a net cooling (most pronounced in the spring at the ARM site

  12. Quantifying the risks of solid aerosol geoengineering: the role of fundamental material properties

    Science.gov (United States)

    Dykema, J. A.; Keutsch, F. N.; Keith, D.

    2017-12-01

    Solid aerosols have been considered as an alternative to sulfate aerosols for solar geoengineering due to their optical and chemical properties, which lead to different and possibly more attractive risk profiles. Solid aerosols can achieve higher solar scattering efficiency due to their higher refractive index, and in some cases may also be less effective absorbers of thermal infrared radiation. The optical properties of solid aerosols are however sensitive functions of the detailed physical properties of solid materials in question. The relevant details include the exact crystalline structure of the aerosols, the physical size of the particles, and interactions with background stratospheric molecular and particulate constituents. In this work, we examine the impact of these detailed physical properties on the radiative properties of calcite (CaCO3) solid aerosols. We examine how crystal morphology, size, chemical reactions, and interaction with background stratospheric aerosol may alter the scattering and absorption properties of calcite aerosols for solar and thermal infrared radiation. For example, in small particles, crystal lattice vibrations associated with the particle surface may lead to substantially different infrared absorption properties than bulk materials. We examine the wavelength dependence of absorption by the particles, which may lead to altered patterns of stratospheric radiative heating and equilibrium temperatures. Such temperature changes can lead to dynamical changes, with consequences for both stratospheric composition and tropospheric climate. We identify important uncertainties in the current state of understanding, investigate risks associated with these uncertainties, and survey potential approaches to quantitatively improving our knowledge of the relevant material properties.

  13. Sensitivity of a Chemical Mass Balance model for PM2.5 to source profiles for differing styles of cooking

    Science.gov (United States)

    Abdullahi, K. L.; Delgado-Saborit, J. M.; Harrison, Roy M.

    2018-04-01

    Use of a Chemical Mass Balance model is one of the two most commonly used approaches to estimating atmospheric concentrations of cooking aerosol. Such models require the input of chemical profiles for each of the main sources contributing to particulate matter mass and there is appreciable evidence from the literature that not only the mass emission but also the chemical composition of particulate matter varies according to the food being prepared and the style of cooking. In this study, aerosol has been sampled in the laboratory from four different styles of cooking, i.e. Indian, Chinese, Western and African cooking. The chemical profiles of molecular markers have been quantified and are used individually within a Chemical Mass Balance model applied to air samples collected in a multi-ethnic area of Birmingham, UK. The model results give a source contribution estimate for cooking aerosol which is consistent with other comparable UK studies, but also shows a very low sensitivity of the model to the cooking aerosol profile utilised. A survey of local restaurants suggested a wide range of cooking styles taking place which may explain why no one profile gives an appreciably better fit in the CMB model.

  14. A multi-model evaluation of aerosols over South Asia: common problems and possible causes

    Science.gov (United States)

    Pan, X.; Chin, M.; Gautam, R.; Bian, H.; Kim, D.; Colarco, P. R.; Diehl, T. L.; Takemura, T.; Pozzoli, L.; Tsigaridis, K.; Bauer, S.; Bellouin, N.

    2015-05-01

    Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000-2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October-January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo-Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of

  15. Reducing the uncertainty in background marine aerosol radiative properties using CAM5 model results and CALIPSO-retrievals

    Science.gov (United States)

    Meskhidze, N.; Gantt, B.; Dawson, K.; Johnson, M. S.; Gasso, S.

    2012-12-01

    Abundance of natural aerosols in the atmosphere strongly affects global aerosol optical depth (AOD) and influences clouds and the hydrological cycle through its ability to act as cloud condensation nuclei (CCN). Because the anthropogenic contribution to climate forcing represents the difference between the total forcing and that from natural aerosols, understanding background aerosols is necessary to evaluate the influences of anthropogenic aerosols on cloud reflectivity and persistence (so-called indirect radiative forcing). The effects of marine aerosols are explored using remotely sensed data obtained by Cloud-aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and the NCAR Community Atmosphere Model (CAM5.0), coupled with the PNNL Modal Aerosol Model. CALIPSO-provided high resolution vertical profile information about different aerosol subtypes (defined as clean continental, marine, desert dust, polluted continental, polluted dust, and biomass burning), particulate depolarization ratio (or particle non-sphericity), reported aerosol color ratio (the ratio of aerosol backscatter at the two wavelengths) and lidar ratios over different parts of the oceans are compared to model-simulations to help evaluate the contribution of biogenic aerosol to CCN budget in the marine boundary layer. Model-simulations show that over biologically productive ocean waters primary organic aerosols of marine origin can contribute up to a 20% increase in CCN (at a supersaturation of 0.2%) number concentrations. Corresponding changes associated with cloud properties (liquid water path and droplet number) can decrease global annual mean indirect radiative forcing of anthropogenic aerosol (less cooling) by ~0.1 Wm-2 (7%). This study suggests ignoring the complex chemical composition and size distribution of sea spray particles could result in considerable uncertainties in predicted anthropogenic aerosol indirect effect.

  16. Evaluation of simulated aerosol properties with the aerosol-climate model ECHAM5-HAM using observations from the IMPACT field campaign

    Directory of Open Access Journals (Sweden)

    G.-J. Roelofs

    2010-08-01

    Full Text Available In May 2008, the measurement campaign IMPACT for observation of atmospheric aerosol and cloud properties was conducted in Cabauw, The Netherlands. With a nudged version of the coupled aerosol-climate model ECHAM5-HAM we simulate the size distribution and chemical composition of the aerosol and the associated aerosol optical thickness (AOT for the campaign period. Synoptic scale meteorology is represented realistically through nudging of the vorticity, the divergence, the temperature and the surface pressure. Simulated concentrations of aerosol sulfate and organics at the surface are generally within a factor of two from observed values. The monthly averaged AOT from the model is 0.33, about 20% larger than observed. For selected periods of the month with relatively dry and moist conditions discrepancies are approximately −30% and +15%, respectively. Discrepancies during the dry period are partly caused by inaccurate representation of boundary layer (BL dynamics by the model affecting the simulated AOT. The model simulates too strong exchange between the BL and the free troposphere, resulting in weaker concentration gradients at the BL top than observed for aerosol and humidity, while upward mixing from the surface layers into the BL appears to be underestimated. The results indicate that beside aerosol sulfate and organics also aerosol ammonium and nitrate significantly contribute to aerosol water uptake. The simulated day-to-day variability of AOT follows synoptic scale advection of humidity rather than particle concentration. Even for relatively dry conditions AOT appears to be strongly influenced by the diurnal cycle of RH in the lower boundary layer, further enhanced by uptake and release of nitric acid and ammonia by aerosol water.

  17. Influence of observed diurnal cycles of aerosol optical depth on aerosol direct radiative effect

    Directory of Open Access Journals (Sweden)

    A. Arola

    2013-08-01

    Full Text Available The diurnal variability of aerosol optical depth (AOD can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF or aerosol direct radiative effect (ADRE. The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally. We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on

  18. Spatial and Temporal Variations of Atmospheric Aerosol in Osaka

    Directory of Open Access Journals (Sweden)

    Sonoyo Mukai

    2013-05-01

    Full Text Available It is well known that the aerosol distribution in Asia is complex due to both the increasing emissions of the anthropogenic aerosols associated with economic growth and the behavior of natural dusts. Therefore, detailed observations of atmospheric particles in Asian urban cities are important. In this work, we focus on the spatial and temporal variations of atmospheric particles around Higashi-Osaka in Japan. Higashi-Osaka is located in the eastern part of Osaka, the second-largest city in Japan, and is famous for small- and medium-sized manufacturing enterprises. For this study, we placed various ground measurement devices around the Higashi-Osaka campus of Kinki University including a Cimel sunphotometer supported by NASA/AERONET (Aerosol robotics network, suspended particulate matter (SPM sampler and LIDAR (light detection and ranging. Individual particle analyses with a SEM (scanning electron microscope/EDX (energy-dispersive X-ray analyzer show the temporal variations of particle properties, such as size, shape and components, during a dust event on 21 March 2010. The simultaneous measurement using a portable sun photometer with AERONET was conducted from April to November 2011. A comparison of the data at each site and the combination of the observed LIDAR data and model simulations indicate the difference in the transportation processes between dust and anthropogenic particles. We suppose this difference is attributed to the differences in the vertical aerosol profiles, where one aerosol is transported over Mount Ikoma and the other is blocked by it.

  19. Estimated SAGE II ozone mixing ratios in early 1993 and comparisons with Stratospheric Photochemistry, Aerosols and Dynamic Expedition measurements

    Science.gov (United States)

    Yue, G. K.; Veiga, R. E.; Poole, L. R.; Zawodny, J. M.; Proffitt, M. H.

    1994-01-01

    An empirical time-series model for estimating ozone mixing ratios based on Stratospheric Aerosols and Gas Experiment II (SAGE II) monthly mean ozone data for the period October 1984 through June 1991 has been developed. The modeling results for ozone mixing ratios in the 10- to 30- km region in early months of 1993 are presented. In situ ozone profiles obtained by a dual-beam UV-absorption ozone photometer during the Stratospheric Photochemistry, Aerosols and Dynamics Expedition (SPADE) campaign, May 1-14, 1993, are compared with the model results. With the exception of two profiles at altitudes below 16 km, ozone mixing ratios derived by the model and measured by the ozone photometer are in relatively good agreement within their individual uncertainties. The identified discrepancies in the two profiles are discussed.

  20. Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    Directory of Open Access Journals (Sweden)

    E. M. Knipping

    2011-02-01

    Full Text Available The secondary organic aerosol (SOA yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS. A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS.

  1. Impacts of East Asian Sulfate Aerosols on Local and Remote Climate

    Science.gov (United States)

    Bartlett, R. E.; Bollasina, M. A.

    2017-12-01

    Anthropogenic aerosols exert significant climate forcing, which increases with emissions following trends of growing population and industry. Globally, aerosols cause a net cooling, counteracting greenhouse gas warming; however, regional impacts vary since emissions are spatially and temporally heterogeneous. While European and North American emissions have decreased in recent decades, Asian, particularly East Asian, emissions continued to rise into the 21st century. In addition to links between Asian anthropogenic aerosols and significant local climate impacts - for example, changes to the Asian monsoon system - studies have also shown influences on remote climate. Sulfate aerosols are particularly important for East Asia, remaining at constant levels higher than column burdens of other aerosol species. If a concerted effort - as laid out by government policies aiming to improve air quality - is made, the effects of anthropogenic aerosols (due to their short atmospheric lifetime) could be quickly reversed. Thus, it is vital to understand the climate impact aerosols have had up to now to aid in determining what will happen in the future. We use transient climate modelling experiments with the Community Earth System Model to investigate the impacts of East Asian sulfate aerosols in the present day compared to 1950 (i.e. before rapid industrialisation in this region), focusing on dynamical mechanisms leading to the occurrence of such impacts, and how their influence can spread to remote regions. We find, in addition to significant monsoon impacts, noticeable shifts in large-scale circulation features such as the ITCZ and the Pacific Walker cell. Through diabatic heating responses, changes to upper-level atmospheric dynamics are evident, leading to downstream effects on surface climate - for example, surface cooling over Europe. Understanding of these impacts is vital when considering how the good intentions of air quality improvement might inadvertently have

  2. Impact of Transpacific Aerosol on Air Quality over the United States: A Perspective from Aerosol-Cloud-Radiation Interactions

    Science.gov (United States)

    Tao, Zhining; Yu, Hongbin; Chin, Mian

    2015-01-01

    Observations have well established that aerosols from various sources in Asia, Europe, and Africa can travel across the Pacific and reach the contiguous United States (U.S.) at least on episodic bases throughout a year, with a maximum import in spring. The imported aerosol not only can serve as an additional source to regional air pollution (e.g., direct input), but also can influence regional air quality through the aerosol-cloud-radiation (ACR) interactions that change local and regional meteorology. This study assessed impacts of the transpacific aerosol on air quality, focusing on surface ozone and PM2.5, over the U.S. using the NASA Unified Weather Research Forecast model. Based on the results of 3- month (April to June of 2010) simulations, the impact of direct input (as an additional source) of transpacific aerosol caused an increase of surface PM2.5 concentration by approximately 1.5 micro-g/cu m over the west coast and about 0.5 micro-g/cu m over the east coast of the U.S. By influencing key meteorological processes through the ACR interactions, the transpacific aerosol exerted a significant effect on both surface PM2.5 (+/-6 micro-g/cu m3) and ozone (+/-12 ppbv) over the central and eastern U.S. This suggests that the transpacific transport of aerosol could either improve or deteriorate local air quality and complicate local effort toward the compliance with the U.S. National Ambient Air Quality Standards.

  3. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  4. Improvements to the WRF-Chem 3.5.1 model for quasi-hemispheric simulations of aerosols and ozone in the Arctic

    Directory of Open Access Journals (Sweden)

    L. Marelle

    2017-10-01

    Full Text Available In this study, the WRF-Chem regional model is updated to improve simulated short-lived pollutants (e.g., aerosols, ozone in the Arctic. Specifically, we include in WRF-Chem 3.5.1 (with SAPRC-99 gas-phase chemistry and MOSAIC aerosols (1 a correction to the sedimentation of aerosols, (2 dimethyl sulfide (DMS oceanic emissions and gas-phase chemistry, (3 an improved representation of the dry deposition of trace gases over seasonal snow, and (4 an UV-albedo dependence on snow and ice cover for photolysis calculations. We also (5 correct the representation of surface temperatures over melting ice in the Noah Land Surface Model and (6 couple and further test the recent KF-CuP (Kain–Fritsch + Cumulus Potential cumulus parameterization that includes the effect of cumulus clouds on aerosols and trace gases. The updated model is used to perform quasi-hemispheric simulations of aerosols and ozone, which are evaluated against surface measurements of black carbon (BC, sulfate, and ozone as well as airborne measurements of BC in the Arctic. The updated model shows significant improvements in terms of seasonal aerosol cycles at the surface and root mean square errors (RMSEs for surface ozone, aerosols, and BC aloft, compared to the base version of the model and to previous large-scale evaluations of WRF-Chem in the Arctic. These improvements are mostly due to the inclusion of cumulus effects on aerosols and trace gases in KF-CuP (improved RMSE for surface BC and BC profiles, surface sulfate, and surface ozone, the improved surface temperatures over sea ice (surface ozone, BC, and sulfate, and the updated trace gas deposition and UV albedo over snow and ice (improved RMSE and correlation for surface ozone. DMS emissions and chemistry improve surface sulfate at all Arctic sites except Zeppelin, and correcting aerosol sedimentation has little influence on aerosols except in the upper troposphere.

  5. Improved SAGE II cloud/aerosol categorization and observations of the Asian tropopause aerosol layer: 1989–2005

    Directory of Open Access Journals (Sweden)

    L. W. Thomason

    2013-05-01

    Full Text Available We describe the challenges associated with the interpretation of extinction coefficient measurements by the Stratospheric Aerosol and Gas Experiment (SAGE II in the presence of clouds. In particular, we have found that tropospheric aerosol analyses are highly dependent on a robust method for identifying when clouds affect the measured extinction coefficient. Herein, we describe an improved cloud identification method that appears to capture cloud/aerosol events more effectively than early methods. In addition, we summarize additional challenges to observing the Asian Tropopause Aerosol Layer (ATAL using SAGE II observations. Using this new approach, we perform analyses of the upper troposphere, focusing on periods in which the UTLS (upper troposphere/lower stratosphere is relatively free of volcanic material (1989–1990 and after 1996. Of particular interest is the Asian monsoon anticyclone where CALIPSO (Cloud-Aerosol Lidar Pathfinder Satellite Observations has observed an aerosol enhancement. This enhancement, called the ATAL, has a similar morphology to observed enhancements in long-lived trace gas species like CO. Since the CALIPSO record begins in 2006, the question of how long this aerosol feature has been present requires a new look at the long-lived SAGE II data sets despite significant hurdles to its use in the subtropical upper troposphere. We find that there is no evidence of ATAL in the SAGE II data prior to 1998. After 1998, it is clear that aerosol in the upper troposphere in the ATAL region is substantially enhanced relative to the period before that time. In addition, the data generally supports the presence of the ATAL beginning in 1999 and continuing through the end of the mission, though some years (e.g., 2003 are complicated by the presence of episodic enhancements most likely of volcanic origin.

  6. Impact of aerosols on ice crystal size

    Directory of Open Access Journals (Sweden)

    B. Zhao

    2018-01-01

    Full Text Available The interactions between aerosols and ice clouds represent one of the largest uncertainties in global radiative forcing from pre-industrial time to the present. In particular, the impact of aerosols on ice crystal effective radius (Rei, which is a key parameter determining ice clouds' net radiative effect, is highly uncertain due to limited and conflicting observational evidence. Here we investigate the effects of aerosols on Rei under different meteorological conditions using 9-year satellite observations. We find that the responses of Rei to aerosol loadings are modulated by water vapor amount in conjunction with several other meteorological parameters. While there is a significant negative correlation between Rei and aerosol loading in moist conditions, consistent with the "Twomey effect" for liquid clouds, a strong positive correlation between the two occurs in dry conditions. Simulations based on a cloud parcel model suggest that water vapor modulates the relative importance of different ice nucleation modes, leading to the opposite aerosol impacts between moist and dry conditions. When ice clouds are decomposed into those generated from deep convection and formed in situ, the water vapor modulation remains in effect for both ice cloud types, although the sensitivities of Rei to aerosols differ noticeably between them due to distinct formation mechanisms. The water vapor modulation can largely explain the difference in the responses of Rei to aerosol loadings in various seasons. A proper representation of the water vapor modulation is essential for an accurate estimate of aerosol–cloud radiative forcing produced by ice clouds.

  7. UAV measurements of aerosol properties at the Cyprus institute

    Science.gov (United States)

    Neitola, Kimmo; Sciare, Jean; Keleshis, Christos; Pikridas, Michael; Argyrides, Marios; Vouterakos, Panagiotis; Antoniou, Panyiota; Apostolou, Apostolos; Savvides, Constantinos; Vrekoussis, Mihalis; Mihalopoulos, Nikos; Biskos, George; Gao, Ru-Shan; Murphy, Daniel; Schrod, Jann; Weber, Daniel; Bingemer, Heinz; Mocnik, Grisa

    2017-04-01

    Unmanned Aerial Vehicles (UAVs) provide a cost-effective and easy-to-use method to document the vertical profiles of aerosol particles and their physical and optical properties, within and above the boundary layer. These observations combined with satellite and ground data together can provide important information and model constrains regarding the impact of aerosols on the air quality and regional climate. Cyprus is a unique place to observe long-range transported pollution and dust originating from different areas (Europe, Africa, Turkey, and Middle East) and perform such aerosol profiling. The USRL team at the Cyprus Institute has recently started weekly routine flights with a newly developed UAV fleet to build a unique dataset of vertical profile observations. Instrumentation on the UAVs includes miniature Scanning Aerosol Sun Photometer (miniSASP, Murphy et al., 2015), Printed Optical Particle Spectrometer (POPS, Gao et al., 2016), Ice nuclei sampler (IN) and Dual Wavelength absorption Prototype (DWP) together with the measured meteorological parameters (P, T and RH). The UAV fleet is still expanding, as well as the instrumentation, and preliminary test flights have led to very promising results. The UAV ascend up to approximately the middle of the boundary layer, defined by LIDAR measurements at Limassol, where the UAV will fly on one altitude for several minutes ensuring stable data collection. After flying on one altitude, the UAV will continue ascending above the boundary layer, where another level flight will take place for data gathering, before descending for safe landing. The miniSASP measures the sun irradiance and sky radiance at four wavelengths (460, 550, 670 and 680nm) by doing continuous almucantar scans every 30 s. The instrument installation compensates for the pitch and roll of the UAV with 4 Hz frequency. For this reason, the flights are designed to maintain level flight conditions, to ensure proper data acquisition, and to obtain data from

  8. Gene Expression Profiling of Nonhuman Primates Exposed to Aerosolized Venezuelan Equine Encephalitis Virus

    Science.gov (United States)

    2007-12-01

    endogenous pyrogens occur slightly earlier in s.c. infections, but are more pro- longed by aerosol. Lymphopenia also seems to be more aggressive in...brain) Brain P-value (lung) Lung P-value (spleen) Spleen Antigen processing, endogenous antigen via MHC class I (BP) HLA-A 213932_x_at 8.58E-05 2.40

  9. Climatic impacts of anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, T. [Oslo Univ. (Norway)

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Anthropogenic production of aerosols is mainly connected with combustion of fossil fuel. Measured by particulate mass, the anthropogenic sulphate production is the dominating source of aerosols in the Northern Hemisphere. Particles emitted in mechanical processes, fly ash etc. are less important because of their shorter atmospheric residence time. Possible climatological effects of anthropogenic aerosols are usually classified in two groups: direct and indirect. Direct effects are alterations of the radiative heating budget due to the aerosol particles in clear air. Indirect effects involve the interaction between particles and cloud processes. A simplified one-layer radiation model gave cooling in the most polluted mid-latitude areas and heating due to soot absorption in the Arctic. This differential trend in heating rates may have significant effects on atmospheric meridional circulations, which is important for the atmosphere as a thermodynamic system. Recently the description of sulphur chemistry in the hemispheric scale dispersion model has been improved and will be used in a model for Mie scattering and absorption

  10. Experiments on aerosol-induced cooling in the nocturnal boundary layer

    Science.gov (United States)

    Sreenivas, K.; Singh, D. K.; Vk, P.; Mukund, V.; Subramanian, G.

    2012-12-01

    In the nocturnal boundary layer (NBL), under calm & clear-sky conditions, radiation is the principal mode of heat transfer & it determines the temperature distribution close to the ground. Radiative processes thus influence the surface energy budget, & play a decisive role in many micro-meteorological processes including the formation of radiation-fog & inversion layer. Here, we report hyper-cooling of air layers close to the ground that has a radiative origin. Resulting vertical temperature distribution has an anomalous profile with an elevated minimum few decimetres above the ground (known as Lifted Temperature Minimum; LTM). Even though the first observation of this type of profile dates back to 1930s, its origin has not been explained till recently. We report field experiments to elucidate effects of emissivity and other physical properties of the ground on the LTM profile. Field observations clearly indicate that LTM-profiles are observed as a rule in the lowest meter of the NBL. We also demonstrate that the air-layer near the ground, rather than the ground itself, leads the post sunset cooling. This fact changes the very nature of the sensible heat-flux boundary condition. A laboratory experimental setup has been developed that can reproduce LTM. Lab-experiments demonstrate that the high cooling rates observed in the field experiments arise from the presence of aerosols & the intensity of cooling is proportional to aerosol concentration (Fig-1). We have also captured penetrative convection cells in the field experiments (Fig-2). Results presented here thus help in parameterizing transport processes in the NBL.

  11. The Role of Cloud Contamination, Aerosol Layer Height and Aerosol Model in the Assessment of the OMI Near-UV Retrievals Over the Ocean

    Science.gov (United States)

    Gasso, Santiago; Torres, Omar

    2016-01-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD less than 0.3, 30% for AOD greater than 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm approximately less than 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (less than 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by

  12. Analysis of aerosol agglomeration and removal mechanisms relevant to a reactor containment

    International Nuclear Information System (INIS)

    Chiang, H.W.; Mulpuru, S.R.; Lindquist, E.D.

    1995-01-01

    During some Postulated accidents in a nuclear reactor, radioactive aerosols may be formed and could be released from a rupture of the primary heat transport system into the containment. The released aerosols can agglomerate and form larger aerosol particles. The airborne aerosols can be removed from containment atmosphere by deposition onto the walls and other surfaces in contact with the gas-aerosol mixture. The rate of removal of aerosols depends on the aerosol size, which, in turn, is related to the amount of agglomeration of the aerosol particles. The extent of the removal of the aerosol mass from the containment atmosphere is important in determining the potential radioactive releases to the outside atmosphere. In this paper, selected conditions have been assessed to illustrate the significance of agglomeration for situations potentially of interest in containment safety studies

  13. Aerosol optical properties and radiative effects: Assessment of urban aerosols in central China using 10-year observations

    Science.gov (United States)

    Zhang, Ming; Ma, Yingying; Gong, Wei; Liu, Boming; Shi, Yifan; Chen, ZhongYong

    2018-06-01

    Poor air quality episodes are common in central China. Here, based on 10 years of ground-based sun-photometric observations, aerosol optical and radiative forcing characteristics were analyzed in Wuhan, the biggest metropolis in central China. Aerosol optical depth (AOD) in the last decade declined significantly, while the Ångström exponent (AE) showed slight growth. Single scattering albedo (SSA) at 440 nm reached the lowest value (0.87) in winter and highest value (0.93) in summer. Aerosol parameters derived from sun-photometric observations were used as input in a radiative transfer model to calculate aerosol radiative forcing (ARF) on the surface in ultraviolet (UV), visible (VIS), near-infrared (NIR), and shortwave (SW) spectra. ARFSW sustained decreases (the absolute values) over the last 10 years. In terms of seasonal variability, due to the increases in multiple scattering effects and attenuation of the transmitted radiation as AOD increased, ARF in summer displayed the largest value (-73.94 W/m2). After eliminating the influence of aerosol loading, the maximum aerosol radiative forcing efficiency in SW range (ARFESW) achieved a value of -64.5 W/m2/AOD in April. The ARFE change in each sub-interval spectrum was related to the change in SSA and effective radius of fine mode particles (Refff), that is, ARFE increased with the decreases in SSA and Refff. The smallest contribution of ARFENIR to ARFESW was 34.11% under strong absorbing and fine particle conditions, and opposite results were found for the VIS range, whose values were always over 51.82%. Finally, due to the serious air pollution and frequency of haze day, aerosol characteristics in haze and clear days were analyzed. The percentage of ARFENIR increased from 35.71% on clear-air days to 37.63% during haze periods, while both the percentage of ARFEUV and ARFENIR in ARFESW kept decreasing. The results of this paper should help us to better understand the effect of aerosols on solar spectral radiation

  14. Aerosol optical properties and radiative effects over Manora Peak in the Himalayan foothills: seasonal variability and role of transported aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, A.K. [Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi (India); Ram, K. [Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi (India); Singh, Sachchidanand, E-mail: ssingh@nplindia.org [Radio and Atmospheric Sciences Division, CSIR-National Physical Laboratory, New Delhi (India); Kumar, Sanjeev [Radio and Atmospheric Sciences Division, CSIR-National Physical Laboratory, New Delhi (India); Tiwari, S. [Indian Institute of Tropical Meteorology (Branch), Prof Ramnath Vij Marg, New Delhi (India)

    2015-01-01

    The higher altitude regions of Himalayas and Tibetan Plateau are influenced by the dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. In this study, we present impacts of advection of polluted air masses of natural and anthropogenic emissions, on aerosol optical and radiative properties at Manora Peak (∼ 2000 m amsl) in central Himalaya over a period of more than two years (February 2006–May 2008). We used the most updated and comprehensive data of chemical and optical properties available in one of the most climatically sensitive region, the Himalaya, to estimate atmospheric radiative forcing and heating rate. Aerosol optical depth (AOD) was found to vary from 0.04 to 0.45 with significantly higher values in summer mainly due to an increase in mineral dust and biomass burning aerosols due to transport. In contrast, single scattering albedo (SSA) varied from 0.74 to 0.88 with relatively lower values during summer, suggesting an increase in absorbing BC and mineral dust aerosols. As a result, a large positive atmospheric radiative forcing (about 28 ± 5 Wm{sup −2}) and high values of corresponding heating rate (0.80 ± 0.14 Kday{sup −1}) has been found during summer. During the entire observation period, radiative forcing at the top of the atmosphere varied from − 2 to + 14 Wm{sup −2} and from − 3 to − 50 Wm{sup −2} at the surface whereas atmospheric forcing was in the range of 3 to 65 Wm{sup −2} resulting in a heating rate of 0.1–1.8 Kday{sup −1}. - Highlights: • Aerosol chemical and optical properties at Manora Peak, in central Himalaya, were significantly affected by dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. • Elevated AOD and lower SSA values were observed at Manora Peak during summer. • Enhancement in absorbing aerosols was observed during summer. • Large aerosol radiative forcing and heating rate was observed

  15. Aerosol optical properties and radiative effects over Manora Peak in the Himalayan foothills: seasonal variability and role of transported aerosols

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Ram, K.; Singh, Sachchidanand; Kumar, Sanjeev; Tiwari, S.

    2015-01-01

    The higher altitude regions of Himalayas and Tibetan Plateau are influenced by the dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. In this study, we present impacts of advection of polluted air masses of natural and anthropogenic emissions, on aerosol optical and radiative properties at Manora Peak (∼ 2000 m amsl) in central Himalaya over a period of more than two years (February 2006–May 2008). We used the most updated and comprehensive data of chemical and optical properties available in one of the most climatically sensitive region, the Himalaya, to estimate atmospheric radiative forcing and heating rate. Aerosol optical depth (AOD) was found to vary from 0.04 to 0.45 with significantly higher values in summer mainly due to an increase in mineral dust and biomass burning aerosols due to transport. In contrast, single scattering albedo (SSA) varied from 0.74 to 0.88 with relatively lower values during summer, suggesting an increase in absorbing BC and mineral dust aerosols. As a result, a large positive atmospheric radiative forcing (about 28 ± 5 Wm −2 ) and high values of corresponding heating rate (0.80 ± 0.14 Kday −1 ) has been found during summer. During the entire observation period, radiative forcing at the top of the atmosphere varied from − 2 to + 14 Wm −2 and from − 3 to − 50 Wm −2 at the surface whereas atmospheric forcing was in the range of 3 to 65 Wm −2 resulting in a heating rate of 0.1–1.8 Kday −1 . - Highlights: • Aerosol chemical and optical properties at Manora Peak, in central Himalaya, were significantly affected by dust and black carbon (BC) aerosols from the emissions and long-range transport from the adjoining areas. • Elevated AOD and lower SSA values were observed at Manora Peak during summer. • Enhancement in absorbing aerosols was observed during summer. • Large aerosol radiative forcing and heating rate was observed over the station in the

  16. Monitoring the Inhalation Flow Rate of Nebulized Aerosols Using an Ultrasonic Flow Meter: In Vitro Assessment.

    Science.gov (United States)

    Yang, Michael Y; Chan, Hak-Kim

    2017-06-01

    The measurement of aerosol flow rates without obscuration of the flow is of particular concern with in vivo lung deposition studies, where precise knowledge of aerosol particle size distributions is a necessary requirement for the development of predictive correlations. This study examines the utility of an ultrasonic flow meter for such measurements and determines if a valved system can be attached to the flow meter for sampling exhaled aerosols. The flow rate across a D-30 flow meter was compared with and without nebulization of 0.9% saline aerosols from a PARI LC Sprint nebulizer. Particle size distributions of the nebulized aerosol before and after adding the D-30 flow meter and duckbill valve were measured using a Spraytec laser diffraction system. Finally, the ability of the Thor D-30 to capture a realistic breathing profile was assessed. The mean ± standard error flow rates measured by the D-30 flow meter with and without nebulization were 10.4 ± 0.1 versus 10.4 ± 0.1 L/min, 66.4 ± 0.1 versus 67.2 ± 0.1 L/min, and 89.9 ± 0.1 versus 91.4 ± 0.1 L/min. The D-30 flow meter did not considerably affect the volumetric median diameter (VMD) of the aerosols, while the VMD reduced slightly by 0.65 μm at 10 L/min and 0.69 μm at 72 L/min upon the inclusion of a duckbill valve. Time-weighted average inhalation flow rates measured by D-30 flow meters placed upstream and downstream of the one-way valve agreed well, 31.9 versus 32.6 L/min, respectively. The D-30 flow meter can be used to accurately measure inhalation flow rates of nebulized aerosols without significantly impacting particle size distributions, and one-way duckbill valves can be used to isolate the inhalation portion of a breathing pattern to facilitate collection of exhaled doses.

  17. The Pasadena Aerosol Characterization Observatory (PACO: chemical and physical analysis of the Western Los Angeles basin aerosol

    Directory of Open Access Journals (Sweden)

    S. P. Hersey

    2011-08-01

    Full Text Available The Pasadena Aerosol Characterization Observatory (PACO represents the first major aerosol characterization experiment centered in the Western/Central Los Angeles Basin. The sampling site, located on the campus of the California Institute of Technology in Pasadena, was positioned to sample a continuous afternoon influx of transported urban aerosol with a photochemical age of 1–2 h and generally free from major local contributions. Sampling spanned 5 months during the summer of 2009, which were broken into 3 regimes on the basis of distinct meteorological conditions. Regime I was characterized by a series of low pressure systems, resulting in high humidity and rainy periods with clean conditions. Regime II typified early summer meteorology, with significant morning marine layers and warm, sunny afternoons. Regime III was characterized by hot, dry conditions with little marine layer influence. Regardless of regime, organic aerosol (OA is the most significant constituent of nonrefractory submicron Los Angeles aerosol (42, 43, and 55 % of total submicron mass in regimes I, II, and III, respectively. The overall oxidation state remains relatively constant on timescales of days to weeks (O:C = 0.44 ± 0.08, 0.55 ± 0.05, and 0.48 ± 0.08 during regimes I, II, and III, respectively, with no difference in O:C between morning and afternoon periods. Periods characterized by significant morning marine layer influence followed by photochemically favorable afternoons displayed significantly higher aerosol mass and O:C ratio, suggesting that aqueous processes may be important in the generation of secondary aerosol and oxidized organic aerosol (OOA in Los Angeles. Online analysis of water soluble organic carbon (WSOC indicates that water soluble organic mass (WSOM reaches maxima near 14:00–15:00 local time (LT, but the percentage of AMS organic mass contributed by WSOM remains relatively constant throughout the day. Sulfate and nitrate reside predominantly

  18. Reduction of aerosols produced by ultrasonic scalers.

    Science.gov (United States)

    Harrel, S K; Barnes, J B; Rivera-Hidalgo, F

    1996-01-01

    There is concern with decreased air quality and potential aerosol contamination in the dental operatory. This problem has been addressed by the Centers for Disease Control and Prevention, which recommends that all sources of blood-contaminated splatter and aerosols be minimized. One of the major sources of potential aerosol contamination in the dental setting is the ultrasonic scaler. This study looks at the use of a high volume evacuator attachment for the ultrasonic scaler handpiece. Artificial teeth were mock-scaled for 1 minute with and without the evacuator attachment. The mock scaling was performed within a plastic enclosure that had a 1 cm grid laid out on 4 sides. Scaling was performed 10 times each by 2 operators. An erythrosin solution was used for the ultrasonic scaler coolant with a coolant volume of 17.5 ml/min. The number of squares containing a red erythrosin spot were counted and considered to represent aerosol contamination. The high volume evacuator attachment produced a 93% reduction in the number of contaminated squares (chi squared significant at P < 0.05). There was no increase in heat transfer to a tooth analogue when the high volume evacuator attachment was used with the ultrasonic scaler as compared to the scaler without the evacuator attachment. It is felt that the high volume evacuator attachment is capable of significantly reducing the amount of aerosol contamination produced within the test system without increased heat transfer to the tooth.

  19. Comparison of aerosol inhalation lung images using BARC and other nebulizers

    International Nuclear Information System (INIS)

    Isawa, Toyoharu; Teshima, Takeo; Anazawa, Yoshiki; Miki, Makoto

    1994-01-01

    cases including one normal subject are presented briefly in the following. The size of aerosol definitely determines the site of deposition of inhaled aerosol in the lungs. The smaller the aerosol size, the better the penetration of inhaled aerosol in the lung periphery. This fact was demonstrated not only qualitatively as in this study but also quantitatively by calculating several parameters like alveolar deposition ratio, Xmax, Xmean, standard deviation, skewness and kurtosis of the count profile in the lung slice of the the right mid-lung. Our BARC nebulizer produced a very good-sized aerosol to be used in the daily practice. Technegas producing far smaller particles in size has characteristics of both aerosol particle and gas. Aerosol inhalation lung images are indispensable means to studying functional aspects of the lungs from the airway side and help interpret the perfusion counterpart of the lungs. Because smaller particles better penetrate the lung periphery, the aerosol inhalation lung images obtained by inhaling smaller aerosol particles would give a better idea of actual ventilatory status in the lungs. From the practical point of view aerosol of less than 2-3 micron in size would be well applicable to the evaluation of the ventilatory status in the lungs. Aerosol deposition patterns indicate the regional airway physiology as well as the ventilatory status of the lungs

  20. Impacts of aerosol pollutant mitigation on lowland rice yields in China

    Science.gov (United States)

    Zhang, Tianyi; Li, Tao; Yue, Xu; Yang, Xiaoguang

    2017-10-01

    Aerosol pollution in China is significantly altering radiative transfer processes and is thereby potentially affecting rice photosynthesis and yields. However, the response of rice photosynthesis to aerosol-induced radiative perturbations is still not well understood. Here, we employ a process-based modelling approach to simulate changes in incoming radiation (RAD) and the diffuse radiation fraction (DF) with aerosol mitigation in China and their associated impacts on rice yields. Aerosol reduction has the positive effect of increasing RAD and the negative effect of decreasing DF on rice photosynthesis and yields. In rice production areas where the average RAD during the growing season is lower than 250 W m-2, aerosol reduction is beneficial for higher rice yields, whereas in areas with RAD>250 W m-2, aerosol mitigation causes yield declines due to the associated reduction in the DF, which decreases the light use efficiency. As a net effect, rice yields were estimated to significantly increase by 0.8%-2.6% with aerosol concentrations reductions from 20 to 100%, which is lower than the estimates obtained in earlier studies that only considered the effects of RAD. This finding suggests that both RAD and DF are important processes influencing rice yields and should be incorporated into future assessments of agricultural responses to variations in aerosol-induced radiation under climate change.

  1. Fog and Cloud Induced Aerosol Modification Observed by AERONET

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Giles, D. M.; Rivas, M. A.; Singh, R. P.; Tripathi, S. N.; Bruegge, C. J.; Platnick, S. E.; Arnold, G. T.; hide

    2011-01-01

    Large fine mode (sub-micron radius) dominated aerosols in size distributions retrieved from AERONET have been observed after fog or low-altitude cloud dissipation events. These column-integrated size distributions have been obtained at several sites in many regions of the world, typically after evaporation of low altitude cloud such as stratocumulus or fog. Retrievals with cloud processed aerosol are sometimes bimodal in the accumulation mode with the larger size mode often approx.0.4 - 0.5 microns radius (volume distribution); the smaller mode typically approx.0.12 to aprrox.0.20 microns may be interstitial aerosol that were not modified by incorporation in droplets and/or aerosol that are less hygroscopic in nature. Bimodal accumulation mode size distributions have often been observed from in situ measurements of aerosols that have interacted with clouds, and AERONET size distribution retrievals made after dissipation of cloud or fog are in good agreement with particle sizes measured by in situ techniques for cloud-processed aerosols. Aerosols of this type and large size range (in lower concentrations) may also be formed by cloud processing in partly cloudy conditions and may contribute to the shoulder of larger size particles in the accumulation mode retrievals, especially in regions where sulfate and other soluble aerosol are a significant component of the total aerosol composition. Observed trends of increasing aerosol optical depth (AOD) as fine mode radius increased suggests higher AOD in the near cloud environment and therefore greater aerosol direct radiative forcing than typically obtained from remote sensing, due to bias towards sampling at low cloud fraction.

  2. Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation

    Directory of Open Access Journals (Sweden)

    G. Myhre

    2009-02-01

    Full Text Available A high-resolution global aerosol model (Oslo CTM2 driven by meteorological data and allowing a comparison with a variety of aerosol observations is used to simulate radiative forcing (RF of the direct aerosol effect. The model simulates all main aerosol components, including several secondary components such as nitrate and secondary organic carbon. The model reproduces the main chemical composition and size features observed during large aerosol campaigns. Although the chemical composition compares best with ground-based measurement over land for modelled sulphate, no systematic differences are found for other compounds. The modelled aerosol optical depth (AOD is compared to remote sensed data from AERONET ground and MODIS and MISR satellite retrievals. To gain confidence in the aerosol modelling, we have tested its ability to reproduce daily variability in the aerosol content, and this is performing well in many regions; however, we also identified some locations where model improvements are needed. The annual mean regional pattern of AOD from the aerosol model is broadly similar to the AERONET and the satellite retrievals (mostly within 10–20%. We notice a significant improvement from MODIS Collection 4 to Collection 5 compared to AERONET data. Satellite derived estimates of aerosol radiative effect over ocean for clear sky conditions differs significantly on regional scales (almost up to a factor two, but also in the global mean. The Oslo CTM2 has an aerosol radiative effect close to the mean of the satellite derived estimates. We derive a radiative forcing (RF of the direct aerosol effect of −0.35 Wm−2 in our base case. Implementation of a simple approach to consider internal black carbon (BC mixture results in a total RF of −0.28 Wm−2. Our results highlight the importance of carbonaceous particles, producing stronger individual RF than considered in the recent IPCC estimate; however, net RF is less different

  3. Aerosols, Chemistry, and Radiative Forcing: A 3-D Model Analysis of Satellite and ACE-Asia data (ACMAP)

    Science.gov (United States)

    Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xue-Peng

    2005-01-01

    We propose a research project to incorporate a global 3-D model and satellite data into the multi-national Aerosol Characterization Experiment-Asia (ACE-Asia) mission. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosols and the processes that control those properties over the Asian-Pacific region, (2) to investigate the interaction between aerosols and tropospheric chemistry, and (3) to determine the aerosol radiative forcing over the Asia-Pacific region. We will use the Georgia TecWGoddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model to link satellite observations and the ACE-Asia measurements. First, we will use the GOCART model to simulate aerosols and related species, and evaluate the model with satellite and in-situ observations. Second, the model generated aerosol vertical profiles and compositions will be used to validate the satellite products; and the satellite data will be used for during- and post- mission analysis. Third, we will use the model to analyze and interpret both satellite and ACE- Asia field campaign data and investigate the aerosol-chemistry interactions. Finally, we will calculate aerosol radiative forcing over the Asian-Pacific region, and assess the influence of Asian pollution in the global atmosphere. We propose a research project to incorporate a global 3-D model and satellite data into

  4. The impact of biogenic carbon emissions on aerosol absorption inMexico City

    Energy Technology Data Exchange (ETDEWEB)

    Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

    2009-02-24

    In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

  5. Assessment of need for transport tubes when continuously monitoring for radioactive aerosols.

    Science.gov (United States)

    Whicker, J J; Rodgers, J C; Lopez, R C

    1999-09-01

    Aerosol transport tubes are often used to draw aerosol from desirable sampling locations to nearby air sampling equipment that cannot be placed at that location. In many plutonium laboratories at Los Alamos National Laboratory, aerosol transport tubes are used to transport aerosol from the front of room ventilation exhaust registers to continuous air monitors (CAMs) that are mounted on nearby walls. Transport tubes are used because past guidance suggests that extraction of aerosol samples from exhaust locations provides the most sensitive and reliable detection under conditions where the rooms have unpredictable release locations and significant spatial variability in aerosol concentrations after releases, and where CAMs cannot be located in front of exhaust registers without blocking worker walkways. Despite designs to minimize particle loss in tubes, aerosol transport model predictions suggest losses occur lowering the sensitivity of CAMs to accidentally released plutonium aerosol. The goal of this study was to test the hypotheses that the reliability, speed, and sensitivity of aerosol detection would be equal whether the sample was extracted from the front of the exhaust register or from the wall location of CAMs. Polydisperse oil aerosols were released from multiple locations in two plutonium laboratories to simulate plutonium aerosol releases. Networked laser particle counters (LPCs) were positioned to simultaneously measure time-resolved aerosol concentrations at each exhaust register (representative of sampling with transport tubes) and at each wall-mounted CAM location (representative of sampling without transport tubes). Results showed no significant differences in detection reliability, speed, or sensitivity for LPCs positioned at exhaust locations when compared to LPCs positioned at the CAM wall location. Therefore, elimination of transport tubes would likely improve CAM performance.

  6. The Two-Column Aerosol Project: Phase I - Overview and Impact of Elevated Aerosol Layers on Aerosol Optical Depth

    Science.gov (United States)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; hide

    2015-01-01

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere be tween and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2).These layer s contributed up to 60 of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  7. The Two-Column Aerosol Project: Phase I - Overview and Impact of Elevated Aerosol Layers on Aerosol Optical Depth

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, John; Hostetler, Chris A.; Hubbe, John M.; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, K.; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail S.; Rogers, Ray; Russell, P.; Redemann, Jens; Sedlacek, Art; Segal Rozenhaimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline; Volkamer, Rainer M.; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-08

    The Two-Column Aerosol Project (TCAP), which was conducted from June 2012 through June 2013, was a unique field study that was designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere at a number of altitudes, from near the surface to as high as 8 km, within two atmospheric columns; one located near the coast of North America (over Cape Cod, MA) and a second over the Atlantic Ocean several hundred kilometers from the coast. TCAP included the yearlong deployment of the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) that was located at the base of the Cape Cod column, as well as summer and winter aircraft intensive observation periods of the ARM Aerial Facility. One important finding from TCAP is the relatively common occurrence (on four of six nearly cloud-free flights) of elevated aerosol layers in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total aerosol optical depth (AOD) observed in the column. Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning aerosol and nitrate compared to the aerosol found near the surface.

  8. The Two-Column Aerosol Project: Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth

    Science.gov (United States)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, Johnathan W.; Hostetler, Chris A.; Hubbe, John; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, Kathleen; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail; Rogers, Ray R.; Russell, Philip B.; Redemann, Jens; Sedlacek, Arthur J.; Segal-Rosenheimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline M.; Volkamer, Rainer; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-01

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  9. Impact of Aerosols on Convective Clouds and Precipitation

    Science.gov (United States)

    Tao, Wei-Kuo; Chen, Jen-Ping; Li, Zhanqing; Wang, Chien; Zhang, Chidong; Li, Xiaowen

    2012-01-01

    Aerosols are a critical.factor in the atmospheric hydrological cycle and radiation budget. As a major agent for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosols have a major impact on the dynamics, microphysics, and electrification properties of continental mixed-phase convective clouds. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing a significant source of cloud condensation nuclei (CCN). Such pollution . effects on precipitation potentially have enormous climatic consequences both in terms of feedbacks involving the land surface via rainfall as well as the surface energy budget and changes in latent heat input to the atmosphere. Basically, aerosol concentrations can influence cloud droplet size distributions, the warm-rain process, the cold-rain process, cloud-top heights, the depth of the mixed-phase region, and the occurrence of lightning. Recently, many cloud resolution models (CRMs) have been used to examine the role of aerosols on mixed-phase convective clouds. These modeling studies have many differences in terms of model configuration (two- or three-dimensional), domain size, grid spacing (150-3000 m), microphysics (two-moment bulk, simple or sophisticated spectral-bin), turbulence (1st or 1.5 order turbulent kinetic energy (TKE)), radiation, lateral boundary conditions (i.e., closed, radiative open or cyclic), cases (isolated convection, tropical or midlatitude squall lines) and model integration time (e.g., 2.5 to 48 hours). Among these modeling studies, the most striking difference is that cumulative precipitation can either increase or decrease in response to higher concentrations of CCN. In this presentation, we review past efforts and summarize our current understanding of the effect of aerosols on convective precipitation processes. Specifically, this paper addresses the following topics

  10. Special aerosol sources for certification and test of aerosol radiometers

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Y.E.; Kuznetsov, Y.V.; Rizin, A.I.; Fertman, D.E.

    1991-01-01

    The results are presented of the development and practical application of new radionuclide source types (Special Aerosol Sources (SAS)), that meet the international standard recommendations, which are used for certification and test of aerosol radiometers (monitors) using model aerosols of plutonium-239, strontium-yttrium-90 or uranium of natural isotope composition and certified against Union of Soviet Socialist Republics USSR national radioactive aerosol standard or by means of a reference radiometer. The original technology for source production allows the particular features of sampling to be taken into account as well as geometry and conditions of radionuclides radiation registration in the sample for the given type of radiometer. (author)

  11. Special aerosol sources for certification and test of aerosol radiometers

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, S.K.; Zalmanzon, Y.E.; Kuznetsov, Y.V.; Rizin, A.I.; Fertman, D.E. (Union Research Institute of Instrumentation, Moscow (USSR))

    1991-01-01

    The results are presented of the development and practical application of new radionuclide source types (Special Aerosol Sources (SAS)), that meet the international standard recommendations, which are used for certification and test of aerosol radiometers (monitors) using model aerosols of plutonium-239, strontium-yttrium-90 or uranium of natural isotope composition and certified against Union of Soviet Socialist Republics USSR national radioactive aerosol standard or by means of a reference radiometer. The original technology for source production allows the particular features of sampling to be taken into account as well as geometry and conditions of radionuclides radiation registration in the sample for the given type of radiometer. (author).

  12. Aerosol indirect effect on tropospheric ozone via lightning

    Science.gov (United States)

    Yuan, T.; Remer, L. A.; Bian, H.; Ziemke, J. R.; Albrecht, R. I.; Pickering, K. E.; Oreopoulos, L.; Goodman, S. J.; Yu, H.; Allen, D. J.

    2012-12-01

    Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. The unresolved difference between modeled and observed natural background O3 concentrations is a key source of the uncertainty. Here we demonstrate remarkable sensitivity of lightning activity to aerosol loading with lightning activity increasing more than 30 times per unit of aerosol optical depth over our study area. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses suggest O3 is increased as a result of aerosol-induced increase in lightning and lightning produced NOx. Model simulations with prescribed lightning change corroborate the satellite data analysis. This aerosol-O3 connection is achieved via aerosol increasing lightning and thus lightning produced nitrogen oxides. This aerosol-lightning-ozone link provides a potential physical mechanism that may account for a part of the model-observation difference in background O3 concentration. More importantly, O3 production increase from this link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. Both of these implications suggest a stronger O3 historical radiative forcing. This introduces a new pathway, through which increasing in aerosols from pre-industrial time to present day enhances tropospheric O3 production. Aerosol forcing thus has a warming component via its effect on O3 production. Sensitivity simulations suggest that 4-8% increase of tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications

  13. Aerosols and the lungs

    International Nuclear Information System (INIS)

    1987-01-01

    The lectures of the colloquium are discussed in summary form. There were 5 lectures on aerosol deposition, 5 on aerosol elimination, 7 on toxicology, and 7 on the uses of aerosols in medical therapy. In some cases aerosols with radioactive labels were used. Several lectures reviewed the kinetics and toxicology of airborne environmental pollutants. (MG) [de

  14. TEM investigations of microstructures of combustion aerosols

    International Nuclear Information System (INIS)

    Marquardt, A.; Hackfort, H.; Borchardt, J.; Schober, T.; Friedrich, J.

    1992-12-01

    In the incineration of organic material, apart from a series of gaseous pollutants, particulate pollutants or combustion aerosols also arise. The latter frequently consist of particles with a solid core of carbon to which a large number of inorganic and organic compounds are attached. These primarily include the polycyclic aromatic hydrocarbons (PAH) and their nitro-derivatives (NPAH), whose mutagenic or carcinogenic effect is known. The invisible particle sizes in the nanometer range, whose retention in the incineration off-gas is not state of the art, are of increasing significance for man and environment. On the one hand, they are deposited almost completely in the human lung. On the other hand, due to their fine dispersity they have along residence time in the atmosphere where they participate in chemical reactions and climatically significant processes. Important insights about the formation process of combustion aerosols are to be expected from the imaging of their microstructures in the transmission electron microscope (TEM). The present contribution describes the development and application of a representative sampling procedure for aerosols from a partial flow of flue gas from a fluidized-bed furnace. The method developed consists of electrically charging aerosol particles in situ and subsequently selectively precipitating them onto a microscope slide in an electric field. TEM studies of aerosol microstructures on the microscope slides revealed that in the combustion of petrol and heating oil under different combustion conditions in principle the same particle structures result, whereas in the incineration of used lubricating oil quite different particle structures were found. Results from the literature on aerosol microstructures in exhaust gases from petrol and diesel engines demonstrate agreement with the results of this study in the basic structure of the particles. (orig.) [de

  15. Earth Science With the Stratospheric Aerosol and Gas Experiment III (SAGE III) on the International Space Station

    Science.gov (United States)

    Zawodny, Joe; Vernier, Jean-Paul; Thomason, Larry; Roell, Marilee; Pitts, Mike; Moore, Randy; Hill, Charles; Flittner, David; Damadeo, Rob; Cisewski, Mike

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment (SAGE) III is the fourth generation of solar occultation instruments operated by NASA, the first coming under a different acronym, to investigate the Earth's upper atmosphere. Three flight-ready SAGE III instruments were built by Ball Aerospace in the late 1990s, with one launched aboard the former Russian Aviation and Space Agency (now known as Roskosmos) Meteor-3M platform on 10 December 2001 (continuing until the platform lost power in 2006). Another of the original instruments was manifested for the ISS in the 2004 time frame, but was delayed because of budgetary considerations. Fortunately, that SAGE III/ISS mission was restarted in 2009 with a major focus upon filling an anticipated gap in ozone and aerosol observation in the second half of this decade. Here we discuss the mission architecture, its implementation, and data that will be produced by SAGE III/ISS, including their expected accuracy and coverage. The 52-degree inclined orbit of the ISS is well-suited for solar occultation and provides near-global observations on a monthly basis with excellent coverage of low and mid-latitudes. This is similar to that of the SAGE II mission (1985-2005), whose data set has served the international atmospheric science community as a standard for stratospheric ozone and aerosol measurements. The nominal science products include vertical profiles of trace gases, such as ozone, nitrogen dioxide and water vapor, along with multi-wavelength aerosol extinction. Though in the visible portion of the spectrum the brightness of the Sun is one million times that of the full Moon, the SAGE III instrument is designed to cover this large dynamic range and also perform lunar occultations on a routine basis to augment the solar products. The standard lunar products were demonstrated during the SAGE III/M3M mission and include ozone, nitrogen dioxide & nitrogen trioxide. The operational flexibility of the SAGE III spectrometer accomplishes

  16. Aerosol chemical and optical properties over the Paris area within ESQUIF project

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2006-01-01

    Full Text Available Aerosol chemical and optical properties are extensively investigated for the first time over the Paris Basin in July 2000 within the ESQUIF project. The measurement campaign offers an exceptional framework to evaluate the performances of the chemistry-transport model CHIMERE in simulating concentrations of gaseous and aerosol pollutants, as well as the aerosol-size distribution and composition in polluted urban environments against ground-based and airborne measurements. A detailed comparison of measured and simulated variables during the second half of July with particular focus on 19 and 31 pollution episodes reveals an overall good agreement for gas-species and aerosol components both at the ground level and along flight trajectories, and the absence of systematic biases in simulated meteorological variables such as wind speed, relative humidity and boundary layer height as computed by the MM5 model. A good consistency in ozone and NO concentrations demonstrates the ability of the model to reproduce the plume structure and location fairly well both on 19 and 31 July, despite an underestimation of the amplitude of ozone concentrations on 31 July. The spatial and vertical aerosol distributions are also examined by comparing simulated and observed lidar vertical profiles along flight trajectories on 31 July and confirm the model capacity to simulate the plume characteristics. The comparison of observed and modeled aerosol components in the southwest suburb of Paris during the second half of July indicates that the aerosol composition is rather correctly reproduced, although the total aerosol mass is underestimated by about 20%. The simulated Parisian aerosol is dominated by primary particulate matter that accounts for anthropogenic and biogenic primary particles (40%, and inorganic aerosol fraction (40% including nitrate (8%, sulfate (22% and ammonium (10%. The secondary organic aerosols (SOA represent 12% of the total aerosol mass, while the

  17. Aerosols and Climate

    Indian Academy of Sciences (India)

    Large warming by elevated aerosols · AERONET – Global network (NASA) · Slide 25 · Slide 26 · Slide 27 · Slide 28 · Slide 29 · Slide 30 · Slide 31 · Long-term trends - Trivandrum · Enhanced warming over Himalayan-Gangetic region · Aerosol Radiative Forcing Over India _ Regional Aerosol Warming Experiment ...

  18. Small scale studies of production of fissium aerosols

    International Nuclear Information System (INIS)

    Lindqvist, O.; Rydberg, J.

    1983-02-01

    A small scale study concerning the production and analysis of fission product aerosols formed at various temperatures as a function of the chemical composition of the fissium/corium mixture at the source is presented. CsOH, CsJ and Te are the main aerosol components to be expected. The thermodynamic characterization of occuring Te-iodides and other phases is of great importance for reactor core meltdown chemistry and for the evaluation of the aerosol transport tests. Elemental iodine seems not to be released in significant amounts in reducing atmosphere. Analysis data concerning elements, phases, themral analysis and gases are presented. (G.B.)

  19. Aerosol influence on energy balance of the middle atmosphere of Jupiter.

    Science.gov (United States)

    Zhang, Xi; West, Robert A; Irwin, Patrick G J; Nixon, Conor A; Yung, Yuk L

    2015-12-22

    Aerosols are ubiquitous in planetary atmospheres in the Solar System. However, radiative forcing on Jupiter has traditionally been attributed to solar heating and infrared cooling of gaseous constituents only, while the significance of aerosol radiative effects has been a long-standing controversy. Here we show, based on observations from the NASA spacecraft Voyager and Cassini, that gases alone cannot maintain the global energy balance in the middle atmosphere of Jupiter. Instead, a thick aerosol layer consisting of fluffy, fractal aggregate particles produced by photochemistry and auroral chemistry dominates the stratospheric radiative heating at middle and high latitudes, exceeding the local gas heating rate by a factor of 5-10. On a global average, aerosol heating is comparable to the gas contribution and aerosol cooling is more important than previously thought. We argue that fractal aggregate particles may also have a significant role in controlling the atmospheric radiative energy balance on other planets, as on Jupiter.

  20. Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study - Part 2: Philippine receptor observations of fine-scale aerosol behavior

    Science.gov (United States)

    Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.; Uy, Sherdon N.; Zaiger, Kimo; Blake, Donald R.; Bucholtz, Anthony; Campbell, James R.; Chew, Boon Ning; Cliff, Steven S.; Holben, Brent N.; Holz, Robert E.; Hyer, Edward J.; Kreidenweis, Sonia M.; Kuciauskas, Arunas P.; Lolli, Simone; Oo, Min; Perry, Kevin D.; Salinas, Santo V.; Sessions, Walter R.; Smirnov, Alexander; Walker, Annette L.; Wang, Qing; Yu, Liya; Zhang, Jianglong; Zhao, Yongjing

    2016-11-01

    The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August-September 2012 biomass burning season. Data included were observations aboard the M/Y Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 3-12 h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and very difficult to model

  1. Aerosol Meteorology of Maritime Continent for the 2012 7SEAS Southwest Monsoon Intensive Study - Part 2: Philippine Receptor Observations of Fine-Scale Aerosol Behavior

    Science.gov (United States)

    Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.; hide

    2016-01-01

    The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August-September 2012 biomass burning season. Data included were observations aboard the MY Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 312h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and very difficult to model

  2. Regional and monthly and clear-sky aerosol direct radiative effect (and forcing derived from the GlobAEROSOL-AATSR satellite aerosol product

    Directory of Open Access Journals (Sweden)

    G. E. Thomas

    2013-01-01

    Full Text Available Using the GlobAEROSOL-AATSR dataset, estimates of the instantaneous, clear-sky, direct aerosol radiative effect and radiative forcing have been produced for the year 2006. Aerosol Robotic Network sun-photometer measurements have been used to characterise the random and systematic error in the GlobAEROSOL product for 22 regions covering the globe. Representative aerosol properties for each region were derived from the results of a wide range of literature sources and, along with the de-biased GlobAEROSOL AODs, were used to drive an offline version of the Met Office unified model radiation scheme. In addition to the mean AOD, best-estimate run of the radiation scheme, a range of additional calculations were done to propagate uncertainty estimates in the AOD, optical properties, surface albedo and errors due to the temporal and spatial averaging of the AOD fields. This analysis produced monthly, regional estimates of the clear-sky aerosol radiative effect and its uncertainty, which were combined to produce annual, global mean values of (−6.7 ± 3.9 W m−2 at the top of atmosphere (TOA and (−12 ± 6 W m−2 at the surface. These results were then used to give estimates of regional, clear-sky aerosol direct radiative forcing, using modelled pre-industrial AOD fields for the year 1750 calculated for the AEROCOM PRE experiment. However, as it was not possible to quantify the uncertainty in the pre-industrial aerosol loading, these figures can only be taken as indicative and their uncertainties as lower bounds on the likely errors. Although the uncertainty on aerosol radiative effect presented here is considerably larger than most previous estimates, the explicit inclusion of the major sources of error in the calculations suggest that they are closer to the true constraint on this figure from similar methodologies, and point to the need for more, improved estimates of both global aerosol loading and aerosol optical properties.

  3. The impact of changing surface ocean conditions on the dissolution of aerosol iron

    Science.gov (United States)

    Fishwick, Matthew P.; Sedwick, Peter N.; Lohan, Maeve C.; Worsfold, Paul J.; Buck, Kristen N.; Church, Thomas M.; Ussher, Simon J.

    2014-11-01

    The proportion of aerosol iron (Fe) that dissolves in seawater varies greatly and is dependent on aerosol composition and the physicochemical conditions of seawater, which may change depending on location or be altered by global environmental change. Aerosol and surface seawater samples were collected in the Sargasso Sea and used to investigate the impact of these changing conditions on aerosol Fe dissolution in seawater. Our data show that seawater temperature, pH, and oxygen concentration, within the range of current and projected future values, had no significant effect on the dissolution of aerosol Fe. However, the source and composition of aerosols had the most significant effect on the aerosol Fe solubility, with the most anthropogenically influenced samples having the highest fractional solubility (up to 3.2%). The impact of ocean warming and acidification on aerosol Fe dissolution is therefore unlikely to be as important as changes in land usage and fossil fuel combustion. Our experimental results also reveal important changes in the size distribution of soluble aerosol Fe in solution, depending on the chemical conditions of seawater. Under typical conditions, the majority (77-100%) of Fe released from aerosols into ambient seawater existed in the colloidal (0.02-0.4 µm) size fraction. However, in the presence of a sufficient concentration of strong Fe-binding organic ligands (10 nM) most of the aerosol-derived colloidal Fe was converted to soluble Fe (<0.02 µm). This finding highlights the potential importance of organic ligands in retaining aerosol Fe in a biologically available form in the surface ocean.

  4. In-Situ Measurements of Aerosol Optical Properties using New Cavity Ring-Down and Photoacoustics Instruments and Comparison with more Traditional Techniques

    Science.gov (United States)

    Strawa, A. W.; Arnott, P.; Covert, D.; Elleman, R.; Ferrare, R.; Hallar, A. G.; Jonsson, H.; Kirchstetter, T. W.; Luu, A. P.; Ogren, J.

    2004-01-01

    Carbonaceous species (BC and OC) are responsible for most of the absorption associated with aerosol particles. The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult aerosol properties to measure. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-ARC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Aerosol absorption coefficient is also measured by a photoacoustic (PA) instrument (DRI) that was operated on an aircraft for the first time during the DOE Aerosol Intensive Operating Period (IOP). This paper will report on measurements made with this new instrument and other in-situ instruments during two field recent field studies. The first field study was an airborne cam;oaign, the DOE Aerosol Intensive Operating Period flown in May, 2003 over northern Oklahoma. One of the main purposes of the IOP was to assess our ability to measure extinction and absorption coefficient in situ. This paper compares measurements of these aerosol optical properties made by the CRD, PA, nephelometer, and Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model. The second study was conducted in the Caldecott Tunnel, a heavily-used tunnel located north of San Francisco, Ca. The aerosol sampled in this study was

  5. Secondary organic aerosol in the global aerosol – chemical transport model Oslo CTM2

    Directory of Open Access Journals (Sweden)

    I. S. A. Isaksen

    2007-11-01

    Full Text Available The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA. Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics. A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 69 Tg yr−1 by allowing semi-volatile species to partition to ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated. Allowing SOA to partition into ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to 9.4% of the total production. Total modelled organic aerosol (OA values are found to represent a lower fraction of the measured values in winter (when primary organic aerosol (POA is the dominant OA component than in summer, which may be an indication that estimates of POA emissions are too low. Additionally, for measurement stations where the summer OA values are higher than in winter, the model generally underestimates the increase in summertime OA. In order to correctly model the observed increase in OA in summer, additional SOA sources or formation mechanisms may be necessary. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%–60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas, if the yield of condensible oxidation products for β-pinene is used for NO3 oxidation of all terpenes

  6. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  7. Atmospheric aerosol system: An overview

    International Nuclear Information System (INIS)

    Prospero, J.M.; Charlson, R.J.; Mohnen, V.; Jaenicke, R.; Delany, A.C.; Moyers, J.; Zoller, W.; Rahn, K.

    1983-01-01

    Aerosols could play a critical role in many processes which impact on our lives either indirectly (e.g., climate) or directly (e.g., health). However, our ability to assess these possible impacts is constrained by our limited knowledge of the physical and chemical properties of aerosols, both anthropogenic and natural. This deficiency is attributable in part to the fact that aerosols are the end product of a vast array of chemical and physical processes. Consequently, the properties of the aerosol can exhibit a great deal of variability in both time and space. Furthermore, most aerosol studies have focused on measurements of a single aerosol characteristic such as composition or size distribution. Such information is generally not useful for the assessment of impacts because the degree of impact may depend on the integral properties of the aerosol, for example, the aerosol composition as a function of particle size. In this overview we discuss recent work on atmospheric aerosols that illustrates the complex nature of the aerosol chemical and physical system, and we suggest strategies for future research. A major conclusion is that man has had a great impact on the global budgets of certain species, especially sulfur and nitrogen, that play a dominant role in the atmospheric aerosol system. These changes could conceivably affect climate. Large-scale impacts are implied because it has recently been demonstrated that natural and pollutant aerosol episodes can be propagated over great distances. However, at present there is no evidence linking anthropogenic activities with a persistent increase in aerosol concentrations on a global scale. A major problem in assessing man's impact on the atmospheric aerosol system and on global budgets is the absence of aerosol measurements in remote marine and continental areas

  8. Preparation and characterization of magnetizable aerosols.

    Science.gov (United States)

    Baumann, Romy; Glöckl, Gunnar; Nagel, Stefan; Weitschies, Werner

    2012-04-11

    Magnetizable aerosols can be used for inhalative magnetic drug targeting in order to enhance the drug concentration at a certain target site within the lung. The aim of the present study was to clarify how a typical ferrofluid can be atomized in a reproducible way. The influence of the atomization principle, the concentration of magnetic nanoparticles within the carrier liquid and the addition of commonly used pharmaceutical excipients on the aerosol droplet size were investigated. Iron oxide (magnetite) nanoparticles were synthesized by alkaline precipitation of mixtures of iron(II)- and iron(III)-chloride and coated with citric acid. The resulting ferrofluid was characterized by photon correlation spectroscopy and vibrating sample magnetometry. Two different nebulizers (Pari Boy and eFlow) with different atomization principles were used to generate ferrofluid aerosols. A range of substances that influence the surface tension, viscosity, density or vapor pressure of the ferrofluid were added to investigate their impact on the generated aerosol droplets. The particle size was determined by laser diffraction. A stable ferrofluid with a magnetic core diameter of 10.7 ± 0.45 nm and a hydrodynamic diameter of 124 nm was nebulized by Pari Boy and eFlow. The aerosol droplet size of Pari Boy was approximately 2.5 μm and remained unaffected by the addition of substances that changed the physical properties of the solvent. The droplet size of aerosols generated by eFlow was approximately 5 μm. It was significantly reduced by the addition of Cremophor RH 40, glycerol, polyvinyl pyrrolidone and ethanol. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Facility of aerosol filtration

    Energy Technology Data Exchange (ETDEWEB)

    Duverger de Cuy, G; Regnier, J

    1975-04-18

    Said invention relates to a facility of aerosol filtration, particularly of sodium aerosols. Said facility is of special interest for fast reactors where sodium fires involve the possibility of high concentrations of sodium aerosols which soon clog up conventional filters. The facility intended for continuous operation, includes at the pre-filtering stage, means for increasing the size of the aerosol particles and separating clustered particles (cyclone separator).

  10. Effects of aerosol emission pathways on future warming and human health

    Science.gov (United States)

    Partanen, Antti-Ilari; Matthews, Damon

    2016-04-01

    at the year 2100 between LOW and HIGH was about 0.4 °C. The effect was even more significant on the global mean warming rate that reached 0.4 °C per decade in LOW and only 0.2 °C per decade in HIGH. The global temperature and warming rate were similar to each other in simulations using the aerosol emissions from standard RCP scenarios. Anthropogenic aerosols caused significant premature mortality during the 21st century. In 2005, they caused 1.5 million deaths annually. The annual death rate dropped to 0.13 million per year in LOW and was 0.9 million per year in HIGH by 2100. Total premature mortality caused by anthropogenic aerosol particles between 2005 and 2100 was 27 million in LOW, 52-68 million in RCPs, and 113 million in HIGH. Our results show that both climate and health effects of aerosols are fairly similar across RCP scenarios. However, RCPs share assumptions on effective air-quality policies. Our scenarios LOW and HIGH demonstrate that if strong aerosol policies are not enforced or even more ambitious cuts in aerosol emissions are made, the aerosol impacts on climate and health can differ significantly between scenarios.

  11. Effect of phytoplackton-derived organic matter on the behavior of marine aerosols

    Science.gov (United States)

    Fuentes, E.; Coe, H.; McFiggans, G.; Green, D.

    2009-04-01

    The presence of significant concentrations of organic material in marine aerosols has been appreciated for several decades; however, only recently has significant progress been made towards demonstrating that this organic content is biogenically formed. Biogenic organics of placktonic life origin are incorporated in marine aerosol composition as a result of bubble bursting/breaking waves mechanisms that occur at the ocean surface. The presence of organic surfactants in the marine aerosol composition might have a significant impact on the properties of the generated aerosols by affecting the particles surface tension and solution balance properties. Nevertheless, it remains uncertain the role of such organics on the physical-chemical behavior of marine aerosols. In this work an experimental study was performed in order to determine the influence of biogenic marine organic compounds on the size distribution, hygroscopicity and cloud-nucleating properties of marine aerosols. For the experimental study a laboratory water recirculation system (bubble tank), designed for the simulation of bubble-burst aerosol formation, was used as marine aerosol generator. The bubble spectra produced by such system was characterized by means of an optical bubble measuring device (BMS) and it was found to be consistent with oceanic bubble spectra properties. Seawater proxy solutions were prepared from laboratory biologically-synthesized exudates produced by oceanic representative algal species and introduced in the tank for the generation of marine aerosol by bubble bursting. Two experimental methods were employed for seawater proxies preparation: the formation of surface monolayers from the biogenic surfactants extracted by a solid phase extraction technique (monolayer method) and the mixing of the exudates in the sea salt water bulk (bulk mixing method). Particle size distribution, hygroscopicity and cloud condensation nuclei experiments for different monolayers, and exudate mixtures

  12. Antarctic aerosols - A review

    Science.gov (United States)

    Shaw, Glenn E.

    1988-02-01

    Tropospheric aerosols with the diameter range of half a micron reside in the atmosphere for tens of days and teleconnect Antarctica with other regions by transport that reaches planetary scales of distances; thus, the aerosol on the Antarctic ice represents 'memory modules' of events that took place at regions separated from Antarctica by tens of thousands of kilometers. In terms of aerosol mass, the aerosol species include insoluble crustal products (less than 5 percent), transported sea-salt residues (highly variable but averaging about 10 percent), Ni-rich meteoric material, and anomalously enriched material with an unknown origin. Most (70-90 percent by mass) of the aerosol over the Antarctic ice shield, however, is the 'natural acid sulfate aerosol', apparently deriving from biological processes taking place in the surrounding oceans.

  13. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  14. Aerosol particle size distribution in the stratosphere retrieved from SCIAMACHY limb measurements

    Science.gov (United States)

    Malinina, Elizaveta; Rozanov, Alexei; Rozanov, Vladimir; Liebing, Patricia; Bovensmann, Heinrich; Burrows, John P.

    2018-04-01

    health, stratospheric aerosol plays an important role in atmospheric chemistry and climate change. In particular, information about the amount and distribution of stratospheric aerosols is required to initialize climate models, as well as validate aerosol microphysics models and investigate geoengineering. In addition, good knowledge of stratospheric aerosol loading is needed to increase the retrieval accuracy of key trace gases (e.g. ozone or water vapour) when interpreting remote sensing measurements of the scattered solar light. The most commonly used characteristics to describe stratospheric aerosols are the aerosol extinction coefficient and Ångström coefficient. However, the use of particle size distribution parameters along with the aerosol number density is a more optimal approach. In this paper we present a new retrieval algorithm to obtain the particle size distribution of stratospheric aerosol from space-borne observations of the scattered solar light in the limb-viewing geometry. While the mode radius and width of the aerosol particle size distribution are retrieved, the aerosol particle number density profile remains unchanged. The latter is justified by a lower sensitivity of the limb-scattering measurements to changes in this parameter. To our knowledge this is the first data set providing two parameters of the particle size distribution of stratospheric aerosol from space-borne measurements of scattered solar light. Typically, the mode radius and w can be retrieved with an uncertainty of less than 20 %. The algorithm was successfully applied to the tropical region (20° N-20° S) for 10 years (2002-2012) of SCIAMACHY observations in limb-viewing geometry, establishing a unique data set. Analysis of this new climatology for the particle size distribution parameters showed clear increases in the mode radius after the tropical volcanic eruptions, whereas no distinct behaviour of the absolute distribution width could be identified. A tape recorder

  15. Experimental studies of caesium iodide aerosol condensation: theoretical interpretation

    International Nuclear Information System (INIS)

    Beard, A.M.; Benson, C.G.; Horton, K.D.; Buckle, E.R.

    1990-07-01

    Caesium iodide is predicted to be a significant source of fission product aerosols during the course of a severe accident in a pressurised water reactor (PWR). The nucleation and growth of caesium iodide aerosols have been studied using a plume chamber and the results compared with theoretical values calculated using the approach developed by Buckle for aerosol nucleation. The morphology of the particles was studied using scanning electron microscopy (SEM) and transmission optical microscopy (TOM), whilst the particle size distributions were determined from differential mobility (DMPS) and aerodynamic (APS) measurements. (author)

  16. Long-term clearance of accidentally inhaled 60Co aerosols in humans

    International Nuclear Information System (INIS)

    Beleznay, E.; Osvay, M.

    1993-03-01

    Long-term body retention was measured on six workers inhaling 60 Co aerosols incidentally during manipulation with a high activity 60 Co source. An improved whole body counter technique and calibration provided good conditions to follow the body clearance over 4 years. A two-detector profile scanning arrangement was used to measure the activity distribution 'in vivo' over the lung region. The observed whole body retention followed a two-exponential time function between 10-1500 days. The consistency of the measured retention pattern with ICRP inhalation model was investigated assuming different aerosol size distributions. A possible extension of ICRP lung model is proposed to take into account the actual pulmonary lung clearance determined individually. (R.P.) 29 refs.; 15 figs.; 6 tabs

  17. Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study – Part 2: Philippine receptor observations of fine-scale aerosol behavior

    Directory of Open Access Journals (Sweden)

    J. S. Reid

    2016-11-01

    Full Text Available The largest 7 Southeast Asian Studies (7SEAS operations period within the Maritime Continent (MC occurred in the August–September 2012 biomass burning season. Data included were observations aboard the M/Y Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC, and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 3–12 h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and

  18. Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study – Part 2: Philippine receptor observations of fine-scale aerosol behavior

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Jeffrey S.; Lagrosas, Nofel D.; Jonsson, Haflidi H.; Reid, Elizabeth A.; Atwood, Samuel A.; Boyd, Thomas J.; Ghate, Virendra P.; Xian, Peng; Posselt, Derek J.; Simpas, James B.; Uy, Sherdon N.; Zaiger, Kimo; Blake, Donald R.; Bucholtz, Anthony; Campbell, James R.; Chew, Boon Ning; Cliff, Steven S.; Holben, Brent N.; Holz, Robert E.; Hyer, Edward J.; Kreidenweis, Sonia M.; Kuciauskas, Arunas P.; Lolli, Simone; Oo, Min; Perry, Kevin D.; Salinas, Santo V.; Sessions, Walter R.; Smirnov, Alexander; Walker, Annette L.; Wang, Qing; Yu, Liya; Zhang, Jianglong; Zhao, Yongjing

    2016-01-01

    The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August–September 2012 biomass burning season. Data included were observations aboard the M/Y Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 3$-$12 h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite

  19. Aerosol impacts on regional trends in atmospheric stagnation

    Science.gov (United States)

    Mascioli, N. R.; Fiore, A. M.; Previdi, M. J.

    2017-12-01

    Extreme pollution events pose a significant threat to human health and are a leading cause of premature mortality worldwide. While emissions of atmospheric pollutants and their precursors are projected to decrease in the future due to air quality legislation, future climate change may affect the underlying meteorological conditions that contribute to extreme pollution events. Stagnation events, characterized by weak winds and an absence of precipitation, contribute to extreme pollution by halting the removal of pollutants via advection and wet deposition. Here, we use a global climate model (GFDL-CM3) to show that regional stagnation trends over the historical period (1860-2005) are driven by changes in anthropogenic aerosol emissions, rather than rising greenhouse gases. In the northeastern and central United States, aerosol-induced changes in surface and upper level winds have produced significant decreases in the number of stagnant summer days, while decreasing precipitation in the southeast US has increased the number of stagnant summer days. Significant drying over eastern China in response to aerosol forcing contributed to increased stagnation. Additionally, this region was found to be particularly sensitive to changes in local emissions, indicating that improving air quality will also lessen stagnation. In Europe, we find a dipole pattern wherein stagnation decreases over southern Europe and increases over northern Europe in response to global increases in aerosol emissions. We hypothesize that this is due to changes in the large-scale circulation patterns associated with a poleward shift of the North Atlantic storm track. We find that in the future, the combination of declining aerosol emissions and the continued rise of greenhouse gas emissions will lead to a reversal of the historical stagnation trends.

  20. Aerosol Production from Charbroiled and Wet-Fried Meats

    Science.gov (United States)

    Niedziela, R. F.; Blanc, L. E.

    2012-12-01

    Previous work in our laboratory focused on the chemical and optical characterization of aerosols produced during the dry-frying of different meat samples. This method yielded a complex ensemble of particles composed of water and long-chain fatty acids with the latter dominated by oleic, stearic, and palmitic acids. The present study examines how wet-frying and charbroiling cooking methods affect the physical and chemical properties of their derived aerosols. Samples of ground beef, salmon, chicken, and pork were subject to both cooking methods in the laboratory, with their respective aerosols swept into a laminar flow cell where they were optically analyzed in the mid-infrared and collected through a gas chromatography probe for chemical characterization. This presentation will compare and contrast the nature of the aerosols generated in each cooking method, particularly those produced during charbroiling which exposes the samples, and their drippings, to significantly higher temperatures. Characterization of such cooking-related aerosols is important because of the potential impact of these particles on air quality, particularly in urban areas.

  1. A study on the use of radar and lidar for characterizing ultragiant aerosol

    Science.gov (United States)

    Madonna, F.; Amodeo, A.; D'Amico, G.; Pappalardo, G.

    2013-09-01

    19 April to 19 May 2010, volcanic aerosol layers originating from the Eyjafjallajökull volcano were observed at the Institute of Methodologies for Environmental Analysis of the National Research Council of Italy Atmospheric Observatory, named CIAO (40.60°N, 15.72°E, 760 m above sea level), in Southern Italy with a multiwavelength Raman lidar. During this period, ultragiant aerosols were also observed at CIAO using a colocated 8.45 mm wavelength Doppler radar. The Ka-band radar signatures observed in four separate days (19 April and 7, 10, and 13 May) are consistent with the observation of nonspherical ultragiant aerosols characterized by values of linear depolarization ratio (LDR) higher than -4 dB. Air mass back trajectory analysis suggests a volcanic origin of the ultragiant aerosols observed by the radar. The observed values of the radar reflectivity (Ze) are consistent with a particle effective radius (r) larger than 50-75 µm. Scattering simulations based on the T-matrix approach show that the high LDR values can be explained if the observed particles have an absolute aspect ratio larger than 3.0 and consist of an internal aerosol core and external ice shell, with a variable radius ratio ranging between 0.2 and 0.7 depending on the shape and aspect ratio. Comparisons between daytime vertical profiles of aerosol backscatter coefficient (β) as measured by lidar and radar LDR reveal a decrease of β where ultragiant particles are observed. Scattering simulations based on Mie theory show how the lidar capability in typing ultragiant aerosols could be limited by low number concentrations or by the presence of an external ice shell covering the aerosol particles. Preferential vertical alignment of the particles is discussed as another possible reason for the decrease of β.

  2. Spatio-temporal variability of aerosols in the tropics relationship with atmospheric and oceanic environments

    Science.gov (United States)

    Zuluaga-Arias, Manuel D.

    2011-12-01

    Earth's radiation budget is directly influenced by aerosols through the absorption of solar radiation and subsequent heating of the atmosphere. Aerosols modulate the hydrological cycle indirectly by modifying cloud properties, precipitation and ocean heat storage. In addition, polluting aerosols impose health risks in local, regional and global scales. In spite of recent advances in the study of aerosols variability, uncertainty in their spatio-temporal distributions still presents a challenge in the understanding of climate variability. For example, aerosol loading varies not only from year to year but also on higher frequency intraseasonal time scales producing strong variability on local and regional scales. An assessment of the impact of aerosol variability requires long period measurements of aerosols at both regional and global scales. The present dissertation compiles a large database of remotely sensed aerosol loading in order to analyze its spatio-temporal variability, and how this load interacts with different variables that characterize the dynamic and thermodynamic states of the environment. Aerosol Index (AI) and Aerosol Optical Depth (AOD) were used as measures of the atmospheric aerosol load. In addition, atmospheric and oceanic satellite observations, and reanalysis datasets is used in the analysis to investigate aerosol-environment interactions. A diagnostic study is conducted to produce global and regional aerosol satellite climatologies, and to analyze and compare the validity of aerosol retrievals. We find similarities and differences between the aerosol distributions over various regions of the globe when comparing the different satellite retrievals. A nonparametric approach is also used to examine the spatial distribution of the recent trends in aerosol concentration. A significant positive trend was found over the Middle East, Arabian Sea and South Asian regions strongly influenced by increases in dust events. Spectral and composite analyses

  3. Aerosol-Cloud-Precipitation Interactions in WRF Model:Sensitivity to Autoconversion Parameterization

    Institute of Scientific and Technical Information of China (English)

    解小宁; 刘晓东

    2015-01-01

    Cloud-to-rain autoconversion process is an important player in aerosol loading, cloud morphology, and precipitation variations because it can modulate cloud microphysical characteristics depending on the par-ticipation of aerosols, and aff ects the spatio-temporal distribution and total amount of precipitation. By applying the Kessler, the Khairoutdinov-Kogan (KK), and the Dispersion autoconversion parameterization schemes in a set of sensitivity experiments, the indirect eff ects of aerosols on clouds and precipitation are investigated for a deep convective cloud system in Beijing under various aerosol concentration backgrounds from 50 to 10000 cm−3. Numerical experiments show that aerosol-induced precipitation change is strongly dependent on autoconversion parameterization schemes. For the Kessler scheme, the average cumulative precipitation is enhanced slightly with increasing aerosols, whereas surface precipitation is reduced signifi-cantly with increasing aerosols for the KK scheme. Moreover, precipitation varies non-monotonically for the Dispersion scheme, increasing with aerosols at lower concentrations and decreasing at higher concentrations. These diff erent trends of aerosol-induced precipitation change are mainly ascribed to diff erences in rain wa-ter content under these three autoconversion parameterization schemes. Therefore, this study suggests that accurate parameterization of cloud microphysical processes, particularly the cloud-to-rain autoconversion process, is needed for improving the scientifi c understanding of aerosol-cloud-precipitation interactions.

  4. Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol

    Directory of Open Access Journals (Sweden)

    P. J. Gallimore

    2011-12-01

    Full Text Available Many important atmospheric aerosol processes depend on the chemical composition of the aerosol, e.g. water uptake and particle cloud interactions. Atmospheric ageing processes, such as oxidation reactions, significantly and continuously change the chemical composition of aerosol particles throughout their lifetime. These ageing processes are often poorly understood. In this study we utilize an aerosol flow tube set up and an ultra-high resolution mass spectrometer to explore the effect of relative humidity (RH in the range of <5–90% on the ozonolysis of maleic acid aerosol which is employed as model organic aerosol system. Due to the slow reaction kinetics relatively high ozone concentrations of 160–200 ppm were used to achieve an appreciable degree of oxidation of maleic acid. The effect of oxidative ageing on the hygroscopicity of maleic acid particles is also investigated using an electrodynamic balance and thermodynamic modelling. RH has a profound effect on the oxidation of maleic acid particles. Very little oxidation is observed at RH < 50% and the only observed reaction products are glyoxylic acid and formic acid. In comparison, when RH > 50% there are about 15 oxidation products identified. This increased oxidation was observed even when the particles were exposed to high humidities long after a low RH ozonolysis reaction. This result might have negative implications for the use of water as an extraction solvent for the analysis of oxidized organic aerosols. These humidity-dependent differences in the composition of the ozonolyzed aerosol demonstrate that water is both a key reactant in the oxidation scheme and a determinant of particle phase and hence diffusivity. The measured chemical composition of the processed aerosol is used to model the hygroscopic growth, which compares favourably with water uptake results from the electrodynamic balance measurements. A reaction mechanism is presented which takes into account the RH dependent

  5. Electrically Driven Technologies for Radioactive Aerosol Abatement

    Energy Technology Data Exchange (ETDEWEB)

    David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

    2003-01-28

    The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

  6. Potential of secondary aerosol formation from Chinese gasoline engine exhaust.

    Science.gov (United States)

    Du, Zhuofei; Hu, Min; Peng, Jianfei; Guo, Song; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Qin, Yanhong; Niu, He; Li, Mengren; Yang, Yudong; Lu, Sihua; Wu, Yusheng; Shao, Min; Shuai, Shijin

    2018-04-01

    Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds (VOCs). However, little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4-5hr simulation, which was estimated to represent more than 10days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol (SOA) production was 426±85mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China. Copyright © 2017. Published by Elsevier B.V.

  7. Towards routine measurements of meteorological and aerosol parameters using small unmanned aerial and tethered balloon systems

    Science.gov (United States)

    Mei, F.; Dexheimer, D.; Hubbe, J. M.; deBoer, G.; Schmid, B.; Ivey, M.; Longbottom, C.; Carroll, P.

    2017-12-01

    The Inaugural Campaigns for ARM Research using Unmanned Systems (ICARUS) had been launched in 2016 and then the effort has been continued in 2017. ICARUS centered on Oliktok Point, Alaska focusses on developing routine operations of Unmanned Aerial Systems (UAS) and Tethered Balloon Systems (TBS). The operation routine practiced during ICARUS 2016 provided valuable guidance for the ICARUS 2017 deployment. During two intensive operation periods in 2017, a small DataHawk II UAS has been deployed to collect data for two weeks each in May and August. Coordinated with DataHawk flights, the TBS has been launched with meteorology sensors such as iMet and Tethersondes, therefore vertical profiles of the basic atmospheric state (temperature, humidity, and horizontal wind) were observed simultaneously by UAS and TBS. In addition, an aerosol payload was attached and launched with 2 TBS flights in April and 7 TBS flights in May, which include a condensation particle counter (CPC, TSI 3007) and two printed optical particle spectrometers (POPS, Handix TBS version). The two POPS were operated at different inlet temperatures. This approach provided potential measurements for aerosol optical closure in future. Measured aerosol properties include total particle number concentrations, particle size distribution, at different ambient temperature and relative humidity. Vertical profiles of atmospheric state and aerosol properties will be discussed based on the coordinated flights. Monthly variation will be assessed with data from the upcoming August flights.

  8. Impact of Aerosol Processing on Orographic Clouds

    Science.gov (United States)

    Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike

    2010-05-01

    Aerosol particles undergo significant modifications during their residence time in the atmosphere. Physical processes like coagulation, coating and water uptake, and aqueous surface chemistry alter the aerosol size distribution and composition. At this, clouds play a primary role as physical and chemical processing inside cloud droplets contributes considerably to the changes in aerosol particles. A previous study estimates that on global average atmospheric particles are cycled three times through a cloud before being removed from the atmosphere [1]. An explicit and detailed treatment of cloud-borne particles has been implemented in the regional weather forecast and climate model COSMO-CLM. The employed model version includes a two-moment cloud microphysical scheme [2] that has been coupled to the aerosol microphysical scheme M7 [3] as described by Muhlbauer and Lohmann, 2008 [4]. So far, the formation, transfer and removal of cloud-borne aerosol number and mass were not considered in the model. Following the parameterization for cloud-borne particles developed by Hoose et al., 2008 [5], distinction between in-droplet and in-crystal particles is made to more physically account for processes in mixed-phase clouds, such as the Wegener-Bergeron-Findeisen process and contact and immersion freezing. In our model, this approach has been extended to allow for aerosol particles in five different hydrometeors: cloud droplets, rain drops, ice crystals, snow flakes and graupel. We account for nucleation scavenging, freezing and melting processes, autoconversion, accretion, aggregation, riming and selfcollection, collisions between interstitial aerosol particles and hydrometeors, ice multiplication, sedimentation, evaporation and sublimation. The new scheme allows an evaluation of the cloud cycling of aerosol particles by tracking the particles even when scavenged into hydrometeors. Global simulations of aerosol processing in clouds have recently been conducted by Hoose et al

  9. Street canyon aerosol pollutant transport measurements.

    Science.gov (United States)

    Longley, I D; Gallagher, M W; Dorsey, J R; Flynn, M; Bower, K N; Allan, J D

    2004-12-01

    Current understanding of dispersion in street canyons is largely derived from relatively simple dispersion models. Such models are increasingly used in planning and regulation capacities but are based upon a limited understanding of the transport of substances within a real canyon. In recent years, some efforts have been made to numerically model localised flow in idealised canyons (e.g., J. Appl. Meteorol. 38 (1999) 1576-89) and stepped canyons (Assimakopoulos V. Numerical modelling of dispersion of atmospheric pollution in and above urban canopies. PhD thesis, Imperial College, London, 2001) but field studies in real canyons are rare. To further such an understanding, a measurement campaign has been conducted in an asymmetric street canyon with busy one-way traffic in central Manchester in northern England. The eddy correlation method was used to determine fluxes of size-segregated accumulation mode aerosol. Measurements of aerosol at a static location were made concurrently with measurements on a platform lift giving vertical profiles. Size-segregated measurements of ultrafine and coarse particle concentrations were also made simultaneously at various heights. In addition, a small mobile system was used to make measurements of turbulence at various pavement locations within the canyon. From this data, various features of turbulent transport and dispersion in the canyon will be presented. The concentration and the ventilation fluxes of vehicle-related aerosol pollutants from the canyon will be related to controlling factors. The results will also be compared with citywide ventilation data from a separate measurement campaign conducted above the urban canopy.

  10. Aerosol Indices Derived from MODIS Data for Indicating Aerosol-Induced Air Pollution

    Directory of Open Access Journals (Sweden)

    Junliang He

    2014-02-01

    Full Text Available Aerosol optical depth (AOD is a critical variable in estimating aerosol concentration in the atmosphere, evaluating severity of atmospheric pollution, and studying their impact on climate. With the assistance of the 6S radiative transfer model, we simulated apparent reflectancein relation to AOD in each Moderate Resolution Imaging Spectroradiometer (MODIS waveband in this study. The closeness of the relationship was used to identify the most and least sensitive MODIS wavebands. These two bands were then used to construct three aerosol indices (difference, ratio, and normalized difference for estimating AOD quickly and effectively. The three indices were correlated, respectively, with in situ measured AOD at the Aerosol Robotic NETwork (AERONET Lake Taihu, Beijing, and Xianghe stations. It is found that apparent reflectance of the blue waveband (band 3 is the most sensitive to AOD while the mid-infrared wavelength (band 7 is the least sensitive. The difference aerosol index is the most accurate in indicating aerosol-induced atmospheric pollution with a correlation coefficient of 0.585, 0.860, 0.685, and 0.333 at the Lake Taihu station, 0.721, 0.839, 0.795, and 0.629 at the Beijing station, and 0.778, 0.782, 0.837, and 0.643 at the Xianghe station in spring, summer, autumn and winter, respectively. It is concluded that the newly proposed difference aerosol index can be used effectively to study the level of aerosol-induced air pollution from MODIS satellite imagery with relative ease.

  11. Comparative In Vitro Toxicity Profile of Electronic and Tobacco Cigarettes, Smokeless Tobacco and Nicotine Replacement Therapy Products: E-Liquids, Extracts and Collected Aerosols

    Directory of Open Access Journals (Sweden)

    Manoj Misra

    2014-10-01

    Full Text Available The use of electronic cigarettes (e-cigs continues to increase worldwide in parallel with accumulating information on their potential toxicity and safety. In this study, an in vitro battery of established assays was used to examine the cytotoxicity, mutagenicity, genotoxicity and inflammatory responses of certain commercial e-cigs and compared to tobacco burning cigarettes, smokeless tobacco (SLT products and a nicotine replacement therapy (NRT product. The toxicity evaluation was performed on e-liquids and pad-collected aerosols of e-cigs, pad-collected smoke condensates of tobacco cigarettes and extracts of SLT and NRT products. In all assays, exposures with e-cig liquids and collected aerosols, at the doses tested, showed no significant activity when compared to tobacco burning cigarettes. Results for the e-cigs, with and without nicotine in two evaluated flavor variants, were very similar in all assays, indicating that the presence of nicotine and flavors, at the levels tested, did not induce any cytotoxic, genotoxic or inflammatory effects. The present findings indicate that neither the e-cig liquids and collected aerosols, nor the extracts of the SLT and NRT products produce any meaningful toxic effects in four widely-applied in vitro test systems, in which the conventional cigarette smoke preparations, at comparable exposures, are markedly cytotoxic and genotoxic.

  12. Hyperspectral aerosol optical depths from TCAP flights

    Energy Technology Data Exchange (ETDEWEB)

    Shinozuka, Yohei [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States); Bay Area Environmental REsearch Institute; Johnson, Roy R [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States); Flynn, Connor J [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Russell, Philip B [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States); Schmid, Beat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-01

    4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), a hyperspectral airborne sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean-square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3- km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong

  13. Forest fires in Himalayan region during 2016 - Aerosol load and smoke plume heights detection by multi sensor observations

    Science.gov (United States)

    Kumar, S.; Dumka, U. C.

    2017-12-01

    The forest fires are common events over the Central Himalayan region during the pre-monsoon season (March - June) of every year. Forest fire plays a crucial role in governing the vegetation structure, ecosystem, climate change as well as in atmospheric chemistry. In regional and global scales, the combustion of forest and grassland vegetation releases large volumes of smoke, aerosols, and other chemically active species that significantly influence Earth's radiative budget and atmospheric chemistry, impacting air quality and risks to human health. During the year 2016, massive forest fires have been recorded over the Central Himalayan region of Uttarakhand which continues for several weeks. To study this event we used the multi-satellite observations of aerosols and pollutants during pre-fire, fire and post-fire period over the central Himalayan region. The data used in this study are active fire count and aerosol optical depth (AOD) from MODerate-resolution Imaging Spectroradiometer (MODIS), aerosol index and gases pollutants from Ozone Monitoring Instrument (OMI), along with vertical profiles of aerosols and smoke plume height information from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). The result shows that the mean fire counts were maximum in April. The daily average AOD value shows an increasing trend during the fire events. The mean value of AOD before the massive fire (25 April), during the fire (30 April) and post fire (5 May) periods are 0.3, 1.2 and 0.6 respectively. We find an increasing trend of total columnar NO2 over the Uttarakhand region during the massive fire event. Space-born Lidar (CALIPSO) retrievals show the extent of smoke plume heights beyond the planetary boundary layer up to 6 km during the peak burning day (April 30). The HYSPLIT air mass forward trajectory shows the long-range transportation of smoke plumes. The results of the present study provide valuable information for addressing smoke plume and

  14. Aerosol profiles determined with lidar and sun-photometer over the Pearl River Delta, China.

    Science.gov (United States)

    Heese, B.; Althausen, D.; Bauditz, M.; Deng, R.; Bao, R.; Li, Z.

    2012-04-01

    The priority program "Megacities-Megachallenge - Informal Dynamics of Global Change" is a large interdisciplinary project funded by the German Research Foundation (DFG). One of the subproject deals with mega-urbanisation in the Pearl River Delta, South-China, with special respect to particulate air pollution and public health. In the frame of this subproject the vertical distribution of aerosol optical properties are investigated by measurements with the multiwavelength-Raman-polarization lidar PollyXT of the IfT. The instrument can measure the particle backscatter coefficient at 355 nm, 532 nm, and 1064 nm, the particle extinction coefficients at 355 nm and 532 nm, and the particle linear depolarization ratio at 532 nm. These measurements are supported by a dual-polar sun photometer that provides height integrated data as the aerosol optical depth and the degree of linear depolarization. These instruments are placed at the East campus of the Sun Yat-sen University in Guangzhou, China. Guangzhou and the Pearl River Delta is a developing area with currently around 11 Million inhabitants. The measurements started in November 2011 and are supposed to continue for at least half a year covering the late autumn and winter season and parts of the spring season. Extensions of the measurements towards a whole seasonal cycle are planned. Thus, different meteorological conditions will lead to particle transport from several source regions. Different aerosol types are expected to be observed during the measurement period: urban particles from local and regional sources as well as dust from the deserts in Central Asia. The observed particles can be distinguished by analyzing their optical properties at several wavelengths. In particular, the depolarization measurements from both instruments promise a better determination of the particle shape.

  15. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V M; Hillamo, R; Maekinen, M; Virkkula, A; Maekelae, T; Pakkanen, T [Helsinki Univ. (Finland). Dept. of Physics

    1997-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  16. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.; Hillamo, R.; Maekinen, M.; Virkkula, A.; Maekelae, T.; Pakkanen, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  17. Climate Implications of the Heterogeneity of Anthropogenic Aerosol Forcing

    Science.gov (United States)

    Persad, Geeta Gayatri

    Short-lived anthropogenic aerosols are concentrated in regions of high human activity, where they interact with radiation and clouds, causing horizontally heterogeneous radiative forcing between polluted and unpolluted regions. Aerosols can absorb shortwave energy in the atmosphere, but deplete it at the surface, producing opposite radiative perturbations between the surface and atmosphere. This thesis investigates climate and policy implications of this horizontal and vertical heterogeneity of anthropogenic aerosol forcing, employing the Geophysical Fluid Dynamics Laboratory's AM2.1 and AM3 models, both at a global scale and using East Asia as a regional case study. The degree of difference between spatial patterns of climate change due to heterogeneous aerosol forcing versus homogeneous greenhouse gas forcing deeply impacts the detection, attribution, and prediction of regional climate change. This dissertation addresses a gap in current understanding of these two forcings' response pattern development, using AM2.1 historical forcing simulations. The results indicate that fast atmospheric and land-surface processes alone substantially homogenize the global pattern of surface energy flux response to heterogeneous aerosol forcing. Aerosols' vertical redistribution of energy significantly impacts regional climate, but is incompletely understood. It is newly identified here, via observations and historical and idealized forcing simulations, that increased aerosol-driven atmospheric absorption may explain half of East Asia's recent surface insolation decline. Further, aerosols' surface and atmospheric effects counteract each other regionally---atmospheric heating enhances summer monsoon circulation, while surface dimming suppresses it---but absorbing aerosols' combined effects reduce summer monsoon rainfall. This thesis constitutes the first vertical decomposition of aerosols' impacts in this high-emissions region and elucidates the monsoonal response to aerosols

  18. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    International Nuclear Information System (INIS)

    Hallock, K.A.; Mazurek, M.A.; Cass, G.R.

    1992-05-01

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon

  19. Measurements of optical properties for tropospheric aerosols in the Artic; Messung von optischen Eigenschaften troposphaerischer Aerosole in der Arktis

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, R.

    2001-07-01

    Two different methods for the derivation of the altitude resolved aerosol extinction profiles are applied. The Klett method, which needs only the elastical backscattered lidar signal, allows the determination of the extinction coefficient indirectly at day and nighttime. For the Klett method an assumption of the extinction-to-backscatter ratio, often called 'lidar ratio', is necessary. This can be determined iteratively by combining with the airborne photometer measurements. With this method small scale inhomogenities and the high variability of fine structured aerosol layers can be recorded. In contract to this the Raman method allows to calculate the extinction coefficient without an assumption of the lidar ratio. Here only the Raman backscattered light from nitrogen is used. The procedure is limited in temporal and spatial resolution because the Raman backscatter cross section is smaller than the elastic backscatter cross section by three orders of magnitude. A sensitivity study shows the feasibility of this method. (orig.) [German] In dieser Arbeit werden zwei unterschiedliche Methoden zur Ableitung hochaufgeloester Extinktionsprofile des troposphaerischen Aerosols angewendet. Die Klett-Methode, in die ausschliesslich die elastisch rueckgestreuten Lidarsignale eingehen, erlaubt es indirekt auch waehrend des Polartages hochaufgeloeste Extinktionsprofile abzuleiten. Hierzu ist die Annahme ueber das Extinktions-zu-Rueckstreuverhaeltnisses, welches haeufig auch als Lidarverhaeltnis bezeichnet wird, notwendig. Dieses wird durch Kombination mit den flugzeuggetragenen Photometermessungen iteriert. Mit dieser Methode koennen somit auch kleinskalige Inhomogenitaeten aufgeloest und die hohe zeitliche Variabilitaet der Aerosolschichten erfasst werden. Im Gegensatz hierzu bietet die Raman-Methode den Vorteil, die Aerosol-Extinktion direkt ohne Annahme des Lidarverhaeltnisses abzuleiten. Bei der Ableitung der Aerosolextinktion gehen ausschliesslich die an

  20. Natural and Anthropogenic Influences on Atmospheric Aerosol Variability

    Energy Technology Data Exchange (ETDEWEB)

    Asmi, A.

    2012-07-01

    Aerosol particles are everywhere in the atmosphere. They are a key factor in many important processes in the atmosphere, including cloud formation, scattering of incoming solar radiation and air chemistry. The aerosol particles have relatively short lifetimes in lower atmosphere, typically from days to weeks, and thus they have a high spatial and temporal variability. This thesis concentrates on the extent and reasons of sub-micron aerosol particle variability in the lower atmosphere, using both global atmospheric models and analysis of observational data. Aerosol number size distributions in the lower atmosphere are affected strongly by the new particle formation. Perhaps more importantly, a strong influence new particle formation is also evident in the cloud condensation nuclei (CCN) concentrations, suggesting a major role of the sulphuric acid driven new particle formation in the climate system. In this thesis, the sub-micron aerosol number size distributions in the European regional background air were characterized for the first time from consistent, homogenized and comparable datasets. Some recent studies have suggested that differences in aerosol emissions between weekdays could also affect the weather via aerosol-cloud interactions. In this thesis, the weekday-to-weekday variation of CCN sized aerosol number concentrations in Europe were found to be much smaller than expected from earlier studies, based on particle mass measurements. This result suggests that a lack of week-day variability in meteorology is not necessarily a sign of weak aerosol-cloud interactions. An analysis of statistically significant trends in past decades of measured aerosol number concentrations from Europe, North America, Pacific islands and Antarctica generally show decreases in concentrations. The analysis of these changes show that a potential explanation for the decreasing trends is the general reduction of anthropogenic emissions, especially SO{sub 2}, although a combination of

  1. Aerosol optical properties and direct radiative forcing at Taihu.

    Science.gov (United States)

    Lü, Rui; Yu, Xingna; Jia, Hailing; Xiao, Sihan

    2017-09-01

    Ground-based characteristics (optical, type, size, and radiative properties) of aerosols measured between 2005 and 2012 were investigated over the Taihu rim region, which encompasses the cities of Shanghai, Suzhou, Wuxi, and Changzhou. The aerosol optical depth (AOD) showed a distinct seasonal variation with the highest value in summer and the lowest AOD in winter. There was broadest frequency distribution with a multimodal structure in summer. The Ångström exponent (AE) showed high values during spring; the relative frequency of AE in the range of 0-0.8 was 5-10 times greater than that of other seasons. The samples with high AOD 440 and low AE 440-870 were mainly observed in spring, which is attributed to the relative abundance of coarse particles. The monthly aerosol volume size distributions presented a bimodal structure (fine and coarse modes). The coarse mode was dominant during spring, while the fine mode was predominant in other seasons. The main aerosol type over Taihu during all the seasons was the mixed small-particle category, followed by the urban/industrial category. The minimum single scattering albedo (SSA) occurred in winter, suggesting that atmosphere aerosol had a higher absorption. All monthly averaged asymmetry factors (ASY) had positive values and no distinct seasonal variation. Both high real (Re) and imaginary (Im) parts of the refractive index occurred in winter. The atmospheric warming effect of aerosol was more significant in winter compared with other seasons, with the averaged atmosphere aerosol radiative forcing (ARF) and the corresponding atmospheric heating rate up to +69.46  W·m -2 and 1.95  K·day -1 , respectively. There existed a significant positive correlation between AOD and ARF (absolute value), and the correlation coefficients (r) exceeded 0.86 in each season with maximum r in summer. Along with the increasing of the SSA, the aerosol radiative forcing efficiency (absolute value) showed a decreasing trend at the

  2. Estimates of the Spectral Aerosol Single Sea Scattering Albedo and Aerosol Radiative Effects during SAFARI 2000

    Science.gov (United States)

    Bergstrom, Robert W.; Pilewskie, Peter; Schmid, Beat; Russell, Philip B.

    2003-01-01

    Using measurements of the spectral solar radiative flux and optical depth for 2 days (24 August and 6 September 2000) during the SAFARI 2000 intensive field experiment and a detailed radiative transfer model, we estimate the spectral single scattering albedo of the aerosol layer. The single scattering albedo is similar on the 2 days even though the optical depth for the aerosol layer was quite different. The aerosol single scattering albedo was between 0.85 and 0.90 at 350 nm, decreasing to 0.6 in the near infrared. The magnitude and decrease with wavelength of the single scattering albedo are consistent with the absorption properties of small black carbon particles. We estimate the uncertainty in the single scattering albedo due to the uncertainty in the measured fractional absorption and optical depths. The uncertainty in the single scattering albedo is significantly less on the high-optical-depth day (6 September) than on the low-optical-depth day (24 August). On the high-optical-depth day, the uncertainty in the single scattering albedo is 0.02 in the midvisible whereas on the low-optical-depth day the uncertainty is 0.08 in the midvisible. On both days, the uncertainty becomes larger in the near infrared. We compute the radiative effect of the aerosol by comparing calculations with and without the aerosol. The effect at the top of the atmosphere (TOA) is to cool the atmosphere by 13 W/sq m on 24 August and 17 W/sq m on 6 September. The effect on the downward flux at the surface is a reduction of 57 W/sq m on 24 August and 200 W/sq m on 6 September. The aerosol effect on the downward flux at the surface is in good agreement with the results reported from the Indian Ocean Experiment (INDOEX).

  3. Development of an aerosol decontamination factor evaluation method using an aerosol spectrometer

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Nishi, Yoshihisa

    2016-01-01

    Highlights: • Aerosol DF of each diameter is evaluable by using optical scattering method. • Outlet aerosol concentration shows exponential decay by the submergence. • This decay constant depends on the aerosol diameter. • Aerosol DF at water scrubber is described by simple equation. - Abstract: During a severe nuclear power plant accident, the release of fission products into containment and an increase in containment pressure are assumed to be possible. When the containment is damaged by excess pressure or temperature, radioactive materials are released. Pressure suppression pools, containment spray systems and a filtered containment venting system (FCVS) reduce containment pressure and reduce the radioactive release into the environment. These devices remove radioactive materials via various mechanisms. Pressure suppression pools remove radioactive materials by pool scrubbing. Spray systems remove radioactive materials by droplet−aerosol interaction. FCVS, which is installed in the exhaust system, comprises multi-scrubbers (venturi-scrubber, pool scrubbing, static mixer, metal−fiber filter and molecular sieve). For the particulate radioactive materials, its size affects the removal performance and a number of studies have been performed on the removal effect of radioactive materials. This study has developed a new means of evaluating aerosol removal efficiency. The aerosol number density of each effective diameter (light scattering equivalent diameter) is measured using an optical method, while the decontamination factor (DF) of each effective diameter is evaluated by the inlet outlet number density ratio. While the applicable scope is limited to several conditions (geometry of test section: inner diameter 500 mm × height 8.0 m, nozzle shape and air-water ambient pressure conditions), this study has developed a numerical model which defines aerosol DF as a function of aerosol diameter (d) and submergences (x).

  4. Development of an aerosol decontamination factor evaluation method using an aerosol spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, Taizo, E-mail: t-kanai@criepi.denken.or.jp; Furuya, Masahiro, E-mail: furuya@criepi.denken.or.jp; Arai, Takahiro, E-mail: t-arai@criepi.denken.or.jp; Nishi, Yoshihisa, E-mail: y-nishi@criepi.denken.or.jp

    2016-07-15

    Highlights: • Aerosol DF of each diameter is evaluable by using optical scattering method. • Outlet aerosol concentration shows exponential decay by the submergence. • This decay constant depends on the aerosol diameter. • Aerosol DF at water scrubber is described by simple equation. - Abstract: During a severe nuclear power plant accident, the release of fission products into containment and an increase in containment pressure are assumed to be possible. When the containment is damaged by excess pressure or temperature, radioactive materials are released. Pressure suppression pools, containment spray systems and a filtered containment venting system (FCVS) reduce containment pressure and reduce the radioactive release into the environment. These devices remove radioactive materials via various mechanisms. Pressure suppression pools remove radioactive materials by pool scrubbing. Spray systems remove radioactive materials by droplet−aerosol interaction. FCVS, which is installed in the exhaust system, comprises multi-scrubbers (venturi-scrubber, pool scrubbing, static mixer, metal−fiber filter and molecular sieve). For the particulate radioactive materials, its size affects the removal performance and a number of studies have been performed on the removal effect of radioactive materials. This study has developed a new means of evaluating aerosol removal efficiency. The aerosol number density of each effective diameter (light scattering equivalent diameter) is measured using an optical method, while the decontamination factor (DF) of each effective diameter is evaluated by the inlet outlet number density ratio. While the applicable scope is limited to several conditions (geometry of test section: inner diameter 500 mm × height 8.0 m, nozzle shape and air-water ambient pressure conditions), this study has developed a numerical model which defines aerosol DF as a function of aerosol diameter (d) and submergences (x).

  5. DARE : Dedicated Aerosols Retrieval Experiment

    NARCIS (Netherlands)

    Smorenburg, K.; Courrèges-Lacoste, G.B.; Decae, R.; Court, A.J.; Leeuw, G. de; Visser, H.

    2004-01-01

    At present there is an increasing interest in remote sensing of aerosols from space because of the large impact of aerosols on climate, earth observation and health. TNO has performed a study aimed at improving aerosol characterisation using a space based instrument and state-of-the-art aerosol

  6. Filter-based Aerosol Measurement Experiments using Spherical Aerosol Particles under High Temperature and High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Chan; Jung, Woo Young; Lee, Hyun Chul; Lee, Doo Young [FNC TECH., Yongin (Korea, Republic of)

    2016-05-15

    Optical Particle Counter (OPC) is used to provide real-time measurement of aerosol concentration and size distribution. Glass fiber membrane filter also be used to measure average mass concentration. Three tests (MTA-1, 2 and 3) have been conducted to study thermal-hydraulic effect, a filtering tendency at given SiO{sub 2} particles. Based on the experimental results, the experiment will be carried out further with a main carrier gas of steam and different aerosol size. The test results will provide representative behavior of the aerosols under various conditions. The aim of the tests, MTA 1, 2 and 3, are to be able to 1) establish the test manuals for aerosol generation, mixing, sampling and measurement system, which defines aerosol preparation, calibration, operating and evaluation method under high pressure and high temperature 2) develop commercial aerosol test modules applicable to the thermal power plant, environmental industry, automobile exhaust gas, chemical plant, HVAC system including nuclear power plant. Based on the test results, sampled aerosol particles in the filter indicate that important parameters affecting aerosol behavior aerosols are 1) system temperature to keep above a evaporation temperature of ethanol and 2) aerosol losses due to the settling by ethanol liquid droplet.

  7. Theory of CW lidar aerosol backscatter measurements and development of a 2.1 microns solid-state pulsed laser radar for aerosol backscatter profiling

    Science.gov (United States)

    Kavaya, Michael J.; Henderson, Sammy W.; Frehlich, R. G.

    1991-01-01

    The performance and calibration of a focused, continuous wave, coherent detection CO2 lidar operated for the measurement of atmospheric backscatter coefficient, B(m), was examined. This instrument functions by transmitting infrared (10 micron) light into the atmosphere and collecting the light which is scattered in the rearward direction. Two distinct modes of operation were considered. In volume mode, the scattered light energy from many aerosols is detected simultaneously, whereas in the single particle mode (SPM), the scattered light energy from a single aerosol is detected. The analysis considered possible sources of error for each of these two cases, and also considered the conditions where each technique would have superior performance. The analysis showed that, within reasonable assumptions, the value of B(m) could be accurately measured by either the VM or the SPM method. The understanding of the theory developed during the analysis was also applied to a pulsed CO2 lidar. Preliminary results of field testing of a solid state 2 micron lidar using a CW oscillator is included.

  8. Lidar for Wind and Optical Turbulence Profiling

    Directory of Open Access Journals (Sweden)

    Fastig Shlomo

    2018-01-01

    Full Text Available A field campaign for the comparison investigation of systems to measure wind and optical turbulence profiles was conducted in northern Germany. The experimental effort was to compare the performance of the LIDAR, SODAR-RASS and ultrasonic anemometers for the measurement of the above mentioned atmospheric parameters. Soreq's LIDAR is a fiber laser based system demonstrator for the vertical profiling of the wind and turbulence, based on the correlation of aerosol density variations. It provides measurements up to 350m with 20m resolution.

  9. Water content of aged aerosol

    OpenAIRE

    G. J. Engelhart; L. Hildebrandt; E. Kostenidou; N. Mihalopoulos; N. M. Donahue; S. N. Pandis

    2010-01-01

    The composition and physical properties of aged atmospheric aerosol were characterized at a remote sampling site on the northern coast of Crete, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-2008). A reduced Dry-Ambient Aerosol Size Spectrometer (DAASS) was deployed to measure the aerosol water content and volumetric growth factor of fine particulate matter. The particles remained wet even at relative humidity (RH) as low as 20%. The aerosol was acidic during mo...

  10. Springtime major pollution events by aerosol over Paris Area: From a case study to a multiannual analysis

    Science.gov (United States)

    Chazette, Patrick; Royer, Philippe

    2017-08-01

    A study of the intense spring pollution events occurring between 2007 and 2016 on the Paris Area is presented using ground-based and spaceborne measurements. Emphasis is placed on 2011 where data included ground-based lidar measurements. This last period corresponds with the highest regional pollution levels of the past decade. The information threshold (daily average of (mass concentration of particles with aerodynamic diameter less than 10 μm) PM10 > 50 μg m-3) was exceeded 16 times, while the alert threshold (daily average of PM10 > 80 μg m-3) was exceeded twice. The information (alert) threshold exists to protect the most fragile people (the entire population). Ground-based and spaceborne measurements demonstrate the benefit of their synergy as each is representative of specific space and time scales. The operational products of the spaceborne instruments Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) and the Moderate Resolution Imaging Spectroradiometer are used. For 2011, CALIOP vertical profiles are inversed to assess the backscatter to extinction ratio, which is then successfully compared with similar results derived from the CALIOP operational products, a ground-based lidar and Sun photometers. The aerosols are identified to be polluted continental and polluted dust aerosols following the criteria used for the inversion of the CALIOP profiles. Aerosol typing is consistent between the ground-based and spaceborne lidars, demonstrating the importance of CALIOP for other years where the ground-based lidar was not in operation. The main pollution sources responsible for the spring aerosol pollution, occurring during anticyclonic meteorological conditions, are identified as coming from Western Europe: Benelux, Rhine-Ruhr area, and the Lorraine area.

  11. Aerosol effects on UV radiation

    International Nuclear Information System (INIS)

    Koepke, P.; Reuder, J.; Schwander, H.

    2000-01-01

    The reduction of erythemally weighted UV-irradiance (given as UV index, UVI) due to aerosols is analyzed by variation of the tropospheric particles in a wide, but realistic range. Varied are amount and composition of the particles and relative humidity and thickness of the mixing layer. The reduction of UVI increases with aerosol optical depth and the UV change is around 10% for a change aerosol optical depth from 0.25 to 0.1 and 0.4 respectively. Since both aerosol absorption and scattering are of relevance, the aerosol effect depends besides total aerosol amount on relative amount of soot and on relative humidity

  12. Impacts of aerosol mitigation on Chinese rice photosynthesis: An integrated modeling approach

    Science.gov (United States)

    Zhang, T.; Li, T.; Yue, X.; Yang, X.

    2017-12-01

    Aerosol pollution in China is significantly altering radiative transfer processes and is thereby potentially affecting rice photosynthesis. However, the response of rice photosynthesis to aerosol-induced radiative perturbations is still not well understood. Here, we employ an integrated process-based modeling approach to simulate changes in incoming radiation (RAD) and the diffuse radiation fraction (DF) with aerosol mitigation in China and their associated impacts on rice yields. Aerosol reduction has the positive effect of increasing RAD and the negative effect of decreasing DF on rice photosynthesis and yields. In rice production areas where the average RAD during the growing season is lower than 250 W m-2, aerosol reduction is beneficial for higher rice yields, whereas in areas with RAD>250 W m-2, aerosol mitigation causes yield declines due to the associated reduction in the DF, which decreases the light use efficiency. This response pattern and threshold are similar with observations, even through more data are needed in future investigation. As a net effect, rice yields were estimated to significantly increase by 0.8-2.6% with aerosol concentrations reductions from 20 to 100%, which is lower than the estimates obtained in earlier studies that only considered the effects of RAD. This finding suggests that both RAD and DF are important processes influencing rice yields and should be incorporated into future assessments of agricultural responses to variations in aerosol-induced radiation under climate change.

  13. Aerosol sampler for analysis of fine and ultrafine aerosols

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel; Čapka, Lukáš; Večeřa, Zbyněk

    2018-01-01

    Roč. 1020 (2018), s. 123-133 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GA14-25558S Institutional support: RVO:68081715 Keywords : atmospheric aerosols * aerosol collection * chemical composition Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.950, year: 2016

  14. Aerosol retrieval algorithm for the characterization of local aerosol using MODIS L1B data

    International Nuclear Information System (INIS)

    Wahab, A M; Sarker, M L R

    2014-01-01

    Atmospheric aerosol plays an important role in radiation budget, climate change, hydrology and visibility. However, it has immense effect on the air quality, especially in densely populated areas where high concentration of aerosol is associated with premature death and the decrease of life expectancy. Therefore, an accurate estimation of aerosol with spatial distribution is essential, and satellite data has increasingly been used to estimate aerosol optical depth (AOD). Aerosol product (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) data is available at global scale but problems arise due to low spatial resolution, time-lag availability of AOD product as well as the use of generalized aerosol models in retrieval algorithm instead of local aerosol models. This study focuses on the aerosol retrieval algorithm for the characterization of local aerosol in Hong Kong for a long period of time (2006-2011) using high spatial resolution MODIS level 1B data (500 m resolution) and taking into account the local aerosol models. Two methods (dark dense vegetation and MODIS land surface reflectance product) were used for the estimation of the surface reflectance over land and Santa Barbara DISORT Radiative Transfer (SBDART) code was used to construct LUTs for calculating the aerosol reflectance as a function of AOD. Results indicate that AOD can be estimated at the local scale from high resolution MODIS data, and the obtained accuracy (ca. 87%) is very much comparable with the accuracy obtained from other studies (80%-95%) for AOD estimation

  15. An In Vitro Aerosolization Efficiency Comparison of Generic and Branded Salbutamol Metered Dose Inhalers

    Directory of Open Access Journals (Sweden)

    Sara Rahimkhani, Saeed Ghanbarzadeh, Ali Nokhodchi, Hamed Hamishehkar

    2017-03-01

    Full Text Available Background: Due to the high rate of pulmonary diseases, respiratory drug delivery systems have been attracted excessive attention for the past decades. Because of limitations and growing drug bill, physicians are encouraged to prescribe generically whenever possible. The purpose of this study was to evaluate whether there was any significant difference in aerosolization performance between a reference brand Salbutamol (A Metered Dose Inhalers (MDIs and two generic products (B and C. Methods: The aerosolization performance of MDIs was evaluated by calculating aerosolization indexes including fine particle fraction (FPF, fine particle dose (FPD, geometric standard deviation (GSD and mass median aerodynamic diameters (MMAD by using the next generation impactor. Results: Although aerosolization indexes of MDI A were superior than the Iranian brands, but the differences were not statistically significant. Conclusion: These results verified that generic MDIs deliver similar quantities of Salbutamol to the reference brand and aerosolization performance parameters of generic Salbutamol MDIs did not differ significantly from the reference brand.

  16. Comprehensive Measurement of Atmospheric Aerosols with a Wide Range Aerosol Spectrometer

    International Nuclear Information System (INIS)

    Keck, L; Pesch, M; Grimm, H

    2011-01-01

    A wide range aerosol spectrometer (WRAS) was used for comprehensive long term measurements of aerosol size distributions. The system combines the results of an optical aerosol spectrometer with the results of a Scanning Mobility Particle Sizer (SMPS) to record essentially the full size range (5 nm - 32 μm) of atmospheric particles in 72 channels. Measurements were carried out over one year (2009) at the Global Atmospheric Watch (GAW)-Station Hohenpeissenberg, Bavaria. Total particle number concentrations obtained from the aerosol size distributions were compared to the total number concentrations measured by a Condensation Particle Counter (CPC). The comparison showed an excellent agreement of the data. The high time resolution of 5 minutes allows the combination of the measured size distributions with meteorological data and correlations to gaseous pollutants (CO, NOx and SO2). A good correlation of particle number and CO concentrations was found for long distance transported small particles, which were probably mainly soot particles. Correlations to NOx were observed for aerosols from local sources such as traffic emissions. The formation of secondary aerosols from gaseous precursors was also observed. Episodes of relatively high concentration of particles in the range of 2-3 μm were probably caused by pollen.

  17. Loading capacity of various filters for lithium fire generated aerosols

    International Nuclear Information System (INIS)

    Jeppson, D.W.; Barreca, J.R.

    1980-01-01

    The lithium aerosol loading capacity of a prefilter, HEPA filters and a sand and gravel bed filter was determined. The test aerosol was characterized and was generated by burning lithium in an unlimited air atmosphere. Correlation to sodium aerosol loading capacities were made to relate existing data to lithium aerosol loadings under varying conditions. This work is being conducted in support of the fusion reactor safety program. The lithium aerosol was generated by burning lithium pools, up to 45 kgs, in a 340 m 3 low humidity air atmosphere to supply aerosol to recirculating filter test loops. The aerosol was sampled to determine particle size, mass concentrations and chemical species. The dew point and gas concentrations were monitored throughout the tests. Loop inlet aerosol mass concentrations ranged up to 5 gr/m 3 . Chemical compounds analyzed to be present in the aerosol include Li 2 O, LiOH, and Li 2 CO 3 . HEPA filters with and without separators and a prefilter and HEPA filter in series were loaded with 7.8 to 11.1 kg/m 2 of aerosol at a flow rate of 1.31 m/sec and 5 kPa pressure drop. The HEPA filter loading capacity was determined to be greater at a lower flow rate. The loading capacity increased from 0.4 to 2.8 kg by decreasing the flow rate from 1.31 to 0.26 m/sec for a pressure drop of 0.11 kPa due to aerosol buildup. The prefilter tested in series with a HEPA did not increase the total loading capacity significantly for the same total pressure drop. Separators in the HEPA had only minor effect on loading capacity. The sand and gravel bed filter loaded to 0.50 kg/m 2 at an aerosol flow rate of 0.069 m/sec and final pressure drop of 6.2 kPa. These loading capacities and their dependence on test variables are similar to those reported for sodium aerosols except for the lithium aerosol HEPA loading capacity dependence upon flow rate

  18. Aerosol Absorption Measurements in MILAGRO.

    Science.gov (United States)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  19. The DRAGON aerosol research facility to study aerosol behaviour for reactor safety applications

    International Nuclear Information System (INIS)

    Suckow, Detlef; Guentay, Salih

    2008-01-01

    During a severe accident in a nuclear power plant fission products are expected to be released in form of aerosol particles and droplets. To study the behaviour of safety relevant reactor components under aerosol loads and prototypical severe accident conditions the multi-purpose aerosol generation facility DRAGON is used since 1994 for several projects. DRAGON can generate aerosol particles by the evaporation-condensation technique using a plasma torch system, fluidized bed and atomization of particles suspended in a liquid. Soluble, hygroscopic aerosol (i.e. CsOH) and insoluble aerosol particles (i.e. SnO 2 , TiO 2 ) or mixtures of them can be used. DRAGON uses state-of-the-art thermal-hydraulic, data acquisition and aerosol measurement techniques and is mainly composed of a mixing chamber, the plasma torch system, a steam generator, nitrogen gas and compressed air delivery systems, several aerosol delivery piping, gas heaters and several auxiliary systems to provide vacuum, coolant and off-gas treatment. The facility can be operated at system pressure of 5 bars, temperatures of 300 deg. C, flow rates of non-condensable gas of 900 kg/h and steam of 270 kg/h, respectively. A test section under investigation is attached to DRAGON. The paper summarizes and demonstrates with the help of two project examples the capabilities of DRAGON for reactor safety studies. (authors)

  20. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  1. An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling

    Directory of Open Access Journals (Sweden)

    Y. Qian

    2010-07-01

    Full Text Available One fundamental property and limitation of grid based models is their inability to identify spatial details smaller than the grid cell size. While decades of work have gone into developing sub-grid treatments for clouds and land surface processes in climate models, the quantitative understanding of sub-grid processes and variability for aerosols and their precursors is much poorer. In this study, WRF-Chem is used to simulate the trace gases and aerosols over central Mexico during the 2006 MILAGRO field campaign, with multiple spatial resolutions and emission/terrain scenarios. Our analysis focuses on quantifying the sub-grid variability (SGV of trace gases and aerosols within a typical global climate model grid cell, i.e. 75×75 km2.

    Our results suggest that a simulation with 3-km horizontal grid spacing adequately reproduces the overall transport and mixing of trace gases and aerosols downwind of Mexico City, while 75-km horizontal grid spacing is insufficient to represent local emission and terrain-induced flows along the mountain ridge, subsequently affecting the transport and mixing of plumes from nearby sources. Therefore, the coarse model grid cell average may not correctly represent aerosol properties measured over polluted areas. Probability density functions (PDFs for trace gases and aerosols show that secondary trace gases and aerosols, such as O3, sulfate, ammonium, and nitrate, are more likely to have a relatively uniform probability distribution (i.e. smaller SGV over a narrow range of concentration values. Mostly inert and long-lived trace gases and aerosols, such as CO and BC, are more likely to have broad and skewed distributions (i.e. larger SGV over polluted regions. Over remote areas, all trace gases and aerosols are more uniformly distributed compared to polluted areas. Both CO and O3 SGV vertical profiles are nearly constant within the PBL during daytime, indicating that trace gases

  2. Aerosols CFA 97

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    During the thirteen congress on aerosols several papers were presented about the behaviour of radioactive aerosols and their impact on environment, or the exposure to radon and to its daughters, the measurement of the size of the particulates of the short-lived radon daughters and two papers about the behaviour of aerosols in containment during a fission products release in the primary circuit and susceptible to be released in atmosphere in the case of containment failure. (N.C.)

  3. Aerosol azacytidine inhibits orthotopic lung cancers in mice through Its DNA demethylation and gene reactivation effects.

    Directory of Open Access Journals (Sweden)

    Xuan Qiu

    Full Text Available We devised an aerosol based demethylation therapy to achieve therapeutic efficacy in premalignant or in situ lesions of lung cancer, without systemic toxicity. Optimum regimens of aerosolized azacytidine (Aza were designed and used in orthotopic human non-small cell lung cancer xenograft models. The therapeutic efficacy and toxicity of aerosol Aza were compared with intravenously administered Aza. We observed that 80% of the droplets of the aerosol Aza measured ∼0.1-5 microns, which resulted in deposition in the lower bronchial airways. An animal model that phenocopies field carcinogeneisis in humans was developed by intratracheal inoculation of the human lung cancer cells in mice, thus resulting in their distribution throughout the entire airway space. Aerosolized Aza significantly prolonged the survival of mice bearing endo-bronchial lung tumors. The aerosol treatment did not cause any detectable lung toxicity or systemic toxicity. A pre-pharmacokinetic study in mice demonstrated that lung deposition of aerosolized Aza was significantly higher than the intravenous route. Lung tumors were resected after aerosol treatment and the methylation levels of 24 promoters of tumor-suppresser genes related to lung cancer were analyzed. Aerosol Aza significantly reduced the methylation level in 9 of these promoters and reexpressed several genes tested. In conclusion, aerosol Aza at non-cytotoxic doses appears to be effective and results in DNA demethylation and tumor suppressor gene re-expression. The therapeutic index of aerosol Aza is >100-fold higher than that of intravenous Aza. These results provide a preclinical rationale for a phase I clinical trial of aerosol Aza to be initiated at our Institution.

  4. The ion–aerosol interactions from the ion mobility and aerosol ...

    Indian Academy of Sciences (India)

    2005-02-18

    aerosol interactions from the ion mobility and aerosol particle size distribution measurements on January 17 and February 18, 2005 at Maitri, Antarctica – A case study. Devendraa Siingh Vimlesh Pant A K Kamra. Volume 120 Issue 4 August ...

  5. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing: Advances in Secondary Organic Aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Manish [Pacific Northwest National Laboratory, Richland Washington USA; Cappa, Christopher D. [Department of Civil and Environmental Engineering, University of California, Davis California USA; Fan, Jiwen [Pacific Northwest National Laboratory, Richland Washington USA; Goldstein, Allen H. [Department of Environmental Science, Policy and Management and Department of Civil and Environmental Engineering, University of California, Berkeley California USA; Guenther, Alex B. [Department of Earth System Science, University of California, Irvine California USA; Jimenez, Jose L. [Cooperative Institute for Research in Environmental Sciences and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder Colorado USA; Kuang, Chongai [Brookhaven National Laboratory, Upton New York USA; Laskin, Alexander [Pacific Northwest National Laboratory, Richland Washington USA; Martin, Scot T. [School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge Massachusetts USA; Ng, Nga Lee [School of Chemical and Biomolecular Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta Georgia USA; Petaja, Tuukka [Department of Physics, University of Helsinki, Helsinki Finland; Pierce, Jeffrey R. [Department of Atmospheric Science, Colorado State University, Fort Collins Colorado USA; Rasch, Philip J. [Pacific Northwest National Laboratory, Richland Washington USA; Roldin, Pontus [Department of Physics, Lund University, Lund Sweden; Seinfeld, John H. [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena California USA; Shilling, John [Pacific Northwest National Laboratory, Richland Washington USA; Smith, James N. [Department of Earth System Science, University of California, Irvine California USA; Thornton, Joel A. [Department of Atmospheric Sciences, University of Washington, Seattle Washington USA; Volkamer, Rainer [Cooperative Institute for Research in Environmental Sciences and Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder Colorado USA; Wang, Jian [Brookhaven National Laboratory, Upton New York USA; Worsnop, Douglas R. [Aerodyne Research, Inc., Billerica Massachusetts USA; Zaveri, Rahul A. [Pacific Northwest National Laboratory, Richland Washington USA; Zelenyuk, Alla [Pacific Northwest National Laboratory, Richland Washington USA; Zhang, Qi [Department of Environmental Toxicology, University of California, Davis California USA

    2017-06-01

    Anthropogenic emissions and land-use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding pre-industrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features 1) influence estimates of aerosol radiative forcing and 2) can confound estimates of the historical response of climate to increases in greenhouse gases (e.g. the ‘climate sensitivity’). Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through a combination of laboratory and field measurements, yet current climate models typically do not comprehensively include all important SOA-relevant processes. Therefore, major gaps exist at present between current measurement-based knowledge on the one hand and model implementation of organic aerosols on the other. The critical review herein summarizes some of the important developments in understanding SOA formation that could potentially have large impacts on our understanding of aerosol radiative forcing and climate. We highlight the importance of some recently discovered processes and properties that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including: formation of extremely low-volatility organics in the gas-phase; isoprene epoxydiols (IEPOX) multi-phase chemistry; particle-phase oligomerization; and physical properties such as viscosity. In addition, this review also highlights some of the important processes that involve interactions between natural biogenic emissions and anthropogenic emissions, such as the role of sulfate and oxides of nitrogen (NOx) on SOA formation from biogenic volatile organic compounds. Studies that relate the observed evolution of organic aerosol

  6. Aerosol Observing System (AOS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  7. Elemental composition of aerosol particles from two atmospheric monitoring stations in the Amazon Basin

    International Nuclear Information System (INIS)

    Artaxo, P.; Gerab, F.; Rabello, M.L.C.

    1993-01-01

    One key region for the study of processes that are changing the composition of the global atmosphere is the Amazon Basin tropical rain forest. The high rate of deforestation and biomass burning is emitting large amounts of gases and fine-mode aerosol particles to the global atmosphere. Two background monitoring stations are operating continuously measuring aerosol composition, at Cuiaba, and Serra do Navio. Fine- and coarse-mode aerosol particles are being collected using stacked filter units. Particle induced X-ray emission (PIXE) was used to measure concentrations of up to 21 elements: Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb, Sr, Zr, and Pb. The elemental composition was measured at the new PIXE facility from the University of Sao Paulo, using a dedicated 5SDH tandem Pelletron nuclear accelerator. Absolute principal factor analysis (APFA) has derived absolute elemental source profiles. At the Serra do Navio sampling site a very clean background aerosol is being observed. Biogenic aerosol dominates the fine-mode mass concentration, with the presence of K, P, S, Cl, Zn, Br, and FPM. Three components dominate the aerosol composition: Soil dust particles, the natural biogenic release by the forest, and a marine aerosol component. At the Cuiaba site, during the dry season, a strong component of biomass burning is observed. An aerosol mass concentration up to 120 μg/m 3 was measured. APFA showed three components: Soil dust (Al, Ca, Ti, Mn, Fe), biomass burning (soot, FPM, K, Cl) and natural biogenic particles (K, S, Ca, Mn, Zn). The fine-mode biogenic component of both sites shows remarkable similarities, although the two sampling sites are 3000 km apart. Several essential plant nutrients like P, K, S, Ca, Ni and others are transported in the atmosphere as a result of biomass burning processes. (orig.)

  8. Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer

    Science.gov (United States)

    Petit, J.-E.; Favez, O.; Sciare, J.; Crenn, V.; Sarda-Estève, R.; Bonnaire, N.; Močnik, G.; Dupont, J.-C.; Haeffelin, M.; Leoz-Garziandia, E.

    2015-03-01

    Aerosol mass spectrometer (AMS) measurements have been successfully used towards a better understanding of non-refractory submicron (PM1) aerosol chemical properties based on short-term campaigns. The recently developed Aerosol Chemical Speciation Monitor (ACSM) has been designed to deliver quite similar artifact-free chemical information but for low cost, and to perform robust monitoring over long-term periods. When deployed in parallel with real-time black carbon (BC) measurements, the combined data set allows for a quasi-comprehensive description of the whole PM1 fraction in near real time. Here we present 2-year long ACSM and BC data sets, between mid-2011 and mid-2013, obtained at the French atmospheric SIRTA supersite that is representative of background PM levels of the region of Paris. This large data set shows intense and time-limited (a few hours) pollution events observed during wintertime in the region of Paris, pointing to local carbonaceous emissions (mainly combustion sources). A non-parametric wind regression analysis was performed on this 2-year data set for the major PM1 constituents (organic matter, nitrate, sulfate and source apportioned BC) and ammonia in order to better refine their geographical origins and assess local/regional/advected contributions whose information is mandatory for efficient mitigation strategies. While ammonium sulfate typically shows a clear advected pattern, ammonium nitrate partially displays a similar feature, but, less expectedly, it also exhibits a significant contribution of regional and local emissions. The contribution of regional background organic aerosols (OA) is significant in spring and summer, while a more pronounced local origin is evidenced during wintertime, whose pattern is also observed for BC originating from domestic wood burning. Using time-resolved ACSM and BC information, seasonally differentiated weekly diurnal profiles of these constituents were investigated and helped to identify the main

  9. A novel hybrid tobacco product that delivers a tobacco flavour note with vapour aerosol (Part 1): Product operation and preliminary aerosol chemistry assessment.

    Science.gov (United States)

    Poynton, Simon; Sutton, Joseph; Goodall, Sharon; Margham, Jennifer; Forster, Mark; Scott, Ken; Liu, Chuan; McAdam, Kevin; Murphy, James; Proctor, Christopher

    2017-08-01

    Vapour products have demonstrated potential to be a lower-risk alternative to cigarettes. The present study describes a novel hybrid tobacco product that combines a warm aerosol stream generated by an electronic vaporisation mechanism with tobacco top flavour from cut tobacco. During operation, the aerosol stream released from the vapour cartomiser is passed through a bed of blended cut tobacco by the puffing flow, elevating the tobacco temperature and eluting volatile tobacco flavour components. A preliminary but comprehensive analysis of the aerosol composition of the hybrid tobacco product found that emissions were dominated by the control vapour formulation. In non-targeted chemical screening, no detectable difference in GC scans was observed between the hybrid tobacco product and the control vapour product. However, a sensorially elevated tobacco flavour was confirmed by a consumer sensory panel (P products, only 26 were quantified. The novel action of tobacco heating and liquid aerosolisation produced classes and levels of toxicants that were similar to those of the control vapour product, but much lower than those of a Kentucky 3R4F reference cigarette. For nine toxicants mandated by the WHO Study Group on Tobacco Product Regulation for reduction in cigarette emissions, the levels were 91%-99% lower per puff in the hybrid tobacco product aerosol than in 3R4F smoke. Overall, the novel hybrid tobacco product provides a sensorially enhanced tobacco flavour, but maintains a toxicant profile similar to its parent vapour product with relatively low levels of known cigarette smoke toxicants. Copyright © 2017 British American Tobacco. Published by Elsevier Ltd.. All rights reserved.

  10. Investigation of Simultaneous Effects of Aerosol Properties and Aerosol Peak Height on the Air Mass Factors for Space-Borne NO2 Retrievals

    Directory of Open Access Journals (Sweden)

    Hyunkee Hong

    2017-02-01

    Full Text Available We investigate the simultaneous effects of aerosol peak height (APH, aerosol properties, measurement geometry, and other factors on the air mass factor for NO2 retrieval at sites with high NO2 concentration. A comparison of the effects of high and low surface reflectance reveals that NO2 air mass factor (AMF values over a snowy surface (surface reflectance 0.8 are generally higher than those over a deciduous forest surface (surface reflectance 0.05. Under high aerosol optical depth (AOD conditions, the aerosol shielding effect over a high-albedo surface is revealed to reduce the path-length of light at the surface, whereas high single scattering albedo (SSA conditions (e.g., SSA = 0.95 lead to an increase in the aerosol albedo effect, which results in an increased AMF over areas with low surface reflectance. We also conducted an in-depth study of the APH effect on AMF. For an AOD of 0.1 and half width (HW of 5 km, NO2 AMF decreases by 29% from 1.36 to 0.96 as APH changes from 0 to 2 km. In the case of high-AOD conditions (0.9 and HW of 5 km, the NO2 AMF decreases by 240% from 1.85 to 0.54 as APH changes from 0 to 2 km. The AMF variation due to error in the model input parameters (e.g., AOD, SSA, aerosol shape, and APH is also examined. When APH is 0 km with an AOD of 0.4, SSA of 0.88, and surface reflectance of 0.05, a 30% error in AOD induces an AMF error of between 4.85% and −3.67%, an SSA error of 0.04 leads to NO2 VCD errors of between 4.46% and −4.77%, and a 30% error in AOD induces an AMF error of between −9.53% and 8.35% with an APH of 3 km. In addition to AOD and SSA, APH is an important factor in calculating AMF, due to the 2 km error in APH under high-SZA conditions, which leads to an NO2 VCD error of over 60%. Aerosol shape is also found to have a measureable effect on AMF under high-AOD and small relative azimuth angle (RAA conditions. The diurnal effect of the NO2 profile is also examined and discussed.

  11. Measurement and Modeling of Vertically Resolved Aerosol Optical Properties and Radiative Fluxes Over the ARM SGP Site

    Science.gov (United States)

    Schmid, B.; Arnott, P.; Bucholtz, A.; Colarco, P.; Covert, D.; Eilers, J.; Elleman, R.; Ferrare, R.; Flagan, R.; Jonsson, H.

    2003-01-01

    In order to meet one of its goals - to relate observations of radiative fluxes and radiances to the atmospheric composition - the Department of Energy's Atmospheric Radiation Measurement (ARM) program has pursued measurements and modeling activities that attempt to determine how aerosols impact atmospheric radiative transfer, both directly and indirectly. However, significant discrepancies between aerosol properties measured in situ or remotely remain. One of the objectives of the Aerosol Intensive Operational Period (TOP) conducted by ARM in May 2003 at the ARM Southern Great Plains (SGP) site in north central Oklahoma was to examine and hopefully reduce these differences. The IOP involved airborne measurements from two airplanes over the heavily instrumented SGP site. We give an overview of airborne results obtained aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. The Twin Otter performed 16 research flights over the SGP site. The aircraft carried instrumentation to perform in-situ measurements of aerosol absorption, scattering, extinction and particle size. This included such novel techniques as the photoacoustic and cavity ring-down methods for in-situ absorption (675 nm) and extinction (675 and 1550 nm) and a new multiwavelength, filter-based absorption photometer (467, 530, 660 nm). A newly developed instrument measured cloud condensation nucleus concentration (CCN) concentrations at two supersaturation levels. Aerosol optical depth and extinction (354-2139 nm) were measured with the NASA Ames Airborne Tracking 14-channel sunphotometer. Furthermore, up-and downwelling solar (broadband and spectral) and infrared radiation were measured using seven individual radiometers. Three up-looking radiometers werer mounted on a newly developed stabilized platform, keeping the instruments level up to aircraft pitch and roll angles of approximately 10(exp 0). This resulted in unprecedented continuous vertical profiles

  12. Impact of anthropogenic aerosols on present and future climate

    International Nuclear Information System (INIS)

    Deandreis, C.

    2008-03-01

    Aerosols influence the Earth radiative budget both through their direct effect (scattering and absorption of solar radiation) and their indirect effect (impacts on cloud microphysics). The role of anthropogenic aerosol in climate change has been recognized to be significant when compared to the one of greenhouse gases. Despite many studies on this topic, the assessments of both anthropogenic aerosol radiative forcing and their impacts on meteorological variables are still very uncertain. Major reasons for these uncertainties stem from the insufficient knowledge of the emissions sources and of the processes of formation, transformation and deposition. Models used to study climate are often inadequate to study aerosol processes because of coarse spatial and temporal scales. Uncertainties due to the parameterization of the aerosol are added to the uncertainties in the representation of large scale dynamics and physical processes such as transport, hydrological cycle and radiative budget. To predict, the role of the anthropogenic aerosol impact in the future climate change, I have addressed some of these key uncertainties. In this study, I simulate interactively aerosols processes in a climate model in order to improve the estimation of their direct and indirect effects. I estimate a modification of the top of the atmosphere net flux of 60% for the present period. I also show that, for future projection, the representation of the emissions source is an other important source of error. I assess that aerosols radiative forcing differ by 40% between simulations performed with 2 different emissions inventories. These inventories are representative for a high and a low limit in term of carbonaceous aerosols emissions for the 2050 horizon. (author)

  13. The influence of bedding materials on bio-aerosol exposure in dairy barns exposure in dairy barns

    NARCIS (Netherlands)

    Samadi, S.; van Eerdenburg, F.J.C.M.; Jamshidifard, A.R.; Otten, G.P.; Droppert, M.; Heederik, D.J.J.; Wouters, I.M.

    2012-01-01

    Bio-aerosol is a well-known cause of respiratory diseases. Exposure to bio-aerosols has been reported previously in dairy barns, but little is known about the sources of bio-aerosol. Bedding materials might be a significant source or substrate for bio-aerosol exposure. The aim of this study was to

  14. Organic Aerosol Component (OACOMP) Value-Added Product Report

    Energy Technology Data Exchange (ETDEWEB)

    Fast, J; Zhang, Q; Tilp, A; Shippert, T; Parworth, C; Mei, F

    2013-08-23

    Significantly improved returns in their aerosol chemistry data can be achieved via the development of a value-added product (VAP) of deriving OA components, called Organic Aerosol Components (OACOMP). OACOMP is primarily based on multivariate analysis of the measured organic mass spectral matrix. The key outputs of OACOMP are the concentration time series and the mass spectra of OA factors that are associated with distinct sources, formation and evolution processes, and physicochemical properties.

  15. Extremely large anthropogenic-aerosol contribution to total aerosol load over the Bay of Bengal during winter season

    Directory of Open Access Journals (Sweden)

    D. G. Kaskaoutis

    2011-07-01

    Full Text Available Ship-borne observations of spectral aerosol optical depth (AOD have been carried out over the entire Bay of Bengal (BoB as part of the W-ICARB cruise campaign during the period 27 December 2008–30 January 2009. The results reveal a pronounced temporal and spatial variability in the optical characteristics of aerosols mainly due to anthropogenic emissions and their dispersion controlled by local meteorology. The highest aerosol amount, with mean AOD500>0.4, being even above 1.0 on specific days, is found close to the coastal regions in the western and northern parts of BoB. In these regions the Ångström exponent is also found to be high (~1.2–1.25 indicating transport of strong anthropogenic emissions from continental regions, while very high AOD500 (0.39±0.07 and α380–870 values (1.27±0.09 are found over the eastern BoB. Except from the large α380–870 values, an indication of strong fine-mode dominance is also observed from the AOD curvature, which is negative in the vast majority of the cases, suggesting dominance of an anthropogenic-pollution aerosol type. On the other hand, clean maritime conditions are rather rare over the region, while the aerosol types are further examined through a classification scheme based on the relationship between α and dα. It was found that even for the same α values the fine-mode dominance is larger for higher AODs showing the strong continental influence over the marine environment of BoB. Furthermore, there is also an evidence of aerosol-size growth under more turbid conditions indicative of coagulation and/or humidification over specific BoB regions. The results obtained using OPAC model show significant fraction of soot aerosols (~6 %–8 % over the eastern and northwestern BoB, while coarse-mode sea salt particles are found to dominate in the southern parts of BoB.

  16. Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT): Overview of a wintertime air chemistry field study in the front range urban corridor of Colorado

    Science.gov (United States)

    Brown, Steven S.; Thornton, Joel A.; Keene, William C.; Pszenny, Alexander A. P.; Sive, Barkley C.; Dubé, William P.; Wagner, Nicholas L.; Young, Cora J.; Riedel, Theran P.; Roberts, James M.; VandenBoer, Trevor C.; Bahreini, Roya; Öztürk, Fatma; Middlebrook, Ann M.; Kim, Saewung; Hübler, Gerhard; Wolfe, Daniel E.

    2013-07-01

    The Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT) field experiment took place during late winter, 2011, at a site 33 km north of Denver, Colorado. The study included fixed-height measurements of aerosols, soluble trace gases, and volatile organic compounds near surface level, as well as vertically resolved measurements of nitrogen oxides, aerosol composition, soluble gas-phase acids, and halogen species from 3 to 270 m above ground level. There were 1928 individual profiles during the three-week campaign to characterize trace gas and aerosol distributions in the lower levels of the boundary layer. Nitrate and ammonium dominated the ionic composition of aerosols and originated primarily from local or regional sources. Sulfate and organic matter were also significant and were associated primarily with longer-range transport to the region. Aerosol chloride was associated primarily with supermicron size fractions and was always present in excess of gas-phase chlorine compounds. The nighttime radical reservoirs, nitryl chloride, ClNO2, and nitrous acid, HONO, were both consistently present in nighttime urban air. Nitryl chloride was especially pronounced in plumes from large point sources sampled aloft at night. Nitrous acid was typically most concentrated near the ground surface and was the dominant contributor (80%) to diurnally averaged primary OH radical production in near-surface air. Large observed mixing ratios of light alkanes, both in near-surface air and aloft, were attributable to local emissions from oil and gas activities.

  17. Reflective ‘cool’ roofs under aerosol-burdened skies: radiative benefits across selected Indian cities

    International Nuclear Information System (INIS)

    Millstein, D E; Fischer, M L

    2014-01-01

    The use of reflective surfaces offers one low-cost solution for reducing solar loading to urban environments and the Earth that should be considered as part of sustainable urban design. Here, we characterize the radiative benefits, i.e. the additional shortwave radiation leaving the atmosphere, from the installation of highly reflective ‘cool’ roofs in urban areas in India that face relatively large local aerosol burdens. We use a previously tested column radiative transfer model to estimate the energy per unit area reflected to space from increasing the surface albedo at six cities within India. The model is used to characterize radiative transfer each day over five years (2008–2012) based on mid-day satellite retrievals of MODIS aerosol depth, cloud water path, and average surface albedo and MERRA atmospheric profiles of temperature and composition. Compared against ten months of field observations in two cities, the model derived incoming surface shortwave radiation estimates relative to observations show small biases (0.5% and −2.6%, at Pantnagar and Nainital, respectively). Despite the high levels of local aerosols we found cool roofs provided significant radiative benefits at all locations. Averaged over the five year period we found that increasing the albedo of 1 m 2 of roof area by 0.5 would reflect to space 0.9–1.2 kWh daily from 08:30–15:30 LST, depending on location. This is equivalent to a constant forcing of 37–50 W m −2 (equivalent to reducing CO 2 emissions by 74 to 101 kg CO 2 m −2 roof area). Last, we identify a co-benefit of improving air quality, in that removing aerosols from the atmosphere could increase the radiative benefits from cool roofs by 23–74%, with the largest potential increase found at Delhi and the smallest change found at Nainital. (letter)

  18. Theoretical studies on aerosol agglomeration processes

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, K.E.J. [VTT Energy, Espoo (Finland). Energy Use

    1997-12-31

    In this thesis, theoretical modeling of certain aerosol systems has been presented. At first, the aerosol general dynamic equation is introduced, along with a discretization routine for its numerical solution. Of the various possible phenomena affecting aerosol behaviour, this work is mostly focused on aerosol agglomeration. The fundamentals of aerosol agglomeration theory are thus briefly reviewed. The two practical applications of agglomeration studied in this thesis are flue gas cleaning using an electrical agglomerator and nanomaterial synthesis with a free jet reactor. In an electrical agglomerator the aerosol particles are charged and brought into an alternating electric field. The aim is to remove submicron particles from flue gases by collisions with larger particles before conventional gas cleaning devices that have a clear penetration window in the problematic 0.1-1{mu}m size range. A mathematical model was constructed to find out the effects of the different system parameters on the agglomerator`s performance. A crucial part of this task was finding out the collision efficiencies of particles of varying size and charge. The original idea was to use unipolar charging of the particles, and a laboratory scale apparatus was constructed for this purpose. Both theory and experiments clearly show that significant removal of submicron particles can not be achieved by such an arrangement. The theoretical analysis further shows that if the submicron particles and the large collector particles were charged with opposite polarity, significant removal of the submicron particles could be obtained. The second application of agglomeration considered in this thesis is predicting/controlling nanoparticle size in the gas-to-particle aerosol route to material synthesis. In a typical material reactor, a precursor vapor reacts to form molecules of the desired material. In a cooling environment, a particulate phase forms, the dynamics of which are determined by the rates of

  19. Theoretical studies on aerosol agglomeration processes

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, K E.J. [VTT Energy, Espoo (Finland). Energy Use

    1998-12-31

    In this thesis, theoretical modeling of certain aerosol systems has been presented. At first, the aerosol general dynamic equation is introduced, along with a discretization routine for its numerical solution. Of the various possible phenomena affecting aerosol behaviour, this work is mostly focused on aerosol agglomeration. The fundamentals of aerosol agglomeration theory are thus briefly reviewed. The two practical applications of agglomeration studied in this thesis are flue gas cleaning using an electrical agglomerator and nanomaterial synthesis with a free jet reactor. In an electrical agglomerator the aerosol particles are charged and brought into an alternating electric field. The aim is to remove submicron particles from flue gases by collisions with larger particles before conventional gas cleaning devices that have a clear penetration window in the problematic 0.1-1{mu}m size range. A mathematical model was constructed to find out the effects of the different system parameters on the agglomerator`s performance. A crucial part of this task was finding out the collision efficiencies of particles of varying size and charge. The original idea was to use unipolar charging of the particles, and a laboratory scale apparatus was constructed for this purpose. Both theory and experiments clearly show that significant removal of submicron particles can not be achieved by such an arrangement. The theoretical analysis further shows that if the submicron particles and the large collector particles were charged with opposite polarity, significant removal of the submicron particles could be obtained. The second application of agglomeration considered in this thesis is predicting/controlling nanoparticle size in the gas-to-particle aerosol route to material synthesis. In a typical material reactor, a precursor vapor reacts to form molecules of the desired material. In a cooling environment, a particulate phase forms, the dynamics of which are determined by the rates of

  20. Aerosol-foam interaction experiments

    International Nuclear Information System (INIS)

    Ball, M.H.E.; Luscombe, C.DeM.; Mitchell, J.P.

    1990-03-01

    Foam treatment offers the potential to clean gas streams containing radioactive particles. A large decontamination factor has been claimed for the removal of airborne plutonium dust when spraying a commercially available foam on the walls and horizontal surfaces of an alpha-active room. Experiments have been designed and undertaken to reproduce these conditions with a non-radioactive simulant aerosol. Careful measurements of aerosol concentrations with and without foam treatment failed to provide convincing evidence to support the earlier observation. The foam may not have been as well mixed with the aerosol in the present studies. Further work is required to explore more efficient mixing methods, including systems in which the aerosol steam is passed through the foam, rather than merely spraying foam into the path of the aerosol. (author)

  1. Arctic Aerosols and Sources

    DEFF Research Database (Denmark)

    Nielsen, Ingeborg Elbæk

    2017-01-01

    Since the Industrial Revolution, the anthropogenic emission of greenhouse gases has been increasing, leading to a rise in the global temperature. Particularly in the Arctic, climate change is having serious impact where the average temperature has increased almost twice as much as the global during......, ammonium, black carbon, and trace metals. This PhD dissertation studies Arctic aerosols and their sources, with special focus on black carbon, attempting to increase the knowledge about aerosols’ effect on the climate in an Arctic content. The first part of the dissertation examines the diversity...... of aerosol emissions from an important anthropogenic aerosol source: residential wood combustion. The second part, characterizes the chemical and physical composition of aerosols while investigating sources of aerosols in the Arctic. The main instrument used in this research has been the state...

  2. Representativeness of single lidar stations for zonally averaged ozone profiles, their trends and attribution to proxies

    Directory of Open Access Journals (Sweden)

    C. Zerefos

    2018-05-01

    Full Text Available This paper is focusing on the representativeness of single lidar stations for zonally averaged ozone profile variations over the middle and upper stratosphere. From the lower to the upper stratosphere, ozone profiles from single or grouped lidar stations correlate well with zonal means calculated from the Solar Backscatter Ultraviolet Radiometer (SBUV satellite overpasses. The best representativeness with significant correlation coefficients is found within ±15° of latitude circles north or south of any lidar station. This paper also includes a multivariate linear regression (MLR analysis on the relative importance of proxy time series for explaining variations in the vertical ozone profiles. Studied proxies represent variability due to influences outside of the earth system (solar cycle and within the earth system, i.e. dynamic processes (the Quasi Biennial Oscillation, QBO; the Arctic Oscillation, AO; the Antarctic Oscillation, AAO; the El Niño Southern Oscillation, ENSO, those due to volcanic aerosol (aerosol optical depth, AOD, tropopause height changes (including global warming and those influences due to anthropogenic contributions to atmospheric chemistry (equivalent effective stratospheric chlorine, EESC. Ozone trends are estimated, with and without removal of proxies, from the total available 1980 to 2015 SBUV record. Except for the chemistry related proxy (EESC and its orthogonal function, the removal of the other proxies does not alter the significance of the estimated long-term trends. At heights above 15 hPa an inflection point between 1997 and 1999 marks the end of significant negative ozone trends, followed by a recent period between 1998 and 2015 with positive ozone trends. At heights between 15 and 40 hPa the pre-1998 negative ozone trends tend to become less significant as we move towards 2015, below which the lower stratosphere ozone decline continues in agreement with findings of recent literature.

  3. Representativeness of single lidar stations for zonally averaged ozone profiles, their trends and attribution to proxies

    Science.gov (United States)

    Zerefos, Christos; Kapsomenakis, John; Eleftheratos, Kostas; Tourpali, Kleareti; Petropavlovskikh, Irina; Hubert, Daan; Godin-Beekmann, Sophie; Steinbrecht, Wolfgang; Frith, Stacey; Sofieva, Viktoria; Hassler, Birgit

    2018-05-01

    This paper is focusing on the representativeness of single lidar stations for zonally averaged ozone profile variations over the middle and upper stratosphere. From the lower to the upper stratosphere, ozone profiles from single or grouped lidar stations correlate well with zonal means calculated from the Solar Backscatter Ultraviolet Radiometer (SBUV) satellite overpasses. The best representativeness with significant correlation coefficients is found within ±15° of latitude circles north or south of any lidar station. This paper also includes a multivariate linear regression (MLR) analysis on the relative importance of proxy time series for explaining variations in the vertical ozone profiles. Studied proxies represent variability due to influences outside of the earth system (solar cycle) and within the earth system, i.e. dynamic processes (the Quasi Biennial Oscillation, QBO; the Arctic Oscillation, AO; the Antarctic Oscillation, AAO; the El Niño Southern Oscillation, ENSO), those due to volcanic aerosol (aerosol optical depth, AOD), tropopause height changes (including global warming) and those influences due to anthropogenic contributions to atmospheric chemistry (equivalent effective stratospheric chlorine, EESC). Ozone trends are estimated, with and without removal of proxies, from the total available 1980 to 2015 SBUV record. Except for the chemistry related proxy (EESC) and its orthogonal function, the removal of the other proxies does not alter the significance of the estimated long-term trends. At heights above 15 hPa an inflection point between 1997 and 1999 marks the end of significant negative ozone trends, followed by a recent period between 1998 and 2015 with positive ozone trends. At heights between 15 and 40 hPa the pre-1998 negative ozone trends tend to become less significant as we move towards 2015, below which the lower stratosphere ozone decline continues in agreement with findings of recent literature.

  4. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol.

    Science.gov (United States)

    Schill, Steven R; Collins, Douglas B; Lee, Christopher; Morris, Holly S; Novak, Gordon A; Prather, Kimberly A; Quinn, Patricia K; Sultana, Camille M; Tivanski, Alexei V; Zimmermann, Kathryn; Cappa, Christopher D; Bertram, Timothy H

    2015-06-24

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle-particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate.

  5. Primary aerosol and secondary inorganic aerosol budget over the Mediterranean Basin during 2012 and 2013

    Science.gov (United States)

    Guth, Jonathan; Marécal, Virginie; Josse, Béatrice; Arteta, Joaquim; Hamer, Paul

    2018-04-01

    In the frame of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx), we analyse the budget of primary aerosols and secondary inorganic aerosols over the Mediterranean Basin during the years 2012 and 2013. To do this, we use two year-long numerical simulations with the chemistry-transport model MOCAGE validated against satellite- and ground-based measurements. The budget is presented on an annual and a monthly basis on a domain covering 29 to 47° N latitude and 10° W to 38° E longitude. The years 2012 and 2013 show similar seasonal variations. The desert dust is the main contributor to the annual aerosol burden in the Mediterranean region with a peak in spring, and sea salt being the second most important contributor. The secondary inorganic aerosols, taken as a whole, contribute a similar level to sea salt. The results show that all of the considered aerosol types, except for sea salt aerosols, experience net export out of our Mediterranean Basin model domain, and thus this area should be considered as a source region for aerosols globally. Our study showed that 11 % of the desert dust, 22.8 to 39.5 % of the carbonaceous aerosols, 35 % of the sulfate and 9 % of the ammonium emitted or produced into the study domain are exported. The main sources of variability for aerosols between 2012 and 2013 are weather-related variations, acting on emissions processes, and the episodic import of aerosols from North American fires. In order to assess the importance of the anthropogenic emissions of the marine and the coastal areas which are central for the economy of the Mediterranean Basin, we made a sensitivity test simulation. This simulation is similar to the reference simulation but with the removal of the international shipping emissions and the anthropogenic emissions over a 50 km wide band inland along the coast. We showed that around 30 % of the emissions of carbonaceous aerosols and 35 to 60 % of the exported carbonaceous aerosols originates from the marine and

  6. A six year satellite-based assessment of the regional variations in aerosol indirect effects

    Directory of Open Access Journals (Sweden)

    T. A. Jones

    2009-06-01

    Full Text Available Aerosols act as cloud condensation nuclei (CCN for cloud water droplets, and changes in aerosol concentrations have significant microphysical impacts on the corresponding cloud properties. Moderate Resolution Imaging Spectroradiometer (MODIS aerosol and cloud properties are combined with NCEP Reanalysis data for six different regions around the globe between March 2000 and December 2005 to study the effects of different aerosol, cloud, and atmospheric conditions on the aerosol indirect effect (AIE. Emphasis is placed in examining the relative importance of aerosol concentration, type, and atmospheric conditions (mainly vertical motion to AIE from region to region.

    Results show that in most regions, AIE has a distinct seasonal cycle, though the cycle varies in significance and period from region to region. In the Arabian Sea (AS, the six-year mean anthropogenic + dust AIE is −0.27 Wm−2 and is greatest during the summer months (<−2.0 Wm−2 during which aerosol concentrations (from both dust and anthropogenic sources are greatest. Comparing AIE as a function of thin (LWP<20 gm−2 vs. thick (LWP≥20 gm−2 clouds under conditions of large scale ascent or decent at 850 hPa showed that AIE is greatest for thick clouds during periods of upward vertical motion. In the Bay of Bengal, AIE is negligible owing to less favorable atmospheric conditions, a lower concentration of aerosols, and a non-alignment of aerosol and cloud layers. In the eastern North Atlantic, AIE is weakly positive (+0.1 Wm−2 with dust aerosol concentration being much greater than the anthropogenic or sea salt components. However, elevated dust in this region exists above the maritime cloud layers and does not have a hygroscopic coating, which occurs in AS, preventing the dust from acting as CCN and limiting AIE. The Western Atlantic has a large anthropogenic aerosol concentration transported from the eastern

  7. Stable generator of polydisperse aerosol

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel

    2001-01-01

    Roč. 32, Suppl. 1 (2001), s. S823-S824 ISSN 0021-8502. [European Aerosol Conference 2001. Leipzig, 03.09.2001-07.09.2001] R&D Projects: GA AV ČR IAA4031105 Institutional research plan: CEZ:AV0Z4031919 Keywords : aerosol generator * fine aerosol * polydisperse aerosol Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.605, year: 2001

  8. The History of Therapeutic Aerosols: A Chronological Review.

    Science.gov (United States)

    Stein, Stephen W; Thiel, Charles G

    2017-02-01

    In 1956, Riker Laboratories, Inc., (now 3 M Drug Delivery Systems) introduced the first pressurized metered dose inhaler (MDI). In many respects, the introduction of the MDI marked the beginning of the modern pharmaceutical aerosol industry. The MDI was the first truly portable and convenient inhaler that effectively delivered drug to the lung and quickly gained widespread acceptance. Since 1956, the pharmaceutical aerosol industry has experienced dramatic growth. The signing of the Montreal Protocol in 1987 led to a surge in innovation that resulted in the diversification of inhaler technologies with significantly enhanced delivery efficiency, including modern MDIs, dry powder inhalers, and nebulizer systems. The innovative inhalers and drugs discovered by the pharmaceutical aerosol industry, particularly since 1956, have improved the quality of life of literally hundreds of millions of people. Yet, the delivery of therapeutic aerosols has a surprisingly rich history dating back more than 3500 years to ancient Egypt. The delivery of atropine and related compounds has been a crucial inhalation therapy throughout this period and the delivery of associated structural analogs remains an important therapy today. Over the centuries, discoveries from many cultures have advanced the delivery of therapeutic aerosols. For thousands of years, therapeutic aerosols were prepared by the patient or a physician with direct oversight of the patient using custom-made delivery systems. However, starting with the Industrial Revolution, advancements in manufacturing resulted in the bulk production of therapeutic aerosol delivery systems produced by people completely disconnected from contact with the patient. This trend continued and accelerated in the 20th century with the mass commercialization of modern pharmaceutical inhaler products. In this article, we will provide a summary of therapeutic aerosol delivery from ancient times to the present along with a look to the future. We

  9. Evolution of aerosol loading in Santiago de Chile between 1997 and 2014

    Science.gov (United States)

    Pistone, Kristina; Gallardo, Laura

    2015-04-01

    While aerosols produced by major cities are a significant component of anthropogenic climate forcing as well as an important factor in public health, many South American cities have not been a major focus of aerosol studies due in part to relatively few long-term observations in the region. Here we present a synthesis of the available data for the emerging megacity of Santiago, Chile. We report new results from a recent NASA AERONET (AErosol RObotic NETwork) site in the Santiago basin, combining these with previous AERONET observations in Santiago as well as with a new assessment of the 11-station air quality monitoring network currently administered by the Chilean Environment Ministry (MMA, Ministerio del Medio Ambiente) to assess changes in aerosol composition since 1997. While the average surface concentration of pollution components (specifically PM2.5 and PM10) has decreased, no significant change in total aerosol optical depth was observed. However, changes in aerosol size and composition are suggested by the proxy measurements. Previous studies have revealed limitations in purely satellite-based studies over Santiago due to biases from high surface reflection in the region, particularly in summer months (e.g. Escribano et al 2014). To overcome this difficulty and certain limitations in the air quality data, we next incorporate analysis of aerosol products from the Multi-angle Imaging SpectroRadiometer (MISR) instrument along with those from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, both on NASA's Terra satellite, to better quantify the high bias of MODIS. Thus incorporating these complementary datasets, we characterize the aerosol over Santiago over the period 1997 to 2014, including the evolution of aerosol properties over time and seasonal dependencies in the observed trends. References: Escribano et al (2014), "Satellite Retrievals of Aerosol Optical Depth over a Subtropical Urban Area: The Role of Stratification and Surface

  10. Intra and inter-continental aerosol transport and local and regional impacts

    Science.gov (United States)

    Charles, Leona Ann Marie

    vertical layering of aerosols in the troposphere from passive remote sensing measurements. Therefore, the connection with air pollution is very poor. Furthermore, the vertical structure of the aerosol is very important in assessing transport events and how they mix with the Planetary Boundary Layer (PBL). The need to fill this data gap and supply vertical information on plume detection has led to the launch of the Cloud Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) space borne lidar system, which can in principle provide vertical profiles of aerosol backscatter that can be used in the assimilation schemes. One particular problem which needs to be addressed, is the fact that the relationship between the optical scattering coefficients (or AOD) and the PM2.5 mass is not simple. Finally, regarding non-attainment of National Ambient Air Quality Standards (NAAQS), it has also been shown that a significant portion of the PM2.5 aerosol mass can be due to non-local sources. This fact is critical in assessing the appropriate strategy in emission controls, as part of the state implementation plan (SIP) to come into compliance. However, these studies are usually based on statistical analysis tools such as Positive Factor Analysis (PFA), and are not applicable to any single measurement. In addition, little is known about the impact of episodic long range transport as a possible mechanism for affecting local pollution. Such a mechanism cannot be investigated by statistical means or by any existing air transport models which do not consider high altitude plumes (aerosol layers), and must be studied solely with an appropriate suite of measurements including the simultaneous use of sky radiometers, lidars and satellites. Furthermore, since fine particulate matter is so crucial to identify, multi-wavelength determination of aerosol properties such as angstrom coefficient are necessary. It is our purpose to investigate the possibility that such long range transport events can

  11. Aerosol counterflow two-jets unit for continuous measurement of the soluble fraction of atmospheric aerosols.

    Science.gov (United States)

    Mikuska, Pavel; Vecera, Zbynek

    2005-09-01

    A new type of aerosol collector employing a liquid at laboratory temperature for continuous sampling of atmospheric particles is described. The collector operates on the principle of a Venturi scrubber. Sampled air flows at high linear velocity through two Venturi nozzles "atomizing" the liquid to form two jets of a polydisperse aerosol of fine droplets situated against each other. Counterflow jets of droplets collide, and within this process, the aerosol particles are captured into dispersed liquid. Under optimum conditions (air flow rate of 5 L/min and water flow rate of 2 mL/min), aerosol particles down to 0.3 microm in diameter are quantitatively collected in the collector into deionized water while the collection efficiency of smaller particles decreases. There is very little loss of fine aerosol within the aerosol counterflow two-jets unit (ACTJU). Coupling of the aerosol collector with an annular diffusion denuder located upstream of the collector ensures an artifact-free sampling of atmospheric aerosols. Operation of the ACTJU in combination with on-line detection devices allows in situ automated analysis of water-soluble aerosol species (e.g., NO2-, NO3-)with high time resolution (as high as 1 s). Under the optimum conditions, the limit of detection for particulate nitrite and nitrate is 28 and 77 ng/m(3), respectively. The instrument is sufficiently rugged for its application at routine monitoring of aerosol composition in the real time.

  12. Characterization of distinct Arctic aerosol accumulation modes and their sources

    Science.gov (United States)

    Lange, R.; Dall'Osto, M.; Skov, H.; Nøjgaard, J. K.; Nielsen, I. E.; Beddows, D. C. S.; Simo, R.; Harrison, R. M.; Massling, A.

    2018-06-01

    In this work we use cluster analysis of long term particle size distribution data to expand an array of different shorter term atmospheric measurements, thereby gaining insights into longer term patterns and properties of Arctic aerosol. Measurements of aerosol number size distributions (9-915 nm) were conducted at Villum Research Station (VRS), Station Nord in North Greenland during a 5 year record (2012-2016). Alongside this, measurements of aerosol composition, meteorological parameters, gaseous compounds and cloud condensation nuclei (CCN) activity were performed during different shorter occasions. K-means clustering analysis of particle number size distributions on daily basis identified several clusters. Clusters of accumulation mode aerosols (main size modes > 100 nm) accounted for 56% of the total aerosol during the sampling period (89-91% during February-April, 1-3% during June-August). By association to chemical composition, cloud condensation nuclei properties, and meteorological variables, three typical accumulation mode aerosol clusters were identified: Haze (32% of the time), Bimodal (14%) and Aged (6%). In brief: (1) Haze accumulation mode aerosol shows a single mode at 150 nm, peaking in February-April, with highest loadings of sulfate and black carbon concentrations. (2) Accumulation mode Bimodal aerosol shows two modes, at 38 nm and 150 nm, peaking in June-August, with the highest ratio of organics to sulfate concentrations. (3) Aged accumulation mode aerosol shows a single mode at 213 nm, peaking in September-October and is associated with cloudy and humid weather conditions during autumn. The three aerosol clusters were considered alongside CCN concentrations. We suggest that organic compounds, that are likely marine biogenic in nature, greatly influence the Bimodal cluster and contribute significantly to its CCN activity. This stresses the importance of better characterizing the marine ecosystem and the aerosol-mediated climate effects in the

  13. American Association for Aerosol Research (AAAR) `95

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The Fourteenth annual meeting of the American Association for Aerosol Research was held October 9-13, 1995 at Westin William Penn Hotel in Pittsburgh, PA. This volume contains the abstracts of the papers and poster sessions presented at this meeting, grouped by the session in which they were presented as follows: Radiation Effects; Aerosol Deposition; Collision Simulations and Microphysical Behavior; Filtration Theory and Measurements; Materials Synthesis; Radioactive and Nuclear Aerosols; Aerosol Formation, Thermodynamic Properties, and Behavior; Particle Contamination Issues in the Computer Industry; Pharmaceutical Aerosol Technology; Modeling Global/Regional Aerosols; Visibility; Respiratory Deposition; Biomass and Biogenic Aerosols; Aerosol Dynamics; Atmospheric Aerosols.

  14. Project Overview: Cumulus Humilis Aerosol Processing Study (CHAPS): Proposed Summer 2007 ASP Field Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, Carl M.; Berg, Larry K.; Ogren, J. A.; Hostetler, Chris A.; Ferrare, Richard

    2006-05-18

    This white paper presents the scientific motivation and preliminary logistical plans for a proposed ASP field campaign to be carried out in the summer of 2007. The primary objective of this campaign is to use the DOE Gulfstream-1 aircraft to make measurements characterizing the chemical, physical and optical properties of aerosols below, within and above large fields of fair weather cumulus and to use the NASA Langley Research Center’s High Spectral Resolution Lidar (HSRL) to make independent measurements of aerosol backscatter and extinction profiles in the vicinity of these fields. Separate from the science questions to be addressed by these observations will be information to add in the development of a parameterized cumulus scheme capable of including multiple cloud fields within a regional or global scale model. We will also be able to compare and contrast the cloud and aerosol properties within and outside the Oklahoma City plume to study aerosol processes within individual clouds. Preliminary discussions with the Cloud and Land Surface Interaction Campaign (CLASIC) science team have identified overlap between the science questions posed for the CLASIC Intensive Operation Period (IOP) and the proposed ASP campaign, suggesting collaboration would benefit both teams.

  15. Source characterization of ambient fine aerosol in Singapore during a haze episode in 2015

    Science.gov (United States)

    Hapsari Budisulistiorini, Sri; Riva, Matthieu; Williams, Michael; Miyakawa, Takuma; Komazaki, Yuichi; Chen, Jing; Surratt, Jason; Kuwata, Mikinori

    2017-04-01

    Recurring transboundary haze from Indonesia peatland fires in the previous decades has significantly elevated particulate matter (PM) concentration in Southeast Asia, particularly during the 2015 El Niño event. Previous studies have investigated chemical composition of particles emitted during haze episodes; however, they were limited to time-integrated samples and the number of identified compounds. Low time-resolution measurement results in co-variance of PM sources; therefore, higher time-resolution measurement is important in PM source apportionment. Between October 10-31, 2015, Aerodyne Time-of-Flight Aerosol Chemical Speciation Monitor (ToF-ACSM) was deployed for real-time chemical characterization of ambient submicron PM (NR-PM1) in Singapore. Simultaneously, PM2.5 filter samples were collected for molecular-level organic aerosol (OA) constituents, organic carbon (OC), elemental carbon (EC) and water-soluble OC (WSOC) analyses. OA constituents were quantified by gas chromatography interfaced to electron ionization mass spectrometry (GC/EI-MS) and ultra-performance liquid chromatography interfaced to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometer operated in the negative ion mode (UPLC/(-)ESI-HR-Q-TOFMS). OA and SO42- are dominant components of the haze particles, accounting for ˜77% and ˜12% of the total NR-PM1 mass, respectively. OC/EC ratio of 4.8 might indicate formation of secondary OA (SOA) and aerosols from biomass burning, including those from peat burning. OA fraction from ToF-ACSM measurements was analyzed for source apportionment using a bilinear model through multi-linear engine algorithm (ME-2) in graphical user interface SoFi (Source Finder). Five OA factors were identified: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), peat burning OA (PBOA), low-volatility oxygenated OA (LV-OOA), and semi-volatile oxygenated OA (SV-OOA). The HOA factor shows a distinct diurnal profile peaking in the morning and

  16. SIGNIFICANCE OF THYROID PROFILE (Serum T3, T4 & TSH IN INFERTILE WOMEN

    Directory of Open Access Journals (Sweden)

    Bindu Sharma

    2012-06-01

    Full Text Available Objective: To evaluate the relation of female infertility to thyroid dysfunction. Material & Methods: The present study was carried out in the department of Biochemistry in collaboration with the Gynae & Obst deptt., Subharti Medical College & Hospital Meerut. Serum T3, T4 and TSH estimation was done by Enzyme Linked Fluorescent Assay. Results: Serum T3 level in control group was 1.8 ± 0.64 nmol/L while it was 10.5 ± 0.5 nmol/L in hyperthyroid (p value 0.05, i.e., not significant. Serum TSH in control group was 3.5 ± 1.71 mIU/L, while it was 0.14 ± 0.01 mIU/L (p value <0.001, i.e., highly significant in hyperthyroidism, 8.4 ± 1.06 mIU/L in hypothyroidism (p value <0.001, i.e., highly significant. Out of 65 patients of study group thyroid dysfunction was associated with 25 (38.5% infertile women. 23 (35.4% women had hypothyroidism, 2 (3.1% women had hyperthyroidism and 40 women (61.5% were with euthyroid state, while in control group all the 25 women had euthyroid profile. Conclusions: Every infertile woman with ovulatory dysfunction should also investigated thyroid profile along with other investigations, to open better prospects of conception for such desperate infertile women.

  17. Smoke aerosol chemistry and aging of Siberian biomass burning emissions in a large aerosol chamber

    Science.gov (United States)

    Kalogridis, A.-C.; Popovicheva, O. B.; Engling, G.; Diapouli, E.; Kawamura, K.; Tachibana, E.; Ono, K.; Kozlov, V. S.; Eleftheriadis, K.

    2018-07-01

    Vegetation open fires constitute a significant source of particulate pollutants on a global scale and play an important role in both atmospheric chemistry and climate change. To better understand the emission and aging characteristics of smoke aerosols, we performed small-scale fire experiments using the Large Aerosol Chamber (LAC, 1800 m3) with a focus on biomass burning from Siberian boreal coniferous forests. A series of burn experiments were conducted with typical Siberian biomass (pine and debris), simulating separately different combustion conditions, namely, flaming, smoldering and mixed phase. Following smoke emission and dispersion in the combustion chamber, we investigated aging of aerosols under dark conditions. Here, we present experimental data on emission factors of total, elemental and organic carbon, as well as individual organic compounds, such as anhydrosugars, phenolic and dicarboxylic acids. We found that total carbon accounts for up to 80% of the fine mode (PM2.5) smoke aerosol. Higher PM2.5 emission factors were observed in the smoldering compared to flaming phase and in pine compared to debris smoldering phase. For low-temperature combustion, organic carbon (OC) contributed to more than 90% of total carbon, whereas elemental carbon (EC) dominated the aerosol composition in flaming burns with a 60-70% contribution to the total carbon mass. For all smoldering burns, levoglucosan (LG), a cellulose decomposition product, was the most abundant organic species (average LG/OC = 0.26 for pine smoldering), followed by its isomer mannosan or dehydroabietic acid (DA), an important constituent of conifer resin (DA/OC = 0.033). A levoglucosan-to-mannosan ratio of about 3 was observed, which is consistent with ratios reported for coniferous biomass and more generally softwood. The rates of aerosol removal for OC and individual organic compounds were investigated during aging in the chamber in terms of mass concentration loss rates over time under dark

  18. Degraded core accidents: review of aerosol behaviour in the containment of a PWR

    International Nuclear Information System (INIS)

    Nichols, A.L.; Walker, B.C.

    1981-09-01

    Low probability-high consequence accidents have become an important issue in reactor safety studies. Such accidents would involve damage to the core and the subsequent release of radioactive fission products into the environment. Aerosols play a major role in the transport and removal of these fission products in the reactor building containment. The aerosol mechanisms, computer modelling codes and experimental studies used to predict aerosol behaviour in the containment of a PWR are reviewed. There are significant uncertainties in the aerosol source terms and specific recommendations have been made for further studies, particularly with respect to code development and high density aerosol-fission product transport within closed systems. (author)

  19. Aerosol-Cloud Interactions and Cloud Microphysical Properties in the Asir Region of Saudi Arabia

    Science.gov (United States)

    Kucera, P. A.; Axisa, D.; Burger, R. P.; Li, R.; Collins, D. R.; Freney, E. J.; Buseck, P. R.

    2009-12-01

    In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region, located adjacent to the Red Sea in the southwest region of Saudi Arabia. Ground measurements of aerosol size distributions, hygroscopic growth factors, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were observed in the Asir region in August 2009. The presentation will include a summary of the analysis and results with a focus on aerosol-cloud interactions and cloud microphysical properties observed during the convective season in the Asir region.

  20. Lidar Measurements of Ozone, Aerosols, and Clouds Observed in the Tropics Near Central America During TC4-Costa Rica

    Science.gov (United States)

    Hair, J. W.; Browell, E.; Butler, C.; Fenn, M.; Notari, A.; Simpson, S.; Ismail, S.; Avery, M.

    2007-12-01

    Large-scale measurements of ozone and aerosol distributions were made from the NASA DC-8 aircraft during the TC4 (Tropical Composition, Cloud, and Climate Coupling) field experiment conducted from June 28 - August 10, 2007 based in San Jose, Costa Rica. Remote measurements were made with an airborne lidar to provide ozone and multiple-wavelength aerosol and cloud backscatter profiles from near the surface to above the tropopause along the flight track. Aerosol depolarization measurements were also made for the detection of nonspherical aerosols, such as mineral dust, biomass burning, and recent emissions from South American volcanoes. Long-range transport of Saharan dust with depolarizing aerosols was frequently observed in the lower troposphere both over the Caribbean Sea and Pacific Ocean and within the marine boundary layer. In addition, visible and sub-visible cirrus clouds were observed with the multi-wavelength backscatter and depolarization measurements. Initial distributions of ozone, aerosol, and cloud are presented which will be used to interpret large-scale atmospheric processes. In situ measurements of ozone and aerosols made onboard the DC-8 will be compared to the remote lidar measurements. This paper provides a first look at the characteristics of ozone, aerosol, and cloud distributions that were encountered during this field experiment and provide a unique dataset that will be further related through satellite data, backward trajectories, and chemical transport models (CTM) to sources and sinks of ozone, aerosols, and clouds and to dynamical, chemical, and radiative processes.

  1. Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone

    Science.gov (United States)

    Yu, Pengfei; Rosenlof, Karen H.; Liu, Shang; Telg, Hagen; Thornberry, Troy D.; Rollins, Andrew W.; Portmann, Robert W.; Bai, Zhixuan; Ray, Eric A.; Duan, Yunjun; Pan, Laura L.; Toon, Owen B.; Bian, Jianchun; Gao, Ru-Shan

    2017-07-01

    An enhanced aerosol layer near the tropopause over Asia during the June-September period of the Asian summer monsoon (ASM) was recently identified using satellite observations. Its sources and climate impact are presently not well-characterized. To improve understanding of this phenomenon, we made in situ aerosol measurements during summer 2015 from Kunming, China, then followed with a modeling study to assess the global significance. The in situ measurements revealed a robust enhancement in aerosol concentration that extended up to 2 km above the tropopause. A climate model simulation demonstrates that the abundant anthropogenic aerosol precursor emissions from Asia coupled with rapid vertical transport associated with monsoon convection leads to significant particle formation in the upper troposphere within the ASM anticyclone. These particles subsequently spread throughout the entire Northern Hemispheric (NH) lower stratosphere and contribute significantly (˜15%) to the NH stratospheric column aerosol surface area on an annual basis. This contribution is comparable to that from the sum of small volcanic eruptions in the period between 2000 and 2015. Although the ASM contribution is smaller than that from tropical upwelling (˜35%), we find that this region is about three times as efficient per unit area and time in populating the NH stratosphere with aerosol. With a substantial amount of organic and sulfur emissions in Asia, the ASM anticyclone serves as an efficient smokestack venting aerosols to the upper troposphere and lower stratosphere. As economic growth continues in Asia, the relative importance of Asian emissions to stratospheric aerosol is likely to increase.

  2. Size distributions of aerosols produced from substitute materials by the Laskin cold DOP aerosol generator

    International Nuclear Information System (INIS)

    Hinds, W.; Macher, J.; First, M.W.

    1981-01-01

    Test aerosols of di(2-ethylhexyl)phthalate (DOP) produced by Laskin nozzle aerosol generators are widely used for in-place filter testing and respirator fit testing. Concern for the health effects of this material has led to a search for substitute materials for test aerosols. Aerosols were generated with a Laskin generator and diluted 6000-fold with clean air. Size distributions were measured for DOP, di(2-ethylhexyl)sebecate, polyethylene glycol, mineral oil, and corn oil aerosols with a PMS ASAS-X optical particle counter. Distributions were slightly bimodal with count median diameters from 0.22 to 0.30 μm. Size distributions varied little with aerosol material, operating pressure, or liquid level. Mineral oil and corn oil gave the best agreement with the DOP size distribution

  3. Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS)

    Science.gov (United States)

    Gasbarre, Joseph; Walker, Richard; Cisewski, Michael; Zawodny, Joseph; Cheek, Dianne; Thornton, Brooke

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will extend the SAGE data record from the ideal vantage point of the International Space Station (ISS). The ISS orbital inclination is ideal for SAGE measurements providing coverage between 70 deg north and 70 deg south latitude. The SAGE data record includes an extensively validated data set including aerosol optical depth data dating to the Stratospheric Aerosol Measurement (SAM) experiments in 1975 and 1978 and stratospheric ozone profile data dating to the Stratospheric Aerosol and Gas Experiment (SAGE) in 1979. These and subsequent data records, notably from the SAGE II experiment launched on the Earth Radiation Budget Satellite in 1984 and the SAGE III experiment launched on the Russian Meteor-3M satellite in 2001, have supported a robust, long-term assessment of key atmospheric constituents. These scientific measurements provide the basis for the analysis of five of the nine critical constituents (aerosols, ozone (O3), nitrogen dioxide (NO2), water vapor (H2O), and air density using O2) identified in the U.S. National Plan for Stratospheric Monitoring. SAGE III on ISS was originally scheduled to fly on the ISS in the same timeframe as the Meteor-3M mission, but was postponed due to delays in ISS construction. The project was re-established in 2009.

  4. "Radiative Closure Studies for Clear Skies During the ARM 2003 Aerosol Intensive Observation Period"

    Energy Technology Data Exchange (ETDEWEB)

    J. J. Michalsky, G. P. Anderson, J. Barnard, J. Delamere, C. Gueymard, S. Kato, P. Kiedron, A. McComiskey, and P. Ricchiazzi

    2006-04-01

    The Department of Energy's Atmospheric Radiation Measurement (ARM) program sponsored a large intensive observation period (IOP) to study aerosol during the month of May 2003 around the Southern Great Plains (SGP) Climate Research Facility (CRF) in north central Oklahoma. Redundant measurements of aerosol optical properties were made using different techniques at the surface as well as in vertical profile with sensors aboard two aircraft. One of the principal motivations for this experiment was to resolve the disagreement between models and measurements of diffuse horizontal broadband shortwave irradiance at the surface, especially for modest aerosol loading. This paper focuses on using the redundant aerosol and radiation measurements during this IOP to compare direct beam and diffuse horizontal broadband shortwave irradiance measurements and models at the surface for a wide range of aerosol cases that occurred during 30 clear-sky periods on 13 days of May 2003. Models and measurements are compared over a large range of solar-zenith angles. Six different models are used to assess the relative agreement among them and the measurements. Better agreement than previously achieved appears to be the result of better specification of input parameters and better measurements of irradiances than in prior studies. Biases between modeled and measured direct irradiances are less than 1%, and biases between modeled and measured diffuse irradiances are less than 2%.

  5. The stability of 99Tcsup(m)-DTPA in an aerosol delivery system

    International Nuclear Information System (INIS)

    Pearson, D.; Richards, C.B.; Frier, M.

    1986-01-01

    99 Tcsup(m)-DTPA is now widely used in aerosol nebulizers for routine ventilation lung scanning. The stability of a commercially available DTPA kit has been measured when used in an aerosol delivery system and compared with the stability when stored in the parent vial according to the manufacturer's instructions. No significant breakdown was measured up to 8 h after reconstitution in the parent vial and up to 3 h when used as an aerosol. Values of the half time of clearance of DTPA aerosols in a group of 23 patients are compared with values given in the literature. (author)

  6. Lidar-Radiometer Inversion Code (LIRIC) for the Retrieval of Vertical Aerosol Properties from Combined Lidar Radiometer Data: Development and Distribution in EARLINET

    Science.gov (United States)

    Chaikovsky, A.; Dubovik, O.; Holben, Brent N.; Bril, A.; Goloub, P.; Tanre, D.; Pappalardo, G.; Wandinger, U.; Chaikovskaya, L.; Denisov, S.; hide

    2015-01-01

    This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code)algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar radiometric input data we use measurements from European Aerosol Re-search Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data by the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height-dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Inter-comparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLNET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.

  7. Multi-Satellite Synergy for Aerosol Analysis in the Asian Monsoon Region

    Science.gov (United States)

    Ichoku, Charles; Petrenko, Maksym

    2012-01-01

    Atmospheric aerosols represent one of the greatest uncertainties in environmental and climate research, particularly in tropical monsoon regions such as the Southeast Asian regions, where significant contributions from a variety of aerosol sources and types is complicated by unstable atmospheric dynamics. Although aerosols are now routinely retrieved from multiple satellite Sensors, in trying to answer important science questions about aerosol distribution, properties, and impacts, researchers often rely on retrievals from only one or two sensors, thereby running the risk of incurring biases due to sensor/algorithm peculiarities. We are conducting detailed studies of aerosol retrieval uncertainties from various satellite sensors (including Terra-/ Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, SeaWiFS, and Calipso-CALIOP), based on the collocation of these data products over AERONET and other important ground stations, within the online Multi-sensor Aerosol Products Sampling System (MAPSS) framework that was developed recently. Such analyses are aimed at developing a synthesis of results that can be utilized in building reliable unified aerosol information and climate data records from multiple satellite measurements. In this presentation, we will show preliminary results of. an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors, particularly focused on the Asian Monsoon region, along with some comparisons from the African Monsoon region.

  8. Aerosol behaviour modeling and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gieseke, J A; Reed, L D [Batelle Memorial Institute, Columbus, OH (United States)

    1977-01-01

    Aerosol behavior within Liquid Metal Fast Breeder Reactor (LMFBR) containments is of critical importance since most of the radioactive species are expected to be associated with particulate forms and the mass of radiologically significant material leaked to the ambient atmosphere is directly related to the aerosol concentration airborne within the containment. Mathematical models describing the behavior of aerosols in closed environments, besides providing a direct means of assessing the importance of specific assumptions regarding accident sequences, will also serve as the basic tool with which to predict the consequences of various postulated accident situations. Consequently, considerable efforts have been recently directed toward the development of accurate and physically realistic theoretical aerosol behavior models. These models have accounted for various mechanisms affecting agglomeration rates of airborne particulate matter as well as particle removal rates from closed systems. In all cases, spatial variations within containments have been neglected and a well-mixed control volume has been assumed. Examples of existing computer codes formulated from the mathematical aerosol behavior models are the Brookhaven National Laboratory TRAP code, the PARDISEKO-II and PARDISEKO-III codes developed at Karlsruhe Nuclear Research Center, and the HAA-2, HAA-3, and HAA-3B codes developed by Atomics International. Because of their attractive short computation times, the HAA-3 and HAA-3B codes have been used extensively for safety analyses and are attractive candidates with which to demonstrate order of magnitude estimates of the effects of various physical assumptions. Therefore, the HAA-3B code was used as the nucleus upon which changes have been made to account for various physical mechanisms which are expected to be present in postulated accident situations and the latest of the resulting codes has been termed the HAARM-2 code. It is the primary purpose of the HAARM

  9. Final Technical Report for Interagency Agreement No. DE-SC0005453 “Characterizing Aerosol Distributions, Types, and Optical and Microphysical Properties using the NASA Airborne High Spectral Resolution Lidar (HSRL) and the Research Scanning Polarimeter (RSP)”

    Energy Technology Data Exchange (ETDEWEB)

    Hostetler, Chris [NASA Langley Research Center, Hampton, VA (United States); Ferrare, Richard [NASA Langley Research Center, Hampton, VA (United States)

    2015-01-13

    Measurements of the vertical profile of atmospheric aerosols and aerosol optical and microphysical characteristics are required to: 1) determine aerosol direct and indirect radiative forcing, 2) compute radiative flux and heating rate profiles, 3) assess model simulations of aerosol distributions and types, and 4) establish the ability of surface and space-based remote sensors to measure the indirect effect. Consequently the ASR program calls for a combination of remote sensing and in situ measurements to determine aerosol properties and aerosol influences on clouds and radiation. As part of our previous DOE ASP project, we deployed the NASA Langley airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 King Air aircraft during major field experiments in 2006 (MILAGRO and MaxTEX), 2007 (CHAPS), 2009 (RACORO), and 2010 (CalNex and CARES). The HSRL provided measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm). These measurements were typically made in close temporal and spatial coincidence with measurements made from DOE-funded and other participating aircraft and ground sites. On the RACORO, CARES, and CalNEX missions, we also deployed the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). RSP provided intensity and degree of linear polarization over a broad spectral and angular range enabling column-average retrievals of aerosol optical and microphysical properties. Under this project, we analyzed observations and model results from RACORO, CARES, and CalNex and accomplished the following objectives. 1. Identified aerosol types, characterize the vertical distribution of the aerosol types, and partition aerosol optical depth by type, for CARES and CalNex using HSRL data as we have done for previous missions. 2. Investigated aerosol microphysical and macrophysical properties using the RSP. 3. Used the aerosol backscatter and extinction profiles measured by the HSRL

  10. Seawater mesocosm experiments in the Arctic uncover differential transfer of marine bacteria to aerosols.

    Science.gov (United States)

    Fahlgren, Camilla; Gómez-Consarnau, Laura; Zábori, Julia; Lindh, Markus V; Krejci, Radovan; Mårtensson, E Monica; Nilsson, Douglas; Pinhassi, Jarone

    2015-06-01

    Biogenic aerosols critically control atmospheric processes. However, although bacteria constitute major portions of living matter in seawater, bacterial aerosolization from oceanic surface layers remains poorly understood. We analysed bacterial diversity in seawater and experimentally generated aerosols from three Kongsfjorden sites, Svalbard. Construction of 16S rRNA gene clone libraries from paired seawater and aerosol samples resulted in 1294 sequences clustering into 149 bacterial and 34 phytoplankton operational taxonomic units (OTUs). Bacterial communities in aerosols differed greatly from corresponding seawater communities in three out of four experiments. Dominant populations of both seawater and aerosols were Flavobacteriia, Alphaproteobacteria and Gammaproteobacteria. Across the entire dataset, most OTUs from seawater could also be found in aerosols; in each experiment, however, several OTUs were either selectively enriched in aerosols or little aerosolized. Notably, a SAR11 clade OTU was consistently abundant in the seawater, but was recorded in significantly lower proportions in aerosols. A strikingly high proportion of colony-forming bacteria were pigmented in aerosols compared with seawater, suggesting that selection during aerosolization contributes to explaining elevated proportions of pigmented bacteria frequently observed in atmospheric samples. Our findings imply that atmospheric processes could be considerably influenced by spatiotemporal variations in the aerosolization efficiency of different marine bacteria. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Retrieval of Tropospheric Profiles from IR Emission Spectra: Field Experiment and Sensitivity Study

    National Research Council Canada - National Science Library

    Theriault, J

    1993-01-01

    .... The goal of this project was the retrieval of atmospheric temperature and water vapor profiles and possibly over relevant information on clouds and aerosol properties from high resolution IR emission...

  12. Production of Highly Charged Pharmaceutical Aerosols Using a New Aerosol Induction Charger.

    Science.gov (United States)

    Golshahi, Laleh; Longest, P Worth; Holbrook, Landon; Snead, Jessica; Hindle, Michael

    2015-09-01

    Properly charged particles can be used for effective lung targeting of pharmaceutical aerosols. The objective of this study was to characterize the performance of a new induction charger that operates with a mesh nebulizer for the production of highly charged submicrometer aerosols to bypass the mouth-throat and deliver clinically relevant doses of medications to the lungs. Variables of interest included combinations of model drug (albuterol sulfate) and charging excipient (NaCl) as well as strength of the charging field (1-5 kV/cm). Aerosol charge and size were measured using a modified electrical low pressure impactor system combined with high performance liquid chromatography. At the approximate mass median aerodynamic diameter (MMAD) of the aerosol (~0.4 μm), the induction charge on the particles was an order of magnitude above the field and diffusion charge limit. The nebulization rate was 439.3 ± 42.9 μl/min, which with a 0.1% w/v solution delivered 419.5 ± 34.2 μg of medication per minute. A new correlation was developed to predict particle charge produced by the induction charger. The combination of the aerosol induction charger and predictive correlations will allow for the practical generation and control of charged submicrometer aerosols for targeting deposition within the lungs.

  13. Heterogeneous Uptake of HO2 Radicals onto Atmospheric Aerosols

    Science.gov (United States)

    George, I. J.; Matthews, P. S.; Brooks, B.; Goddard, A.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.

    2011-12-01

    The hydroxyl (OH) and hydroperoxyl (HO2) radicals, together known as HOx, play a vital role in atmospheric chemistry by controlling the oxidative capacity of the troposphere. The atmospheric lifetime and concentrations of many trace reactive species, such as volatile organic compounds (VOCs), are determined by HOx radical levels. Therefore, the ability to accurately predict atmospheric HOx concentrations from a detailed knowledge of their sources and sinks is a very useful diagnostic tool to assess our current understanding of atmospheric chemistry. Several recent field studies have observed significantly lower concentrations of HO2 radicals than predicted using box models, where HO2 loss onto aerosols was suggested as a possible missing sink [1, 2]. However, the mechanism on HO2 uptake onto aerosols and its impact on ambient HOx levels are currently not well understood. To improve our understanding of this process, we have conducted laboratory experiments to measure HO2 uptake coefficients onto submicron aerosol particles. The FAGE (Fluorescence Assay by Gas Expansion) technique, a highly sensitive laser induced fluorescence based detection method, was used to monitor HO2 uptake kinetics onto aerosol particles in an aerosol flow tube. The application of the FAGE technique allowed for kinetic experiments to be performed under low HO2 concentrations, i.e. [HO2] atomizing dilute salt solutions or by homogeneous nucleation. HO2 uptake coefficients (γ) have been measured for single-component solid and aqueous inorganic salt and organic aerosol particles with a wide range of hygroscopicities. HO2 uptake coefficients on solid particles were below the detection limit (γ < 0.001), whereas on aqueous aerosols uptake coefficients were somewhat larger (γ = 0.001 - 0.008). HO2 uptake coefficients were highest on aerosols containing metal ions, such as Cu and Fe. Humidity and aerosol pH did not significantly impact the reactive HO2 uptake. Preliminary experiments have also

  14. Metagenomic detection of viruses in aerosol samples from workers in animal slaughterhouses.

    Directory of Open Access Journals (Sweden)

    Richard J Hall

    Full Text Available Published studies have shown that workers in animal slaughterhouses are at a higher risk of lung cancers as compared to the general population. No specific causal agents have been identified, and exposures to several chemicals have been examined and found to be unrelated. Evidence suggests a biological aetiology as the risk is highest for workers who are exposed to live animals or to biological material containing animal faeces, urine or blood. To investigate possible biological exposures in animal slaughterhouses, we used a metagenomic approach to characterise the profile of organisms present within an aerosol sample. An assessment of aerosol exposures for individual workers was achieved by the collection of personal samples that represent the inhalable fraction of dust/bioaerosol in workplace air in both cattle and sheep slaughterhouses. Two sets of nine personal aerosol samples were pooled for the cattle processing and sheep processing areas respectively, with a total of 332,677,346 sequence reads and 250,144,492 sequence reads of 85 bp in length produced for each. Eukaryotic genome sequence was found in both sampling locations, and bovine, ovine and human sequences were common. Sequences from WU polyomavirus and human papillomavirus 120 were detected in the metagenomic dataset from the cattle processing area, and these sequences were confirmed as being present in the original personal aerosol samples. This study presents the first metagenomic description of personal aerosol exposure and this methodology could be applied to a variety of environments. Also, the detection of two candidate viruses warrants further investigation in the setting of occupational exposures in animal slaughterhouses.

  15. Spatial distribution analysis of the OMI aerosol layer height: a pixel-by-pixel comparison to CALIOP observations

    Science.gov (United States)

    Chimot, Julien; Pepijn Veefkind, J.; Vlemmix, Tim; Levelt, Pieternel F.

    2018-04-01

    A global picture of atmospheric aerosol vertical distribution with a high temporal resolution is of key importance not only for climate, cloud formation, and air quality research studies but also for correcting scattered radiation induced by aerosols in absorbing trace gas retrievals from passive satellite sensors. Aerosol layer height (ALH) was retrieved from the OMI 477 nm O2 - O2 band and its spatial pattern evaluated over selected cloud-free scenes. Such retrievals benefit from a synergy with MODIS data to provide complementary information on aerosols and cloudy pixels. We used a neural network approach previously trained and developed. Comparison with CALIOP aerosol level 2 products over urban and industrial pollution in eastern China shows consistent spatial patterns with an uncertainty in the range of 462-648 m. In addition, we show the possibility to determine the height of thick aerosol layers released by intensive biomass burning events in South America and Russia from OMI visible measurements. A Saharan dust outbreak over sea is finally discussed. Complementary detailed analyses show that the assumed aerosol properties in the forward modelling are the key factors affecting the accuracy of the results, together with potential cloud residuals in the observation pixels. Furthermore, we demonstrate that the physical meaning of the retrieved ALH scalar corresponds to the weighted average of the vertical aerosol extinction profile. These encouraging findings strongly suggest the potential of the OMI ALH product, and in more general the use of the 477 nm O2 - O2 band from present and future similar satellite sensors, for climate studies as well as for future aerosol correction in air quality trace gas retrievals.

  16. Influence of indoor microbial aerosol on the welfare of meat ducks.

    Science.gov (United States)

    Yu, G L; Wei, L M; Liu, Y Y; Liu, J Y; Wang, Y; Gao, J; Chai, T J; Cai, Y M

    2016-01-01

    The aim of the study was to evaluate the effects of microbial aerosols on ducks' welfare and provide information on which to establish microbial aerosol concentration standards for poultry. A total of 1800 1-d-old Cherry Valley ducks were randomly divided into 5 groups (A, B, C, D and E) with 360 ducks in each. To obtain objective data, each group had three replications. Different microbial aerosol concentrations in different groups were created by controlling ventilation and bedding cleaning frequency. Group A was the control group and hygienic conditions deteriorated progressively from group B to E. A 6-stage Andersen impactor was used to detect the aerosol concentration of aerobes, fungi, gram-negative bacteria and an AGI-30 microbial air sampler detected endotoxins. Physiological stress was evaluated in the ducks by adrenocorticotropic hormone (ACTH) values in serum. To assess the effects of bioaerosol factors, welfare indicators including fluctuating asymmetry (FA), appearance and gait as well as the Lactobacillus caecal concentration were evaluated. The data showed group D had already reached the highest limit of concentration of airborne aerobic bacteria, airborne fungi, airborne gram-negative bacteria and airborne endotoxin. The ducks in this group had significantly increased serum ACTH values and significantly decreased caecal lactobacilli concentration. Furthermore, appearance and gait scores, wing length and overall FA and caecal Lactobacillus concentration in this group were significantly increased at 6 and 8 weeks of age. In conclusion, high concentrations of microbial aerosol adversely affected the welfare of meat ducks. The microbial aerosol values in group D suggest a preliminary upper limit concentration of bioaerosols in ambient air for healthy meat ducks.

  17. A global perspective on aerosol from low-volatility organic compounds

    Directory of Open Access Journals (Sweden)

    H. O. T. Pye

    2010-05-01

    Full Text Available Global production of organic aerosol from primary emissions of semivolatile (SVOCs and intermediate (IVOCs volatility organic compounds is estimated using the global chemical transport model, GEOS-Chem. SVOC oxidation is predicted to be a larger global source of net aerosol production than oxidation of traditional parent hydrocarbons (terpenes, isoprene, and aromatics. Using a prescribed rate constant and reduction in volatility for atmospheric oxidation, the yield of aerosol from SVOCs is predicted to be about 75% on a global, annually-averaged basis. For IVOCs, the use of a naphthalene-like surrogate with different high-NOx and low-NOx parameterizations produces a global aerosol yield of about 30%, or roughly 5 Tg/yr of aerosol. Estimates of the total global organic aerosol source presented here range between 60 and 100 Tg/yr. This range reflects uncertainty in the parameters for SVOC volatility, SVOC oxidation, SVOC emissions, and IVOC emissions, as well as wet deposition. The highest estimates result if SVOC emissions are significantly underestimated (by more than a factor of 2 or if wet deposition of the gas-phase semivolatile species is less effective than previous estimates. A significant increase in SVOC emissions, a reduction of the volatility of the SVOC emissions, or an increase in the enthalpy of vaporization of the organic aerosol all lead to an appreciable reduction of prediction/measurement discrepancy. In addition, if current primary organic aerosol (POA inventories capture only about one-half of the SVOC emission and the Henrys Law coefficient for oxidized semivolatiles is on the order of 103 M/atm, a global estimate of OA production is not inconsistent with the top-down estimate of 140 Tg/yr by (Goldstein and Galbally, 2007. Additional information is needed to constrain the emissions and treatment of SVOCs and IVOCs, which have traditionally not been included in models.

  18. Contrasting aerosol optical and radiative properties between dust and urban haze episodes in megacities of Pakistan

    Science.gov (United States)

    Iftikhar, Muhammad; Alam, Khan; Sorooshian, Armin; Syed, Waqar Adil; Bibi, Samina; Bibi, Humera

    2018-01-01

    Satellite and ground based remote sensors provide vital information about aerosol optical and radiative properties. Analysis of aerosol optical and radiative properties during heavy aerosol loading events in Pakistan are limited and, therefore, require in-depth examination. This work examines aerosol properties and radiative forcing during Dust Episodes (DE) and Haze Episodes (HE) between 2010 and 2014 over mega cities of Pakistan (Karachi and Lahore). Episodes having the daily averaged values of Aerosol Optical Depth (AOD) exceeding 1 were selected. DE were associated with high AOD and low Ångström Exponent (AE) over Karachi and Lahore while high AOD and high AE values were associated with HE over Lahore. Aerosol volume size distributions (AVSD) exhibited a bimodal lognormal distribution with a noticeable coarse mode peak at a radius of 2.24 μm during DE, whereas a fine mode peak was prominent at a radius 0.25 μm during HE. The results reveal distinct differences between HE and DE for spectral profiles of several parameters including Single Scattering Albedo (SSA), ASYmmetry parameter (ASY), and the real and imaginary components of refractive index (RRI and IRI). The AOD-AE correlation revealed that dust was the dominant aerosol type during DE and that biomass burning and urban/industrial aerosol types were pronounced during HE. Aerosol radiative forcing (ARF) was estimated using the Santa Barbra DISORT Atmospheric Radiative Transfer (SBDART) model. Calculations revealed a negative ARF at the Top Of the Atmosphere (ARFTOA) and at the Bottom Of the Atmosphere (ARFBOA), with positive ARF within the Atmosphere (ARFATM) during both DE and HE over Karachi and Lahore. Furthermore, estimations of ARFATM by SBDART were shown to be in good agreement with values derived from AERONET data for DE and HE over Karachi and Lahore.

  19. Chemical Thermodynamics of Aqueous Atmospheric Aerosols: Modeling and Microfluidic Measurements

    Science.gov (United States)

    Nandy, L.; Dutcher, C. S.

    2017-12-01

    Accurate predictions of gas-liquid-solid equilibrium phase partitioning of atmospheric aerosols by thermodynamic modeling and measurements is critical for determining particle composition and internal structure at conditions relevant to the atmosphere. Organic acids that originate from biomass burning, and direct biogenic emission make up a significant fraction of the organic mass in atmospheric aerosol particles. In addition, inorganic compounds like ammonium sulfate and sea salt also exist in atmospheric aerosols, that results in a mixture of single, double or triple charged ions, and non-dissociated and partially dissociated organic acids. Statistical mechanics based on a multilayer adsorption isotherm model can be applied to these complex aqueous environments for predictions of thermodynamic properties. In this work, thermodynamic analytic predictive models are developed for multicomponent aqueous solutions (consisting of partially dissociating organic and inorganic acids, fully dissociating symmetric and asymmetric electrolytes, and neutral organic compounds) over the entire relative humidity range, that represent a significant advancement towards a fully predictive model. The model is also developed at varied temperatures for electrolytes and organic compounds the data for which are available at different temperatures. In addition to the modeling approach, water loss of multicomponent aerosol particles is measured by microfluidic experiments to parameterize and validate the model. In the experimental microfluidic measurements, atmospheric aerosol droplet chemical mimics (organic acids and secondary organic aerosol (SOA) samples) are generated in microfluidic channels and stored and imaged in passive traps until dehydration to study the influence of relative humidity and water loss on phase behavior.

  20. Comparison of AOD, AAOD and column single scattering albedo from AERONET retrievals and in situ profiling measurements

    Science.gov (United States)

    Andrews, Elisabeth; Ogren, John A.; Kinne, Stefan; Samset, Bjorn

    2017-05-01

    Here we present new results comparing aerosol optical depth (AOD), aerosol absorption optical depth (AAOD) and column single scattering albedo (SSA) obtained from in situ vertical profile measurements with AERONET ground-based remote sensing from two rural, continental sites in the US. The profiles are closely matched in time (within ±3 h) and space (within 15 km) with the AERONET retrievals. We have used Level 1.5 inversion retrievals when there was a valid Level 2 almucantar retrieval in order to be able to compare AAOD and column SSA below AERONET's recommended loading constraint (AOD > 0.4 at 440 nm). While there is reasonable agreement for the AOD comparisons, the direct comparisons of in situ-derived to AERONET-retrieved AAOD (or SSA) reveal that AERONET retrievals yield higher aerosol absorption than obtained from the in situ profiles for the low aerosol optical depth conditions prevalent at the two study sites. However, it should be noted that the majority of SSA comparisons for AOD440 > 0.2 are, nonetheless, within the reported SSA uncertainty bounds. The observation that, relative to in situ measurements, AERONET inversions exhibit increased absorption potential at low AOD values is generally consistent with other published AERONET-in situ comparisons across a range of locations, atmospheric conditions and AOD values. This systematic difference in the comparisons suggests a bias in one or both of the methods, but we cannot assess whether the AERONET retrievals are biased towards high absorption or the in situ measurements are biased low. Based on the discrepancy between the AERONET and in situ values, we conclude that scaling modeled black carbon concentrations upwards to match AERONET retrievals of AAOD should be approached with caution as it may lead to aerosol absorption overestimates in regions of low AOD. Both AERONET retrievals and in situ measurements suggest there is a systematic relationship between SSA and aerosol amount (AOD or aerosol light

  1. Radiative Importance of Aerosol-Cloud Interaction

    Science.gov (United States)

    Tsay, Si-Chee

    1999-01-01

    Aerosol particles are input into the troposphere by biomass burning, among other sources. These aerosol palls cover large expanses of the earth's surface. Aerosols may directly scatter solar radiation back to space, thus increasing the earth's albedo and act to cool the earth's surface and atmosphere. Aerosols also contribute to the earth's energy balance indirectly. Hygroscopic aerosol act as cloud condensation nuclei (CCN) and thus affects cloud properties. In 1977, Twomey theorized that additional available CCN would create smaller but more numerous cloud droplets in a cloud with a given amount of liquid water. This in turn would increase the cloud albedo which would scatter additional radiation back to space and create a similar cooling pattern as the direct aerosol effect. Estimates of the magnitude of the aerosol indirect effect on a global scale range from 0.0 to -4.8 W/sq m. Thus the indirect effect can be of comparable magnitude and opposite in sign to the estimates of global greenhouse gas forcing Aerosol-cloud interaction is not a one-way process. Just as aerosols have an influence on clouds through the cloud microphysics, clouds have an influence on aerosols. Cloud droplets are solutions of liquid water and CCN, now dissolved. When the cloud droplet evaporates it leaves behind an aerosol particle. This new particle does not have to have the same properties as the original CCN. In fact, studies show that aerosol particles that result from cloud processing are larger in size than the original CCN. Optical properties of aerosol particles are dependent on the size of the particles. Larger particles have a smaller backscattering fraction, and thus less incoming solar radiation will be backscattered to space if the aerosol particles are larger. Therefore, we see that aerosols and clouds modify each other to influence the radiative balance of the earth. Understanding and quantifying the spatial and seasonal patterns of the aerosol indirect forcing may have

  2. Prediction of health effects of cross-border atmospheric pollutants using an aerosol forecast model.

    Science.gov (United States)

    Onishi, Kazunari; Sekiyama, Tsuyoshi Thomas; Nojima, Masanori; Kurosaki, Yasunori; Fujitani, Yusuke; Otani, Shinji; Maki, Takashi; Shinoda, Masato; Kurozawa, Youichi; Yamagata, Zentaro

    2018-08-01

    Health effects of cross-border air pollutants and Asian dust are of significant concern in Japan. Currently, models predicting the arrival of aerosols have not investigated the association between arrival predictions and health effects. We investigated the association between subjective health symptoms and unreleased aerosol data from the Model of Aerosol Species in the Global Atmosphere (MASINGAR) acquired from the Japan Meteorological Agency, with the objective of ascertaining if these data could be applied to predicting health effects. Subjective symptom scores were collected via self-administered questionnaires and, along with modeled surface aerosol concentration data, were used to conduct a risk evaluation using generalized estimating equations between October and November 2011. Altogether, 29 individuals provided 1670 responses. Spearman's correlation coefficients were determined for the relationship between the proportion of the participants reporting the maximum score of two or more for each symptom and the surface concentrations for each considered aerosol species calculated using MASINGAR; the coefficients showed significant intermediate correlations between surface sulfate aerosol concentration and respiratory, throat, and fever symptoms (R = 0.557, 0.454, and 0.470, respectively; p < 0.01). In the general estimation equation (logit link) analyses, a significant linear association of surface sulfate aerosol concentration, with an endpoint determined by reported respiratory symptom scores of two or more, was observed (P trend = 0.001, odds ratio [OR] of the highest quartile [Q4] vs. the lowest [Q1] = 5.31, 95% CI = 2.18 to 12.96), with adjustment for potential confounding. The surface sulfate aerosol concentration was also associated with throat and fever symptoms. In conclusion, our findings suggest that modeled data are potentially useful for predicting health risks of cross-border aerosol arrivals. Copyright © 2018 Elsevier Ltd

  3. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea-ice

    Science.gov (United States)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2015-10-01

    The effect of aerosols on clouds and their radiative properties is one of the largest uncertainties in our understanding of radiative forcing. A recent study has concluded that better characterisation of pristine, natural aerosol processes leads to the largest reduction in these uncertainties. Antarctica, being far from anthropogenic activities, is an ideal location for the study of natural aerosol processes. Aerosol measurements in Antarctica are often limited to boundary layer air-masses at spatially sparse coastal and continental research stations, with only a handful of studies in the sea ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the ice-breaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the Polar Front, with mean Polar Cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air-masses quickly from the free-troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea ice boundary layer air-masses travelled equator-ward into the low albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei where, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and

  4. Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies.

    Science.gov (United States)

    Ghosh, S; Smith, M H; Rap, A

    2007-11-15

    Aerosols are known to influence significantly the radiative budget of the Earth. Although the direct effect (whereby aerosols scatter and absorb solar and thermal infrared radiation) has a large perturbing influence on the radiation budget, the indirect effect (whereby aerosols modify the microphysical and hence the radiative properties and amounts of clouds) poses a greater challenge to climate modellers. This is because aerosols undergo chemical and physical changes while in the atmosphere, notably within clouds, and are removed largely by precipitation. The way in which aerosols are processed by clouds depends on the type, abundance and the mixing state of the aerosols concerned. A parametrization with sulphate and sea-salt aerosol has been successfully integrated within the Hadley Centre general circulation model (GCM). The results of this combined parametrization indicate a significantly reduced role, compared with previous estimates, for sulphate aerosol in cloud droplet nucleation and, consequently, in indirect radiative forcing. However, in this bicomponent system, the cloud droplet number concentration, N(d) (a crucial parameter that is used in GCMs for radiative transfer calculations), is a smoothly varying function of the sulphate aerosol loading. Apart from sea-salt and sulphate aerosol particles, biomass aerosol particles are also present widely in the troposphere. We find that biomass smoke can significantly perturb the activation and growth of both sulphate and sea-salt particles. For a fixed salt loading, N(d) increases linearly with modest increases in sulphate and smoke masses, but significant nonlinearities are observed at higher non-sea-salt mass loadings. This non-intuitive N(d) variation poses a fresh challenge to climate modellers.

  5. BVOC-aerosol-climate interactions in the global aerosol-climate model ECHAM5.5-HAM2

    Directory of Open Access Journals (Sweden)

    R. Makkonen

    2012-11-01

    Full Text Available The biosphere emits volatile organic compounds (BVOCs which, after oxidation in the atmosphere, can partition on the existing aerosol population or even form new particles. The large quantities emitted provide means for a large potential impact on both aerosol direct and indirect effects. Biogenic responses to atmospheric temperature change can establish feedbacks even in rather short timescales. However, due to the complexity of organic aerosol partitioning, even the sign of these feedbacks is of large uncertainty. We use the global aerosol-climate model ECHAM5.5-HAM2 to explore the effect of BVOC emissions on new particle formation, clouds and climate. Two BVOC emission models, MEGAN2 and LPJ-GUESS, are used. MEGAN2 shows a 25% increase while LPJ-GUESS shows a slight decrease in global BVOC emission between years 2000 and 2100. The change of shortwave cloud forcing from year 1750 to 2000 ranges from −1.4 to −1.8 W m−2 with 5 different nucleation mechanisms. We show that the change in shortwave cloud forcing from the year 2000 to 2100 ranges from 1.0 to 1.5 W m−2. Although increasing future BVOC emissions provide 3–5% additional CCN, the effect on the cloud albedo change is modest. Due to simulated decreases in future cloud cover, the increased CCN concentrations from BVOCs can not provide significant additional cooling in the future.

  6. Unveiling aerosol-cloud interactions - Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate

    Science.gov (United States)

    Christensen, Matthew W.; Neubauer, David; Poulsen, Caroline A.; Thomas, Gareth E.; McGarragh, Gregory R.; Povey, Adam C.; Proud, Simon R.; Grainger, Roy G.

    2017-11-01

    Increased concentrations of aerosol can enhance the albedo of warm low-level cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3-D radiative transfer) clouds. To screen for this contamination we have developed a new cloud-aerosol pairing algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS), show a marked reduction in the strength of the intrinsic aerosol indirect radiative forcing when selecting aerosol pairs that are located farther away from the clouds (-0.28±0.26 W m-2) compared to those including pairs that are within 15 km of the nearest cloud (-0.49±0.18 W m-2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol-loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to the inclusion of retrieval artefacts in the aerosol located near clouds.

  7. Devices and methods for generating an aerosol

    KAUST Repository

    Bisetti, Fabrizio

    2016-03-03

    Aerosol generators and methods of generating aerosols are provided. The aerosol can be generated at a stagnation interface between a hot, wet stream and a cold, dry stream. The aerosol has the benefit that the properties of the aerosol can be precisely controlled. The stagnation interface can be generated, for example, by the opposed flow of the hot stream and the cold stream. The aerosol generator and the aerosol generation methods are capable of producing aerosols with precise particle sizes and a narrow size distribution. The properties of the aerosol can be controlled by controlling one or more of the stream temperatures, the saturation level of the hot stream, and the flow times of the streams.

  8. Modeling of Viral Aerosol Transmission and Detection

    KAUST Repository

    Khalid, Maryam; Amin, Osama; Ahmed, Sajid; Alouini, Mohamed-Slim

    2018-01-01

    The objective of this work is to investigate the spread mechanism of diseases in the atmosphere as an engineering problem. Among the viral transmission mechanisms that do not include physical contact, aerosol transmission is the most significant mode of transmission where virus-laden droplets are carried over long distances by wind. In this work, we focus on aerosol transmission of virus and introduce the idea of viewing virus transmission through aerosols and their transport as a molecular communication problem, where one has no control over transmission source but a robust receiver can be designed using nano-biosensors. To investigate this idea, a complete system is presented and end-toend mathematical model for the aerosol transmission channel is derived under certain constraints and boundary conditions. In addition to transmitter and channel, a receiver architecture composed of air sampler and Silicon Nanowire field effect transistor is also discussed. Furthermore, a detection problem is formulated for which maximum likelihood decision rule and the corresponding missed detection probability is discussed. At the end, simulation results are presented to investigate the parameters that affect the performance and justify the feasibility of proposed setup in related applications.

  9. Aerosol studies with Listeria innocua and Listeria monocytogenes.

    Science.gov (United States)

    Zhang, Guodong; Ma, Li; Oyarzabal, Omar A; Doyle, Michael P

    2007-08-01

    Aerosol studies of Listeria monocytogenes in food processing plants have been limited by lack of a suitable surrogate microorganism. The objective of this study was to investigate the potential of using green fluorescent protein-labeled strains of Listeria innocua as a surrogate for L. monocytogenes for aerosol studies. These studies were conducted in a laboratory bioaerosol chamber and a pilot food-processing facility. Four strains of L. innocua and five strains of L. monocytogenes were used. In the laboratory chamber study, Listeria cells were released into the environment at two different cell numbers and under two airflow conditions. Trypticase soy agar (TSA) plates and oven-roasted breasts of chicken and turkey were placed in the chamber to monitor Listeria cell numbers deposited from aerosols. A similar experimental design was used in the pilot plant study; however, only L. innocua was used. Results showed that L. monocytogenes and L. innocua survived equally well on chicken and turkey breast meats and TSA plates. No-fan and continuous fan applications, which affected airflow, had no significant effect on settling rates of aerosolized L. monocytogenes and L. innocua in the bioaerosol chamber or L. innocua in the pilot plant study. Listeriae cell numbers in the air decreased rapidly during the first 1.5 h following release, with few to no listeriae detected in the air at 3 h. Aerosol particles with diameters of 1 and 2 microM correlated directly with the number of Listeria cells in the aerosol but not with particles that were 0.3, 0.5, and 5 microM in diameter. Results indicate that L. innocua can be used as a surrogate for L. monocytogenes in an aerosol study.

  10. Biomass burning and its effects on fine aerosol acidity, water content and nitrogen partitioning

    Science.gov (United States)

    Bougiatioti, Aikaterini; Nenes, Athanasios; Paraskevopoulou, Despina; Fourtziou, Luciana; Stavroulas, Iasonas; Liakakou, Eleni; Myriokefalitakis, Stelios; Daskalakis, Nikos; Weber, Rodney; Kanakidou, Maria; Gerasopoulos, Evangelos; Mihalopoulos, Nikolaos

    2017-04-01

    Aerosol acidity is an important property that drives the partitioning of semi-volatile species, the formation of secondary particulate matter and metal and nutrient solubility. Aerosol acidity varies considerably between aerosol types, RH, temperature, the degree of atmospheric chemical aging and may also change during transport. Among aerosol different sources, sea salt and dust have been well studied and their impact on aerosol acidity and water uptake is more or less understood. Biomass burning (BB) on the other hand, despite its significance as a source in a regional and global scale, is much less understood. Currently, there is no practical and accurate enough method, to directly measure the pH of in-situ aerosol. The combination of thermodynamic models, with targeted experimental observations can provide reliable predictions of aerosol particle water and pH, using as input the concentration of gas/aerosol species, temperature (T), and relative humidity (RH). As such an example, ISORROPIA-II (Fountoukis and Nenes, 2007) has been used for the thermodynamic analysis of measurements conducted in downtown Athens during winter 2013, in order to evaluate the effect of BB on aerosol water and acidity. Biomass burning, especially during night time, was found to contribute significantly to the increased organics concentrations, but as well to the BC component associated with wood burning, particulate nitrates, chloride, and potassium. These increased concentrations were found to impact on fine aerosol water, with Winorg having an average concentration of 11±14 μg m-3 and Worg 12±19 μg m-3 with the organic component constituting almost 38% of the total calculated submicron water. When investigating the fine aerosol acidity it was derived that aerosol was generally acidic, with average pH during strong BB influence of 2.8±0.5, value similar to the pH observed for regional aerosol influenced by important biomass burning episodes at the remote background site of

  11. The GRAPE aerosol retrieval algorithm

    Directory of Open Access Journals (Sweden)

    G. E. Thomas

    2009-11-01

    Full Text Available The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations – this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998, as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE data-set.

    The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.

  12. Aerosol in the containment

    International Nuclear Information System (INIS)

    Lanza, S.; Mariotti, P.

    1986-01-01

    The US program LACE (LWR Aerosol Containment Experiments), in which Italy participates together with several European countries, Canada and Japan, aims at evaluating by means of a large scale experimental activity at HEDL the retention in the pipings and primary container of the radioactive aerosol released following severe accidents in light water reactors. At the same time these experiences will make available data through which the codes used to analyse the behaviour of the aerosol in the containment and to verify whether by means of the codes of thermohydraulic computation it is possible to evaluate with sufficient accuracy variable influencing the aerosol behaviour, can be validated. This report shows and compares the results obtained by the participants in the LACE program with the aerosol containment codes NAVA 5 and CONTAIN for the pre-test computations of the test LA 1, in which an accident called containment by pass is simulated

  13. Sea Spray Aerosol Production over the North Atlantic

    Science.gov (United States)

    Bates, T. S.; Quinn, P.

    2017-12-01

    Breaking waves on the ocean surface generate air bubbles that scavenge organic matter from the surrounding seawater. When injected into the atmosphere, these bubbles burst, yielding sea spray aerosol (SSA), a mixture of organic and inorganic compounds with the organic matter enriched relative to seawater. SSA mass is well documented as the dominant component of aerosol light scattering over the remote oceans. The importance of SSA number to marine boundary layer cloud condensation nuclei (CCN) is much less certain. During the Western Atlantic Climate Study cruises (WACS-1 - August 2012 and WACS-2 - May-June 2014) and the North Atlantic Aerosols and Marine Ecosystem Study cruises (NAAMES-1 - November 2015, NAAMES-2 - May 2016, and NAAMES-3 - September 2017), we generated and measured freshly emitted SSA using the Sea Sweep SSA generator. During the 2017 cruise we also generated SSA with a Marine Aerosol Reference Tank (MART). Using the data generated on these 5 cruises and a large database of remote marine boundary layer aerosol measurements we will address three questions during this presentation: 1 - Do phytoplankton ecosystems affect the organic enrichment of freshly emitted SSA?, 2 - Do plankton ecosystems affect the number production flux of SSA?, and 3 - Is SSA a significant source of atmospheric CCN?

  14. Stratospheric Aerosol Measurements

    Science.gov (United States)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  15. Characterization of aerosols in the Metropolitan Area of San Jose

    International Nuclear Information System (INIS)

    Mejias Perez, J.A.

    1997-07-01

    The objective of the present study, was to elaborate a profile of the contamination by private matter and to characterize the aerosols collected in the Metropolitan Area of San Jose (Costa Rica). For that, a campaign of sampling was carried out in three points of the city of San Jose, differentiated by there degree of activity: Center of San Jose (Central Station of Firemen), San Isidro of Coronado -Canton of Vasquez of Coronado- (Municipality) and Escazu (Municipality). Such campaign was carried out from April 4 to July 4, 1996 (transition summer-winter), and in two periods of time of 8 hours: 8 a.m. to 4 p.m. and of 8 p.m. to 4 a.m. The aerosols were collected utilizing Gent Pm-10 samplers, in filters of polycarbonate of 0,4 μm and 8 μm in cascade, with a flow average of 15 L/min., and it determined the composition average of the present aerosols. The concentration of the majority of the anions were obtained by means of ionic chromatography of high resolution, and the main cations by spectrophotometry of atomic absorption with electro thermic atomization. The space-temporary variations of the concentrations were evaluated and their correlation with the meteorologic variable. (S. Grainger) [es

  16. Assessment of the Aerosol Generation and Toxicity of Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Patrick T. O'Shaughnessy

    2014-06-01

    Full Text Available Current interest in the pulmonary toxicity of carbon nanotubes (CNTs has resulted in a need for an aerosol generation system that is capable of consistently producing a CNT aerosol at a desired concentration level. This two-part study was designed to: (1 assess the properties of a commercially-available aerosol generator when producing an aerosol from a purchased powder supply of double-walled carbon nanotubes (DWCNTs; and (2 assess the pulmonary sub-acute toxicity of DWCNTs in a murine model during a 5-day (4 h/day whole-body exposure. The aerosol generator, consisting of a novel dustfeed mechanism and venturi ejector was determined to be capable of producing a DWCNT consistently over a 4 h exposure period at an average level of 10.8 mg/m3. The count median diameter was 121 nm with a geometric standard deviation of 2.04. The estimated deposited dose was 32 µg/mouse. The total number of cells in bronchoalveolar lavage (BAL fluid was significantly (p < 0.01 increased in exposed mice compared to controls. Similarly, macrophages in BAL fluid were significantly elevated in exposed mice, but not neutrophils. All animals exposed to CNT and euthanized immediately after exposure had changes in the lung tissues showing acute inflammation and injury; however these pathological changes resolved two weeks after the exposure.

  17. Direct and semi-direct effects of aerosol climatologies on long-term climate simulations over Europe

    Science.gov (United States)

    Schultze, Markus; Rockel, Burkhardt

    2017-08-01

    This study compares the direct and semi-direct aerosol effects of different annual cycles of tropospheric aerosol loads for Europe from 1950 to 2009 using the regional climate model COSMO-CLM, which is laterally forced by reanalysis data and run using prescribed, climatological aerosol optical properties. These properties differ with respect to the analysis strategy and the time window, and are then used for the same multi-decadal period. Five simulations with different aerosol loads and one control simulation without any tropospheric aerosols are integrated and compared. Two common limitations of our simulation strategy, to fully assess direct and semi-direct aerosol effects, are the applied observed sea surface temperatures and sea ice conditions, and the lack of short-term variations in the aerosol load. Nevertheless, the impact of different aerosol climatologies on common regional climate model simulations can be assessed. The results of all aerosol-including simulations show a distinct reduction in solar irradiance at the surface compared with that in the control simulation. This reduction is strongest in the summer season and is balanced primarily by a weakening of turbulent heat fluxes and to a lesser extent by a decrease in longwave emissions. Consequently, the seasonal mean surface cooling is modest. The temperature profile responses are characterized by a shallow near-surface cooling and a dominant warming up to the mid-troposphere caused by aerosol absorption. The resulting stabilization of stratification leads to reduced cloud cover and less precipitation. A decrease in cloud water and ice content over Central Europe in summer possibly reinforce aerosol absorption and thus strengthen the vertical warming. The resulting radiative forcings are positive. The robustness of the results was demonstrated by performing a simulation with very strong aerosol forcing, which lead to qualitatively similar results. A distinct added value over the default aerosol

  18. Radioactive aerosols. [In Russian

    Energy Technology Data Exchange (ETDEWEB)

    Natanson, G L

    1956-01-01

    Tabulations are given presenting various published data on safe atmospheric concentrations of various radioactive and non-radioactive aerosols. Methods of determination of active aerosol concentrations and dispersion as well as the technical applications of labeled aerosols are discussed. The effect of atomic explosions are analyzed considering the nominal atomic bomb based on /sup 235/U and /sup 232/Pu equivalent to 20,000 tons of TNT.

  19. Influence of aerosol on regional precipitation in North China

    Institute of Scientific and Technical Information of China (English)

    DUAN Jing; MAO JieTai

    2009-01-01

    The possible anthropogenic aerosol effect on regional precipitation is analyzed based on the historical data of precipitation and visibility of North China. At first, the precipitation amounts from 1960 to 1979 are considered as natural background values in our study for relatively less intensive industrial activi-ties and light air pollution during that period of time, then the region is divided into different subregions by applying the clustering method including the significance test of station rainfall correlations to the time series of 10-day mean rainfall amounts in this period. Based on the rule that the precipitation characteristics are similar in the same clustering region, the correlation of precipitation amounts among all stations in each region is thus established. Secondly, for the period from 1990 to 2005, during which, the economy had experienced a rapid development in this region, the variations of visibility at each station are analyzed. The stations with the absolute change in visibility less than 0.1 km/a are used as the reference stations, at which it is assumed that precipitation has not been seriously influ-enced by anthropogenic aerosols. Then the rainfall amounts of reference stations are used to estimate the natural precipitation values of the other stations in each clustering region. The difference between estimated precipitation and measured precipitation amount is thought to result from changes in an-thropogenic aerosols. These changes in precipitation amounts caused by anthropogenic aerosols at each station are calculated using the 10-day mean rainfall values from 1990 to 2005. The analysis re-suits obtained with this method are remarkable if it passes the significance test, and therefore, the suppression of regional precipitation over the region by anthropogenic aerosol is proved. It is found that this effect is most remarkable in summer. The influence of anthropogenic aerosols on convective precipitation possibly plays an important

  20. Effect of Wind Speed on Aerosol Optical Depth over Remote Oceans, Based on Data from the Maritime Aerosol Network

    Science.gov (United States)

    Smirnov, A.; Sayer, A. M.; Holben, B. N.; Hsu, N. C.; Sakerin, S. M.; Macke, A.; Nelson, N. B.; Courcoux, Y.; Smyth, T. J.; Croot, P.; hide

    2012-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. The MAN archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we investigate correlations between ship-borne aerosol optical depth (AOD) and near-surface wind speed, either measured (onboard or from satellite) or modeled (NCEP). According to our analysis, wind speed influences columnar aerosol optical depth, although the slope of the linear regression between AOD and wind speed is not steep (approx. 0.004 - 0.005), even for strong winds over 10m/s. The relationships show significant scatter (correlation coefficients typically in the range 0.3 - 0.5); the majority of this scatter can be explained by the uncertainty on the input data. The various wind speed sources considered yield similar patterns. Results are in good agreement with the majority of previously published relationships between surface wind speed and ship-based or satellite-based AOD measurements. The basic relationships are similar for all the wind speed sources considered; however, the gradient of the relationship varies by around a factor of two depending on the wind data used