WorldWideScience

Sample records for signaling-regulated short-chain dehydrogenase

  1. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    Directory of Open Access Journals (Sweden)

    Margit Winkler

    2013-08-01

    Full Text Available Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S-selectivity and together with a highly (R-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  2. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase.

    Science.gov (United States)

    Napora-Wijata, Kamila; Strohmeier, Gernot A; Sonavane, Manoj N; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-08-12

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisiae. A preference for secondary compared to primary alcohols in oxidation direction was observed for YlADH2. 2-Octanone was investigated in reduction mode in detail. Remarkably, YlADH2 displays perfect (S)-selectivity and together with a highly (R)-selective short chain dehydrogenase/ reductase from Yarrowia lipolytica it is possible to access both enantiomers of 2-octanol in >99% ee with Yarrowia lipolytica oxidoreductases.

  3. Clinical aspects of short-chain acyl-CoA dehydrogenase deficiency

    NARCIS (Netherlands)

    Maldegem, B.T.; Wanders, R.J.A.; Wijburg, F.A.

    2010-01-01

    Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is an autosomal recessive inborn error of mitochondrial fatty acid oxidation. SCADD is biochemically characterized by increased C4-carnitine in plasma and ethylmalonic acid in urine. The diagnosis of SCADD is confirmed by DNA analysis showing

  4. Structural organization of the human short-chain acyl-CoA dehydrogenase gene

    DEFF Research Database (Denmark)

    Corydon, M J; Andresen, B S; Bross, P

    1997-01-01

    Short-chain acyl-CoA dehydrogenase (SCAD) is a homotetrameric mitochondrial flavoenzyme that catalyzes the initial reaction in short-chain fatty acid beta-oxidation. Defects in the SCAD enzyme are associated with failure to thrive, often with neuromuscular dysfunction and elevated urinary excretion...... shown to be associated with ethylmalonic aciduria. From analysis of 18 unrelated Danish families, we show that the four SCAD gene polymorphisms constitute five allelic variants of the SCAD gene, and that the 625A variant together with the less frequent variant form of the three other polymorphisms (321C....... The evolutionary relationship between SCAD and five other members of the acyl-CoA dehydrogenase family was investigated by two independent approaches that gave similar phylogenetic trees....

  5. Ethylmalonic aciduria is associated with an amino acid variant of short chain acyl-coenzyme A dehydrogenase

    DEFF Research Database (Denmark)

    Corydon, M J; Gregersen, N; Lehnert, W

    1996-01-01

    Ethylmalonic aciduria is a common biochemical finding in patients with inborn errors of short chain fatty acid beta-oxidation. The urinary excretion of ethylmalonic acid (EMA) may stem from decreased oxidation by short chain acyl-CoA dehydrogenase (SCAD) of butyryl-CoA, which is alternatively...

  6. Enantiocomplementary Yarrowia lipolytica Oxidoreductases: Alcohol Dehydrogenase 2 and Short Chain Dehydrogenase/Reductase

    OpenAIRE

    Napora-Wijata, Kamila; Strohmeier, Gernot A.; Sonavane, Manoj N.; Avi, Manuela; Robins, Karen; Winkler, Margit

    2013-01-01

    Enzymes of the non-conventional yeast Yarrowia lipolytica seem to be tailor-made for the conversion of lipophilic substrates. Herein, we cloned and overexpressed the Zn-dependent alcohol dehydrogenase ADH2 from Yarrowia lipolytica in Escherichia coli. The purified enzyme was characterized in vitro. The substrate scope for YlADH2 mediated oxidation and reduction was investigated spectrophotometrically and the enzyme showed a broader substrate range than its homolog from Saccharomyces cerevisia...

  7. DFT-based prediction of reactivity of short-chain alcohol dehydrogenase

    Science.gov (United States)

    Stawoska, I.; Dudzik, A.; Wasylewski, M.; Jemioła-Rzemińska, M.; Skoczowski, A.; Strzałka, K.; Szaleniec, M.

    2017-06-01

    The reaction mechanism of ketone reduction by short chain dehydrogenase/reductase, ( S)-1-phenylethanol dehydrogenase from Aromatoleum aromaticum, was studied with DFT methods using cluster model approach. The characteristics of the hydride transfer process were investigated based on reaction of acetophenone and its eight structural analogues. The results confirmed previously suggested concomitant transfer of hydride from NADH to carbonyl C atom of the substrate with proton transfer from Tyr to carbonyl O atom. However, additional coupled motion of the next proton in the proton-relay system, between O2' ribose hydroxyl and Tyr154 was observed. The protonation of Lys158 seems not to affect the pKa of Tyr154, as the stable tyrosyl anion was observed only for a neutral Lys158 in the high pH model. The calculated reaction energies and reaction barriers were calibrated by calorimetric and kinetic methods. This allowed an excellent prediction of the reaction enthalpies (R2 = 0.93) and a good prediction of the reaction kinetics (R2 = 0.89). The observed relations were validated in prediction of log K eq obtained for real whole-cell reactor systems that modelled industrial synthesis of S-alcohols.

  8. The pea SAD short-chain dehydrogenase/reductase: quinone reduction, tissue distribution, and heterologous expression.

    Science.gov (United States)

    Scherbak, Nikolai; Ala-Häivälä, Anneli; Brosché, Mikael; Böwer, Nathalie; Strid, Hilja; Gittins, John R; Grahn, Elin; Eriksson, Leif A; Strid, Åke

    2011-04-01

    The pea (Pisum sativum) tetrameric short-chain alcohol dehydrogenase-like protein (SAD) family consists of at least three highly similar members (SAD-A, -B, and -C). According to mRNA data, environmental stimuli induce SAD expression. The aim of this study was to characterize the SAD proteins by examining their catalytic function, distribution in pea, and induction in different tissues. In enzyme activity assays using a range of potential substrates, the SAD-C enzyme was shown to reduce one- or two-ring-membered quinones lacking long hydrophobic hydrocarbon tails. Immunological assays using a specific antiserum against the protein demonstrated that different tissues and cell types contain small amounts of SAD protein that was predominantly located within epidermal or subepidermal cells and around vascular tissue. Particularly high local concentrations were observed in the protoderm of the seed cotyledonary axis. Two bow-shaped rows of cells in the ovary and the placental surface facing the ovule also exhibited considerable SAD staining. Ultraviolet-B irradiation led to increased staining in epidermal and subepidermal cells of leaves and stems. The different localization patterns of SAD suggest functions both in development and in responses to environmental stimuli. Finally, the pea SAD-C promoter was shown to confer heterologous wound-induced expression in Arabidopsis (Arabidopsis thaliana), which confirmed that the inducibility of its expression is regulated at the transcriptional level.

  9. Delineating Substrate Diversity of Disparate Short-Chain Dehydrogenase Reductase from Debaryomyces hansenii.

    Directory of Open Access Journals (Sweden)

    Arindam Ghatak

    Full Text Available Short-chain dehydrogenase reductases (SDRs have been utilized for catalyzing the reduction of many aromatic/aliphatic prochiral ketones to their respective alcohols. However, there is a paucity of data that elucidates their innate biological role and diverse substrate space. In this study, we executed an in-depth biochemical characterization and substrate space mapping (with 278 prochiral ketones of an unannotated SDR (DHK from Debaryomyces hansenii and compared it with structurally and functionally characterized SDR Synechococcus elongatus. PCC 7942 FabG to delineate its industrial significance. It was observed that DHK was significantly more efficient than FabG, reducing a diverse set of ketones albeit at higher conversion rates. Comparison of the FabG structure with a homology model of DHK and a docking of substrate to both structures revealed the presence of additional flexible loops near the substrate binding site of DHK. The comparative elasticity of the cofactor and substrate binding site of FabG and DHK was experimentally substantiated using differential scanning fluorimetry. It is postulated that the loop flexibility may account for the superior catalytic efficiency of DHK although the positioning of the catalytic triad is conserved.

  10. Characterization of human short chain dehydrogenase/reductase SDR16C family members related to retinol dehydrogenase 10.

    Science.gov (United States)

    Adams, Mark K; Lee, Seung-Ah; Belyaeva, Olga V; Wu, Lizhi; Kedishvili, Natalia Y

    2017-10-01

    All-trans-retinoic acid (RA) is a bioactive derivative of vitamin A that serves as an activating ligand for nuclear transcription factors, retinoic acid receptors. RA biosynthesis is initiated by the enzymes that oxidize retinol to retinaldehyde. It is well established that retinol dehydrogenase 10 (RDH10, SDR16C4), which belongs to the 16C family of the short chain dehydrogenase/reductase (SDR) superfamily of proteins, is the major enzyme responsible for the oxidation of retinol to retinaldehyde for RA biosynthesis during embryogenesis. However, several lines of evidence point towards the existence of additional retinol dehydrogenases that contribute to RA biosynthesis in vivo. In close proximity to RDH10 gene on human chromosome 8 are located two genes that are phylogenetically related to RDH10. The predicted protein products of these genes, retinol dehydrogenase epidermal 2 (RDHE2, SDR16C5) and retinol dehydrogenase epidermal 2-similar (RDHE2S, SDR16C6), share 59% and 56% sequence similarity with RDH10, respectively. Previously, we showed that the single ortholog of the human RDHE2 and RDHE2S in frogs, Xenopus laevis rdhe2, oxidizes retinol to retinaldehyde and is essential for frog embryonic development. In this study, we explored the potential of each of the two human proteins to contribute to RA biosynthesis. The results of this study demonstrate that human RDHE2 exhibits a relatively low but reproducible activity when expressed in either HepG2 or HEK293 cells. Expression of the native RDHE2 is downregulated in the presence of elevated levels of RA. On the other hand, the protein encoded by the human RDHE2S gene is unstable when expressed in HEK293 cells. RDHE2S protein produced in Sf9 cells is stable but has no detectable catalytic activity towards retinol. We conclude that the human RDHE2S does not contribute to RA biosynthesis, whereas the low-activity RA-sensitive human RDHE2 may have a role in adjusting the cellular levels of RA in accord with

  11. Biochemical characterization of a recombinant short-chain NAD(H)-dependent dehydrogenase/reductase from Sulfolobus acidocaldarius.

    Science.gov (United States)

    Pennacchio, Angela; Giordano, Assunta; Pucci, Biagio; Rossi, Mosè; Raia, Carlo A

    2010-03-01

    The gene encoding a novel alcohol dehydrogenase that belongs to the short-chain dehydrogenases/reductases (SDRs) superfamily was identified in the aerobic thermoacidophilic crenarchaeon Sulfolobus acidocaldarius strain DSM 639. The saadh gene was heterologously overexpressed in Escherichia coli, and the protein (SaADH) was purified to homogeneity and characterized. SaADH is a tetrameric enzyme consisting of identical 28,978-Da subunits, each composed of 264 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to 75 degrees C and a 30-min half-inactivation temperature of ~90 degrees C, and shows good tolerance to common organic solvents. SaADH has a strict requirement for NAD(H) as the coenzyme, and displays a preference for the reduction of alicyclic, bicyclic and aromatic ketones and alpha-keto esters, but is poorly active on aliphatic, cyclic and aromatic alcohols, and shows no activity on aldehydes. The enzyme catalyses the reduction of alpha-methyl and alpha-ethyl benzoylformate, and methyl o-chlorobenzoylformate with 100% conversion to methyl (S)-mandelate [17% enantiomeric excess (ee)], ethyl (R)-mandelate (50% ee), and methyl (R)-o-chloromandelate (72% ee), respectively, with an efficient in situ NADH-recycling system which involves glucose and a thermophilic glucose dehydrogenase. This study provides further evidence supporting the critical role of the D37 residue in discriminating NAD(H) from NAD(P)H in members of the SDR superfamily.

  12. Misfolding, degradation, and aggregation of variant proteins. The molecular pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency

    DEFF Research Database (Denmark)

    Pedersen, Christina Bak; Bross, P.; Winter, V.S.

    2003-01-01

    and aggregation of variant SCAD proteins. In this study we investigated the processing of a set of disease-causing variant SCAD proteins (R22W, G68C, W153R, R359C, and Q341H) and two common variant proteins (R147W and G185S) that lead to reduced SCAD activity. All SCAD proteins, including the wild type, associate...... proteolytic degradation by mitochondrial proteases or, especially at elevated temperature, aggregation of non-native conformers. The latter finding may indicate that accumulation of aggregated SCAD proteins may play a role in the pathogenesis of SCAD deficiency.......Short chain acyl-CoA dehydrogenase (SCAD) deficiency is an inborn error of the mitochondrial fatty acid metabolism caused by rare variations as well as common susceptibility variations in the SCAD gene. Earlier studies have shown that a common variant SCAD protein (R147W) was impaired in folding...

  13. Short-chain Acyl-CoA dehydrogenase deficiency: studies in a large family adding to the complexity of the disorder

    NARCIS (Netherlands)

    Bok, Levinus A.; Vreken, Peter; Wijburg, Frits A.; Wanders, Ronald J. A.; Gregersen, Niels; Corydon, Morten J.; Waterham, Hans R.; Duran, Marinus

    2003-01-01

    OBJECTIVE: To understand the expanding clinical and biochemical spectrum of short-chain acyl-CoA dehydrogenase (SCAD) deficiency, the impact of which is not fully understood. STUDY DESIGN: We studied a family with SCAD deficiency and determined urinary ethylmalonic acid excretion, plasma

  14. Flavin Adenine Dinucleotide Status and the Effects of High-Dose Riboflavin Treatment in Short-Chain Acyl-CoA Dehydrogenase Deficiency

    NARCIS (Netherlands)

    van Maldegem, Bianca T.; Duran, Marinus; Wanders, Ronald J. A.; Waterham, Hans R.; Wijburg, Frits A.

    2010-01-01

    Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is an inborn error, biochemically characterized by increased plasma butyrylcarnitine (C4-C) concentration and increased ethylmalonic acid (EMA) excretion and caused by rare mutations and/or common gene variants in the SCAD encoding gene. Although

  15. The Pea SAD Short-Chain Dehydrogenase/Reductase: Quinone Reduction, Tissue Distribution, and Heterologous Expression1[W][OA

    Science.gov (United States)

    Scherbak, Nikolai; Ala-Häivälä, Anneli; Brosché, Mikael; Böwer, Nathalie; Strid, Hilja; Gittins, John R.; Grahn, Elin; Eriksson, Leif A.; Strid, Åke

    2011-01-01

    The pea (Pisum sativum) tetrameric short-chain alcohol dehydrogenase-like protein (SAD) family consists of at least three highly similar members (SAD-A, -B, and -C). According to mRNA data, environmental stimuli induce SAD expression. The aim of this study was to characterize the SAD proteins by examining their catalytic function, distribution in pea, and induction in different tissues. In enzyme activity assays using a range of potential substrates, the SAD-C enzyme was shown to reduce one- or two-ring-membered quinones lacking long hydrophobic hydrocarbon tails. Immunological assays using a specific antiserum against the protein demonstrated that different tissues and cell types contain small amounts of SAD protein that was predominantly located within epidermal or subepidermal cells and around vascular tissue. Particularly high local concentrations were observed in the protoderm of the seed cotyledonary axis. Two bow-shaped rows of cells in the ovary and the placental surface facing the ovule also exhibited considerable SAD staining. Ultraviolet-B irradiation led to increased staining in epidermal and subepidermal cells of leaves and stems. The different localization patterns of SAD suggest functions both in development and in responses to environmental stimuli. Finally, the pea SAD-C promoter was shown to confer heterologous wound-induced expression in Arabidopsis (Arabidopsis thaliana), which confirmed that the inducibility of its expression is regulated at the transcriptional level. PMID:21343423

  16. Identification of four new mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene in two patients

    DEFF Research Database (Denmark)

    Gregersen, N; Winter, V S; Corydon, M J

    1998-01-01

    We have shown previously that a variant allele of the short-chain acyl-CoA dehydrogenase ( SCAD ) gene, 625G-->A, is present in homozygous form in 7% of control individuals and in 60% of 135 patients with elevated urinary excretion of ethylmalonic acid (EMA). We have now characterized three disease......-causing mutations (confirmed by lack of enzyme activity after expression in COS-7 cells) and a new susceptibility variant in the SCAD gene of two patients with SCAD deficiency, and investigated their frequency in patients with elevated EMA excretion. The first SCAD-deficient patient was a compound heterozygote...... for two mutations, 274G-->T and 529T-->C. These mutations were not present in 98 normal control alleles, but the 529T-->C mutation was found in one allele among 133 patients with elevated EMA excretion. The second patient carried a 1147C-->T mutation and the 625G-->A polymorphism in one allele...

  17. Handling of human short-chain acyl-CoA dehydrogenase (SCAD) variant proteins in transgenic mice

    DEFF Research Database (Denmark)

    Kragh, Peter M; Pedersen, Christina B; Schmidt, Stine P

    2007-01-01

    Abstract To investigate the in vivo handling of human short-chain acyl-CoA dehydrogenase (SCAD) variant proteins, three transgenic mouse lines were produced by pronuclear injection of cDNA encoding the wild-type, hSCAD-wt, and two disease causing folding variants hSCAD-319C > T and hSCAD-625G > A....... The transgenic mice were mated with an SCAD-deficient mouse strain (BALB/cByJ) and, in the second generation, three mouse lines were obtained without endogenous SCAD expression but harboring hSCAD-wt, hSCAD-319C > T, and hSCAD-625G > A transgenes, respectively. All three lines had expression of the transgene...... developed for any of the lines transgenic for the hSCAD folding variants. The indicated remarkable efficiency of the mouse protein quality control system in the degradation of SCAD folding variants should be further substantiated and investigated, since it might indicate ways to prevent disease...

  18. Short-chain dehydrogenase/reductase catalyzing the final step of noscapine biosynthesis is localized to laticifers in opium poppy.

    Science.gov (United States)

    Chen, Xue; Facchini, Peter J

    2014-01-01

    The final step in the biosynthesis of the phthalideisoquinoline alkaloid noscapine involves a purported dehydrogenation of the narcotinehemiacetal keto moiety. A short-chain dehydrogenase/reductase (SDR), designated noscapine synthase (NOS), that catalyzes dehydrogenation of narcotinehemiacetal to noscapine was identified in opium poppy and functionally characterized. The NOS gene was isolated using an integrated transcript and metabolite profiling strategy and subsequently expressed in Escherichia coli. Noscapine synthase is highly divergent from other characterized members of the NADPH-dependent SDR superfamily involved in benzylisoquinoline alkaloid metabolism, and it exhibits exclusive substrate specificity for narcotinehemiacetal. Kinetic analyses showed that NOS exhibits higher catalytic efficiency with NAD+ as the cofactor compared with NADP+. Suppression of NOS transcript levels in opium poppy plants subjected to virus-induced gene silencing resulted in a corresponding reduction in the accumulation of noscapine and an increase in narcotinehemiacetal levels in the latex. Noscapine and NOS transcripts were detected in all opium poppy organs, but both were most abundant in stems. Unlike other putative biosynthetic genes clustered in the opium poppy genome, and their corresponding proteins, NOS transcripts and the cognate enzyme were abundant in latex, indicating that noscapine metabolism is completed in a distinct cell type compared with the rest of the pathway.

  19. Insight into the stereospecificity of short-chain thermus thermophilus alcohol dehydrogenase showing pro-S hydride transfer and prelog enantioselectivity.

    Science.gov (United States)

    Pennacchio, Angela; Giordano, Assunta; Esposito, Luciana; Langella, Emma; Rossi, Mosè; Raia, Carlo A

    2010-04-01

    The stereochemistry of the hydride transfer in reactions catalyzed by NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus HB27 was determined by means of (1)H-NMR spectroscopy. The enzyme transfers the pro-S hydrogen of [4R-(2)H]NADH and exhibits Prelog specificity. Enzyme-substrate docking calculations provided structural details about the enantioselectivity of this thermophilic enzyme. These results give additional insights into the diverse active site architectures of the largely versatile short-chain dehydrogenase superfamily enzymes. A feasible protocol for the synthesis of [4R-(2)H]NADH with high yield was also set up by enzymatic oxidation of 2-propanol-d(8) catalyzed by Bacillus stearothermophilus alcohol dehydrogenase.

  20. Structure of a short-chain dehydrogenase/reductase (SDR) within a genomic island from a clinical strain of Acinetobacter baumannii

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Bhumika S., E-mail: bhumika.shah@mq.edu.au; Tetu, Sasha G. [Macquarie University, Research Park Drive, Sydney, NSW 2109 (Australia); Harrop, Stephen J. [University of New South Wales, Sydney, NSW 2052 (Australia); Paulsen, Ian T.; Mabbutt, Bridget C. [Macquarie University, Research Park Drive, Sydney, NSW 2109 (Australia)

    2014-09-25

    The structure of a short-chain dehydrogenase encoded within genomic islands of A. baumannii strains has been solved to 2.4 Å resolution. This classical SDR incorporates a flexible helical subdomain. The NADP-binding site and catalytic side chains are identified. Over 15% of the genome of an Australian clinical isolate of Acinetobacter baumannii occurs within genomic islands. An uncharacterized protein encoded within one island feature common to this and other International Clone II strains has been studied by X-ray crystallography. The 2.4 Å resolution structure of SDR-WM99c reveals it to be a new member of the classical short-chain dehydrogenase/reductase (SDR) superfamily. The enzyme contains a nucleotide-binding domain and, like many other SDRs, is tetrameric in form. The active site contains a catalytic tetrad (Asn117, Ser146, Tyr159 and Lys163) and water molecules occupying the presumed NADP cofactor-binding pocket. An adjacent cleft is capped by a relatively mobile helical subdomain, which is well positioned to control substrate access.

  1. Structure of a short-chain dehydrogenase/reductase (SDR) within a genomic island from a clinical strain of Acinetobacter baumannii

    International Nuclear Information System (INIS)

    Shah, Bhumika S.; Tetu, Sasha G.; Harrop, Stephen J.; Paulsen, Ian T.; Mabbutt, Bridget C.

    2014-01-01

    The structure of a short-chain dehydrogenase encoded within genomic islands of A. baumannii strains has been solved to 2.4 Å resolution. This classical SDR incorporates a flexible helical subdomain. The NADP-binding site and catalytic side chains are identified. Over 15% of the genome of an Australian clinical isolate of Acinetobacter baumannii occurs within genomic islands. An uncharacterized protein encoded within one island feature common to this and other International Clone II strains has been studied by X-ray crystallography. The 2.4 Å resolution structure of SDR-WM99c reveals it to be a new member of the classical short-chain dehydrogenase/reductase (SDR) superfamily. The enzyme contains a nucleotide-binding domain and, like many other SDRs, is tetrameric in form. The active site contains a catalytic tetrad (Asn117, Ser146, Tyr159 and Lys163) and water molecules occupying the presumed NADP cofactor-binding pocket. An adjacent cleft is capped by a relatively mobile helical subdomain, which is well positioned to control substrate access

  2. Cloning, expression, purification and preliminary crystallographic analysis of the short-chain dehydrogenase enzymes WbmF, WbmG and WbmH from Bordetella bronchiseptica

    International Nuclear Information System (INIS)

    Harmer, Nicholas J.; King, Jerry D.; Palmer, Colin M.; Preston, Andrew; Maskell, Duncan J.; Blundell, Tom L.

    2007-01-01

    The expression, purification, and crystallisation of the short-chain dehydrogenases WbmF, WbmG and WbmH from B. bronchiseptica are described. Native diffraction data to 1.5, 2.0, and 2.2 Å were obtained for the three proteins, together with complexes with nucleotides. The short-chain dehydrogenase enzymes WbmF, WbmG and WbmH from Bordetella bronchiseptica were cloned into Escherichia coli expression vectors, overexpressed and purified to homogeneity. Crystals of all three wild-type enzymes were obtained using vapour-diffusion crystallization with high-molecular-weight PEGs as a primary precipitant at alkaline pH. Some of the crystallization conditions permitted the soaking of crystals with cofactors and nucleotides or nucleotide sugars, which are possible substrate compounds, and further conditions provided co-complexes of two of the proteins with these compounds. The crystals diffracted to resolutions of between 1.50 and 2.40 Å at synchrotron X-ray sources. The synchrotron data obtained were sufficient to determine eight structures of the three enzymes in complex with a variety of cofactors and substrate molecules

  3. CvADH1, a member of short-chain alcohol dehydrogenase family, is inducible by gibberellin and sucrose in developing watermelon seeds.

    Science.gov (United States)

    Kim, Joonyul; Kang, Hong-Gyu; Jun, Sung-Hoon; Lee, Jinwon; Yim, Jieun; An, Gynheung

    2003-01-01

    To understand the molecular mechanisms that control seed formation, we selected a seed-preferential gene (CvADH1) from the ESTs of developing watermelon seeds. RNA blot analysis and in situ localization showed that CvADH1 was preferentially expressed in the nucellar tissue. The CvADH1 protein shared about 50% homology with short-chain alcohol dehydrogenase including ABA2 in Arabidopsis thaliana, stem secoisolariciresinol dehydrogenase in Forsythia intermedia, and 3beta-hydroxysterol dehydrogenase in Digitalis lanata. We investigated gene-expression levels in seeds from both normally pollinated fruits and those made parthenocarpic via N-(2-chloro-4-pyridyl)-N'-phenylurea treatment, the latter of which lack zygotic tissues. Whereas the transcripts of CvADH1 rapidly started to accumulate from about the pre-heart stage in normal seeds, they were not detectable in the parthenocarpic seeds. Treating the parthenogenic fruit with GA(3) strongly induced gene expression, up to the level accumulated in pollinated seeds. These results suggest that the CvADH1 gene is induced in maternal tissues by signals made in the zygotic tissues, and that gibberellin might be one of those signals. We also observed that CvADH1 expression was induced by sucrose in the parthenocarpic seeds. Therefore, we propose that the CvADH1 gene is inducible by gibberellin, and that sucrose plays an important role in the maternal tissues of watermelon during early seed development.

  4. Fatal hepatic short-chain L-3-hydroxyacyl-coenzyme A dehydrogenase deficiency: clinical, biochemical, and pathological studies on three subjects with this recently identified disorder of mitochondrial beta-oxidation

    NARCIS (Netherlands)

    Bennett, M. J.; Spotswood, S. D.; Ross, K. F.; Comfort, S.; Koonce, R.; Boriack, R. L.; IJlst, L.; Wanders, R. J.

    1999-01-01

    This report describes the clinical, biochemical, and pathological findings in three infants with hepatic short-chain L-3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) deficiency, a recently recognized disorder of the mitochondrial oxidation of straight-chain fatty acids. Candidate subjects were

  5. Purification and characterization of a novel recombinant highly enantioselective short-chain NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus.

    Science.gov (United States)

    Pennacchio, Angela; Pucci, Biagio; Secundo, Francesco; La Cara, Francesco; Rossi, Mosè; Raia, Carlo A

    2008-07-01

    The gene encoding a novel alcohol dehydrogenase (ADH) that belongs to the short-chain dehydrogenase/reductase (SDR) superfamily was identified in the extremely thermophilic, halotolerant gram-negative eubacterium Thermus thermophilus HB27. The T. thermophilus ADH gene (adh(Tt)) was heterologously overexpressed in Escherichia coli, and the protein (ADH(Tt)) was purified to homogeneity and characterized. ADH(Tt) is a tetrameric enzyme consisting of identical 26,961-Da subunits composed of 256 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to approximately 73 degrees C and a 30-min half-inactivation temperature of approximately 90 degrees C, as well as good tolerance to common organic solvents. ADH(Tt) has a strict requirement for NAD(H) as the coenzyme, a preference for reduction of aromatic ketones and alpha-keto esters, and poor activity on aromatic alcohols and aldehydes. This thermophilic enzyme catalyzes the following reactions with Prelog specificity: the reduction of acetophenone, 2,2,2-trifluoroacetophenone, alpha-tetralone, and alpha-methyl and alpha-ethyl benzoylformates to (S)-(-)-1-phenylethanol (>99% enantiomeric excess [ee]), (R)-alpha-(trifluoromethyl)benzyl alcohol (93% ee), (S)-alpha-tetralol (>99% ee), methyl (R)-(-)-mandelate (92% ee), and ethyl (R)-(-)-mandelate (95% ee), respectively, by way of an efficient in situ NADH-recycling system involving 2-propanol and a second thermophilic ADH. This study further supports the critical role of the D37 residue in discriminating NAD(H) from NADP(H) in members of the SDR superfamily.

  6. Fluxomic evidence for impaired contribution of short-chain acyl-CoA dehydrogenase to mitochondrial palmitate β-oxidation in symptomatic patients with ACADS gene susceptibility variants.

    Science.gov (United States)

    Dessein, Anne-Frédérique; Fontaine, Monique; Joncquel-Chevalier Curt, Marie; Briand, Gilbert; Sechter, Claire; Mention-Mulliez, Karine; Dobbelaere, Dries; Douillard, Claire; Lacour, Arnaud; Redonnet-Vernhet, Isabelle; Lamireau, Delphine; Barth, Magalie; Minot-Myhié, Marie-Christine; Kuster, Alice; de Lonlay, Pascale; Gregersen, Niels; Acquaviva, Cécile; Vianey-Saban, Christine; Vamecq, Joseph

    2017-08-01

    Despite ACADS (acyl-CoA dehydrogenase, short-chain) gene susceptibility variants (c.511C>T and c.625G>A) are considered to be non-pathogenic, encoded proteins are known to exhibit altered kinetics. Whether or not, they might affect overall fatty acid β-oxidation still remains, however, unclear. De novo biosynthesis of acylcarnitines by whole blood samples incubated with deuterated palmitate (16- 2 H 3 ,15- 2 H 2 -palmitate) is suitable as a fluxomic exploration to distinguish between normal and disrupted β-oxidation, abnormal profiles and ratios of acylcarnitines with different chain-lengths being indicative of the site for enzymatic blockade. Determinations in 301 control subjects of ratios between deuterated butyrylcarnitine and sum of deuterated C2 to C14 acylcarnitines served here as reference values to state specifically functional SCAD impairment in patients addressed for clinical and/or biological suspicion of a β-oxidation disorder. Functional SCAD impairment was found in 39 patients. The 27 patients accepting subsequent gene studies were all positive for ACADS mutations. Twenty-six of 27 patients were positive for c.625G>A variant. Twenty-three of 27 patients harbored susceptibility variants as sole ACADS alterations (18 homozygous and 3 heterozygous for c.625G>A, 2 compound heterozygous for c.625G>A/c.511C>T). Our present fluxomic assessment of SCAD suggests a link between ACADS susceptibility variants and abnormal β-oxidation consistent with known altered kinetics of these variants. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Lethal neonatal case and review of primary short-chain enoyl-CoA hydratase (SCEH) deficiency associated with secondary lymphocyte pyruvate dehydrogenase complex (PDC) deficiency

    NARCIS (Netherlands)

    Bedoyan, Jirair K.; Yang, Samuel P.; Ferdinandusse, Sacha; Jack, Rhona M.; Miron, Alexander; Grahame, George; DeBrosse, Suzanne D.; Hoppel, Charles L.; Kerr, Douglas S.; Wanders, Ronald J. A.

    2017-01-01

    Mutations in ECHS1 result in short-chain enoyl-CoA hydratase (SCEH) deficiency which mainly affects the catabolism of various amino acids, particularly valine. We describe a case compound heterozygous for ECHS1 mutations c.836T>C (novel) and c.8C>A identified by whole exome sequencing of proband and

  8. Vulnerability to oxidative stress in vitro in pathophysiology of mitochondrial short-chain acyl-CoA dehydrogenase deficiency: response to antioxidants.

    Directory of Open Access Journals (Sweden)

    Zarazuela Zolkipli

    Full Text Available OBJECTIVE: To elucidate the pathophysiology of SCAD deficient patients who have a unique neurological phenotype, among fatty acid oxidation disorders, with early developmental delay, CNS malformations, intractable seizures, myopathy and clinical signs suggesting oxidative stress. METHODS: We studied skin fibroblast cultures from patients homozygous for ACADS common variant c.625G>A (n = 10, compound heterozygous for c.625G>A/c.319C>T (n = 3 or homozygous for pathogenic c.319C>T (n = 2 and c.1138C>T (n = 2 mutations compared to fibroblasts from patients with carnitine palmitoyltransferase 2 (CPT2 (n = 5, mitochondrial trifunctional protein (MTP/long-chain L-3-hydroxyacyl-CoA dehydrogenase (LCHAD (n = 7, and medium-chain acyl-CoA dehydrogenase (MCAD deficiencies (n = 4 and normal controls (n = 9. All were exposed to 50 µM menadione at 37°C. Additional conditions included exposure to 39°C and/or hypoglycemia. Time to 100% cell death was confirmed with trypan blue dye exclusion. Experiments were repeated with antioxidants (Vitamins C and E or N-acetylcysteine, Bezafibrate or glucose and temperature rescue. RESULTS: The most significant risk factor for vulnerability to menadione-induced oxidative stress was the presence of a FAO defect. SCADD fibroblasts were the most vulnerable compared to other FAO disorders and controls, and were similarly affected, independent of genotype. Cell death was exacerbated by hyperthermia and/or hypoglycemia. Hyperthermia was a more significant independent risk factor than hypoglycemia. Rescue significantly prolonged survival. Incubation with antioxidants and Bezafibrate significantly increased viability of SCADD fibroblasts. INTERPRETATION: Vulnerability to oxidative stress likely contributes to neurotoxicity of SCADD regardless of ACADS genotype and is significantly exacerbated by hyperthermia. We recommend rigorous temperature control in SCADD patients during acute illness

  9. Structural and Biochemical Investigation of PglF from Campylobacter jejuni Reveals a New Mechanism for a Member of the Short Chain Dehydrogenase/Reductase Superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Riegert, Alexander S. [Department; Thoden, James B. [Department; Schoenhofen, Ian C. [National; Watson, David C. [National; Young, N. Martin [National; Tipton, Peter A. [Department; Holden, Hazel M. [Department

    2017-11-03

    Within recent years it has become apparent that protein glycosylation is not limited to eukaryotes. Indeed, in Campylobacter jejuni, a Gram-negative bacterium, more than 60 of its proteins are known to be glycosylated. One of the sugars found in such glycosylated proteins is 2,4-diacetamido-2,4,6-trideoxy-α-d-glucopyranose, hereafter referred to as QuiNAc4NAc. The pathway for its biosynthesis, initiating with UDP-GlcNAc, requires three enzymes referred to as PglF, PglE, and PlgD. The focus of this investigation is on PglF, an NAD+-dependent sugar 4,6-dehydratase known to belong to the short chain dehydrogenase/reductase (SDR) superfamily. Specifically, PglF catalyzes the first step in the pathway, namely, the dehydration of UDP-GlcNAc to UDP-2-acetamido-2,6-dideoxy-α-d-xylo-hexos-4-ulose. Most members of the SDR superfamily contain a characteristic signature sequence of YXXXK where the conserved tyrosine functions as a catalytic acid or a base. Strikingly, in PglF, this residue is a methionine. Here we describe a detailed structural and functional investigation of PglF from C. jejuni. For this investigation five X-ray structures were determined to resolutions of 2.0 Å or better. In addition, kinetic analyses of the wild-type and site-directed variants were performed. On the basis of the data reported herein, a new catalytic mechanism for a SDR superfamily member is proposed that does not require the typically conserved tyrosine residue.

  10. Capillary condensation of short-chain molecules.

    Science.gov (United States)

    Bryk, Paweł; Pizio, Orest; Sokolowski, Stefan

    2005-05-15

    A density-functional study of capillary condensation of fluids of short-chain molecules confined to slitlike pores is presented. The molecules are modeled as freely jointed tangent spherical segments with a hard core and with short-range attractive interaction between all the segments. We investigate how the critical parameters of capillary condensation of the fluid change when the pore width decreases and eventually becomes smaller than the nominal linear dimension of the single-chain molecule. We find that the dependence of critical parameters for a fluid of dimers and of tetramers on pore width is similar to that of the monomer fluid. On the other hand, for a fluid of chains consisting of a larger number of segments we observe an inversion effect. Namely, the critical temperature of capillary condensation decreases with increasing pore width for a certain interval of values of the pore width. This anomalous behavior is also influenced by the interaction between molecules and pore walls. We attribute this behavior to the effect of conformational changes of molecules upon confinement.

  11. Quantifying Short-Chain Chlorinated Paraffin Congener Groups

    NARCIS (Netherlands)

    Yuan, Bo; Bogdal, Christian; Berger, Urs; MacLeod, Matthew; Gebbink, Wouter A.; Alsberg, Tomas; Wit, de Cynthia A.

    2017-01-01

    Accurate quantification of short-chain chlorinated paraffins (SCCPs) poses an exceptional challenge to analytical chemists. SCCPs are complex mixtures of chlorinated alkanes with variable chain length and chlorination level; congeners with a fixed chain length (n) and number of chlorines (m) are

  12. Enhancement of Short Chain Fatty Acid Production from Millet Fibres ...

    African Journals Online (AJOL)

    Pharmacotherapy Group, Faculty of Pharmacy, University of Benin, Benin City, 300001 Nigeria. ... Methods: The effect of millet dietary fibre fermentation on production of short chain fatty ... fildes PYF enrichment solution was used as the .... where Pa is the peak area of SCFA, Ps is the ..... enzymatic- gravimetric method.

  13. Effects of short-chain chlorinated paraffins on soil organisms.

    Science.gov (United States)

    Bezchlebová, Jitka; Cernohlávková, Jitka; Kobeticová, Klára; Lána, Jan; Sochová, Ivana; Hofman, Jakub

    2007-06-01

    Despite the fact that chlorinated paraffins have been produced in relatively large amounts, and high concentrations have been found in sewage sludge applied to soils, there is little information on their concentrations in soils and the effect on soil organisms. The aim of this study was to investigate the toxicity of chlorinated paraffins in soils. The effects of short-chain chlorinated paraffins (64% chlorine content) on invertebrates (Eisenia fetida, Folsomia candida, Enchytraeus albidus, Enchytraeus crypticus, Caenorhabditis elegans) and substrate-induced respiration of indigenous microorganisms were studied. Differences were found in the sensitivity of the tested organisms to short-chain chlorinated paraffins. F. candida was identified as the most sensitive organism with LC(50) and EC(50) values of 5733 and 1230 mg/kg, respectively. Toxicity results were compared with available studies and the predicted no effect concentration (PNEC) of 5.28 mg/kg was estimated for the soil environment, based on our data.

  14. Histone Deacetylase Inhibition and Dietary Short-Chain Fatty Acids

    OpenAIRE

    Licciardi, Paul V.; Ververis, Katherine; Karagiannis, Tom C.

    2011-01-01

    Changes in diet can also have dramatic effects on the composition of gut microbiota. Commensal bacteria of the gastrointestinal tract are critical regulators of health and disease by protecting against pathogen encounter whilst also maintaining immune tolerance to certain allergens. Moreover, consumption of fibre and vegetables typical of a non-Western diet generates substantial quantities of short-chain fatty acids (SCFAs) which have potent anti-inflammatory properties. Dietary interventions...

  15. Evaporation Kinetics in Short-Chain Alcohols by Optical Interference

    Science.gov (United States)

    Rosbrugh, Ian M.; Nishimura, S. Y.; Nishimura, A. M.

    2000-08-01

    The evaporation rates of volatile organic liquids may be determined through the observation of optical interference of spatially coincident light that is reflected from the top (air-liquid) and bottom (liquid-surface) of a liquid drop on a glass surface. As an example of what is possible with this technique, the evaporation for a series of short-chain alcohols and acetone was investigated. For 1-propanol, 2-propanol, 2-methyl-1-propanol, and acetone, the kinetics of evaporation was determined to be zero order. For methanol and ethanol, the process was significantly higher than zero order.

  16. Biodiesel production from triolein and short chain alcohols through biocatalysis.

    Science.gov (United States)

    Salis, Andrea; Pinna, Marcella; Monduzzi, Maura; Solinas, Vincenzo

    2005-09-29

    Oleic acid alkyl esters (biodiesel) were synthesised by biocatalysis in solvent-free conditions. Different commercial immobilised lipases, namely Candida antarctica B, Rizhomucor miehei, and Pseudomonas cepacia, were tested towards the reaction between triolein and butanol to produce butyl oleate. Pseudomonas cepacia lipase resulted to be the most active enzyme reaching 100% of conversion after 6h. Different operative conditions such as reaction temperature, water activity, and reagent stoichiometric ratio were investigated and optimised. These conditions were then used to investigate the effect of linear and branched short chain alcohols. Methanol and 2-butanol were the worst alcohols: the former, probably, due to its low miscibility with the oil and the latter because secondary alcohols usually are less reactive than primary alcohols. Conversely, linear and branched primary alcohols with short alkyl chains (C(2)--C(4)) showed high reaction rate and conversion. A mixture of linear and branched short chain alcohols that mimics the residual of ethanol distillation (fusel oil) was successfully used for oleic acid ester synthesis. These compounds are important in biodiesel mixtures since they improve low temperature properties.

  17. Genetics Home Reference: short-chain acyl-CoA dehydrogenase deficiency

    Science.gov (United States)

    ... An Y, Weavil SD, Chaing SH, Bali D, McDonald MT, Kishnani PS, Chen YT, Millington DS. Rare ... 10 All Bulletins Features What is direct-to-consumer genetic testing? What are genome editing and CRISPR- ...

  18. Histone deacetylase inhibition and dietary short-chain Fatty acids.

    Science.gov (United States)

    Licciardi, Paul V; Ververis, Katherine; Karagiannis, Tom C

    2011-01-01

    Changes in diet can also have dramatic effects on the composition of gut microbiota. Commensal bacteria of the gastrointestinal tract are critical regulators of health and disease by protecting against pathogen encounter whilst also maintaining immune tolerance to certain allergens. Moreover, consumption of fibre and vegetables typical of a non-Western diet generates substantial quantities of short-chain fatty acids (SCFAs) which have potent anti-inflammatory properties. Dietary interventions such as probiotic supplementation have been investigated for their pleiotropic effects on microbiota composition and immune function. Probiotics may restore intestinal dysbiosis and improve clinical disease through elevated SCFA levels in the intestine. Although the precise mechanisms by which such dietary factors mediate these effects, SCFA metabolites such as butyrate also function as histone deacetylase inhibitors (HDACi), that can act on the epigenome through chromatin remodeling changes. The aim of this review is to provide an overview of HDAC enzymes and to discuss the biological effects of HDACi. Further, we discuss the important relationship between diet and the balance between health and disease and how novel dietary interventions such as probiotics could be alternative approach for the prevention and/or treatment of chronic inflammatory disease through modulation of the intestinal microbiome.

  19. Short chain molecular junctions: Charge transport versus dipole moment

    International Nuclear Information System (INIS)

    Ikram, I. Mohamed; Rabinal, M.K.

    2015-01-01

    Graphical abstract: - Highlights: • The role of dipole moment of organic molecules on molecular junctions has been studied. • Molecular junctions constituted using propargyl molecules of different dipole moments. • The electronic properties of the molecules were calculated using Gaussian software. • Junctions show varying rectification due to their varying dipole moment and orientation. - Abstract: The investigation of the influence of dipole moment of short chain organic molecules having three carbon atoms varying in end group on silicon surface was carried on. Here, we use three different molecules of propargyl series varying in dipole moment and its orientation to constitute molecular junctions. The charge transport mechanism in metal–molecules–semiconductor (MMS) junction obtained from current–voltage (I–V) characteristics shows the rectification behavior for two junctions whereas the other junction shows a weak rectification. The electronic properties of the molecules were calculated using Gaussian software package. The observed rectification behavior of these junctions is examined and found to be accounted to the orientation of dipole moment and electron cloud density distribution inside the molecules

  20. Quantifying Short-Chain Chlorinated Paraffin Congener Groups.

    Science.gov (United States)

    Yuan, Bo; Bogdal, Christian; Berger, Urs; MacLeod, Matthew; Gebbink, Wouter A; Alsberg, Tomas; de Wit, Cynthia A

    2017-09-19

    Accurate quantification of short-chain chlorinated paraffins (SCCPs) poses an exceptional challenge to analytical chemists. SCCPs are complex mixtures of chlorinated alkanes with variable chain length and chlorination level; congeners with a fixed chain length (n) and number of chlorines (m) are referred to as a "congener group" C n Cl m . Recently, we resolved individual C n Cl m by mathematically deconvolving soft ionization high-resolution mass spectra of SCCP mixtures. Here we extend the method to quantifying C n Cl m by introducing C n Cl m specific response factors (RFs) that are calculated from 17 SCCP chain-length standards with a single carbon chain length and variable chlorination level. The signal pattern of each standard is measured on APCI-QTOF-MS. RFs of each C n Cl m are obtained by pairwise optimization of the normal distribution's fit to the signal patterns of the 17 chain-length standards. The method was verified by quantifying SCCP technical mixtures and spiked environmental samples with accuracies of 82-123% and 76-109%, respectively. The absolute differences between calculated and manufacturer-reported chlorination degrees were -0.9 to 1.0%Cl for SCCP mixtures of 49-71%Cl. The quantification method has been replicated with ECNI magnetic sector MS and ECNI-Q-Orbitrap-MS. C n Cl m concentrations determined with the three instruments were highly correlated (R 2 > 0.90) with each other.

  1. S2p core level spectroscopy of short chain oligothiophenes

    Science.gov (United States)

    Baseggio, O.; Toffoli, D.; Stener, M.; Fronzoni, G.; de Simone, M.; Grazioli, C.; Coreno, M.; Guarnaccio, A.; Santagata, A.; D'Auria, M.

    2017-12-01

    The Near-Edge X-ray-Absorption Fine-Structure (NEXAFS) and X-ray Photoemission Spectroscopy (XPS) of short-chain oligothiophenes (thiophene, 2,2'-bithiophene, and 2,2':5',2″-terthiophene) in the gas phase have been measured in the sulfur L2,3-edge region. The assignment of the spectral features is based on the relativistic two-component zeroth-order regular approximation time dependent density functional theory approach. The calculations allow us to estimate both the contribution of the spin-orbit splitting and of the molecular-field splitting to the sulfur binding energies and give results in good agreement with the experimental measurements. The deconvolution of the calculated S2p NEXAFS spectra into the two manifolds of excited states converging to the LIII and LII edges facilitates the attribution of the spectral structures. The main S2p NEXAFS features are preserved along the series both as concerns the energy positions and the nature of the transitions. This behaviour suggests that the electronic and geometrical environment of the sulfur atom in the three oligomers is relatively unaffected by the increasing chain length. This trend is also observed in the XPS spectra. The relatively simple structure of S2p NEXAFS spectra along the series reflects the localized nature of the virtual states involved in the core excitation process.

  2. Signal-regulated systems and networks

    CSIR Research Space (South Africa)

    Van Zyl, TL

    2010-07-01

    Full Text Available The article presents the use of signal regulatory networks (SRNs), a biologically inspired model based on gene regulatory networks. SRNs are a way of understanding a class of self-organizing IT systems, signal-regulated systems (SRSs). This article...

  3. Butyrate and other short-chain fatty acids increase the rate of lipolysis in 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    John M. Rumberger

    2014-10-01

    Full Text Available We determined the effect of butyrate and other short-chain fatty acids (SCFA on rates of lipolysis in 3T3-L1 adipocytes. Prolonged treatment with butyrate (5 mM increased the rate of lipolysis approximately 2–3-fold. Aminobutyric acid and acetate had little or no effect on lipolysis, however propionate stimulated lipolysis, suggesting that butyrate and propionate act through their shared activity as histone deacetylase (HDAC inhibitors. Consistent with this, the HDAC inhibitor trichostatin A (1 µM also stimulated lipolysis to a similar extent as did butyrate. Western blot data suggested that neither mitogen-activated protein kinase (MAPK activation nor perilipin down-regulation are necessary for SCFA-induced lipolysis. Stimulation of lipolysis with butyrate and trichostatin A was glucose-dependent. Changes in AMP-activated protein kinase (AMPK phosphorylation mediated by glucose were independent of changes in rates of lipolysis. The glycolytic inhibitor iodoacetate prevented both butyrate- and tumor necrosis factor-alpha-(TNF-α mediated increases in rates of lipolysis indicating glucose metabolism is required. However, unlike TNF-α– , butyrate-stimulated lipolysis was not associated with increased lactate release or inhibited by activation of pyruvate dehydrogenase (PDH with dichloroacetate. These data demonstrate an important relationship between lipolytic activity and reported HDAC inhibitory activity of butyrate, other short-chain fatty acids and trichostatin A. Given that HDAC inhibitors are presently being evaluated for the treatment of diabetes and other disorders, more work will be essential to determine if these effects on lipolysis are due to inhibition of HDAC.

  4. Developments and interlaboratory study of the analysis of short-chain chlorinated paraffins

    NARCIS (Netherlands)

    van Mourik, L. M.; van der Veen, I.; Crum, S.; de Boer, J.

    To survey the conformity and quality of the results between laboratories for short-chain chlorinated paraffins (SCCPs) determination, we reviewed current and novel analytical methods and organized four worldwide laboratory exercises between 2011 and 2017. Participants were requested to analyse test

  5. Developments and interlaboratory study of the analysis of short-chain chlorinated paraffins

    NARCIS (Netherlands)

    Mourik, van L.M.; Veen, van der I.; Crum, S.; Boer, de J.

    2018-01-01

    To survey the conformity and quality of the results between laboratories for short-chain chlorinated paraffins (SCCPs) determination, we reviewed current and novel analytical methods and organized four worldwide laboratory exercises between 2011 and 2017. Participants were requested to analyse test

  6. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids

    NARCIS (Netherlands)

    den Besten, Gijs; Lange, Katja; Havinga, Rick; van Dijk, Theo H.; Gerding, Albert; van Eunen, Karen; Muller, Michael; Groen, Albert K.; Hooiveld, Guido J.; Bakker, Barbara M.; Reijngoud, Dirk-Jan

    2013-01-01

    Acetate, propionate, and butyrate are the main short-chain fatty acids (SCFAs) that arise from the fermentation of fibers by the colonic microbiota. While many studies focus on the regulatory role of SCFAs, their quantitative role as a catabolic or anabolic substrate for the host has received

  7. Effects of rough handling on short chain fatty acid production and ...

    African Journals Online (AJOL)

    The influence of stress due to rough handling (RH) on gastrointestinal tract (GIT) environmental pH, concentration of short chain fatty acids (SCFAs) and modulatory roles of two Lactobacillus strains was investigated in broiler chickens. Equal number of chicks was randomly assigned to one of the following treatment groups; ...

  8. Randomised clinical study: inulin short-chain fatty acid esters for targeted delivery of short-chain fatty acids to the human colon.

    Science.gov (United States)

    Polyviou, T; MacDougall, K; Chambers, E S; Viardot, A; Psichas, A; Jawaid, S; Harris, H C; Edwards, C A; Simpson, L; Murphy, K G; Zac-Varghese, S E K; Blundell, J E; Dhillo, W S; Bloom, S R; Frost, G S; Preston, T; Tedford, M C; Morrison, D J

    2016-10-01

    Short-chain fatty acids (SCFA) produced through fermentation of nondigestible carbohydrates by the gut microbiota are associated with positive metabolic effects. However, well-controlled trials are limited in humans. To develop a methodology to deliver SCFA directly to the colon, and to optimise colonic propionate delivery in humans, to determine its role in appetite regulation and food intake. Inulin SCFA esters were developed and tested as site-specific delivery vehicles for SCFA to the proximal colon. Inulin propionate esters containing 0-61 wt% (IPE-0-IPE-61) propionate were assessed in vitro using batch faecal fermentations. In a randomised, controlled, crossover study, with inulin as control, ad libitum food intake (kcal) was compared after 7 days on IPE-27 or IPE-54 (10 g/day all treatments). Propionate release was determined using (13) C-labelled IPE variants. In vitro, IPE-27-IPE-54 wt% propionate resulted in a sevenfold increase in propionate production compared with inulin (P inulin (439.5 vs. 703.9 kcal, P = 0.025) and IPE-54 (439.5 vs. 659.3 kcal, P = 0.025), whereas IPE-54 was not significantly different from inulin control. IPE-27 significantly reduced food intake suggesting colonic propionate plays a role in appetite regulation. Inulin short-chain fatty acid esters provide a novel tool for probing the diet-gut microbiome-host metabolism axis in humans. © 2016 The Authors. Alimentary Pharmacology & Therapeutics Published by John Wiley & Sons Ltd.

  9. The HADHSC gene encoding short-chain L-3-hydroxyacyl-CoA dehydrogenase (SCHAD) and type 2 diabetes susceptibility

    DEFF Research Database (Denmark)

    van Hove, Els C; Hansen, Torben; Dekker, Jacqueline M

    2006-01-01

    of the SCHAD enzyme in glucose-stimulated insulin secretion led us to the hypothesis that common variants in HADHSC on chromosome 4q22-26 might be associated with development of type 2 diabetes. In this study, we have performed a large-scale association study in four different cohorts from the Netherlands...... measure (all P > 0.1). The present study provides no evidence that the specific HADHSC variants or haplotypes examined do influence susceptibility to develop type 2 diabetes. We conclude that it is unlikely that variation in HADHSC plays a major role in the pathogenesis of type 2 diabetes in the examined...

  10. Design and preparation of bi-functionalized short-chain modified zwitterionic nanoparticles.

    Science.gov (United States)

    Hu, Fenglin; Chen, Kaimin; Xu, Hong; Gu, Hongchen

    2018-05-01

    An ideal nanomaterial for use in the bio-medical field should have a distinctive surface capable of effectively preventing nonspecific protein adsorption and identifying target bio-molecules. Recently, the short-chain zwitterion strategy has been suggested as a simple and novel approach to create outstanding anti-fouling surfaces. In this paper, the carboxyl end group of short-chain zwitterion-coated silica nanoparticles (SiO 2 -ZWS) was found to be difficult to functionalize via a conventional EDC/NHS strategy due to its rapid hydrolysis side-reactions. Hence, a series of bi-functionalized silica nanoparticles (SiO 2 -ZWS/COOH) were designed and prepared by controlling the molar ratio of 3-aminopropyltriethoxysilane (APTES) to short-chain zwitterionic organosiloxane (ZWS) in order to achieve above goal. The synthesized SiO 2 -ZWS/COOH had similar excellent anti-fouling properties compared with SiO 2 -ZWS, even in 50% fetal bovine serum characterized by DLS and turbidimetric titration. Subsequently, SiO 2 -ZWS/COOH 5/1 was chosen as a representative and then demonstrated higher detection signal intensity and more superior signal-to-noise ratios compare with the pure SiO 2 -COOH when they were used as a bio-carrier for chemiluminescence enzyme immunoassay (CLEIA). These unique bi-functionalized silica nanoparticles have many potential applications in the diagnostic and therapeutic fields. Reducing nonspecific protein adsorption and enhancing the immobilized efficiency of specific bio-probes are two of the most important issues for bio-carriers, particularly for a nanoparticle based bio-carrier. Herein, we designed and prepared a bi-functional nanoparticle with anti-fouling property and bio conjugation capacity for further bioassay by improving the short-chain zwitterionic modification strategy we have proposed previously. The heterogeneous surface of this nanoparticle showed effective anti-fouling properties both in model protein solutions and fetal bovine serum

  11. Biocompatible choline based ionic salts: Solubility in short-chain alcohols

    International Nuclear Information System (INIS)

    Lopes, Joana M.; Paninho, Ana B.; Môlho, Marta F.; Nunes, Ana V.M.; Rocha, Angelo; Lourenço, Nuno M.T.; Najdanovic-Visak, Vesna

    2013-01-01

    Highlights: • Biocompatible ionic liquids based on choline esters were synthesized in this work. • Solubility of choline and choline esters based ionic salt in alcohols were measured. • Activity coefficients were calculated. • Experimental data were correlated by means of the semi-empirical Grant equation. -- Abstract: In this work, we report data on solubility of choline chloride and choline acetate in short-chain linear alcohols (ethanol, 1-propanol and 1-butanol) at various temperatures. Furthermore, we synthesize two choline derivatives: hydrogen choline chloride glutarate ([CholGlut][Cl]) and hydrogen choline chloride succinate ([CholSucc][Cl]). Their characterization and solubility in short-chain alcohols as a function of temperature are also included. Activity coefficients were calculated and their comparisons with ideal solutions were discussed. The experimental data were correlated successfully by means of the semi-empirical Grant equation

  12. Gut microbiota–derived short-chain fatty acids and kidney diseases

    Directory of Open Access Journals (Sweden)

    Li L

    2017-12-01

    Full Text Available Lingzhi Li, Liang Ma, Ping Fu Kidney Research Institute, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China Abstract: Gut microbiota and its metabolites play pivotal roles in host physiology and pathology. Short-chain fatty acids (SCFAs, as a group of metabolites, exert positive regulatory effects on energy metabolism, hormone secretion, immune inflammation, hypertension, and cancer. The functions of SCFAs are related to their activation of transmembrane G protein-coupled receptors and their inhibition of histone acetylation. Though controversial, growing evidence suggests that SCFAs, which regulate inflammation, oxidative stress, and fibrosis, have been involved in kidney disease through the activation of the gut–kidney axis; however, the molecular relationship among gut microbiota–derived metabolites, signaling pathways, and kidney disease remains to be elucidated. This review will provide an overview of the physiology and functions of SCFAs in kidney disease. Keywords: gut microbiome, short-chain fatty acids, kidney diseases, gut–kidney axis

  13. Contamination profiles of short-chain polychlorinated n-alkanes in foodstuff samples from Japan

    Energy Technology Data Exchange (ETDEWEB)

    Matsukami, Hidenori; Kurunthachalam, S; Ohi, Etsumasa; Takasuga, Takumi [Shimadzu Techno Research, Inc., Kyoto (Japan); Iino, Fukuya; Nakanishi, Junko [National Inst. of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2004-09-15

    Polychlorinated n-alkanes (PCAs) are group of chemicals manufactured by chlorination of liquid n-paraffin or paraffin wax that contain 30 to 70% chlorine by weight. Large amounts of PCAs are widely used as plasticizers for vinyl chloride, lubricants, paints, and flame retardants and number of other industrial applications. Annual global production of PCAs is approximately 300 kilo tones, with a majority having medium-carbon-chain (C14-C19) length. According to the investigation made by Kagaku Kogyo Nippon-Sha, the annual consumption of PCAs in Japan was about 83,000 tons in between 1986-2001. Short-carbon-chain (C10-C13) has been placed on the Priority Substance List under Canadian Environmental Protection Act and on the Environmental Protection Agency Toxic Release Inventory in the USA due to its potential to act as tumor promoters in mammals. Data on environment levels of PCAs is meager, nevertheless, PCAs have been measured at relatively high concentrations in biota from Sweden, biota, sediment from Canada and marine biota and human milk from the Canadian Arctic. In our earlier study, we reported concentrations of short-chain PCAs from sewage treatment plant (STP) collected from Tama River, Tokyo and river water and sediment from Tokyo and Osaka. STP influent water contained greater shortchain PCAs concentrations than STP effluent. In addition, some river water and sediment samples contained detectable concentrations of short-chain PCAs, which was similar to other industrial countries. However, there is no study conducted to explore the contamination profiles of short-chain PCAs in human foodstuff samples. In the present study, we analyzed eleven foodstuff samples that were purchased from various supermarkets in order to know the short-chain PCAs concentrations in the foodstuff and possible human total daily intake (TDI) amounts.

  14. Endosulfan, pentachlorobenzene and short-chain chlorinated paraffins in background soils from Western Europe

    OpenAIRE

    Halse, Anne Karine; Schlabach, Martin; Schuster, Jasmin K; Jones, Kevin C; Steinnes, Eiliv; Breivik, Knut

    2015-01-01

    Soils are major reservoirs for many persistent organic pollutants (POPs). In this study, “newly” regulated POPs i.e. sum endosulfans (a-endosulfan, b-endosulfan, endosulfan sulfate), pentachlorobenzene (PeCB), and short-chain chlorinated paraffins (SCCPs) were determined in background samples from woodland (WL) and grassland (GL) surface soil, collected along an existing latitudinal UK-Norway transect. Statistical analysis, complemented with plots showing the predicted equilibrium distributio...

  15. Determination of Short-Chain Chlorinated Paraffins by Carbon Skeleton Gas Chromatography

    OpenAIRE

    PELLIZZATO FRANCESCA; RICCI MARINA; HELD ANDREA; EMONS HENDRIK

    2008-01-01

    Short-Chain Chlorinated Paraffins (SCCPs) are highly complex technical mixtures of polychlorinated n-alkanes with a chlorination degree between 50 and 70 % by mass, and a linear carbon chain length from C10 to C13, constituted by thousands of homologues, diastereomers and enantiomers. They have been used in many different applications, such as extreme pressure additives in lubricants and cutting fluids, plasticizers in PVC, and flame retardants in paints, adhesives and sealants. SCCPs are tox...

  16. Analysis of short-chain acids from anaerobic bacteria by high-performance liquid chromatography.

    OpenAIRE

    Guerrant, G O; Lambert, M A; Moss, C W

    1982-01-01

    A standard mixture of 25 short-chain fatty acids was resolved by high-performance liquid chromatography, using an Aminex HPX-87 column. The acids produced in culture media by anaerobic bacteria were analyzed by high-performance liquid chromatography after extraction with ether and reextraction into a small volume of 0.1 N NaOH. The presence of fumaric acid in culture extracts of Peptostreptococcus anaerobius was confirmed by gas chromatography-mass spectrometry analysis of the trapped eluent ...

  17. Interference of a short-chain phospholipid with ion transport pathways in frog skin

    DEFF Research Database (Denmark)

    Unmack, M A; Frederiksen, O; Willumsen, N J

    1997-01-01

    The effects of mucosal application of the short-chain phospholipid didecanoyl-L-alpha-phosphatidylcholine (DDPC; with two saturated 10-carbon acyl chains) on active Na+ transport and transepithelial conductance (G) in the frog skin (Rana temporaria) were investigated. Active Na+ transport...... of the frog skin epithelium and opens a paracellular tight junction pathway. Both effects may be caused by incorporation of DDPC in the apical cell membrane....

  18. Microbial communities in methane- and short chain alkane-rich hydrothermal sediments of Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Frederick eDowell

    2016-01-01

    Full Text Available The hydrothermal sediments of Guaymas Basin, an active spreading center in the Gulf of California (Mexico, are rich in porewater methane, short-chain alkanes, sulfate and sulfide, and provide a model system to explore habitat preferences of microorganisms, including sulfate-dependent, methane- and short chain alkane-oxidizing microbial communities. In this study, sediments (above 60˚C covered with sulfur-oxidizing microbial mats surrounding a hydrothermal mound (termed Mat Mound were characterized by porewater geochemistry of methane, C2-C6 short-chain alkanes, sulfate, sulfide, sulfate reduction rate measurements, in-situ temperature gradients, bacterial and archaeal 16S rRNA gene clone libraries and V6 tag pyrosequencing. The most abundantly detected groups in the Mat mound sediments include anaerobic methane-oxidizing archaea of the ANME-1 lineage and its sister clade ANME-1Guaymas, the uncultured bacterial groups SEEP-SRB2 within the Deltaproteobacteria and the separately branching HotSeep-1 Group; these uncultured bacteria are candidates for sulfate-reducing alkane oxidation and for sulfate-reducing syntrophy with ANME archaea. The archaeal dataset indicates distinct habitat preferences for ANME-1, ANME-1-Guaymas and ANME-2 archaea in Guaymas Basin hydrothermal sediments. The bacterial groups SEEP-SRB2 and HotSeep-1 co-occur with ANME-1 and ANME-1Guaymas in hydrothermally active sediments underneath microbial mats in Guaymas Basin. We propose the working hypothesis that this mixed bacterial and archaeal community catalyzes the oxidation of both methane and short-chain alkanes, and constitutes a microbial community signature that is characteristic for hydrothermal and/or cold seep sediments containing both substrates.

  19. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids

    OpenAIRE

    Zheng, Xiaojiao; Qiu, Yunping; Zhong, Wei; Baxter, Sarah; Su, Mingming; Li, Qiong; Xie, Guoxiang; Ore, Brandon M.; Qiao, Shanlei; Spencer, Melanie D.; Zeisel, Steven H.; Zhou, Zhanxiang; Zhao, Aihua; Jia, Wei

    2013-01-01

    Research in obesity and metabolic disorders that involve intestinal microbiota demands reliable methods for the precise measurement of the short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) concentration. Here, we report a rapid method of simultaneously determining SCFAs and BCAAs in biological samples using propyl chloroformate (PCF) derivatization followed by gas chromatography mass spectrometry (GC-MS) analysis. A one-step derivatization using 100 µL of PCF in a reactio...

  20. Hydrolysis of short-chain phosphatidylcholines by bee venom phospholipase A2.

    Science.gov (United States)

    Raykova, D; Blagoev, B

    1986-01-01

    In order to find out the aggregation state of the substrate, preferred by bee venom phospholipase A2 (EC 3.1.1.4), its action on short-chain phosphatidylcholines with two identical (C6-C10) fatty acids has been tested. The rate of hydrolysis as a function of acyl chain length showed a maximum at dioctanoylphosphatidylcholine. The effects of alcohols, NaCl and Triton X-100, which affect the aggregation state of phospholipids in water, were also studied. The addition of n-alcohol led to a significant inhibition of the hydrolysis of the substrates present in micellar form and activated the hydrolysis of substrates which form liposomes. The inhibitory effect increased with increasing length of the aliphatic carbon chain of the alcohol. Triton X-100 at low Triton/phospholipid molar ratios enhanced enzyme activity. These results do not agree with the accepted idea that bee venom phospholipase A2 hydrolyzes short-chain lecithins in their molecularly dispersed form and that micelles cannot act as substrates. The data indicate that short-chain lecithins in the aggregated state are hydrolyzed and that the requirements of bee venom phospholipase A2 for the aggregation state of the substrate are not strict.

  1. Degradation of amino acids to short-chain fatty acids in humans. An in vitro study

    DEFF Research Database (Denmark)

    Rasmussen, H S; Holtug, K; Mortensen, P B

    1988-01-01

    Short-chain fatty acids (SCFA) originate mainly in the colon through bacterial fermentation of polysaccharides. To test the hypothesis that SCFA may originate from polypeptides as well, the production of these acids from albumin and specific amino acids was examined in a faecal incubation system....... Albumin was converted to all C2-C5-fatty acids, whereas amino acids generally were converted to specific SCFA, most often through the combination of a deamination and decarboxylation of the amino acids, although more complex processes also took place. This study indicates that a part of the intestinal...

  2. Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments.

    Directory of Open Access Journals (Sweden)

    Arpita eBose

    2013-12-01

    Full Text Available Marine hydrocarbon seeps are ecosystems that are rich in methane, and, in some cases, short-chain (C2-C5 and longer alkanes. C2-C4 alkanes such as ethane, propane and butane can be significant components of seeping fluids. Some sulfate-reducing microbes oxidize short-chain alkanes anaerobically, and may play an important role in both the competition for sulfate and the local carbon budget. To better understand the anaerobic oxidation of short-chain n-alkanes coupled with sulfate-reduction, hydrocarbon-rich sediments from the Gulf of Mexico were amended with artificial, sulfate-replete seawater and one of four n-alkanes (C1-C4 then incubated under strict anaerobic conditions. Measured rates of alkane oxidation and sulfate reduction closely follow stoichiometric predictions that assume the complete oxidation of alkanes to CO2 (though other sinks for alkane carbon likely exist. Changes in the δ13C of all the alkanes in the reactors show enrichment over the course of the incubation, with the C3 and C4 incubations showing the greatest enrichment (4.4‰ and 4.5‰ respectively. The concurrent depletion in the δ13C of dissolved inorganic carbon (DIC implies a transfer of carbon from the alkane to the DIC pool (-3.5 and -6.7‰ for C3 and C4 incubations, respectively. Microbial community analyses reveal that certain members of the class Deltaproteobacteria are selectively enriched as the incubations degrade C1-C4 alkanes. Phylogenetic analyses indicate that distinct phylotypes are enriched in the ethane reactors, while phylotypes in the propane and butane reactors align with previously identified C3-C4 alkane-oxidizing sulfate-reducers. These data further constrain the potential influence of alkane oxidation on sulfate reduction rates in cold hydrocarbon-rich sediments, provide insight into their contribution to local carbon cycling, and illustrate the extent to which short-chain alkanes can serve as electron donors and govern microbial community

  3. Volatile Short-chain Chlorinated Hydrocarbons in the Groundwater of the City of Zagreb

    OpenAIRE

    Marijanović-Rajčić, M.; Senta, A.

    2008-01-01

    The aim of the study was to assess the quality of the groundwater sampled from private wells and the public water-supply system in terms of estimating the contamination caused by short-chain chlorinated hydrocarbons, as well as to estimate the exposure of the citizens dwelling in different suburbs to these pollutants of their drinking water (Fig. 1). The aim of the study was also to determine which suburb is supplied through the public water-supply system with water originating from the Sašna...

  4. Emission control strategies for short-chain chloroparaffins in two semi-hypothetical case cities

    DEFF Research Database (Denmark)

    Eriksson, Eva; Revitt, M.; Lützhøft, Hans-Christian Holten

    2012-01-01

    The short-chain chloroparaffins (SCCP), (C10-13 chloroalkanes) are identified in the European Water Framework Directive, as priority hazardous substances. Within the ScorePP project, the aim is to develop emission control strategies that can be employed to reduce emissions from urban areas...... into receiving waters. Six different scenarios for mitigating SCCP emissions in two different semi-hypothetical case cities representing eastern inland and northern coastal conditions have been evaluated. The analysis, associated with scenario uncertainty, indicates that the EU legislation, Best Available...

  5. Novel short chain chloroquine analogues retain activity against chloroquine resistant K1 Plasmodium falciparum.

    Science.gov (United States)

    Stocks, Paul A; Raynes, Kaylene J; Bray, Patrick G; Park, B Kevin; O'Neill, Paul M; Ward, Stephen A

    2002-11-07

    A series of short chain chloroquine (CQ) derivatives have been synthesized in one step from readily available starting materials. The diethylamine function of CQ is replaced by shorter alkylamine groups (4-9) containing secondary or tertiary terminal nitrogens. Some of these derivatives are significantly more potent than CQ against a CQ resistant strain of Plasmodium falciparum in vitro. We conclude that the ability to accumulate at higher concentrations within the food vacuole of the parasite is an important parameter that dictates their potency against CQ sensitive and the chloroquine resistant K1 P. falciparum.

  6. Antibiotic-associated diarrhoea, Clostridium difficile, and short-chain fatty acids

    DEFF Research Database (Denmark)

    Hove, H; Tvede, M; Mortensen, P B

    1996-01-01

    BACKGROUND: It has been hypothesized that Clostridium difficile and decreased colonic production of short-chain fatty acids (SCFAs) cause the development of antibiotic-associated diarrhoea. We therefore wanted to investigate the effects of an intensive and uniform antibiotic therapy on faecal SCFAs...... concentrations. C. difficile, and extent of diarrhoea. METHODS: Fifteen liver-transplanted patients who received oral bowel flora suppression therapy (6.3 g cefuroxime, 0.6 g tobramycin, and 0.5 g nystatin three times daily) were studied for 12 days before and 12 days after discontinuation of therapy. RESULTS...

  7. Identification and Funtional Characterization of Three Postsynaptic Short-chain Neurotoxins from Hydrophiinae, Lapemis hardwickii Gray.

    Science.gov (United States)

    Zhong, Xiao-Fen; Peng, Li-Sheng; Wu, Wen-Yan; Wei, Jian-Wen; Yang, Hong; Yang, Yan-Zhen; Xu, An-Long

    2001-01-01

    Three cDNA clones, sn12, sn36 and sn160, encoding isoforms of postsynaptic short-chain neurotoxins, were cloned by screening a cDNA library of the venom from Hydrophiinae, Lapemis hardwickii Gray. The sequences of three cDNA clones encoded proteins consisting of 60 amino acid residues. There was only one amino acid substitution among the three isoforms SN12, SN36 and SN160 at the position 46 of mature proteins, and they were Pro(46), His(46) and Arg(46), respectively. The three molecules were expressed in Escherichia coli and the recombinant proteins were characterized. Different LD(50) were obtained, namely 0.0956 mg/kg, 0.3467 mg/kg and 0.2192 mg/kg, when the SN12, SN36 and SN160 were injected into Kunming mice(i.p.). In analgesic effect assayed by the acetic acid-induced writhing method, SN12 and SN160 showed similar analgesic effect, but SN36 had effects significantly different with the other two. Our studies suggested that the amino acid residues on position 46 could affect the combination between the postsynaptic short-chain neurotoxins and the nicotinic acetylchoine receptor, since different amino acid substitution resulted in different biological activities.

  8. Phase separation in short-chain lecithin/gel-state long-chain lecithin aggregates

    International Nuclear Information System (INIS)

    Bian, J.; Roberts, M.F.

    1990-01-01

    Small bilayer particles for spontaneously from gel-state long-chain phospholipids such as dipalmitoylphosphatidylcholine and 0.2 mol fraction short-chain lecithins (e.g., diheptanoylphosphatidylcholine). When the particles are incubed at temperatures greater than the T m of the long-chain phosphatidylcholine (PC), the particles rapidly fuse (from 90-angstrom to ≥ 5,000-angstrom radius); this transition is reversible. A possible explanation for this behavior involves patching or phase separation of the short-chain component within the gel-state particle and randomization of both lipid species above T m . Differential scanning calorimetry, 1 H T 1 values of proteodiheptanoyl-PC in diheptanoyl-PC-d 26 /dipalmitoyl-PC-d 62 matrices of varying deuterium content, solid-state 2 H NMR spectroscopy as a function of temperature, and fluorescence pyrene excimer-to-monomer ratios as a function of mole fraction diheptanoyl-PC provide evidence that such phase separation must occur. These results are used to construct a phase diagram for the diheptanoyl-PC/dipalmitoyl-PC system, to propose detailed geometric models for the different lipid particles involved, and to understand phospholipase kinetics toward the different aggregates

  9. Engineered Production of Short-Chain Acyl-Coenzyme A Esters in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Krink-Koutsoubelis, Nicolas; Loechner, Anne C.; Lechner, Anna

    2018-01-01

    Short-chain acyl-coenzyme A esters serve as intermediate compounds in fatty acid biosynthesis, and the production of polyketides, biopolymers and other value-added chemicals. S. cerevisiae is a model organism that has been utilized for the biosynthesis of such biologically and economically valuable...... compounds. However, its limited repertoire of short-chain acyl-CoAs effectively prevents its application as a production host for a plethora of natural products. Therefore, we introduced biosynthetic metabolic pathways to five different acyl-CoA esters into S. cerevisiae. Our engineered strains provide......-CoA at 0.5 μM; and isovaleryl-CoA, n-butyryl-CoA, and n-hexanoyl-CoA at 6 μM each. The acyl-CoAs produced in this study are common building blocks of secondary metabolites and will enable the engineered production of a variety of natural products in S. cerevisiae. By providing this toolbox of acyl...

  10. Gut microbiota alterations and dietary modulation in childhood malnutrition - The role of short chain fatty acids.

    Science.gov (United States)

    Pekmez, Ceyda Tugba; Dragsted, Lars Ove; Brahe, Lena Kirchner

    2018-02-17

    The gut microbiome affects the health status of the host through different mechanisms and is associated with a wide variety of diseases. Both childhood undernutrition and obesity are linked to alterations in composition and functionality of the gut microbiome. One of the possible mechanisms underlying the interplay between microbiota and host metabolism is through appetite-regulating hormones (including leptin, ghrelin, glucagon-like peptide-1). Short chain fatty acids, the end product of bacterial fermentation of non-digestible carbohydrates, might be able to alter energy harvest and metabolism through enteroendocrine cell signaling, adipogenesis and insulin-like growth factor-1 production. Elucidating these mechanisms may lead to development of new modulation practices of the gut microbiota as a potential prevention and treatment strategy for childhood malnutrition. The present overview will briefly outline the gut microbiota development in the early life, gut microbiota alterations in childhood undernutrition and obesity, and whether this relationship is causal. Further we will discuss possible underlying mechanisms in relation to the gut-brain axis and short chain fatty acids, and the potential of probiotics, prebiotics and synbiotics for modulating the gut microbiota during childhood as a prevention and treatment strategy against undernutrition and obesity. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  11. Changes in short-chain fatty acid plasma profile incurred by dietary fiber composition

    DEFF Research Database (Denmark)

    Knudsen, Knud Erik Bach; Jørgensen, Henry Johs. Høgh; Theil, Peter Kappel

    2016-01-01

    Pigs were used as model for humans to study the impact of dietary fiber (DF), the main substrate for microbial fermentation, on plasma profile of short-chain fatty acids (SCFA; acetate, propionate, and butyrate). Six female pigs fitted with catheters in the portal vein and mesenteric artery and w...... higher net absorption of butyrate (2.4–4.0 vs. 1.6 mmol/h; P ...Pigs were used as model for humans to study the impact of dietary fiber (DF), the main substrate for microbial fermentation, on plasma profile of short-chain fatty acids (SCFA; acetate, propionate, and butyrate). Six female pigs fitted with catheters in the portal vein and mesenteric artery...... >> arabinoxylan >> β-glucan, whereas in the WWG, WAF, and RAF, diets it was arabinoxylan >> cellulose > β-glucan. The diets were fed to the pigs during 3 wk in a crossover design. Within an experimental week, WFL was supplied on Days 1 through 3 and WWG, WAF, or RAF was supplied during Days 4 through 7. Fasting...

  12. Enzymatic hydrolysis of short-chain lecithin/long-chain phospholipid unilamellar vesicles: sensitivity of phospholipases to matrix phase state.

    Science.gov (United States)

    Gabriel, N E; Agman, N V; Roberts, M F

    1987-11-17

    Short-chain lecithin/long-chain phospholipid unilamellar vesicles (SLUVs), unlike pure long-chain lecithin vesicles, are excellent substrates for water-soluble phospholipases. Hemolysis assays show that greater than 99.5% of the short-chain lecithin is partitioned in the bilayer. In these binary component vesicles, the short-chain species is the preferred substrate, while the long-chain phospholipid can be treated as an inhibitor (phospholipase C) or poor substrate (phospholipase A2). For phospholipase C Bacillus cereus, apparent Km and Vmax values show that bilayer-solubilized diheptanoylphosphatidylcholine (diheptanoyl-PC) is nearly as good a substrate as pure micellar diheptanoyl-PC, although the extent of short-chain lecithin hydrolysis depends on the phase state of the long-chain lipid. For phospholipase A2 Naja naja naja, both Km and Vmax values show a greater range: in a gel-state matrix, diheptanoyl-PC is hydrolyzed with micellelike kinetic parameters; in a liquid-crystalline matrix, the short-chain lecithin becomes comparable to the long-chain component. Both enzymes also show an anomalous increase in specific activity toward diheptanoyl-PC around the phase transition temperature of the long-chain phospholipid. Since the short-chain lecithin does not exhibit a phase transition, this must reflect fluctuations in head-group area or vertical motions of the short-chain lecithin caused by surrounding long-chain lecithin molecules. These results are discussed in terms of a specific model for SLUV hydrolysis and a general explanation for the "interfacial activation" observed with water-soluble phospholipases.

  13. Diversion procto-colitis: response to treatment with short-chain fatty acids.

    Science.gov (United States)

    Kiely, E M; Ajayi, N A; Wheeler, R A; Malone, M

    2001-10-01

    Diversion procto-colitis (DPC) results from a deficiency of luminal short-chain fatty acids (SCFAs). Endoscopic and histopathologic features of the disorder are almost universally present in defunctioned bowel, but symptomatic DPC is less common. Five children with symptomatic DPC underwent endoscopy and rectosigmoid biopsies. An endoscopic index (EI) was used to quantify disease severity. An SCFA mixture was administered into the defunctioned bowel. A good clinical response and improvement in the endoscopic index occurred in all children. Undiversion or rectal excision was carried out in 4 and was curative in each case. One child is awaiting a redo pull through. DPC should be considered in children with a defunctioned colon presenting with evidence of colitis. Histopathology provides supportive evidence and SCFAs may provide effective relief of symptoms. Stoma reversal or rectal excision is curative. Copyright 2001 by W.B. Saunders Company.

  14. Retention of short chain fatty acids under drying and storage conditions

    Directory of Open Access Journals (Sweden)

    Alexandre Santos Souza

    2011-09-01

    Full Text Available Cheese whey permeate was used as a substrate for the fermentation of Propionibacterium freudenreichi PS1 for the production of short chain fatty acids, components of the bio-aroma of Swiss cheese. The liquid bio-aroma was encapsulated by spray drying under different conditions of air inlet temperature and feed rate. A study was carried out on the stability of the bio-aroma during storage in laminated packages at 30 °C for 96 days using the product showing the greatest retention of acetic and propionic acids. The results showed that the best drying conditions were an air entrance temperature of 180 °C and a feed rate of 24 g/min resulting in particles with a smooth surface and few invaginations and micro-fissures. However, 72% of the acetic acid and 80% of the propionic acid were lost during storage showing that the wall material used was inadequate to guarantee product stability.

  15. Dechlorination of short chain chlorinated paraffins by nanoscale zero-valent iron.

    Science.gov (United States)

    Zhang, Zhi-Yong; Lu, Mang; Zhang, Zhong-Zhi; Xiao, Meng; Zhang, Min

    2012-12-01

    In this study, nanoscale zero-valent iron (NZVI) particles were synthesized and used for the reductive dehalogenation of short chain chlorinated paraffins (SCCPs) in the laboratory. The results show that the dechlorination rate of chlorinated n-decane (CP(10)) by NZVI increased with decreased solution pH. Increasing the loading of NZVI enhanced the dechlorination rate of CP(10). With an increase in temperature, the degradation rate increased. The reduction of CP(10) by NZVI was accelerated with increasing the concentration of humic acid up to 15 mg/L but then was inhibited. The dechlorination of CP(10) within the initial 18 h followed pseudo-first order rate model. The formation of intermediate products indicates a stepwise dechlorination pathway of SCCPs by NZVI. The carbon chain length and chlorination degree of SCCPs have a polynominal impact on dechlorination reactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Distribution, activity and function of short-chain alkane degrading phylotypes in hydrothermal vent sediments

    Science.gov (United States)

    Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.

    2012-12-01

    Global geochemical analyses suggest that C2-C4 short chain alkanes are a common component of the utilizable carbon pool in deep-sea sediments worldwide and have been found in diverse ecosystems. From a thermodynamic standpoint, the anaerobic microbial oxidation of these aliphatic hydrocarbons is more energetically yielding than the anaerobic oxidation of methane (AOM). Therefore, the preferential degradation of these hydrocarbons may compete with AOM for the use of oxidants such as sulfate, or other potential oxidants. Such processes could influence the fate of methane in the deep-sea. Sulfate-reducing bacteria (SRB) from hydrocarbon seep sediments of the Gulf of Mexico and Guaymas Basin have previously been enriched that anaerobically oxidize short chain alkanes to generate CO2 with the preferential utilization of 12C-enriched alkanes (Kniemeyer et al. 2007). Different temperature regimens along with multiple substrates were tested and a pure culture (deemed BuS5) was isolated from mesophilic enrichments with propane or n-butane as the sole carbon source. Through comparative sequence analysis, strain BuS5 was determined to cluster with the metabolically diverse Desulfosarcina / Desulfococcus cluster, which also contains the SRB found in consortia with anaerobic, methane-oxidizing archaea in seep sediments. Enrichments from a terrestrial, low temperature sulfidic hydrocarbon seep also corroborated that propane degradation occurred with most bacterial phylotypes surveyed belonging to the Deltaproteobacteria, particularly Desulfobacteraceae (Savage et al. 2011). To date, no microbes capable of ethane oxidation or anaerobic C2-C4 alkane oxidation at thermophilic temperature have been isolated. The sediment-covered, hydrothermal vent systems found at Middle Valley (Juan de Fuca Ridge, eastern Pacific Ocean) are a prime environment for investigating mesophilic to thermophilic anaerobic oxidation of short-chain alkanes, given the elevated temperatures and dissolved

  17. The effect of short-chain fatty acids on human monocyte-derived dendritic cells

    DEFF Research Database (Denmark)

    Nastasi, Claudia; Candela, Marco; Bonefeld, Charlotte Menné

    2015-01-01

    negligible effects, while both butyrate and propionate strongly modulated gene expression in both immature and mature human monocyte-derived DC. An Ingenuity pathway analysis based on the differentially expressed genes suggested that propionate and butyrate modulate leukocyte trafficking, as SCFA strongly......The gut microbiota is essential for human health and plays an important role in the pathogenesis of several diseases. Short-chain fatty acids (SCFA), such as acetate, butyrate and propionate, are end-products of microbial fermentation of macronutrients that distribute systemically via the blood....... The aim of this study was to investigate the transcriptional response of immature and LPS-matured human monocyte-derived DC to SCFA. Our data revealed distinct effects exerted by each individual SCFA on gene expression in human monocyte-derived DC, especially in the mature ones. Acetate only exerted...

  18. Biodiesel production by esterification of oleic acid with short-chain alcohols under ultrasonic irradiation condition

    Energy Technology Data Exchange (ETDEWEB)

    Hanh, Hoang Duc; Okitsu, Kenji; Nishimura, Rokuro; Maeda, Yasuaki [Department of Applied Material Science, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai, Osaka 599-8531 (Japan); Dong, Nguyen The [Institute of Environmental Technology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)

    2009-03-15

    Production of fatty acid ethyl ester (FAEE) from oleic acid (FFA) with short-chain alcohols (ethanol, propanol, and butanol) under ultrasonic irradiation was investigated in this work. Batch esterification of oleic acid was carried out to study the effect of: test temperatures of 10-60 C, molar ratios of alcohol to oleic acid of 1:1-10:1, quantity of catalysts of 0.5-10% (wt of sulfuric acid/wt of oleic acid) and irradiation times of 10 h. The optimum condition for the esterification process was molar ratio of alcohol to oleic acid at 3:1 with 5 wt% of H{sub 2}SO{sub 4} at 60 C with an irradiation time of 2 h. (author)

  19. Effect of short-chain branching on interfacial polymer structure and dynamics under shear flow.

    Science.gov (United States)

    Jeong, Sohdam; Kim, Jun Mo; Cho, Soowon; Baig, Chunggi

    2017-11-22

    We present a detailed analysis on the effect of short-chain branches on the structure and dynamics of interfacial chains using atomistic nonequilibrium molecular dynamics simulations of confined polyethylene melts in a wide range of shear rates. The intrinsically fast random motions of the short branches constantly disturb the overall chain conformation, leading to a more compact and less deformed chain structure of the short-chain branched (SCB) polymer against the imposed flow field in comparison with the corresponding linear polymer. Moreover, such highly mobile short branches along the backbone of the SCB polymer lead to relatively weaker out-of-plane wagging dynamics of interfacial chains, with highly curvy backbone structures in the intermediate flow regime. In conjunction with the contribution of short branches (as opposed to that of the backbone) to the total interfacial friction between the chains and the wall, the SCB polymer shows a nearly constant behavior in the degree of slip (d s ) with respect to shear rate in the weak-to-intermediate flow regimes. On the contrary, in the strong flow regime where irregular chain rotation and tumbling dynamics occur via intensive dynamical collisions between interfacial chains and the wall, an enhancement effect on the chain detachment from the wall, caused by short branches, leads to a steeper increase in d s for the SCB polymer than for the linear polymer. Remarkably, the SCB chains at the interface exhibit two distinct types of rolling mechanisms along the backbone, with a half-dumbbell mesoscopic structure at strong flow fields, in addition to the typical hairpin-like tumbling behavior displayed by the linear chains.

  20. Process development of short-chain polyols synthesis from corn stover by combination of enzymatic hydrolysis and catalytic hydrogenolysis

    Directory of Open Access Journals (Sweden)

    Zhen-Hong Fang

    2014-09-01

    Full Text Available Currently short-chain polyols such as ethanediol, propanediol, and butanediol are produced either from the petroleum feedstock or from the starch-based food crop feedstock. In this study, a combinational process of enzymatic hydrolysis with catalytic hydrogenolysis for short-chain polyols production using corn stover as feedstock was developed. The enzymatic hydrolysis of the pretreated corn stover was optimized to produce stover sugars at the minimum cost. Then the stover sugars were purified and hydrogenolyzed into polyols products catalyzed by Raney nickel catalyst. The results show that the yield of short-chain polyols from the stover sugars was comparable to that of the corn-based glucose. The present study provided an important prototype for polyols production from lignocellulose to replace the petroleum- or corn-based polyols for future industrial applications.

  1. Isolation and amino acid sequence of a short-chain neurotoxin from an Australian elapid snake, Pseudechis australis.

    OpenAIRE

    Takasaki, C; Tamiya, N

    1985-01-01

    A short-chain neurotoxin Pseudechis australis a (toxin Pa a) was isolated from the venom of an Australian elapid snake Pseudechis australis (king brown snake) by sequential chromatography on CM-cellulose, Sephadex G-50 and CM-cellulose columns. Toxin Pa a has an LD50 (intravenous) value of 76 micrograms/kg body wt. in mice and consists of 62 amino acid residues. The amino acid sequence of Pa a shows considerable homology with those of short-chain neurotoxins of elapid snakes, especially of tr...

  2. Volatile Short-chain Chlorinated Hydrocarbons in the Groundwater of the City of Zagreb

    Directory of Open Access Journals (Sweden)

    Marijanović-Rajčić, M.

    2008-01-01

    Full Text Available The aim of the study was to assess the quality of the groundwater sampled from private wells and the public water-supply system in terms of estimating the contamination caused by short-chain chlorinated hydrocarbons, as well as to estimate the exposure of the citizens dwelling in different suburbs to these pollutants of their drinking water (Fig. 1. The aim of the study was also to determine which suburb is supplied through the public water-supply system with water originating from the Sašnak spring that is contaminated with volatile chlorinated short-chain hydrocarbons.Drinking water samples were taken from 3 private wells and 1 public water-supply system situated in 3 Zagreb suburbs - Pešćenica, Trnje, and Trešnjevka. The sampling was carried out during 2003 and was undertaken on a seasonal basis. Short-chain chlorinated hydrocarbons - 1,1,1-trichloroethane, carbon tetrachloride, 1,1,2-trichloroethene and 1,1,2,2-tetrachloroethene - were determined by gas chromatography, following "liquid-liquid extraction" in pentane. For that purpose, we applied the gas chromatograph equipped with an electron-capture detector, thermo-programmable operations, and a suitable capillary column. The technique applied was that of split-injection.The groundwater of the City of Zagreb was found to be contaminated with volatile chlorinated hydrocarbons. The concentration level of 1,1,1-trichloroethane, determined in most of the samples, was found to be low (Fig. 2. On the other hand, 1,1,2-trichloroethene was present in all samples in concentrations of about 1 µg l-1- (Fig. 3. Only the drinking water samples taken from private wells in the suburb of Trnje contained somewhat higher mass concentrations of 1,1,1-trichloroethane, with the peak value of 19.03 µg l-1, measured in the winter season. In the samples taken from private wells in Trnje, the mass concentrations of 1,1,2,2-tetrachloroethene rangedfrom 15.30 µg l-1 to 18.65 µg l-1, as measured in autumn

  3. Extending our knowledge of fermentable, short-chain carbohydrates for managing gastrointestinal symptoms.

    Science.gov (United States)

    Barrett, Jacqueline S

    2013-06-01

    The Monash University low FODMAP (fermentable oligosaccharides, disaccharides, monosaccharides, and polyols) diet is now accepted as an effective strategy for managing symptoms of irritable bowel syndrome (IBS) in Australia, with interest expanding across the world. These poorly absorbed, short-chain carbohydrates have been shown to induce IBS symptoms of diarrhea, bloating, abdominal pain, and flatus due to their poor absorption, osmotic activity, and rapid fermentation. Four clinical trials have been published to date, all with significant symptomatic response to the low FODMAP diet. Up to 86% of patients with IBS have achieved relief of overall gastrointestinal symptoms and, more specifically, bloating, flatus, abdominal pain, and altered bowel habit from the approach. This review provides an overview of the low FODMAP diet and summarizes the research to date, emerging concepts, and limitations. FODMAPs are known to be beneficial to bowel health; the importance of this and how this should be considered in the clinical management of IBS is also discussed. A clinical management flowchart is provided to assist nutrition professionals in the use of this approach.

  4. Role of colonic short-chain fatty acid transport in diarrhea.

    Science.gov (United States)

    Binder, Henry J

    2010-01-01

    Short-chain fatty acids (SCFA) are the major anion in stool and are synthesized from nonabsorbed carbohydrate by the colonic microbiota. Nonabsorbed carbohydrate are not absorbed in the colon and induce an osmotically mediated diarrhea; in contrast, SCFA are absorbed by colonic epithelial cells and stimulate Na-dependent fluid absorption via a cyclic AMP-independent process involving apical membrane Na-H, SCFA-HCO(3), and Cl-SCFA exchanges. SCFA production represents an adaptive process to conserve calories, fluid, and electrolytes. Inhibition of SCFA synthesis by antibiotics and administration of PEG, a substance that is not metabolized by colonic microbiota, both result in diarrhea. In contrast, increased production of SCFA as a result of providing starch that is relatively resistant to amylase digestion [so-called resistant starch (RS)] to oral rehydration solution (RS-ORS) improves the efficacy of ORS and represents an important approach to improve the effectiveness of ORS in the treatment of acute diarrhea in children under five years of age.

  5. Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals.

    Science.gov (United States)

    Azcarate-Peril, M Andrea; Ritter, Andrew J; Savaiano, Dennis; Monteagudo-Mera, Andrea; Anderson, Carlton; Magness, Scott T; Klaenhammer, Todd R

    2017-01-17

    Directed modulation of the colonic bacteria to metabolize lactose effectively is a potentially useful approach to improve lactose digestion and tolerance. A randomized, double-blind, multisite placebo-controlled trial conducted in human subjects demonstrated that administration of a highly purified (>95%) short-chain galactooligosaccharide (GOS), designated "RP-G28," significantly improved clinical outcomes for lactose digestion and tolerance. In these individuals, stool samples were collected pretreatment (day 0), after GOS treatment (day 36), and 30 d after GOS feeding stopped and consumption of dairy products was encouraged (day 66). In this study, changes in the fecal microbiome were investigated using 16S rRNA amplicon pyrosequencing and high-throughput quantitative PCR. At day 36, bifidobacterial populations were increased in 27 of 30 of GOS subjects (90%), demonstrating a bifidogenic response in vivo. Relative abundance of lactose-fermenting Bifidobacterium, Faecalibacterium, and Lactobacillus were significantly increased in response to GOS. When dairy was introduced into the diet, lactose-fermenting Roseburia species increased from day 36 to day 66. The results indicated a definitive change in the fecal microbiome of lactose-intolerant individuals, increasing the abundance of lactose-metabolizing bacteria that were responsive to dietary adaptation to GOS. This change correlated with clinical outcomes of improved lactose tolerance.

  6. Short chain and polyunsaturated fatty acids in host gut health and foodborne bacterial pathogen inhibition.

    Science.gov (United States)

    Peng, Mengfei; Biswas, Debabrata

    2017-12-12

    As a major source of microbes and their numerous beneficial effects, the gut microflora/microbiome is intimately linked to human health and disease. The exclusion of enteric pathogens by these commensal microbes partially depends upon the production of bioactive compounds such as short-chain fatty acids (SCFAs) and polyunsaturated fatty acids (PUFAs). These key intestinal microbial byproducts are crucial to the maintenance of a healthy gut microbial community. Moreover, SCFAs and PUFAs play multiple critical roles in host defense and immunity, including anti-cancer, anti-inflammation, and anti-oxidant activities, as well as out-competition of enteric bacterial pathogens. In this review article, we hereby aim to highlight the importance of SCFAs and PUFAs and the microbes involved in production of these beneficial intestinal components, and their biological functions, specifically as to their immunomodulation and interactions with enteric bacterial pathogens. Finally, we also advance potential applications of these fatty acids with regards to food safety and human gut health.

  7. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market

    Directory of Open Access Journals (Sweden)

    Ivan Baumann

    2016-01-01

    Full Text Available Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed.

  8. Endosulfan, pentachlorobenzene and short-chain chlorinated paraffins in background soils from Western Europe.

    Science.gov (United States)

    Halse, Anne Karine; Schlabach, Martin; Schuster, Jasmin K; Jones, Kevin C; Steinnes, Eiliv; Breivik, Knut

    2015-01-01

    Soils are major reservoirs for many persistent organic pollutants (POPs). In this study, "newly" regulated POPs i.e. Σendosulfans (α-endosulfan, β-endosulfan, endosulfan sulfate), pentachlorobenzene (PeCB), and short-chain chlorinated paraffins (SCCPs) were determined in background samples from woodland (WL) and grassland (GL) surface soil, collected along an existing latitudinal UK-Norway transect. Statistical analysis, complemented with plots showing the predicted equilibrium distribution and mobility potential, was then explored to discuss factors controlling their spatial distribution. SCCPs were detected with the highest average concentrations (35 ± 100 ng/g soil organic matter (SOM)), followed by Σendosulfans (3 ± 3 ng/g SOM) and PeCB (1 ± 1 ng/g SOM). PeCB and Σendosulfans share many similarities in their distribution in these background soils as well as with several legacy POPs. A steep decline in concentrations of SCCPs with increasing latitude indicates that their occurrence is dictated by proximity to source regions, while concentrations of Σendosulfans peaked in regions experiencing elevated precipitation rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Short-chain alkanes synergise responses of moth pests to their sex pheromones.

    Science.gov (United States)

    Gurba, Alexandre; Guerin, Patrick M

    2016-05-01

    The use of sex pheromones for mating disruption of moth pests of crops is increasing worldwide. Efforts are under way to augment the efficiency and reliability of this control method by adding molecules derived from host plants to the sex attractants in dispensers. We show how attraction of the European grapevine moth, Lobesia botrana Den. & Schiff., and the codling moth, Cydia pomonella L., males to underdosed levels of their sex pheromones is increased by adding heptane or octane over a range of release rates. Pheromone-alkane mixtures enhance male recruitment by up to 30%, reaching levels induced by calling females, and shorten the flight time to the sex attractant by a factor of 2. The findings show the promise of using short-chain alkanes as pheromone synergists for mating disruption of insect pests of food crops. Alkane-pheromone combinations are expected to increase the competitiveness of dispensers with females, and to reduce the amount of pheromone needed for the control of these pests. © 2015 Society of Chemical Industry.

  10. Short-Chain Chlorinated Paraffins in Zurich, Switzerland--Atmospheric Concentrations and Emissions.

    Science.gov (United States)

    Diefenbacher, Pascal S; Bogdal, Christian; Gerecke, Andreas C; Glüge, Juliane; Schmid, Peter; Scheringer, Martin; Hungerbühler, Konrad

    2015-08-18

    Short-chain chlorinated paraffins (SCCPs) are of concern due to their potential for adverse health effects, bioaccumulation, persistence, and long-range transport. Data on concentrations of SCCPs in urban areas and underlying emissions are still scarce. In this study, we investigated the levels and spatial distribution of SCCPs in air, based on two separate, spatially resolved sampling campaigns in the city of Zurich, Switzerland. SCCP concentrations in air ranged from 1.8 to 17 ng·m(-3) (spring 2011) and 1.1 to 42 ng·m(-3) (spring 2013) with medians of 4.3 and 2.7 ng·m(-3), respectively. Both data sets show that atmospheric SCCP levels in Zurich can vary substantially and may be influenced by a number of localized sources within this urban area. Additionally, continuous measurements of atmospheric concentrations performed at one representative sampling site in the city center from 2011 to 2013 showed strong seasonal variations with high SCCP concentrations in summer and lower levels in winter. A long-term dynamic multimedia environmental fate model was parametrized to simulate the seasonal trends of SCCP concentrations in air and to back-calculate urban emissions. Resulting annual SCCP emissions in the city of Zurich accounted for 218-321 kg, which indicates that large SCCP stocks are present in urban areas of industrialized countries.

  11. [Contamination characteristics of short-chain chlorinated paraffins in edible fish of Shanghai].

    Science.gov (United States)

    Jiang, Guo; Chen, Lai-guo; He, Qiu-sheng; Meng, Xiang-zhou; Feng, Yong-bin; Huang, Yu-mei; Tang, Cai-ming

    2013-09-01

    According to the local habit of eating fish, in a total of 68 samples, 8 kinds of different trophic levels of edible fish collected in Shanghai were determined in terms of concentration and distribution profile of short chain chlorinated paraffin (SCCPs) in muscles to investigate the pollution status of SCCPs in edible fish from the Yangtze River Delta region. The results indicated that the concentrations (dw) of SCCPs in edible fish were in the range of 36-801 ng x g(-1). With the increase in carbon chain length, the concentration of SCCPs decreased. In addition, lower chlorinated (Cl6-Cl8) and shorter chain (Cl10, C11) congeners were the dominant chlorine and carbon homologues groups, respectively, contributing a total relative abundance of 61.46%-82.50% to the total abundance of SCCPs. The levels of SCCPs in fish of Shanghai were in the medium level worldwide, and the distribution pattern was in line with those of the domestic and foreign studies.

  12. [Levels and distribution of short chain chlorinated paraffins in seafood from Dalian, China].

    Science.gov (United States)

    Yu, Jun-Chao; Wang, Thanh; Wang, Ya-Wei; Meng, Mei; Chen, Ru; Jiang, Gui-Bin

    2014-05-01

    Seafood samples were collected from Dalian, China to study the accumulation and distribution characteristics of short chain chlorinated paraffins (SCCPs) by GC/ECNI-LRMS. Sum of SCCPs (dry weight) were in the range of 77-8 250 ng.g-1, with the lowest value in Scapharca subcrenata and highest concentration in Neptunea cumingi. The concentrations of sum of SCCPs (dry weight) in fish, shrimp/crab and shellfish were in the ranges of 100-3 510, 394-5 440, and 77-8 250 ng.g-1 , respectively. Overall, the C10 and C11 homologues were the most predominant carbon groups of SCCPs in seafood from this area,and a relatively higher proportion of C12-13 was observed in seafood with higher concentrations of sum of SCCPs . With regard to chlorine content, Cl1,, CI8 and CI6 were the major groups. Significant correlations were found among concentrations of different SCCP homologues (except C1, vs. Cl10 ) , which indicated that they might share the same sources and/or have similar accumulation, migration and transformation processes.

  13. Gridded emission inventory of short-chain chlorinated paraffins and its validation in China.

    Science.gov (United States)

    Jiang, Wanyanhan; Huang, Tao; Mao, Xiaoxuan; Wang, Li; Zhao, Yuan; Jia, Chenhui; Wang, Yanan; Gao, Hong; Ma, Jianmin

    2017-01-01

    China produces approximately 20%-30% of the total global chlorinated paraffins (CPs). The establishment of a short-chain CP (SCCP) emission inventory is a significant step toward risk assessment and regulation of SCCPs in China and throughout the globe. This study developed a gridded SCCPs emission inventory with a 1/4° longitude by 1/4° latitude resolution from 2008 to 2012 for China, which was based on the total annual CPs emissions for the nation. The total national SCCPs emission during this 5-year period was 5651.5 tons. An additive in metal cutting fluids was a major emission source in China, contributing 2680.2 tons to the total atmospheric emissions of SCCPs from 2008 to 2012, followed by the production of CPs (2281.8 tons), plasticizers (514.3 tons), flame retardants (108.6 tons), and net import (66.6 tons). Most of these emission sources are located along the eastern seaboard of China and southern China. A coupled atmospheric transport model was employed to simulate environmental contamination by SCCPs using the gridded emission inventory of SCCPs from 2008 to 2012 as the model initial conditions. Simulated atmospheric and soil concentrations were compared with field monitoring data to validate the emission inventory. The results showed good consistency between modeled and field sampling data, supporting the reliability and credibility of the gridded SCCPs emission inventory that was developed in the present study. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Novel short chain fatty acids restore chloride secretion in cystic fibrosis

    International Nuclear Information System (INIS)

    Nguyen, Toan D.; Kim, Ug-Sung; Perrine, Susan P.

    2006-01-01

    Phenylalanine deletion at position 508 of the cystic fibrosis transmembrane conductance regulator (ΔF508-CFTR), the most common mutation in cystic fibrosis (CF), causes a misfolded protein exhibiting partial chloride conductance and impaired trafficking to the plasma membrane. 4-Phenylbutyrate corrects defective ΔF508-CFTR trafficking in vitro, but is not clinically efficacious. From a panel of short chain fatty acid derivatives, we showed that 2,2-dimethyl-butyrate (ST20) and α-methylhydrocinnamic acid (ST7), exhibiting high oral bioavailability and sustained plasma levels, correct the ΔF508-CFTR defect. Pre-incubation (≥6 h) of CF IB3-1 airway cells with ≥1 mM ST7 or ST20 restored the ability of 100 μM forskolin to stimulate an 125 I - efflux. This efflux was fully inhibited by NPPB, DPC, or glibenclamide, suggesting mediation through CFTR. Partial inhibition by DIDS suggests possible contribution from an additional Cl - channel regulated by CFTR. Thus, ST7 and ST20 offer treatment potential for CF caused by the ΔF508 mutation

  15. Intestinal short chain fatty acids and their link with diet and human health

    Directory of Open Access Journals (Sweden)

    David eRios-Covian

    2016-02-01

    Full Text Available The colon is inhabited by a dense population of microorganisms, the so-called gut microbiota, able to ferment carbohydrates and proteins that escape absorption in the small intestine during digestion. This microbiota produces a wide range of metabolites, including short chain fatty acids (SCFA. These compounds are absorbed in the large bowel and are defined as 1-6 carbon volatile fatty acids which can present straight or branched-chain conformation. Their production is influenced by the pattern of food intake and diet-mediated changes in the gut microbiota. SCFA have distinct physiological effects: they contribute to shaping the gut environment, influence the physiology of the colon, they can be used as energy sources by host cells and the intestinal microbiota and they also participate in different host-signalling mechanisms. We summarize the current knowledge about the production of SCFA, including bacterial cross-feedings interactions, and the biological properties of these metabolites with impact on the human health

  16. Incipient microphase separation in short chain perfluoropolyether-block-poly(ethylene oxide) copolymers.

    Science.gov (United States)

    Chintapalli, Mahati; Timachova, Ksenia; Olson, Kevin R; Banaszak, Michał; Thelen, Jacob L; Mecham, Sue J; DeSimone, Joseph M; Balsara, Nitash P

    2017-06-07

    Incipient microphase separation is observed by wide angle X-ray scattering (WAXS) in short chain multiblock copolymers consisting of perfluoropolyether (PFPE) and poly(ethylene oxide) (PEO) segments. Two PFPE-PEO block copolymers were studied; one with dihydroxyl end groups and one with dimethyl carbonate end groups. Despite having a low degree of polymerization (N ∼ 10), these materials exhibited significant scattering intensity, due to disordered concentration fluctuations between their PFPE-rich and PEO-rich domains. The disordered scattering intensity was fit to a model based on a multicomponent random phase approximation to determine the value of the interaction parameter, χ, and the radius of gyration, R g . Over the temperature range 30-90 °C, the values of χ were determined to be very large (∼2-2.5), indicating a high degree of immiscibility between the PFPE and PEO blocks. In PFPE-PEO, due to the large electron density contrast between the fluorinated and non-fluorinated block and the high value of χ, disordered scattering was detected at intermediate scattering angles, (q ∼ 2 nm -1 ) for relatively small polymer chains. Our ability to detect concentration fluctuations was enabled by both a relatively large value of χ and significant scattering contrast.

  17. Bifidobacteria, Lactobacilli, and Short Chain Fatty Acids of Vegetarians and Omnivores

    Directory of Open Access Journals (Sweden)

    Bunešová Věra

    2017-03-01

    Full Text Available The intestinal microbiota represents the largest and the most complex microbial community inhabiting the human body. Bifidobacteria and lactobacilli represent important commensal bacteria with the ability to utilize complex carbohydrates. The main fermentation products from the breakdown of complex dietary carbohydrates are short chain fatty acids (SCFAs. We examined faecal samples of vegetarians (n = 10 and conventional omnivores (n = 10 to evaluate the counts and occurrence of cultivable bacteria, especially bifidobacteria and lactobacilli, using cultivation on selective media, and matrix-assisted laser desorption/ionization time-of-flight. Moreover, concentrations and molar proportion of SCFAs in faecal samples were measured. Total counts of Gram-negative anaerobic bacteria were significantly lower (P 0.05 between the diet groups. In total, six Bifidobacterium spp. and thirteen Lactobacillus spp. were detected via culture-dependent methods. Bifidobacteria counts and species composition in faecal samples of both groups were found to be relatively similar, regardless of the diet. Lactobacillus species varied more by individual diet.

  18. Occurrence of fatty acid short-chain-alkyl esters in fruits of Celastraceae plants.

    Science.gov (United States)

    Sidorov, Roman A; Zhukov, Anatoly V; Pchelkin, Vasily P; Vereshchagin, Andrei G; Tsydendambaev, Vladimir D

    2013-06-01

    Small amounts of a mixture of fatty acid short-chain-alkyl esters (FASCAEs) were obtained from the fruits of twelve plant species of Celastraceae family, and in five of them the FASCAEs were present not only in the arils but also in the seeds. These mixtures contained 32 individual FASCAE species, which formed four separate fractions, viz. FA methyl, ethyl, isopropyl, and butyl esters (FAMEs, FAEEs, FAIPEs, and FABEs, resp.). The FASCAE acyl components included the residues of 16 individual C₁₄-C₂₄ saturated, mono-, di-, and trienoic FAs. Linoleic, oleic, and palmitic acids, and, in some cases, also α-linolenic acid predominated in FAMEs and FAEEs, while myristic acid was predominant in FAIPEs. It can be suggested that, in the fruit arils of some plant species, FAMEs and FAEEs were formed at the expense of a same FA pool characteristic of a given species and were strongly different from FAIPEs and FABEs esters regarding the mechanism of their biosynthesis. However, as a whole, the qualitative and quantitative composition of various FASCAE fractions, as well as their FA composition, varied considerably depending on various factors. Therefore, separate FASCAE fractions seem to be synthesized from different FA pools other than those used for triacylglycerol formation. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  19. Characterization of short chain fatty acid microcapsules produced by spray drying

    International Nuclear Information System (INIS)

    Teixeira, Maria Ines; Andrade, Leonardo R.; Farina, Marcos; Rocha-Leao, Maria Helena M.

    2004-01-01

    Microcapsules containing short chain fatty acids (SCFA) were produced by spray drying technique using different proportions of gum arabic and maltodextrin as wall materials. Proportions of 5% and 10% of gum arabic and maltodextrin isolated, and a mixture of 5% of maltodextrin and 5% of gum arabic were added to samples of fermented permeate containing SCFA, and spray dried. The microstructure of microcapsules was studied by scanning electron microscopy (SEM) and the size distribution was obtained by laser diffraction. SEM observations showed that the microcapsules structures were affected by type and proportion of wall material tested. Most of the microcapsules containing gum arabic as wall material had surface dents or invaginations. Microcapsules containing maltodextrin were spherical with few surface dents and some of them had pores. The larger microcapsule sizes were observed in those containing maltodextrin. Our results show that microstructure and size of microcapsules are affected by type and proportion of biomaterial used. The samples containing 5% of maltodextrin and the mixture of 5% of gum arabic with 5% of maltodextrin presented smooth surfaces and homogenous size distributions. The corresponding microcapsules are considered optimal to food industrial uses due to the flowability property. Besides, these capsules were found to present a homogenous distribution of diameters, which may give a homogenous flavor distribution to the food products

  20. Fecal short-chain fatty acids at different time points after ceftriaxone administration in rats

    Directory of Open Access Journals (Sweden)

    Yu. V. Holota

    2017-02-01

    Full Text Available Short-chain fatty acids (SCFAs are major products of the microbial fermentation of dietary fiber in the colon. Recent studies suggest that these products of microbial metabolism in the gut act as signaling molecules, influence host energy homeostasis and play major immunological roles. In the present study, defined the long-term effects of ceftriaxone administration on the fecal SCFAs concentration in Wistar rats. Ceftriaxone (300 mg/kg, i.m. was administered daily for 14 days. Rats were euthanized in 1, 15 and 56 days after ceftriaxone withdrawal. Caecal weight and fecal concentration of SCFAs by gas chromatography were measured. Ceftriaxone administration induced time-dependent rats’ caecal enlargement through accumulation of undigestable substances. In 1 day after ceftriaxone withdrawal, the concentrations of acetic, propionic, butyric acids and total SCFAs were decreased 2.9-, 13.8-, 8.5-, 4.8-fold (P < 0.05, respectively. Concentration of valeric, isovaleric and caproic acids was below the detectable level. That was accompanied by decreased 4.3-fold anaerobic index and increased the relative amount of acetic acid (P < 0.05. In 56 days, concentration of SCFAs was still below control value but higher than in 1 day (except propionic acid. Anaerobic index was lower 1.3-fold (P < 0.05 vs. control. Conclusion: antibiotic therapy induced long-term disturbance in colonic microbiota metabolic activity.

  1. Fasting serum concentration of short-chain fatty acids in subjects with microscopic colitis and celiac disease

    DEFF Research Database (Denmark)

    Jakobsdottir, Greta; Bjerregaard, Jens Holst; Skovbjerg, Hanne

    2013-01-01

    Short-chain fatty acids (SCFAs), particularly propionic and butyric acids, have been shown to have many positive health effects. The amount and type of SCFAs formed from dietary fibre by the colonic microbiota depends on the substrate available and is reflected in blood. The total intake and type...

  2. Urea and short-chain fatty acids metabolism in Holstein cows fed a low-nitrogen grass-based diet

    DEFF Research Database (Denmark)

    Røjen, B A; Lund, P; Kristensen, N B

    2008-01-01

    Three ruminally cannulated and multicatheterised lactating dairy cows were used to investigate the effect of different supplement strategies to fresh clover grass on urea and short-chain fatty acid (SCFA) metabolism in a zero-grazing experiment with 24-h blood and ruminal samplings....

  3. Differential modulation of enterocyte-like Caco-2 cells after exposure to short-chain fatty acids

    NARCIS (Netherlands)

    Malago, J.J.; Koninkx, J.F.J.G.; Douma, P.M.; Dirkzwager, A.; Veldman, K.T.; Hendriks, H.G.C.J.M.; Dijk, van J.E.

    2003-01-01

    The response of intestinal epithelial cells to short-chain fatty acids, which are increasingly used as food additives, was investigated. Human small intestinal epithelial cell model Caco-2 cells were exposed to formate, propionate and butyrate to assess their effect on cellular growth, metabolism,

  4. Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia

    DEFF Research Database (Denmark)

    Nøhr, Mark Klitgaard; Egerod, K L; Christiansen, S H

    2015-01-01

    G-protein-coupled receptor 41 (GPR41) also called free fatty acid receptor 3 (FFAR3) is a Gαi-coupled receptor activated by short-chain fatty acids (SCFAs) mainly produced from dietary complex carbohydrate fibers in the large intestine as products of fermentation by microbiota. FFAR3 is expressed...

  5. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men

    DEFF Research Database (Denmark)

    Canfora, Emanuel E; van der Beek, Christina M; Jocken, Johan W E

    2017-01-01

    Short-chain fatty acids (SCFA), formed by microbial fermentation, are believed to be involved in the aetiology of obesity and diabetes. This study investigated the effects of colonic administration of physiologically relevant SCFA mixtures on human substrate and energy metabolism...

  6. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders

    Science.gov (United States)

    MacFabe, Derrick F.

    2012-01-01

    Recent evidence suggests potential, but unproven, links between dietary, metabolic, infective, and gastrointestinal factors and the behavioral exacerbations and remissions of autism spectrum disorders (ASDs). Propionic acid (PPA) and its related short-chain fatty acids (SCFAs) are fermentation products of ASD-associated bacteria (Clostridia, Bacteriodetes, Desulfovibrio). SCFAs represent a group of compounds derived from the host microbiome that are plausibly linked to ASDs and can induce widespread effects on gut, brain, and behavior. Intraventricular administration of PPA and SCFAs in rats induces abnormal motor movements, repetitive interests, electrographic changes, cognitive deficits, perseveration, and impaired social interactions. The brain tissue of PPA-treated rats shows a number of ASD-linked neurochemical changes, including innate neuroinflammation, increased oxidative stress, glutathione depletion, and altered phospholipid/acylcarnitine profiles. These directly or indirectly contribute to acquired mitochondrial dysfunction via impairment in carnitine-dependent pathways, consistent with findings in patients with ASDs. Of note, common antibiotics may impair carnitine-dependent processes by altering gut flora favoring PPA-producing bacteria and by directly inhibiting carnitine transport across the gut. Human populations that are partial metabolizers of PPA are more common than previously thought. PPA has further bioactive effects on neurotransmitter systems, intracellular acidification/calcium release, fatty acid metabolism, gap junction gating, immune function, and alteration of gene expression that warrant further exploration. These findings are consistent with the symptoms and proposed underlying mechanisms of ASDs and support the use of PPA infusions in rats as a valid animal model of the condition. Collectively, this offers further support that gut-derived factors, such as dietary or enteric bacterially produced SCFAs, may be plausible environmental

  7. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Derrick F. MacFabe

    2012-08-01

    Full Text Available Recent evidence suggests potential, but unproven, links between dietary, metabolic, infective, and gastrointestinal factors and the behavioral exacerbations and remissions of autism spectrum disorders (ASDs. Propionic acid (PPA and its related short-chain fatty acids (SCFAs are fermentation products of ASD-associated bacteria (Clostridia, Bacteriodetes, Desulfovibrio. SCFAs represent a group of compounds derived from the host microbiome that are plausibly linked to ASDs and can induce widespread effects on gut, brain, and behavior. Intraventricular administration of PPA and SCFAs in rats induces abnormal motor movements, repetitive interests, electrographic changes, cognitive deficits, perseveration, and impaired social interactions. The brain tissue of PPA-treated rats shows a number of ASD-linked neurochemical changes, including innate neuroinflammation, increased oxidative stress, glutathione depletion, and altered phospholipid/acylcarnitine profiles. These directly or indirectly contribute to acquired mitochondrial dysfunction via impairment in carnitine-dependent pathways, consistent with findings in patients with ASDs. Of note, common antibiotics may impair carnitine-dependent processes by altering gut flora favoring PPA-producing bacteria and by directly inhibiting carnitine transport across the gut. Human populations that are partial metabolizers of PPA are more common than previously thought. PPA has further bioactive effects on neurotransmitter systems, intracellular acidification/calcium release, fatty acid metabolism, gap junction gating, immune function, and alteration of gene expression that warrant further exploration. These findings are consistent with the symptoms and proposed underlying mechanisms of ASDs and support the use of PPA infusions in rats as a valid animal model of the condition. Collectively, this offers further support that gut-derived factors, such as dietary or enteric bacterially produced SCFAs, may be plausible

  8. Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans.

    Science.gov (United States)

    Rahat-Rozenbloom, S; Fernandes, J; Gloor, G B; Wolever, T M S

    2014-12-01

    Short-chain fatty acids (SCFA) are produced by colonic microbiota from dietary carbohydrates and proteins that reach the colon. It has been suggested that SCFA may promote obesity via increased colonic energy availability. Recent studies suggest obese humans have higher faecal SCFA than lean, but it is unclear whether this difference is due to increased SCFA production or reduced absorption. To compare rectal SCFA absorption, dietary intake and faecal microbial profile in lean (LN) versus overweight and obese (OWO) individuals. Eleven LN and eleven OWO individuals completed a 3-day diet record, provided a fresh faecal sample and had SCFA absorption measured using the rectal dialysis bag method. The procedures were repeated after 2 weeks. Age-adjusted faecal SCFA concentration was significantly higher in OWO than LN individuals (81.3±7.4 vs 64.1±10.4 mmol kg(-1), P=0.023). SCFA absorption (24.4±0.8% vs 24.7±1.2%, respectively, P=0.787) and dietary intakes were similar between the groups, except for a higher fat intake in OWO individuals. However, fat intake did not correlate with SCFAs or bacterial abundance. OWO individuals had higher relative Firmicutes abundance (83.1±4.1 vs 69.5±5.8%, respectively, P=0.008) and a higher Firmicutes:Bacteriodetes ratio (P=0.023) than LN individuals. There was a positive correlation between Firmicutes and faecal SCFA within the whole group (r=0.507, P=0.044), with a stronger correlation after adjusting for available carbohydrate (r=0.615, P=0.005). The higher faecal SCFA in OWO individuals is not because of differences in SCFA absorption or diet. Our results are consistent with the hypothesis that OWO individuals produce more colonic SCFA than LN individuals because of differences in colonic microbiota. However, further studies are needed to prove this.

  9. Conformational explosion: Understanding the complexity of short chain para-dialkylbenzene potential energy surfaces

    Science.gov (United States)

    Mishra, Piyush; Hewett, Daniel M.; Zwier, Timothy S.

    2018-05-01

    The single-conformation ultraviolet and infrared spectroscopy of three short-chain para-dialkylbenzenes (para-diethylbenzene, para-dipropylbenzene, and para-dibutylbenzene) is reported for the jet-cooled, isolated molecules. The present study builds off previous work on single-chain n-alkylbenzenes, where an anharmonic local mode Hamiltonian method was developed to account for stretch-bend Fermi resonance in the alkyl CH stretch region [D. P. Tabor et al., J. Chem. Phys. 144, 224310 (2016)]. The jet-cooled molecules are interrogated using laser-induced fluorescence (LIF) excitation, fluorescence dip infrared spectroscopy, and dispersed fluorescence. The LIF spectra in the S1 ← S0 origin region show a dramatic increase in the number of resolved transitions with increasing length of the alkyl chains, reflecting an explosion in the number of unique low-energy conformations formed when two independent alkyl chains are present. Since the barriers to isomerization of the alkyl chain are similar in size, this results in an "egg carton" shaped potential energy surface. A combination of electronic frequency shift and alkyl CH stretch infrared spectra is used to generate a consistent set of conformational assignments. Using these experimental techniques in conjunction with computational methods, subsets of origin transitions in the LIF excitation spectrum can be classified into different conformational families. Two conformations are resolved in para-diethylbenzene, seven in para-dipropylbenzene, and about nineteen in para-dibutylbenzene. These chains are largely independent of each other as there are no new single-chain conformations induced by the presence of a second chain. A cursory LIF excitation scan of para-dioctylbenzene shows a broad congested spectrum at frequencies consistent with interactions of alkyl chains with the phenyl π cloud.

  10. Short-chain C6 ceramide sensitizes AT406-induced anti-pancreatic cancer cell activity

    International Nuclear Information System (INIS)

    Zhao, Xiaoguang; Sun, Baoyou; Zhang, Jingjing; Zhang, Ruishen; Zhang, Qing

    2016-01-01

    Our previous study has shown that AT406, a first-in-class small molecular antagonist of IAPs (inhibitor of apoptosis proteins), inhibits pancreatic cancer cell proliferation in vitro and in vivo. The aim of this research is to increase AT406's sensitivity by adding short-chain C6 ceramide. We show that co-treatment of C6 ceramide dramatically potentiated AT406-induced caspase/apoptosis activation and cytotoxicity in established (Panc-1 and Mia-PaCa-2 lines) and primary human pancreatic cancer cells. Reversely, caspase inhibitors largely attenuated C6 ceramide plus AT406-induced above cancer cell death. Molecularly, C6 ceramide downregulated Bcl-2 to increase AT406's sensitivity in pancreatic cancer cells. Intriguingly, C6 ceramide-mediated AT406 sensitization was nullified with Bcl-2 shRNA knockdown or pretreatment of the Bcl-2 inhibitor ABT-737. In vivo, liposomal C6 ceramide plus AT406 co-administration dramatically inhibited Panc-1 xenograft tumor growth in severe combined immunodeficient (SCID) mice. The combined anti-tumor activity was significantly more potent than either single treatment. Expressions of IAPs (cIAP1/XIAP) and Bcl-2 were downregulated in Panc-1 xenografts with the co-administration. Together, we demonstrate that C6 ceramide sensitizes AT406-mediated anti-pancreatic cancer cell activity possibly via downregulating Bcl-2. - Highlights: • C6 ceramide dramatically potentiates AT406-induced pancreatic cancer cell death. • C6 ceramide facilitates AT406-induced pancreatic cancer cell apoptosis. • C6 ceramide downregulates Bcl-2 to increase AT406's sensitivity in pancreatic cancer cells. • Liposomal C6 ceramide enhances AT406-induced anti-pancreatic cancer activity in vivo.

  11. Effect of foamability index of short chain alkyl amines on flotation of quartz

    Directory of Open Access Journals (Sweden)

    Szczerkowska Sabina

    2016-01-01

    Full Text Available Amines can be used for flotation of various minerals, especially quartz. The flotation efficiency of quartz depends on the amine type and dose. It was proved that the shorter alkyl amine, higher amine concentration has to be used to recover quartz at the same level. In flotation amines play a role of both collectors and frothers. The ability of a amine to collect particles can be expressed in the form of contact angle, while the foaming properties by different parameters including dynamic foamability index (DFI and critical coalescence concentration (CCC. Determination of DFI and CCC requires advanced techniques and methods. Therefore, in this paper a rapid and facile method for determination of foaming properties of amines and also other surfactants was used. It was based on measuring the initial foam and froth heights in a conventional flotation machine at different concentrations of surfactants. The foam height-concentration curve was described by utilizing an empirical equation which was based on one-adjustable parameter called the foamability index (FI. In this work the foamability index was determined for butylamine (ButNH2, hexylamine (HexNH2 and octylamine (OctNH2 as examples of short chain alkyl amines. The determined foamability indices were 92, 12 and 4 mg/dm3 for ButNH2, HexNH2 and OctNH2, respectively. It was shown that when the flotation results of quartz were presented in the form of recovery versus normalized amine concentration in relation to the foamability index (c/FI, all the experimental data points converged to one curve. It indicates that amines act similarly but at different concentrations expressed as FI. The foamability index seems to be a useful parameter for characterizing any flotation frother.

  12. Adsorption of short-chain fluids at solid substrates from density functional theory

    International Nuclear Information System (INIS)

    Bryk, P.; Bucior, K.; Sokolowski, S.; Zukocinski, G.

    2005-01-01

    We use microscopic density functional theory to investigate the adsorption of short-chains at solid surfaces. The fluid is modeled as freely-jointed tangent spheres that interact via a short-ranged attractive potential. Within the framework of fundamental measure theory we study how the structure and surface phase behaviour of adsorbed fluid changes when the chain length is increased. We observe that the wetting temperature rescaled by the bulk critical temperature decreases with an increase of the chain length. For longer chains this temperature reaches a plateau. For the surface critical temperature an inverse effect is observed, i.e. the surface critical temperature increases with the chain length and then attains a plateau. Furthermore, we analyze how the layering transitions change with the change of the chain length and with relative strength of the fluid-solid interaction. The critical temperature of the first layering transition, rescaled by the bulk critical temperature increases slightly with an increase of the chain length. We have found that for longer chains the layering transitions within consecutive layers are shifted towards very low temperatures and that their sequence is finally replaced by a single transition. Finally we investigate capillary condensation of chain fluid in slit-like pores. We find that for a fluid of chains consisting of a larger number of segments we observe an inversion effect. Namely, the critical temperature of capillary condensation decreases with increasing pore width for a certain interval of values of the pore width. This anomalous behavior is also influenced by the interaction between molecules and pore walls. (author)

  13. Oral Lichen Planus and Features in the Short Chain Fatty Acid Pattern Produced by Colonic Fermentation

    Directory of Open Access Journals (Sweden)

    Umida A. Shukurova

    2016-03-01

    Full Text Available The aim of the study was to assess the content of short chain fatty acids (SCFAs in feces of patients with different clinical forms of oral lichen planus (OLP. Materials and Methods: The study included 139 patients with different clinical forms of OLP in the acute stage. The diagnosis of OLP was performed according to both clinical and histopathological criteria. Patients were distributed in four groups according to the clinical form of OLP. Group 1 included 36 patients with the reticular form of OLP; Group 2 included 34 patients with the exudative-hyperemic form of OLP; Group 3 included 27 patients with the erosive-ulcerative form of OLP; Group 4 included 42 patients with the bullous form of OLP. The four groups to be compared were randomized by sex and age. The control group consisted of 40 healthy, age-matched, randomly selected persons without clinical and instrumental signs of OLP and other diseases of the oral cavity. The concentration of SCFAs in feces was evaluated by gas-liquid chromatography. The profiles (specific concentration of C2, C3, and C4 acids, the ratio of iso-acids to straight-chain acids (iso-Cn/Cn and iso-C5/C5 were also calculated. Results: Three types of SCFA changes reflecting the activity of certain groups of microorganisms were found. For all types of the SCFA disorders, we found a marked increase in the iso-C5/C5 ratio. The severity of dysbiosis increased with the severity of clinical forms of OLP. Changes in the qualitative and quantitative contents of SCFAs reflect the disturbances in gut microbiocenosis in LPO patients, which may be one cause for aggravation of the pathological process.

  14. Quantification of in Vivo Colonic Short Chain Fatty Acid Production from Inulin.

    Science.gov (United States)

    Boets, Eef; Deroover, Lise; Houben, Els; Vermeulen, Karen; Gomand, Sara V; Delcour, Jan A; Verbeke, Kristin

    2015-10-28

    Short chain fatty acids (SCFA), including acetate, propionate, and butyrate, are produced during bacterial fermentation of undigested carbohydrates in the human colon. In this study, we applied a stable-isotope dilution method to quantify the in vivo colonic production of SCFA in healthy humans after consumption of inulin. Twelve healthy subjects performed a test day during which a primed continuous intravenous infusion with [1-(13)C]acetate, [1-(13)C]propionate and [1-(13)C]butyrate (12, 1.2 and 0.6 μmol·kg(-1)·min(-1), respectively) was applied. They consumed 15 g of inulin with a standard breakfast. Breath and blood samples were collected at regular times during the day over a 12 h period. The endogenous rate of appearance of acetate, propionate, and butyrate was 13.3 ± 4.8, 0.27 ± 0.09, and 0.28 ± 0.12 μmol·kg(-1)·min(-1), respectively. Colonic inulin fermentation was estimated to be 137 ± 75 mmol acetate, 11 ± 9 mmol propionate, and 20 ± 17 mmol butyrate over 12 h, assuming that 40%, 10%, and 5% of colonic derived acetate, propionate, and butyrate enter the systemic circulation. In conclusion, inulin is mainly fermented into acetate and, to lesser extents, into butyrate and propionate. Stable isotope technology allows quantifying the production of the three main SCFA in vivo and proved to be a practical tool to investigate the extent and pattern of SCFA production.

  15. Enhanced mucosal re-epithelialization induced by short chain fatty acids in experimental colitis

    Directory of Open Access Journals (Sweden)

    Aguilar-Nascimento J.E.

    1999-01-01

    Full Text Available The short chain fatty acids (SCFA are the best nutrients for the colonocytes. Glucose is poorly used as a fuel but may be transformed into SCFA by colonic bacteria. The aim of this study was to investigate the effect of SCFA or glucose on experimental colitis. Colitis was induced in 30 Wistar rats by colonic instillation of 4% acetic acid. Five days later they were randomized to receive twice a day colonic lavage containing saline (controls, N = 10, 10% hypertonic glucose (N = 10 or SCFA (N = 10 until day 8 when they were killed. At autopsy, the colon was removed and weighed and the mucosa was evaluated macro- and microscopically and stripped out for DNA assay. Data are reported as mean ± SD or median [range] as appropriate. All animals lost weight but there was no difference between groups. Colon weight was significantly lower in the SCFA group (3.8 ± 0.5 g than in the control (5.3 ± 2.1 g and glucose (5.2 ± 1.3 g groups (P<0.05. Macroscopically, the severity of inflammation was less in SCFA (grade 2 [1-5] than in control (grade 9 [4-10] and glucose-treated (grade 9 [2-10] animals (P<0.01. Microscopically, ulceration of the mucosa was more severe in the glucose and control groups than in the SCFA group. The DNA content of the mucosa of SCFA-treated animals (8.2 [5.0-20.2] mg/g of tissue was higher than in glucose-treated (5.1 [4.2-8.5] mg/g of tissue; P<0.01 and control (6.2 [4.5-8.9] mg/g of tissue; P<0.05 animals. We conclude that SCFA may enhance mucosal re-epithelialization in experimental colitis, whereas hypertonic glucose is of no benefit.

  16. Analysis of the oxidation of short chain alkynes by flavocytochrome P450 BM3.

    Science.gov (United States)

    Waltham, Timothy N; Girvan, Hazel M; Butler, Christopher F; Rigby, Stuart R; Dunford, Adrian J; Holt, Robert A; Munro, Andrew W

    2011-04-01

    Bacillus megaterium flavocytochrome P450 BM3 (BM3) is a high activity fatty acid hydroxylase, formed by the fusion of soluble cytochrome P450 and cytochrome P450 reductase modules. Short chain (C6, C8) alkynes were shown to be substrates for BM3, with productive outcomes (i.e. alkyne hydroxylation) dependent on position of the carbon-carbon triple bond in the molecule. Wild-type P450 BM3 catalyses ω-3 hydroxylation of both 1-hexyne and 1-octyne, but is suicidally inactivated in NADPH-dependent turnover with non-terminal alkynes. A F87G mutant of P450 BM3 also undergoes turnover-dependent heme destruction with the terminal alkynes, pointing to a key role for Phe87 in controlling regioselectivity of alkyne oxidation. The terminal alkynes access the BM3 heme active site led by the acetylene functional group, since hydroxylated products are not observed near the opposite end of the molecules. For both 1-hexyne and 1-octyne, the predominant enantiomeric product formed (up to ∼90%) is the (S)-(-)-1-alkyn-3-ol form. Wild-type P450 BM3 is shown to be an effective oxidase catalyst of terminal alkynes, with strict regioselectivity of oxidation and potential biotechnological applications. The absence of measurable octanoic or hexanoic acid products from oxidation of the relevant 1-alkynes is also consistent with previous studies suggesting that removal of the phenyl group in the F87G mutant does not lead to significant levels of ω-oxidation of alkyl chain substrates.

  17. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes

    Science.gov (United States)

    Teder, Tarvi; Lõhelaid, Helike; Boeglin, William E.; Calcutt, Wade M.; Brash, Alan R.; Samel, Nigulas

    2015-01-01

    In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using 18O-labeled substrate and incubations in H218O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom. PMID:26100625

  18. Quantification of in Vivo Colonic Short Chain Fatty Acid Production from Inulin

    Directory of Open Access Journals (Sweden)

    Eef Boets

    2015-10-01

    Full Text Available Short chain fatty acids (SCFA, including acetate, propionate, and butyrate, are produced during bacterial fermentation of undigested carbohydrates in the human colon. In this study, we applied a stable-isotope dilution method to quantify the in vivo colonic production of SCFA in healthy humans after consumption of inulin. Twelve healthy subjects performed a test day during which a primed continuous intravenous infusion with [1-13C]acetate, [1-13C]propionate and [1-13C]butyrate (12, 1.2 and 0.6 μmol·kg−1·min−1, respectively was applied. They consumed 15 g of inulin with a standard breakfast. Breath and blood samples were collected at regular times during the day over a 12 h period. The endogenous rate of appearance of acetate, propionate, and butyrate was 13.3 ± 4.8, 0.27 ± 0.09, and 0.28 ± 0.12 μmol·kg−1·min−1, respectively. Colonic inulin fermentation was estimated to be 137 ± 75 mmol acetate, 11 ± 9 mmol propionate, and 20 ± 17 mmol butyrate over 12 h, assuming that 40%, 10%, and 5% of colonic derived acetate, propionate, and butyrate enter the systemic circulation. In conclusion, inulin is mainly fermented into acetate and, to lesser extents, into butyrate and propionate. Stable isotope technology allows quantifying the production of the three main SCFA in vivo and proved to be a practical tool to investigate the extent and pattern of SCFA production.

  19. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids.

    Science.gov (United States)

    Zheng, Xiaojiao; Qiu, Yunping; Zhong, Wei; Baxter, Sarah; Su, Mingming; Li, Qiong; Xie, Guoxiang; Ore, Brandon M; Qiao, Shanlei; Spencer, Melanie D; Zeisel, Steven H; Zhou, Zhanxiang; Zhao, Aihua; Jia, Wei

    2013-08-01

    Research in obesity and metabolic disorders that involve intestinal microbiota demands reliable methods for the precise measurement of the short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) concentration. Here, we report a rapid method of simultaneously determining SCFAs and BCAAs in biological samples using propyl chloroformate (PCF) derivatization followed by gas chromatography mass spectrometry (GC-MS) analysis. A one-step derivatization using 100 µL of PCF in a reaction system of water, propanol, and pyridine (v/v/v = 8:3:2) at pH 8 provided the optimal derivatization efficiency. The best extraction efficiency of the derivatized products was achieved by a two-step extraction with hexane. The method exhibited good derivatization efficiency and recovery for a wide range of concentrations with a low limit of detection for each compound. The relative standard deviations (RSDs) of all targeted compounds showed good intra- and inter-day (within 7 days) precision (< 10%), and good stability (< 20%) within 4 days at room temperature (23-25 °C), or 7 days when stored at -20 °C. We applied our method to measure SCFA and BCAA levels in fecal samples from rats administrated with different diet. Both univariate and multivariate statistics analysis of the concentrations of these target metabolites could differentiate three groups with ethanol intervention and different oils in diet. This method was also successfully employed to determine SCFA and BCAA in the feces, plasma and urine from normal humans, providing important baseline information of the concentrations of these metabolites. This novel metabolic profile study has great potential for translational research.

  20. Free Fatty Acids Profiles Are Related to Gut Microbiota Signatures and Short-Chain Fatty Acids

    Directory of Open Access Journals (Sweden)

    Javier Rodríguez-Carrio

    2017-07-01

    Full Text Available A growing body of evidence highlights the relevance of free fatty acids (FFA for human health, and their role in the cross talk between the metabolic status and immune system. Altered serum FFA profiles are related to several metabolic conditions, although the underlying mechanisms remain unclear. Recent studies have highlighted the link between gut microbiota and host metabolism. However, although most of the studies have focused on different clinical conditions, evidence on the role of these mediators in healthy populations is lacking. Therefore, we have addressed the analysis of the relationship among gut microbial populations, short-chain fatty acid (SCFA production, FFA levels, and immune mediators (IFNγ, IL-6, and MCP-1 in 101 human adults from the general Spanish population. Levels of selected microbial groups, representing the major phylogenetic types present in the human intestinal microbiota, were determined by quantitative PCR. Our results showed that the intestinal abundance of Akkermansia was the main predictor of total FFA serum levels, displaying a negative association with total FFA and the pro-inflammatory cytokine IL-6. Similarly, an altered FFA profile, identified by cluster analysis, was related to imbalanced levels of Akkermansia and Lactobacillus as well as increased fecal SCFA, enhanced IL-6 serum levels, and higher prevalence of subclinical metabolic alterations. Although no differences in nutritional intakes were observed, divergent patterns in the associations between nutrient intakes with intestinal microbial populations and SCFA were denoted. Overall, these findings provide new insights on the gut microbiota–host lipid metabolism axis and its potential relevance for human health, where FFA and SCFA seem to play an important role.

  1. Fermentation to short-chain fatty acids and lactate in human faecal batch cultures. Intra- and inter-individual variations versus variations caused by changes in fermented saccharides

    DEFF Research Database (Denmark)

    Mortensen, P B; Hove, H; Clausen, M R

    1991-01-01

    in homogenates pooled from three individuals increased short-chain fatty acid production linearly. Amounts and ratios of short-chain fatty acids formed were highly dependent on the type of substrate fermented. Fermentable saccharides increased ammonia assimilation, in contrast to the metabolic inert cellulose...

  2. Short Chain Fatty Acids in the Colon and Peripheral Tissues: A Focus on Butyrate, Colon Cancer, Obesity and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Sean M. McNabney

    2017-12-01

    Full Text Available Increased dietary fiber consumption has been associated with many beneficial effects, including amelioration of obesity and insulin resistance. These effects may be due to the increased production of short chain fatty acids, including propionate, acetate and butyrate, during fermentation of the dietary fiber in the colon. Indeed, oral and dietary supplementation of butyrate alone has been shown to prevent high fat-diet induced obesity and insulin resistance. This review focuses on sources of short chain fatty acids, with emphasis on sources of butyrate, mechanisms of fiber and butyrate metabolism in the gut and its protective effects on colon cancer and the peripheral effects of butyrate supplementation in peripheral tissues in the prevention and reversal of obesity and insulin resistance.

  3. Relative developmental toxicity of short-chain chlorinated paraffins in Zebrafish (Danio rerio) embryos.

    Science.gov (United States)

    Liu, Lihua; Li, Yifan; Coelhan, Mehmet; Chan, Hing Man; Ma, Wanli; Liu, Liyan

    2016-12-01

    Short-chain chlorinated paraffins (SCCPs) are ubiquitous in the environment and might cause adverse environmental and human health effects. Little is known about the relative toxicity of different SCCP compounds especially during development. The objective of this study was to characterize and compare effects of seven SCCP groups at environmentally relevant levels, using a zebrafish (Danio rerio) model. Observations on malformation, survival rates at 96 h post fertilization (hpf), and hatching rates at 72 hpf indicated that the C 10- groups (C 10 H 18 Cl 4 , 1,2,5,6,9,10-C 10 H 16 Cl 6 and C 10 H 15 Cl 7 ) were more toxic than the C 12- groups (C 12 H 22 Cl 4 , C 12 H 19 Cl 7 and 1,1,1,3,10,12,12,12-C 12 H 18 Cl 8 ) and Cereclor 63L. The C 10- groups were also more potent than C 12- groups and Cereclor 63L in decreasing thyroid hormone levels. Among the three compounds within the C 10- group, the compounds with less chlorine content had stronger effects on sub-lethal malformations but less effects on triiodothyronine (T3) and tetraiodothyronine (T4). Only C 10 H 18 Cl 4 significantly decreased the mRNA expression of tyr, ttr, dio2 and dio3 at a dose-dependent manner suggesting that the specific mode of actions differ with different congeners. The mechanisms of disruption of thyroid status by different SCCPs could be different. C 10 H 18 Cl 4 might inhibit T3 production through the inhibition effect on dio2. These results indicate that SCCP exposure could alter gene expression in the hypothalamic-pituitary-thyroid (HPT) axis and thyroid hormone levels. The mechanisms of disruption of thyroid status by different SCCPs could be different. Our results on the relative developmental toxicities of SCCPs will be useful to reach a better understanding of SCCP toxicity supporting environmental risk evaluation and regulation and used as a guidance for environmental monitoring of SCCPs in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Proteomic analysis of the response of Escherichia coli to short-chain fatty acids.

    Science.gov (United States)

    Rodríguez-Moyá, María; Gonzalez, Ramon

    2015-06-03

    Given their simple and easy-to-manipulate chemical structures, short-chain fatty acids (SCFAs) are valuable feedstocks for many industrial applications. While the microbial production of SCFAs by engineered Escherichia coli has been demonstrated recently, productivity and yields are limited by their antimicrobial properties. In this work, we performed a comparative proteomic analysis of E. coli under octanoic acid stress (15 mM) and identified the underlying mechanisms of SCFA toxicity. Out of a total of 33 spots differentially expressed at a p-value ≤ 0.05, nine differentially expressed proteins involved in transport and structural roles (OmpF, HPr, and FliC), oxidative stress (SodA, SodB, and TrxA), protein synthesis (PPiB and RpsA) and metabolic functions (HPr, PflB) were selected for further investigation. Our studies suggest that membrane damage and oxidative stress are the main routes of inhibition by SCFAs in E. coli. The outer membrane porin OmpF had the greatest impact on SCFA tolerance. Intracellular pH analysis on ompF mutants grown under octanoic acid stress indicated that this porin facilitates transport of SCFAs into the cell. The same response was observed under hexanoic acid stress, further supporting the role of OmpF in response to the presence of SCFAs. Furthermore, analysis of membrane protein expression revealed that other outer membrane porins are also involved in the response of E. coli to SCFAs. This work covers the first known proteomic analysis to assess the inhibitory effect of SCFAs in E. coli. SCFAs are molecules of great interest in the industry, but their microbial production is limited by their antimicrobial properties. This work allowed identification of differentially expressed proteins in response to SCFA stress and demonstrated the relevance of short- and medium-chain FA transport across the cell membrane via outer membrane porins, providing valuable insights on the toxicity mechanism of SCFAs in E. coli. These results could

  5. Short-chain fatty acids induced autophagy serves as an adaptive strategy for retarding mitochondria-mediated apoptotic cell death

    OpenAIRE

    Tang, Y; Chen, Y; Jiang, H; Nie, D

    2010-01-01

    Short-chain fatty acids (SCFAs) are the major by-products of bacterial fermentation of undigested dietary fibers in the large intestine. SCFAs, mostly propionate and butyrate, inhibit proliferation and induce apoptosis in colon cancer cells, but clinical trials had mixed results regarding the anti-tumor activities of SCFAs. Herein we demonstrate that propionate and butyrate induced autophagy in human colon cancer cells to dampen apoptosis whereas inhibition of autophagy potentiated SCFA induc...

  6. Evaluating the Environmental Fate of Short-Chain Chlorinated Paraffins (SCCPs) in the Nordic Environment Using a Dynamic Multimedia Model

    OpenAIRE

    Krogseth, Ingjerd Sunde; Breivik, Knut; Arnot, Jon A; Wania, Frank; Borgen, Anders; Schlabach, Martin

    2013-01-01

    Short chain chlorinated paraffins (SCCPs) raise concerns due to their potential for persistence, bioaccumulation, long-range transport and adverse effects. An understanding of their environmental fate remains limited, partly due to the complexity of the mixture. The purpose of this study was to evaluate whether a mechanistic, integrated, dynamic environmental fate and bioaccumulation multimedia model (CoZMoMAN) can reconcile what is known about environmental emissions and human exposure of SC...

  7. Short-chain alkanes fuel mussel and sponge Cycloclasticus symbionts from deep-sea gas and oil seeps.

    Science.gov (United States)

    Rubin-Blum, Maxim; Antony, Chakkiath Paul; Borowski, Christian; Sayavedra, Lizbeth; Pape, Thomas; Sahling, Heiko; Bohrmann, Gerhard; Kleiner, Manuel; Redmond, Molly C; Valentine, David L; Dubilier, Nicole

    2017-06-19

    Cycloclasticus bacteria are ubiquitous in oil-rich regions of the ocean and are known for their ability to degrade polycyclic aromatic hydrocarbons (PAHs). In this study, we describe Cycloclasticus that have established a symbiosis with Bathymodiolus heckerae mussels and poecilosclerid sponges from asphalt-rich, deep-sea oil seeps at Campeche Knolls in the southern Gulf of Mexico. Genomic and transcriptomic analyses revealed that, in contrast to all previously known Cycloclasticus, the symbiotic Cycloclasticus appears to lack the genes needed for PAH degradation. Instead, these symbionts use propane and other short-chain alkanes such as ethane and butane as carbon and energy sources, thus expanding the limited range of substrates known to power chemosynthetic symbioses. Analyses of short-chain alkanes in the environment of the Campeche Knolls symbioses revealed that these are present at high concentrations (in the μM to mM range). Comparative genomic analyses revealed high similarities between the genes used by the symbiotic Cycloclasticus to degrade short-chain alkanes and those of free-living Cycloclasticus that bloomed during the Deepwater Horizon oil spill. Our results indicate that the metabolic versatility of bacteria within the Cycloclasticus clade is higher than previously assumed, and highlight the expanded role of these keystone species in the degradation of marine hydrocarbons.

  8. Oscillatory Dynamics of the Extracellular Signal-regulated Kinase Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Harish; Wiley, H. S.

    2010-12-01

    The extracellular signal-regulated kinase (ERK) pathway is a central signaling pathway in development and disease and is regulated by multiple negative and positive feedback loops. Recent studies have shown negative feedback from ERK to upstream regulators can give rise to biochemical oscillations with a periodicity of between 15-30 minutes. Feedback due to the stimulated transcription of negative regulators of the ERK pathway can also give rise to transcriptional oscillations with a periodicity of 1-2h. The biological significance of these oscillations is not clear, but recent evidence suggests that transcriptional oscillations participate in developmental processes, such as somite formation. Biochemical oscillations are more enigmatic, but could provide a mechanism for encoding different types of inputs into a common signaling pathway.

  9. Use of isothermal titration calorimetry to study the interaction of short-chain alcohols with lipid membranes

    DEFF Research Database (Denmark)

    Trandum, Christa; Westh-Andersen, Peter; Jørgensen, Kent

    1999-01-01

    of short-chain alcohols on Lipid bilayers. isothermal titration calorimetry (ITC) has been used to determine the energy involved in the association of the alcohols with lipid bilayers. Pure unilamellar DMPC liposomes and DMPC liposomes incorporated with different amounts of cholesterol, sphingomyelin...... dependent on the lipid bilayer composition. In the presence of high concentrations of cholesterol, the binding enthalpy of ethanol is decreased, whereas the presence of ceramides enhances the enthalpic response of the lipid bilayer to ethanol. Isothermal titration calorimetry offers a new methodology...

  10. Sex hormones reduce NNK detoxification through inhibition of short-chain dehydrogenases/reductases and aldo-keto reductases in vitro.

    Science.gov (United States)

    Stapelfeld, Claudia; Maser, Edmund

    2017-10-01

    Carbonyl reduction is an important metabolic pathway for endogenous and xenobiotic substances. The tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, nicotine-derived nitrosamine ketone) is classified as carcinogenic to humans (IARC, Group 1) and considered to play the most important role in tobacco-related lung carcinogenesis. Detoxification of NNK through carbonyl reduction is catalyzed by members of the AKR- and the SDR-superfamilies which include AKR1B10, AKR1C1, AKR1C2, AKR1C4, 11β-HSD1 and CBR1. Because some reductases are also involved in steroid metabolism, five different hormones were tested for their inhibitory effect on NNK carbonyl reduction. Two of those hormones were estrogens (estradiol and ethinylestradiol), another two hormones belong to the gestagen group (progesterone and drospirenone) and the last tested hormone was an androgen (testosterone). Furthermore, one of the estrogens (ethinylestradiol) and one of the gestagens (drospirenone) are synthetic hormones, used as hormonal contraceptives. Five of six NNK reducing enzymes (AKR1B10, AKR1C1, AKR1C2, AKR1C4 and 11β-HSD1) were significantly inhibited by the tested sex hormones. Only NNK reduction catalyzed by CBR1 was not significantly impaired. In the case of the other five reductases, gestagens had remarkably stronger inhibitory effects at a concentration of 25 μM (progesterone: 66-88% inhibition; drospirenone: 26-87% inhibition) in comparison to estrogens (estradiol: 17-51% inhibition; ethinylestradiol: 14-79% inhibition) and androgens (14-78% inhibition). Moreover, in most cases the synthetic hormones showed a greater ability to inhibit NNK reduction than the physiologic derivatives. These results demonstrate that male and female sex hormones have different inhibitory potentials, thus indicating that there is a varying detoxification capacity of NNK in men and women which could result in a different risk for developing lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Recurrent vomiting and ethylmalonic aciduria associated with rare mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene

    DEFF Research Database (Denmark)

    Seidel, J.; Streck, S.; Bellstedt, K.

    2003-01-01

    blood spots. Neither of the frequent SCAD gene variants 625G>A and 511C>T was present, but direct sequencing of the promoter and coding regions of the SCAD gene revealed that the patient had mutations on both alleles: 417G>C (Trpl15Cys) and 1095G>T (Gln341His). Neither mutation has been described before...

  12. Cell adhesion signaling regulates RANK expression in osteoclast precursors.

    Directory of Open Access Journals (Sweden)

    Ayako Mochizuki

    -adherent condition. These results suggest that cell adhesion signaling regulates RANK expression in osteoclast precursors.

  13. Vortex-assisted liquid-liquid microextraction for the rapid screening of short-chain chlorinated paraffins in water.

    Science.gov (United States)

    Chang, Chia-Yu; Chung, Wu-Hsun; Ding, Wang-Hsien

    2016-01-01

    The rapid screening of trace levels of short-chain chlorinated paraffins in various aqueous samples was performed by a simple and reliable procedure based on vortex-assisted liquid-liquid microextraction combined with gas chromatography and electron capture negative ionization mass spectrometry. The optimal vortex-assisted liquid-liquid microextraction conditions for 20 mL water sample were as follows: extractant 400 μL of dichloromethane; vortex extraction time of 1 min at 2500 × g; centrifugation of 3 min at 5000 × g; and no ionic strength adjustment. Under the optimum conditions, the limit of quantitation was 0.05 μg/L. Precision, as indicated by relative standard deviations, was less than 9% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was above 91%. The vortex-assisted liquid-liquid microextraction with gas chromatography and electron capture negative ionization mass spectrometry method was successfully applied to quantitatively extract short-chain chlorinated paraffins from samples of river water and the effluent of a wastewater treatment plant, and the concentrations ranged from 0.8 to 1.6 μg/L. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Short-chain fatty acids and poly-beta-hydroxyalkanoates: (New) Biocontrol agents for a sustainable animal production.

    Science.gov (United States)

    Defoirdt, Tom; Boon, Nico; Sorgeloos, Patrick; Verstraete, Willy; Bossier, Peter

    2009-01-01

    Because of the risk of antibiotic resistance development, there is a growing awareness that antibiotics should be used more carefully in animal production. However, a decreased use of antibiotics could result in a higher frequency of pathogenic bacteria, which in its turn could lead to a higher incidence of infections. Short-chain fatty acids (SCFAs) have long been known to exhibit bacteriostatic activity. These compounds also specifically downregulate virulence factor expression and positively influence the gastrointestinal health of the host. As a consequence, there is currently considerable interest in SCFAs as biocontrol agents in animal production. Polyhydroxyalkanoates (PHAs) are polymers of beta-hydroxy short-chain fatty acids. Currently, PHAs are applied as replacements for synthetic polymers. These biopolymers can be depolymerised by many different microorganisms that produce extracellular PHA depolymerases. Interestingly, different studies provided some evidence that PHAs can also be degraded upon passage through the gastrointestinal tract of animals and consequently, adding these compounds to the feed might result in biocontrol effects similar to those described for SCFAs.

  15. Acquired multiple Acyl-CoA dehydrogenase deficiency in 10 horses with atypical myopathy.

    Science.gov (United States)

    Westermann, C M; Dorland, L; Votion, D M; de Sain-van der Velden, M G M; Wijnberg, I D; Wanders, R J A; Spliet, W G M; Testerink, N; Berger, R; Ruiter, J P N; van der Kolk, J H

    2008-05-01

    The aim of the current study was to assess lipid metabolism in horses with atypical myopathy. Urine samples from 10 cases were subjected to analysis of organic acids, glycine conjugates, and acylcarnitines revealing increased mean excretion of lactic acid, ethylmalonic acid, 2-methylsuccinic acid, butyrylglycine, (iso)valerylglycine, hexanoylglycine, free carnitine, C2-, C3-, C4-, C5-, C6-, C8-, C8:1-, C10:1-, and C10:2-carnitine as compared with 15 control horses (12 healthy and three with acute myopathy due to other causes). Analysis of plasma revealed similar results for these predominantly short-chain acylcarnitines. Furthermore, measurement of dehydrogenase activities in lateral vastus muscle from one horse with atypical myopathy indeed showed deficiencies of short-chain acyl-CoA dehydrogenase (0.66 as compared with 2.27 and 2.48 in two controls), medium-chain acyl-CoA dehydrogenase (0.36 as compared with 4.31 and 4.82 in two controls) and isovaleryl-CoA dehydrogenase (0.74 as compared with 1.43 and 1.61 nmol min(-1) mg(-1) in two controls). A deficiency of several mitochondrial dehydrogenases that utilize flavin adenine dinucleotide as cofactor including the acyl-CoA dehydrogenases of fatty acid beta-oxidation, and enzymes that degrade the CoA-esters of glutaric acid, isovaleric acid, 2-methylbutyric acid, isobutyric acid, and sarcosine was suspected in 10 out of 10 cases as the possible etiology for a highly fatal and prevalent toxic equine muscle disease similar to the combined metabolic derangements seen in human multiple acyl-CoA dehydrogenase deficiency also known as glutaric acidemia type II.

  16. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria.

    Science.gov (United States)

    LeBlanc, Jean Guy; Chain, Florian; Martín, Rebeca; Bermúdez-Humarán, Luis G; Courau, Stéphanie; Langella, Philippe

    2017-05-08

    The aim of this review is to summarize the effect in host energy metabolism of the production of B group vitamins and short chain fatty acids (SCFA) by commensal, food-grade and probiotic bacteria, which are also actors of the mammalian nutrition. The mechanisms of how these microbial end products, produced by these bacterial strains, act on energy metabolism will be discussed. We will show that these vitamins and SCFA producing bacteria could be used as tools to recover energy intakes by either optimizing ATP production from foods or by the fermentation of certain fibers in the gastrointestinal tract (GIT). Original data are also presented in this work where SCFA (acetate, butyrate and propionate) and B group vitamins (riboflavin, folate and thiamine) production was determined for selected probiotic bacteria.

  17. Microbial degradation of whole-grain complex carbohydrates and impact on short-chain fatty acids and health

    DEFF Research Database (Denmark)

    Knudsen, Knud Erik Bach

    2015-01-01

    Whole-grain cereals have a complex dietary fiber (DF) composition consisting of oligosaccharides (mostly fructans), resistant starch, and nonstarch polysaccharides (NSPs); the most important are arabinoxylans, mixed-linkage β(1,3; 1,4)-d-glucan (β-glucan), and cellulose and the noncarbohydrate...... to the intake of DF. The type and composition of cereal DF can consequently be used to modulate the microbial composition and activity as well as the production and molar ratios of short-chain fatty acids (SCFAs). Arabinoxylans and β-glucan in whole-grain cereals and cereal ingredients have been shown...... on the concentration in peripheral blood was less because the majority of propionate and butyrate is cleared in the liver. Active microbial fermentation with increased SCFA production reduced the exposure of potentially toxic compounds to the epithelium, potentially stimulating anorectic hormones and acting...

  18. Uptake and metabolism of the short-chain fatty acid butyrate, a critical review of the literature.

    Science.gov (United States)

    Astbury, Stuart M; Corfe, Bernard M

    2012-07-01

    Butyrate is a short-chain fatty acid (SCFA) formed by bacterial fermentation of fibre in the colon, and serves as an energy source for colonocytes. The action of butyrate as a histone deacetylase inhibitor (HDACi) has led to a number of clinical trials testing its effectiveness as a potential treatment for cancer. The biology of butyrate transport is therefore relevant to both its physiological and pharmacological benefits. This review of the literature was carried out to assess the evidence for both the uptake and metabolism of butyrate, in an attempt to determine possible mechanism (s) by which butyrate can act as an HDACi. It is noted that although uptake and metabolism are well characterised, there are still significant gaps in the knowledgebase around the intracellular handing of butyrate, where assumptions or dated evidence are relied upon.

  19. Esterification of Fatty Acids with Short-Chain Alcohols over Commercial Acid Clays in a Semi-Continuous Reactor

    Directory of Open Access Journals (Sweden)

    Mohamed H. Frikha

    2009-11-01

    Full Text Available Production of fatty acid esters from stearic, oleic, and palmitic acids and short-chain alcohols (methanol, ethanol, propanol, and butanol for the production of biodiesel was investigated in this work. A series of montmorillonite-based clays catalysts (KSF, KSF/0, KP10, and K10 were used as acidic catalysts. The influence of the specific surface area and the acidity of the catalysts on the esterification rate were investigated. The best catalytic activities were obtained with KSF/0 catalyst. The esterification reaction has been carried out efficiently in a semi-continuous reactor at 150°C temperature higher than the boiling points of water and alcohol. The reactor used enabled the continuous removal of water and esterification with hydrated alcohol (ethanol 95% without affecting the original activity of the clay.

  20. The Role of Short-Chain Conjugated Poly-(R-3-Hydroxybutyrate (cPHB in Protein Folding

    Directory of Open Access Journals (Sweden)

    Rosetta N. Reusch

    2013-05-01

    Full Text Available Poly-(R-3-hydroxybutyrate (PHB, a linear polymer of R-3-hydroxybutyrate (R-3HB, is a fundamental constituent of biological cells. Certain prokaryotes accumulate PHB of very high molecular weight (10,000 to >1,000,000 residues, which is segregated within granular deposits in the cytoplasm; however, all prokaryotes and all eukaryotes synthesize PHB of medium-chain length (~100–200 residues which resides within lipid bilayers or lipid vesicles, and PHB of short-chain length (<12 residues which is conjugated to proteins (cPHB, primarily proteins in membranes and organelles. The physical properties of cPHB indicate it plays important roles in the targeting and folding of cPHB-proteins. Here we review the occurrence, physical properties and molecular characteristics of cPHB, and discuss its influence on the folding and structure of outer membrane protein A (OmpA of Escherichia coli.

  1. Influence of short chain organic acids and bases on the wetting properties and surface energy of submicrometer ceramic powders.

    Science.gov (United States)

    Neirinck, Bram; Soccol, Dimitri; Fransaer, Jan; Van der Biest, Omer; Vleugels, Jef

    2010-08-15

    The effect of short chained organic acids and bases on the surface energy and wetting properties of submicrometer alumina powder was assessed. The surface chemistry of treated powders was determined by means of Diffuse Reflectance Infrared Fourier Transform spectroscopy and compared to untreated powder. The wetting of powders was measured using a modified Washburn method, based on the use of precompacted powder samples. The geometric factor needed to calculate the contact angle was derived from measurements of the porous properties of the powder compacts. Contact angle measurements with several probe liquids before and after modification allowed a theoretical estimation of the surface energy based on the surface tension component theory. Trends in the surface energy components were linked to observations in infrared spectra. The results showed that the hydrophobic character of the precompacted powder depends on both the chain length and polar group of the modifying agent. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Molecular structure stability of short-chain chlorinated paraffins (SCCPs): Evidence from lattice compatibility and Simha-Somcynsky theories

    Science.gov (United States)

    Yumak, A.; Boubaker, K.; Petkova, P.; Yahsi, U.

    2015-10-01

    In is known that short-chain chlorinated paraffins (SCCPs) are highly complex technical mixtures of polychlorinated n-alkanes with single chlorine content. Due to their physical properties (viscosity, flame resistance) they are used in many different applications, such as lubricant additives, metal processing, leather fat-liquoring, plastics softening, PVC plasticizing and flame retardants in paints, adhesives and sealants. SCCPs are studied here in terms of processing-linked molecular structure stability, under Simha and Somcynsky-EOS theory calculations and elements from Simha-Somcynsky-related Lattice Compatibility Theory. Analyses were carried out on 1-chloropropane, 2-chloropropane, 1-chlorobutane, 2-chlorobutane, 1-chloro 2-methylane, and 2-chloro 2-methylane as (SCCPs) universal representatives. This paper gives evidence to this stability and reviews the current state of knowledge and highlights the need for further research in order to improve future (SCCPs) monitoring efforts.

  3. Characterization of Lactobacillus salivarius alanine racemase: short-chain carboxylate-activation and the role of A131.

    Science.gov (United States)

    Kobayashi, Jyumpei; Yukimoto, Jotaro; Shimizu, Yasuhiro; Ohmori, Taketo; Suzuki, Hirokazu; Doi, Katsumi; Ohshima, Toshihisa

    2015-01-01

    Many strains of lactic acid bacteria produce high concentrations of d-amino acids. Among them, Lactobacillus salivarius UCC 118 produces d-alanine at a relative concentration much greater than 50 % of the total d, l-alanine (100d/d, l-alanine). We characterized the L. salivarius alanine racemase (ALR) likely responsible for this d-alanine production and found that the enzyme was activated by carboxylates, which is an unique characteristic among ALRs. In addition, alignment of the amino acid sequences of several ALRs revealed that A131 of L. salivarius ALR is likely involved in the activation. To confirm that finding, an L. salivarius ALR variant with an A131K (ALR(A131K)) substitution was prepared, and its properties were compared with those of ALR. The activity of ALR(A131K) was about three times greater than that of ALR. In addition, whereas L. salivarius ALR was strongly activated by low concentrations (e.g., 1 mM) of short chain carboxylates, and was inhibited at higher concentrations (e.g., 10 mM), ALR(A131K) was clearly inhibited at all carboxylate concentrations tested (1-40 mM). Acetate also increased the stability of ALR such that maximum activity was observed at 35 °C and pH 8.0 without acetate, but at 50 °C in the presence of 1 mM acetate. On the other hand, maximum ALR(A131K) activity was observed at 45 °C and around pH 9.0 with or without acetate. It thus appears that A131 mediates the activation and stabilization of L. salivarius ALR by short chain carboxylates.

  4. Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: Antioxidant action of butyrate

    Directory of Open Access Journals (Sweden)

    Xinxu Yuan

    2018-06-01

    Full Text Available Short chain fatty acids (SCFAs, a family of gut microbial metabolites, have been reported to promote preservation of endothelial function and thereby exert anti-atherosclerotic action. However, the precise mechanism mediating this protective action of SCFAs remains unknown. The present study investigated the effects of SCFAs (acetate, propionate and butyrate on the activation of Nod-like receptor pyrin domain 3 (Nlrp3 inflammasome in endothelial cells (ECs and associated carotid neointima formation. Using a partial ligated carotid artery (PLCA mouse model fed with the Western diet (WD, we found that butyrate significantly decreased Nlrp3 inflammasome formation and activation in the carotid arterial wall of wild type mice (Asc+/+, which was comparable to the effect of gene deletion of the adaptor protein apoptosis-associated speck-like protein gene (Asc-/-. Nevertheless, both acetate and propionate markedly enhanced the formation and activation of the Nlrp3 inflammasome as well as carotid neointima formation in the carotid arteries with PLCA in Asc+/+, but not Asc-/- mice. In cultured ECs (EOMA cells, butyrate was found to significantly decrease the formation and activation of Nlrp3 inflammasomes induced by 7-ketocholesterol (7-Ket or cholesterol crystals (CHC, while acetate did not inhibit Nlrp3 inflammasome activation induced by either 7-Ket or CHC, but itself even activated Nlrp3 inflammsomes. Mechanistically, the inhibitory action of butyrate on the Nlrp3 inflammasome was attributed to a blockade of lipid raft redox signaling platforms to produce O2•- upon 7-Ket or CHC stimulations. These results indicate that SCFAs have differential effects on endothelial Nlrp3 inflammasome activation and associated carotid neointima formation. Keywords: Arterial endothelium, Short chain fatty acids, Inflammation, Neointima, Atherosclerosis

  5. Levels and distribution patterns of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China

    International Nuclear Information System (INIS)

    Zeng Lixi; Wang Thanh; Ruan Ting; Liu Qian; Wang Yawei; Jiang Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are listed as persistent organic pollutant candidates in the Stockholm Convention and are receiving more and more attentions worldwide. In general, concentrations of contaminants in sewage sludge can give an important indication on their pollution levels at a local/regional basis. In this study, SCCPs were investigated in sewage sludge samples collected from 52 wastewater treatment plants in China. Concentrations of total SCCPs (ΣSCCPs) in sludge were in the range of 0.80–52.7 μg/g dry weight (dw), with a mean value of 10.7 μg/g dw. Most of SCCPs in the sludge samples showed a similar congener distribution patterns, and C 11 and Cl 7,8 were identified as the dominant carbon and chlorine congener groups. Significant linear relationships were found among different SCCP congener groups (r 2 ≥ 0.9). High concentrations of SCCPs in sewage sludge imply that SCCPs are widely present in China. - Highlights: ► Levels and distribution patterns of SCCPs were studied in sewage sludge in China. ► Concentrations of total SCCPs in sludge ranged from 0.8 to 52.7 μg/g dry weight. ► C 11 and Cl 7,8 were identified as the dominant congener groups within SCCPs. ► Significant linear relationships were found among SCCP congener groups (r 2 ≥ 0.9). ► SCCPs are present in household products and can be exposing to human. - High levels of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China have been found.

  6. Quantification of fructans, galacto-oligosacharides and other short-chain carbohydrates in processed grains and cereals.

    Science.gov (United States)

    Biesiekierski, J R; Rosella, O; Rose, R; Liels, K; Barrett, J S; Shepherd, S J; Gibson, P R; Muir, J G

    2011-04-01

    Wholegrain grains and cereals contain a wide range of potentially protective factors that are relevant to gastrointestinal health. The prebiotics best studied are fructans [fructooligosaccharides (FOS), inulin] and galactooligosaccharides (GOS). These and other short-chain carbohydrates can also be poorly absorbed in the small intestine (named fermentable oligo-, di- and monosaccharides and polyols; FODMAPs) and may have important implications for the health of the gut. In the present study, FODMAPs, including fructose in excess of glucose, FOS (nystose, kestose), GOS (raffinose, stachyose) and sugar polyols (sorbitol, mannitol), were quantified using high-performance liquid chromatography with an evaporative light scattering detector. Total fructan was quantified using an enzymic hydrolysis method. Fifty-five commonly consumed grains, breakfast cereals, breads, pulses and biscuits were analysed. Total fructan were the most common short-chain carbohydrate present in cereal grain products and ranged (g per portion as eaten) from 1.12 g in couscous to 0 g in rice; 0.6 g in dark rye bread to 0.07 g in spelt bread; 0.96 g in wheat-free muesli to 0.11 g in oats; and 0.81 g in muesli fruit bar to 0.05 g in potato chips. Raffinose and stachyose were most common in pulses.   Composition tables including FODMAPs and prebiotics (FOS and GOS) that are naturally present in food will greatly assist research aimed at understanding their physiological role in the gut. © 2011 The Authors. Journal compilation © 2011 The British Dietetic Association Ltd.

  7. Microbiota-Derived Short-Chain Fatty Acids Modulate Expression of Campylobacter jejuni Determinants Required for Commensalism and Virulence.

    Science.gov (United States)

    Luethy, Paul M; Huynh, Steven; Ribardo, Deborah A; Winter, Sebastian E; Parker, Craig T; Hendrixson, David R

    2017-05-09

    Campylobacter jejuni promotes commensalism in the intestinal tracts of avian hosts and diarrheal disease in humans, yet components of intestinal environments recognized as spatial cues specific for different intestinal regions by the bacterium to initiate interactions in either host are mostly unknown. By analyzing a C. jejuni acetogenesis mutant defective in converting acetyl coenzyme A (Ac-CoA) to acetate and commensal colonization of young chicks, we discovered evidence for in vivo microbiota-derived short-chain fatty acids (SCFAs) and organic acids as cues recognized by C. jejuni that modulate expression of determinants required for commensalism. We identified a set of C. jejuni genes encoding catabolic enzymes and transport systems for amino acids required for in vivo growth whose expression was modulated by SCFAs. Transcription of these genes was reduced in the acetogenesis mutant but was restored upon supplementation with physiological concentrations of the SCFAs acetate and butyrate present in the lower intestinal tracts of avian and human hosts. Conversely, the organic acid lactate, which is abundant in the upper intestinal tract where C. jejuni colonizes less efficiently, reduced expression of these genes. We propose that microbiota-generated SCFAs and lactate are cues for C. jejuni to discriminate between different intestinal regions. Spatial gradients of these metabolites likely allow C. jejuni to locate preferred niches in the lower intestinal tract and induce expression of factors required for intestinal growth and commensal colonization. Our findings provide insights into the types of cues C. jejuni monitors in the avian host for commensalism and likely in humans to promote diarrheal disease. IMPORTANCE Campylobacter jejuni is a commensal of the intestinal tracts of avian species and other animals and a leading cause of diarrheal disease in humans. The types of cues sensed by C. jejuni to influence responses to promote commensalism or

  8. Development of Probiotic Fruit Juices Using Lactobacillus rhamnosus GR-1 Fortified with Short Chain and Long Chain Inulin Fiber

    Directory of Open Access Journals (Sweden)

    Jessica White

    2018-04-01

    Full Text Available Typically, probiotics are consumed in dairy based products such as yogurt. However, given the rise in various diet types, non-dairy alternatives have been developed, such as inoculating fruit juices with probiotics. Lactobacillus rhamnosus GR-1 is a probiotic strain exerting a number of human health benefits such as the prevention of urinary tract infections. Therefore, the objective of this study was to determine the viability of L. rhamnosus GR-1 in apple cider, orange, and grape juice when fortified with either 4% short chain or 4% long chain inulin fiber over 72 h of fermentation and 30 days of refrigerated storage. The secondary objective was to determine consumer acceptability of apple cider and orange juice samples using the hedonic scale. All of the fruit juice samples achieved a mean viable count of at least 107 CFU/mL during 72 h of fermentation and 30 days of refrigerated storage. According to the sensory evaluation, which evaluated samples according to appearance, flavor, texture, and overall acceptability, apple cider juice with long chain inulin fiber proved to have the highest score for all characteristics except appearance. Therefore, this study indicated a potential for probiotic fruit juices as a valid alternative to dairy based probiotic products.

  9. Short-chain fatty acids production and microbial community in sludge alkaline fermentation: Long-term effect of temperature.

    Science.gov (United States)

    Yuan, Yue; Liu, Ye; Li, Baikun; Wang, Bo; Wang, Shuying; Peng, Yongzhen

    2016-07-01

    Sludge alkaline fermentation has been reported to achieve efficient short-chain fatty acids (SCFAs) production. Temperature played important role in further improved SCFAs production. Long-term SCFAs production from sludge alkaline fermentation was compared between mesotherm (30±2°C) and microtherm (15±2°C). The study of 90days showed that mesotherm led to 2.2-folds production of SCFAs as microtherm and enhanced the production of acetic acid as major component of SCFAs. Soluble protein and carbohydrate at mesotherm was 2.63-folds as that at microtherm due to higher activities of protease and α-glucosidase, guaranteeing efficient substrates to produce SCFAs. Illumina MiSeq sequencing revealed that microtherm increased the abundance of Corynebacterium, Alkaliflexus, Pseudomonas and Guggenheimella, capable of enhancing hydrolysis. Hydrolytic bacteria, i.e. Alcaligenes, Anaerolinea and Ottowia, were enriched at mesotherm. Meanwhile, acidogenic bacteria showed higher abundance at mesotherm than microtherm. Therefore, enrichment of functional bacteria and higher microbial activities resulted in the improved SCFAs at mesotherm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Enteric short-chain fatty acids: microbial messengers of metabolism, mitochondria, and mind: implications in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Derrick F. MacFabe

    2015-05-01

    Full Text Available Clinical observations suggest that gut and dietary factors transiently worsen and, in some cases, appear to improve behavioral symptoms in a subset of persons with autism spectrum disorders (ASDs, but the reason for this is unclear. Emerging evidence suggests ASDs are a family of systemic disorders of altered immunity, metabolism, and gene expression. Pre- or perinatal infection, hospitalization, or early antibiotic exposure, which may alter gut microbiota, have been suggested as potential risk factors for ASD. Can a common environmental agent link these disparate findings? This review outlines basic science and clinical evidence that enteric short-chain fatty acids (SCFAs, present in diet and also produced by opportunistic gut bacteria following fermentation of dietary carbohydrates, may be environmental triggers in ASD. Of note, propionic acid, a major SCFA produced by ASD-associated gastrointestinal bacteria (clostridia, bacteroides, desulfovibrio and also a common food preservative, can produce reversible behavioral, electrographic, neuroinflammatory, metabolic, and epigenetic changes closely resembling those found in ASD when administered to rodents. Major effects of these SCFAs may be through the alteration of mitochondrial function via the citric acid cycle and carnitine metabolism, or the epigenetic modulation of ASD-associated genes, which may be useful clinical biomarkers. It discusses the hypothesis that ASDs are produced by pre- or post-natal alterations in intestinal microbiota in sensitive sub-populations, which may have major implications in ASD cause, diagnosis, prevention, and treatment.

  11. Enhanced short-chain fatty acids production from waste activated sludge by combining calcium peroxide with free ammonia pretreatment.

    Science.gov (United States)

    Wang, Dongbo; Shuai, Kun; Xu, Qiuxiang; Liu, Xuran; Li, Yifu; Liu, Yiwen; Wang, Qilin; Li, Xiaoming; Zeng, Guangming; Yang, Qi

    2018-08-01

    This study reported a new low-cost and high-efficient combined method of CaO 2  + free ammonia (FA) pretreatment for sludge anaerobic fermentation. Experimental results showed that the optimal short-chain fatty acids (SCFA) yield of 338.6 mg COD/g VSS was achieved when waste activated sludge (WAS) was pretreated with 0.05 g/g VSS of CaO 2  + 180 mg/L of FA for 3 d, which was 2.5-fold of that from CaO 2 pretreatment and 1.5-fold of that from FA pretreatment. The mechanism investigations exhibited that the CaO 2  + FA could provided more biodegradable substrates, this combination accelerated the disintegration of sludge cells, which thereby providing more organics for subsequent SCFA production. It was also found that the combination of CaO 2 and FA inhibited the specific activities of hydrolytic microbes, SCFA producers, and methanogens to some extents, but its inhibition to methanogens was much severer than that to the other two types of microbes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Determination of short chain carboxylic acids in vegetable oils and fats using ion exclusion chromatography electrospray ionization mass spectrometry.

    Science.gov (United States)

    Viidanoja, Jyrki

    2015-02-27

    A new method for quantification of short chain C1-C6 carboxylic acids in vegetable oils and fats by employing Liquid Chromatography Mass Spectrometry (LC-MS) has been developed. The method requires minor sample preparation and applies non-conventional Electrospray Ionization (ESI) liquid phase chemistry. Samples are first dissolved in chloroform and then extracted using water that has been spiked with stable isotope labeled internal standards that are used for signal normalization and absolute quantification of selected acids. The analytes are separated using Ion Exclusion Chromatography (IEC) and detected with Electrospray Ionization Mass Spectrometry (ESI-MS) as deprotonated molecules. Prior to ionization the eluent that contains hydrochloric acid is modified post-column to ensure good ionization efficiency of the analytes. The averaged within run precision and between run precision were generally lower than 8%. The accuracy was between 85 and 115% for most of the analytes. The Lower Limit of Quantification (LLOQ) ranged from 0.006 to 7mg/kg. It is shown that this method offers good selectivity in cases where UV detection fails to produce reliable results. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Anaerobic accumulation of short-chain fatty acids from algae enhanced by damaging cell structure and promoting hydrolase activity.

    Science.gov (United States)

    Feng, Leiyu; Chen, Yunzhi; Chen, Xutao; Duan, Xu; Xie, Jing; Chen, Yinguang

    2018-02-01

    Short-chain fatty acid (SCFAs) produced from harvested algae by anaerobic fermentation with uncontrolled pH was limited due to the solid cell structure of algae. This study, therefore, was undertaken to enhance the generation of SCFAs from algae by controlling the fermentation pH. pH influenced not only the total SCFAs production, but the percentage of individual SCFA. The maximal yield of SCFAs occurred at pH 10.0 and fermentation time of 6 d (3161 mg COD/L), which mainly contained acetic and iso-valeric acids and was nearly eight times that at uncontrolled pH (392 mg COD/L). Mechanism exploration revealed at alkaline pH, especially at pH 10.0, not only the cell structure of algae was damaged effectively, but also activities and relative quantification of hydrolases as well as the abundance of microorganisms responsible for organics hydrolysis and SCFAs production were improved. Also, the released microcystins from algae were removed efficiently during alkaline anaerobic fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The Impact of the Level of the Intestinal Short Chain Fatty Acids in Inflammatory Bowel Disease Patients Versus Healthy Subjects

    Science.gov (United States)

    Huda-Faujan, N.; Abdulamir, A.S.; Fatimah, A.B.; Anas, O. Muhammad; Shuhaimi, M.; Yazid, A.M.; Loong, Y.Y.

    2010-01-01

    The aim of this study was to determine the changes of short chain fatty acids (SCFAs) in faeces of inflammatory bowel disease (IBD) patients compared to healthy subjects. SCFAs such as pyruvic, lactic, formic, acetic, propionic, isobutyric and butyric acids were analyzed by using high performance liquid chromatography (HPLC). This study showed that the level of acetic, 162.0 µmol/g wet faeces, butyric, 86.9 µmol/g wet faeces, and propionic acids, 65.6 µmol/g wet faeces, decreased remarkably in IBD faecal samples when compared with that of healthy individuals, 209.7, 176.0, and 93.3 µmol/g wet faeces respectively. On the contrary, lactic and pyruvic acids showed higher levels in faecal samples of IBD than in healthy subjects. In the context of butyric acid level, this study also found that the molar ratio of butyric acid was higher than propionic acid in both faecal samples. This might be due to the high intake of starch from rice among Malaysian population. It was concluded that the level of SCFAs differ remarkably between faecal samples in healthy subjects and that in IBD patients providing evidence that SCFAs more likely play an important role in the pathogenesis of IBD. PMID:20563285

  15. Fixed-bed column study for hexavalent chromium removal and recovery by short-chain polyaniline synthesized on jute fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Potsangbam Albino [Department of Civil Engineering, Indian Institute of Technology Guwahati, Assam 781039 (India); Chakraborty, Saswati [Department of Civil Engineering, Indian Institute of Technology Guwahati, Assam 781039 (India)], E-mail: saswati@iitg.ernet.in

    2009-03-15

    Fixed-bed column studies were conducted to evaluate performance of a short-chain polymer, polyaniline, synthesized on the surface of jute fiber (PANI-jute) for the removal of hexavalent chromium [Cr(VI)] in aqueous environment. Influent pH, column bed depth, influent Cr(VI) concentrations and influent flow rate were variable parameters for the present study. Optimum pH for total chromium removal was observed as 3 by electrostatic attraction of acid chromate ion (HCrO{sub 4}{sup -}) with protonated amine group (NH{sub 3}{sup +}) of PANI-jute. With increase in column bed depth from 40 to 60 cm, total chromium uptake by PANI-jute increased from 4.14 to 4.66 mg/g with subsequent increase in throughput volume from 9.84 to 12.6 L at exhaustion point. The data obtained for total chromium removal were well described by BDST equation till 10% breakthrough. Adsorption rate constant and dynamic bed capacity at 10% breakthrough were observed as 0.01 L/mg h and 1069.46 mg/L, respectively. Adsorbed total chromium was recovered back from PANI-jute as non-toxic Cr(III) after ignition with more than 97% reduction in weight, minimizing the problem of solid waste disposal.

  16. Dietary Cerebroside from Sea Cucumber (Stichopus japonicus): Absorption and Effects on Skin Barrier and Cecal Short-Chain Fatty Acids.

    Science.gov (United States)

    Duan, Jingjing; Ishida, Marina; Aida, Kazuhiko; Tsuduki, Tsuyoshi; Zhang, Jin; Manabe, Yuki; Hirata, Takashi; Sugawara, Tatsuya

    2016-09-21

    Sphingolipids from marine sources have attracted more attention recently because of their distinctive structures and expected functions. In this study, the content and components of cerebroside from sea cucumber Stichopus japonicus were analyzed. The absorption of cerebroside from S. japonicus was investigated with an in vivo lipid absorption assay. The result revealed that S. japonicus is a rich source of cerebroside that contained considerable amounts of odd carbon chain sphingoid bases. The cumulative recoveries of d17:1- and d19:2-containing cerebrosides were 0.31 ± 0.16 and 0.32 ± 0.10%, respectively, for 24 h after administration. To the best of the authors' knowledge, this is the first work that shows sphingolipids from a marine source could be absorbed in vivo and incorporated into ceramides. In addition, dietary supplementation with sea cucumber cerebroside to hairless mouse improved the skin barrier function and increased short-chain fatty acids in cecal contents, which have shown beneficial effects on the host.

  17. [Determination of short chain chlorinated paraffins in polyvinyl chloride plastics by gas chromatography-negative chemical ion/mass spectrometry].

    Science.gov (United States)

    Xing, Yuanna; Lin, Zhihui; Feng, Anhong; Wang, Xin; Gong, Yemeng; Chen, Zeyong

    2015-02-01

    A novel method was established to determine short chain chlorinated paraffins (SC-CPs) in polyvinyl chloride (PVC) plastics by gas chromatography-negative chemical ion/mass spectrometry (GC-NCI/MS). Ultrasonic extraction was used to extract SCCPs from PVC plastics. The optimal extraction time was 1.5 h, and concentrated sulfuric acid was adopted to purify the extracted solution. Finally, SCCPs in a sample were detected by GC-NCI/MS at 160 C and with methane reagent gas at 1. 5 mL/min. This method was not influenced by medium chain chlorinated paraffins (MCCPs) in the sample, and accurate quantitation was made for SCCPs. Twelve batches of samples were analyzed and SCCPs were detected in each batch with the contents from 0. 3 x 10(2)mg/kg to 3. 5 x 10(4)mg/kg. With respect to European limitation of SC-CPs (1%), four batches of samples did not comply with the European regulation, and they accounted for 33. 3%. Obviously, high SCCPs risk was presented in PVC plastics.

  18. Short-chain chlorinated paraffins (SCCPs) in surface soil from a background area in China: occurrence, distribution, and congener profiles.

    Science.gov (United States)

    Wang, Xue-Tong; Zhang, Yuan; Miao, Yi; Ma, Ling-Ling; Li, Yuan-Cheng; Chang, Yue-Ya; Wu, Ming-Hong

    2013-07-01

    Short-chain chlorinated paraffins (SCCPs) are extremely complex technical mixtures of polychlorinated n-alkanes with carbon chain lengths from C10 to C13 and chlorine content between 49 and 70%. SCCPs are under consideration for inclusion in the Stockholm Convention on persistent organic pollutants. SCCPs have been used extensively in industrial production, but little is known about the pollution level in soil environment in China. In this study, levels and distribution of SCCPs in soil samples from Chongming Island were analyzed. Concentrations of total SCCPs in soil samples ranged from 0.42 to 420 ng g(-1), with a median of 9.6 ng g(-1). The ubiquitous occurrence of SCCPs in Chongming Island implied that long-range atmospheric transport and soil-air exchange may be the most important pathways for SCCP contamination in the background area. The localized SCCP contamination could be derived from an unidentified source. Hierarchical cluster analysis indicated that C13- and C11-congeners were predominant in most soils and C10- and C12-congeners dominated in the remaining soils. Cl7- and Cl8-congeners were on the average the most dominant chlorine congeners in nearly all soils. Principal component analysis suggested that the separation of even and odd carbon chain congeners occurred during long-range atmospheric transport and aging in soil in the study area.

  19. Short-chain chlorinated paraffins in terrestrial bird species inhabiting an e-waste recycling site in South China.

    Science.gov (United States)

    Luo, Xiao-Jun; Sun, Yu-Xin; Wu, Jiang-Ping; Chen, She-Jun; Mai, Bi-Xian

    2015-03-01

    Short-chain chlorinated paraffins (SCCPs) are under review by the Stockholm Convention on Persistent Organic Pollutants. Currently, limited data are available about SCCPs in terrestrial organisms. In the present study, SCCP concentration in the muscles of seven terrestrial bird species (n = 38) inhabiting an e-waste recycling area in South China was determined. This concentration varied from 620 to 17,000 ng/g lipid. Resident birds accumulated significantly higher SCCP concentrations than migratory birds (p < 0.01). Trophic magnification was observed for migratory bird species but not for resident, which was attributed to high heterogeneity of SCCP in e-waste area. Two different homologue group patterns were observed in avian samples. The first pattern was found in five bird species dominated by C10 and C11 congeners, while the second was found in the remains, which show rather equal abundance of homologue groups. This may be caused by two sources of SCCPs (local and e-waste) in the study area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Levels of short chain chlorinated paraffins in pine needles and bark and their vegetation-air partitioning in urban areas.

    Science.gov (United States)

    Wang, Thanh; Yu, Junchao; Han, Shanlong; Wang, Yawei; Jiang, Guibin

    2015-01-01

    Short chain chlorinated paraffins (SCCPs) have been of considerable concern in recent years due to their high production volumes, environmental persistency and potential for long range atmospheric transport. Vegetation can take up considerable amounts of semivolatile organic compounds from the atmosphere and can act as indicators of local contamination. Paired pine needles and bark were sampled around Beijing during winter and summertime to investigate the distribution of SCCPs in urban areas. Levels in bark samples ranged 5.79-37.5 μg/g on a lipid normalized basis (lw) with a geometric mean (GM) of 16.9 μg/g lw whereas levels were 3.03-40.8 (GM 11.8) μ/g lw for needles. Average congener group abundance profiles showed equal contribution of all four carbon groups (C(10-13)) in wintertime where as higher abundances of C(10) and C(11) groups were found during summer. Uptake of SCCPs occurred mainly via kinetically limited gaseous deposition and particle bound deposition in the investigated area.

  1. A metabolomics strategy to assess the combined toxicity of polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs).

    Science.gov (United States)

    Wang, Feidi; Zhang, Haijun; Geng, Ningbo; Ren, Xiaoqian; Zhang, Baoqin; Gong, Yufeng; Chen, Jiping

    2018-03-01

    The combined toxicity of mixed chemicals is usually evaluated according to several specific endpoints, and other potentially toxic effects are disregarded. In this study, we provided a metabolomics strategy to achieve a comprehensive understanding of toxicological interactions between mixed chemicals on metabolism. The metabolic changes were quantified by a pseudotargeted analysis, and the types of combined effects were quantitatively discriminated according to the calculation of metabolic effect level index (MELI). The metabolomics strategy was used to assess the combined effects of polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs) on the metabolism of human hepatoma HepG2 cells. Our data suggested that exposure to a combination of PAHs and SCCPs at human internal exposure levels could result in an additive effect on the overall metabolism, whereas diverse joint effects were observed on various metabolic pathways. The combined exposure could induce a synergistic up-regulation of phospholipid metabolism, an additive up-regulation of fatty acid metabolism, an additive down-regulation of tricarboxylic acid cycle and glycolysis, and an antagonistic effect on purine metabolism. SCCPs in the mixture acted as the primary driver for the acceleration of phospholipid and fatty acid metabolism. Lipid metabolism disorder caused by exposure to a combination of PAHs and SCCPs should be an important concern for human health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Levels and distribution patterns of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China.

    Science.gov (United States)

    Zeng, Lixi; Wang, Thanh; Ruan, Ting; Liu, Qian; Wang, Yawei; Jiang, Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are listed as persistent organic pollutant candidates in the Stockholm Convention and are receiving more and more attentions worldwide. In general, concentrations of contaminants in sewage sludge can give an important indication on their pollution levels at a local/regional basis. In this study, SCCPs were investigated in sewage sludge samples collected from 52 wastewater treatment plants in China. Concentrations of total SCCPs (ΣSCCPs) in sludge were in the range of 0.80-52.7 μg/g dry weight (dw), with a mean value of 10.7 μg/g dw. Most of SCCPs in the sludge samples showed a similar congener distribution patterns, and C(11) and Cl(7,8) were identified as the dominant carbon and chlorine congener groups. Significant linear relationships were found among different SCCP congener groups (r(2) ≥ 0.9). High concentrations of SCCPs in sewage sludge imply that SCCPs are widely present in China. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. [Determination of short chain chlorinated paraffins in leather products by solid phase extraction coupled with gas chromatography-mass spectrometry].

    Science.gov (United States)

    Zhang, Weiya; Wan, Xin; Li, Lixia; Wang, Chengyun; Jin, Shupei; Xing, Jun

    2014-10-01

    The short chain chlorinated paraffins (SCCPs) are the additives frequently used in the leather production in China, but they have been put into the list of forbidden chemicals issued by European Union recently. In fact, there is not a commonly recognized method for the determination of the SCCPs in the leather products due to the serious matrix interferences from the leather products and the complex chemical structures of the SCCPs. A method of solid phase extraction coupled with gas chromatography-mass spectrometry (SPE-GC-MS) was established for the determination of the SCCPs in the leather products after the optimization of the SPE conditions. It was found that the interferences from the leather products were thor- oughly separated from the analyte of the SCCPs on a home-made solid phase extraction (SPE) column filled with silica packing while eluted with a mixed solvent of n-hexane-methylene chloride (2:1, v/v). With this method, the recoveries for the SCCPs spiked in the real leather samples varied from 90.47% to 99.00% with the relative standard deviations (RSDs) less than 6.7%, and the limits of detection (LODs) were between 0.069 and 0.110 mg/kg. This method is suitable for qualitative and quantitative analysis of SCCPs in the leather products.

  4. Short-chain chlorinated paraffins in terrestrial bird species inhabiting an e-waste recycling site in South China

    International Nuclear Information System (INIS)

    Luo, Xiao-Jun; Sun, Yu-Xin; Wu, Jiang-Ping; Chen, She-Jun; Mai, Bi-Xian

    2015-01-01

    Short-chain chlorinated paraffins (SCCPs) are under review by the Stockholm Convention on Persistent Organic Pollutants. Currently, limited data are available about SCCPs in terrestrial organisms. In the present study, SCCP concentration in the muscles of seven terrestrial bird species (n = 38) inhabiting an e-waste recycling area in South China was determined. This concentration varied from 620 to 17,000 ng/g lipid. Resident birds accumulated significantly higher SCCP concentrations than migratory birds (p < 0.01). Trophic magnification was observed for migratory bird species but not for resident, which was attributed to high heterogeneity of SCCP in e-waste area. Two different homologue group patterns were observed in avian samples. The first pattern was found in five bird species dominated by C 10 and C 11 congeners, while the second was found in the remains, which show rather equal abundance of homologue groups. This may be caused by two sources of SCCPs (local and e-waste) in the study area. - Highlights: • SCCPs in terrestrial bird species from an e-waste area are first reported. • Elevated SCCP level was found as compared with other regions. • Resident birds accumulated significantly higher SCCP levels than migratory birds. • Trophic magnification was observed for migratory but not for resident bird species. • Two homologue patterns were found among seven bird species. - SCCP concentration in terrestrial bird species inhabiting an e-waste site was first reported in this study

  5. Membrane organization determines barrier properties of endothelial cells and short-chain sphingolipid-facilitated doxorubicin influx.

    Science.gov (United States)

    van Hell, A J; Klymchenko, A; Gueth, D M; van Blitterswijk, W J; Koning, G A; Verheij, M

    2014-09-01

    The endothelial lining and its outer lipid membrane are the first major barriers drug molecules encounter upon intravenous administration. Our previous work identified lipid analogs that counteract plasma membrane barrier function for a series of amphiphilic drugs. For example, short-chain sphingolipids (SCS), like N-octanoyl-glucosylceramide, effectively elevated doxorubicin accumulation in tumor cells, both in vitro and in vivo, and in endothelial cells, whereas other (normal) cells remained unaffected. We hypothesize here that local membrane lipid composition and the degree of lipid ordering define SCS efficacy in individual cells. To this end, we study the differential effect of SCS on bovine aortic endothelial cells (BAEC) in its confluent versus proliferative state, as a model system. While their (plasma membrane) lipidome stays remarkably unaltered when BAECs reach confluency, their lipids segregate to form apical and basolateral domains. Using probe NR12S, we reveal that lipids in the apical membrane are more condensed/liquid-ordered. SCS preferentially attenuate the barrier posed by these condensed membranes and facilitate doxorubicin influx in these particular membrane regions. We confirm these findings in MDCK cells and artificial membranes. In conclusion, SCS-facilitated drug traversal acts on condensed membrane domains, elicited by confluency in resting endothelium. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Platelet-Derived Short-Chain Polyphosphates Enhance the Inactivation of Tissue Factor Pathway Inhibitor by Activated Coagulation Factor XI.

    Directory of Open Access Journals (Sweden)

    Cristina Puy

    Full Text Available Factor (F XI supports both normal human hemostasis and pathological thrombosis. Activated FXI (FXIa promotes thrombin generation by enzymatic activation of FXI, FIX, FX, and FV, and inactivation of alpha tissue factor pathway inhibitor (TFPIα, in vitro. Some of these reactions are now known to be enhanced by short-chain polyphosphates (SCP derived from activated platelets. These SCPs act as a cofactor for the activation of FXI and FV by thrombin and FXIa, respectively. Since SCPs have been shown to inhibit the anticoagulant function of TFPIα, we herein investigated whether SCPs could serve as cofactors for the proteolytic inactivation of TFPIα by FXIa, further promoting the efficiency of the extrinsic pathway of coagulation to generate thrombin.Purified soluble SCP was prepared by size-fractionation of sodium polyphosphate. TFPIα proteolysis was analyzed by western blot. TFPIα activity was measured as inhibition of FX activation and activity in coagulation and chromogenic assays. SCPs significantly accelerated the rate of inactivation of TFPIα by FXIa in both purified systems and in recalcified plasma. Moreover, platelet-derived SCP accelerated the rate of inactivation of platelet-derived TFPIα by FXIa. TFPIα activity was not affected by SCP in recalcified FXI-depleted plasma.Our data suggest that SCP is a cofactor for TFPIα inactivation by FXIa, thus, expanding the range of hemostatic FXIa substrates that may be affected by the cofactor functions of platelet-derived SCP.

  7. A microanalytical method for ammonium and short-chain primary aliphatic amines using precolumn derivatization and capillary liquid chromatography.

    Science.gov (United States)

    Moliner-Martínez, Y; Herráez-Hernández, R; Campíns-Falcó, P

    2007-09-14

    A new microscale method is presented for the determination of ammonium and primary short-chain aliphatic amines (methylamine, ethylamine, propylamine, n-butylamine and n-pentylamine) in water. The assay uses precolumn derivatization with the reagent o-phthaldialdehyde (OPA) in combination with the thiol N-acetyl-L-cysteine (NAC), and capillary liquid chromatography with UV detection at 330 nm. The described method is very simple and rapid as no preconcentration of the analytes is necessary, and the volume of sample required is only 0.1 mL. Under the proposed conditions good linearity has been obtained up to a concentration of the analytes of 10.0 mgL(-1), the limits of detection being of 8-50 microgL(-1). No matrix effect was found, and recoveries between 97 and 110% were obtained. The precision of the method was good, and the achieved variation coefficients were below 12%. The reliability of the proposed approach has been tested by analyzing a microsample of fogwater collected from leaf surfaces.

  8. Manipulation of dietary short chain carbohydrates alters the pattern of gas production and genesis of symptoms in irritable bowel syndrome.

    Science.gov (United States)

    Ong, Derrick K; Mitchell, Shaylyn B; Barrett, Jacqueline S; Shepherd, Sue J; Irving, Peter M; Biesiekierski, Jessica R; Smith, Stuart; Gibson, Peter R; Muir, Jane G

    2010-08-01

    Reduction of short-chain poorly absorbed carbohydrates (FODMAPs) in the diet reduces symptoms of irritable bowel syndrome (IBS). In the present study, we aimed to compare the patterns of breath hydrogen and methane and symptoms produced in response to diets that differed only in FODMAP content. Fifteen healthy subjects and 15 with IBS (Rome III criteria) undertook a single-blind, crossover intervention trial involving consuming provided diets that were either low (9 g/day) or high (50 g/day) in FODMAPs for 2 days. Food and gastrointestinal symptom diaries were kept and breath samples collected hourly over 14 h on day 2 of each diet. Higher levels of breath hydrogen were produced over the entire day with the high FODMAP diet for healthy volunteers (181 +/- 77 ppm.14 h vs 43 +/- 18; mean +/- SD P intestine that is greater in IBS, influence the amount of methane produced, and induce gastrointestinal and systemic symptoms experienced by patients with IBS. The results offer mechanisms underlying the efficacy of the low FODMAP diet in IBS.

  9. Protection against the Metabolic Syndrome by Guar Gum-Derived Short-Chain Fatty Acids Depends on Peroxisome Proliferator-Activated Receptor. and Glucagon-Like Peptide-1

    NARCIS (Netherlands)

    den Besten, Gijs; Gerding, Albert; van Dijk, Theo H.; Ciapaite, Jolita; Bleeker, Aycha; van Eunen, Karen; Havinga, Rick; Groen, Albert K.; Reijngoud, Dirk-Jan; Bakker, Barbara M.

    2015-01-01

    The dietary fiber guar gum has beneficial effects on obesity, hyperglycemia and hypercholesterolemia in both humans and rodents. The major products of colonic fermentation of dietary fiber, the short-chain fatty acids (SCFAs), have been suggested to play an important role. Recently, we showed that

  10. Effect of acute exposure to ergot alkaloids on short-chain fatty acid absorption and barrier function of isolated bovine ruminal epithelium

    Science.gov (United States)

    Ergot alkaloids present in endophyte-infected tall fescue are the causative agents for fescue toxicosis in cattle. Ergot alkaloids have been shown to cause a reduction in blood flow to the rumen epithelium as well as a decrease in short-chain fatty acid (SCFA) absorption from the washed rumen of ste...

  11. Application of liquid chromatography-mass spectrometry to measure the concentrations and study the synthesis of short chain fatty acids following stable isotope infusions

    NARCIS (Netherlands)

    Meesters, R.J.W.; Eijk, H.M.H. van; Have, G.A.M. ten; Graaf, A.A. de; Venema, K.; Rossum, B.E.J. van; Deutz, N.E.P.

    2007-01-01

    A new method involving zinc sulphate deproteinization was developed to study short chain fatty acids (SCFA) production in the colon and subsequent occurrence of SCFA in blood. SCFA were baseline separated in a 30 min cycle using ion-exclusion chromatography and detected by mass spectrometry.

  12. Comprehensive in Vitro Analysis of Acyltransferase Domain Exchanges in Modular Polyketide Synthases and Its Application for Short-Chain Ketone Production

    DEFF Research Database (Denmark)

    Yuzawa, Satoshi; Deng, Kai; Wang, George

    2017-01-01

    AT domain replacements in most type I PKS modules. To further demonstrate the utility of the optimized AT domain boundary, we have constructed hybrid PKSs to produce industrially important short-chain ketones. Our in vitro and in vivo analysis demonstrated production of predicted ketones without significant...

  13. Structural characterization of the thermostable Bradyrhizobium japonicumD-sorbitol dehydrogenase.

    Science.gov (United States)

    Fredslund, Folmer; Otten, Harm; Gemperlein, Sabrina; Poulsen, Jens Christian N; Carius, Yvonne; Kohring, Gert Wieland; Lo Leggio, Leila

    2016-11-01

    Bradyrhizobium japonicum sorbitol dehydrogenase is NADH-dependent and is active at elevated temperatures. The best substrate is D-glucitol (a synonym for D-sorbitol), although L-glucitol is also accepted, giving it particular potential in industrial applications. Crystallization led to a hexagonal crystal form, with crystals diffracting to 2.9 Å resolution. In attempts to phase the data, a molecular-replacement solution based upon PDB entry 4nbu (33% identical in sequence to the target) was found. The solution contained one molecule in the asymmetric unit, but a tetramer similar to that found in other short-chain dehydrogenases, including the search model, could be reconstructed by applying crystallographic symmetry operations. The active site contains electron density consistent with D-glucitol and phosphate, but there was not clear evidence for the binding of NADH. In a search for the features that determine the thermostability of the enzyme, the T m for the orthologue from Rhodobacter sphaeroides, for which the structure was already known, was also determined, and this enzyme proved to be considerably less thermostable. A continuous β-sheet is formed between two monomers in the tetramer of the B. japonicum enzyme, a feature not generally shared by short-chain dehydrogenases, and which may contribute to thermostability, as may an increased Pro/Gly ratio.

  14. A rare disease-associated mutation in the medium-chain acyl-CoA dehydrogenase (MCAD) gene changes a conserved arginine, previously shown to be functionally essential in short-chain acyl-CoA dehydrogenase (SCAD)

    DEFF Research Database (Denmark)

    Andresen, B S; Bross, P; Jensen, T G

    1993-01-01

    157 mutation was verified in genomic DNA from the patient and her mother by a PCR-based assay. The mutation changes conserved arginine at position 28 (R28C) of the mature MCAD protein. The effect of the T157 mutation on MCAD protein was investigated by expression of mutant MCAD cDNA in COS-7 cells...

  15. Plant Formate Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    John Markwell

    2005-01-10

    The research in this study identified formate dehydrogenase, an enzyme that plays a metabolic role on the periphery of one-carbon metabolism, has an unusual localization in Arabidopsis thaliana and that the enzyme has an unusual kinetic plasticity. These properties make it possible that this enzyme could be engineered to attempt to engineer plants with an improved photosynthetic efficiency. We have produced transgenic Arabidopsis and tobacco plants with increased expression of the formate dehydrogenase enzyme to initiate further studies.

  16. Spatial distributions and deposition chronology of short chain chlorinated paraffins in marine sediments across the Chinese Bohai and Yellow Seas.

    Science.gov (United States)

    Zeng, Lixi; Chen, Ru; Zhao, Zongshan; Wang, Thanh; Gao, Yan; Li, An; Wang, Yawei; Jiang, Guibin; Sun, Liguang

    2013-10-15

    As the most complex halogenated contaminants, short chain chlorinated paraffins (SCCPs) are scarcely reported in marine environments. In this work, a total of 117 surficial sediment (0-3 cm) samples and two sediment cores were collected from the Chinese Bohai and Yellow Seas to systematically study the spatial and temporal trends of SCCPs at a large scale in the Chinese marine environment. Total SCCP concentrations in the surficial sediments were in the range of 14.5-85.2 ng g(-1) (dry weight, d.w.) with an average level of 38.4 ng g(-1) d.w. Spatial distribution showed a decreasing trend with the distance from the coast to the open waters. Compositional pattern analysis suggested that C10 was the most predominant homologue group, followed by C11, C12, and C13 homologue groups. The concentrations of total SCCPs in sediment cores ranged from 11.6 to 94.7 ng g(-1) d.w. for YS1 and from 14.7 to 195.6 ng g(-1) d.w. for YS2, with sharp rise from the early 1950s to present based on (210)Pb dating technique. The historical records in cores correspond well to the production and usage changes of CPs in China. Multivariate regression statistics indicate TOC, latitude and longitude are the major factors influencing surficial SCCP levels in the Chinese East Seas by combining analysis with the data from the East China Sea (R(2) = 0.332, p < 0.01). These findings indicated that the sources of SCCPs were mainly from river outflows via ocean current and partly from atmospheric depositions by East Asian monsoon in the sampling areas.

  17. Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice.

    Science.gov (United States)

    Weitkunat, Karolin; Schumann, Sara; Petzke, Klaus Jürgen; Blaut, Michael; Loh, Gunnar; Klaus, Susanne

    2015-09-01

    In literature, contradictory effects of dietary fibers and their fermentation products, short-chain fatty acids (SCFA), are described: On one hand, they increase satiety, but on the other hand, they provide additional energy and promote obesity development. We aimed to answer this paradox by investigating the effects of fermentable and non-fermentable fibers on obesity induced by high-fat diet in gnotobiotic C3H/HeOuJ mice colonized with a simplified human microbiota. Mice were fed a high-fat diet supplemented either with 10% cellulose (non-fermentable) or inulin (fermentable) for 6 weeks. Feeding the inulin diet resulted in an increased diet digestibility and reduced feces energy, compared to the cellulose diet with no differences in food intake, suggesting an increased intestinal energy extraction from inulin. However, we observed no increase in body fat/weight. The additional energy provided by the inulin diet led to an increased bacterial proliferation in this group. Supplementation of inulin resulted further in significantly elevated concentrations of total SCFA in cecum and portal vein plasma, with a reduced cecal acetate:propionate ratio. Hepatic expression of genes involved in lipogenesis (Fasn, Gpam) and fatty acid elongation/desaturation (Scd1, Elovl3, Elovl6, Elovl5, Fads1 and Fads2) were decreased in inulin-fed animals. Accordingly, plasma and liver phospholipid composition were changed between the different feeding groups. Concentrations of omega-3 and odd-chain fatty acids were increased in inulin-fed mice, whereas omega-6 fatty acids were reduced. Taken together, these data indicate that, during this short-term feeding, inulin has mainly positive effects on the lipid metabolism, which could cause beneficial effects during obesity development in long-term studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Contamination of short-chain chlorinated paraffins to the biotic and abiotic environments in the Bohai Sea.

    Science.gov (United States)

    Jiang, Wanyanhan; Huang, Tao; Chen, Han; Lian, Lulu; Liang, Xiaoxue; Jia, Chenhui; Gao, Hong; Mao, Xiaoxuan; Zhao, Yuan; Ma, Jianmin

    2018-02-01

    Short-chain chlorinated paraffins (SCCPs) have been produced and emitted intensively around the Bohai Sea, potentially causing risks to this unique ecosystem and one of primary fishery resources in China and busiest seaways in the world. Little is known about fate, cycling, and sources of SCCPs in the Bohai Sea biotic and abiotic environment. In this study, we combined a marine food web model with a comprehensive atmospheric transport-multiple phase exchange model to quantify SCCPs in the biotic and abiotic environment in the Bohai Sea. We performed multiple modeling scenario investigations to examine SCCP levels in water, sediment, and phytoplankton. We assessed numerically dry and wet depositions, biomagnification and bioaccumulation of SCCPs in the Bohai Sea marine food web. Results showed declining SCCP levels in water and sediment with increasing distance from the coastline, and so do dry and wet depositions. The net deposition overwhelmed the water-air exchange of SCCPs due to their current use in China, though the diffusive gas deposition fluctuated monthly subject to mean wind speed and temperature. A risk assessment manifests that SCCPs levels in the Bohai Sea fish species are at present not posing risks to the residents in the Bohai Sea Rim region. We identified that the SCCP emission sources in the south of the Bohai Sea made a primary contribution to its loadings to the seawater and fish contamination associated with the East Asian summer monsoon. In contrast, the SCCP emissions from the north and northwest regions of the Bohai Sea were major sources contributing to their loading and contamination to Bohai Sea food web during the wintertime, potentially driven by the East Asian winter monsoon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Endosulfan, Short-Chain Chlorinated Paraffins (SCCPs) and Octachlorostyrene in Wildlife from Greenland: Levels, Trends and Methodological Challenges.

    Science.gov (United States)

    Vorkamp, Katrin; Rigét, Frank F; Bossi, Rossana; Sonne, Christian; Dietz, Rune

    2017-11-01

    Besides globally banned "legacy" persistent organic pollutants, other compounds might be present in Arctic wildlife, for which regulation was introduced recently (the insecticide endosulfan), is considered (short-chain chlorinated paraffins, SCCPs) or does not exist (octachlorostyrene, OCS, a byproduct of manufacturing and combustion processes involving chlorine). The purpose of this study was to analyze the time trend of endosulfan (1986-2012) in ringed seals and to address the levels of SCCPs and OCS in wildlife species from Greenland (black guillemot, glaucous gull, ringed seal, polar bear), while taking a critical standpoint to analytical methods typically applied. The metabolite endosulfan sulfate was the only endosulfan compound consistently above detection limits, with a median concentration of 0.23 ng/g lipid weight (lw) and a significant annual decrease of -5.6%. The low-resolution mass spectrometry (LRMS) method appeared accurate and sufficiently precise; however, the gel permeation chromatography had to balance lipid removal and analyte loss. SCCPs and OCS were present in all samples. OCS median concentrations were between 2.8 (ringed seal blubber) and 29 (glaucous gull liver) ng/g lw, determined by a straightforward dual column electron capture detection method. SCCPs were analyzed by LRMS, following removal of potential interferences, and had median concentrations of several 100 ng/g wet weight. While the method showed good precision and recovery rates as well as acceptable accuracy in control samples, the Greenland samples had high concentrations in an Arctic context, possibly indicating limited selectivity of the LRMS method.

  20. Evaluating the environmental fate of short-chain chlorinated paraffins (SCCPs) in the Nordic environment using a dynamic multimedia model.

    Science.gov (United States)

    Krogseth, Ingjerd S; Breivik, Knut; Arnot, Jon A; Wania, Frank; Borgen, Anders R; Schlabach, Martin

    2013-12-01

    Short chain chlorinated paraffins (SCCPs) raise concerns due to their potential for persistence, bioaccumulation, long-range transport and adverse effects. An understanding of their environmental fate remains limited, partly due to the complexity of the mixture. The purpose of this study was to evaluate whether a mechanistic, integrated, dynamic environmental fate and bioaccumulation multimedia model (CoZMoMAN) can reconcile what is known about environmental emissions and human exposure of SCCPs in the Nordic environment. Realistic SCCP emission scenarios, resolved by formula group, were estimated and used to predict the composition and concentrations of SCCPs in the environment and the human food chain. Emissions at the upper end of the estimated range resulted in predicted total concentrations that were often within a factor of 6 of observations. Similar model performance for a complex group of organic contaminants as for the well-known polychlorinated biphenyls strengthens the confidence in the CoZMoMAN model and implies a relatively good mechanistic understanding of the environmental fate of SCCPs. However, the degree of chlorination predicted for SCCPs in sediments, fish, and humans was higher than observed and poorly established environmental half-lives and biotransformation rate constants contributed to the uncertainties in the predicted composition and ∑SCCP concentrations. Improving prediction of the SCCP composition will also require better constrained estimates of the composition of SCCP emissions. There is, however, also large uncertainty and lack of coherence in the existing observations, and better model-measurement agreement will require improved analytical methods and more strategic sampling. More measurements of SCCP levels and compositions in samples from background regions are particularly important.

  1. Development of matrix solid-phase dispersion method for the extraction of short-chain chlorinated paraffins in human placenta.

    Science.gov (United States)

    Wang, Ying; Gao, Wei; Wu, Jing; Liu, Huijin; Wang, Yingjun; Wang, Yawei; Jiang, Guibin

    2017-12-01

    Chlorinated paraffins (SCCPs) are widely used worldwide, and they can be released into the environment during their production, transport, usage and disposal, which pose potential risks for human health. In this work, an efficient, reliable and rapid pretreatment method based on matrix solid-phase dispersion (MSPD) was developed for the analysis of short-chain CPs (SCCPs) in human placenta by gas chromatograph-electron capture negative ion low-resolution mass spectrometry (GC-ECNI-LRMS) and gas chromatography-quadrupole time-of-flight mass spectrometry (GC-QTOF-HRMS). The MSPD-relevant parameters including dispersing sorbent, sample-to-sorbent mass ratio, and elution solvent were optimized using the orthogonal test. Silica gel was found to be the optimal dispersing sorbent among the selected matrices. Under the optimal conditions, 44% acidic silica gel can be used as the co-sorbent to remove lipid and eluted by the mixture of hexane and dichloromethane (7:3, V/V). The spiked recoveries of the optimized method were 77.4% and 91.4% for analyzing SCCPs in human placenta by GC-ECNI-LRMS and GC-QTOF-HRMS, and the corresponding relative standard deviations were 10.2% and 5.6%, respectively. The method detection limit for the total SCCPs was 36.8ng/g (dry weight, dw) and 19.2ng/g (dw) as measured by GC-ECNI-LRMS and GC-QTOF-HRMS, respectively. The concentrations of SCCPs in four human placentas were in the range of

  2. Chronically Elevated Levels of Short-Chain Fatty Acids Induce T Cell-Mediated Ureteritis and Hydronephrosis.

    Science.gov (United States)

    Park, Jeongho; Goergen, Craig J; HogenEsch, Harm; Kim, Chang H

    2016-03-01

    Short-chain fatty acids (SCFAs) are major products of gut microbial fermentation and profoundly affect host health and disease. SCFAs generate IL-10(+) regulatory T cells, which may promote immune tolerance. However, SCFAs can also induce Th1 and Th17 cells upon immunological challenges and, therefore, also have the potential to induce inflammatory responses. Because of the seemingly paradoxical SCFA activities in regulating T cells, we investigated, in depth, the impact of elevated SCFA levels on T cells and tissue inflammation in mice. Orally administered SCFAs induced effector (Th1 and Th17) and regulatory T cells in ureter and kidney tissues, and they induced T cell-mediated ureteritis, leading to kidney hydronephrosis (hereafter called acetate-induced renal disease, or C2RD). Kidney hydronephrosis in C2RD was caused by ureteral obstruction, which was, in turn, induced by SCFA-induced inflammation in the ureteropelvic junction and proximal ureter. Oral administration of all major SCFAs, such as acetate, propionate, and butyrate, induced the disease. We found that C2RD development is dependent on mammalian target of rapamycin activation, T cell-derived inflammatory cytokines such as IFN-γ and IL-17, and gut microbiota. Young or male animals were more susceptible than old or female animals, respectively. However, SCFA receptor (GPR41 or GPR43) deficiency did not affect C2RD development. Thus, SCFAs, when systemically administered at levels higher than physiological levels, cause dysregulated T cell responses and tissue inflammation in the renal system. The results provide insights into the immunological and pathological effects of chronically elevated SCFAs. Copyright © 2016 by The American Association of Immunologists, Inc.

  3. Systemic concentrations of short chain fatty acids are elevated in salmonellosis and exacerbation of familial Mediterranean fever

    Directory of Open Access Journals (Sweden)

    Zhanna eKtsoyan

    2016-05-01

    Full Text Available Gut microbiota-produced short chain fatty acids (SCFAs play an important role in the normal human metabolism and physiology. Although the gradients of SCFAs from the large intestine, where they are largely produced, to the peripheral blood as well as the main routes of SCFA metabolism by different organs are known well for the healthy state, there is a paucity of information regarding how these are affected in disease. In particular, how the inflammation caused by infection or autoinflammatory disease affect the concentration of SCFAs in the peripheral venous blood. In this work, we revealed that diseases caused either by infectious agents (two Salmonella enterica serovars, S. Enteritidis and S. Typhimurium or by the exacerbation of an autoinflammatory disease, familial Mediterranean fever (FMF, both result in a significantly elevated systemic concentration of SCFAs. In the case of salmonellosis the concentration of SCFAs in peripheral blood was significantly and consistently higher, from five- to 20-fold, compared to control. In the case of FMF, however, a significant increase of SCFAs in the peripheral venous blood was detected only in the acute phase of the disease, with a lesser impact in remission. It seems counterintuitive that the dysbiotic conditions, with a reduced number of gut microorganisms, produce such an effect. This phenomenon, however, must be appraised within the context of how the inflammatory diseases affect the normal physiology. We discuss a number of factors that may contribute to the leak and persistence of gut-produced SCFAs into the systemic circulation in infectious and autoinflammatory diseases.

  4. Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation

    Science.gov (United States)

    Hoyt, Laura R.; Ather, Jennifer L.; Randall, Matthew J.; DePuccio, Daniel P.; Landry, Christopher C.; Wewers, Mark D.; Gavrilin, Mikhail A.; Poynter, Matthew E.

    2016-01-01

    Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the pro-inflammatory cytokines IL-1β and IL-18, can be inhibited by ethanol and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1β and caspase-1 cleavage and secretion, as well as diminished ASC speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of GABAA receptor activation or NMDA receptor inhibition, but was associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, while administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1β secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC, were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other short-chain alcohols. PMID:27421477

  5. Sensitive and Simplified Detection of Antibiotic Influence on the Dynamic and Versatile Changes of Fecal Short-Chain Fatty Acids.

    Science.gov (United States)

    Zhao, Xiaoya; Jiang, Zhenzuo; Yang, Fan; Wang, Yan; Gao, Xiumei; Wang, Yuefei; Chai, Xin; Pan, Guixiang; Zhu, Yan

    2016-01-01

    Short-chain fatty acids (SCFAs), produced by anaerobic fermentation of mainly indigestible dietary carbohydrates by gut microbiota, have a profound influence on intestinal function and host energy metabolism. Antibiotics may seriously disturb the balance of fecal SCFAs. To evaluate the impacts of antibiotics on fecal SCFAs produced by gut microbiota, a simple, reproducible and accurate gas chromatography (GC) method, which can simultaneously analyze seven SCFAs in fecal samples, was developed and validated. The ranges of detection and quantitation of the SCFAs reached 0.0868 ~ 0.393 and 0.261 ~ 1.18 μg·mL-1 respectively, in an optimized protocol for SCFAs extraction and analysis that used 10 mL 75% ethanol aqueous solution containing 1% HCl, without ultrasonication. The technique exhibited excellent intra-day (relative standard deviation (RSD) ≤ 2.54%) and inter-day (RSD ≤ 4.33%) precisions for all the SCFAs. Later, we administered broad-spectrum antibiotics, cefdinir or azithromycin to rats and analyzed the alterations in fecal SCFAs. The total amount, types and distribution of nearly all fecal SCFAs were significantly altered during the administration and even after withdrawal of the antibiotics in rats. The effects of cefdinir on the SCFAs were more pronounced than those of azithromycin. Our findings suggest SCFAs may serve as sensitive indicators to monitor the influences of antibiotics on SCFAs originated by intestinal bacteria. Our improved SCFAs analysis method is a potential platform for a standard clinical test of the effects of new antibiotics on SCFAs.

  6. Vortex-homogenized matrix solid-phase dispersion for the extraction of short chain chlorinated paraffins from indoor dust samples.

    Science.gov (United States)

    Chen, Yu-Hsuan; Chang, Chia-Yu; Ding, Wang-Hsien

    2016-11-11

    A simple and effective method for determining short chain chlorinated paraffins (SCCPs) in indoor dust is presented. The method employed a modified vortex-homogenized matrix solid-phase dispersion (VH-MSPD) prior to its detection by gas chromatography - electron-capture negative-ion mass spectrometry (GC-ECNI-MS) operating in the selected-ion-monitoring (SIM) mode. Under the best extraction conditions, 0.1-g of dust sample was dispersed with 0.1-g of silica gel by using vortex (2min) instead of using a mortar and pestle (3min). After that step, the blend was transferred to a glass column containing 3-g acidic silica gel, 2-g basic silica gel, and 2-g of deactivated silica gel, used as clean-up co-sorbents. Then, target analytes were eluted with 5mL of n-hexane/dichloromethane (2:1, v/v) mixture. The extract was evaporated to dryness under a gentle stream of nitrogen. The residue was then re-dissolved in n-hexane (10μL), and subjected to GC-ECNI-MS analysis. The limits of quantitation (LOQs) ranged from 0.06 to 0.25μg/g for each SCCP congener. Precision was less than 7% for both intra- and inter-day analysis. Trueness was above 89%, which was calculated by mean extraction recovery. The VH-MSPD combined with GC-ECNI-MS was successfully applied to quantitatively detect SCCPs from various indoor dust samples, and the concentrations ranged from 1.2 to 31.2μg/g. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The Role of Short-Chain Fatty Acids, Produced by Anaerobic Bacteria, in the Cystic Fibrosis Airway.

    Science.gov (United States)

    Mirković, Bojana; Murray, Michelle A; Lavelle, Gillian M; Molloy, Kevin; Azim, Ahmed Abdul; Gunaratnam, Cedric; Healy, Fiona; Slattery, Dubhfeasa; McNally, Paul; Hatch, Joe; Wolfgang, Matthew; Tunney, Michael M; Muhlebach, Marianne S; Devery, Rosaleen; Greene, Catherine M; McElvaney, Noel G

    2015-12-01

    Anaerobic bacteria are present in large numbers in the airways of people with cystic fibrosis (PWCF). In the gut, anaerobes produce short-chain fatty acids (SCFAs) that modulate immune and inflammatory processes. To investigate the capacity of anaerobes to contribute to cystic fibrosis (CF) airway pathogenesis via SCFAs. Samples of 109 PWCF were processed using anaerobic microbiological culture with bacteria present identified by 16S RNA sequencing. SCFA levels in anaerobic supernatants and bronchoalveolar lavage (BAL) were determined by gas chromatography. The mRNA and/or protein expression of two SCFA receptors, GPR41 and GPR43, in CF and non-CF bronchial brushings and 16HBE14o(-) and CFBE41o(-) cells were evaluated using reverse transcription polymerase chain reaction, Western blot analysis, laser scanning cytometry, and confocal microscopy. SCFA-induced IL-8 secretion was monitored by ELISA. Fifty-seven (52.3%) of 109 PWCF were anaerobe positive. Prevalence increased with age, from 33.3% to 57.7% in PWCF younger (n = 24) and older (n = 85) than 6 years of age. All evaluated anaerobes produced millimolar concentrations of SCFAs, including acetic, propionic, and butyric acids. SCFA levels were higher in BAL samples of adults than in those of children. GPR41 levels were elevated in CFBE41o(-) versus 16HBE14o(-) cells; CF versus non-CF bronchial brushings; and 16HBE14o(-) cells after treatment with cystic fibrosis transmembrane conductance regulator inhibitor CFTR(inh)-172, CF BAL, or inducers of endoplasmic reticulum stress. SCFAs induced a dose-dependent and pertussis toxin-sensitive IL-8 response in bronchial epithelial cells, with a higher production of IL-8 in CFBE41o(-) than in 16HBE14o(-) cells. This study illustrates that SCFAs contribute to excessive production of IL-8 in CF airways colonized with anaerobes via up-regulated GPR41.

  8. Purification and characterization of an anti-Prelog alcohol dehydrogenase from Oenococcus oeni that reduces 2-octanone to (R)-2-octanol.

    Science.gov (United States)

    Meng, Fantao; Xu, Yan

    2010-04-01

    An anti-Prelog alcohol dehydrogenase from Oenococcus oeni that reduces 2-octanone to (R)-2-octanol was purified by 26-fold to homogeneity. The enzyme had a homodimeric structure consisting of 49 kDa subunits, required NADPH, but not NADH, as a cofactor and was a Zn-independent short-chain dehydrogenase. Aliphatic methyl ketones (chain length > or =6 carbon atoms) and aromatic methyl ketones were the preferred substrates for the enzyme, the best being 2-octanone. Maximum enzyme activity with 2-octanone was at 45 degrees C and at pH 8.0.

  9. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers.

    Science.gov (United States)

    Kaur, Amandeep; Rose, Devin J; Rumpagaporn, Pinthip; Patterson, John A; Hamaker, Bruce R

    2011-01-01

    Sustained colonic fermentation supplies beneficial fermentative by-products to the distal colon, which is particularly prone to intestinal ailments. Blunted/delayed initial fermentation may also lead to less bloating. Previously, we reported that starch-entrapped alginate-based microspheres act as a slowly fermenting dietary fiber. This material was used in the present study to provide a benchmark to compare to other "slowly fermentable" fibers. Dietary fibers with previous reports of slow fermentation, namely, long-chain inulin, psyllium, alkali-soluble corn bran arabinoxylan, and long-chain β-glucan, as well as starch-entrapped microspheres were subjected to in vitro upper gastrointestinal digestion and human fecal fermentation and measured over 48 h for pH, gas, and short-chain fatty acids (SCFA). The resistant fraction of cooked and cooled potato starch was used as another form of fermentable starch and fructooligosaccharides (FOS) served as a fast fermenting control. Corn bran arabinoxylan and long-chain β-glucan initially appeared slower fermenting with comparatively low gas and SCFA production, but later fermented rapidly with little remaining in the final half of the fermentation period. Long-chain inulin and psyllium had slow and moderate, but incomplete, fermentation. The resistant fraction of cooked and cooled potato starch fermented rapidly and appeared similar to FOS. In conclusion, compared to the benchmark slowly fermentable starch-entrapped microspheres, a number of the purported slowly fermentable fibers fermented fairly rapidly overall and, of this group, only the starch-entrapped microspheres appreciably fermented in the second half of the fermentation period. Consumption of dietary fibers, particularly commercial prebiotics, leads to uncomfortable feelings of bloating and flatulence due to their rapid degradation in our large intestine. This article employs claimed potential slowly fermenting fibers and compares their fermentation rates

  10. A Mechanism for the induction of renal tumours in male Fischer 344 rats by short-chain chlorinated paraffins.

    Science.gov (United States)

    Warnasuriya, Gayathri D; Elcombe, Barbara M; Foster, John R; Elcombe, Clifford R

    2010-03-01

    Short-chain chlorinated paraffins (SCCPs) cause kidney tumours in male rats, but not in female rats or mice of either sex. Male rat-specific tumours also occur in rats dosed with a range of compounds including 1,4- dichlorobenzene (DCB) and d-limonene (DL). These compounds bind to a male rat-specific hepatic protein, alpha-2-urinary globulin (α2u), and form degradationresistant complexes in the kidney. The resulting accumulation of α2u causes cell death and sustained regenerative cell proliferation, which in turn leads to the formation of renal tumours. To investigate whether the SCCP, Chlorowax 500C (C500C), causes tumours via the accumulation of α2u male rats were orally dosed with either C500C (625 mg/kg of body weight), DCB (300 mg/kg of body weight), or DL (150 mg/kg of body weight) for 28 consecutive days. An increase in renal α2u and cell proliferation was observed in DCB- and DL-treated rats but not in C500C-treated rats. C500C caused peroxisome proliferation and a down-regulation of α2u synthesis in male rat liver. This down-regulation occurred at the transcriptional level. Since less α2u was produced in C500C-treated rats, there was less available for accumulation in the kidney hence a typical α2u nephropathy did not appear. However, the administration of a radiolabelled SCCP, [14C]polychlorotridecane (PCTD), to male rats demonstrated its binding to renal α2u. Thus, it is possible that SCCPs bind to α2u and cause a slow accumulation of the protein in the kidney followed by delayed onset of α2u nephropathy. As a consequence of these findings in the current experiments, while evidence exists implicating α2u-globulin in the molecular mechanism of action of the C500C, the classic profile of a α2u-globulin nephropathy seen with other chemicals such as DCB and DL was not reproduced during this experimental protocol.

  11. Assessment of the endocrine-disrupting effects of short-chain chlorinated paraffins in in vitro models.

    Science.gov (United States)

    Zhang, Quan; Wang, Jinghua; Zhu, Jianqiang; Liu, Jing; Zhang, Jianyun; Zhao, Meirong

    2016-09-01

    Short-chain chlorinated paraffins (SCCPs), which are candidate persistent organic pollutants (POPs) according to the Stockholm Convention, are of great concern because of their persistent bioaccumulation, long-range transport and potential adverse health effects. However, data on the endocrine-disrupting effects of SCCPs remain scarce. In this study, we first adopted two in vitro models (reporter gene assays and H295R cell line) to investigate the endocrine-disrupting effects of three SCCPs (C10-40.40%, C10-66.10% and C11-43.20%) via receptor mediated and non-receptor mediated pathway. The dual-luciferase reporter gene assay revealed that all test chemicals significantly induced estrogenic effects, which were mediated by estrogen receptor α (ERα), in the following order: C11-43.20%>C10-66.10%>C10-40.40%. Notably, C10-40.40% and C10-66.10% also demonstrated remarkable anti-estrogenic activities. Only C11-43.20% showed glucocorticoid receptor-mediated (GR) antagonistic activity, with a RIC20 value of 2.6×10(-8)mol/L. None of the SCCPs showed any agonistic or antagonistic activities against thyroid receptor β (TRβ). Meanwhile, all test SCCPs stimulated the secretion of 17β-estradiol (E2). Both C10-66.10% and C11-43.20% increased the production of cortisol at a high level in H295R cell lines. In order to explore the possible mechanism underlying the endocrine-disrupting effects of SCCPs through the non-receptor pathway, the mRNA levels of 9 steroidogenic genes were measured by real-time polymerase chain reaction (RT-PCR). StAR, 17βHSD, CYP11A1, CYP11B1, CYP19 and CYP21 were upregulated in a concentration-dependent manner by all chemicals. The data provided here emphasized that comprehensive assessments of the health and ecological risks of emerging contaminants, such as SCCPs, are of great concern and should be investigated further. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Short-chain flavor ester synthesis in organic media by an E. coli whole-cell biocatalyst expressing a newly characterized heterologous lipase.

    Directory of Open Access Journals (Sweden)

    Guillaume Brault

    Full Text Available Short-chain aliphatic esters are small volatile molecules that produce fruity and pleasant aromas and flavors. Most of these esters are artificially produced or extracted from natural sources at high cost. It is, however, possible to 'naturally' produce these molecules using biocatalysts such as lipases and esterases. A gene coding for a newly uncovered lipase was isolated from a previous metagenomic study and cloned into E. coli BL21 (DE3 for overexpression using the pET16b plasmid. Using this recombinant strain as a whole-cell biocatalyst, short chain esters were efficiently synthesized by transesterification and esterification reactions in organic media. The recombinant lipase (LipIAF5-2 showed good affinity toward glyceryl trioctanoate and the highest conversion yields were obtained for the transesterification of glyceryl triacetate with methanol. Using a simple cetyl-trimethylammonium bromide pretreatment increased the synthetic activity by a six-fold factor and the whole-cell biocatalyst showed the highest activity at 40°C with a relatively high water content of 10% (w/w. The whole-cell biocatalyst showed excellent tolerance to alcohol and short-chain fatty acid denaturation. Substrate affinity was equally effective with all primary alcohols tested as acyl acceptors, with a slight preference for methanol. The best transesterification conversion of 50 mmol glyceryl triacetate into isoamyl acetate (banana fragrance provided near 100% yield after 24 hours using 10% biocatalyst loading (w/w in a fluidized bed reactor, allowing recycling of the biocatalyst up to five times. These results show promising potential for an industrial approach aimed at the biosynthesis of short-chain esters, namely for natural flavor and fragrance production in micro-aqueous media.

  13. Lactobacillus rhamnosus GR-1 in Fermented Rice Pudding Supplemented with Short Chain Inulin, Long Chain Inulin, and Oat as a Novel Functional Food

    Directory of Open Access Journals (Sweden)

    Maja Williams

    2017-10-01

    Full Text Available Lactobacillus rhamnosus GR-1 is a probiotic that has been shown to reduce the risk of urogenital problems and urinary tract infections. Rice pudding is a popular gluten-free dairy product, and could be a vehicle to deliver L. rhamnosus GR-1 to a broader population. The purpose of this study was to investigate the growth and viability of L. rhamnosus GR-1 in six fermented rice pudding samples, each one supplemented with one type of prebiotic (short-chain inulin-2% w/w, 4% w/w; long-chain inulin-2% w/w, 4% w/w and oat-0.5% w/w, 1% w/w, along with control, over a 21-day storage period. The objective was to determine if the supplementation would have a positive effect on the microbial viability of L. rhamnosus GR-1, and to evaluate the sensory properties of the samples. All of the samples had viable levels of L. rhamnosus GR-1. Bacterial counts were at least 1 × 108 CFU/mL over the 21-day storage period. The probiotic rice pudding sample supplemented with 4% w/w short-chain inulin had the highest hedonic score for flavour, sweetness, texture, and overall acceptability. This study shows that the addition of short-chain inulin, long-chain inulin, and oat had no adverse supplementation effects on the viability of L. Rhamnosus GR-1. There is the potential for the production of a novel functional food.

  14. A novel 3-hydroxysteroid dehydrogenase that regulates reproductive development and longevity.

    Directory of Open Access Journals (Sweden)

    Joshua Wollam

    Full Text Available Endogenous small molecule metabolites that regulate animal longevity are emerging as a novel means to influence health and life span. In C. elegans, bile acid-like steroids called the dafachronic acids (DAs regulate developmental timing and longevity through the conserved nuclear hormone receptor DAF-12, a homolog of mammalian sterol-regulated receptors LXR and FXR. Using metabolic genetics, mass spectrometry, and biochemical approaches, we identify new activities in DA biosynthesis and characterize an evolutionarily conserved short chain dehydrogenase, DHS-16, as a novel 3-hydroxysteroid dehydrogenase. Through regulation of DA production, DHS-16 controls DAF-12 activity governing longevity in response to signals from the gonad. Our elucidation of C. elegans bile acid biosynthetic pathways reveals the possibility of novel ligands as well as striking biochemical conservation to other animals, which could illuminate new targets for manipulating longevity in metazoans.

  15. Isolation and Pharmacological Characterization of α-Elapitoxin-Ot1a, a Short-Chain Postsynaptic Neurotoxin from the Venom of the Western Desert Taipan, Oxyuranus temporalis

    Directory of Open Access Journals (Sweden)

    Carmel M. Barber

    2016-02-01

    Full Text Available Taipans (Oxyuranus spp. are elapids with highly potent venoms containing presynaptic (β and postsynaptic (α neurotoxins. O. temporalis (Western Desert taipan, a newly discovered member of this genus, has been shown to possess venom which displays marked in vitro neurotoxicity. No components have been isolated from this venom. We describe the characterization of α-elapitoxin-Ot1a (α-EPTX-Ot1a; 6712 Da, a short-chain postsynaptic neurotoxin, which accounts for approximately 30% of O. temporalis venom. α-Elapitoxin-Ot1a (0.1–1 µM produced concentration-dependent inhibition of indirect-twitches, and abolished contractile responses to exogenous acetylcholine and carbachol, in the chick biventer cervicis nerve-muscle preparation. The inhibition of indirect twitches by α-elapitoxin-Ot1a (1 µM was not reversed by washing the tissue. Prior addition of taipan antivenom (10 U/mL delayed the neurotoxic effects of α-elapitoxin-Ot1a (1 µM and markedly attenuated the neurotoxic effects of α-elapitoxin-Ot1a (0.1 µM. α-Elapitoxin-Ot1a displayed pseudo-irreversible antagonism of concentration-response curves to carbachol with a pA2 value of 8.02 ± 0.05. De novo sequencing revealed the main sequence of the short-chain postsynaptic neurotoxin (i.e., α-elapitoxin-Ot1a as well as three other isoforms found in O. temporalis venom. α-Elapitoxin-Ot1a shows high sequence similarity (i.e., >87% with other taipan short-chain postsynaptic neurotoxins.

  16. Effects of Arabinoxylan and Resistant Starch on Intestinal Microbiota and Short-Chain Fatty Acids in Subjects with Metabolic Syndrome: A Randomised Crossover Study.

    Directory of Open Access Journals (Sweden)

    Stine Hald

    Full Text Available Recently, the intestinal microbiota has been emphasised as an important contributor to the development of metabolic syndrome. Dietary fibre may exert beneficial effects through modulation of the intestinal microbiota and metabolic end products. We investigated the effects of a diet enriched with two different dietary fibres, arabinoxylan and resistant starch type 2, on the gut microbiome and faecal short-chain fatty acids. Nineteen adults with metabolic syndrome completed this randomised crossover study with two 4-week interventions of a diet enriched with arabinoxylan and resistant starch and a low-fibre Western-style diet. Faecal samples were collected before and at the end of the interventions for fermentative end-product analysis and 16S ribosomal RNA bacterial gene amplification for identification of bacterial taxa. Faecal carbohydrate residues were used to verify compliance. The diet enriched with arabinoxylan and resistant starch resulted in significant reductions in the total species diversity of the faecal-associated intestinal microbiota but also increased the heterogeneity of bacterial communities both between and within subjects. The proportion of Bifidobacterium was increased by arabinoxylan and resistant starch consumption (P<0.001, whereas the proportions of certain bacterial genera associated with dysbiotic intestinal communities were reduced. Furthermore, the total short-chain fatty acids (P<0.01, acetate (P<0.01 and butyrate concentrations (P<0.01 were higher by the end of the diet enriched with arabinoxylan and resistant starch compared with those resulting from the Western-style diet. The concentrations of isobutyrate (P = 0.05 and isovalerate (P = 0.03 decreased in response to the arabinoxylan and resistant starch enriched diet, indicating reduced protein fermentation. In conclusion, arabinoxylan and resistant starch intake changes the microbiome and short-chain fatty acid compositions, with potential beneficial effects on

  17. Designing of an artificial light energy converter in the form of short-chain dyad when combined with core-shell gold/silver nanocomposites.

    Science.gov (United States)

    Dutta Pal, Gopa; Paul, Somnath; Bardhan, Munmun; De, Asish; Ganguly, Tapan

    2017-06-05

    UV-vis absorption, steady state and time resolved fluorescence and absorption spectroscopic investigations demonstrate that the short chain dyad MNTMA when combined with gold-silver core-shell (Au@Ag) nanocomposite , forms elongated conformers in the excited state whereas for the dyad - Ag (spherical) system the majority of dyads remains in a folded conformation. In the dyad-core-shell nanocomposite system, energy wasting charge recombination rate slows down primarily due to elongated conformation and thus it may be anticipated that this hybrid nanocomposite system may serve as a better light energy conversion device. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Photochemical oxidation of short-chain polychlorinated n-alkane mixtures using H2O2/UV and the photo-Fenton reaction

    OpenAIRE

    Ken J. Friesen; Taha M. El-Morsi; Alaa S. Abd-El-Aziz

    2004-01-01

    The photochemical oxidation of a series of short-chain polychlorinated n-alkane (PCA) mixtures was investigated using H2O2/UV and modified photo-Fenton conditions (Fe3+/H2O2/UV) in both Milli-Q and lake water. All PCA mixtures, including chlorinated (Cl5 to Cl8) decanes, undecanes, dodecanes and tridecanes degraded in 0.02 M H2O2/UV at pH 2.8 in pure water, with 80±4% disappearance after 3 h of irradiation using a 300 nm light source. Degradation was somewhat enhanced under similar conditions...

  19. Postprandial PYY increase by resistant starch supplementation is independent of net portal appearance of short-chain fatty acids in pigs

    DEFF Research Database (Denmark)

    Ingerslev, Anne Krog; Jagalur Mutt, Shivaprakash; Lærke, Helle Nygaard

    2017-01-01

    Increased dietary fiber (DF) fermentation and short-chain fatty acid (SCFA) production may stimulate peptide tyrosine-tyrosine (PYY) secretion. In this study, the effects of hindgut SCFA production on postprandial PYY plasma levels were assessed using different experimental diets in a porto.......001), but similar among diets (P > 0.10). In conclusion, the increased postprandial PYY responses in pigs fed with different levels and sources of DF are not caused by an increased SCFA absorption and suggest that other mechanisms such as neural reflexes and possibly an increased flow of digesta in the small...

  20. Effect of lactic acid bacteria on the intestinal production of lactate and short-chain fatty acids, and the absorption of lactose

    DEFF Research Database (Denmark)

    Hove, H; Nordgaard-Andersen, I; Mortensen, P B

    1994-01-01

    (10) cells), but did not influence the concentrations and productions of DL-lactate and short-chain fatty acids in the ileostomic outputs and incubates. Large amounts of ingested lactic acid bacteria (4.2 x 10(10) cells) did not ameliorate lactose malabsorption measured by the breath-hydrogen test in 12...... lactose malabsorbers. This study shows that ingested lactic acid bacteria are indeed present in the colon, but it does not support the theory that they change the pattern of colonic fermentation or the degree of intestinal lactose malabsorption....

  1. Characterisation of Fecal Soap Fatty Acids, Calcium Contents, Bacterial Community and Short-Chain Fatty Acids in Sprague Dawley Rats Fed with Different sn-2 Palmitic Triacylglycerols Diets.

    Science.gov (United States)

    Wan, Jianchun; Hu, Songyou; Ni, Kefeng; Chang, Guifang; Sun, Xiangjun; Yu, Liangli

    2016-01-01

    The structure of dietary triacylglycerols is thought to influence fatty acid and calcium absorption, as well as intestinal microbiota population of the host. In the present study, we investigated the impact of palmitic acid (PA) esterified at the sn-2 position on absorption of fatty acid and calcium and composition of intestinal microorganisms in rats fed high-fat diets containing either low sn-2 PA (12.1%), medium sn-2 PA (40.4%) or high sn-2 PA (56.3%), respectively. Fecal fatty acid profiles in the soaps were measured by gas chromatography (GC), while fecal calcium concentration was detected by ICP-MS. The fecal microbial composition was assessed using a 16S rRNA high-throughput sequencing technology and fecal short-chain fatty acids were detected by ion chromatograph. Dietary supplementation with a high sn-2 PA fat significantly reduced total fecal contents of fatty acids soap and calcium compared with the medium or low sn-2 PA fat groups. Diet supplementation with sn-2 PA fat did not change the entire profile of the gut microbiota community at phylum level and the difference at genera level also were minimal in the three treatment groups. However, high sn-2 PA fat diet could potentially improve total short-chain fatty acids content in the feces, suggesting that high dietary sn-2 PA fat might have a beneficial effect on host intestinal health.

  2. Atmospheric chemistry of short-chain haloolefins: photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs).

    Science.gov (United States)

    Wallington, T J; Sulbaek Andersen, M P; Nielsen, O J

    2015-06-01

    Short-chain haloolefins are being introduced as replacements for saturated halocarbons. The unifying chemical feature of haloolefins is the presence of a CC double bond which causes the atmospheric lifetimes to be significantly shorter than for the analogous saturated compounds. We discuss the atmospheric lifetimes, photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs) of haloolefins. The commercially relevant short-chain haloolefins CF3CFCH2 (1234yf), trans-CF3CHCHF (1234ze(Z)), CF3CFCF2 (1216), cis-CF3CHCHCl (1233zd(Z)), and trans-CF3CHCHCl (1233zd(E)) have short atmospheric lifetimes (days to weeks), negligible POCPs, negligible GWPs, and ODPs which do not differ materially from zero. In the concentrations expected in the environment their atmospheric degradation products will have a negligible impact on ecosystems. CF3CFCH2 (1234yf), trans-CF3CHCHF (1234ze(Z)), CF3CFCF2 (1216), cis-CF3CHCHCl (1233zd(Z)), and trans-CF3CHCHCl (1233zd(E)) are environmentally acceptable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Summer–winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting

    International Nuclear Information System (INIS)

    Wang Thanh; Han Shanlong; Yuan Bo; Zeng Lixi; Li Yingming; Wang Yawei; Jiang Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are semi-volatile chemicals that are considered persistent in the environment, potential toxic and subject to long-range transport. This study investigates the concentrations and gas-particle partitioning of SCCPs at an urban site in Beijing during summer and wintertime. The total atmospheric SCCP levels ranged 1.9–33.0 ng/m 3 during wintertime. Significantly higher levels were found during the summer (range 112–332 ng/m 3 ). The average fraction of total SCCPs in the particle phase (φ) was 0.67 during wintertime but decreased significantly during the summer (φ = 0.06). The ten and eleven carbon chain homologues with five to eight chlorine atoms were the predominant SCCP formula groups in air. Significant linear correlations were found between the gas-particle partition coefficients and the predicted subcooled vapor pressures and octanol–air partition coefficients. The gas-particle partitioning of SCCPs was further investigated and compared with both the Junge–Pankow adsorption and K oa -based absorption models. - Highlights: ► Short chain chlorinated paraffins were investigated in air samples from Beijing. ► Higher levels of SCCPs were found in air during summertime than wintertime. ► Relevant physical–chemical properties were estimated by SPARC and EPI Suite. ► Obtained data were used to model the gas-particle partitioning of SCCPs. - Atmospheric levels and gas-particle partitioning of SCCPs in Beijing, China.

  4. Dose-response feeding study of short chain chlorinated paraffins (SCCPs) in laying hens: effects on laying performance and tissue distribution, accumulation and elimination kinetics.

    Science.gov (United States)

    Ueberschär, Karl-Heinz; Dänicke, Sven; Matthes, Siegfried

    2007-02-01

    Technical short chain chlorinated paraffins (C10-C13 with 60% chlorine) were fed to 93 laying hens from 24 to 32 weeks of age in increasing concentrations of up to 100 mg/kg feed. No significant influence on health, relative organ weights or performance (laying intensity, egg weight, feed consumption) was noted. The chlorinated paraffin content of the tissues was linearly related to the concentration of short chain paraffins of the feed. The highest concentrations were found in abdominal fat, egg yolk and fatty tissues. Breast muscle, egg albumen and bile fluid contained minimal or no residues. Less than 1% of the chlorinated paraffins ingested were incorporated into the body (without head, feet, gut and feathers), whereas about 1.5% were eliminated with the egg yolk and 30% were excreted with urine and faeces. A six-week kinetic depuration study revealed a biphasic elimination with half-lifes of 4-40 min (liver, kidneys, legs, fat, blood) for the initial rapid phase, and 15-30 days (blood, fat, liver, yolk, kidneys, legs) for the terminal slow phase.

  5. Fast quantification of short chain fatty acids and ketone bodies by liquid chromatography-tandem mass spectrometry after facile derivatization coupled with liquid-liquid extraction.

    Science.gov (United States)

    Zeng, Mingfei; Cao, Huachuan

    2018-04-15

    Short chain fatty acids (SCFA) and ketone bodies recently emerged as important physiological relevant metabolites because of their association with microbiota, immunology, obesity and other metabolic states. They were commonly analyzed by GC-MS with long run time and laborious sample preparation. In this study we developed a novel LC-MS/MS method using fast derivatization coupled with liquid-liquid extraction to detect SCFA and ketone bodies in plasma and feces. Several different derivatization reagents were evaluated to compare the efficiency, the sensitivity and chromatographic separation of structural isomers. O‑benzylhydroxylamine was selected for its superior overall performance in reaction time and isomeric separation that allowed the measurement of each SCFAs and ketone bodies free from interferences. The derivatization procedure is facile and reproducible in aqueous-organic medium, which abolished the evaporation procedure hampering the analysis of volatile short chain acids. Enhancement in sensitivity remarkably improved the detection limit of SCFA and ketone bodies to sub-fmol level. This novel method was applied to quantify these metabolites in fecal and plasma samples from lean and DIO mouse. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. In silico approach to investigating the adsorption mechanisms of short chain perfluorinated sulfonic acids and perfluorooctane sulfonic acid on hydrated hematite surface.

    Science.gov (United States)

    Feng, Hongru; Lin, Yuan; Sun, Yuzhen; Cao, Huiming; Fu, Jianjie; Gao, Ke; Zhang, Aiqian

    2017-05-01

    Short chain perfluorinated sulfonic acids (PFSAs) that were introduced as alternatives for perfluorooctane sulfonic acid (PFOS) have been widely produced and used. However, few studies have investigated the environmental process of short chain PFSAs, and the related adsorption mechanisms still need to be uncovered. The water-oxide interface is one of the major environmental interfaces that plays an important role in affecting the adsorption behaviour and transport potential of the environmental pollutant. In this study, we performed molecular dynamics simulations and quantum chemistry calculations to investigate the adsorption mechanisms of five PFSAs and their adsorption on hydrated hematite surface as well. Different to the vertical configuration reported for PFOS on titanium oxide, all PFSAs share the same adsorption configuration as the long carbon chains parallel to the surface. The formation of hydrogen bonds between F and inter-surface H helps to stabilize the unique configuration. As a result, the sorption capacity increases with increasing C-F chain length. Moreover, both calculated adsorption energy and partial density of states (PDOS) analysis demonstrate a PFSAs adsorption mechanism in between physical and chemical adsorption because the hydrogen bonds formed by the overlap of F (p) orbital and H (s) orbital are weak intermolecular interactions while the physical adsorption are mainly ascribed to the electrostatic interactions. This massive calculation provides a new insight into the pollutant adsorption behaviour, and in particular, may help to evaluate the environmental influence of pollutants. Copyright © 2017. Published by Elsevier Ltd.

  7. Cloning, characterization and functional expression of Taenia solium 17 beta-hydroxysteroid dehydrogenase.

    Science.gov (United States)

    Aceves-Ramos, A; de la Torre, P; Hinojosa, L; Ponce, A; García-Villegas, R; Laclette, J P; Bobes, R J; Romano, M C

    2014-07-01

    The 17β-hydroxysteroid dehydrogenases (17β-HSD) are key enzymes involved in the formation (reduction) and inactivation (oxidation) of sex steroids. Several types have been found in vertebrates including fish, as well as in invertebrates like Caenorhabditis elegans, Ciona intestinalis and Haliotis diversicolor supertexta. To date limited information is available about this enzyme in parasites. We showed previously that Taenia solium cysticerci are able to synthesize sex steroid hormones in vitro when precursors are provided in the culture medium. Here, we identified a T. solium 17β-HSD through in silico blast searches in the T. solium genome database. This coding sequence was amplified by RT-PCR and cloned into the pcDNA 3.1(+) expression vector. The full length cDNA contains 957bp, corresponding to an open reading frame coding for 319 aa. The highest identity (84%) at the protein level was found with the Echinococcus multilocularis 17β-HSD although significant similarities were also found with other invertebrate and vertebrate 17β-HSD sequences. The T. solium Tsol-17βHSD belongs to the short-chain dehydrogenase/reductase (SDR) protein superfamily. HEK293T cells transiently transfected with Tsol17β-HSD induced expression of Tsol17β-HSD that transformed 3H-androstenedione into testosterone. In contrast, 3H-estrone was not significantly transformed into estradiol. In conclusion, T. solium cysticerci express a 17β-HSD that catalyzes the androgen reduction. The enzyme belongs to the short chain dehydrogenases/reductase family and shares motifs and activity with the type 3 enzyme of some other species. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Insights into early extracellular matrix evolution: spongin short chain collagen-related proteins are homologous to basement membrane type IV collagens and form a novel family widely distributed in invertebrates.

    Science.gov (United States)

    Aouacheria, Abdel; Geourjon, Christophe; Aghajari, Nushin; Navratil, Vincent; Deléage, Gilbert; Lethias, Claire; Exposito, Jean-Yves

    2006-12-01

    Collagens are thought to represent one of the most important molecular innovations in the metazoan line. Basement membrane type IV collagen is present in all Eumetazoa and was found in Homoscleromorpha, a sponge group with a well-organized epithelium, which may represent the first stage of tissue differentiation during animal evolution. In contrast, spongin seems to be a demosponge-specific collagenous protein, which can totally substitute an inorganic skeleton, such as in the well-known bath sponge. In the freshwater sponge Ephydatia mülleri, we previously characterized a family of short-chain collagens that are likely to be main components of spongins. Using a combination of sequence- and structure-based methods, we present evidence of remote homology between the carboxyl-terminal noncollagenous NC1 domain of spongin short-chain collagens and type IV collagen. Unexpectedly, spongin short-chain collagen-related proteins were retrieved in nonsponge animals, suggesting that a family related to spongin constitutes an evolutionary sister to the type IV collagen family. Formation of the ancestral NC1 domain and divergence of the spongin short-chain collagen-related and type IV collagen families may have occurred before the parazoan-eumetazoan split, the earliest divergence among extant animal phyla. Molecular phylogenetics based on NC1 domain sequences suggest distinct evolutionary histories for spongin short-chain collagen-related and type IV collagen families that include spongin short-chain collagen-related gene loss in the ancestors of Ecdyzosoa and of vertebrates. The fact that a majority of invertebrates encodes spongin short-chain collagen-related proteins raises the important question to the possible function of its members. Considering the importance of collagens for animal structure and substratum attachment, both families may have played crucial roles in animal diversification.

  9. Influence of the ordered structure of short-chain polymer molecule all-trans-β-carotene on Raman scattering cross section in liquid

    International Nuclear Information System (INIS)

    Qu Guan-Nan; Li Zuo-Wei; Sun Cheng-Lin; Ou Yang Shun-Li; Wang Wei-Wei; Men Zhi-Wei

    2011-01-01

    We measured the resonant Raman spectra of all-trans-β-carotene in solvents with different densities and concentrations at different temperatures. The results demonstrated that the Raman scattering cross section (RSCS) of short-chain polymer all-trans-β-carotene is extremely high in liquid. Resonance and strong coherent weakly damped CC bond vibrating properties play important roles under these conditions. Coherent weakly damped CC bond vibration strength is associated with molecular ordered structure. All-trans-β-carotene has highly ordered structure and strong coherent weakly damped CC bond vibrating properties, which lead to large RSCS in the solvent with large density and low concentration at low temperature. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Development of water-repellent organic–inorganic hybrid sol–gel coatings on aluminum using short chain perfluoro polymer emulsion

    International Nuclear Information System (INIS)

    Wankhede, Ruchi Grover; Morey, Shantaram; Khanna, A.S.; Birbilis, N.

    2013-01-01

    The development of an organic–inorganic sol–gel coating system (thickness ∼ 2 μm) on aluminum is reported. The coating uses glycidoxytrimethoxysilane (GPTMS) and methyltrimethoxysilane (MTMS) as silane precursors, crosslinked with hexamethylmethoxymelamine (HMMM) and followed by hydrophobic modification using a water base short chain per-fluoro emulsion (FE). Such coating resulted in enhanced hydrophobicity with a contact angle of about 120° and sliding angle of 25° for a 20 μL water droplet. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements showed reduced corrosion upon coated substrates than the bare; correlated with both a higher degree of water repellency and formation of low permeable crosslinked sol–gel network. The structure of the coatings deposited was analyzed using Fourier transform infrared (FTIR) and X-ray photoelectron (XPS) spectroscopy, revealing replacement of hydrophillic surface hydroxyls groups with low energy per-fluoro groups.

  11. Use of Gifu Anaerobic Medium for culturing 32 dominant species of human gut microbes and its evaluation based on short-chain fatty acids fermentation profiles.

    Science.gov (United States)

    Gotoh, Aina; Nara, Misaki; Sugiyama, Yuta; Sakanaka, Mikiyasu; Yachi, Hiroyuki; Kitakata, Aya; Nakagawa, Akira; Minami, Hiromichi; Okuda, Shujiro; Katoh, Toshihiko; Katayama, Takane; Kurihara, Shin

    2017-10-01

    Recently, a "human gut microbial gene catalogue," which ranks the dominance of microbe genus/species in human fecal samples, was published. Most of the bacteria ranked in the catalog are currently publicly available; however, the growth media recommended by the distributors vary among species, hampering physiological comparisons among the bacteria. To address this problem, we evaluated Gifu anaerobic medium (GAM) as a standard medium. Forty-four publicly available species of the top 56 species listed in the "human gut microbial gene catalogue" were cultured in GAM, and out of these, 32 (72%) were successfully cultured. Short-chain fatty acids from the bacterial culture supernatants were then quantified, and bacterial metabolic pathways were predicted based on in silico genomic sequence analysis. Our system provides a useful platform for assessing growth properties and analyzing metabolites of dominant human gut bacteria grown in GAM and supplemented with compounds of interest.

  12. [Analysis of short-chain chlorinated paraffins in sediment samples from the mouth of the Daliao River by HRGC/ECNI-LRMS].

    Science.gov (United States)

    Gao, Yuan; Wang, Cheng; Zhang, Hai-jun; Zou, Li-li; Tian, Yu-zeng; Chen, Ji-ping

    2010-08-01

    An analytical method for quantifying short-chain chlorinated paraffins (SCCPs) by high-resolution gas chromatography/electron capture negative ion low-resolution mass spectrometry (HRGC/ECNI-LRMS) was presented. The cleanup procedure with an acid silica gel column and activated neutral alumina column was optimized to remove the interferences. As illustration of the application of the method to environmental samples, it is found that lower chlorinated C10 and C11 compounds were the main SCCPs compounds in six sediment samples from the mouth of the Daliao River. The concentrations of SCCPs in sediments were determined to be in the range of 64.9-407.0 ng/g and showed a decreasing tendency from the shore to the remote location.

  13. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets

    DEFF Research Database (Denmark)

    Ulven, Trond

    2012-01-01

    The deorphanization of the free fatty acid (FFA) receptors FFA1 (GPR40), FFA2 (GPR43), FFA3 (GPR41), GPR84, and GPR120 has made clear that the body is capable of recognizing and responding directly to nonesterified fatty acid of virtually any chain length. Colonic fermentation of dietary fiber...... produces high concentrations of the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, a process which is important to health. The phylogenetically related 7-transmembrane (7TM) receptors free fatty acid receptor 2 (FFA2) and FFA3 are activated by these SCFAs, and several lines of evidence...... in general have properties that make them less than ideal as such tools, but published patent applications indicate that better tool compounds might soon become available which should enable studies critical to validate the receptors as new drug targets....

  14. Effects of Arabinoxylan and Resistant Starch on Intestinal Microbiota and Short-Chain Fatty Acids in Subjects with Metabolic Syndrome: A Randomised Crossover Study

    DEFF Research Database (Denmark)

    Hald, Stine; Schioldan, Anne Grethe; Moore, Mary E

    2016-01-01

    with two different dietary fibres, arabinoxylan and resistant starch type 2, on the gut microbiome and faecal short-chain fatty acids. Nineteen adults with metabolic syndrome completed this randomised crossover study with two 4-week interventions of a diet enriched with arabinoxylan and resistant starch......Recently, the intestinal microbiota has been emphasised as an important contributor to the development of metabolic syndrome. Dietary fibre may exert beneficial effects through modulation of the intestinal microbiota and metabolic end products. We investigated the effects of a diet enriched...... and a low-fibre Western-style diet. Faecal samples were collected before and at the end of the interventions for fermentative end-product analysis and 16S ribosomal RNA bacterial gene amplification for identification of bacterial taxa. Faecal carbohydrate residues were used to verify compliance. The diet...

  15. Antifungal activity of oligochitosans (short chain chitosans) against some Candida species and clinical isolates of Candida albicans: molecular weight-activity relationship.

    Science.gov (United States)

    Kulikov, Sergey N; Lisovskaya, Svetlana A; Zelenikhin, Pavel V; Bezrodnykh, Evgeniya A; Shakirova, Diana R; Blagodatskikh, Inesa V; Tikhonov, Vladimir E

    2014-03-03

    A series of oligochitosans (short chain chitosans) prepared by acidic hydrolysis of chitosan and characterized by their molecular weight, polydispersity and degree of deacetylation were used to determine their anticandidal activities. This study has demonstrated that oligochitosans show a high fungistatic activity (MIC 8-512 μg/ml) against Candida species and clinical isolates of Candida albicans, which are resistant to a series of classic antibiotics. Flow cytometry analysis showed that oligochitosan possessed a high fungicidal activity as well. For the first time it was shown that even sub-MIC oligochitosan concentration suppressed the formation of C. albicans hyphal structures, cause severe cell wall alterations, and altered internal cell structure. These results indicate that oligochitosan should be considered as a possible alternative/additive to known anti-yeast agents in pharmaceutical compositions. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Modifications in bacterial groups and short chain fatty acid production in the gut of healthy adult rats after long-term consumption of dietary Maillard reaction products.

    Science.gov (United States)

    Delgado-Andrade, Cristina; Pastoriza de la Cueva, Silvia; Peinado, M Jesús; Rufián-Henares, José Ángel; Navarro, M Pilar; Rubio, Luis A

    2017-10-01

    Bread crust (BC) is one of the major sources of Maillard reaction products (MRPs) in the Western diet. This work was designed to analyze the impact of diets containing important levels of MRPs from BC on intestinal bacterial growth and short chain fatty acids (SCFAs) production in adult rats. Additionally, the pools of compounds excreted in feces attending to their molecular weights were analyzed. Rats were fed for 88days a control diet or diets containing BC or its soluble high molecular weight (HMW), soluble low molecular weight (LMW) or insoluble fractions, respectively. Intestinal (cecum) microbiota composition was determined by qPCR analysis. Consumption of the BC diet lowered (PMaillard reaction products are in vivo fermented by the gut microbiota, thereby changing both the pattern of SCFAs production and the microbiota composition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Phosphorus and short-chain fatty acids recovery from waste activated sludge by anaerobic fermentation: Effect of acid or alkali pretreatment.

    Science.gov (United States)

    Wu, Liang; Zhang, Cheng; Hu, Hui; Liu, Jianyong; Duan, Tengfei; Luo, Jinghuan; Qian, Guangren

    2017-09-01

    Waste activated sludge (WAS) was pretreated by acid or alkali to enhance the anaerobic fermentation (AF) for phosphorus (P) and short-chain fatty acids (SCFAs) release into the liquid simultaneously. With acid pretreatment, the released total P concentration achieved 120mg/L, which was 71.4% higher than that with alkali pretreatment. In addition, alkali pretreatment enhanced organic P release with about 35.3% of organic P in the solid being converted to inorganic P, while little had changed with acid pretreatment. The results also showed that acid and alkali pretreatment enhanced SCFAs production by 15.3 and 12.5times, respectively. Acid pretreatment could be preferred for simultaneous recovery of P and SCFAs by AF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Low serum levels of short-chain fatty acids after lactulose ingestion may indicate impaired colonic fermentation in patients with irritable bowel syndrome

    Directory of Open Access Journals (Sweden)

    Undseth R

    2015-11-01

    Full Text Available Ragnhild Undseth,1 Greta Jakobsdottir,2 Margareta Nyman,2 Arnold Berstad,3 Jørgen Valeur3 1Department of Radiology, Lovisenberg Diaconal Hospital, Oslo, Norway; 2Food for Health Science Centre, Lund University, Lund, Sweden; 3Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway Background: Ingestion of low-digestible carbohydrates triggers symptoms in patients with irritable bowel syndrome (IBS. These carbohydrates become substrates for microbial fermentation in the colon, yielding short-chain fatty acids (SCFAs that are readily absorbed. Aiming to compare colonic fermentation in patients with IBS and healthy controls, we analyzed the concentrations of SCFA in serum at fasting and 90 minutes following ingestion of an unabsorbable, but fermentable carbohydrate, lactulose. Methods: Patients with IBS according to Rome III criteria (n=22 and healthy controls (n=20 ingested 10 g lactulose dissolved in water. Symptoms were graded by questionnaires and SCFA were analyzed using hollow fiber-supported liquid membrane extraction coupled with gas chromatography. Results: Lactulose induced more symptoms in patients with IBS than in healthy controls (P=0.0001. Fasting serum levels of SCFA did not differ between patients with IBS and controls. However, the postprandial levels of total SCFA (P=0.0002, acetic acid (P=0.005, propionic acid (P=0.0001, and butyric acid (P=0.01 were significantly lower in patients with IBS compared with healthy controls. There was no correlation between the levels of serum SCFA and symptom severity. Conclusion: Low-serum levels of SCFA after lactulose ingestion may indicate impaired colonic fermentation in patients with IBS. Conceivably, this disturbance is related to symptom generation, but the mechanism is not clear. Keywords: fermentation, FODMAP, irritable bowel syndrome, microbiota, short-chain fatty acids 

  19. Short-Chain Fatty Acids from Periodontal Pathogens Suppress Histone Deacetylases, EZH2, and SUV39H1 To Promote Kaposi's Sarcoma-Associated Herpesvirus Replication

    Science.gov (United States)

    Yu, Xiaolan; Shahir, Abdel-Malek; Sha, Jingfeng; Feng, Zhimin; Eapen, Betty; Nithianantham, Stanley; Das, Biswajit; Karn, Jonathan; Weinberg, Aaron; Bissada, Nabil F.

    2014-01-01

    ABSTRACT Periodontal pathogens such as Porphyromonas gingivalis and Fusobacterium nucleatum produce five different short-chain fatty acids (SCFAs) as metabolic by-products. We detect significantly higher levels of SCFAs in the saliva of patients with severe periodontal disease. The different SCFAs stimulate lytic gene expression of Kaposi's sarcoma-associated herpesvirus (KSHV) dose dependently and synergistically. SCFAs inhibit class-1/2 histone deacetylases (HDACs) and downregulate expression of silent information regulator-1 (SIRT1). SCFAs also downregulate expression of enhancer of zeste homolog2 (EZH2) and suppressor of variegation 3-9 homolog1 (SUV39H1), which are two histone N-lysine methyltransferases (HLMTs). By suppressing the different components of host epigenetic regulatory machinery, SCFAs increase histone acetylation and decrease repressive histone trimethylations to transactivate the viral chromatin. These new findings provide mechanistic support that SCFAs from periodontal pathogens stimulate KSHV replication and infection in the oral cavity and are potential risk factors for development of oral Kaposi's sarcoma (KS). IMPORTANCE About 20% of KS patients develop KS lesions first in the oral cavity, while other patients never develop oral KS. It is not known if the oral microenvironment plays a role in oral KS tumor development. In this work, we demonstrate that a group of metabolic by-products, namely, short-chain fatty acids, from bacteria that cause periodontal disease promote lytic replication of KSHV, the etiological agent associated with KS. These new findings provide mechanistic support that periodontal pathogens create a unique microenvironment in the oral cavity that contributes to KSHV replication and development of oral KS. PMID:24501407

  20. Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria.

    Science.gov (United States)

    Radianingtyas, Helia; Wright, Phillip C

    2003-12-01

    Many studies have been undertaken to characterise alcohol dehydrogenases (ADHs) from thermophiles and hyperthermophiles, mainly to better understand their activities and thermostability. To date, there are 20 thermophilic archaeal and 17 thermophilic bacterial strains known to have ADHs or similar enzymes, including the hypothetical proteins. Some of these thermophiles are found to have multiple ADHs, sometimes of different types. A rigid delineation of amino acid sequences amongst currently elucidated thermophilic ADHs and similar proteins is phylogenetically apparent. All are NAD(P)-dependent, with one exception that utilises the cofactor F(420) instead. Within the NAD(P)-dependent group, the thermophilic ADHs are orderly clustered as zinc-dependent ADHs, short-chain ADHs, and iron-containing/activated ADHs. Distance matrix calculations reveal that thermophilic ADHs within one type are homologous, with those derived from a single genus often showing high similarities. Elucidation of the enzyme activity and stability, coupled with structure analysis, provides excellent information to explain the relationship between them, and thermophilic ADHs diversity.

  1. Hedgehog Signaling Regulates the Survival of Gastric Cancer Cells by Regulating the Expression of Bcl-2

    Science.gov (United States)

    Han, Myoung-Eun; Lee, Young-Suk; Baek, Sun-Yong; Kim, Bong-Seon; Kim, Jae-Bong; Oh, Sae-Ock

    2009-01-01

    Gastric cancer is the second most common cause of cancer deaths worldwide. The underlying molecular mechanisms of its carcinogenesis are relatively poorly characterized. Hedgehog (Hh) signaling, which is critical for development of various organs including the gastrointestinal tract, has been associated with gastric cancer. The present study was undertaken to reveal the underlying mechanism by which Hh signaling controls gastric cancer cell proliferation. Treatment of gastric cancer cells with cyclopamine, a specific inhibitor of Hh signaling pathway, reduced proliferation and induced apoptosis of gastric cancer cells. Cyclopamine treatment induced cytochrome c release from mitochondria and cleavage of caspase 9. Moreover, Bcl-2 expression was significantly reduced by cyclopamine treatment. These results suggest that Hh signaling regulates the survival of gastric cancer cells by regulating the expression of Bcl-2. PMID:19742123

  2. Cadherin adhesion, tissue tension, and noncanonical Wnt signaling regulate fibronectin matrix organization.

    Science.gov (United States)

    Dzamba, Bette J; Jakab, Karoly R; Marsden, Mungo; Schwartz, Martin A; DeSimone, Douglas W

    2009-03-01

    In this study we demonstrate that planar cell polarity signaling regulates morphogenesis in Xenopus embryos in part through the assembly of the fibronectin (FN) matrix. We outline a regulatory pathway that includes cadherin adhesion and signaling through Rac and Pak, culminating in actin reorganization, myosin contractility, and tissue tension, which, in turn, directs the correct spatiotemporal localization of FN into a fibrillar matrix. Increased mechanical tension promotes FN fibril assembly in the blastocoel roof (BCR), while reduced BCR tension inhibits matrix assembly. These data support a model for matrix assembly in tissues where cell-cell adhesions play an analogous role to the focal adhesions of cultured cells by transferring to integrins the tension required to direct FN fibril formation at cell surfaces.

  3. Dopamine Signaling Regulates Fat Content through β-Oxidation in Caenorhabditis elegans

    Science.gov (United States)

    Barros, Alexandre Guimarães de Almeida; Bridi, Jessika Cristina; de Souza, Bruno Rezende; de Castro Júnior, Célio; de Lima Torres, Karen Cecília; Malard, Leandro; Jorio, Ado; de Miranda, Débora Marques; Ashrafi, Kaveh; Romano-Silva, Marco Aurélio

    2014-01-01

    The regulation of energy balance involves an intricate interplay between neural mechanisms that respond to internal and external cues of energy demand and food availability. Compelling data have implicated the neurotransmitter dopamine as an important part of body weight regulation. However, the precise mechanisms through which dopamine regulates energy homeostasis remain poorly understood. Here, we investigate mechanisms through which dopamine modulates energy storage. We showed that dopamine signaling regulates fat reservoirs in Caenorhabditis elegans. We found that the fat reducing effects of dopamine were dependent on dopaminergic receptors and a set of fat oxidation enzymes. Our findings reveal an ancient role for dopaminergic regulation of fat and suggest that dopamine signaling elicits this outcome through cascades that ultimately mobilize peripheral fat depots. PMID:24465759

  4. GPR41/FFAR3 and GPR43/FFAR2 as Cosensors for Short-Chain Fatty Acids in Enteroendocrine Cells vs FFAR3 in Enteric Neurons and FFAR2 in Enteric Leukocytes

    DEFF Research Database (Denmark)

    Nøhr, Mark K; Pedersen, Maria H; Gille, Andreas

    2013-01-01

    The expression of short-chain fatty acid receptors GPR41/FFAR3 and GPR43/ free fatty acid receptor 2 (FFAR2) was studied in the gastrointestinal tract of transgenic monomeric red fluorescent protein (mRFP) reporter mice. In the stomach free fatty acid receptor 3 (FFAR3)-mRFP was expressed...... for the majority of enteroendocrine cells of the small and large intestine and that FFAR3 and FFAR2 both act as sensors for short-chain fatty acids in enteroendocrine cells, whereas FFAR3 apparently has this role alone in enteric neurons and FFAR2 in enteric leukocytes....

  5. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography–tandem mass spectrometry

    International Nuclear Information System (INIS)

    Han, Jun; Lin, Karen; Sequeira, Carita; Borchers, Christoph H.

    2015-01-01

    Highlights: • 3-Nitrophenylhydrazine was used to derivatize short-chain fatty acids (SCFAs) for LC-MS/MS. • 13 C 6 analogues were produced for use as isotope-labeled internal standards. • Isotope-labeled standards compensate for ESI matrix effects in LC-MS/MS. • Femtomolar sensitivities and 93–108% quantitation accuracy were achieved for human fecal SCFAs. - Abstract: Short-chain fatty acids (SCFAs) are produced by anaerobic gut microbiota in the large bowel. Qualitative and quantitative measurements of SCFAs in the intestinal tract and the fecal samples are important to understand the complex interplay between diet, gut microbiota and host metabolism homeostasis. To develop a new LC-MS/MS method for sensitive and reliable analysis of SCFAs in human fecal samples, 3-nitrophenylhydrazine (3NPH) was employed for pre-analytical derivatization to convert ten C 2 –C 6 SCFAs to their 3-nitrophenylhydrazones under a single set of optimized reaction conditions and without the need of reaction quenching. The derivatives showed excellent in-solution chemical stability. They were separated on a reversed-phase C 18 column and quantitated by negative-ion electrospray ionization – multiple-reaction monitoring (MRM)/MS. To achieve accurate quantitation, the stable isotope-labeled versions of the derivatives were synthesized in a single reaction vessel from 13 C 6 -3NPH, and were used as internal standard to compensate for the matrix effects in ESI. Method validation showed on-column limits of detection and quantitation over the range from low to high femtomoles for the ten SCFAs, and the intra-day and inter-day precision for determination of nine of the ten SCFAs in human fecal samples was ≤8.8% (n = 6). The quantitation accuracy ranged from 93.1% to 108.4% (CVs ≤ 4.6%, n = 6). This method was used to determine the SCFA concentrations and compositions in six human fecal samples. One of the six samples, which was collected from a clinically diagnosed type 2

  6. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography–tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun; Lin, Karen; Sequeira, Carita [University of Victoria – Genome BC Proteomics Centre, University of Victoria, Vancouver Island Technology Park, 3101–4464 Markham Street, Victoria, BC V8Z 7X8 (Canada); Borchers, Christoph H., E-mail: christoph@proteincentre.com [University of Victoria – Genome BC Proteomics Centre, University of Victoria, Vancouver Island Technology Park, 3101–4464 Markham Street, Victoria, BC V8Z 7X8 (Canada); Department of Biochemistry and Microbiology, University of Victoria, Petch Building Room 207, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada)

    2015-01-07

    Highlights: • 3-Nitrophenylhydrazine was used to derivatize short-chain fatty acids (SCFAs) for LC-MS/MS. • {sup 13}C{sub 6} analogues were produced for use as isotope-labeled internal standards. • Isotope-labeled standards compensate for ESI matrix effects in LC-MS/MS. • Femtomolar sensitivities and 93–108% quantitation accuracy were achieved for human fecal SCFAs. - Abstract: Short-chain fatty acids (SCFAs) are produced by anaerobic gut microbiota in the large bowel. Qualitative and quantitative measurements of SCFAs in the intestinal tract and the fecal samples are important to understand the complex interplay between diet, gut microbiota and host metabolism homeostasis. To develop a new LC-MS/MS method for sensitive and reliable analysis of SCFAs in human fecal samples, 3-nitrophenylhydrazine (3NPH) was employed for pre-analytical derivatization to convert ten C{sub 2}–C{sub 6} SCFAs to their 3-nitrophenylhydrazones under a single set of optimized reaction conditions and without the need of reaction quenching. The derivatives showed excellent in-solution chemical stability. They were separated on a reversed-phase C{sub 18} column and quantitated by negative-ion electrospray ionization – multiple-reaction monitoring (MRM)/MS. To achieve accurate quantitation, the stable isotope-labeled versions of the derivatives were synthesized in a single reaction vessel from {sup 13}C{sub 6}-3NPH, and were used as internal standard to compensate for the matrix effects in ESI. Method validation showed on-column limits of detection and quantitation over the range from low to high femtomoles for the ten SCFAs, and the intra-day and inter-day precision for determination of nine of the ten SCFAs in human fecal samples was ≤8.8% (n = 6). The quantitation accuracy ranged from 93.1% to 108.4% (CVs ≤ 4.6%, n = 6). This method was used to determine the SCFA concentrations and compositions in six human fecal samples. One of the six samples, which was collected from a

  7. Seleno-short-chain chitosan induces apoptosis in human non-small-cell lung cancer A549 cells through ROS-mediated mitochondrial pathway.

    Science.gov (United States)

    Zhao, Yana; Zhang, Shaojing; Wang, Pengfei; Fu, Shengnan; Wu, Di; Liu, Anjun

    2017-12-01

    Seleno-short-chain chitosan (SSCC) is a synthesized chitosan derivative. In this study, antitumor activity and underlying mechanism of SSCC on human non-small-cell lung cancer A549 cells were investigated in vitro. The MTT assay showed that SSCC could inhibit cell viability in a dose- and time-dependent manner, and 200 μg/ml SSCC exhibited significantly toxic effects on A549 cells. The cell cycle assay showed that SSCC triggered S phase cell cycle arrest in a dose- and time-dependent manner, which was related to a downregulation of S phase associated cyclin A. The DAPI staining and Annexin V-FITC/PI double staining identified that the SSCC could induce A549 cells apoptosis. Further studies found that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) by DCFH-DA and Rhodamin 123 staining, respectively. Meanwhile, free radical scavengers N-acetyl-L-cysteine (NAC) pretreatment confirmed that SSCC-induced A549 cells apoptosis was associated with ROS generation. Furthermore, real-time PCR and western blot assay showed that SSCC up-regulated Bax and down-regulated Bcl-2, subsequently incited the release of cytochrome c from mitochondria to cytoplasm, activated the increase of cleaved-caspase 3 and finally induced A549 cells apoptosis in vitro. In general, the present study demonstrated that SSCC induced A549 cells apoptosis via ROS-mediated mitochondrial apoptosis pathway.

  8. A Cross-Talk Between Microbiota-Derived Short-Chain Fatty Acids and the Host Mucosal Immune System Regulates Intestinal Homeostasis and Inflammatory Bowel Disease.

    Science.gov (United States)

    Gonçalves, Pedro; Araújo, João Ricardo; Di Santo, James P

    2018-02-15

    Gut microbiota has a fundamental role in the energy homeostasis of the host and is essential for proper "education" of the immune system. Intestinal microbial communities are able to ferment dietary fiber releasing short-chain fatty acids (SCFAs). The SCFAs, particularly butyrate (BT), regulate innate and adaptive immune cell generation, trafficing, and function. For example, BT has an anti-inflammatory effect by inhibiting the recruitment and proinflammatory activity of neutrophils, macrophages, dendritic cells, and effector T cells and by increasing the number and activity of regulatory T cells. Gut microbial dysbiosis, ie, a microbial community imbalance, has been suggested to play a role in the development of inflammatory bowel disease (IBD). The relationship between dysbiosis and IBD has been difficult to prove, especially in humans, and is probably complex and dynamic, rather than one of a simple cause and effect relationship. However, IBD patients have dysbiosis with reduced numbers of SCFAs-producing bacteria and reduced BT concentration that is linked to a marked increase in the number of proinflammatory immune cells in the gut mucosa of these patients. Thus, microbial dysbiosis and reduced BT concentration may be a factor in the emergence and severity of IBD. Understanding the relationship between microbial dysbiosis and reduced BT concentration to IBD may lead to novel therapeutic interventions.

  9. Effect of solids retention time and temperature on waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions in continuous-flow reactors.

    Science.gov (United States)

    Feng, Leiyu; Wang, Hua; Chen, Yinguang; Wang, Qin

    2009-01-01

    The effects of solids retention time (SRT) and temperature on waste activated sludge (WAS) hydrolysis and short-chain fatty acids (SCFAs) accumulation were investigated in a series of continuous-flow reactors at pH 10. The experimental results showed that the increase of either SRT or temperature benefited the hydrolysis of WAS and the production of SCFAs. The changes in SRT gave also impact on the percentage of acetic and propionic acids in the fermentative SCFAs, but little influence on that of the slightly long-chain SCFAs, such as n-butyric, iso-butyric, n-valeric and iso-valeric acids. Compared with the control (pH unadjusted) experiment, at SRT of 12d and temperature of 20 degrees C the concentration of SCFAs produced at pH 10 increased from 261.2 to 933.5mg COD/L, and the propionic acid percentage improved from 11.7 to 16.0%. It can be concluded from this investigation that the efficient continuous production of SCFAs at pH 10 is feasible.

  10. Faecal short chain fatty acids in healthy subjects participating in a randomised controlled trial examining a soluble highly viscous polysaccharide versus control.

    Science.gov (United States)

    Reimer, R A; Pelletier, X; Carabin, I G; Lyon, M R; Gahler, R J; Wood, S

    2012-08-01

    Short chain fatty acids (SCFA) are produced by the bacterial fermentation of dietary fibre and have been linked with intestinal health. The present study examined faecal SCFA concentrations in subjects consuming a novel soluble highly viscous polysaccharide (HVP) or control for 3 weeks. A total of 54 healthy adults participated in a randomised, double-blind, placebo-controlled study. Subjects were randomised to consume HVP or control (skim milk powder). A dose of 5 g day(-1) was consumed in the first week, followed by 10 g day(-1) in the second and third weeks (n = 27 per group). The primary outcome was SCFA concentrations in faecal samples collected at baseline (visit 1, V1), at 1 week (V2) and at 3 week (V3). The reduction in faecal acetate from V1 to V3 in control subjects was not observed in subjects consuming HVP. There were no differences in propionate, butyrate, valerate or caproate concentrations. There was a significant treatment effect (P = 0.03) for total SCFA, with higher concentrations observed in subjects consuming HVP versus control. HVP is a viscous functional fibre that may influence gut microbial fermentation. Further work is warranted to examine the fermentative properties of HVP and possible links with appetite regulation and reduced serum low-density lipoprotein cholesterol concentrations. © 2012 The Authors. Journal of Human Nutrition and Dietetics © 2012 The British Dietetic Association Ltd.

  11. The quantification of short-chain chlorinated paraffins in sediment samples using comprehensive two-dimensional gas chromatography with μECD detection.

    Science.gov (United States)

    Muscalu, Alina M; Morse, Dave; Reiner, Eric J; Górecki, Tadeusz

    2017-03-01

    The analysis of persistent organic pollutants in environmental samples is a challenge due to the very large number of compounds with varying chemical and physical properties. Chlorinated paraffins (CPs) are complex mixtures of chlorinated n-alkanes with varying chain lengths (C 10 to C 30 ) and degree of chlorination (30 to 70% by weight). Their physical-chemical properties make these compounds persistent in the environment and able to bioaccumulate in living organisms. Comprehensive two-dimensional gas chromatography (GC × GC) coupled with micro-electron capture detection (μECD) was used to separate and quantify short-chain chlorinated paraffins (SCCP) in sediment samples. Distinct ordered bands were observed in the GC × GC chromatograms pointing to group separation. Using the Classification function of the ChromaTOF software, summary tables were generated to determine total area counts to set up multilevel-calibration curves for different technical mixes. Fortified sediment samples were analyzed by GC × GC-μECD with minimal extraction and cleanup. Recoveries ranged from 120 to 130%. To further validate the proposed method for the analysis of SCCPs, the laboratory participated in interlaboratory studies for the analysis of standards and sediment samples. The results showed recoveries between 75 and 95% and z-score values <2, demonstrating that the method is suitable for the analysis of SCCPs in soil/sediment samples. Graphical abstract Quantification of SCCPs by 2D-GC-μECD.

  12. Summer-winter concentrations and gas-particle partitioning of short chain chlorinated paraffins in the atmosphere of an urban setting.

    Science.gov (United States)

    Wang, Thanh; Han, Shanlong; Yuan, Bo; Zeng, Lixi; Li, Yingming; Wang, Yawei; Jiang, Guibin

    2012-12-01

    Short chain chlorinated paraffins (SCCPs) are semi-volatile chemicals that are considered persistent in the environment, potential toxic and subject to long-range transport. This study investigates the concentrations and gas-particle partitioning of SCCPs at an urban site in Beijing during summer and wintertime. The total atmospheric SCCP levels ranged 1.9-33.0 ng/m(3) during wintertime. Significantly higher levels were found during the summer (range 112-332 ng/m(3)). The average fraction of total SCCPs in the particle phase (ϕ) was 0.67 during wintertime but decreased significantly during the summer (ϕ = 0.06). The ten and eleven carbon chain homologues with five to eight chlorine atoms were the predominant SCCP formula groups in air. Significant linear correlations were found between the gas-particle partition coefficients and the predicted subcooled vapor pressures and octanol-air partition coefficients. The gas-particle partitioning of SCCPs was further investigated and compared with both the Junge-Pankow adsorption and K(oa)-based absorption models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Fast screening of short-chain chlorinated paraffins in indoor dust samples by graphene-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Huang, Xiu; Liu, Qian; Gao, Wei; Wang, Yawei; Nie, Zhou; Yao, Shouzhuo; Jiang, Guibin

    2018-03-01

    As an important class of emerging chemical contaminants, short-chain chlorinated paraffins (SCCPs) are considered as one of the most challenging groups of compounds to analyze. In this paper, we report a new method for fast screening of SCCPs based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with graphene as a matrix and 2,5,6,9-tetrachlorodecane as an internal standard. We found that the use of graphene as MALDI matrix generated high peak intensities for SCCPs while producing few background noises. The ion fragmentation mechanisms of SCCPs in MALDI are discussed in detail. Under the optimized conditions, much lower detection limits of SCCP congeners (0.1-5ng/mL) than those reported previously were obtained. Other distinct advantages such as short analysis time and simplified sample preparation procedures are also demonstrated. The method was successfully applied in fast screening of SCCPs in indoor dust samples and monitoring of human exposure levels to SCCPs, and the results were verified by gas chromatography coupled to negative chemical ionization quadrupole time-of-flight high-resolution mass spectrometry. This work not only offers a new promising tool for SCCP studies, but also further demonstrates the promise of graphene as a new generation of MALDI matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Congener-specific distribution and bioaccumulation of short-chain chlorinated paraffins in sediments and bivalves of the Bohai Sea, China.

    Science.gov (United States)

    Ma, Xindong; Chen, Chen; Zhang, Haijun; Gao, Yuan; Wang, Zhen; Yao, Ziwei; Chen, Jiping; Chen, Jingwen

    2014-02-15

    Short-chain chlorinated paraffins (SCCPs) are a new type of persistent organic pollutants that are of great environmental concern because of their wide distribution. In this study, surface sediments and bivalve samples were collected from the coastal area of the Bohai Sea in China. Total SCCP (ΣSCCP) concentrations in surface sediments and bivalves ranged from 97.4 ng g(-1) dry weight (dw) to 1756.7 ng g(-1) dw and 476.4-3269.5 ng g(-1) dw, respectively. C10-CPs and C11-CPs were the predominant homologue groups in all sediments and bivalves. Specific congener composition analysis and correspondence analysis indicated that the local SCCP source mainly came from CP-42 and CP-52 products, and riverine input had an important function. The biota-sediment accumulation factors of ΣSCCPs for bivalves ranged from 1.08 to 1.61, and a significant correlation indicated that the SCCP congener with higher chlorination degree was more likely to be accumulated in bivalves. Copyright © 2014. Published by Elsevier Ltd.

  15. Sample pretreatment optimization for the analysis of short chain chlorinated paraffins in soil with gas chromatography-electron capture negative ion-mass spectrometry.

    Science.gov (United States)

    Chen, Laiguo; Huang, Yumei; Han, Shuang; Feng, Yongbin; Jiang, Guo; Tang, Caiming; Ye, Zhixiang; Zhan, Wei; Liu, Ming; Zhang, Sukun

    2013-01-25

    Accurately quantifying short chain chlorinated paraffins (SCCPs) in soil samples with gas chromatograph coupled with electron capture negative ionization mass spectrometry (GC-ECNI-MS) is difficult because many other polychlorinated pollutants are present in the sample matrices. These pollutants (e.g., polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and toxaphene) can cause serious interferences during SCCPs analysis with GC-MS. Four main columns packed with different adsorbents, including silica gel, Florisil and alumina, were investigated in this study to determine their performance for separating interfering pollutants from SCCPs. These experimental results suggest that the optimum cleanup procedure uses a silica gel column and a multilayer silica gel-Florisil composite column. This procedure completely separated 22 PCB congeners, 23 OCPs and three toxaphene congeners from SCCPs. However, p,p'-DDD, cis-nonachlor and o,p'-DDD were not completely removed and only 53% of the total toxaphene was removed. This optimized method was successfully and effectively applied for removing interfering pollutants from real soil samples. SCCPs in 17 soil samples from different land use areas within a suburban region were analyzed with the established method. The concentrations of SCCPs in these samples were between 7 and 541 ng g(-1) (mean: 84 ng g(-1)). Similar homologue SCCPs patterns were observed between the soil samples collected from different land use areas. In addition, lower chlorinated (Cl(6/7)) C(10)- and C(11)- SCCPs were the dominant congeners. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Occurrence, bioaccumulation and long-range transport of short-chain chlorinated paraffins on the Fildes Peninsula at King George Island, Antarctica.

    Science.gov (United States)

    Li, Huijuan; Fu, Jianjie; Zhang, Aiqian; Zhang, Qinghua; Wang, Yawei

    2016-09-01

    As a candidate persistent organic pollutant of the Stockholm Convention, short-chain chlorinated paraffins (SCCPs) have recently received particular attention. In this study, we investigated, for the first time, the concentrations of SCCPs in biota samples collected from the Fildes Peninsula at King George Island and Ardley Island, Antarctica. The concentrations of SCCPs ranged from 3.5 to 256.6ng/g (dry weight, dw), with a mean of 76.6±61.8ng/g dw, which was lower than those detected in mid- and low-latitude regions. The long-range transport behaviour of SCCPs was confirmed by both the detection of SCCPs in Antarctic remote areas and their special congener profiles. Short carbon chain (C10) congeners predominated in the Antarctic samples, which accounted for 56.1% of the total SCCP contamination. Such enrichment of C10 congeners indicated the high potential for the long-range transport of shorter chain congeners. In addition, SCCPs tended to be enriched in the species with high lipid contents. The biomagnification potential of SCCPs was found between Archeogastropoda (Agas) and Neogastropoda (Ngas), and the biomagnification factors of shorter chain congeners of SCCPs were higher than that of the longer chain ones. Considering that the endemic species in polar regions may be sensitive and vulnerable to the adverse effects of environmental contaminants, more attention should be paid on the bioaccumulation and toxicological risks of SCCPs in polar environments. Copyright © 2016. Published by Elsevier Ltd.

  17. Determination of short chain chlorinated paraffins in water by stir bar sorptive extraction-thermal desorption-gas chromatography-triple quadrupole tandem mass spectrometry.

    Science.gov (United States)

    Tölgyessy, P; Nagyová, S; Sládkovičová, M

    2017-04-21

    A simple, robust, sensitive and environment friendly method for the determination of short chain chlorinated paraffins (SCCPs) in water using stir bar sorptive extraction (SBSE) coupled to thermal desorption-gas chromatography-triple quadrupole tandem mass spectrometry (TD-GC-QqQ-MS/MS) was developed. SBSE was performed using 100mL of water sample, 20mL of methanol as a modifier, and a commercial sorptive stir bar (with 10mm×0.5mm PDMS layer) during extraction period of 16h. After extraction, the sorptive stir bar was thermally desorbed and online analysed by GC-MS/MS. Method performance was evaluated for MilliQ and surface water spiked samples. For both types of matrices, a linear dynamic range of 0.5-3.0μgL -1 with correlation coefficients >0.999 and relative standard deviations (RSDs) of the relative response factors (RRFs) <12% was established. The limits of quantification (LOQs) of 0.06 and 0.08μgL -1 , and the precision (repeatability) of 6.4 and 7.7% (RSDs) were achieved for MilliQ and surface water, respectively. The method also showed good robustness, recovery and accuracy. The obtained performance characteristics indicate that the method is suitable for screening and monitoring and compliance checking with environmental quality standards (EQS, set by the EU) for SCCPs in surface waters. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effect of Wheat Dietary Fiber Particle Size during Digestion In Vitro on Bile Acid, Faecal Bacteria and Short-Chain Fatty Acid Content.

    Science.gov (United States)

    Dziedzic, Krzysztof; Szwengiel, Artur; Górecka, Danuta; Gujska, Elżbieta; Kaczkowska, Joanna; Drożdżyńska, Agnieszka; Walkowiak, Jarosław

    2016-06-01

    The influence of bile acid concentration on the growth of Bifidobacterium spp. and Lactobacillus spp. bacteria was demonstrated. Exposing these bacteria to the environment containing bile acid salts, and very poor in nutrients, leads to the disappearance of these microorganisms due to the toxic effect of bile acids. A multidimensional analysis of data in the form of principal component analysis indicated that lactic acid bacteria bind bile acids and show antagonistic effect on E. coli spp. bacteria. The growth in E. coli spp. population was accompanied by a decline in the population of Bifidobacterium spp. and Lactobacillus spp. with a simultaneous reduction in the concentration of bile acids. This is direct proof of acid binding ability of the tested lactic acid bacteria with respect to cholic acid, lithocholic acid and deoxycholic acid. This research demonstrated that the degree of fineness of wheat dietary fibre does not affect the sorption of bile acids and growth of some bacteria species; however, it has an impact on the profile of synthesized short-chained fatty acids. During the digestion of a very fine wheat fibre fraction (WF 90), an increase in the concentration of propionic and butyric acids, as compared with the wheat fiber fraction of larger particles - WF 500, was observed. Our study suggested that wheat fibre did not affect faecal bacteria growth, however, we observed binding of bile acids by Bifidobacterium spp. and Lactobacillus spp.

  19. Distribution and congener profiles of short-chain chlorinated paraffins in indoor/outdoor glass window surface films and their film-air partitioning in Beijing, China.

    Science.gov (United States)

    Gao, Wei; Wu, Jing; Wang, Yawei; Jiang, Guibin

    2016-02-01

    Short-chain chlorinated paraffins (SCCPs) are a group of n-alkanes with carbon chain length of 10-13. In this work, paired indoor/outdoor samples of organic films on window glass surfaces from urban buildings in Beijing, China, were collected to measure the concentrations and congener distributions of SCCPs. The total SCCP levels ranged from 337 ng/m(2) to 114 μg/m(2), with total organic carbon (TOC) normalized concentrations of 365 μg/m(2)-365 mg/m(2). Overall, the concentrations of SCCPs on the interior films were higher than the concentrations on the exterior films, suggesting an important indoor environmental exposure of SCCPs to the general public. A significant linear relationship was found between the SCCP concentrations and TOC, with a correlation coefficient of R = 0.34 (p film-air partitioning model suggests that the indoor gas-phase SCCPs are related to their corresponding window film levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Effects of yeast cell wall on growth performance, immune responses and intestinal short chain fatty acid concentrations of broilers in an experimental necrotic enteritis model

    Directory of Open Access Journals (Sweden)

    Guang-Da Xue

    2017-12-01

    Full Text Available Subclinical necrotic enteritis (NE causes devastating economic losses in the broiler chicken industry, especially in birds raised free of in-feed antibiotics. Prebiotics are potential alternatives to in-feed antibiotics. Yeast cell wall extract (YCW derived from Saccharomyces cerevisiae is a prebiotic with known immune modulating effects. This study examined the effects of YCW and antibiotics (AB during subclinical NE on broiler growth performance, intestinal lesions, humoral immune response and gut microflora metabolites. The study employed a 2 × 3 factorial arrangement of treatments. Factors were: NE challenge (yes or no and feed additive (control, AB, or YCW. Each treatment was replicated in 8 floor pens with 15 birds per pen. Challenged birds had higher feed conversion ratio (FCR than unchallenged birds on d 35 (P < 0.05. Dietary inclusion of AB decreased FCR regardless of challenge (P < 0.05 on d 24 and 35. Inclusion of YCW reduced serum interleukin-1 (IL-1 concentration in NE challenged birds (P < 0.01 and increased immunoglobulin (Ig G (P < 0.05 and Ig M (P < 0.05 levels compared to other dietary treatments regardless of challenge. Yeast cell wall extract increased formic acid concentration in cecal contents during challenge and increased butyric acid concentration in unchallenged birds on d 16. This study indicates YCW suppressed inflammatory response, promoted generation of immunoglobulin and increased short chain fatty acid production suggesting potential benefits to bird health.

  1. Feasibility of enhancing short-chain fatty acids production from sludge anaerobic fermentation at free nitrous acid pretreatment: Role and significance of Tea saponin.

    Science.gov (United States)

    Xu, Qiuxiang; Liu, Xuran; Zhao, Jianwei; Wang, Dongbo; Wang, Qilin; Li, Xiaoming; Yang, Qi; Zeng, Guangming

    2018-04-01

    Short-chain fatty acids (SCFA), raw substrates for biodegradable plastic production and preferred carbon source for biological nutrients removal, can be produced from anaerobic fermentation of waste activated sludge (WAS). This paper reports a new, high-efficient and eco-friendly strategy, i.e., using free nitrous acid (FNA) pretreatment combined with Tea saponin (TS), to enhance SCFA production. Experimental results showed 0.90 mg/L FNA pretreatment and 0.05 g/g total suspended solids TS addition (FNA + TS) not only significantly increased SCFA production to 315.3 ± 8.8 mg COD/g VSS (5.52, 1.76 and 1.93 times higher than that from blank, solo FNA and solo TS, respectively) but also shortened fermentation time to 4 days. Mechanism investigations revealed that FNA pretreatment combined with TS cause a positive synergetic effect on sludge solubilization, resulting in more release of organics. It was also found that the combination benefited hydrolysis and acidogenesis processes but inhibited the methanogenesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Short-Chain Fatty Acids Enhance the Lipid Accumulation of 3T3-L1 Cells by Modulating the Expression of Enzymes of Fatty Acid Metabolism.

    Science.gov (United States)

    Yu, Haining; Li, Ran; Huang, Haiyong; Yao, Ru; Shen, Shengrong

    2018-01-01

    Short-chain fatty acids (SCFA) such as acetic acid, propionic acid, and butyric acid are produced by fermentation by gut microbiota. In this paper, we investigate the effects of SCFA on 3T3-L1 cells and the underlying molecular mechanisms. The cells were treated with acetic acid, propionic acid, or butyric acid when cells were induced to differentiate into adipocytes. MTT assay was employed to detect the viability of 3T3-L1 cells. Oil Red O staining was used to visualize the lipid content in 3T3-L1 cells. A triglyceride assay kit was used to detect the triacylglycerol content in 3T3-L1 cells. qRT-PCR and Western blot were used to evaluate the expression of metabolic enzymes. MTT results showed that safe concentrations of acetic acid, propionic acid, and butyric acid were less than 6.4, 3.2, and 0.8 mM, respectively. Oil Red O staining and triacylglycerols detection results showed that treatment with acetic acid, propionic acid, and butyric acid accelerated the 3T3-L1 adipocyte differentiation. qRT-PCR and Western blot results showed that the expressions of lipoprotein lipase (LPL), adipocyte fatty acid binding protein 4 (FABP4), fatty acid transporter protein 4 (FATP4), and fatty acid synthase (FAS) were significantly increased by acetic acid, propionic acid, and butyric acid treatment during adipose differentiation (p fatty acid metabolism. © 2018 AOCS.

  3. A Polysaccharide from Ganoderma atrum Improves Liver Function in Type 2 Diabetic Rats via Antioxidant Action and Short-Chain Fatty Acids Excretion.

    Science.gov (United States)

    Zhu, Ke-Xue; Nie, Shao-Ping; Tan, Le-He; Li, Chuan; Gong, De-Ming; Xie, Ming-Yong

    2016-03-09

    The present study was to evaluate the beneficial effect of polysaccharide isolated from Ganoderma atrum (PSG-1) on liver function in type 2 diabetic rats. Results showed that PSG-1 decreased the activities of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT), while increasing hepatic glycogen levels. PSG-1 also exerted strong antioxidant activities, together with upregulated mRNA expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), glucose transporter-4 (GLUT4), phosphoinositide 3-kinase (PI3K), and phosphorylated-Akt (p-Akt) in the liver of diabetic rats. Moreover, the concentrations of short-chain fatty acids (SCFA) were significantly higher in the liver, serum, and faeces of diabetic rats after treating with PSG-1 for 4 weeks. These results suggest that the improvement of PSG-1 on liver function in type 2 diabetic rats may be due to its antioxidant effects, SCFA excretion in the colon from PSG-1, and regulation of hepatic glucose uptake by inducing GLUT4 translocation through PI3K/Akt signaling pathways.

  4. Killed Whole-Cell Oral Cholera Vaccine Induces CCL20 Secretion by Human Intestinal Epithelial Cells in the Presence of the Short-Chain Fatty Acid, Butyrate

    Directory of Open Access Journals (Sweden)

    Ju-Ri Sim

    2018-01-01

    Full Text Available Short-chain fatty acids (SCFAs, such as acetate, butyrate, and propionate, modulate immune responses in the gut. However, the effect of SCFAs on mucosal vaccine-induced immune cell migration is poorly understood. Here, we investigated whether SCFAs modulate chemokine expression induced by the killed whole-cell oral cholera vaccine, Shanchol™, in human intestinal epithelial cells. Shanchol™ induced expression of CCL2, CCL5, CCL20, and CXCL10 at the mRNA level, but not at the protein level. Interestingly, CCL20 secretion was substantially increased by co-stimulation with Shanchol™ and butyrate, while neither acetate nor propionate showed such effect. Enhanced CCL20 secretion was associated with GPR109A activation, and histone deacetylase (HDAC inhibition. In addition, co-treatment with Shanchol™ and butyrate synergistically increased the secretion of adenosine triphosphate (ATP. Moreover, CCL20 secretion was decreased by inhibiting the extracellular ATP receptor P2X7. However, neither inflammasomes nor caspases were involved in CCL20 production. The culture supernatant of cells treated with Shanchol™ and butyrate augmented human immature dendritic cell migration. Collectively, these results suggest that butyrate enhances Shanchol™-induced CCL20 production in human intestinal epithelial cells via HDAC inhibition and ATP-P2X7 signaling by activating GPR109A. These effects potentially enhance the mucosal immune responses in the gut induced by this oral cholera vaccine.

  5. Short-chain inulin-like fructans reduce endotoxin and bacterial translocations and attenuate development of TNBS-induced colitis in rats.

    Science.gov (United States)

    Ito, Hiroyuki; Tanabe, Hiroki; Kawagishi, Hirokazu; Tadashi, Wada; Yasuhiko, Tomono; Sugiyama, Kimio; Kiriyama, Shuhachi; Morita, Tatsuya

    2009-10-01

    Anti-inflammatory effects of short-chain inulin-like fructans (SCF) on trinitrobenzene sulfonic acid (TNBS)-induced colitis were investigated in rats, focusing specifically on endotoxin and bacterial translocations. SCF with degrees of polymerization (DP) of 4 and 8 were used. Rats were fed either control diet or diets including 60 g DP4 or DP8 per kilogram for 7 days, and then received intracolonic TNBS and were fed the respective diets for a further 10 days. DP4 and DP8 significantly reduced colonic injuries as assessed by damage score, but the reduction of colonic myeloperoxidase activity was manifest solely with DP8. At 3 days after colitis induction, bacterial translocation to the mesenteric lymph node was significantly lower in the DP4 and DP8 groups, but significant reduction in the portal endotoxin concentration was achieved solely in the DP8 group. Immediately prior to colitis induction, cecal immunoglobulin A and mucin concentrations were higher in the DP4 and DP8 groups, but these changes were abolished at 10 days post colitis induction. The data suggest that SCF exert prophylactic effects against TNBS colitis, presumably as a result of inhibitory effects on endotoxin and bacterial translocations.

  6. Comprehensive in Vitro Analysis of Acyltransferase Domain Exchanges in Modular Polyketide Synthases and Its Application for Short-Chain Ketone Production

    Energy Technology Data Exchange (ETDEWEB)

    Yuzawa, Satoshi [Univ. of California, Berkeley, CA (United States); Deng, Kai [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Wang, George [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Baidoo, Edward E. K. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Northen, Trent R. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Adams, Paul D. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Katz, Leonard [Univ. of California, Berkeley, CA (United States); Synthetic Biology Research Center, Emeryville, CA (United States); Keasling, Jay D. [Univ. of California, Berkeley, CA (United States); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Synthetic Biology Research Center, Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-22

    Type I modular polyketide synthases (PKSs) are polymerases that utilize acyl-CoAs as substrates. Each polyketide elongation reaction is catalyzed by a set of protein domains called a module. Each module usually contains an acyltransferase (AT) domain, which determines the specific acyl-CoA incorporated into each condensation reaction. Although a successful exchange of individual AT domains can lead to the biosynthesis of a large variety of novel compounds, hybrid PKS modules often show significantly decreased activities. Using monomodular PKSs as models, we have systematically analyzed in this paper the segments of AT domains and associated linkers in AT exchanges in vitro and have identified the boundaries within a module that can be used to exchange AT domains while maintaining protein stability and enzyme activity. Importantly, the optimized domain boundary is highly conserved, which facilitates AT domain replacements in most type I PKS modules. To further demonstrate the utility of the optimized AT domain boundary, we have constructed hybrid PKSs to produce industrially important short-chain ketones. Our in vitro and in vivo analysis demonstrated production of predicted ketones without significant loss of activities of the hybrid enzymes. Finally, these results greatly enhance the mechanistic understanding of PKS modules and prove the benefit of using engineered PKSs as a synthetic biology tool for chemical production.

  7. Free fatty acid receptor 3 is a key target of short chain fatty acid. What is the impact on the sympathetic nervous system?

    Science.gov (United States)

    López Soto, Eduardo Javier; Gambino, Luisina Ongaro; Mustafá, Emilio Román

    2014-01-01

    Nervous system (NS) activity participates in metabolic homeostasis by detecting peripheral signal molecules derived from food intake and energy balance. High quality diets are thought to include fiber-rich foods like whole grain rice, breads, cereals, and grains. Several studies have associated high consumption of fiber-enriched diets with a reduced risk of diabetes, obesity, and gastrointestinal disorders. In the lower intestine, anaerobic fermentation of soluble fibers by microbiota produces short chain fatty acids (SCFAs), key energy molecules that have a recent identified leading role in the intestinal gluconeogenesis, promoting beneficial effects on glucose tolerance and insulin resistance. SCFAs are also signaling molecules that bind to specific G-protein coupled receptors (GPCRs) named Free Fatty Acid Receptor 3 (FFA3, GPR41) and 2 (FFA2, GPR43). However, how SCFAs impact NS activity through their GPCRs is poorly understood. Recently, studies have demonstrated the presence of FFA2 and FFA3 in the sympathetic NS of rat, mouse and human. Two studies have showed that FFA3 activation by SCFAs increases firing and norepinephrine (NE) release from sympathetic neurons. However, the recent study from the Ikeda Laboratory revealed that activation of FFA3 by SCFAs impairs N-type calcium channel (NTCC) activity, which contradicts the idea of FFA3 activation leading to increased action potential evoked NE release. Here we will discuss the scope of the latter study and the putative physiological role of SCFAs and FFAs in the sympathetic NS.

  8. Effect of the novel polysaccharide PolyGlycopleX® on short-chain fatty acid production in a computer-controlled in vitro model of the human large intestine

    NARCIS (Netherlands)

    Reimer, R.A.; Maathuis, A.J.H.; Venema, K.; Lyon, M.R.; Gahler, R.J.; Wood, S.

    2014-01-01

    Many of the health benefits associated with dietary fiber are attributed to their fermentation by microbiota and production of short chain fatty acids (SCFA). The aim of this study was to investigate the fermentability of the functional fiber PolyGlyopleX® (PGX®) in vitro. A validated dynamic,

  9. NF-kappaB mediates FGF signal regulation of msx-1 expression.

    Science.gov (United States)

    Bushdid, P B; Chen, C L; Brantley, D M; Yull, F; Raghow, R; Kerr, L D; Barnett, J V

    2001-09-01

    The nuclear factor-kappaB (NF-kappaB) family of transcription factors is involved in proliferation, differentiation, and apoptosis in a stage- and cell-dependent manner. Recent evidence has shown that NF-kappaB activity is necessary for both chicken and mouse limb development. We report here that the NF-kappaB family member c-rel and the homeodomain gene msx-1 have partially overlapping expression patterns in the developing chick limb. In addition, inhibition of NF-kappaB activity resulted in a decrease in msx-1 mRNA expression. Sequence analysis of the msx-1 promoter revealed three potential kappaB-binding sites similar to the interferon-gamma (IFN-gamma) kappaB-binding site. These sites bound to c-Rel, as shown by electrophoretic mobility shift assay (EMSA). Furthermore, inhibition of NF-kappaB activity significantly reduced transactivation of the msx-1 promoter in response to FGF-2/-4, known stimulators of msx-1 expression. These results suggest that NF-kappaB mediates the FGF-2/-4 signal regulation of msx-1 gene expression. Copyright 2001 Academic Press.

  10. Learned stressor resistance requires extracellular signal-regulated kinase in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    John Paul Christianson

    2014-10-01

    Full Text Available Behaviorally controllable stressors confer protection from the neurochemical and behavioral consequences of future uncontrollable stressors, a phenomenon termed behavioral immunization. Recent data implicate neuroplasticity within the ventromedial prefrontal cortex (mPFC as critical to behavioral immunization. Adult, male Sprague-Dawley rats were exposed to a series of controllable tailshocks and one week later to uncontrollable tailshocks, followed 24h later by social exploration and shuttlebox escape tests. To test the involvement of N-methyl-D-aspartate receptors (NMDAR and the extracellular signal-regulated kinase (ERK cascade in behavioral immunization, either D-AP5 or the MEK inhibitor U0126 was injected to the prelimbic (PL or infralimbic (IL mPFC prior to controllable stress exposure. Phosphorylated ERK and P70S6K, regulators of transcription and translation, were quantified by Western blot or immunohistochemistry after controllable or uncontrollable tailshocks. Prior controllable stress prevented the social exploration and shuttlebox performance deficits caused by the later uncontrollable stressor, and this effect was blocked by injections of D-AP5 into mPFC. A significant increase in phosphorylated ERK1 and ERK2, but not P70S6K, occurred within the PL and IL in rats exposed to controllable stress, but not to uncontrollable stress. However, U0126 only prevented behavioral immunization when injected to the PL. We provide evidence that NMDAR and ERK dependent plasticity within the PL region is required for behavioral immunization, a learned form of stressor resistance.

  11. Timing is everything: Reiterative Wnt, BMP and RA signaling regulate developmental competence during endoderm organogenesis.

    Science.gov (United States)

    Rankin, Scott A; McCracken, Kyle W; Luedeke, David M; Han, Lu; Wells, James M; Shannon, John M; Zorn, Aaron M

    2018-02-01

    A small number of signaling pathways are used repeatedly during organogenesis, and they can have drastically different effects on the same population of cells depending on the embryonic stage. How cellular competence changes over developmental time is not well understood. Here we used Xenopus, mouse, and human pluripotent stem cells to investigate how the temporal sequence of Wnt, BMP, and retinoic acid (RA) signals regulates endoderm developmental competence and organ induction, focusing on respiratory fate. While Nkx2-1+ lung fate is not induced until late somitogenesis stages, here we show that lung competence is restricted by the gastrula stage as a result of Wnt and BMP-dependent anterior-posterior (A-P) patterning. These early Wnt and BMP signals make posterior endoderm refractory to subsequent RA/Wnt/BMP-dependent lung induction. We further mapped how RA modulates the response to Wnt and BMP in a temporal specific manner. In the gastrula RA promotes posterior identity, however in early somite stages of development RA regulates respiratory versus pharyngeal potential in anterior endoderm and midgut versus hindgut potential in posterior endoderm. Together our data suggest a dynamic and conserved response of vertebrate endoderm during organogenesis, wherein early Wnt/BMP/RA impacts how cells respond to later Wnt/BMP/RA signals, illustrating how reiterative combinatorial signaling can regulate both developmental competence and subsequent fate specification. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Pan Shiow-Lin

    2009-05-01

    Full Text Available Abstract In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1 in denbinobin-induced apoptosis in human lung adenocarcinoma (A549 cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN, two antioxidants (N-acetyl-L-cysteine (NAC and glutathione (GSH, a c-Jun N-terminal kinase (JNK inhibitor (SP600125, and an activator protein-1 (AP-1 inhibitor (curcumin. Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis.

  13. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41).

    Science.gov (United States)

    Kimura, Ikuo; Inoue, Daisuke; Maeda, Takeshi; Hara, Takafumi; Ichimura, Atsuhiko; Miyauchi, Satoshi; Kobayashi, Makio; Hirasawa, Akira; Tsujimoto, Gozoh

    2011-05-10

    The maintenance of energy homeostasis is essential for life, and its dysregulation leads to a variety of metabolic disorders. Under a fed condition, mammals use glucose as the main metabolic fuel, and short-chain fatty acids (SCFAs) produced by the colonic bacterial fermentation of dietary fiber also contribute a significant proportion of daily energy requirement. Under ketogenic conditions such as starvation and diabetes, ketone bodies produced in the liver from fatty acids are used as the main energy sources. To balance energy intake, dietary excess and starvation trigger an increase or a decrease in energy expenditure, respectively, by regulating the activity of the sympathetic nervous system (SNS). The regulation of metabolic homeostasis by glucose is well recognized; however, the roles of SCFAs and ketone bodies in maintaining energy balance remain unclear. Here, we show that SCFAs and ketone bodies directly regulate SNS activity via GPR41, a Gi/o protein-coupled receptor for SCFAs, at the level of the sympathetic ganglion. GPR41 was most abundantly expressed in sympathetic ganglia in mouse and humans. SCFA propionate promoted sympathetic outflow via GPR41. On the other hand, a ketone body, β-hydroxybutyrate, produced during starvation or diabetes, suppressed SNS activity by antagonizing GPR41. Pharmacological and siRNA experiments indicated that GPR41-mediated activation of sympathetic neurons involves Gβγ-PLCβ-MAPK signaling. Sympathetic regulation by SCFAs and ketone bodies correlated well with their respective effects on energy consumption. These findings establish that SCFAs and ketone bodies directly regulate GPR41-mediated SNS activity and thereby control body energy expenditure in maintaining metabolic homeostasis.

  14. Effects of host gut-derived probiotic bacteria on gut morphology, microbiota composition and volatile short chain fatty acids production of Malaysian Mahseer Tor tambroides

    Directory of Open Access Journals (Sweden)

    Md. Asaduzzaman

    2018-02-01

    Full Text Available Three host-associated probiotics (Bacillus sp. AHG22, Alcaligenes sp. AFG22, and Shewanella sp. AFG21 were isolated from the gastrointestinal tract of Tor tambroides, and their effects were evaluated on gut morphology, microbiota composition and volatile short chain fatty acids (VSCFAs production of the same species. A control diet (40% crude protein and 10% lipid was formulated, and three different probiotic supplemented diets were prepared by immersing the control diet in each host-derived isolated probiotic, suspended in sterile phosphate buffered saline (PBS, to achieve concentration at 1.0 × 108 CFU g−1 feed. Triplicate groups of T. tambroides juveniles (1.39 ± 0.06 g were stocked in twelve glass aquaria (100 L capacity with stocking density of 20 individuals per aquarium. The feed was applied twice daily at 3.0% of the body weight per day for 90 days. The intake of probiotics drastically modified the gut microbiota composition. The average number of OTUs, Shannon index and Margalef species richness were significantly higher in host-associated probiotic treatments compared to the control. A significant increase of lipolytic, proteolytic and cellulolytic bacterial number were observed in the gastrointestinal tracts of T. tambroides fed the diets supplemented with Alcaligenes sp. AFG22 compared to the control. Villus length, villus width and villus area were significantly higher in T. tambroides juveniles fed the diet supplemented with Alcaligenes sp. AFG22. Acetate and butyrate were detected as main VSCFA production in the gastrointestinal tract of T. tambroides. Acetate and total VSCFAs production in Alcaligenes sp. AFG22 supplemented treatment was significantly higher than control. These results indicate that host-derived probiotics, especially Alcaligenes sp. has a significant potential as an important probiotic to enhance the nutrients utilization and metabolism through increasing gut surface area and VSCFAs

  15. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis

    Science.gov (United States)

    Aldunate, Muriel; Srbinovski, Daniela; Hearps, Anna C.; Latham, Catherine F.; Ramsland, Paul A.; Gugasyan, Raffi; Cone, Richard A.; Tachedjian, Gilda

    2015-01-01

    Lactic acid and short chain fatty acids (SCFAs) produced by vaginal microbiota have reported antimicrobial and immune modulatory activities indicating their potential as biomarkers of disease and/or disease susceptibility. In asymptomatic women of reproductive-age the vaginal microbiota is comprised of lactic acid-producing bacteria that are primarily responsible for the production of lactic acid present at ~110 mM and acidifying the vaginal milieu to pH ~3.5. In contrast, bacterial vaginosis (BV), a dysbiosis of the vaginal microbiota, is characterized by decreased lactic acid-producing microbiota and increased diverse anaerobic bacteria accompanied by an elevated pH>4.5. BV is also characterized by a dramatic loss of lactic acid and greater concentrations of mixed SCFAs including acetate, propionate, butyrate, and succinate. Notably women with lactic acid-producing microbiota have more favorable reproductive and sexual health outcomes compared to women with BV. Regarding the latter, BV is associated with increased susceptibility to sexually transmitted infections (STIs) including HIV. In vitro studies demonstrate that lactic acid produced by vaginal microbiota has microbicidal and virucidal activities that may protect against STIs and endogenous opportunistic bacteria as well as immune modulatory properties that require further characterization with regard to their effects on the vaginal mucosa. In contrast, BV-associated SCFAs have far less antimicrobial activity with the potential to contribute to a pro-inflammatory vaginal environment. Here we review the composition of lactic acid and SCFAs in respective states of eubiosis (non-BV) or dysbiosis (BV), their effects on susceptibility to bacterial/viral STIs and whether they have inherent microbicidal/virucidal and immune modulatory properties. We also explore their potential as biomarkers for the presence and/or increased susceptibility to STIs. PMID:26082720

  16. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Muriel eAldunate

    2015-06-01

    Full Text Available Lactic acid and short chain fatty acids (SCFAs produced by vaginal microbiota have reported antimicrobial and immune modulatory activities indicating their potential as biomarkers of disease and/or disease susceptibility. In asymptomatic women of reproductive-age the vaginal microbiota is comprised of lactic acid-producing bacteria that are primarily responsible for the production of lactic acid present at ~110 mM and acidifying the vaginal milieu to pH ~3.5. In contrast, bacterial vaginosis (BV, a dysbiosis of the vaginal microbiota, is characterized by decreased lactic acid-producing microbiota and increased diverse anaerobic bacteria accompanied by an elevated pH>4.5. BV is also characterized by a dramatic loss of lactic acid and greater concentrations of mixed SCFAs including acetate, propionate, butyrate and succinate. Notably women with lactic acid-producing microbiota have more favorable reproductive and sexual health outcomes compared to women with BV. Regarding the latter, BV is associated with increased susceptibility to sexually transmitted infections (STIs including HIV. In vitro studies demonstrate that lactic acid produced by vaginal microbiota has microbicidal and virucidal activities that may protect against STIs and endogenous opportunistic bacteria as well as immune modulatory properties that require further characterization with regard to their effects on the vaginal mucosa. In contrast, BV-associated SCFAs have far less antimicrobial activity with the potential to contribute to a pro-inflammatory vaginal environment. Here we review the composition of lactic acid and SCFAs in respective states of eubiosis (non-BV or dysbiosis (BV, their effects on susceptibility to bacterial/viral STIs and whether they have inherent microbicidal/virucidal and immune modulatory properties. We also explore their potential as biomarkers for the presence and/or increased susceptibility to STIs.

  17. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets.

    Science.gov (United States)

    Ulven, Trond

    2012-01-01

    The deorphanization of the free fatty acid (FFA) receptors FFA1 (GPR40), FFA2 (GPR43), FFA3 (GPR41), GPR84, and GPR120 has made clear that the body is capable of recognizing and responding directly to nonesterified fatty acid of virtually any chain length. Colonic fermentation of dietary fiber produces high concentrations of the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, a process which is important to health. The phylogenetically related 7-transmembrane (7TM) receptors free fatty acid receptor 2 (FFA2) and FFA3 are activated by these SCFAs, and several lines of evidence indicate that FFA2 and FFA3 mediate beneficial effects associated with a fiber-rich diet, and that they may be of interest as targets for treatment of inflammatory and metabolic diseases. FFA2 is highly expressed on immune cells, in particular neutrophils, and several studies suggest that the receptor plays a role in diseases involving a dysfunctional neutrophil response, such as inflammatory bowel disease (IBD). Both FFA2 and FFA3 have been implicated in metabolic diseases such as type 2 diabetes and in regulation of appetite. More research is however required to clarify the potential of the receptors as drug targets and establish if activation or inhibition would be the preferred mode of action. The availability of potent and selective receptor modulators is a prerequisite for these studies. The few modulators of FFA2 or FFA3 that have been published hitherto in the peer-reviewed literature in general have properties that make them less than ideal as such tools, but published patent applications indicate that better tool compounds might soon become available which should enable studies critical to validate the receptors as new drug targets.

  18. Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets

    Directory of Open Access Journals (Sweden)

    Trond eUlven

    2012-10-01

    Full Text Available The deorphanization of the free fatty acid (FFA receptors FFA1 (GPR40, FFA2 (GPR43, FFA3 (GPR41, GPR84 and GPR120 made clear that the body is capable of recognizing and responding directly to nonesterified fatty acid of virtually any chain length. Colonic fermentation of dietary fiber produces high concentrations of the short-chain fatty acids (SCFAs acetate, propionate and butyrate, a process which is important to health. The phylogenetically related 7-transmembrane receptors free fatty acid receptor 2 (FFA2 and FFA3 are activated by these SCFAs, and several lines of evidence indicate that FFA2 and FFA3 mediate beneficial effects associated with a fiber-rich diet, and that they may be of interest as targets for treatment of inflammatory and metabolic diseases. FFA2 is highly expressed on immune cells, in particular neutrophils, and several studies suggest that the receptor plays a role in diseases involving a dysfunctional neutrophil response, such as inflammatory bowel disease (IBD. Both FFA2 and FFA3 have been implicated in metabolic diseases such as type 2 diabetes and regulation of appetite. More research is however required to clarify potential of the receptors as drug targets and establish if activation or inhibition would be the preferred mode of action. The availability of potent and selective receptor modulators is a prerequisite for these studies. The few modulators of FFA2 or FFA3 that have been published hitherto in the peer-reviewed literature in general have properties that make them less than ideal as such tools, but published patent applications indicate that the situation may soon improve, and that proper tool compounds will enable studies critical to validate the receptors as new drug targets.

  19. Structural and Functional Characterization of a Short-Chain Flavodoxin Associated with a Noncanonical 1,2-Propanediol Utilization Bacterial Microcompartment

    Energy Technology Data Exchange (ETDEWEB)

    Plegaria, Jefferson S. [MSU-DOE; Sutter, Markus [MSU-DOE; Molecular; Ferlez, Bryan [MSU-DOE; Aussignargues, Clément [MSU-DOE; Niklas, Jens [Solar; Poluektov, Oleg G. [Solar; Fromwiller, Ciara [MSU-DOE; TerAvest, Michaela [Department; amp, Molecular Biology, Michigan State University, East; Utschig, Lisa M. [Solar; Tiede, David M. [Solar; Kerfeld, Cheryl A. [MSU-DOE; Molecular; Department; amp, Molecular Biology, Michigan State University, East; Berkeley Synthetic Biology Institute, Berkeley, California 94720, United States

    2017-09-21

    Bacterial microcompartments (BMCs) are proteinaceous organelles that encapsulate enzymes involved in CO2 fixation (carboxysomes). or carbon catabolism (metabolosomes). Metabolosomes share a common core of enzymes and a distinct signature enzyme for substrate degradation that defines the function of the BMC (e,g., propanediol or ethanolamine utilization BMCs, or glycyl-radical enzyme microcompartments). Loci encoding metabolosomes also typically contain genes for proteins that support organelle function, such as regulation, transport of substrate, and cofactor (e.g., vitamin B-12) synthesis and recycling. Flavoproteins are frequently among these ancillary gene products, suggesting that these redox active proteins play an undetermined function in many metabolosomes. Here, we report the first characterization of a BMC-associated flavodoxin (Fld1C), a small flavoprotein, derived from the noncanonical 1,2-propanediol utilization BMC locus (PDU1C) of Lactobacillus reuteri. The 2.0 angstrom X-ray structure of Fld1C displays the alpha/beta flavodoxin fold, which noncovalently binds a single flavin mononucleotide molecule. Fld1C is a short-chain flavodoxin with redox potentials of -240 +/- 3 mV oxidized/semiquinone and -344 +/- 1 mV semiquinone/hydroquinone versus the standard hydrogen electrode at pH 7.5. It can participate in an electron transfer reaction with a photoreductant to form a stable semiquinone species. Collectively, our structural and functional results suggest that PDU1C BMCs encapsulate Fld1C to store and transfer electrons for the reactivation and/or recycling of the B-12 cofactor utilized by the signature enzyme.

  20. Effect of tomato juice consumption on the plasmatic lipid profile, hepatic HMGCR activity, and fecal short chain fatty acid content of rats.

    Science.gov (United States)

    Periago, María Jesús; Martín-Pozuelo, Gala; González-Barrio, Rocío; Santaella, Marina; Gómez, Victoria; Vázquez, Nuria; Navarro-González, Inmaculada; García-Alonso, Javier

    2016-10-12

    The aims of the present study were to ascertain, indirectly, the prebiotic role of tomato juice, by analyzing its effect on the content of short chain fatty acids (SCFA) in feces of rats, and to determine the plausible mechanisms related to the hypocholesterolemic effects of tomato juice and lycopene, evaluating the activity of hepatic HMGCR and the formation of propionic acid. Two commercially available tomato juices with differing contents of lycopene (low and high lycopene contents: Llyc and Hlyc tomato juices) were used. Sprague-Dawley male rats were randomly divided into three experimental groups (n = 8): control group, normal diet and water; group 1, normal diet and Llyc tomato juice; and group 2, normal diet and Hlyc tomato juice, which were fed ad libitum for three weeks. Feces were collected at the beginning and the end of the study to determine SCFA, and blood and liver were obtained (after sacrificing the animals) to analyze the lipid plasmatic parameters and the HMGCR activity and total cholesterol, respectively. No significant differences were observed in the plasmatic parameters, except that HDL-cholesterol increased significantly after consumption of both tomato juices. Lycopene was accumulated in the liver in proportion to the amount ingested, and was observed to have an inhibitory effect on the HMGCR enzyme, according to the amount of lycopene in the liver. In relation to the SCFA in feces, no differences were observed in acetate and propionate after the consumption of tomato juice, but a significant increase in butyrate was observed in group 2 after the intake of Hlyc tomato juice. The content of this carboxylic acid together with excreted lycopene in feces could have a beneficial effect on colonic cells.

  1. Changes in thyroid parameters of hatchling American kestrels (Falco sparverius) following embryonic exposure to technical short chain chlorinated paraffins (SCCPs; C10-13, 55.5% CL)

    Science.gov (United States)

    Fernie, Kimberly J; Henry, Paula F.; Letcher, Robert J; Palace, Vince; Peters, Lisa; Rattner, Barnett A.; Sverko, Edward; Karouna-Renier, Natalie K.

    2015-01-01

    Chlorinated paraffins (CPs) are complex mixtures of polychlorinated n-alkanes categorized according to their carbon chain length: short chain (SCCPs, C10 – C13), medium (C14 - C17), and long chain (C>17), chlorinated paraffins. SCCPs are primarily used in metalworking applications, as flame retardants, and in paints, adhesives, sealants, textiles, plastics and rubber (UNEP 2012). In 2012, the United Nations Environment Program (UNEP 2012) reported in the Revised Draft Risk Profile for SCCPs, that CPs were produced in the United States, the European Union (EU), Slovakia, Brazil, India, Japan and China. While annual global consumption of SCCPs is large (>25 tonnes/year), it has sharply declined over the past 20 years. SCCPs are released through wastewater, landfills, and air emissions (UNEP 2012). Concentrations of SCCPs have been reported in fish and marine mammals in North and South America, Europe, Japan, Greenland and the Arctic (UNEP 2012 and references therein). Characterization of SCCP concentrations and exposure in terrestrial wildlife is limited. In 2010, SCCP concentrations were reported in the eggs of yellow-legged gulls (Larus michahellis) (4536 ± 40 pg/g wet weight (ww)) and Audouin’s gulls (Larus audouinii) (6364 ± 20 pg/g ww) in Spain (Morales et al. 2012), and little auks (Alle alle) (5 - 88 ng/g ww) and kittiwakes (Rissa tridactyla) (5 - 44 ng/g ww) in the European Arctic (Reth et al. 2006). In Sweden, muscle of ospreys contained CPs of unspecified chain length (Jansson et al. 1993). Although the toxicity of SCCPs has been demonstrated in aquatic invertebrates, fish, frogs, and laboratory rats, there are limited avian studies and these reported no effects of SCCPs on egg parameters of domestic hens (Gallus gallus domesticus) and ducks (Anas platyrhynchos) (UNEP 2012). Despite reported accumulation of SCCPs in wild birds, to our knowledge, exposure-related toxicities and effects with respect to avian wildlife remain unknown.

  2. Separation and screening of short-chain chlorinated paraffins in environmental samples using comprehensive two-dimensional gas chromatography with micro electron capture detection.

    Science.gov (United States)

    Xia, Dan; Gao, Lirong; Zhu, Shuai; Zheng, Minghui

    2014-11-01

    Short-chain chlorinated paraffins (SCCPs) are highly complex technical mixtures with thousands of isomers and numerous homologs. They are classified as priority candidate persistent organic pollutants under the Stockholm Convention for their persistence, bioaccumulation, and toxicity. Analyzing SCCPs is challenging because of the complexity of the mixtures. Chromatograms of SCCPs acquired using one-dimensional (1D) gas chromatography (GC) contain a large characteristic "peak" with a broad and unresolved profile. Comprehensive two-dimensional GC (GC×GC) shows excellent potential for separating complex mixtures. In this study, GC×GC coupled with micro electron capture detection (μECD) was used to separate and screen SCCPs. The chromatographic parameters, including the GC column types, oven temperature program, and modulation period, were systematically optimized. The SCCP congeners were separated into groups using a DM-1 column connected to a BPX-50 column. The SCCP congeners in technical mixtures were separated according to the number of chlorine substituents for a given carbon chain length and according to the number of carbon atoms plus chlorine atoms for different carbon chain lengths. A fish tissue sample was analyzed to illustrate the feasibility of the GC×GC-μECD method in analyzing biological samples. Over 1,500 compounds were identified in the fish extract, significantly more than were identified using 1D GC. The detection limits for five selected SCCP congeners were between 1 and 5 pg/L using the GC×GC method, and these were significantly lower than those achieved using 1D GC. This method is a good choice for analysis of SCCPs in environmental samples, exhibiting good separation and good sensitivity.

  3. Bioaccumulation of short chain chlorinated paraffins in a typical freshwater food web contaminated by e-waste in south china: Bioaccumulation factors, tissue distribution, and trophic transfer.

    Science.gov (United States)

    Sun, Runxia; Luo, Xiaojun; Tang, Bin; Chen, Laiguo; Liu, Yu; Mai, Bixian

    2017-03-01

    Short chain chlorinated paraffins (SCCPs) are under review for inclusion into the Stockholm Convention on Persistent Organic Pollutants. However, limited information is available on their bioaccumulation and biomagnification in ecosystems, which is hindering evaluation of their ecological and health risks. In the present study, wild aquatic organisms (fish and invertebrates), water, and sediment collected from an enclosed freshwater pond contaminated by electronic waste (e-waste) were analyzed to investigate the bioaccumulation, distribution, and trophic transfer of SCCPs in the aquatic ecosystem. SCCPs were detected in all of the investigated aquatic species at concentrations of 1700-95,000 ng/g lipid weight. The calculated bioaccumulation factors (BAFs) varied from 2.46 to 3.49. The relationship between log BAF and the octanol/water partition coefficient (log K OW ) for benthopelagic omnivorous fish species followed the empirical model of bioconcentration, indicating that bioconcentration plays an important role in accumulation of SCCPs. In contrast, the relationship for the benthic carnivorous fish and invertebrates was not consistent with the empirical model of bioconcentration, implying that the bioaccumulation of SCCPs in these species could be more influenced by other complex factors (e.g., habitat and feeding habit). Preferential distribution in the liver rather than in other tissues (e.g., muscle, gills, skin, and kidneys) was noted for the SCCP congeners with higher log K OW , and bioaccumulation pathway (i.e. water or sediment) can affect the tissue distribution of SCCP congeners. SCCPs underwent trophic dilution in the aquatic food web, and the trophic magnification factor (TMF) values of SCCP congener groups significantly correlated with their corresponding log K OW values (p < 0.0001). The present study results improved our understanding on the environmental behavior and fate of SCCPs in aquatic ecosystem. Copyright © 2016 Elsevier Ltd. All rights

  4. Short-chain chlorinated paraffins (SCCPs) induced thyroid disruption by enhancement of hepatic thyroid hormone influx and degradation in male Sprague Dawley rats.

    Science.gov (United States)

    Gong, Yufeng; Zhang, Haijun; Geng, Ningbo; Xing, Liguo; Fan, Jingfeng; Luo, Yun; Song, Xiaoyao; Ren, Xiaoqian; Wang, Feidi; Chen, Jiping

    2018-06-01

    Short-chain chlorinated paraffins (SCCPs) are known to disturb thyroid hormone (TH) homeostasis in rodents. However, the mechanism remains to be fully characterized. In this study, male Sprague Dawley rats received SCCPs (0, 1, 10, or 100mg/kg/day) via gavage once a day for consecutive 28days. Plasma and hepatic TH concentrations, thyrocyte structure, as well as thyroid and hepatic mRNA and protein levels of genes associated with TH homeostasis were examined. Moreover, we performed molecular docking to predict interactions between constitutive androstane receptor (CAR), a key regulator in xenobiotic-induced TH metabolism, with different SCCP molecules. Exposure to SCCPs significantly decreased the circulating free thyroxine (T 4 ) and triiodothyronine (T 3 ) levels, but increased thyroid-stimulating hormone (TSH) levels by a feedback mechanism. Decreased hepatic T 4 and increased hepatic T 3 levels were also seen after 100mg/kg/day SCCPs exposure. SCCPs didn't show any significant effects on the expression of thyroid TH synthesis genes or thyrocyte structure. However, stimulation effects were observed for mRNA and protein levels of hepatic uridine diphosphoglucuronosyl transferase (UGT) 1A1 and organic anion transporter 2, suggesting an accelerated TH metabolism in rat liver. The increased cytochrome P450 2B1 but not 1A1 mRNA and protein levels indicated that the CAR signaling was activated by SCCPs exposure. According to docking analysis, SCCPs form hydrophobic interactions with CAR and the binding affinity shows dependency on chlorine content. Overall, our data showed that CAR implicated enhancement of hepatic TH influx and degradation could be the main cause for SCCPs induced TH deficiency in male rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effects of Saccharomyces boulardii on fecal short-chain fatty acids and microflora in patients on long-term total enteral nutrition

    Science.gov (United States)

    Schneider, Stéphane M; Girard-Pipau, Fernand; Filippi, Jérôme; Hébuterne, Xavier; Moyse, Dominique; Hinojosa, Gustavo Calle; Pompei, Anne; Rampal, Patrick

    2005-01-01

    AIM: To assess the effects of Sb on fecal flora and short-chain fatty acids (SCFA) in patients on long-term TEN. METHODS: Ten patients (3 females, 7 males, 59±5.5 years), on TEN for a median of 13 mo (1-125), and 15 healthy volunteers (4 females, 11 males, 32±2.0 years) received Sb (0.5 g bid PO) for 6 d. Two stool samples were taken before, on the last 2 d and 9-10 d after treatment, for SCFA measurement and for culture and bacterial identification. Values (mean±SE) were compared using sign tests and ANOVA. RESULTS: Fecal butyrate levels were lower in patients (10.1±2.9 mmol/kg) than in controls (19.2±2.9, P = 0.02). Treatment with Sb increased total fecal SCFA levels in patients (150.2±27.2vs 107.5?8.2 mmol/kg, P = 0.02) but not in controls (129.0±28.6 vs 113.0±15.2 mmol/kg, NS). At the end of treatment with Sb, patients had higher fecal butyrate (16.0±4.4 vs 10.1 [2.9] mmol/kg, P = 0.004). Total SCFAs remained high 9 d after treatment was discon-tinued. Before the treatment, the anaerobe to aerobe ratio was lower in patients compared to controls (2.4±2.3 vs 69.8±1.8, P = 0.003). There were no significant changes in the fecal flora of TEN patients. CONCLUSION: Sb-induced increase of fecal SCFA concentrations (especially butyrate) may explain the preventive effects of this yeast on TEN-induced diarrhea. PMID:16273644

  6. Improved production of short-chain fatty acids from waste activated sludge driven by carbohydrate addition in continuous-flow reactors: Influence of SRT and temperature

    International Nuclear Information System (INIS)

    Luo, Jingyang; Feng, Leiyu; Zhang, Wei; Li, Xiang; Chen, Hong; Wang, Dongbo; Chen, Yinguang

    2014-01-01

    Highlights: • SRT or temperature increase benefited the hydrolysis of fermentation substrates. • SCFAs, especially propionic acid, accumulated most at SRT 8 d and 37 °C. • The activities of key enzymes were in accordance with SCFAs production. • The ratio of Bacteria to Archaea was improved at SRT 8 d and 37 °C. - Abstract: During anaerobic fermentation of waste activated sludge (WAS), the production of short-chain fatty acids (SCFAs), especially propionic acid which is considered as the most preferred carbon source for enhanced biological phosphorus removal, can be improved by controlling the suitable mass ratio of carbon to nitrogen (C/N) and pH in batch mode. In this study the influences of solids retention time (SRT) and temperature on WAS hydrolysis and acidification in the continuous-flow systems in which the C/N ratio of WAS was modified by carbohydrate addition were investigated. Experimental results showed that the increase of SRT and temperature in a pertinent range benefited the hydrolysis of fermentation substrates and the accumulation of SCFAs, and SRT 8 d and temperature 37 °C were the most preferred conditions for the production of SCFAs, especially propionic acid. As there were more consumption of protein and carbohydrate and less production of methane at SRT 8 d and temperature 37 °C, more SCFAs were accumulated. Also, both the activities of key hydrolases and acid-forming enzymes and the ratio of acidogenic bacteria to methanogens showed good agreements with SCFAs production

  7. Effects of dietary Lactobacillus plantarum B1 on growth performance, intestinal microbiota, and short chain fatty acid profiles in broiler chickens.

    Science.gov (United States)

    Peng, Q; Zeng, X F; Zhu, J L; Wang, S; Liu, X T; Hou, C L; Thacker, P A; Qiao, S Y

    2016-04-01

    Two experiments were conducted to determine the effects of Lactobacillus plantarum B1 on broiler performance, cecal bacteria, and ileal and cecal short chain fatty acids (SCFA). The study also determined whether it was necessary to feed Lactobacillus throughout the entire growth period or if the beneficial effects could be obtained by supplementation during the starter or finisher period only. Experiment 1 was conducted with 72 broilers assigned to 2 treatments (N=6). One treatment was the basal diet (Con), and the other was the basal diet supplemented with 2×10(9) cfu/kg L. plantarum B1 (Wh). In experiment 2, 144 one-day-old broilers were assigned to 4 treatments (N=6) including a basal diet (Con), the basal diet supplemented with 2×10(9) cfu/kgL. plantarum B1 during d one to 21 only (St), the basal diet supplemented with L. plantarum B1 during d 22 to 42 only (Fn), and, finally, the basal diet supplemented with L. plantarum B1 from d one to 42 (Wh). Experiment 1 showed that L. plantarum B1 enhanced broiler average daily gain (ADG) and feed conversion ratio (FCR). In experiment 2, during the starter period, broilers in the Wh and St treatments had higher ADG (Pplantarum B1 also increased (Pplantarum B1 had no effect on intestinal morphology. In conclusion,L. plantarum B1 plays a positive role in broilers. Supplementation during the finisher period or the entire growth period is superior to supplementation during the starter period only. © 2016 Poultry Science Association Inc.

  8. Ileal Digesta Nondietary Substrates from Cannulated Pigs Are Major Contributors to In Vitro Human Hindgut Short-Chain Fatty Acid Production.

    Science.gov (United States)

    Montoya, Carlos A; Rutherfurd, Shane M; Moughan, Paul J

    2017-02-01

    It has been assumed that short-chain fatty acids (SCFAs) in the colon originate mainly from dietary fiber fermentation. However, SCFAs in the colon are also produced from the fermentation of nondietary material. We aimed to predict the relative contributions of dietary and nondietary substrates in the production of SCFAs with the use of a human fecal inoculum for diets containing kiwifruit as a model fiber. Terminal ileal digesta were collected from ileal-cannulated male pigs [n = 7; mean ± SD: 41.4 ± 2.98 kg body weight] adapted (44-d feeding) to diets containing either 25 g/kg dry matter (DM) of kiwifruit fiber (KFf) (25 KFf) or 50 g/kg DM of KFf (50 KFf) and then again after receiving a fiber-free diet (n = 14) for a further 7 d. Pigs were used as a model for adult humans for digestion in the upper digestive tract (mouth to the terminal ileum). The ileal digesta (either unfractionated or fractionated into crude mucin and microbial fractions) were fermented in vitro for 24 h with the use of a fresh human fecal inoculum to predict SCFA production in the human hindgut. SCFAs of nondietary origin were the main source (65%) of total SCFAs predicted to be produced in the human hindgut. The contribution of SCFAs from KFf was only 26% of the total SCFAs, and that from total dietary material was 35%. The higher contribution of nondietary material to total predicted SCFA production was observed at both dietary fiber concentrations. Predicted SCFA intake from dietary fiber was 76 and 105 mmol/kg diet DM intake for the diets containing 25 KFf and 50 KFf, respectively, and from the nondietary substrates it was 178 and 280 mmol/kg diet DM intake, respectively. A considerable proportion of the SCFAs produced in the human hindgut seems to be derived from the fermentation of nondietary substrates. © 2017 American Society for Nutrition.

  9. Postprandial glycaemic and insulinaemic responses in adults after consumption of dairy desserts and pound cakes containing short-chain fructo-oligosaccharides used to replace sugars.

    Science.gov (United States)

    Lecerf, J M; Clerc, E; Jaruga, A; Wagner, A; Respondek, F

    2015-01-01

    The present studies aimed to evaluate the glycaemic and insulinaemic responses, in healthy adults, to short-chain fructo-oligosaccharides (scFOS) from sucrose used to replace sugars in foods. Two study populations aged 18-50 years were recruited and they consumed dairy desserts or pound cakes containing either standard sugar content or scFOS to replace 30 % of the sugar content. For each study, the two products were tested once under a double-blind and cross-over design with at least 7 d between the two tests. Glucose and insulin were measured using standard methods in blood samples collected with a venous catheter for 120 min during a kinetic test. For the dairy desserts, replacing 30 % of the sugars with scFOS significantly reduced postprandial glycaemic (AUC0-120 min; P = 0·020) and insulinaemic (AUC0-120 min; P = 0·003) responses. For the pound cakes, the glycaemic response was not altered (AUC0-120 min; P =  0·322) while the insulinaemic response tended to be lower (AUC0-120 min; P = 0·067). This study showed that scFOS can be used to replace sugars with the benefit of lowering the postprandial glycaemic response without increasing the insulinaemic response. The effect might be modulated by other parameters (e.g. fat content) of the food matrices.

  10. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis.

    Science.gov (United States)

    Aldunate, Muriel; Srbinovski, Daniela; Hearps, Anna C; Latham, Catherine F; Ramsland, Paul A; Gugasyan, Raffi; Cone, Richard A; Tachedjian, Gilda

    2015-01-01

    Lactic acid and short chain fatty acids (SCFAs) produced by vaginal microbiota have reported antimicrobial and immune modulatory activities indicating their potential as biomarkers of disease and/or disease susceptibility. In asymptomatic women of reproductive-age the vaginal microbiota is comprised of lactic acid-producing bacteria that are primarily responsible for the production of lactic acid present at ~110 mM and acidifying the vaginal milieu to pH ~3.5. In contrast, bacterial vaginosis (BV), a dysbiosis of the vaginal microbiota, is characterized by decreased lactic acid-producing microbiota and increased diverse anaerobic bacteria accompanied by an elevated pH>4.5. BV is also characterized by a dramatic loss of lactic acid and greater concentrations of mixed SCFAs including acetate, propionate, butyrate, and succinate. Notably women with lactic acid-producing microbiota have more favorable reproductive and sexual health outcomes compared to women with BV. Regarding the latter, BV is associated with increased susceptibility to sexually transmitted infections (STIs) including HIV. In vitro studies demonstrate that lactic acid produced by vaginal microbiota has microbicidal and virucidal activities that may protect against STIs and endogenous opportunistic bacteria as well as immune modulatory properties that require further characterization with regard to their effects on the vaginal mucosa. In contrast, BV-associated SCFAs have far less antimicrobial activity with the potential to contribute to a pro-inflammatory vaginal environment. Here we review the composition of lactic acid and SCFAs in respective states of eubiosis (non-BV) or dysbiosis (BV), their effects on susceptibility to bacterial/viral STIs and whether they have inherent microbicidal/virucidal and immune modulatory properties. We also explore their potential as biomarkers for the presence and/or increased susceptibility to STIs.

  11. A Catalase-related Hemoprotein in Coral Is Specialized for Synthesis of Short-chain Aldehydes: DISCOVERY OF P450-TYPE HYDROPEROXIDE LYASE ACTIVITY IN A CATALASE.

    Science.gov (United States)

    Teder, Tarvi; Lõhelaid, Helike; Boeglin, William E; Calcutt, Wade M; Brash, Alan R; Samel, Nigulas

    2015-08-07

    In corals a catalase-lipoxygenase fusion protein transforms arachidonic acid to the allene oxide 8R,9-epoxy-5,9,11,14-eicosatetraenoic acid from which arise cyclopentenones such as the prostanoid-related clavulones. Recently we cloned two catalase-lipoxygenase fusion protein genes (a and b) from the coral Capnella imbricata, form a being an allene oxide synthase and form b giving uncharacterized polar products (Lõhelaid, H., Teder, T., Tõldsepp, K., Ekins, M., and Samel, N. (2014) PloS ONE 9, e89215). Here, using HPLC-UV, LC-MS, and NMR methods, we identify a novel activity of fusion protein b, establishing its role in cleaving the lipoxygenase product 8R-hydroperoxy-eicosatetraenoic acid into the short-chain aldehydes (5Z)-8-oxo-octenoic acid and (3Z,6Z)-dodecadienal; these primary products readily isomerize in an aqueous medium to the corresponding 6E- and 2E,6Z derivatives. This type of enzymatic cleavage, splitting the carbon chain within the conjugated diene of the hydroperoxide substrate, is known only in plant cytochrome P450 hydroperoxide lyases. In mechanistic studies using (18)O-labeled substrate and incubations in H2(18)O, we established synthesis of the C8-oxo acid and C12 aldehyde with the retention of the hydroperoxy oxygens, consistent with synthesis of a short-lived hemiacetal intermediate that breaks down spontaneously into the two aldehydes. Taken together with our initial studies indicating differing gene regulation of the allene oxide synthase and the newly identified catalase-related hydroperoxide lyase and given the role of aldehydes in plant defense, this work uncovers a potential pathway in coral stress signaling and a novel enzymatic activity in the animal kingdom. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Metagenomes of complex microbial consortia derived from different soils as sources for novel genes conferring formation of carbonyls from short-chain polyols on Escherichia coli.

    Science.gov (United States)

    Knietsch, Anja; Waschkowitz, Tanja; Bowien, Susanne; Henne, Anke; Daniel, Rolf

    2003-01-01

    Metagenomic DNA libraries from three different soil samples (meadow, sugar beet field, cropland) were constructed. The three unamplified libraries comprised approximately 1267000 independent clones and harbored approximately 4.05 Gbp of environmental DNA. Approximately 300000 recombinant Escherichia coli strains of each library per test substrate were screened for the production of carbonyls from short-chain (C2 to C4) polyols such as 1,2-ethanediol, 2,3-butanediol, and a mixture of glycerol and 1,2-propanediol on indicator agar. Twenty-four positive E. COLI clones were obtained during the initial screen. Fifteen of them contained recombinant plasmids, designated pAK201-215, which conferred a stable carbonyl-forming phenotype on E. coli Sequencing revealed that the inserts of pAK201-215 encoded 26 complete and 14 incomplete predicted protein-encoding genes. Most of these genes were similar to genes with unknown functions from other microorganisms or unrelated to any other known gene. The further analysis was focused on the 7 plasmids (pAK204, pAK206, pAK208, and pAK210-213) recovered from the positive clones, which exhibited an NAD(H)-dependent alcohol oxidoreductase activity with polyols or the correlating carbonyls as substrates in crude extracts. Three genes (ORF6, ORF24, and ORF25) conferring this activity were identified during subcloning of the inserts of pAK204, pAK211, and pAK212. The sequences of the three deduced gene products revealed no significant similarities to known alcohol oxidoreductases, but contained putative glycine-rich regions, which are characteristic for binding of nicotinamide cofactors. Copyright 2003 S. Karger AG, Basel

  13. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production.

    Science.gov (United States)

    Reichardt, Nicole; Vollmer, Maren; Holtrop, Grietje; Farquharson, Freda M; Wefers, Daniel; Bunzel, Mirko; Duncan, Sylvia H; Drew, Janice E; Williams, Lynda M; Milligan, Graeme; Preston, Thomas; Morrison, Douglas; Flint, Harry J; Louis, Petra

    2018-02-01

    The diet provides carbohydrates that are non-digestible in the upper gut and are major carbon and energy sources for the microbial community in the lower intestine, supporting a complex metabolic network. Fermentation produces the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, which have health-promoting effects for the human host. Here we investigated microbial community changes and SCFA production during in vitro batch incubations of 15 different non-digestible carbohydrates, at two initial pH values with faecal microbiota from three different human donors. To investigate temporal stability and reproducibility, a further experiment was performed 1 year later with four of the carbohydrates. The lower pH (5.5) led to higher butyrate and the higher pH (6.5) to more propionate production. The strongest propionigenic effect was found with rhamnose, followed by galactomannans, whereas fructans and several α- and β-glucans led to higher butyrate production. 16S ribosomal RNA gene-based quantitative PCR analysis of 22 different microbial groups together with 454 sequencing revealed significant stimulation of specific bacteria in response to particular carbohydrates. Some changes were ascribed to metabolite cross-feeding, for example, utilisation by Eubacterium hallii of 1,2-propanediol produced from fermentation of rhamnose by Blautia spp. Despite marked inter-individual differences in microbiota composition, SCFA production was surprisingly reproducible for different carbohydrates, indicating a level of functional redundancy. Interestingly, butyrate formation was influenced not only by the overall % butyrate-producing bacteria in the community but also by the initial pH, consistent with a pH-dependent shift in the stoichiometry of butyrate production.

  14. Extracellular signal regulated kinase 5 mediates signals triggered by the novel tumor promoter palytoxin

    International Nuclear Information System (INIS)

    Charlson, Aaron T.; Zeliadt, Nicholette A.; Wattenberg, Elizabeth V.

    2009-01-01

    Palytoxin is classified as a non-12-O-tetradecanoylphorbol-13-acetate (TPA)-type skin tumor because it does not bind to or activate protein kinase C. Palytoxin is thus a novel tool for investigating alternative signaling pathways that may affect carcinogenesis. We previously showed that palytoxin activates three major members of the mitogen activated protein kinase (MAPK) family, extracellular signal regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Here we report that palytoxin also activates another MAPK family member, called ERK5, in HeLa cells and in keratinocytes derived from initiated mouse skin (308 cells). By contrast, TPA does not activate ERK5 in these cell lines. The major cell surface receptor for palytoxin is the Na+,K+-ATPase. Accordingly, ouabain blocked the ability of palytoxin to activate ERK5. Ouabain alone did not activate ERK5. ERK5 thus represents a divergence in the signaling pathways activated by these two agents that bind to the Na+,K+-ATPase. Cycloheximide, okadaic acid, and sodium orthovanadate did not mimic the effect of palytoxin on ERK5. These results indicate that the stimulation of ERK5 by palytoxin is not simply due to inhibition of protein synthesis or inhibition of serine/threonine or tyrosine phosphatases. Therefore, the mechanism by which palytoxin activates ERK5 differs from that by which it activates ERK1/2, JNK, and p38. Finally, studies that used pharmacological inhibitors and shRNA to block ERK5 action indicate that ERK5 contributes to palytoxin-stimulated c-Fos gene expression. These results suggest that ERK5 can act as an alternative mediator for transmitting diverse tumor promoter-stimulated signals.

  15. Transcription factor RBP-J-mediated signalling regulates basophil immunoregulatory function in mouse asthma model.

    Science.gov (United States)

    Qu, Shuo-Yao; He, Ya-Long; Zhang, Jian; Wu, Chang-Gui

    2017-09-01

    Basophils (BA) play an important role in the promotion of aberrant T helper type 2 (Th2) immune responses in asthma. It is not only the effective cell, but also modulates the initiation of Th2 immune responses. We earlier demonstrated that Notch signalling regulates the biological function of BAin vitro. However, whether this pathway plays the same role in vivo is not clear. The purpose of the present study was to investigate the effect of Notch signalling on BA function in the regulation of allergic airway inflammation in a murine model of asthma. Bone marrow BA were prepared by bone marrow cell culture in the presence of recombinant interleukin-3 (rIL-3; 300 pg/ml) for 7 days, followed by isolation of the CD49b + microbeads. The recombination signal binding protein J (RBP-J -/- ) BA were co-cultured with T cells, and the supernatant and the T-cell subtypes were examined. The results indicated disruption of the capacity of BA for antigen presentation alongside an up-regulation of the immunoregulatory function. This was possibly due to the low expression of OX40L in the RBP-J -/- BA. Basophils were adoptively transferred to ovalbumin-sensitized recipient mice, to establish an asthma model. Lung pathology, cytokine profiles of brobchoalveolar fluid, airway hyperactivity and the absolute number of Th1/Th2 cells in lungs were determined. Overall, our results indicate that the RBP-J-mediated Notch signalling is critical for BA-dependent immunoregulation. Deficiency of RBP-J influences the immunoregulatory functions of BA, which include activation of T cells and their differentiation into T helper cell subtypes. The Notch signalling pathway is a potential therapeutic target for BA-based immunotherapy against asthma. © 2017 John Wiley & Sons Ltd.

  16. FGF signaling regulates the number of posterior taste papillae by controlling progenitor field size.

    Directory of Open Access Journals (Sweden)

    Camille I Petersen

    2011-06-01

    Full Text Available The sense of taste is fundamental to our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Sensory taste buds are housed in papillae that develop from epithelial placodes. Three distinct types of gustatory papillae reside on the rodent tongue: small fungiform papillae are found in the anterior tongue, whereas the posterior tongue contains the larger foliate papillae and a single midline circumvallate papilla (CVP. Despite the great variation in the number of CVPs in mammals, its importance in taste function, and its status as the largest of the taste papillae, very little is known about the development of this structure. Here, we report that a balance between Sprouty (Spry genes and Fgf10, which respectively antagonize and activate receptor tyrosine kinase (RTK signaling, regulates the number of CVPs. Deletion of Spry2 alone resulted in duplication of the CVP as a result of an increase in the size of the placode progenitor field, and Spry1(-/-;Spry2(-/- embryos had multiple CVPs, demonstrating the redundancy of Sprouty genes in regulating the progenitor field size. By contrast, deletion of Fgf10 led to absence of the CVP, identifying FGF10 as the first inductive, mesenchyme-derived factor for taste papillae. Our results provide the first demonstration of the role of epithelial-mesenchymal FGF signaling in taste papilla development, indicate that regulation of the progenitor field size by FGF signaling is a critical determinant of papilla number, and suggest that the great variation in CVP number among mammalian species may be linked to levels of signaling by the FGF pathway.

  17. Endogenous GAS6 and Mer receptor signaling regulate prostate cancer stem cells in bone marrow.

    Science.gov (United States)

    Jung, Younghun; Decker, Ann M; Wang, Jingcheng; Lee, Eunsohl; Kana, Lulia A; Yumoto, Kenji; Cackowski, Frank C; Rhee, James; Carmeliet, Peter; Buttitta, Laura; Morgan, Todd M; Taichman, Russell S

    2016-05-03

    GAS6 and its receptors (Tryo 3, Axl, Mer or "TAM") are known to play a role in regulating tumor progression in a number of settings. Previously we have demonstrated that GAS6 signaling regulates invasion, proliferation, chemotherapy-induced apoptosis of prostate cancer (PCa) cells. We have also demonstrated that GAS6 secreted from osteoblasts in the bone marrow environment plays a critical role in establishing prostate tumor cell dormancy. Here we investigated the role that endogenous GAS6 and Mer receptor signaling plays in establishing prostate cancer stem cells in the bone marrow microenvironment.We first observed that high levels of endogenous GAS6 are expressed by disseminated tumor cells (DTCs) in the bone marrow, whereas relatively low levels of endogenous GAS6 are expressed in PCa tumors grown in a s.c. Interestingly, elevated levels of endogenous GAS6 were identified in putative cancer stem cells (CSCs, CD133+/CD44+) compared to non-CSCs (CD133-/CD44-) isolated from PCa/osteoblast cocultures in vitro and in DTCs isolated from the bone marrow 24 hours after intracardiac injection. Moreover, we found that endogenous GAS6 expression is associated with Mer receptor expression in growth arrested (G1) PCa cells, which correlates with the increase of the CSC populations. Importantly, we found that overexpression of GAS6 activates phosphorylation of Mer receptor signaling and subsequent induction of the CSC phenotype in vitro and in vivo.Together these data suggest that endogenous GAS6 and Mer receptor signaling contribute to the establishment of PCa CSCs in the bone marrow microenvironment, which may have important implications for targeting metastatic disease.

  18. Expression of phosphorylated extracellular signal-regulated kinase in rat kidneys exposed to high +Gz

    Directory of Open Access Journals (Sweden)

    Hyun-Soo Kim

    2012-11-01

    Full Text Available Exposure to high gravitational acceleration forces acting along the body axis from the head to the feet (+Gz severely reduces blood flow to the visceral organs, including the kidneys. Extracellular signal-regulated kinase (ERK figures predominantly in mediating kidney cell responses to a wide variety of stress-related stimuli. Though previous studies have shown the activation of ERK in some experimental models, the regulation of ERK associated with +Gz exposure has not yet been investigated. The aim of this study was to examine the effect of high +Gz exposure on ERK activation in the kidneys. Using a small animal centrifuge, eight male Sprague-Dawley rats were exposed to +10Gz or +13Gz three times for 3 minutes each. The bilateral kidneys were obtained from each rat, and the expression levels of phosphorylated ERK (p-ERK were evaluated using immunohistochemistry. In the control group, the collecting duct epithelium displayed faint cytoplasmic staining with no nuclear staining of p-ERK. By contrast, rats exposed to +10Gz showed strong nuclear staining intensity for p-ERK. In the renal papilla, the epithelial cells of collecting ducts and thin segments of the loop of Henle exhibited strong nuclear immunoreactivity for p-ERK. Rats exposed to +13Gz also showed the same staining intensity and distribution of p-ERK expression as that of rats exposed to +10Gz. This study is the first to describe +Gz exposure-induced alteration in the expression of p-ERK in the kidneys. Our finding suggests that high +Gz exposure leads to the activation of ERK in the renal papilla.

  19. Extracellular signal-regulated kinases 1/2 as regulators of cardiac hypertrophy

    Directory of Open Access Journals (Sweden)

    Michael eMutlak

    2015-07-01

    Full Text Available Cardiac hypertrophy results from increased mechanical load on the heart and through the actions of local and systemic neuro-humoral factors, cytokines and growth factors. These mechanical and neuroendocrine effectors act through stretch, G protein-coupled receptors and tyrosine kinases to induce the activation of a myriad of intracellular signaling pathways including the extracellular signal-regulated kinases 1/2 (ERK1/2. Since most stimuli that provoke myocardial hypertrophy also elicit an acute phosphorylation of the threonine-glutamate-tyrosine (TEY motif within the activation loops of ERK1 and ERK2 kinases, resulting in their activation, ERKs have long been considered promotors of cardiac hypertrophy. Several mouse models were generated in order to directly understand the causal role of ERK1/2 activation in the heart. These models include direct manipulation of ERK1/2 such as overexpression, mutagenesis or knockout models, manipulations of upstream kinases such as MEK1 and manipulations of the phosphatases that depohosphorylate ERK1/2 such as DUSP6. The emerging understanding from these studies, as will be discussed here, is more complex than originally considered. While there is little doubt that ERK1/2 activation or the lack of it modulates the hypertrophic process or the type of hypertrophy that develops, it appears that not all ERK1/2 activation events are the same. While much has been learned, some questions remain regarding the exact role of ERK1/2 in the heart, the upstream events that result in ERK1/2 activation and the downstream effector in hypertrophy.

  20. Interdependence of free zinc changes and protein complex assembly - insights into zinc signal regulation.

    Science.gov (United States)

    Kocyła, Anna; Adamczyk, Justyna; Krężel, Artur

    2018-01-24

    Cellular zinc (Zn(ii)) is bound with proteins that are part of the proteomes of all domains of life. It is mostly utilized as a catalytic or structural protein cofactor, which results in a vast number of binding architectures. The Zn(ii) ion is also important for the formation of transient protein complexes with a Zn(ii)-dependent quaternary structure that is formed upon cellular zinc signals. The mechanisms by which proteins associate with and dissociate from Zn(ii) and the connection with cellular Zn(ii) changes remain incompletely understood. In this study, we aimed to examine how zinc protein domains with various Zn(ii)-binding architectures are formed under free Zn(ii) concentration changes and how formation of the Zn(ii)-dependent assemblies is related to the protein concentration and reactivity. To accomplish these goals we chose four zinc domains with different Zn(ii)-to-protein binding stoichiometries: classical zinc finger (ZnP), LIM domain (Zn 2 P), zinc hook (ZnP 2 ) and zinc clasp (ZnP 1 P 2 ) folds. Our research demonstrated a lack of changes in the saturation level of intraprotein zinc binding sites, despite various peptide concentrations, while homo- and heterodimers indicated a concentration-dependent tendency. In other words, at a certain free Zn(ii) concentration, the fraction of a formed dimeric complex increases or decreases with subunit concentration changes. Secondly, even small or local changes in free Zn(ii) may significantly affect protein saturation depending on its architecture, function and subcellular concentration. In our paper, we indicate the importance of interdependence of free Zn(ii) availability and protein subunit concentrations for cellular zinc signal regulation.

  1. Genetics Home Reference: dihydropyrimidine dehydrogenase deficiency

    Science.gov (United States)

    ... 5-fluorouracil and capecitabine. These drugs are not broken down efficiently by people with dihydropyrimidine dehydrogenase deficiency ... of this enzyme. Because fluoropyrimidine drugs are also broken down by the dihydropyrimidine dehydrogenase enzyme, deficiency of ...

  2. Molecular cloning and functional characterization of borneol dehydrogenase from the glandular trichomes of Lavandula x intermedia.

    Science.gov (United States)

    Sarker, Lukman S; Galata, Mariana; Demissie, Zerihun A; Mahmoud, Soheil S

    2012-12-15

    Several varieties of Lavandula x intermedia (lavandins) are cultivated for their essential oils (EOs) for use in cosmetic, hygiene and personal care products. These EOs are mainly constituted of monoterpenes including camphor, which contributes an off odor reducing the olfactory appeal of the oil. We have recently constructed a cDNA library from the glandular trichomes (the sites of EO synthesis) of L. x intermedia plants. Here, we describe the cloning of a borneol dehydrogenase cDNA (LiBDH) from this library. The 780 bp open reading frame of the cDNA encoded a 259 amino acid short chain alcohol dehydrogenase with a predicted molecular mass of ca. 27.5 kDa. The recombinant LiBDH was expressed in Escherichia coli, purified by Ni-NTA agarose affinity chromatography, and functionally characterized in vitro. The bacterially produced enzyme specifically converted borneol to camphor as the only product with K(m) and k(cat) values of 53 μM and 4.0 × 10(-4) s(-1), respectively. The LiBDH transcripts were specifically expressed in glandular trichomes of mature flowers indicating that like other Lavandula monoterpene synthases the expression of this gene is regulated in a tissue-specific manner. The cloning of LiBDH has far reaching implications in improving the quality of Lavandula EOs through metabolic engineering. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Slit/Robo1 signaling regulates neural tube development by balancing neuroepithelial cell proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guang; Li, Yan; Wang, Xiao-yu [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China); Han, Zhe [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Chuai, Manli [College of Life Sciences Biocentre, University of Dundee, Dundee DD1 5EH (United Kingdom); Wang, Li-jing [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Ho Lee, Kenneth Ka [Stem Cell and Regeneration Thematic Research Programme, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Geng, Jian-guo, E-mail: jgeng@umich.edu [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510224 (China); Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109 (United States); Yang, Xuesong, E-mail: yang_xuesong@126.com [Key Laboratory for Regenerative Medicine of The Ministry of Education, Department of Histology and Embryology, School of Medicine, Jinan University, Guangzhou 510632 (China)

    2013-05-01

    development by tightly coordinating cell proliferation and differentiation during neurulation. - Highlights: ► The role of Slit/Robo1 signaling was investigated with chick and mouse models. ► Disturbance of Slit/Robo1 signaling resulted in neural tube defects. ► Slit/Robo1 signaling regulated the proliferation of neural tube cells. ► Slit/Robo1 signaling modulated the differentiation of neural tube cells. ► Slit/Robo1 signaling balanced the proliferation and differentiation of neural tube.

  4. Nutritional status-dependent endocannabinoid signalling regulates the integration of rat visceral information.

    Science.gov (United States)

    Khlaifia, Abdessattar; Matias, Isabelle; Cota, Daniela; Tell, Fabien

    2017-06-01

    the extracellular signal-regulated kinase pathway. These data suggest a tight link between eCB-LTD in the NTS and nutritional status and shed light on the key role of eCB in the integration of visceral information. © 2017 Aix Marseille Université. The Journal of Physiology © 2017 The Physiological Society.

  5. Short-chain fatty acid level and field cancerization show opposing associations with enteroendocrine cell number and neuropilin expression in patients with colorectal adenoma

    Directory of Open Access Journals (Sweden)

    Staton Carolyn A

    2011-03-01

    Full Text Available Abstract Background Previous reports have suggested that the VEGF receptor neuropilin-1 (NRP-1 is expressed in a singly dispersed subpopulation of cells in the normal colonic epithelium, but that expression becomes dysregulated during colorectal carcinogenesis, with higher levels in tumour suggestive of a poor prognosis. We noted that the spatial distribution and morphology if NRP-1 expressing cells resembles that of enteroendocrine cells (EEC which are altered in response to disease state including cancer and irritable bowel syndrome (IBS. We have shown that NRP-1 is down-regulated by butyrate in colon cancer cell lines in vitro and we hypothesized that butyrate produced in the lumen would have an analogous effect on the colon mucosa in vivo. Therefore we sought to investigate whether NRP-1 is expressed in EEC and how NRP-1 and EEC respond to butyrate and other short-chain fatty acids (SCFA - principally acetate and propionate. Additionally we sought to assess whether there is a field effect around adenomas. Methodology Biopsies were collected at the mid-sigmoid, at the adenoma and at the contralateral wall (field of 28 subjects during endoscopy. Samples were fixed for IHC and stained for either NRP-1 or for chromogranin A (CgA, a marker of EEC. Stool sampling was undertaken to assess individuals' butyrate, acetate and propionate levels. Result NRP-1 expression was inversely related to SCFA concentration at the colon landmark (mid-sigmoid, but expression was lower and not related to SCFA concentration at the field. Likewise CgA+ cell number was also inversely related to SCFA at the landmark, but was lower and unresponsive at the field. Crypt cellularity was unaltered by field effect. A colocalisation analysis showed only a small subset of NRP-1 localised with CgA. Adenomas showed extensive, weaker staining for NRP-1 which contrastingly correlated positively with butyrate level. Field effects cause this relationship to be lost. Adenoma tissue

  6. Chemical rescue of the post-translationally carboxylated lysine mutant of allantoinase and dihydroorotase by metal ions and short-chain carboxylic acids.

    Science.gov (United States)

    Ho, Ya-Yeh; Huang, Yen-Hua; Huang, Cheng-Yang

    2013-04-01

    Bacterial allantoinase (ALLase) and dihydroorotase (DHOase) are members of the cyclic amidohydrolase family. ALLase and DHOase possess similar binuclear metal centers in the active site in which two metals are bridged by a post-translationally carboxylated lysine. In this study, we determined the effects of carboxylated lysine and metal binding on the activities of ALLase and DHOase. Although DHOase is a metalloenzyme, purified DHOase showed high activity without additional metal supplementation in a reaction mixture or bacterial culture. However, unlike DHOase, ALLase had no activity unless some specific metal ions were added to the reaction mixture or culture. Substituting the metal binding sites H59, H61, K146, H186, H242, or D315 with alanine completely abolished the activity of ALLase. However, the K146C, K146D and K146E mutants of ALLase were still active with about 1-6% activity of the wild-type enzyme. These ALLase K146 mutants were found to have 1.4-1.7 mol metal per mole enzyme subunit, which may indicate that they still contained the binuclear metal center in the active site. The activity of the K146A mutant of the ALLase and the K103A mutant of DHOase can be chemically rescued by short-chain carboxylic acids, such as acetic, propionic, and butyric acids, but not by ethanol, propan-1-ol, and imidazole, in the presence of Co2+ or Mn2+ ions. However, the activity was still ~10-fold less than that of wild-type ALLase. Overall, these results indicated that the 20 natural basic amino acid residues were not sufficiently able to play the role of lysine. Accordingly, we proposed that during evolution, the post-translational modification of carboxylated lysine in the cyclic amidohydrolase family was selected for promoting binuclear metal center self-assembly and increasing the nucleophilicity of the hydroxide at the active site for enzyme catalysis. This kind of chemical rescue combined with site-directed mutagenesis may also be used to identify a binuclear metal

  7. Parameters optimization using experimental design for headspace solid phase micro-extraction analysis of short-chain chlorinated paraffins in waters under the European water framework directive.

    Science.gov (United States)

    Gandolfi, F; Malleret, L; Sergent, M; Doumenq, P

    2015-08-07

    The water framework directives (WFD 2000/60/EC and 2013/39/EU) force European countries to monitor the quality of their aquatic environment. Among the priority hazardous substances targeted by the WFD, short chain chlorinated paraffins C10-C13 (SCCPs), still represent an analytical challenge, because few laboratories are nowadays able to analyze them. Moreover, an annual average quality standards as low as 0.4μgL(-1) was set for SCCPs in surface water. Therefore, to test for compliance, the implementation of sensitive and reliable analysis method of SCCPs in water are required. The aim of this work was to address this issue by evaluating automated solid phase micro-extraction (SPME) combined on line with gas chromatography-electron capture negative ionization mass spectrometry (GC/ECNI-MS). Fiber polymer, extraction mode, ionic strength, extraction temperature and time were the most significant thermodynamic and kinetic parameters studied. To determine the suitable factors working ranges, the study of the extraction conditions was first carried out by using a classical one factor-at-a-time approach. Then a mixed level factorial 3×2(3) design was performed, in order to give rise to the most influent parameters and to estimate potential interactions effects between them. The most influent factors, i.e. extraction temperature and duration, were optimized by using a second experimental design, in order to maximize the chromatographic response. At the close of the study, a method involving headspace SPME (HS-SPME) coupled to GC/ECNI-MS is proposed. The optimum extraction conditions were sample temperature 90°C, extraction time 80min, with the PDMS 100μm fiber and desorption at 250°C during 2min. Linear response from 0.2ngmL(-1) to 10ngmL(-1) with r(2)=0.99 and limits of detection and quantification, respectively of 4pgmL(-1) and 120pgmL(-1) in MilliQ water, were achieved. The method proved to be applicable in different types of waters and show key advantages, such

  8. Effects of dietary sulfur concentration and forage-to-concentrate ratio on ruminal fermentation, sulfur metabolism, and short-chain fatty acid absorption in beef heifers.

    Science.gov (United States)

    Amat, S; McKinnon, J J; Penner, G B; Hendrick, S

    2014-02-01

    This study evaluated the effects of dietary S concentration and forage-to-concentrate ratio (F:C) on ruminal fermentation, S metabolism, and short-chain fatty acid (SCFA) absorption in beef heifers. Sixteen ruminally cannulated heifers (initial BW 628 ± 48 kg) were used in a randomized complete block design with a 2 × 2 factorial treatment arrangement. The main factors included F:C (4% forage vs. 51% forage, DM basis) and the S concentration, which was modified using differing sources of wheat dried distillers grains with solubles (DDGS) to achieve low- and high-S diets (LS = 0.30% vs. HS = 0.67% S on a DM basis). Elemental S was also added to increase the S content for the HS diets. Serum sulfate concentration from blood, sulfide (S(2-)), and SCFA concentrations from ruminal fluid, hydrogen sulfide (H2S) concentration from the ruminal gas cap, and urinary sulfate concentration were determined. Continuous rumen pH and SCFA (acetate, butyrate, and propionate) absorption were measured. There were no interactions between S concentration and F:C. The F:C did not affect DMI (P = 0.26) or ruminal S metabolite concentrations (P ≥ 0.19), but ruminal pH was lower (P ruminal pH (P ruminal H2S (P Ruminal H2S was positively correlated with serum sulfate (r = 0.89; P Ruminal acetate concentration was not affected (P = 0.26) by dietary S concentration. Heifers fed the HS diet had lower (P = 0.01) ruminal propionate concentration and tended to have lower (P = 0.06) butyrate concentration than heifers fed the LS diet. Ruminal acetate was greater (P = 0.01) and butyrate was less (P < 0.01) with the high F:C diet than the low F:C diet. Both HS (P = 0.06) and low F:C (P = 0.07) diets tended to reduce urine output. Feeding HS diets reduced SCFA absorption (P < 0.05). In summary, S metabolism in beef heifers was not influenced by the F:C, but HS reduced DMI, inhibited SCFA absorption, and increased urinary S excretion.

  9. Evidence of In Vivo Absorption of Lactate and Modulation of Short Chain Fatty Acid Absorption from the Reticulorumen of Non-Lactating Cattle Fed High Concentrate Diets.

    Directory of Open Access Journals (Sweden)

    Muhammad Qumar

    Full Text Available Short-chain fatty acids (SCFAs and lactate are endproducts of rumen fermentation and important energy sources for the host ruminant. Because their rapid accumulation results in ruminal acidosis, enhancement of the absorption of SCFA and lactate across reticuloruminal wall is instrumental in increasing energy supply and preventing ruminal acidosis in cattle. This study investigated whether the reticuloruminal absorption of SCFAs and lactate was altered by different strategies of high concentrate feeding. Eight rumen-cannulated, non-lactating Holstein cows were fed a forage-only diet (baseline and then gradually adapted over 6 d to a 60% concentrate level. Thereafter, this concentrate-rich diet was fed for 4 wk either continuously (Con; n = 8 or interruptedly (Int; n = 8. Absorption of SCFAs and lactate was determined in vivo from the experimental buffer introduced into the washed reticulorumen. The buffer contained acetate, propionate, butyrate and lactate at a concentration of 60, 30, 10 and 5 mmol/L, respectively and Cr-EDTA as a marker for correcting ruminal water fluxes. The reticuloruminal absorption after 35 and 65 min of buffer incubation was measured at the baseline, after 1 wk of 60% concentrate feeding in the interrupted model (Int-1 and after 4 wk of concentrate feeding in both feeding models (Int-4 and Con-4. Data showed that the absorption rates of individual and total SCFAs during the first 35 min of incubation of Con-4 were highest (~1.7 times compared to baseline, while Int-1 and Int-4 were similar to respective baseline. Lactate was not absorbed during forage-only baseline and 1-wk concentrate feeding, but after 4-wk feeding of concentrates in both models. In conclusion, SCFAs absorption across the reticulorumen of non-lactating cattle was enhanced by the 4-wk continuous concentrate feeding, which seems to be more advantageous in terms of rumen acidosis prevention compared to the interrupted feeding model. The study provides

  10. Effect of dark sweet cherry powder consumption on the gut microbiota, short-chain fatty acids, and biomarkers of gut health in obese db/db mice

    Directory of Open Access Journals (Sweden)

    Jose F. Garcia-Mazcorro

    2018-01-01

    Full Text Available Cherries are fruits containing fiber and bioactive compounds (e.g., polyphenolics with the potential of helping patients with diabetes and weight disorders, a phenomenon likely related to changes in the complex host-microbiota milieu. The objective of this study was to investigate the effect of cherry supplementation on the gut bacterial composition, concentrations of caecal short-chain fatty acids (SCFAs and biomarkers of gut health using an in vivo model of obesity. Obese diabetic (db/db mice received a supplemented diet with 10% cherry powder (supplemented mice, n = 12 for 12 weeks; obese (n = 10 and lean (n = 10 mice served as controls and received a standard diet without cherry. High-throughput sequencing of the 16S rRNA gene and quantitative real-time PCR (qPCR were used to analyze the gut microbiota; SCFAs and biomarkers of gut health were also measured using standard techniques. According to 16S sequencing, supplemented mice harbored a distinct colonic microbiota characterized by a higher abundance of mucin-degraders (i.e., Akkermansia and fiber-degraders (the S24-7 family as well as lower abundances of Lactobacillus and Enterobacteriaceae. Overall this particular cherry-associated colonic microbiota did not resemble the microbiota in obese or lean controls based on the analysis of weighted and unweighted UniFrac distance metrics. qPCR confirmed some of the results observed in sequencing, thus supporting the notion that cherry supplementation can change the colonic microbiota. Moreover, the SCFAs detected in supplemented mice (caproate, methyl butyrate, propionate, acetate and valerate exceeded those concentrations detected in obese and lean controls except for butyrate. Despite the changes in microbial composition and SCFAs, most of the assessed biomarkers of inflammation, oxidative stress, and intestinal health in colon tissues and mucosal cells were similar in all obese mice with and without supplementation. This paper shows

  11. Sources and Formation Processes of Short-Chain Saturated Diacids (C2–C4 in Inhalable Particles (PM10 from Huangshi City, Central China

    Directory of Open Access Journals (Sweden)

    Hongxia Liu

    2017-11-01

    Full Text Available PM10 samples were collected from Huangshi (HS city, Central China during April 2012 to March 2013, and were analyzed for short-chain saturated dicarboxylic acids (diacids using a capillary gas chromatograph (GC. We found that oxalic acid (C2, 318 ± 104 ng·m−3 was the most abundant diacid species, followed by malonic acid (C3, 25.4 ± 9.11 ng·m−3 and succinic acid (C4, 2.09 ± 0.52 ng·m−3. The concentrations of C2 and C4 diacids were highest in winter, followed by summer and spring, and lowest in autumn. C3 diacid was decreased in the order of summer > winter > autumn > spring. Further, the seasonal variations of WSOC (water-soluble organic carbon- and OC (organic carbon-normalized diacid concentrations were similar to those of diacid concentrations, suggesting that both primary emission and secondary production are important sources for diacids in Huangshi (HS aerosols. Strong correlations were found among C2 diacid and the three ions SO42−, NO3−, and NH4+ in summer and winter, suggesting that the species could undergo a similar secondary oxidation processing. C2 had good correlation with K+ in summer and autumn, which indicates an enhanced contribution of combustion sources for C2 diacid. Moreover, according to the ratio of C2/K+, we can conclude that C2 diacid should be formed by a secondary reaction of biomass combustion in HS aerosols, especially in summer and autumn. The ratios of C2/C4 and C3/C4 were compared with those reported in other sites, and the results suggest that HS aerosols should be more photochemically aged than at other urban areas. Principal component analysis of diacids and selected water-soluble inorganic ions over four seasons suggests that HS aerosols are influenced not only from primary emission, but also from secondary reaction. According to the linear relation between C2 and C3 diacids, the results indicate that C2 diacid is formed from the oxidation of hydrocarbon compounds in spring, while it is from

  12. Sublethal Toxic Effects and Induction of gGutathione S-transferase by Short-Chain Chlorinated Paraffins (SCCPs) and C-12 alkane (dodecane) in Xenopus laevis Frog Embryos

    OpenAIRE

    B. Burýšková; L. Bláha; D. Vršková; K. Šimková; B. Maršálek

    2006-01-01

    Short chain chlorinated paraffins (SCCPs) are important industrial chemicals with high persistence in the environment but poorly characterized ecotoxicological effects. We studied embryotoxic effects of commercial mixture of SCCP (carbon length C-12, 56% of chlorine; CP56-12) and non-chlorinated n-alkane (dodecane, C-12) in the 96h Frog Embryo Teratogenesis Assay - Xenopus (FETAX). Only weak lethal effects were observed for both substances (the highest tested concentration 500 mg/L of both ch...

  13. POTENSI SPAGHETTINI KOMPOSIT SEMOLINA DURUM-PATI GANYONG DALAM PEMBENTUKAN SHORT CHAIN FATTY ACID DAN ASAM LAKTAT PADA FERMENTASI MENGGUNAKAN MIKROFLORA FESES MANUSIA (Potential Production of Short Chain Fatty Acid and Lactic Acid from Durum and Canna Starch-Based Spaghettini Through Fermentation by Human Colonic Microflora

    Directory of Open Access Journals (Sweden)

    Stefani Amanda Harmani

    2016-10-01

    Full Text Available Nowadays people have started considering the health beneficial value in selecting food. Government’s demand for utilization of local food and food diversification is also increasing. Considering those reasons, the objective of this study was to create a way of food diversification using local ingredient which has physiological benefits for human health. Resistant starch can improve human colonic health through fermentation by colonic microflora to produce Short Chain Fatty Acid (SCFA and lactic acid. This research was conducted by combining canna starch with semolina durum into a composite flour for spaghettini production. Various type of canna tuber and canna starch proportion were used in the composite flour. Semolina durum contained higher resistant starch (20% than red canna starch (17.7% and green canna starch (15.4%. Combination of durum and red canna starch-based spaghettini produced higher amount of resistant starch, SCFA, and lactic acid than combination of durum and green canna starch- based spaghettini. Durumcanna based spaghettini had the ability to produce SCFA and lactic acid during in vitro fermentation using human colonic microflora although the concentration was lower than those of only durum spaghettini. Keywords: Canna starch, spaghettini, resistant starch, SCFA, lactic acid ABSTRAK Kriteria pemilihan makanan oleh masyarakat kini mulai mempertimbangkan nilai kesehatan dari suatu makanan. Sementara, permintaan pemerintah untuk pemanfaatan bahan baku lokal dan diversifikasi pangan pokok pun semakin meningkat. Oleh karena itu, penelitian ini dilaksanakan untuk mewujudkan penganekaragaman pangan berbasis tepung komposit dari bahan baku lokal yang memiliki nilai fungsional untuk kesehatan kolon. Resistant Starch (RS dapat meningkatkan kesehatan kolon melalui hasil fermentasinya oleh bakteri usus besar yang berupa Short Chain Fatty Acid (SCFA dan asam laktat. Penelitian dilakukan dengan mengkombinasikan pati ganyong dan semolina

  14. Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans.

    Science.gov (United States)

    Tuck, Laura R; Altenbach, Kirsten; Ang, Thiau Fu; Crawshaw, Adam D; Campopiano, Dominic J; Clarke, David J; Marles-Wright, Jon

    2016-02-22

    The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD(+). This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes.

  15. Effects of subacute ruminal acidosis and low feed intake on short-chain fatty acid transporters and flux pathways in Holstein steers.

    Science.gov (United States)

    Laarman, A H; Pederzolli, R-L A; Wood, K M; Penner, G B; McBride, B W

    2016-09-01

    The objective of this study was to investigate the role of protein-mediated transport pathways for short-chain fatty acid flux across the ruminal epithelium, using subacute ruminal acidosis (SARA) and feed restriction as models. Twenty-one Holstein steers (216.8 ± 31.4 kg BW) were individually housed and fed a total mixed ration (TMR) with a 50:50 forage:concentrate ad libitum for 5 d. After the 5 d diet adjustment period, calves were assigned 1 of 3 treatments: control (CTRL) calves were fed the TMR ad libitum on d 1, subacute ruminal acidosis calves were given 25% of their ad libitum DMI on d 1 and then given a barley grain challenge at 30% of ad libitum DMI on d2 (ACID) calves were given 25% of their ad libitum DMI on d 1 and then given a barley grain challenge at 30% of ad libitum DMI on d 2, and feed restriction (FR) calves were given 25% of their ad libitum DMI for 5 d. Reticuloruminal pH was continuously measured during the entire study. At the end of the study, rumen tissue was harvested and acetate and butyrate flux were measured. Selective inhibitors were used to differentiate total flux (TOTAL), protein-mediated flux (PMF), and passive diffusion flux (PDF). The duration that rumen pH was calves compared with CTRL and FR calves (57 ± 90 vs. 519.71 ± 90 vs. 30 ± 90 min/d for CTRL, ACID, and FR, respectively; < 0.01). Total acetate flux was greater in FR than in CTRL (630.6 ± 38.9 vs. 421.1 ± 41.4 nmol/cm × h, respectively; < 0.01), but no difference was observed between CTRL and ACID (421.1 ± 41.4 vs. 455.4 ± 38.9 nmol/cm × h, respectively). Also, total butyrate flux was greater in FR than in CTRL (1,241.9 ± 94.8 vs. 625.5 ± 86.3 nmol/cm × h, respectively; < 0.01), but no difference was detected between CTRL and ACID (625.5 ± 86.3 vs. 716.7 ± 81.0 nmol/cm × h, respectively). For butyrate flux, PMF was greater for FR than for CTRL (479.21 ± 103.9 vs. 99.9 ± 86.3 nmol/cm × h, respectively; < 0.01), but no difference was observed between

  16. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase.

    Science.gov (United States)

    Modig, Tobias; Lidén, Gunnar; Taherzadeh, Mohammad J

    2002-01-01

    The kinetics of furfural inhibition of the enzymes alcohol dehydrogenase (ADH; EC 1.1.1.1), aldehyde dehydrogenase (AlDH; EC 1.2.1.5) and the pyruvate dehydrogenase (PDH) complex were studied in vitro. At a concentration of less than 2 mM furfural was found to decrease the activity of both PDH and AlDH by more than 90%, whereas the ADH activity decreased by less than 20% at the same concentration. Furfural inhibition of ADH and AlDH activities could be described well by a competitive inhibition model, whereas the inhibition of PDH was best described as non-competitive. The estimated K(m) value of AlDH for furfural was found to be about 5 microM, which was lower than that for acetaldehyde (10 microM). For ADH, however, the estimated K(m) value for furfural (1.2 mM) was higher than that for acetaldehyde (0.4 mM). The inhibition of the three enzymes by 5-hydroxymethylfurfural (HMF) was also measured. The inhibition caused by HMF of ADH was very similar to that caused by furfural. However, HMF did not inhibit either AlDH or PDH as severely as furfural. The inhibition effects on the three enzymes could well explain previously reported in vivo effects caused by furfural and HMF on the overall metabolism of Saccharomyces cerevisiae, suggesting a critical role of these enzymes in the observed inhibition. PMID:11964178

  17. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Se-Hee [McAllister Heart Institute, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Schmitt, Christopher E.; Woolls, Melissa J. [McAllister Heart Institute, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511 (United States); Holland, Melinda B. [McAllister Heart Institute, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Kim, Jun-Dae [Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511 (United States); Jin, Suk-Won, E-mail: suk-won.jin@yale.edu [Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511 (United States)

    2013-01-25

    Highlights: ► VEGF-A signaling regulates the segregation of axial vessels. ► VEGF-A signaling is mediated by PKC and ERK in this process. ► Ectopic activation of ERK is sufficient to rescue defects in vessel segregation. -- Abstract: Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A) signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3 K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process.

  18. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development

    International Nuclear Information System (INIS)

    Kim, Se-Hee; Schmitt, Christopher E.; Woolls, Melissa J.; Holland, Melinda B.; Kim, Jun-Dae; Jin, Suk-Won

    2013-01-01

    Highlights: ► VEGF-A signaling regulates the segregation of axial vessels. ► VEGF-A signaling is mediated by PKC and ERK in this process. ► Ectopic activation of ERK is sufficient to rescue defects in vessel segregation. -- Abstract: Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A) signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3 K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process

  19. cAMP Signaling Regulates Histone H3 Phosphorylation and Mitotic Entry Through a Disruption of G2 Progression

    OpenAIRE

    Rodriguez-Collazo, Pedro; Snyder, Sara K.; Chiffer, Rebecca C.; Bressler, Erin A.; Voss, Ty C.; Anderson, Eric P.; Genieser, Hans-Gottfried; Smith, Catharine L.

    2008-01-01

    cAMP signaling is known to have significant effects on cell growth, either inhibitory or stimulatory depending on the cell type. Study of cAMP-induced growth inhibition in mammalian somatic cells has focused mainly on the combined role of protein kinase A (PKA) and mitogen-activated protein (MAP) kinases in regulation of progression through the G1 phase of the cell cycle. Here we show that cAMP signaling regulates histone H3 phosphorylation in a cell cycle-dependent fashion, increasing it in ...

  20. Comparative genomics of aldehyde dehydrogenase 5a1 (succinate semialdehyde dehydrogenase and accumulation of gamma-hydroxybutyrate associated with its deficiency

    Directory of Open Access Journals (Sweden)

    Malaspina Patrizia

    2009-01-01

    Full Text Available Abstract Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5A1 [ALDH5A1]; locus 6p22 occupies a central position in central nervous system (CNS neurotransmitter metabolism as one of two enzymes necessary for γ-aminobutyric acid (GABA recycling from the synaptic cleft. Its importance is highlighted by the neurometabolic disease associated with its inherited deficiency in humans, as well as the severe epileptic phenotype observed in Aldh5a1-/- knockout mice. Expanding evidence now suggests, however, that even subtle decreases in human SSADH activity, associated with rare and common single nucleotide polymorphisms, may produce subclinical pathological effects. SSADH, in conjunction with aldo-keto reductase 7A2 (AKR7A2, represent two neural enzymes responsible for further catabolism of succinic semialdehyde, producing either succinate (SSADH or γ-hydroxybutyrate (GHB; AKR7A2. A GABA analogue, GHB is a short-chain fatty alcohol with unusual properties in the CNS and a long pharmacological history. Moreover, SSADH occupies a further role in the CNS as the enzyme responsible for further metabolism of the lipid peroxidation aldehyde 4-hydroxy-2-nonenal (4-HNE, an intermediate known to induce oxidant stress. Accordingly, subtle decreases in SSADH activity may have the capacity to lead to regional accumulation of neurotoxic intermediates (GHB, 4-HNE. Polymorphisms in SSADH gene structure may also associate with quantitative traits, including intelligence quotient and life expectancy. Further population-based studies of human SSADH activity promise to reveal additional properties of its function and additional roles in CNS tissue.

  1. A new method for the determination of short-chain fatty acids from the aliphatic series in wines by headspace solid-phase microextraction-gas chromatography-ion trap mass spectrometry.

    Science.gov (United States)

    Olivero, Sergio J Pérez; Trujillo, Juan P Pérez

    2011-06-24

    A new analytical method for the determination of nine short-chain fatty acids (acetic, propionic, isobutyric, butyric, isovaleric, 2-methylbutyric, hexanoic, octanoic and decanoic acids) in wines using the automated HS/SPME-GC-ITMS technique was developed and optimised. Five different SPME fibers were tested and the influence of different factors such as temperature and time of extraction, temperature and time of desorption, pH, strength ionic, tannins, anthocyans, SO(2), sugar and ethanol content were studied and optimised using model solutions. Some analytes showed matrix effect so a study of recoveries was performed. The proposed HS/SPME-GC-ITMS method, that covers the concentration range of the different analytes in wines, showed wide linear ranges, values of repeatability and reproducibility lower than 4.0% of RSD and detection limits between 3 and 257 μgL(-1), lower than the olfactory thresholds. The optimised method is a suitable technique for the quantitative analysis of short-chain fatty acids from the aliphatic series in real samples of white, rose and red wines. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Cloning and characterization of a galactitol 2-dehydrogenase from Rhizobium legumenosarum and its application in D-tagatose production.

    Science.gov (United States)

    Jagtap, Sujit Sadashiv; Singh, Ranjitha; Kang, Yun Chan; Zhao, Huimin; Lee, Jung-Kul

    2014-05-10

    Galactitol 2-dehydrogenase (GDH) belongs to the protein subfamily of short-chain dehydrogenases/reductases and can be used to produce optically pure building blocks and for the bioconversion of bioactive compounds. An NAD(+)-dependent GDH from Rhizobium leguminosarum bv. viciae 3841 (RlGDH) was cloned and overexpressed in Escherichia coli. The RlGDH protein was purified as an active soluble form using His-tag affinity chromatography. The molecular mass of the purified enzyme was estimated to be 28kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 114kDa by gel filtration chromatography, suggesting that the enzyme is a homotetramer. The enzyme has an optimal pH and temperature of 9.5 and 35°C, respectively. The purified recombinant RlGDH catalyzed the oxidation of a wide range of substrates, including polyvalent aliphatic alcohols and polyols, to the corresponding ketones and ketoses. Among various polyols, galactitol was the preferred substrate of RlGDH with a Km of 8.8mM, kcat of 835min(-1) and a kcat/Km of 94.9min(-1)mM(-1). Although GDHs have been characterized from a few other sources, RlGDH is distinguished from other GDHs by its higher specific activity for galactitol and broad substrate spectrum, making RlGDH a good choice for practical applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Autodisplay of active sorbitol dehydrogenase (SDH) yields a whole cell biocatalyst for the synthesis of rare sugars.

    Science.gov (United States)

    Jose, Joachim; von Schwichow, Steffen

    2004-04-02

    Whole cell biocatalysts are attractive technological tools for the regio- and enantioselective synthesis of products, especially from substrates with several identical reactive groups. In the present study, a whole cell biocatalyst for the synthesis of rare sugars from polyalcohols was constructed. For this purpose, sorbitol dehydrogenase (SDH) from Rhodobacter sphaeroides, a member of the short-chain dehydrogenase/reductase (SDR) family, was expressed on the surface of Escherichia coli using Autodisplay. Autodisplay is an efficient surface display system for Gram-negative bacteria and is based on the autotransporter secretion pathway. Transport of SDH to the outer membrane was monitored by SDS-PAGE and Western blotting of different cell fractions. The surface exposure of the enzyme could be verified by immunofluorescence microscopy and fluorescence activated cell sorting (FACS). The activity of whole cells displaying SDH at the surface was determined in an optical test. Specific activities were found to be 12 mU per 3.3 x 10(8) cells for the conversion of D-glucitol (sorbitol) to D-fructose, 7 mU for the conversion D-galactitol to D-tagatose, and 17 mU for the conversion of L-arabitol to L-ribulose. The whole cell biocatalyst obtained by surface display of SDH could also produce D-glucitol from D-fructose (29 mU per 3.3 x 10(8) cells).

  4. Discovery of nonsteroidal 17beta-hydroxysteroid dehydrogenase 1 inhibitors by pharmacophore-based screening of virtual compound libraries.

    Science.gov (United States)

    Schuster, Daniela; Nashev, Lyubomir G; Kirchmair, Johannes; Laggner, Christian; Wolber, Gerhard; Langer, Thierry; Odermatt, Alex

    2008-07-24

    17Beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) plays a pivotal role in the local synthesis of the most potent estrogen estradiol. Its expression is a prognostic marker for the outcome of patients with breast cancer and inhibition of 17beta-HSD1 is currently under consideration for breast cancer prevention and treatment. We aimed to identify nonsteroidal 17beta-HSD1 inhibitor scaffolds by virtual screening with pharmacophore models built from crystal structures containing steroidal compounds. The most promising model was validated by comparing predicted and experimentally determined inhibitory activities of several flavonoids. Subsequently, a virtual library of nonsteroidal compounds was screened against the 3D pharmacophore. Analysis of 14 selected compounds yielded four that inhibited the activity of human 17beta-HSD1 (IC 50 below 50 microM). Specificity assessment of identified 17beta-HSD1 inhibitors emphasized the importance of including related short-chain dehydrogenase/reductase (SDR) members to analyze off-target effects. Compound 29 displayed at least 10-fold selectivity over the related SDR enzymes tested.

  5. Structural studies of cinnamoyl-CoA reductase and cinnamyl-alcohol dehydrogenase, key enzymes of monolignol biosynthesis.

    Science.gov (United States)

    Pan, Haiyun; Zhou, Rui; Louie, Gordon V; Mühlemann, Joëlle K; Bomati, Erin K; Bowman, Marianne E; Dudareva, Natalia; Dixon, Richard A; Noel, Joseph P; Wang, Xiaoqiang

    2014-09-01

    The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates. © 2014 American Society of Plant Biologists. All rights reserved.

  6. Enhanced xylitol production: Expression of xylitol dehydrogenase from Gluconobacter oxydans and mixed culture of resting cell.

    Science.gov (United States)

    Qi, Xiang-Hui; Zhu, Jing-Fei; Yun, Jun-Hua; Lin, Jing; Qi, Yi-Lin; Guo, Qi; Xu, Hong

    2016-09-01

    Xylitol has numerous applications in food and pharmaceutical industry, and it can be biosynthesized by microorganisms. In the present study, xdh gene, encoding xylitol dehydrogenase (XDH), was cloned from the genome of Gluconobacter oxydans CGMCC 1.49 and overexpressed in Escherichia coli BL21. Sequence analysis revealed that XDH has a TGXXGXXG NAD(H)-binding motif and a YXXXK active site motif, and belongs to the short-chain dehydrogenase/reductase family. And then, the enzymatic properties and kinetic parameter of purified recombinant XDH were investigated. Subsequently, transformations of xylitol from d-xylulose and d-arabitol, respectively, were studied through mixed culture of resting cells of G. oxydans wild-type strain and recombinant strain BL21-xdh. We obtained 28.80 g/L xylitol by mixed culture from 30 g/L d-xylulose in 28 h. The production was increased by more than three times as compared with that of wild-type strain. Furthermore, 25.10 g/L xylitol was produced by the mixed culture from 30 g/L d-arabitol in 30 h with a yield of 0.837 g/g, and the max volumetric productivity of 0.990 g/L h was obtained at 22 h. These contrast to the fact that wild-type strain G. oxydans only produced 8.10 g/L xylitol in 30 h with a yield of 0.270 g/g. To our knowledge, these values are the highest among the reported yields and productivity efficiencies of xylitol from d-arabitol with engineering strains. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Role of tryptophan 95 in substrate specificity and structural stability of Sulfolobus solfataricus alcohol dehydrogenase.

    Science.gov (United States)

    Pennacchio, Angela; Esposito, Luciana; Zagari, Adriana; Rossi, Mosè; Raia, Carlo A

    2009-09-01

    A mutant of the thermostable NAD(+)-dependent (S)-stereospecific alcohol dehydrogenase from Sulfolobus solfataricus (SsADH) which has a single substitution, Trp95Leu, located at the substrate binding pocket, was fully characterized to ascertain the role of Trp95 in discriminating between chiral secondary alcohols suggested by the wild-type SsADH crystallographic structure. The Trp95Leu mutant displays no apparent activity with short-chain primary and secondary alcohols and poor activity with aromatic substrates and coenzyme. Moreover, the Trp --> Leu substitution affects the structural stability of the archaeal ADH, decreasing its thermal stability without relevant changes in secondary structure. The double mutant Trp95Leu/Asn249Tyr was also purified to assist in crystallographic analysis. This mutant exhibits higher activity but decreased affinity toward aliphatic alcohols, aldehydes as well as NAD(+) and NADH compared to the wild-type enzyme. The crystal structure of the Trp95Leu/Asn249Tyr mutant apo form, determined at 2.0 A resolution, reveals a large local rearrangement of the substrate site with dramatic consequences. The Leu95 side-chain conformation points away from the catalytic metal center and the widening of the substrate site is partially counteracted by a concomitant change of Trp117 side chain conformation. Structural changes at the active site are consistent with the reduced activity on substrates and decreased coenzyme binding.

  8. Cloning, expression and characterization of alcohol dehydrogenases in the silkworm Bombyx mori

    Directory of Open Access Journals (Sweden)

    Nan Wang

    2011-01-01

    Full Text Available Alcohol dehydrogenases (ADH are a class of enzymes that catalyze the reversible oxidation of alcohols to corresponding aldehydes or ketones, by using either nicotinamide adenine dinucleotide (NAD or nicotinamide adenine dinucleotide phosphate (NADP, as coenzymes. In this study, a short-chain ADH gene was identified in Bombyx mori by 5'-RACE PCR. This is the first time the coding region of BmADH has been cloned, expressed, purified and then characterized. The cDNA fragment encoding the BmADH protein was amplified from a pool of silkworm cDNAs by PCR, and then cloned into E. coli expression vector pET-30a(+. The recombinant His-tagged BmADH protein was expressed in E. coli BL21 (DE3, and then purified by metal chelating affinity chromatography. The soluble recombinant BmADH, produced at low-growth temperature, was instrumental in catalyzing the ethanol-dependent reduction of NAD+, thereby indicating ethanol as one of the substrates of BmADH.

  9. 21 CFR 862.1670 - Sorbitol dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in serum...

  10. Asymmetric reduction of ketones and β-keto esters by (S)-1-phenylethanol dehydrogenase from denitrifying bacterium Aromatoleum aromaticum.

    Science.gov (United States)

    Dudzik, A; Snoch, W; Borowiecki, P; Opalinska-Piskorz, J; Witko, M; Heider, J; Szaleniec, M

    2015-06-01

    Enzyme-catalyzed enantioselective reductions of ketones and keto esters have become popular for the production of homochiral building blocks which are valuable synthons for the preparation of biologically active compounds at industrial scale. Among many kinds of biocatalysts, dehydrogenases/reductases from various microorganisms have been used to prepare optically pure enantiomers from carbonyl compounds. (S)-1-phenylethanol dehydrogenase (PEDH) was found in the denitrifying bacterium Aromatoleum aromaticum (strain EbN1) and belongs to the short-chain dehydrogenase/reductase family. It catalyzes the stereospecific oxidation of (S)-1-phenylethanol to acetophenone during anaerobic ethylbenzene mineralization, but also the reverse reaction, i.e., NADH-dependent enantioselective reduction of acetophenone to (S)-1-phenylethanol. In this work, we present the application of PEDH for asymmetric reduction of 42 prochiral ketones and 11 β-keto esters to enantiopure secondary alcohols. The high enantioselectivity of the reaction is explained by docking experiments and analysis of the interaction and binding energies of the theoretical enzyme-substrate complexes leading to the respective (S)- or (R)-alcohols. The conversions were carried out in a batch reactor using Escherichia coli cells with heterologously produced PEDH as whole-cell catalysts and isopropanol as reaction solvent and cosubstrate for NADH recovery. Ketones were converted to the respective secondary alcohols with excellent enantiomeric excesses and high productivities. Moreover, the progress of product formation was studied for nine para-substituted acetophenone derivatives and described by neural network models, which allow to predict reactor behavior and provides insight on enzyme reactivity. Finally, equilibrium constants for conversion of these substrates were derived from the progress curves of the reactions. The obtained values matched very well with theoretical predictions.

  11. Histochemical localization of cytokinin oxidase/dehydrogenase ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    dehydrogenase, Withania somnifera, CKX localization. INTRODUCTION. Cytokinin (Ck) is a plant hormone that plays a crucial role in many fundamental processes of plant development throughout the life cycle. These include ...

  12. Shikimate dehydrogenase from Pinu sylvestris L. needles

    International Nuclear Information System (INIS)

    Osipov, V.I.; Shein, I.V.

    1986-01-01

    Shikimate dehydrogenase was isolated by extraction from pine needles and partially purified by fractionation with ammonium sulfate. In conifers, in contrast to other plants, all three isoenzymes of shikimate dehydrogenase exhibit activity not only with NADP + , but also with NAD + . The values of K/sub m/ for shikimate, when NADP + and NAD + are used as cofactors, are 0.22 and 1.13 mM, respectively. The enzyme is maximally active at pH 10 with both cofactors. It is suggested that NAD-dependent shikimate dehydrogenase catalyzes the initial reaction of the alternative pathway of the conversion of shikimic acid to hydroxybenzoic acid. The peculiarities of the organization and regulation of the initial reactions of the shikimate pathway in conifers and in plants with shikimate dehydrogenase absolutely specific for NADP are discussed

  13. Phosphorylation site on yeast pyruvate dehydrogenase complex

    International Nuclear Information System (INIS)

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the 32 P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation

  14. Albumin-induced apoptosis of glomerular parietal epithelial cells is modulated by extracellular signal-regulated kinase 1/2

    Science.gov (United States)

    Ohse, Takamoto; Krofft, Ron D.; Wu, Jimmy S.; Eddy, Allison A.; Pippin, Jeffrey W.; Shankland, Stuart J.

    2012-01-01

    Background. The biological role(s) of glomerular parietal epithelial cells (PECs) is not fully understood in health or disease. Given its location, PECs are constantly exposed to low levels of filtered albumin, which is increased in nephrotic states. We tested the hypothesis that PECs internalize albumin and increased uptake results in apoptosis. Methods. Confocal microscopy of immunofluorescent staining and immunohistochemistry were used to demonstrate albumin internalization in PECs and to quantitate albumin uptake in normal mice and rats as well as experimental models of membranous nephropathy, minimal change disease/focal segmental glomerulosclerosis and protein overload nephropathy. Fluorescence-activated cell sorting analysis was performed on immortalized cultured PECs exposed to fluorescein isothiocyanate (FITC)-labeled albumin in the presence of an endosomal inhibitor or vehicle. Apoptosis was measured by Hoechst staining in cultured PECs exposed to bovine serum albumin. Levels of phosphorylated extracellular signal-regulated kinase 1 and 2 (p-ERK1/2) were restored by retroviral infection of mitogen-activated protein kinase (MEK) 1/2 and reduced by U0126 in PECs exposed to high albumin levels in culture and apoptosis measured by Hoechst staining. Results. PECs internalized albumin normally, and this was markedly increased in all of the experimental disease models (P PECs also internalize FITC-labeled albumin, which was reduced by endosomal inhibition. A consequence of increased albumin internalization was PEC apoptosis in vitro and in vivo. Candidate signaling pathways underlying these events were examined. Data showed markedly reduced levels of phosphorylated extracellular signal-regulated kinase 1 and 2 (ERK1/2) in PECs exposed to high albumin levels in nephropathy and in culture. A role for ERK1/2 in limiting albumin-induced apoptosis was shown by restoring p-ERK1/2 by retroviral infection, which reduced apoptosis in cultured PECs, while a forced

  15. Protein kinase C and extracellular signal-regulated kinase regulate movement, attachment, pairing and egg release in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Margarida Ressurreição

    2014-06-01

    Full Text Available Protein kinases C (PKCs and extracellular signal-regulated kinases (ERKs are evolutionary conserved cell signalling enzymes that coordinate cell function. Here we have employed biochemical approaches using 'smart' antibodies and functional screening to unravel the importance of these enzymes to Schistosoma mansoni physiology. Various PKC and ERK isotypes were detected, and were differentially phosphorylated (activated throughout the various S. mansoni life stages, suggesting isotype-specific roles and differences in signalling complexity during parasite development. Functional kinase mapping in adult worms revealed that activated PKC and ERK were particularly associated with the adult male tegument, musculature and oesophagus and occasionally with the oesophageal gland; other structures possessing detectable activated PKC and/or ERK included the Mehlis' gland, ootype, lumen of the vitellaria, seminal receptacle and excretory ducts. Pharmacological modulation of PKC and ERK activity in adult worms using GF109203X, U0126, or PMA, resulted in significant physiological disturbance commensurate with these proteins occupying a central position in signalling pathways associated with schistosome muscular activity, neuromuscular coordination, reproductive function, attachment and pairing. Increased activation of ERK and PKC was also detected in worms following praziquantel treatment, with increased signalling associated with the tegument and excretory system and activated ERK localizing to previously unseen structures, including the cephalic ganglia. These findings support roles for PKC and ERK in S. mansoni homeostasis, and identify these kinase groups as potential targets for chemotherapeutic treatments against human schistosomiasis, a neglected tropical disease of enormous public health significance.

  16. Gravity loading induces adenosine triphosphate release and phosphorylation of extracellular signal-regulated kinases in human periodontal ligament cells.

    Science.gov (United States)

    Ito, Mai; Arakawa, Toshiya; Okayama, Miki; Shitara, Akiko; Mizoguchi, Itaru; Takuma, Taishin

    2014-11-01

    The periodontal ligament (PDL) receives mechanical stress (MS) from dental occlusion or orthodontic tooth movement. Mechanical stress is thought to be a trigger for remodeling of the PDL and alveolar bone, although its signaling mechanism is still unclear. So we investigated the effect of MS on adenosine triphosphate (ATP) release and extracellular signal-regulated kinases (ERK) phosphorylation in PDL cells. Mechanical stress was applied to human PDL cells as centrifugation-mediated gravity loading. Apyrase, Ca(2+)-free medium and purinergic receptor agonists and antagonists were utilized to analyze the contribution of purinergic receptors to ERK phosphorylation. Gravity loading and ATP increased ERK phosphorylation by 5 and 2.5 times, respectively. Gravity loading induced ATP release from PDL cells by tenfold. Apyrase and suramin diminished ERK phosphorylation induced by both gravity loading and ATP. Under Ca(2+)-free conditions the phosphorylation by gravity loading was partially decreased, whereas ATP-induced phosphorylation was unaffected. Receptors P2Y4 and P2Y6 were prominently expressed in the PDL cells. Gravity loading induced ATP release and ERK phosphorylation in PDL fibroblasts, and ATP signaling via P2Y receptors was partially involved in this phosphorylation, which in turn would enhance gene expression for the remodeling of PDL tissue during orthodontic tooth movement. © 2013 Wiley Publishing Asia Pty Ltd.

  17. Extracellular signal-regulated kinase activation is required for consolidation and reconsolidation of memory at an early stage of ontogenesis.

    Science.gov (United States)

    Languille, Solène; Davis, Sabrina; Richer, Paulette; Alcacer, Cristina; Laroche, Serge; Hars, Bernard

    2009-11-01

    The ability to form long-term memories exists very early during ontogeny; however, the properties of early memory processes, brain structures involved and underlying cellular mechanisms are poorly defined. Here, we examine the role of extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase/ERK signaling cascade, which is crucial for adult memory, in the consolidation and reconsolidation of an early memory using a conditioned taste aversion paradigm in 3-day-old rat pups. We show that intraperitoneal injection of SL327, the upstream mitogen-activated protein kinase kinase inhibitor, impairs both consolidation and reconsolidation of early memory, leaving short-term memory after acquisition and after reactivation intact. The amnesic effect of SL327 diminishes with increasing delays after acquisition and reactivation. Biochemical analyses revealed ERK hyperphosphorylation in the amygdala but not the hippocampus following acquisition, suggesting functional activation of the amygdala as early as post-natal day 3, although there was no clear evidence for amygdalar ERK activation after reactivation. These results indicate that, despite an immature brain, the basic properties of memory and at least some of the molecular mechanisms and brain structures implicated in aversion memory share a number of similarities with the adult and emerge very early during ontogeny.

  18. Cytoplasmic vacuolation in cultured rat astrocytes induced by an organophosphorus agent requires extracellular signal-regulated kinase activation

    International Nuclear Information System (INIS)

    Isobe, Ichiro; Maeno, Yoshitaka; Nagao, Masataka; Iwasa, Mineo; Koyama, Hiroyoshi; Seko-Nakamura, Yoshimi; Monma-Ohtaki, Jun

    2003-01-01

    There are various toxic chemicals that cause cell death. However, in certain cases deleterious agents elicit various cellular responses prior to cell death. To determine the cellular mechanisms by which such cellular responses are induced is important, but sufficient attention has not been paid to this issue to date. In this study, we showed the characteristic effects of an organophosphorus (OP) agent, bis(pinacolyl methyl)phosphonate (BPMP), which we synthesized for the study of OP nerve agents, on cultured rat astrocytes. Morphologically, BPMP induced cytoplasmic vacuolation and stellation in the rat astrocytes. Cytoplasmic vacuolation is a cell pathological change observed, for example, in vacuolar degeneration, and stellation has been reported in astrocytic reactions against various stimuli. By pretreatment with cycloheximide, a protein synthesis inhibitor, stellation was inhibited, although vacuolation was not. Cell staining with a mitochondrion-selective dye indicated that the vacuolation probably occurs in the mitochondria that are swollen and vacuolatred in the center. Interestingly, the extracellular signal-regulated kinase (ERK) cascade inhibitor inhibited vacuolation and, to some extent, stellation. These results suggest that the ERK signaling cascade is important for the induction of mitochondrial vacuolation. We expect that a detailed study of these astrocytic reactions will provide us new perspectives regarding the variation and pathological significance of cell morphological changes, such as vacuolar degeneration, and also the mechanisms underlying various neurological disorders

  19. Activation of the Extracellular Signal-Regulated Kinase Signaling Is Critical for Human Umbilical Cord Mesenchymal Stem Cell Osteogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Chen-Shuang Li

    2016-01-01

    Full Text Available Human umbilical cord mesenchymal stem cells (hUCMSCs are recognized as candidate progenitor cells for bone regeneration. However, the mechanism of hUCMSC osteogenesis remains unclear. In this study, we revealed that mitogen-activated protein kinases (MAPKs signaling is involved in hUCMSC osteogenic differentiation in vitro. Particularly, the activation of c-Jun N-terminal kinases (JNK and p38 signaling pathways maintained a consistent level in hUCMSCs through the entire 21-day osteogenic differentiation period. At the same time, the activation of extracellular signal-regulated kinases (ERK signaling significantly increased from day 5, peaked at day 9, and declined thereafter. Moreover, gene profiling of osteogenic markers, alkaline phosphatase (ALP activity measurement, and alizarin red staining demonstrated that the application of U0126, a specific inhibitor for ERK activation, completely prohibited hUCMSC osteogenic differentiation. However, when U0126 was removed from the culture at day 9, ERK activation and osteogenic differentiation of hUCMSCs were partially recovered. Together, these findings demonstrate that the activation of ERK signaling is essential for hUCMSC osteogenic differentiation, which points out the significance of ERK signaling pathway to regulate the osteogenic differentiation of hUCMSCs as an alternative cell source for bone tissue engineering.

  20. Inhibition of Extracellular Signal-Regulated Kinases Ameliorates Hypertension-Induced Renal Vascular Remodeling in Rat Models

    Directory of Open Access Journals (Sweden)

    Li Jing

    2011-11-01

    Full Text Available The aim of this study is to investigate the effect of the extracellular signal-regulated kinases 1/2 (ERK1/2 inhibitor, PD98059, on high blood pressure and related vascular changes. Blood pressure was recorded, thicknesses of renal small artery walls were measured and ERK1/2 immunoreactivity and erk2 mRNA in renal vascular smooth muscle cells (VSMCs and endothelial cells were detected by immunohistochemistry and in situ hybridization in normotensive wistar kyoto (WKY rats, spontaneously hypertensive rats (SHR and PD98059-treated SHR. Compared with normo-tensive WKY rats, SHR developed hypertension at 8 weeks of age, thickened renal small artery wall and asymmetric arrangement of VSMCs at 16 and 24 weeks of age. Phospho-ERK1/2 immunoreactivity and erk2 mRNA expression levels were increased in VSMCs and endothelial cells of the renal small arteries in the SHR. Treating SHR with PD98059 reduced the spontaneous hypertension-induced vascular wall thickening. This effect was associated with suppressions of erk2 mRNA expression and ERK1/2 phosphorylation in VSMCs and endothelial cells of the renal small arteries. It is concluded that inhibition of ERK1/2 ameliorates hypertension induced vascular remodeling in renal small arteries.

  1. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Kelsey; Amaya, Moushimi [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Mueller, Claudius [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Roberts, Brian [Leidos Health Life Sciences, 5202 Presidents Court, Suite 110, Frederick, MD (United States); Kehn-Hall, Kylene; Bailey, Charles [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Petricoin, Emanuel [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Narayanan, Aarthi, E-mail: anaraya1@gmu.edu [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States)

    2014-11-15

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells.

  2. A balance of FGF and BMP signals regulates cell cycle exit and Equarin expression in lens cells

    Science.gov (United States)

    Jarrin, Miguel; Pandit, Tanushree; Gunhaga, Lena

    2012-01-01

    In embryonic and adult lenses, a balance of cell proliferation, cell cycle exit, and differentiation is necessary to maintain physical function. The molecular mechanisms regulating the transition of proliferating lens epithelial cells to differentiated primary lens fiber cells are poorly characterized. To investigate this question, we used gain- and loss-of-function analyses to modulate fibroblast growth factor (FGF) and/or bone morphogenetic protein (BMP) signals in chick lens/retina explants. Here we show that FGF activity plays a key role for proliferation independent of BMP signals. Moreover, a balance of FGF and BMP signals regulates cell cycle exit and the expression of Ccdc80 (also called Equarin), which is expressed at sites where differentiation of lens fiber cells occurs. BMP activity promotes cell cycle exit and induces Equarin expression in an FGF-dependent manner. In contrast, FGF activity is required but not sufficient to induce cell cycle exit or Equarin expression. Furthermore, our results show that in the absence of BMP activity, lens cells have increased cell cycle length or are arrested in the cell cycle, which leads to decreased cell cycle exit. Taken together, these findings suggest that proliferation, cell cycle exit, and early differentiation of primary lens fiber cells are regulated by counterbalancing BMP and FGF signals. PMID:22718906

  3. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    International Nuclear Information System (INIS)

    Voss, Kelsey; Amaya, Moushimi; Mueller, Claudius; Roberts, Brian; Kehn-Hall, Kylene; Bailey, Charles; Petricoin, Emanuel; Narayanan, Aarthi

    2014-01-01

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells

  4. Inhibition of apoptosis signal-regulating kinase 1 alters the wound epidermis and enhances auricular cartilage regeneration.

    Directory of Open Access Journals (Sweden)

    Qian-Shi Zhang

    Full Text Available Why regeneration does not occur in mammals remains elusive. In lower vertebrates, epimorphic regeneration of the limb is directed by the wound epidermis, which controls blastema formation to promote regrowth of the appendage. Herein, we report that knockout (KO or inhibition of Apoptosis Signal-regulated Kinase-1 (ASK1, also known as mitogen-activated protein kinase kinase kinase 5 (MAP3K5, after full thickness ear punch in mice prolongs keratinocyte activation within the wound epidermis and promotes regeneration of auricular cartilage. Histological analysis showed the ASK1 KO ears displayed enhanced protein markers associated with blastema formation, hole closure and regeneration of auricular cartilage. At seven days after punch, the wound epidermis morphology was markedly different in the KO, showing a thickened stratum corneum with rounded cell morphology and a reduction of both the granular cell layer and decreased expression of filament aggregating protein. In addition, cytokeratin 6 was expressed in the stratum spinosum and granulosum. Topical application of inhibitors of ASK1 (NQDI-1, the upstream ASK1 activator, calcium activated mitogen kinase 2 (KN93, or the downstream target, c-Jun N-terminal kinase (SP600125 also resulted in enhanced regeneration; whereas inhibition of the other downstream target, the p38 α/β isoforms, (SB203580 had no effect. The results of this investigation indicate ASK1 inhibition prolongs keratinocyte and blastemal cell activation leading to ear regeneration.

  5. Inhibition of apoptosis signal-regulating kinase 1 alters the wound epidermis and enhances auricular cartilage regeneration

    Science.gov (United States)

    Zhang, Qian-Shi; Kurpad, Deepa S.; Mahoney, My G.; Steinbeck, Marla J.

    2017-01-01

    Why regeneration does not occur in mammals remains elusive. In lower vertebrates, epimorphic regeneration of the limb is directed by the wound epidermis, which controls blastema formation to promote regrowth of the appendage. Herein, we report that knockout (KO) or inhibition of Apoptosis Signal-regulated Kinase-1 (ASK1), also known as mitogen-activated protein kinase kinase kinase 5 (MAP3K5), after full thickness ear punch in mice prolongs keratinocyte activation within the wound epidermis and promotes regeneration of auricular cartilage. Histological analysis showed the ASK1 KO ears displayed enhanced protein markers associated with blastema formation, hole closure and regeneration of auricular cartilage. At seven days after punch, the wound epidermis morphology was markedly different in the KO, showing a thickened stratum corneum with rounded cell morphology and a reduction of both the granular cell layer and decreased expression of filament aggregating protein. In addition, cytokeratin 6 was expressed in the stratum spinosum and granulosum. Topical application of inhibitors of ASK1 (NQDI-1), the upstream ASK1 activator, calcium activated mitogen kinase 2 (KN93), or the downstream target, c-Jun N-terminal kinase (SP600125) also resulted in enhanced regeneration; whereas inhibition of the other downstream target, the p38 α/β isoforms, (SB203580) had no effect. The results of this investigation indicate ASK1 inhibition prolongs keratinocyte and blastemal cell activation leading to ear regeneration. PMID:29045420

  6. Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation

    KAUST Repository

    Chen, Hao

    2011-01-01

    Root architecture is continuously shaped in a manner that helps plants to better adapt to the environment. Gene regulation at the transcriptional or post-transcriptional levels largely controls this environmental response. Recently, RNA silencing has emerged as an important player in gene regulation and is involved in many aspects of plant development, including lateral root formation. In a recent study, we found that FIERY1, a bifunctional abiotic stress and abscisic acid (ABA) signaling regulator and an endogenous RNA silencing suppressor, mediates auxin response during lateral root formation in Arabidopsis. We proposed that FRY1 regulates lateral root development through its activity on adenosine 3,5-bisphosphate (PAP), a strong inhibitor of exoribonucleases (XRNs). Interestingly, some of the phenotypes of fry1, such as enhanced response to light in repressing hypocotyl elongation and hypersensitivity to ABA in lateral root growth, are opposite to those of another light- and ABA-signaling mutant, hy5. Here we analyzed the hy5 fry1 double mutant for root and hypocotyl growth. We found that the hy5 mutation can suppress the enhanced light sensitivity in fry1 hypocotyl elongation and restore the lateral root formation. The genetic interaction between HY5 and FRY1 indicates that HY5 and FRY1 may act in overlapping pathways that mediate light signaling and lateral root development. © 2011 Landes Bioscience.

  7. The human Na+/H+ exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2

    DEFF Research Database (Denmark)

    Hendus-Altenburger, Ruth; Pedraz Cuesta, Elena; Olesen, Christina Wilkens

    2016-01-01

    BACKGROUND: Extracellular signal-regulated kinase 2 (ERK2) is an S/T kinase with more than 200 known substrates, and with critical roles in regulation of cell growth and differentiation and currently no membrane proteins have been linked to ERK2 scaffolding. METHODS AND RESULTS: Here, we identify...

  8. Extracellular signal-regulated protein kinases 1 and 2 activation by addictive drugs: a signal toward pathological adaptation.

    Science.gov (United States)

    Pascoli, Vincent; Cahill, Emma; Bellivier, Frank; Caboche, Jocelyne; Vanhoutte, Peter

    2014-12-15

    Addiction is a chronic and relapsing psychiatric disorder that is thought to occur in vulnerable individuals. Synaptic plasticity evoked by drugs of abuse in the so-called neuronal circuits of reward has been proposed to underlie behavioral adaptations that characterize addiction. By increasing dopamine in the striatum, addictive drugs alter the balance of dopamine and glutamate signals converging onto striatal medium-sized spiny neurons (MSNs) and activate intracellular events involved in long-term behavioral alterations. Our laboratory contributed to the identification of salient molecular changes induced by administration of addictive drugs to rodents. We pioneered the observation that a common feature of addictive drugs is to activate, by a double tyrosine/threonine phosphorylation, the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the striatum, which control a plethora of substrates, some of them being critically involved in cocaine-mediated molecular and behavioral adaptations. Herein, we review how the interplay between dopamine and glutamate signaling controls cocaine-induced ERK1/2 activation in MSNs. We emphasize the key role of N-methyl-D-aspartate receptor potentiation by D1 receptor to trigger ERK1/2 activation and its subsequent nuclear translocation where it modulates both epigenetic and genetic processes engaged by cocaine. We discuss how cocaine-induced long-term synaptic and structural plasticity of MSNs, as well as behavioral adaptations, are influenced by ERK1/2-controlled targets. We conclude that a better knowledge of molecular mechanisms underlying ERK1/2 activation by drugs of abuse and/or its role in long-term neuronal plasticity in the striatum may provide a new route for therapeutic treatment in addiction. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    Energy Technology Data Exchange (ETDEWEB)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald, E-mail: gerald.thiel@uks.eu

    2015-03-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified.

  10. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    International Nuclear Information System (INIS)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald

    2015-01-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified

  11. Simvastatin attenuates acrolein-induced mucin production in rats: involvement of the Ras/extracellular signal-regulated kinase pathway.

    Science.gov (United States)

    Chen, Ya-Juan; Chen, Peng; Wang, Hai-Xia; Wang, Tao; Chen, Lei; Wang, Xun; Sun, Bei-Bei; Liu, Dai-Shun; Xu, Dan; An, Jing; Wen, Fu-Qiang

    2010-06-01

    Airway mucus overproduction is a cardinal feature of airway inflammatory diseases, such as chronic obstructive pulmonary disease and cystic fibrosis. Since the small G-protein Ras is known to modulate cellular functions in the lung, we sought to investigate whether the Ras inhibitor simvastatin could attenuate acrolein-induced mucin production in rat airways. Rats were exposed to acrolein for 12 days, after first being pretreated intragastrically for 24 h with either simvastatin alone or simvastatin in combination with mevalonate, which prevents the isoprenylation needed for Ras activation. Lung tissue was analyzed for extracellular signal-regulated kinase (ERK) activity, goblet cell metaplasia and mucin production. To analyze the effect of simvastatin on mucin production in more detail, acrolein-exposed human airway epithelial NCI-H292 cells were pretreated with simvastatin alone or together with mevalonate. Culture medium was collected to detect mucin secretion, and cell lysates were examined for Ras-GTPase activity and epidermal growth factor receptor (EGFR)/ERK phosphorylation. In vivo, simvastatin treatment dose-dependently suppressed acrolein-induced goblet cell hyperplasia and metaplasia in bronchial epithelium and inhibited ERK phosphorylation in rat lung homogenates. Moreover, simvastatin inhibited Muc5AC mucin synthesis at both the mRNA and protein levels in the lung. In vitro, simvastatin pretreatment attenuated the acrolein-induced significant increase in MUC5AC mucin expression, Ras-GTPase activity and EGFR/ERK phosphorylation. These inhibitory effects of simvastatin were neutralized by mevalonate administration both in vitro and in vivo. Our results suggest that simvastatin may attenuate acrolein-induced mucin protein synthesis in the airway and airway inflammation, possibly by blocking ERK activation mediated by Ras protein isoprenylation. Thus, the evidence from the experiment suggests that human trials are warranted to determine the potential

  12. Neuronal extracellular signal-regulated kinase (ERK activity as marker and mediator of alcohol and opioid dependence

    Directory of Open Access Journals (Sweden)

    Eva R. Zamora-Martinez

    2014-03-01

    Full Text Available Early pioneering work in the field of biochemistry identified phosphorylation as a crucial post-translational modification of proteins with the ability to both indicate and arbitrate complex physiological processes. More recent investigations have functionally linked phosphorylation of extracellular signal-regulated kinase (ERK to a variety of neurophysiological mechanisms ranging from acute neurotransmitter action to long-term gene expression. ERK phosphorylation serves as an intracellular bridging mechanism that facilitates neuronal communication and plasticity. Drugs of abuse, including alcohol and opioids, act as artificial yet powerful rewards that impinge upon natural reinforcement processes critical for survival. The graded progression from initial exposure to addiction (or substance dependence is believed to result from drug- and drug context-induced adaptations in neuronal signaling processes across brain reward and stress circuits following excessive drug use. In this regard, commonly abused drugs as well as drug-associated experiences are capable of modifying the phosphorylation of ERK within central reinforcement systems. In addition, chronic drug and alcohol exposure may drive ERK-regulated epigenetic and structural alterations that underlie a long-term propensity for escalating drug use. Under the influence of such a neurobiological vulnerability, encountering drug-associated cues and contexts can produce subsequent alterations in ERK signaling that drive relapse to drug and alcohol seeking. Current studies are determining precisely which molecular and regional ERK phosphorylation-associated events contribute to the addiction process, as well as which neuroadaptations need to be targeted in order to return dependent individuals to a healthy state.

  13. NF-κB Signaling Regulates Epstein–Barr Virus BamHI-Q-Driven EBNA1 Expression

    Directory of Open Access Journals (Sweden)

    Rob J. A. Verhoeven

    2018-04-01

    Full Text Available Epstein–Barr virus (EBV nuclear antigen 1 (EBNA1 is one of the few viral proteins expressed by EBV in nasopharyngeal carcinoma (NPC, most likely because of its essential role in maintaining the viral genome in EBV-infected cells. In NPC, EBNA1 expression is driven by the BamHI-Q promoter (Qp, which is regulated by both cellular and viral factors. We previously determined that the expression of another group of EBV transcripts, BamHI-A rightward transcripts (BARTs, is associated with constitutively activated nuclear factor-κB (NF-κB signaling in NPC cells. Here, we show that, like the EBV BART promoter, the EBV Qp also responds to NF-κB signaling. NF-κB p65, but not p50, can activate Qp in vitro, and NF-κB signaling regulates Qp-EBNA1 expression in NPC cells, as well as in other EBV-infected epithelial cells. The introduction of mutations in the putative NF-κB site reduced Qp activation by the NF-κB p65 subunit. Binding of p65 to Qp was shown by chromatin immunoprecipitation (ChIP analysis, while electrophoretic mobility shift assays (EMSAs demonstrated that p50 can also bind to Qp. Inhibition of NF-κB signaling by the IκB kinase inhibitor PS-1145 resulted in the downregulation of Qp-EBNA1 expression in C666-1 NPC cells. Since EBNA1 has been reported to block p65 activation by inhibiting IKKα/β through an unknown mechanism, we suggest that, in NPC, NF-κB signaling and EBNA1 may form a regulatory loop which supports EBV latent gene expression, while also limiting NF-κB activity. These findings emphasize the role of NF-κB signaling in the regulation of EBV latency in EBV-associated tumors.

  14. Effects of chronic sleep deprivation on the extracellular signal-regulated kinase pathway in the temporomandibular joint of rats.

    Directory of Open Access Journals (Sweden)

    Chuan Ma

    Full Text Available OBJECTIVES: To examine the possible involvement and regulatory mechanisms of extracellular signal-regulated kinase (ERK pathway in the temporomandibular joint (TMJ of rats subjected to chronic sleep deprivation (CSD. METHODS: Rats were subjected to CSD using the modified multiple platform method (MMPM. The serum levels of corticosterone (CORT and adrenocorticotropic hormone (ACTH were tested and histomorphology and ultrastructure of the TMJ were observed. The ERK and phospho-ERK (p-ERK expression levels were detected by Western blot analysis, and the MMP-1, MMP-3, and MMP-13 expression levels were detected by real-time quantitative polymerase chain reaction (PCR and Western blotting. RESULTS: The elevated serum CORT and ACTH levels confirmed that the rats were under CSD stress. Hematoxylin and eosin (HE staining and scanning electron microscopy (SEM showed pathological alterations in the TMJ following CSD; furthermore, the p-ERK was activated and the mRNA and protein expression levels of MMP-1, MMP-3, and MMP-13 were upregulated after CSD. In the rats administered with the selective ERK inhibitor U0126, decreased tissue destruction was observed. Phospho-ERK activation was visibly blocked and the MMP-1, MMP-3, and MMP-13 mRNA and protein levels were lower than the corresponding levels in the CSD without U0126 group. CONCLUSION: These findings indicate that CSD activates the ERK pathway and upregulates the MMP-1, MMP-3, and MMP-13 mRNA and protein levels in the TMJ of rats. Thus, CSD induces ERK pathway activation and causes pathological alterations in the TMJ. ERK may be associated with TMJ destruction by promoting the expression of MMPs.

  15. Food-grade TiO2 is trapped by intestinal mucus in vitro but does not impair mucin O-glycosylation and short-chain fatty acid synthesis in vivo: implications for gut barrier protection.

    Science.gov (United States)

    Talbot, Pauline; Radziwill-Bienkowska, Joanna M; Kamphuis, Jasper B J; Steenkeste, Karine; Bettini, Sarah; Robert, Véronique; Noordine, Marie-Louise; Mayeur, Camille; Gaultier, Eric; Langella, Philippe; Robbe-Masselot, Catherine; Houdeau, Eric; Thomas, Muriel; Mercier-Bonin, Muriel

    2018-06-19

    Titanium dioxide (TiO 2 ) particles are commonly used as a food additive (E171 in the EU) for its whitening and opacifying properties. However, the risk of gut barrier disruption is an increasing concern because of the presence of a nano-sized fraction. Food-grade E171 may interact with mucus, a gut barrier protagonist still poorly explored in food nanotoxicology. To test this hypothesis, a comprehensive approach was performed to evaluate in vitro and in vivo interactions between TiO 2 and intestinal mucus, by comparing food-grade E171 with NM-105 (Aeroxyde P25) OECD reference nanomaterial. We tested E171-trapping properties of mucus in vitro using HT29-MTX intestinal epithelial cells. Time-lapse confocal laser scanning microscopy was performed without labeling to avoid modification of the particle surface. Near-UV irradiation of E171 TiO 2 particles at 364 nm resulted in fluorescence emission in the visible range, with a maximum at 510 nm. The penetration of E171 TiO 2 into the mucoid area of HT29-MTX cells was visualized in situ. One hour after exposure, TiO 2 particles accumulated inside "patchy" regions 20 µm above the substratum. The structure of mucus produced by HT29-MTX cells was characterized by MUC5AC immunofluorescence staining. The mucus layer was thin and organized into regular "islands" located approximately 20 µm above the substratum. The region-specific trapping of food-grade TiO 2 particles was attributed to this mucus patchy structure. We compared TiO 2 -mediated effects in vivo in rats after acute or sub-chronic oral daily administration of food-grade E171 and NM-105 at relevant exposure levels for humans. Cecal short-chain fatty acid profiles and gut mucin O-glycosylation patterns remained unchanged, irrespective of treatment. Food-grade TiO 2 is trapped by intestinal mucus in vitro but does not affect mucin O-glycosylation and short-chain fatty acid synthesis in vivo, suggesting the absence of a mucus barrier impairment under "healthy gut

  16. Inducible xylitol dehydrogenases in enteric bacteria.

    OpenAIRE

    Doten, R C; Mortlock, R P

    1985-01-01

    Morganella morganii ATCC 25829, Providencia stuartii ATCC 25827, Serratia marcescens ATCC 13880, and Erwinia sp. strain 4D2P were found to induce a xylitol dehydrogenase when grown on a xylitol-containing medium. The xylitol dehydrogenases were partially purified from the four strains, and those from M. morganii ATCC 25829, P. stuartii ATCC 25827, and S. marcescens ATCC 13880 were all found to oxidize xylitol to D-xylulose. These three enzymes had KmS for xylitol of 7.1 to 16.4 mM and molecul...

  17. 2-Methylbutyryl-coenzyme A dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Sass, Jörn Oliver; Ensenauer, Regina; Röschinger, Wulf

    2008-01-01

    2-Methylbutyryl-CoA dehydrogenase (MBD; coded by the ACADSB gene) catalyzes the step in isoleucine metabolism that corresponds to the isovaleryl-CoA dehydrogenase reaction in the degradation of leucine. Deficiencies of both enzymes may be detected by expanded neonatal screening with tandem...... individuals showed clinical symptoms attributable to MBD deficiency although the defect in isoleucine catabolism was demonstrated both in vivo and in vitro. Several mutations in the ACADSB gene were identified, including a novel one. MBD deficiency may be a harmless metabolic variant although significant...

  18. Genetics Home Reference: glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... deficiency Encyclopedia: Glucose-6-phosphate dehydrogenase test Encyclopedia: Hemolytic anemia Encyclopedia: Newborn jaundice Health Topic: Anemia Health Topic: G6PD Deficiency Health Topic: Newborn Screening Genetic and Rare Diseases Information Center (1 link) Glucose-6-phosphate dehydrogenase ...

  19. Effect of the Novel Polysaccharide PolyGlycopleX® on Short-Chain Fatty Acid Production in a Computer-Controlled in Vitro Model of the Human Large Intestine

    Directory of Open Access Journals (Sweden)

    Raylene A. Reimer

    2014-03-01

    Full Text Available Many of the health benefits associated with dietary fiber are attributed to their fermentation by microbiota and production of short chain fatty acids (SCFA. The aim of this study was to investigate the fermentability of the functional fiber PolyGlyopleX® (PGX® in vitro. A validated dynamic, computer-controlled in vitro system simulating the conditions in the proximal large intestine (TIM-2 was used. Sodium hydroxide (NaOH consumption in the system was used as an indicator of fermentability and SCFA and branched chain fatty acids (BCFA production was determined. NaOH consumption was significantly higher for Fructooligosaccharide (FOS than PGX, which was higher than cellulose (p = 0.002. At 32, 48 and 72 h, acetate and butyrate production were higher for FOS and PGX versus cellulose. Propionate production was higher for PGX than cellulose at 32, 48, 56 and 72 h and higher than FOS at 72 h (p = 0.014. Total BCFA production was lower for FOS compared to cellulose, whereas production with PGX was lower than for cellulose at 72 h. In conclusion, PGX is fermented by the colonic microbiota which appeared to adapt to the substrate over time. The greater propionate production for PGX may explain part of the cholesterol-lowering properties of PGX seen in rodents and humans.

  20. Sublethal Toxic Effects and Induction of gGutathione S-transferase by Short-Chain Chlorinated Paraffins (SCCPs and C-12 alkane (dodecane in Xenopus laevis Frog Embryos

    Directory of Open Access Journals (Sweden)

    B. Burýšková

    2006-01-01

    Full Text Available Short chain chlorinated paraffins (SCCPs are important industrial chemicals with high persistence in the environment but poorly characterized ecotoxicological effects. We studied embryotoxic effects of commercial mixture of SCCP (carbon length C-12, 56% of chlorine; CP56-12 and non-chlorinated n-alkane (dodecane, C-12 in the 96h Frog Embryo Teratogenesis Assay - Xenopus (FETAX. Only weak lethal effects were observed for both substances (the highest tested concentration 500 mg/L of both chemicals caused up to 11% mortality. On the other hand, we observed developmental malformations and reduced embryo growth at 5 mg/l and higher concentrations. However, the effects were not related to chlorination pattern as both SCCPs and dodecane induced qualitatively similar effects. SCCPs also significantly induced phase II detoxification enzyme glutathione S-transferase (GST in Xenopus laevis embryos even at 0.5 mg/L, and this biomarker might be used as another early warning of chronic toxic effects. Our results newly indicate significant developmental toxicity of both SCCPs and n-dodecane to aquatic organisms along with inductions of specific biochemical toxicity mechanisms.

  1. Protection against the Metabolic Syndrome by Guar Gum-Derived Short-Chain Fatty Acids Depends on Peroxisome Proliferator-Activated Receptor γ and Glucagon-Like Peptide-1.

    Science.gov (United States)

    den Besten, Gijs; Gerding, Albert; van Dijk, Theo H; Ciapaite, Jolita; Bleeker, Aycha; van Eunen, Karen; Havinga, Rick; Groen, Albert K; Reijngoud, Dirk-Jan; Bakker, Barbara M

    2015-01-01

    The dietary fiber guar gum has beneficial effects on obesity, hyperglycemia and hypercholesterolemia in both humans and rodents. The major products of colonic fermentation of dietary fiber, the short-chain fatty acids (SCFAs), have been suggested to play an important role. Recently, we showed that SCFAs protect against the metabolic syndrome via a signaling cascade that involves peroxisome proliferator-activated receptor (PPAR) γ repression and AMP-activated protein kinase (AMPK) activation. In this study we investigated the molecular mechanism via which the dietary fiber guar gum protects against the metabolic syndrome. C57Bl/6J mice were fed a high-fat diet supplemented with 0% or 10% of the fiber guar gum for 12 weeks and effects on lipid and glucose metabolism were studied. We demonstrate that, like SCFAs, also guar gum protects against high-fat diet-induced metabolic abnormalities by PPARγ repression, subsequently increasing mitochondrial uncoupling protein 2 expression and AMP/ATP ratio, leading to the activation of AMPK and culminating in enhanced oxidative metabolism in both liver and adipose tissue. Moreover, guar gum markedly increased peripheral glucose clearance, possibly mediated by the SCFA-induced colonic hormone glucagon-like peptide-1. Overall, this study provides novel molecular insights into the beneficial effects of guar gum on the metabolic syndrome and strengthens the potential role of guar gum as a dietary-fiber intervention.

  2. Protection against the Metabolic Syndrome by Guar Gum-Derived Short-Chain Fatty Acids Depends on Peroxisome Proliferator-Activated Receptor γ and Glucagon-Like Peptide-1.

    Directory of Open Access Journals (Sweden)

    Gijs den Besten

    Full Text Available The dietary fiber guar gum has beneficial effects on obesity, hyperglycemia and hypercholesterolemia in both humans and rodents. The major products of colonic fermentation of dietary fiber, the short-chain fatty acids (SCFAs, have been suggested to play an important role. Recently, we showed that SCFAs protect against the metabolic syndrome via a signaling cascade that involves peroxisome proliferator-activated receptor (PPAR γ repression and AMP-activated protein kinase (AMPK activation. In this study we investigated the molecular mechanism via which the dietary fiber guar gum protects against the metabolic syndrome. C57Bl/6J mice were fed a high-fat diet supplemented with 0% or 10% of the fiber guar gum for 12 weeks and effects on lipid and glucose metabolism were studied. We demonstrate that, like SCFAs, also guar gum protects against high-fat diet-induced metabolic abnormalities by PPARγ repression, subsequently increasing mitochondrial uncoupling protein 2 expression and AMP/ATP ratio, leading to the activation of AMPK and culminating in enhanced oxidative metabolism in both liver and adipose tissue. Moreover, guar gum markedly increased peripheral glucose clearance, possibly mediated by the SCFA-induced colonic hormone glucagon-like peptide-1. Overall, this study provides novel molecular insights into the beneficial effects of guar gum on the metabolic syndrome and strengthens the potential role of guar gum as a dietary-fiber intervention.

  3. [Determination of short-chain chlorinated paraffins in ambient air using high-volume sampling combined with high resolutimi gas chromatography-electron capture negative ion-low resolution mass spectrometry].

    Science.gov (United States)

    Shi, Loimeng; Gao, Yuan; Hou, Xiaohong; Zhang, Haijun; Zhang, Yichi; Chen, Jiping

    2016-02-01

    An analytical method for quantifying short-chain chlorinated paraffins (SCCPs) in ambient air using high-volume sampling combined with high resolution gas chromatography-electron capture negative ion-low resolution mass spectrometry ( HRGC-ECNI-LRMS) was developed. An acidified silica gel column and a basic alumina column were used to optimize the cleanup procedures. The results showed a good linearity (R2>0. 99) between the total response factors and the degree of chlorination of SCCPs in the content range of 58. 1%-63. 3%. The limits of detection (S/N ≥3) and the limits of quantification (S/N ≥ 10) were 4. 2 and 12 µg, respectively. The method detection limit (MDL) for SCCPs was 0. 34 ng/m3 (n = 7). The recoveries of SCCPs in air samples were in the range of 81. 9% to 94. 2%. It is demonstrated that the method is suitable for the quantitative analysis of SCCPs in air samples.

  4. RhoA/ROCK signaling regulates smooth muscle phenotypic modulation and vascular remodeling via the JNK pathway and vimentin cytoskeleton.

    Science.gov (United States)

    Tang, Lian; Dai, Fan; Liu, Yan; Yu, Xiaoqiang; Huang, Chao; Wang, Yuqin; Yao, Wenjuan

    2018-05-20

    The RhoA/ROCK signaling pathway regulates cell morphology, adhesion, proliferation, and migration. In this study, we investigated the regulatory role of RhoA/ROCK signaling on PDGF-BB-mediated smooth muscle phenotypic modulation and vascular remodeling and clarified the molecular mechanisms behind these effects. PDGF-BB treatment induced the activation of RhoA, ROCK, PDGF-Rβ, and the expression of PDGF-Rβ in HA-VSMCs (human aortic vascular smooth muscle cells). PDGF-Rβ inhibition and RhoA suppression blocked PDGF-BB-induced RhoA activation and ROCK induction. In addition, PDGF-BB-mediated cell proliferation and migration were suppressed by PDGF-Rβ inhibition, RhoA suppression, and ROCK inhibition, suggesting that PDGF-BB promotes phenotypic modulation of HA-VSMCs by activating the RhoA/ROCK pathway via the PDGF receptor. Moreover, suppressing both ROCK1 and ROCK2 blocked cell cycle progression from G0/G1 to S phase by decreasing the transcription and protein expression of cyclin D1, CDK2, and CDK4 via JNK/c-Jun pathway, thus reducing cell proliferation in PDGF-BB-treated HA-VSMCs. ROCK1 deletion, rather than ROCK2 suppression, significantly inhibited PDGF-BB-induced migration by reducing the expression of vimentin and preventing the remodeling of vimentin and phospho-vimentin. Furthermore, ROCK1 deletion suppressed vimentin by inhibiting the phosphorylation of Smad2/3 and the nuclear translocation of Smad4. These findings suggested that ROCK1 and ROCK2 might play different roles in PDGF-BB-mediated cell proliferation and migration in HA-VSMCs. In addition, PDGF-BB and its receptor participated in neointima formation and vascular remodeling by promoting cell cycle protein expression via the JNK pathway and enhancing vimentin expression in a rat balloon injury model; effects that were inhibited by treatment with fasudil. Together, the results of this study reveal a novel mechanism through which RhoA/ROCK signaling regulates smooth muscle phenotypic modulation and

  5. Effects of electroacupuncture on the cortical extracellular signal regulated kinase pathway in rats with cerebral ischaemia/reperfusion.

    Science.gov (United States)

    Wu, Chunxiao; Li, Chun; Zhou, Guoping; Yang, Lu; Jiang, Guimei; Chen, Jing; Li, Qiushi; Zhan, Zhulian; Xu, Xiuhong; Zhang, Xin

    2017-12-01

    To explore the effects of electroacupuncture (EA) on the phosphorylated extracellular signal regulated kinase (p-ERK) pathway of the cerebral cortex in a rat model of focal cerebral ischaemia/reperfusion (I/R). 160 adult Sprague-Dawley rats underwent middle carotid artery occlusion (MCAO) to establish I/R injury and were randomly divided into four groups (n=40 each) that remained untreated (I/R group) or received EA at LU5, LI4, ST36 and SP6 (I/R+EA group), the ERK inhibitor PD98059 (I/R+PD group), or both interventions (I/R+PD+EA groups). An additional 40 rats undergoing sham surgery formed a healthy control group. Eight rats from each group were sacrificed at the following time points: 2 hours, 6 hours, 1 day, 3 days and 1 week. Neurological function was assessed using neurological deficit scores, morphological examination was performed following haematoxylin-eosin staining of cortical tissues, and apoptotic indices were calculated after terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labelling. Cortical protein and mRNA expression of p-ERK and ERK were measured by immunohistochemistry and real-time quantitative PCR, respectively. Compared with the I/R group, neurological deficit scores and apoptotic indices were lower in the I/R+EA group at 1 and 3 days, whereas mRNA/protein expression of ERK/p-ERK was higher in the EA group at all time points studied. Our results suggest that EA can alleviate neurological deficits and reduce cortical apoptosis in rats with I/R injury. These anti-apoptotic effects may be due to upregulation of p-ERK. Moreover, apoptosis appeared to peak at 1 day after I/R injury, which might therefore represent the optimal time point for targeting of EA. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Structural Studies of Cinnamoyl-CoA Reductase and Cinnamyl-Alcohol Dehydrogenase, Key Enzymes of Monolignol Biosynthesis[C][W

    Science.gov (United States)

    Pan, Haiyun; Zhou, Rui; Louie, Gordon V.; Mühlemann, Joëlle K.; Bomati, Erin K.; Bowman, Marianne E.; Dudareva, Natalia; Dixon, Richard A.; Noel, Joseph P.; Wang, Xiaoqiang

    2014-01-01

    The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates. PMID:25217505

  7. Optimization of Adsorptive Immobilization of Alcohol Dehydrogenases

    NARCIS (Netherlands)

    Trivedi, Archana; Heinemann, Matthias; Spiess, Antje C.; Daussmann, Thomas; Büchs, Jochen

    2005-01-01

    In this work, a systematic examination of various parameters of adsorptive immobilization of alcohol dehydrogenases (ADHs) on solid support is performed and the impact of these parameters on immobilization efficiency is studied. Depending on the source of the enzymes, these parameters differently

  8. Structural Insight into the 14-3-3 Protein-dependent Inhibition of Protein Kinase ASK1 (Apoptosis Signal-regulating kinase 1)

    Czech Academy of Sciences Publication Activity Database

    Petrvalská, Olivia; Košek, Dalibor; Kukačka, Zdeněk; Tošner, Z.; Man, Petr; Večeř, J.; Herman, P.; Obšilová, Veronika; Obšil, Tomáš

    2016-01-01

    Roč. 291, č. 39 (2016), s. 20753-20765 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA14-10061S Institutional support: RVO:67985823 ; RVO:61388971 Keywords : 14-3-3 protein * apoptosis signal-regulating kinase 1 (ASK1) * fluorescence * nuclear magnetic resonance (NMR) * protein cross-linking * small-angle x-ray scattering (SAXS) Subject RIV: CE - Biochemistry Impact factor: 4.125, year: 2016

  9. The Alcohol Dehydrogenase Gene Family in Melon (Cucumis melo L.: Bioinformatic Analysis and Expression Patterns

    Directory of Open Access Journals (Sweden)

    Yazhong eJin

    2016-05-01

    Full Text Available Alcohol dehydrogenases (ADH, encoded by multigene family in plants, play a critical role in plant growth, development, adaptation, fruit ripening and aroma production. Thirteen ADH genes were identified in melon genome, including 12 ADHs and one formaldehyde dehydrogenease (FDH, designated CmADH1-12 and CmFDH1, in which CmADH1 and CmADH2 have been isolated in Cantaloupe. ADH genes shared a lower identity with each other at the protein level and had different intron-exon structure at nucleotide level. No typical signal peptides were found in all CmADHs, and CmADH proteins might locate in the cytoplasm. The phylogenetic tree revealed that 13 ADH genes were divided into 3 groups respectively, namely long-, medium- and short-chain ADH subfamily, and CmADH1,3-11, which belongs to the medium-chain ADH subfamily, fell into 6 medium-chain ADH subgroups. CmADH12 may belong to the long-chain ADH subfamily, while CmFDH1 may be a Class III ADH and serve as an ancestral ADH in melon. Expression profiling revealed that CmADH1, CmADH2, CmADH10 and CmFDH1 were moderately or strongly expressed in different vegetative tissues and fruit at medium and late developmental stages, while CmADH8 and CmADH12 were highly expressed in fruit after 20 days. CmADH3 showed preferential expression in young tissues. CmADH4 only had slight expression in root. Promoter analysis revealed several motifs of CmADH genes involved in the gene expression modulated by various hormones, and the response pattern of CmADH genes to ABA, IAA and ethylene were different. These CmADHs were divided into ethylene-sensitive and –insensitive groups, and the functions of CmADHs were discussed.

  10. Association analysis between mitogen-activated protein/extracellular signal-regulated kinase (MEK) gene polymorphisms and depressive disorder in the Han Chinese population.

    Science.gov (United States)

    Hu, Yingyan; Hong, Wu; Smith, Alicia; Yu, Shunying; Li, Zezhi; Wang, Dongxiang; Yuan, Chengmei; Cao, Lan; Wu, Zhiguo; Huang, Jia; Fralick, Drew; Phillips, Michael Robert; Fang, Yiru

    2017-11-01

    Recent research findings suggest that BDNF and BDNF signaling pathways participate in the development of major depressive disorder. Mitogen-activated extracellular signal-regulated kinase (MEK) is the most important kinase in the extracellular signal-regulated kinase pathway, and the extracellular signal-regulated kinase pathway is the key signaling pathway of BDNF, so it may play a role in development of depressive disorder. The aim of this study is to investigate the association between polymorphisms of the MAP2K1 (also known as MEK) gene and depressive disorder. Three single nucleotide polymorphisms (SNPs), were significantly associated with depressive disorder: rs1549854 (p = 0.006), rs1432441 (p = 0.025), and rs7182853 (p = 0.039). When subdividing the sample by gender, two of the SNPs remained statistically associated with depressive disorder in females: rs1549854 (p = 0.013) and rs1432441 (p = 0.04). The rs1549854 and rs1432441 polymorphisms of the MAP2K1 gene may be associated with major depressive disorder, especially in females. This study is the first to report that the MAP2K1 gene may be a genetic marker for depressive disorder. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Functional assignment of gene AAC16202.1 from Rhodobacter capsulatus SB1003: new insights into the bacterial SDR sorbitol dehydrogenases family.

    Science.gov (United States)

    Sola-Carvajal, Agustín; García-García, María Inmaculada; Sánchez-Carrón, Guiomar; García-Carmona, Francisco; Sánchez-Ferrer, Alvaro

    2012-11-01

    Short-chain dehydrogenases/reductases (SDR) constitute one of the largest enzyme superfamilies with over 60,000 non-redundant sequences in the database, many of which need a correct functional assignment. Among them, the gene AAC16202.1 (NCBI) from Rhodobacter capsulatus SB1003 has been assigned in Uniprot both as a sorbitol dehydrogenase (#D5AUY1) and, as an N-acetyl-d-mannosamine dehydrogenase (#O66112), both enzymes being of biotechnological interest. When the gene was overexpressed in Escherichia coli Rosetta (DE3)pLys, the purified enzyme was not active toward N-acetyl-d-mannosamine, whereas it was active toward d-sorbitol and d-fructose. However, the relative activities toward xylitol and l-iditol (0.45 and 6.9%, respectively) were low compared with that toward d-sorbitol. Thus, the enzyme could be considered sorbitol dehydrogenase (SDH) with very low activity toward xylitol, which could increase its biotechnological interest for determining sorbitol without the unspecific cross-determination of added xylitol in food and pharma compositions. The tetrameric enzyme (120 kDa) showed similar catalytic efficiency (2.2 × 10(3) M(-1) s(-1)) to other sorbitol dehydrogenases for d-sorbitol, with an optimum pH of 9.0 and an optimum temperature of 37 °C. The enzyme was also more thermostable than other reported SDH, ammonium sulfate being the best stabilizer in this respect, increasing the melting temperature (T(m)) up to 52.9 °C. The enzyme can also be considered as a new member of the Zn(2+) independent SDH family since no effect on activity was detected in the presence of divalent cations or chelating agents. Finally, its in silico analysis enabled the specific conserved sequence blocks that are the fingerprints of bacterial sorbitol dehydrogenases and mainly located at C-terminal of the protein, to be determined for the first time. This knowledge will facilitate future data curation of present databases and a better functional assignment of newly described

  12. Cloning, Expression, and Characterization of budC Gene Encoding meso-2,3-Butanediol Dehydrogenase from Bacillus licheniformis.

    Science.gov (United States)

    Xu, Guo-Chao; Bian, Ya-Qian; Han, Rui-Zhi; Dong, Jin-Jun; Ni, Ye

    2016-02-01

    The budC gene encoding a meso-2,3-butanediol dehydrogenase (BlBDH) from Bacillus licheniformis was cloned and overexpressed in Escherichia coli BL21(DE3). Sequence analysis reveals that this BlBDH belongs to short-chain dehydrogenase/reductase (SDR) superfamily. In the presence of NADH, BlBDH catalyzes the reduction of diacetyl to (3S)-acetoin (97.3% ee), and further to (2S,3S)-2,3-butanediol (97.3% ee and 96.5% de). Similar to other meso-2,3-BDHs, it shows oxidative activity to racemic 2,3-butanediol whereas no activity toward racemic acetoin in the presence of NAD(+). For diacetyl reduction and 2,3-butanediol oxidation, the pH optimum of BlBDH is 5.0 and 10.0, respectively. Unusually, it shows relatively high activity over a wide pH range from 5.0 to 8.0 for racemic acetoin reduction. BlBDH shows lower K m and higher catalytic efficiency toward racemic acetoin (K m = 0.47 mM, k cat /K m = 432 s(-1)·mM(-1)) when compared with 2,3-butanediol (K m = 7.25 mM, k cat /K m = 81.5 s(-1)·mM(-1)), indicating its physiological role in favor of reducing racemic acetoin into 2,3-butanediol. The enzymatic characterization of BlBDH provides evidence for the directed engineering of B. licheniformis for producing enantiopure 2,3-butanediol.

  13. Erythroid Kruppel-like factor (EKLF) is recruited to the γ-globin gene promoter as a co-activator and is required for γ-globin gene induction by short-chain fatty acid derivatives

    Science.gov (United States)

    Perrine, Susan P.; Mankidy, Rishikesh; Boosalis, Michael S.; Bieker, James J.; Faller, Douglas V.

    2011-01-01

    Objectives The erythroid Kruppel-like factor (EKLF) is an essential transcription factor for β-type globin gene switching, and specifically activates transcription of the adult β-globin gene promoter. We sought to determine if EKLF is also required for activation of the γ-globin gene by short-chain fatty acid (SCFA) derivatives, which are now entering clinical trials. Methods The functional and physical interaction of EKLF and co-regulatory molecules with the endogenous human globin gene promoters was studied in primary human erythroid progenitors and cell lines, using chromatin immunoprecipitation (ChIP) assays and genetic manipulation of the levels of EKLF and co-regulators. Results and conclusions Knockdown of EKLF prevents SCFA-induced expression of the γ-globin promoter in a stably expressed μLCRβprRlucAγprFluc cassette, and prevents induction of the endogenous γ-globin gene in primary human erythroid progenitors. EKLF is actively recruited to endogenous γ-globin gene promoters after exposure of primary human erythroid progenitors, and murine hematopoietic cell lines, to SCFA derivatives. The core ATPase BRG1 subunit of the human SWI/WNF complex, a ubiquitous multimeric complex that regulates gene expression by remodeling nucleosomal structure, is also required for γ-globin gene induction by SCFA derivatives. BRG1 is actively recruited to the endogenous γ-globin promoter of primary human erythroid progenitors by exposure to SCFA derivatives, and this recruitment is dependent upon the presence of EKLF. These findings demonstrate that EKLF, and the co-activator BRG1, previously demonstrated to be required for definitive or adult erythropoietic patterns of globin gene expression, are co-opted by SCFA derivatives to activate the fetal globin genes. PMID:19220418

  14. Similarities and differences between the responses induced in human phagocytes through activation of the medium chain fatty acid receptor GPR84 and the short chain fatty acid receptor FFA2R.

    Science.gov (United States)

    Sundqvist, Martina; Christenson, Karin; Holdfeldt, André; Gabl, Michael; Mårtensson, Jonas; Björkman, Lena; Dieckmann, Regis; Dahlgren, Claes; Forsman, Huamei

    2018-05-01

    GPR84 is a recently de-orphanized member of the G-protein coupled receptor (GPCR) family recognizing medium chain fatty acids, and has been suggested to play important roles in inflammation. Due to the lack of potent and selective GPR84 ligands, the basic knowledge related to GPR84 functions is very limited. In this study, we have characterized the GPR84 activation profile and regulation mechanism in human phagocytes, using two recently developed small molecules that specifically target GPR84 agonistically (ZQ16) and antagonistically (GLPG1205), respectively. Compared to our earlier characterization of the short chain fatty acid receptor FFA2R which is functionally expressed in neutrophils but not in monocytes, GPR84 is expressed in both cell types and in monocyte-derived macrophages. In neutrophils, the GPR84 agonist had an activation profile very similar to that of FFA2R. The GPR84-mediated superoxide release was low in naïve cells, but the response could be significantly primed by TNFα and by the actin cytoskeleton disrupting agent Latrunculin A. Similar to that of FFA2R, a desensitization mechanism bypassing the actin cytoskeleton was utilized by GPR84. All ZQ16-mediated cellular responses were sensitive to GLPG1205, confirming the GPR84-dependency. Finally, our data of in vivo transmigrated tissue neutrophils indicate that both GPR84 and FFA2R are involved in neutrophil recruitment processes in vivo. In summary, we show functional similarities but also some important differences between GPR84 and FFA2R in human phagocytes, thus providing some mechanistic insights into GPR84 regulation in blood neutrophils and cells recruited to an aseptic inflammatory site in vivo. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. AN In vitro ASSESSMENT OF SUPPLEMENTARY EFFECT OF CONCENTRATES CONTAINING GRADED LEVELS OF GROUND LINSEED (Linum usitatissimum TO HOUSEHOLD WASTES ON ORGANIC MATTER DEGRADABILITY, SHORT CHAIN FATTY ACIDS, MICROBIAL PROTEIN, METABOLIZABLE ENERGY AND RELATIVE FEED VALUES

    Directory of Open Access Journals (Sweden)

    Tegene Negesse

    2016-08-01

    Full Text Available With the objective to assess effect of level of linseed inclusion in feeds on nutritive value, an in vitro OM digestibility (IVOMD, total short chain fatty acids (SCFA:mMol l-1, microbial crude protein (MCP:g kg-1 DM, metabolizable energy (MEruminants:MJ kg-1 DM and relative feed values (RFV of household wastes=HW (Areke-Atela=AA, carrot peels=CaP, cabbage leaf=Cle, cabbage leftover=Clef, onion leaf=OL, onion peels=OP, potato peels=PP, Tela-Atela=TA supplemented with linseed (LS containing concentrates=LSC1…LSC5 (39.32, 37.32, 35.32, 33.32, 31.32% noug cake + 58.99% wheat bran + 1.69% salt + 0, 2, 4, 6, 8% LS, as fed basis were estimated via an in vitro gas trial. HWs were mixed with LSC (LSC-HW at 3:1 ratio. Samples were incubated in-vitro with rumen fluid in duplicate and readings recorded at 0, 3, 6, 12, 24, 48, 72 and 96 h of incubation. LSC-HW mixtures had higher CP, IVDMD, IVOMD, ME and SCFA, MCP and RFV than those of HWs alone. IVDMD and IVOMD of the LSC-HW improved with increasing LS levels, mostly at 2 and 4%LSC; but at higher concentrations they declined.  AA, TA had high IVOMD. However, IVDMD of AA (with the lowest IVDMD was much more influenced than TA (with highest IVDMD by LS levels. Clef had lowest and AA and TA highest ME. SCFA increased over incubation periods and with increasing levels of LS, in Clef improvement (from 0.25 to 0.61 mMol l-1 was significant but in AA (from 0.69 to 0.72 mMol l-1 moderate. Mixing HWs with LSC gave best results at 2%LSC.

  16. Short-chain chlorinated paraffins in soil, paddy seeds (Oryza sativa) and snails (Ampullariidae) in an e-waste dismantling area in China: Homologue group pattern, spatial distribution and risk assessment.

    Science.gov (United States)

    Yuan, Bo; Fu, Jianjie; Wang, Yawei; Jiang, Guibin

    2017-01-01

    Short-chain chlorinated paraffins (SCCPs) in multi-environmental matrices are studied in Taizhou, Zhejiang Province, China, which is a notorious e-waste dismantling area. The investigated matrices consist of paddy field soil, paddy seeds (Oryza sativa, separated into hulls and rice unpolished) and apple snails (Ampullariidae, inhabiting the paddy fields). The sampling area covered a 65-km radius around the contamination center. C 10 and C 11 are the two predominant homologue groups in the area, accounting for about 35.7% and 33.0% of total SCCPs, respectively. SCCPs in snails and hulls are generally higher than in soil samples (30.4-530 ng/g dw), and SCCPs in hulls are approximate five times higher than in corresponding rice samples (4.90-55.1 ng/g dw). Homologue pattern analysis indicates that paddy seeds (both hull and rice) tend to accumulate relatively high volatile SCCP homologues, especially the ones with shorter carbon chain length, while snails tend to accumulate relatively high lipophilic homologues, especially the ones with more substituted chlorines. SCCPs in both paddy seeds and snails are linearly related to those in the soil. The e-waste dismantling area, which covers a radius of approximate 20 km, shows higher pollution levels for SCCPs according to their spatial distribution in four matrices. The preliminary assessment indicates that SCCP levels in local soils pose no significant ecological risk for soil dwelling organisms, but higher risks from dietary exposure of SCCPs are suspected for people living in e-waste dismantling area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The effect of pectin, corn and wheat starch, inulin and pH on in vitro production of methane, short chain fatty acids and on the microbial community composition in rumen fluid.

    Science.gov (United States)

    Poulsen, Morten; Jensen, Bent Borg; Engberg, Ricarda M

    2012-02-01

    Methane emission from livestock, ruminants in particular, contributes to the build up of greenhouse gases in the atmosphere. Therefore the focus on methane emission from ruminants has increased. The objective of this study was to investigate mechanisms for methanogenesis in a rumen fluid-based in vitro fermentation system as a consequence of carbohydrate source (pectin, wheat and corn starch and inulin) and pH (ranging from 5.5 to 7.0). Effects were evaluated with respect to methane and short chain fatty acid (SCFA) production, and changes in the microbial community in the ruminal fluid as assessed by terminal-restriction fragment length polymorphism (T-RFLP) analysis. Fermentation of pectin resulted in significantly lower methane production rates during the first 10 h of fermentation compared to the other substrates (P = 0.001), although total methane production was unaffected by carbohydrate source (P = 0.531). Total acetic acid production was highest for pectin and lowest for inulin (P Methane production rates were significantly lower for fermentations at pH 5.5 and 7.0 (P = 0.005), sustained as a trend after 48 h (P = 0.059), indicating that there was a general optimum for methanogenic activity in the pH range from 6.0 to 6.5. Decreasing pH from 7.0 to 5.5 significantly favored total butyric acid production (P composition. This study demonstrates that both carbohydrate source and pH affect methane and SCFA production patterns, and the microbial community composition in rumen fluid. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Comparing the effects of different dietary organic acids on the growth, intestinal short-chain fatty acids, and liver histopathology of red hybrid tilapia (Oreochromis sp.) and potential use of these as preservatives.

    Science.gov (United States)

    Ebrahimi, Mahdi; Daeman, Nor Hafizah; Chong, Chou Min; Karami, Ali; Kumar, Vikas; Hoseinifar, Seyed Hossein; Romano, Nicholas

    2017-08-01

    Dietary organic acids are increasingly being investigated as a potential means of improving growth and nutrient utilization in aquatic animals. A 9-week study was performed to compare equal amounts (2%) of different organic acids (sodium butyrate, acetate, propionate, or formate) on the growth, muscle proximate composition, fatty acid composition, cholesterol and lipid peroxidation, differential cell counts, plasma biochemistry, intestinal short-chain fatty acid (SCFA) level, and liver histopathology to red hybrid tilapia (Oreochromis sp.) (initial mean weight of 2.87 g). A second experiment was performed to determine their effects on lipid peroxidation and trimethylamine (TMA) when added at 1% to tilapia meat and left out for 24 h. The results of the first experiment showed no treatment effect to growth, feeding efficiencies, or muscle fatty acid composition, but all dietary organic acids significantly decreased intestinal SCFA. Dietary butyrate and propionate significantly decreased muscle lipid peroxidation compared to the control group, but the dietary formate treatment had the lowest lipid peroxidation compared to all treatments. Muscle crude protein and lipid in tilapia fed the formate diet were significantly lower and higher, respectively, and showed evidence of stress based on the differential cell counts, significantly higher plasma glucose and liver glycogen, as well as inflammatory responses in the liver. Although a potential benefit of dietary organic acids was a reduction to lipid peroxidation, this could be accomplished post-harvest by direct additions to the meat. In addition, inclusions of butyrate and propionate to tilapia meat significantly decreased TMA, which might be a more cost-effective option to improve the shelf life of tilapia products.

  19. O-Alkyl Hydroxamates as Metaphors of Enzyme-Bound Enolate Intermediates in Hydroxy Acid Dehydrogenases. Inhibitors of Isopropylmalate Dehydrogenase, Isocitrate Dehydrogenase, and Tartrate Dehydrogenase(1).

    Science.gov (United States)

    Pirrung, Michael C.; Han, Hyunsoo; Chen, Jrlung

    1996-07-12

    The inhibition of Thermus thermophilus isopropylmalate dehydrogenase by O-methyl oxalohydroxamate was studied for comparison to earlier results of Schloss with the Salmonella enzyme. It is a fairly potent (1.2 &mgr;M), slow-binding, uncompetitive inhibitor against isopropylmalate and is far superior to an oxamide (25 mM K(i) competitive) that is isosteric with the ketoisocaproate product of the enzyme. This improvement in inhibition was attributed to its increased NH acidity, which presumably is due to the inductive effect of the hydroxylamine oxygen. This principle was extended to the structurally homologous enzyme isocitrate dehydrogenase from E. coli, for which the compound O-(carboxymethyl) oxalohydroxamate is a 30 nM inhibitor, uncompetitive against isocitrate. The pH dependence of its inhibition supports the idea that it is bound to the enzyme in the anionic form. Another recently discovered homologous enzyme, tartrate dehydrogenase from Pseudomonas putida, was studied with oxalylhydroxamate. It has a relatively low affinity for the enzyme, though it is superior to tartrate. On the basis of these leads, squaric hydroxamates with increased acidity compared to squaric amides directed toward two of these enzymes were prepared, and they also show increased inhibitory potency, though not approaching the nanomolar levels of the oxalylhydroxamates.

  20. Optimized cleanup method for the determination of short chain polychlorinated n-alkanes in sediments by high resolution gas chromatography/electron capture negative ion-low resolution mass spectrometry

    International Nuclear Information System (INIS)

    Gao Yuan; Zhang Haijun; Chen Jiping; Zhang Qing; Tian Yuzeng; Qi Peipei; Yu Zhengkun

    2011-01-01

    Graphical abstract: The sediment sample could be purified by the optimized cleanup method, and satisfying cleanup efficiency was obtained. Highlights: → The elution characters of sPCAs and interfering substances were evaluated on three adsorbents. → An optimized cleanup method was developed for sPCAs with satisfying cleanup efficiency. → The cleanup method combined with HRGC/ECNI-LRMS was applied for sPCAs analysis. → The sPCAs levels range from 53.6 ng g -1 to 289.3 ng g -1 in tested sediment samples. - Abstract: The performances of three adsorbents, i.e. silica gel, neutral and basic alumina, in the separation of short chain polychlorinated n-alkanes (sPCAs) from potential interfering substances such as polychlorinated biphenyls (PCBs) and organochlorine pesticides were evaluated. To increase the cleanup efficiency, a two-step cleanup method using silica gel column and subsequent basic alumina column was developed. All the PCB and organochlorine pesticides could be removed by this cleanup method. The very satisfying cleanup efficiency of sPCAs has been achieved and the recovery in the cleanup method reached 92.7%. The method detection limit (MDL) for sPCAs in sediments was determined to be 14 ng g -1 . Relative standard deviation (R.S.D.) of 5.3% was obtained for the mass fraction of sPCAs by analyzing four replicates of a spiked sediment sample. High resolution gas chromatography/electron capture negative ion-low resolution mass spectrometry (HRGC/ECNI-LRMS) was used for sPCAs quantification by monitoring [M-HCl]· - ions. When applied to the sediment samples from the mouth of the Daliao River, the optimized cleanup method in conjunction with HRGC/ECNI-LRMS allowed for highly selective identifications for sPCAs. The sPCAs levels in sediment samples are reported to range from 53.6 ng g -1 to 289.3 ng g -1 . C 10 - and C 11 -PCAs are the dominant residue in most of investigated sediment samples.

  1. Effects of partial replacement of dietary starch from barley or corn with lactose on ruminal function, short-chain fatty acid absorption, nitrogen utilization, and production performance of dairy cows.

    Science.gov (United States)

    Chibisa, G E; Gorka, P; Penner, G B; Berthiaume, R; Mutsvangwa, T

    2015-04-01

    In cows fed diets based on corn-alfalfa silage, replacing starch with sugar improves milk production. Although the rate of ruminal fermentation of sugar is more rapid than that of starch, evidence has been found that feeding sugar as a partial replacement for starch does not negatively affect ruminal pH despite increasing diet fermentability. The mechanism(s) for this desirable response are unknown. Our objective was to determine the effects of replacing barley or corn starch with lactose (as dried whey permeate; DWP) on ruminal function, short-chain fatty acid (SCFA) absorption, and nitrogen (N) utilization in dairy cows. Eight lactating cows were used in a replicated 4 × 4 Latin square design with 28-d periods and source of starch (barley vs. corn) and level of DWP (0 vs. 6%, DM basis) as treatment factors. Four cows in 1 Latin square were ruminally cannulated for the measurement of ruminal function, SCFA absorption, and N utilization. Dry matter intake and milk and milk component yields did not differ with diet. The dietary addition of DWP tended to increase ruminal butyrate concentration (13.6 vs. 12.2 mmol/L), and increased the Cl(-)-competitive absorption rates for acetate and propionate. There was no sugar effect on minimum ruminal pH, and the duration and area when ruminal pH was below 5.8. Minimum ruminal pH tended to be lower in cows fed barley compared with those fed corn (5.47 vs. 5.61). The duration when ruminal pH was below pH 5.8 tended to be shorter (186 vs. 235 min/d), whereas the area (pH × min/d) that pH was below 5.8 was smaller (47 vs. 111) on the corn than barley diets. Cows fed the high- compared with the low-sugar diet had lower ruminal NH3-N concentration. Feeding the high-sugar diet tended to increase apparent total-tract digestibility of dry matter and organic matters and increased apparent total-tract digestibility of fat. Apparent total-tract digestibility of N tended to be greater in cows fed barley compared with those fed corn

  2. Phenotypic and Genotypic Features of a Salmonella Heidelberg Strain Isolated in Broilers in Brazil and Their Possible Association to Antibiotics and Short-Chain Organic Acids Resistance and Susceptibility.

    Science.gov (United States)

    Santin, Elizabeth; Hayashi, Ricardo Mitsuo; Wammes, Jessica Caroline; Gonzalez-Esquerra, Ricardo; Carazzolle, Marcelo Falsarella; Freire, Caio César de Melo; Monzani, Paulo Sérgio; da Cunha, Anderson Ferreira

    2017-01-01

    Salmonella enterica serovar Heidelberg is a human pathogen also found in broilers. A strain (UFPR1) has been associated with field reports of resistance to short-chain organic acids (SCOA) in broilers in the South of Brazil, but was susceptible to a Bacillus subtilis -based probiotic added in feed in a related study. This work aimed to (i) report clinical symptoms caused by SH UFPR1 in broilers, (ii) study its susceptibility to some antibiotics in vitro , and (iii) SCOA in vivo ; and (iv) relate these phenotypic observations with its genome characteristics. Two in vivo trials used 1-day-old chicks housed for 21 days in 8 sterilized isolated negative pressure rooms with 4 battery cages of 12 birds each. Birds were challenged or not with 10 7  CFU/bird of SH UFPR1 orally and exposed or not to SCOA in a 2 × 2 factorial design. Zootechnical parameters were unaffected ( P  > 0.05), no clinical signs were observed, and few cecal and hepatic histologic and immune-related alterations were seen, in birds challenged with SH. Formic and propionic acids added together in drinking water, fumaric and benzoic acid in feed (Trial 1), and coated calcium butyrate in feed (Trial 2) did not reduce the SH isolation frequencies seen in cecum and liver in broilers after SH challenge ( P  > 0.05). SH UFPR1 was susceptible to amikacin, amoxicillin + clavulanate, ceftiofur, cephalexin, doxycycline and oxytetracycline; and mildly susceptible to ampicillin + sulbactam, cephalothin, ciprofloxacin, enrofloxacin, and gentamycin in an in vitro minimum inhibitory concentration model using Mueller-Hinton agar. The whole genome of SH UFPR1 was sequenced and consisted of a circular chromosome, spanning 4,760,321 bp with 52.18% of GC-content encoding 84 tRNA, 22 rRNA, and 4,427 protein-coding genes. The comparison between SH UFPR1 genome and a multidrug-resistant SL476 strain revealed 11 missing genomic fragments and 5 insertions related to bgt, bgr , and rpoS genes. The

  3. Phenotypic and Genotypic Features of a Salmonella Heidelberg Strain Isolated in Broilers in Brazil and Their Possible Association to Antibiotics and Short-Chain Organic Acids Resistance and Susceptibility

    Directory of Open Access Journals (Sweden)

    Elizabeth Santin

    2017-11-01

    Full Text Available Salmonella enterica serovar Heidelberg is a human pathogen also found in broilers. A strain (UFPR1 has been associated with field reports of resistance to short-chain organic acids (SCOA in broilers in the South of Brazil, but was susceptible to a Bacillus subtilis-based probiotic added in feed in a related study. This work aimed to (i report clinical symptoms caused by SH UFPR1 in broilers, (ii study its susceptibility to some antibiotics in vitro, and (iii SCOA in vivo; and (iv relate these phenotypic observations with its genome characteristics. Two in vivo trials used 1-day-old chicks housed for 21 days in 8 sterilized isolated negative pressure rooms with 4 battery cages of 12 birds each. Birds were challenged or not with 107 CFU/bird of SH UFPR1 orally and exposed or not to SCOA in a 2 × 2 factorial design. Zootechnical parameters were unaffected (P > 0.05, no clinical signs were observed, and few cecal and hepatic histologic and immune-related alterations were seen, in birds challenged with SH. Formic and propionic acids added together in drinking water, fumaric and benzoic acid in feed (Trial 1, and coated calcium butyrate in feed (Trial 2 did not reduce the SH isolation frequencies seen in cecum and liver in broilers after SH challenge (P > 0.05. SH UFPR1 was susceptible to amikacin, amoxicillin + clavulanate, ceftiofur, cephalexin, doxycycline and oxytetracycline; and mildly susceptible to ampicillin + sulbactam, cephalothin, ciprofloxacin, enrofloxacin, and gentamycin in an in vitro minimum inhibitory concentration model using Mueller–Hinton agar. The whole genome of SH UFPR1 was sequenced and consisted of a circular chromosome, spanning 4,760,321 bp with 52.18% of GC-content encoding 84 tRNA, 22 rRNA, and 4,427 protein-coding genes. The comparison between SH UFPR1 genome and a multidrug-resistant SL476 strain revealed 11 missing genomic fragments and 5 insertions related to bgt, bgr, and rpoS genes. The

  4. Neonatal jaundice and glucose-6-phosphate dehydrogenase

    OpenAIRE

    Leite, Amauri Antiquera [UNESP

    2010-01-01

    A deficiência de glicose-6-fosfato desidrogenase em neonatos pode ser a responsável pela icterícia neonatal. Este comentário científico é decorrente do relato sobre o tema publicado neste fascículo e que preocupa diversos autores de outros países em relação às complicações em neonatos de hiperbilirrubinemia, existindo inclusive proposições de alguns autores em incluir o teste para identificar a deficiência de glicose-6-fosfato desidrogenase nos recém-nascidos.Glucose-6-phosphate dehydrogenase...

  5. Cloning and expression analysis of alcohol dehydrogenase ( Adh ...

    African Journals Online (AJOL)

    Hybrid promoters are created by shuffling of DNA fragments while keeping intact regulatory regions crucial of promoter activity. Two fragments of alcohol dehydrogenase (Adh) promoter from Zea mays were selected to generate hybrid promoter. Sequence analysis of both alcohol dehydrogenase promoter fragments through ...

  6. Enzymatic urea adaptation: lactate and malate dehydrogenase in elasmobranchs

    Czech Academy of Sciences Publication Activity Database

    Lagana, G.; Bellocco, E.; Mannucci, C.; Leuzzi, U.; Tellone, E.; Kotyk, Arnošt; Galtieri, A.

    2006-01-01

    Roč. 55, č. 6 (2006), s. 675-688 ISSN 0862-8408 Institutional research plan: CEZ:AV0Z50110509 Keywords : elasmobranchs * lactate dehydrogenase * malate dehydrogenase Subject RIV: CE - Biochemistry Impact factor: 2.093, year: 2006

  7. Some Properties of Glutamate Dehydrogenase from the Marine Red ...

    African Journals Online (AJOL)

    Keywords: ammonia assimilation, glutamate dehydrogenase, GDH, Gracilaria sordida, red alga, enzyme activity. Glutamate dehydrogenases (GDH, EC ... Anabolic functions could be assimilation of ammonia released during photorespiration and synthesis of N-rich transport compounds. Western Indian Ocean Journal of ...

  8. Study on the triphenyl tetrazolium chloride– dehydrogenase activity ...

    African Journals Online (AJOL)

    A quick analysis of the sludge activity method based on triphenyltetrazolium chloride-dehydrogenase activity (TTC-DHA) was developed to change the rule and status of the biological activity of the activated sludge in tomato paste wastewater treatment. The results indicate that dehydrogenase activity (DHA) can effectively ...

  9. Acidic pH and short-chain fatty acids activate Na+ transport but differentially modulate expression of Na+/H+ exchanger isoforms 1, 2, and 3 in omasal epithelium.

    Science.gov (United States)

    Lu, Zhongyan; Yao, Lei; Jiang, Zhengqian; Aschenbach, Jörg R; Martens, Holger; Shen, Zanming

    2016-01-01

    Low sodium content in feed and large amounts of salivary sodium secretion are essential requirements to efficient sodium reabsorption in the dairy cow. It is already known that Na(+)/H(+) exchange (NHE) of the ruminal epithelium plays a key role in Na(+) absorption, and its function is influenced by the presence of short-chain fatty acids (SCFA) and mucosal pH. By contrast, the functional role and regulation of NHE in omasal epithelium have not been completely understood. In the present study, we used model studies in small ruminants (sheep and goats) to investigate NHE-mediated Na(+) transport and the effects of pH and SCFA on NHE activity in omasal epithelium and on the expression of NHE isoform in omasal epithelial cells. Conventional Ussing chamber technique, primary cell culture, quantitative PCR, and Western blot were used. In native omasal epithelium of sheep, the Na(+) transport was electroneutral, and it was inhibited by the specific NHE3 inhibitor 3-[2-(3-guanidino-2-methyl-3-oxo-propenyl)-5-methyl-phenyl]-N-isopropylidene-2-methyl-acrylamide dihydrochloride, which decreased mucosal-to-serosal, serosal-to-mucosal, and net flux rates of Na(+) by 80% each. The application of low mucosal pH (6.4 or 5.8) in the presence of SCFA activated the Na(+) transport across omasal epithelium of sheep compared with that at pH 7.4. In cultured omasal epithelial cells of goats, mRNA and protein of NHE1, NHE2, and NHE3 were detected. The application of SCFA increased NHE1 mRNA and protein expression, which was most prominent when the culture medium pH decreased from 7.4 to 6.8. At variance, the mRNA and protein expression of NHE2 and NHE3 were decreased with low pH and SCFA, which was contrary to the published data from ruminal epithelial studies. In conclusion, this paper shows that (1) NHE1, NHE2, and NHE3 are expressed in omasal epithelium; (2) NHE3 mediates the major portion of transepithelial Na(+) transport in omasal epithelium; and (3) SCFA and acidic pH acutely

  10. Efecto teratogénico y toxico de ácidos grasos de cadena corta insaturados, en Rhodnius prolixus Teratogenic and toxic effect of unsaturated fatty acids of short chain, in Rhodnius prolixus

    Directory of Open Access Journals (Sweden)

    Ivonne Gomez

    1985-12-01

    Full Text Available Se estudia el papel teratogénico de dos ácidos grasos insaturados de cadena corta, ácido octinoico y ácido undecilénico, sobre insectos de metamorfosis hemimetábola, Rhodnius prolixus (Hemiptera. La penetración de los ácidos, se realiza a través de la cutícula del abdomen y de los tarsos, se presenta como una acción independiente del grado de distensión de la misma, ya que sus efectos se registran tanto en los insectos repletos, como en los hambrientos; tanto en los tratados tópicamente como en aquellos donde la droga se aplicó al papel de soporte. Los ácidos estudiados aparentemente no afectan la formación de la cutícula, ni la melanización, como tampoco afecta el proceso de la muda. Los daños inducidos por estos ácidos se presentam al azar tanto en los apéndices locomotores como en los cefálicos, observándose un desplazamiento a la proboscide a medida que se incrementa la dosis. De las malformaciones en la proboscide, es el labio el mas dramáticamente dañado, aunque también se presentan daños en los otros apéndices bucales, aisladamente o junto con el daño del labio. El daño en los apéndices locomotores está frecuentemente desplazado al segundo y tercer par de patas, mientras que el par, fue el menos afectado. El ácido octinoico se comportó como teratogénico en las dosis que fueron letales para el insecto con el ácido undecilénico.The teratogenic role of two short-chain unsaturated fatty acids, octinoic acid and undecylenic acid on the hemimetabolic metamorphosis of the insect Rhodnius prolixus (Hemipter is studied. The acids penetrate through the cuticle of the abdomen and tarsi, independently of the amount of distention. The effects are registered equally in satiated or hungry insects, in those treated topically or in those where the treatment was applied to the support paper. The acids apparently do not affect the formation of the cuticle, melanization, nor the metamorphic process. The damage induced by

  11. INFLUENCE OF SELECTED PHARMACEUTICALS ON ACTIVATED SLUDGE DEHYDROGENASE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Agnieszka Tomska

    2016-06-01

    The aim of this work was to evaluate the effect of selected antibiotics - sulfanilamide and erythromycin on activated sludge dehydrogenase activity with use of trifenyltetrazolinum chloride (TTC test. Dehydrogenases activity is an indicator of biochemical activity of microorganisms present in activated sludge or the ability to degrade organic compounds in waste water. TTC test is particularly useful for the regularity of the course of treatment, in which the presence of inhibitors of biochemical reactions and toxic compounds are present. It was observed that the dehydrogenase activity decreases with the increase of a antibiotics concentration. The lowest value of the dehydrogenase activity equal to 32.4 μmol TF / gMLSS obtained at sulfanilamide concentration 150mg / l. For this sample, an inhibition of dehydrogenase activity was 31%.

  12. Localization of active, dually phosphorylated extracellular signal-regulated kinase 1 and 2 in colorectal cancer with or without activating BRAF and KRAS mutations

    DEFF Research Database (Denmark)

    Holck, Susanne; Bonde, Jesper; Pedersen, Helle

    2016-01-01

    Colorectal cancers (CRC) often show activating mutations of the KRAS or BRAF genes, which stimulate the extracellular signal-regulated kinase (ERK) pathway, thus increasing cell proliferation and inhibiting apoptosis. However, immunohistochemical results on ERK activation in such tumors differ...... detectable increases in phosphorylation of ERK (pERK), we stained biopsies from 36 CRC patients with activating mutations in the BRAF gene (BRAFV600E: BRAF(m)), the KRAS gene (KRAS(m)) or in neither (BRAF/KRAS(n)) with this optimized method. Staining was scored in blind-coded specimens by two observers....... Staining of stromal cells was used as a positive control. BRAF(m) or KRAS(m) tumors did not show higher staining scores than BRAF/KRAS(n) tumors. Although BRAFV600E staining occurred in over 90% of cancer cells in all 9 BRAF(m) tumors, 3 only showed staining for pERK in less than 10% of cancer cell nuclei...

  13. P2X7 receptor activates extracellular signal-regulated kinases ERK1 and ERK2 independently of Ca2+ influx

    DEFF Research Database (Denmark)

    Amstrup, Jan; Novak, Ivana

    2003-01-01

    P2X7 nucleotide receptors modulate a spectrum of cellular events in various cells including epithelia, such as exocrine pancreas. Although the pharmacology and channel properties of the P2X7 receptors have been studied intensively, signal transduction pathways are relatively unknown. In this study...... we applied a heterologous expression system of rat P2X7 receptors in HEK-293 cells. We followed the receptor expression and function using the enhanced green fluorescent protein (EGFP) tag, activation of intracellular proteins and increases in cellular Ca2+. EGFP-P2X7 receptors localized...... to the plasma membrane, clusters within the membrane and intracellularly. Stimulation of P2X7 receptors in HEK-293 cells led to an activation of extracellular signal-regulated kinases ERK1 and ERK2 and this activation was seen after just 1 min of stimulation with ATP. Using C- and N-terminal P2X7-receptor...

  14. Sex differences in social interaction behaviors in rats are mediated by extracellular signal-regulated kinase 2 expression in the medial prefrontal cortex

    Science.gov (United States)

    Carrier, Nicole; Kabbaj, Mohamed

    2012-01-01

    Considerable sex differences occur in the incidence and prevalence of anxiety disorders where women are more anxious than men, particularly in situations where social interaction is required. In preclinical studies, the social interaction test represents a valid animal model to study sex differences in social anxiety. Indeed, female rats engage less in conspecific interactions than their male counterparts, which are behaviors indicative of higher social anxiety in female rats. In this work, we implicated extracellular signal regulated kinase 2 (ERK2) in the medial prefrontal cortex (mPFC) in mediating social interaction. Indeed, female rats’ had lower ERK2 expression compared to male rats, and overexpression of ERK2 in the mPFC increases their social interaction to the level seen in their male counterparts. These data indicate that the sexually dimorphic expression of ERK2 mediates social anxiety-like behaviors. PMID:22521590

  15. Curcumin protects cortical neurons against oxygen and glucose deprivation/reoxygenation injury through flotillin-1 and extracellular signal-regulated kinase1/2 pathway.

    Science.gov (United States)

    Lu, Zhengyu; Liu, Yanping; Shi, Yang; Shi, Xinjie; Wang, Xin; Xu, Chuan; Zhao, Hong; Dong, Qiang

    2018-02-05

    In this study, we provided evidence that curcumin could be a promising therapeutic agent for ischemic stroke by activating neuroprotective signaling pathways. Post oxygen and glucose deprivation/reoxygenation (OGD/R), primary mouse cortical neurons treated with curcumin exhibited a significant decrease in cell death, LDH release and enzyme caspase-3 activity under OGD/R circumstances, which were abolished by flotillin-1 downregulation or extracellular signal-regulated kinase (ERK) inhibitor. Moreover, flotillin-1 knockdown led to suppression of curcumin-mediated ERK phosphorylation under OGD/R condition. Based on these findings, we concluded that curcumin could confer neuroprotection against OGD/R injury through a novel flotillin-1 and ERK1/2 pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Action of sulphite on plant malate dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, I.

    1974-01-01

    SO/sub 3//sup 2 -/ acts on NAD- and NADP-dependent malate dehydrogenase in several ways. Firstly, SO/sub 3//sup 2 -/ favours the appearance of low MW species (65000 and 39000 daltons) in Sephadex gel chromatography. Secondly, the enzyme from which is obtained by gel chromatography with dithioerythritol plus nucleotide cofactor is changed in the presence of SO/sub 3//sup 2 -/. This is indicated by the appearance of a linear reaction (instead of curvilinear), and by the abolition of the biphasic sigmoidal kinetics on varying substrate and cofactor concentrations. Thus the inhibition of initial velocity at high substrate or cofactor concentrations is even more marked than at lower ones. Thirdly, SO/sub 3//sup 2 -/ strongly reduces the activity in substrate saturating conditions.

  17. Rate constants for a mechanism including intermediates in the interconversion of ternary complexes by horse liver alcohol dehydrogenase

    International Nuclear Information System (INIS)

    Sekhar, V.C.; Plapp, B.V.

    1990-01-01

    Transient kinetic data for partial reactions of alcohol dehydrogenase and simulations of progress curves have led to estimates of rate constants for the following mechanism, at pH 8.0 and 25 degrees C: E in equilibrium E-NAD+ in equilibrium *E-NAD+ in equilibrium E-NAD(+)-RCH2OH in equilibrium E-NAD+-RCH2O- in equilibrium *E-NADH-RCHO in equilibrium E-NADH-RCHO in equilibrium E-NADH in equilibrium E. Previous results show that the E-NAD+ complex isomerizes with a forward rate constant of 620 s-1. The enzyme-NAD(+)-alcohol complex has a pK value of 7.2 and loses a proton rapidly (greater than 1000 s-1). The transient oxidation of ethanol is 2-fold faster in D 2 O, and proton inventory results suggest that the transition state has a charge of -0.3 on the substrate oxygen. Rate constants for hydride ion transfer in the forward or reverse reactions were similar for short-chain aliphatic substrates (400-600 s-1). A small deuterium isotope effect for transient oxidation of longer chain alcohols is apparently due to the isomerization of the E-NAD+ complex. The transient reduction of aliphatic aldehydes showed no primary deuterium isotope effect; thus, an isomerization of the E-NADH-aldehyde complex is postulated, as isomerization of the E-NADH complex was too fast to be detected. The estimated microscopic rate constants show that the observed transient reactions are controlled by multiple steps

  18. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci.

    Science.gov (United States)

    Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin

    2013-07-01

    Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.

  19. Substrate scope of a dehydrogenase from Sphingomonas species A1 and its potential application in the synthesis of rare sugars and sugar derivatives.

    Science.gov (United States)

    Beer, Barbara; Pick, André; Döring, Manuel; Lommes, Petra; Sieber, Volker

    2018-04-26

    Rare sugars and sugar derivatives that can be obtained from abundant sugars are of great interest to biochemical and pharmaceutical research. Here, we describe the substrate scope of a short-chain dehydrogenase/reductase from Sphingomonas species A1 (SpsADH) in the oxidation of aldonates and polyols. The resulting products are rare uronic acids and rare sugars respectively. We provide insight into the substrate recognition of SpsADH using kinetic analyses, which show that the configuration of the hydroxyl groups adjacent to the oxidized carbon is crucial for substrate recognition. Furthermore, the specificity is demonstrated by the oxidation of d-sorbitol leading to l-gulose as sole product instead of a mixture of d-glucose and l-gulose. Finally, we applied the enzyme to the synthesis of l-gulose from d-sorbitol in an in vitro system using a NADH oxidase for cofactor recycling. This study shows the usefulness of exploring the substrate scope of enzymes to find new enzymatic reaction pathways from renewable resources to value-added compounds. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. Slc5a8, a Na+-coupled high-affinity transporter for short-chain fatty acids, is a conditional tumour suppressor in colon that protects against colitis and colon cancer under low-fibre dietary conditions.

    Science.gov (United States)

    Gurav, Ashish; Sivaprakasam, Sathish; Bhutia, Yangzom D; Boettger, Thomas; Singh, Nagendra; Ganapathy, Vadivel

    2015-07-15

    Mammalian colon harbours trillions of bacteria under physiological conditions; this symbiosis is made possible because of a tolerized response from the mucosal immune system. The mechanisms underlying this tolerogenic phenomenon remain poorly understood. In the present study we show that Slc5a8 (solute carrier gene family 5a, member 8), a Na(+)-coupled high-affinity transporter in colon for the bacterial fermentation product butyrate, plays a critical role in this process. Among various immune cells in colon, dendritic cells (DCs) are unique not only in their accessibility to luminal contents but also in their ability to induce tolerogenic phenotype in T-cells. We found that DCs exposed to butyrate express the immunosuppressive enzymes indoleamine 2,3-dioxygenase 1 (IDO1) and aldehyde dehydrogenase 1A2 (Aldh1A2), promote conversion of naive T-cells into immunosuppressive forkhead box P3(+) (FoxP3(+)) Tregs (regulatory T-cells) and suppress conversion of naive T-cells into pro-inflammatory interferon (IFN)-γ-producing cells. Slc5a8-null DCs do not induce IDO1 and Aldh1A2 and do not generate Tregs or suppress IFN-γ-producing T-cells in response to butyrate. We also provide in vivo evidence for an obligatory role for Slc5a8 in suppression of IFN-γ-producing T-cells. Furthermore, Slc5a8 protects against colitis and colon cancer under conditions of low-fibre intake but not when dietary fibre intake is optimal. This agrees with the high-affinity nature of the transporter to mediate butyrate entry into cells. We conclude that Slc5a8 is an obligatory link between dietary fibre and mucosal immune system via the bacterial metabolite butyrate and that this transporter is a conditional tumour suppressor in colon linked to dietary fibre content. © 2015 Authors; published by Portland Press Limited.

  1. Genetics Home Reference: 3-beta-hydroxysteroid dehydrogenase deficiency

    Science.gov (United States)

    ... for This Page Lutfallah C, Wang W, Mason JI, Chang YT, Haider A, Rich B, Castro-Magana ... A, Copeland KC, Chang YT, Lutfallah C, Mason JI. Carriers for type II 3beta-hydroxysteroid dehydrogenase (HSD3B2) ...

  2. Properties of glucoside 3-dehydrogenase and its potential applications

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-29

    Dec 29, 2008 ... dehydrogenase has attracted considerable attention in recent years due to broad substrate specificity and excellent ... site-selective oxidation of the C-3 hydroxyl group. .... single peptide with a molecular mass of 67 kDa in.

  3. 21 CFR 862.1500 - Malic dehydrogenase test system.

    Science.gov (United States)

    2010-04-01

    ... plasma. Malic dehydrogenase measurements are used in the diagnosis and treatment of muscle and liver... marrow) leukemia. (b) Classification. Class I (general controls). The device is exempt from the premarket...

  4. Modeling of NAD+ analogues in horse liver alcohol dehydrogenase

    NARCIS (Netherlands)

    Beijer, N.A.; Buck, H.M.; Sluyterman, L.A.A.E.; Meijer, E.M.

    1990-01-01

    So far, the interactions of nicotinamide adenine dinucleotide (NAD+) derivatives with dehydrogenases are not very well understood. This hampers the introduction of NAD+ analogues with improved characteristics concerning industrial application. We have developed an AMBER molecular mechanics model in

  5. An improved method for the assay of platelet pyruvate dehydrogenase

    International Nuclear Information System (INIS)

    Schofield, P.J.; Griffiths, L.R.; Rogers, S.H.

    1980-01-01

    An improved method for the assay of human platelet pyruvate dehydrogenase is described. By generating the substrate [1- 14 C]pyruvate in situ from [1- 14 C]lactate plus L-lactate dehydrogenase, the rate of spontaneous decarboxylation is dramatically reduced, allowing far greater sensitivity in the assay of low activities of pyruvate dehydrogenase. In addition, no special precautions are required for the storage and use of [1- 14 C]lactate, in contrast to those for [1- 14 C]pyruvate. These factors allow a 5-10-fold increase in sensitivity compared with current methods. The pyruvate dehydrogenase activity of normal subjects as determined by the [1- 14 C]lactate system was 215+-55 pmol min -1 mg -1 protein (n=18). The advantages of this assay system are discussed. (Auth.)

  6. Genetics Home Reference: 17-beta hydroxysteroid dehydrogenase 3 deficiency

    Science.gov (United States)

    ... 000 newborns. It is more common in the Arab population of Gaza, where it affects 1 in ... fetus, resulting in the abnormalities in the external sex organs that occur in 17-beta hydroxysteroid dehydrogenase ...

  7. Rapid synthesis of triazine inhibitors of inosine monophosphate dehydrogenase.

    Science.gov (United States)

    Pitts, William J; Guo, Junqing; Dhar, T G Murali; Shen, Zhongqi; Gu, Henry H; Watterson, Scott H; Bednarz, Mark S; Chen, Bang Chi; Barrish, Joel C; Bassolino, Donna; Cheney, Daniel; Fleener, Catherine A; Rouleau, Katherine A; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2002-08-19

    A series of novel triazine-based small molecule inhibitors (IV) of inosine monophosphate dehydrogenase was prepared. The synthesis and the structure-activity relationships (SAR) derived from in vitro studies are described.

  8. Novel amide-based inhibitors of inosine 5'-monophosphate dehydrogenase.

    Science.gov (United States)

    Watterson, Scott H; Liu, Chunjian; Dhar, T G Murali; Gu, Henry H; Pitts, William J; Barrish, Joel C; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Hollenbaugh, Diane L; Iwanowicz, Edwin J

    2002-10-21

    A series of novel amide-based small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH) was explored. The synthesis and the structure-activity relationships (SARs) derived from in vitro studies are described.

  9. Eucalypt NADP-Dependent Isocitrate Dehydrogenase1

    Science.gov (United States)

    Boiffin, Vincent; Hodges, Michael; Gálvez, Susana; Balestrini, Raffaella; Bonfante, Paola; Gadal, Pierre; Martin, Francis

    1998-01-01

    NADP-dependent isocitrate dehydrogenase (NADP-ICDH) activity is increased in roots of Eucalyptus globulus subsp. bicostata ex Maiden Kirkp. during colonization by the ectomycorrhizal fungus Pisolithus tinctorius Coker and Couch. To investigate the regulation of the enzyme expression, a cDNA (EgIcdh) encoding the NADP-ICDH was isolated from a cDNA library of E. globulus-P. tinctorius ectomycorrhizae. The putative polypeptide sequence of EgIcdh showed a high amino acid similarity with plant NADP-ICDHs. Because the deduced EgICDH protein lacks an amino-terminal targeting sequence and shows highest similarity to plant cytosolic ICDHs, it probably represents a cytoplasmic isoform. RNA analysis showed that the steady-state level of EgIcdh transcripts was enhanced nearly 2-fold in ectomycorrhizal roots compared with nonmycorrhizal roots. Increased accumulation of NADP-ICDH transcripts occurred as early as 2 d after contact and likely led to the observed increased enzyme activity. Indirect immunofluorescence microscopy indicated that NADP-ICDH was preferentially accumulated in the epidermis and stele parenchyma of nonmycorrhizal and ectomycorrhizal lateral roots. The putative role of cytosolic NADP-ICDH in ectomycorrhizae is discussed. PMID:9662536

  10. Glucose-6-phosphate dehydrogenase deficiency in Singapore.

    Science.gov (United States)

    Quak, S H; Saha, N; Tay, J S

    1996-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) in man is an X-linked enzyme. The deficiency of this enzyme is one of the most common inherited metabolic disorders in man. In Singapore, three clinical syndromes associated with G6PD deficiency had been described: severe haemolysis in neonates with kernicterus, haemoglobinuria and "viral hepatitis"-like syndrome. The human G6PD monomer consists of 515 amino acids. Only the tetrameric or dimeric forms composed of a single type subunit are catylitically active. The complete amino acid sequence of G6PD had been elucidated in man and various other animals. The region of high homology among the enzymes of various animals is presumably functionally active. Among the Chinese in Singapore, three common molecular variants had been identified: Canton (nt 1376 G --> T), Kaiping (nt 1388 G --> A) and Mediterranean (nt 563 C --> T) in frequencies of 24%, 21% and 10% respectively. In addition, two common mutants (Gaozhou, nt 95 A --> G and Chinese 5, nt 1024 C --> T) have been detected in Singapore Chinese in low frequencies. In Malays, 6 different deficient variants are known in Singapore (3 new, 1 Mahidol, 1 Indonesian and 1 Mediterranean).

  11. Human liver aldehyde dehydrogenase: coenzyme binding

    International Nuclear Information System (INIS)

    Kosley, L.L.; Pietruszko, R.

    1987-01-01

    The binding of [U- 14 C] NAD to mitochondrial (E2) and cytoplasmin(E1) aldehyde dehydrogenase was measured by gel filtration and sedimentation techniques. The binding data for NAD and (E1) yielded linear Scatchard plots giving a dissociation constant of 25 (+/- 8) uM and the stoichiometry of 2 mol of NAD bound per mol of E1. The binding data for NAD and (E2) gave nonlinear Scatchard plots. The binding of NADH to E2 was measured via fluorescence enhancement; this could not be done with E1 because there was no signal. The dissociation constant for E2 by this technique was 0.7 (+/- 0.4) uM and stoichiometry of 1.0 was obtained. The binding of [U- 14 C] NADH to (E1) and (E2) was also measured by the sedimentation technique. The binding data for (E1) and NADH gave linear Scatchard plots giving a dissociation constant of 13 (+/- 6) uM and the stoichiometry of 2.0. The binding data for NADH to (E2) gave nonlinear Scatchard plots. With (E1), the dissociation constants for both NAD and NADH are similar to those determined kinetically, but the stoichiometry is only half of that found by stopped flow technique. With (E2) the dissociation constant by fluorometric procedure was 2 orders of magnitude less than that from catalytic reaction

  12. Radioimmunoassay of lactate dehydrogenase, H forms

    International Nuclear Information System (INIS)

    Malvano, R.; Massaglia, A.; Zannino, M.; Palmucci, F.; Cali, V.; Zucchelli, G.C.; Consiglio Nazionale delle Ricerche, Pisa

    1979-01-01

    Antisera to H 4 -lactate dehydrogenase (LDH) were elicited in rabbits, against both human (h) and porcine (p) isoenzymes. 125 I-labelled H 4 -LDH was prepared by electrolytic iodination. A simple and fast procedure (1-h incubation for clinical assays) was set up by using polyethylene glycol for the bound-free separation. The results obtained in the antiserum characterization indicated that the heterologous homotetramer, M 4 was completely discriminated in the porcine system, while a weak cross-reaction with human antisera resulted. In both cases, for the hybrid forms, a cross-reactivity level related to the stoichiometric contents of the H-subunit in the tetramers was observed. The H 4 -LDH from other species was found to be much more effectively distinguished in the procine than in the human system. The assay for human LDH was further validated in terms of analytical suitability and clinical response. For healthy subjects the mean concentration was 0.46 +- 0.19 μg/ml (mean +- SD). Patients with acute myocardial infarction had levels ranging from 1.2 to 5.9 μg/ml. (orig.) [de

  13. Glucose 6 phosphate dehydrogenase deficiency in adults

    International Nuclear Information System (INIS)

    Khan, M.

    2004-01-01

    Objective: To determine the frequency of glucose-6-phosphate dehydrogenase (G6PD) deficiency in adults presented with anemia. Subjects and Methods: Eighteen months admission data was reviewed for G6PD deficiency as a cause of anemia. Anemia was defined by world health organization (WHO) criteria as haemoglobin less than 11.3 gm%. G6PD activity was measured by Sigma dye decolorisation method. All patients were screened for complications of hemolysis and its possible cause. Patients with more than 13 years of age were included in the study. Results: Out of 3600 patients admitted, 1440 were found anaemic and 49 as G6PD deficient. So the frequency of G6PD deficiency in anaemic patients was 3.4% and the overall frequency is 1.36%. G6PD deficiency among males and females was three and six percent respectively. Antimalarials and antibiotics containing sulphonamide group were the most common precipitating factors for hemolysis. Anemia and jaundice were the most common presentations while malaria was the most common associated disease. Acute renal failure was the most severe complication occurring in five patients with two deaths. Conclusion: G6PD deficiency is a fairly common cause of anemia with medicine as common precipitating factor for hemolysis. Such complications can be avoided with early recognition of the disease and avoiding indiscriminate use of medicine. (author)

  14. Glucose 6-phosphate dehydrogenase variants in Japan.

    Science.gov (United States)

    Miwa, S

    1980-01-01

    Fifty-four cases of glucose 6-phosphate dehydrogenase (G6PD) deficiency have so far been reported in Japan. Among them, 21 G6PD variants have been characterized. Nineteen out of the 21 variants were characterized in our laboratory and G6PD Heian and "Kyoto" by others. G6PD Tokyo, Tokushima, Ogikubo, Kurume, Fukushima, Yokohama, Yamaguchi, Wakayama, Akita, Heian and "Kyoto" were classified as Class 1, because all these cases showed chronic hemolytic anemia and severe enzyme deficiency. All these variants showed thermal instability. G6PD Mediterranean-like, Ogori, Gifu and Fukuoka were classified as Class 2, whereas G6PD Hofu, B(-) Chinese, Ube, Konan, Kamiube and Kiwa belonged to Class 3. All the 6 Class 3 variants were found as the results of the screening tests. The incidence of the deficiency in Japanese seems to be 0.1-0.5% but that of the cases which may slow drug-induced hemolysis would be much less. G6PD Ube and Konan appear to be relatively common in Japan.

  15. Pyruvate dehydrogenase complex and lactate dehydrogenase as targets for therapy of acute liver failure.

    Science.gov (United States)

    Ferriero, Rosa; Nusco, Edoardo; De Cegli, Rossella; Carissimo, Annamaria; Manco, Giuseppe; Brunetti-Pierri, Nicola

    2018-03-23

    Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate in the nucleus to regulate histone acetylation and gene expression. Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-Ab, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by Gene Ontology Enrichment Analysis. Efficacy of histone acetyltransferase inhibitor garcinol and LDH inhibitor galloflavin at reducing liver damage was evaluated in mice with induced hepatotoxicity. Levels and activities of PDHC and LDH were increased in cytoplasmatic and nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-coA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to response to damage. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. PDHC and LDH translocate to the nucleus and are targets for therapy of acute liver failure. Acute liver failure is a rapidly progressive and life-threatening deterioration of liver function resulting in high mortality and

  16. Toxicity of Nitrification Inhibitors on Dehydrogenase Activity in Soils

    OpenAIRE

    Ferisman Tindaon; Gero Benckiser; Johannes C. G. Ottow

    2011-01-01

    The objective of this research was to determine the effects of nitrification inhibitors (NIs) such as 3,4-dimethylpyrazolephosphate=DMPP, 4-Chlor-methylpyrazole phosphate=ClMPP and dicyandiamide,DCD) which might be expected to inhibit microbial activity, on dehydrogenase activity (DRA),in three different soils in laboratory conditions. Dehydrogenase activity were assessed via reduction of 2-p-Iodophenyl-3-p-nitrophenyl-5-phenyltetrazoliumchloride (INT). The toxicity and dose response curve of...

  17. Aqueous extract of Allium sativum L bulbs offer nephroprotection by attenuating vascular endothelial growth factor and extracellular signal-regulated kinase-1 expression in diabetic rats.

    Science.gov (United States)

    Shiju, T M; Rajkumar, R; Rajesh, N G; Viswanathan, Pragasam

    2013-02-01

    To investigate the nephroprotective effect of garlic and elucidate the mechanism by which it prevents the progression of diabetic nephropathy in diabetic rats, diabetes was induced by a single ip injection of streptozotocin (45 mg/kg body weight). Garlic extract (500 mg/kg body weight) and aminoguanidine (1 g/L) were supplemented in the treatment groups. Histopathological examination using H&E, PAS staining and the immunohistochemical analysis of vascular endothelial growth factor (VEGF) and extracellular signal-regulated kinase-1 (ERK-1) expression were performed on kidney sections at the end of 12 weeks. Significant change in both, the urine and serum biochemistry confirmed kidney damage in diabetic animals which was further confirmed by the histological changes such as mesangial expansion, glomerular basement membrane thickening, glycosuria and proteinuria. However, the diabetic animals treated with garlic extract showed a significant change in urine and serum biochemical parameters such as albumin, urea nitrogen and creatinine compared to that of diabetic rats. Further, the garlic supplemented diabetic rats showed a significant decrease in the expression of VEGF and ERK-1 compared to diabetic rats, attenuating mesangial expansion and glomerulosclerosis. Thus, garlic extract rendered nephroprotection in diabetic rats.

  18. Retinoic Acid Modulates Interferon-γ Production by Hepatic Natural Killer T Cells via Phosphatase 2A and the Extracellular Signal-Regulated Kinase Pathway

    Science.gov (United States)

    Chang, Heng-Kwei

    2015-01-01

    Retinoic acid (RA), an active metabolite converted from vitamin A, plays an active role in immune function, such as defending against infections and immune regulation. Although RA affects various types of immune cells, including antigen-presenting cells, B lymphocytes, and T lymphocytes, whether it affects natural killer T (NKT) cells remain unknown. In this study, we found that RA decreased interferon (IFN)-γ production by activated NKT cells through T-cell receptor (TCR) and CD28. We also found that RA reduced extracellular signal-regulated kinase (ERK) phosphorylation, but increased phosphatase 2A (PP2A) activity in TCR/CD28-stimulated NKT cells. The increased PP2A activity, at least partly, contributed to the reduction of ERK phosphorylation. Since inhibition of ERK activation decreases IFN-γ production by TCR/CD28-stimulated NKT cells, RA may downregulate IFN-γ production by TCR/CD28-stimulated NKT cells through the PP2A-ERK pathway. Our results demonstrated a novel function of RA in modulating the IFN-γ expression by activated NKT cells. PMID:25343668

  19. Mesenchymal stem cells cultured under hypoxia escape from senescence via down-regulation of p16 and extracellular signal regulated kinase

    International Nuclear Information System (INIS)

    Jin, Yonghui; Kato, Tomohisa; Furu, Moritoshi; Nasu, Akira; Kajita, Yoichiro; Mitsui, Hiroto; Ueda, Michiko; Aoyama, Tomoki; Nakayama, Tomitaka; Nakamura, Takashi; Toguchida, Junya

    2010-01-01

    Hypoxia has been considered to affect the properties of tissue stem cells including mesenchymal stem cells (MSCs). Effects of long periods of exposure to hypoxia on human MSCs, however, have not been clearly demonstrated. MSCs cultured under normoxic conditions (20% pO 2 ) ceased to proliferate after 15-25 population doublings, while MSCs cultured under hypoxic conditions (1% pO 2 ) retained the ability to proliferate with an additional 8-20 population doublings. Most of the MSCs cultured under normoxic conditions were in a senescent state after 100 days, while few senescent cells were found in the hypoxic culture, which was associated with a down-regulation of p16 gene expression. MSCs cultured for 100 days under hypoxic conditions were superior to those cultured under normoxic conditions in the ability to differentiate into the chondro- and adipogenic, but not osteogenic, lineage. Among the molecules related to mitogen-activated protein kinase (MAPK) signaling pathways, extracellular signal regulated kinase (ERK) was significantly down-regulated by hypoxia, which helped to inhibit the up-regulation of p16 gene expression. Therefore, the hypoxic culture retained MSCs in an undifferentiated and senescence-free state through the down-regulation of p16 and ERK.

  20. Extracellular Signal-Regulated Kinase 5 is Required for Low-Concentration H2O2-Induced Angiogenesis of Human Umbilical Vein Endothelial Cells.

    Science.gov (United States)

    Jiang, Shan; Zhang, Dongxin; Huang, Hong; Lei, Yonghong; Han, Yan; Han, Weidong

    2017-01-01

    Background . The aim of this study was to assess the effects of low concentrations of H 2 O 2 on angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro and explore the underlying mechanisms. Methods . HUVECs were cultured and stimulated with different concentrations of H 2 O 2 . Flow cytometric analysis was used to select an optimal concentration of H 2 O 2 for the following experiments. Cell proliferation, migration, and tubule formation were evaluated by Cell Counting Kit-8 (CCK-8) assays, scratch wound assays, and Matrigel tubule formation assays, respectively. For gain and loss of function studies, constitutively active MEK5 (CA-MEK5) and ERK5 shRNA lentiviruses were used to activate or knock down extracellular signal-regulated kinase 5 (ERK5). Results . We found that low concentrations of H 2 O 2 promoted HUVECs proliferation, migration, and tubule formation. ERK5 in HUVECs was significantly activated by H 2 O 2 . Enhanced ERK5 activity significantly amplified the proangiogenic effects of H 2 O 2 ; in contrast, ERK5 knock-down abrogated the effects of H 2 O 2 . Conclusions . Our results confirmed that low concentrations of H 2 O 2 promoted HUVECs angiogenesis in vitro, and ERK5 is an essential mediator of this process. Therefore, ERK5 may be a potential therapeutic target for promoting angiogenesis and improving graft survival.

  1. Death Receptor-Induced Apoptosis Signalling Regulation by Ezrin Is Cell Type Dependent and Occurs in a DISC-Independent Manner in Colon Cancer Cells

    Science.gov (United States)

    Iessi, Elisabetta; Zischler, Luciana; Etringer, Aurélie; Bergeret, Marion; Morlé, Aymeric; Jacquemin, Guillaume; Morizot, Alexandre; Shirley, Sarah; Lalaoui, Najoua; Elifio-Esposito, Selene L.; Fais, Stefano; Garrido, Carmen; Solary, Eric; Micheau, Olivier

    2015-01-01

    Ezrin belongs to the ERM (ezrin-radixin-moesin) protein family and has been demonstrated to regulate early steps of Fas receptor signalling in lymphoid cells, but its contribution to TRAIL-induced cell death regulation in adherent cancer cells remains unknown. In this study we report that regulation of FasL and TRAIL-induced cell death by ezrin is cell type dependant. Ezrin is a positive regulator of apoptosis in T-lymphoma cell line Jurkat, but a negative regulator in colon cancer cells. Using ezrin phosphorylation or actin-binding mutants, we provide evidence that negative regulation of death receptor-induced apoptosis by ezrin occurs in a cytoskeleton- and DISC-independent manner, in colon cancer cells. Remarkably, inhibition of apoptosis induced by these ligands was found to be tightly associated with regulation of ezrin phosphorylation on serine 66, the tumor suppressor gene WWOX and activation of PKA. Deficiency in WWOX expression in the liver cancer SK-HEP1 or the pancreatic Mia PaCa-2 cell lines as well as WWOX silencing or modulation of PKA activation by pharmacological regulators, in the colon cancer cell line SW480, abrogated regulation of TRAIL signalling by ezrin. Altogether our results show that death receptor pro-apoptotic signalling regulation by ezrin can occur downstream of the DISC in colon cancer cells. PMID:26010871

  2. Death Receptor-Induced Apoptosis Signalling Regulation by Ezrin Is Cell Type Dependent and Occurs in a DISC-Independent Manner in Colon Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Elisabetta Iessi

    Full Text Available Ezrin belongs to the ERM (ezrin-radixin-moesin protein family and has been demonstrated to regulate early steps of Fas receptor signalling in lymphoid cells, but its contribution to TRAIL-induced cell death regulation in adherent cancer cells remains unknown. In this study we report that regulation of FasL and TRAIL-induced cell death by ezrin is cell type dependant. Ezrin is a positive regulator of apoptosis in T-lymphoma cell line Jurkat, but a negative regulator in colon cancer cells. Using ezrin phosphorylation or actin-binding mutants, we provide evidence that negative regulation of death receptor-induced apoptosis by ezrin occurs in a cytoskeleton- and DISC-independent manner, in colon cancer cells. Remarkably, inhibition of apoptosis induced by these ligands was found to be tightly associated with regulation of ezrin phosphorylation on serine 66, the tumor suppressor gene WWOX and activation of PKA. Deficiency in WWOX expression in the liver cancer SK-HEP1 or the pancreatic Mia PaCa-2 cell lines as well as WWOX silencing or modulation of PKA activation by pharmacological regulators, in the colon cancer cell line SW480, abrogated regulation of TRAIL signalling by ezrin. Altogether our results show that death receptor pro-apoptotic signalling regulation by ezrin can occur downstream of the DISC in colon cancer cells.

  3. Fas-Induced Apoptosis of Renal Cell Carcinoma is Mediated by Apoptosis Signal-Regulating Kinase 1 via Mitochondrial Damage-Dependent Caspase-8 Activation

    Directory of Open Access Journals (Sweden)

    Mohamed Hassan

    2009-01-01

    Full Text Available Renal cell carcinoma (RCC is a prototype of a chemo refractory tumour. It remains the most lethal of the common urologic cancers and is highly resistant to conventional therapy. Here, we confirmed the efficiency of anti-Fas monoclonal antibody (CH11 as alternative therapeutic approach for the treatment of RCC and investigated the molecular mechanism(s, whereby CH11 induces apoptosis of RCC cells. The present study shows an essential role for apoptosis signal-regulating kinase 1 (ASK1, together with both c-jun-N-terminal kinase (JNK and p38 pathways, and caspase-8 in this process. Furthermore, CH11-dependent induction of the ASK1–JNK/p38 pathways was found to activate the transcription factors AP-1 and ATF-2, and FADD-caspase-8-Bid signalling, resulting in the translocation of both Bax and Bak proteins, and subsequently mitochondrial dysregulation that is characterized by the loss of mitochondrial membrane potential (ΔΨm, cytochrome c release and cleavage of caspase-9, caspase-3 and PARP. Thus, the described molecular mechanisms of CH11-induced apoptosis suggest the reliability of Fas activation as an alternative therapeutic approach for the treatment of patients with advanced renal cell carcinoma.

  4. Notch-RBP-J signaling regulates the mobilization and function of endothelial progenitor cells by dynamic modulation of CXCR4 expression in mice.

    Directory of Open Access Journals (Sweden)

    Lin Wang

    Full Text Available Bone marrow (BM-derived endothelial progenitor cells (EPC have therapeutic potentials in promoting tissue regeneration, but how these cells are modulated in vivo has been elusive. Here, we report that RBP-J, the critical transcription factor mediating Notch signaling, modulates EPC through CXCR4. In a mouse partial hepatectomy (PHx model, RBP-J deficient EPC showed attenuated capacities of homing and facilitating liver regeneration. In resting mice, the conditional deletion of RBP-J led to a decrease of BM EPC, with a concomitant increase of EPC in the peripheral blood. This was accompanied by a down-regulation of CXCR4 on EPC in BM, although CXCR4 expression on EPC in the circulation was up-regulated in the absence of RBP-J. PHx in RBP-J deficient mice induced stronger EPC mobilization. In vitro, RBP-J deficient EPC showed lowered capacities of adhering, migrating, and forming vessel-like structures in three-dimensional cultures. Over-expression of CXCR4 could at least rescue the defects in vessel formation by the RBP-J deficient EPC. These data suggested that the RBP-J-mediated Notch signaling regulated EPC mobilization and function, at least partially through dynamic modulation of CXCR4 expression. Our findings not only provide new insights into the regulation of EPC, but also have implications for clinical therapies using EPC in diseases.

  5. Inhibition of swallowing reflex following phosphorylation of extracellular signal-regulated kinase in nucleus tractus solitarii neurons in rats with masseter muscle nociception.

    Science.gov (United States)

    Tsujimura, Takanori; Kitagawa, Junichi; Ueda, Koichiro; Iwata, Koichi

    2009-02-06

    Pain is associated with swallowing abnormalities in dysphagic patients. Understanding neuronal mechanisms underlying the swallowing abnormalities associated with orofacial abnormal pain is crucial for developing new methods to treat dysphagic patients. However, how the orofacial abnormal pain is involved in the swallowing abnormalities is not known. In order to evaluate neuronal mechanisms of modulation of the swallows by masticatory muscle pain, here we first induced swallows by topical administration of distilled water to the pharyngolaryngeal region. The swallowing reflex was significantly inhibited after capsaicin (10, 30mM) injection into the masseter muscle compared to vehicle injection. Moreover the number of phosphorylated extracellular signal-regulated kinase-like immunoreactive (pERK-LI) neurons in the nucleus tractus solitarii (NTS) was significantly increased in the rats with capsaicin injection into the masseter muscle compared to that with vehicle injection. Rostro-caudal distribution of pERK-LI neurons in the NTS was peaked at the obex level. The capsaicin-induced inhibitory effect on swallowing reflex was reversed after intrathecal administration of mitogen-activated protein kinase (MAPK) kinase (MEK) inhibitor, PD98059. The present findings suggest that phosphorylation of ERK in NTS neurons may be involved in capsaicin-induced inhibition of swallowing reflex.

  6. Loss of Extracellular Signal-Regulated Kinase 1/2 in the Retinal Pigment Epithelium Leads to RPE65 Decrease and Retinal Degeneration.

    Science.gov (United States)

    Pyakurel, Aswin; Balmer, Delphine; Saba-El-Leil, Marc K; Kizilyaprak, Caroline; Daraspe, Jean; Humbel, Bruno M; Voisin, Laure; Le, Yun Z; von Lintig, Johannes; Meloche, Sylvain; Roduit, Raphaël

    2017-12-15

    Recent work suggested that the activity of extracellular signal-regulated kinase 1/2 (ERK1/2) is increased in the retinal pigment epithelium (RPE) of age-related macular degeneration (ARMD) patients and therefore could be an attractive therapeutic target. Notably, ERK1/2 pathway inhibitors are used in cancer therapy, with severe and noncharacterized ocular side effects. To decipher the role of ERK1/2 in RPE cells, we conditionally disrupted the Erk1 and Erk2 genes in mouse RPE. The loss of ERK1/2 activity resulted in a significant decrease in the level of RPE65 expression, a decrease in ocular retinoid levels concomitant with low visual function, and a rapid disorganization of RPE cells, ultimately leading to retinal degeneration. Our results identify the ERK1/2 pathway as a direct regulator of the visual cycle and a critical component of the viability of RPE and photoreceptor cells. Moreover, our results caution about the need for a very fine adjustment of kinase inhibition in cancer or ARMD treatment in order to avoid ocular side effects. Copyright © 2017 Pyakurel et al.

  7. Hydrogen sulfide potentiates interleukin-1β-induced nitric oxide production via enhancement of extracellular signal-regulated kinase activation in rat vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Jeong, Sun-Oh; Pae, Hyun-Ock; Oh, Gi-Su; Jeong, Gil-Saeng; Lee, Bok-Soo; Lee, Seoul; Kim, Du Yong; Rhew, Hyun Yul; Lee, Kang-Min; Chung, Hun-Taeg

    2006-01-01

    Hydrogen sulfide (H 2 S) and nitric oxide (NO) are endogenously synthesized from L-cysteine and L-arginine, respectively. They might constitute a cooperative network to regulate their effects. In this study, we investigated whether H 2 S could affect NO production in rat vascular smooth muscle cells (VSMCs) stimulated with interleukin-1β (IL-1β). Although H 2 S by itself showed no effect on NO production, it augmented IL-β-induced NO production and this effect was associated with increased expression of inducible NO synthase (iNOS) and activation of nuclear factor (NF)-κB. IL-1β activated the extracellular signal-regulated kinase 1/2 (ERK1/2), and this activation was also enhanced by H 2 S. Inhibition of ERK1/2 activation by the selective inhibitor U0126 inhibited IL-1β-induced NF-κB activation, iNOS expression, and NO production either in the absence or presence of H 2 S. Our findings suggest that H 2 S enhances NO production and iNOS expression by potentiating IL-1β-induced NF-κB activation through a mechanism involving ERK1/2 signaling cascade in rat VSMCs

  8. Physalis peruviana L. inhibits airway inflammation induced by cigarette smoke and lipopolysaccharide through inhibition of extracellular signal-regulated kinase and induction of heme oxygenase-1.

    Science.gov (United States)

    Park, Hyun Ah; Lee, Jae-Won; Kwon, Ok-Kyoung; Lee, Gilhye; Lim, Yourim; Kim, Jung Hee; Paik, Jin-Hyub; Choi, Sangho; Paryanto, Imam; Yuniato, Prasetyawan; Kim, Doo-Young; Ryu, Hyung Won; Oh, Sei-Ryang; Lee, Seung Jin; Ahn, Kyung-Seop

    2017-11-01

    Physalis peruviana L. (PP) is a medicinal herb that has been confirmed to have several biological activities, including anticancer, antioxidant and anti-inflammatory properties. The aim of the present study was to evaluate the protective effect of PP on cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced pulmonary inflammation. Treatment with PP significantly reduced the influx of inflammatory cells in the bronchoalveolar lavage fluid (BALF) and lung of mice with CS- and LPS-induced pulmonary inflammation. PP also decreased the levels of reactive oxygen species (ROS) and pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the BALF. PP effectively attenuated the expression of monocyte chemoattractant protein-1 (MCP-1) and the activation of extracellular signal-regulated kinase (ERK) in the lung. In addition, nuclear factor erythroid 2-related factor 2 (Nrf2) activation and heme oxygenase-1 (HO-1) expression were increased by PP treatment. In an in vitro experiment, PP reduced the mRNA expression of TNF-α and MCP-1, and the activation of ERK in CS extract-stimulated A549 epithelial cells. Furthermore, PP increased the activation of Nrf2 and the expression of HO-1 in A549 cells. These findings suggest that PP has a therapeutic potential for the treatment of pulmonary inflammatory diseases, such as chronic obstructive pulmonary disease.

  9. Growth arrest- and DNA-damage-inducible 45beta gene inhibits c-Jun N-terminal kinase and extracellular signal-regulated kinase and decreases IL-1beta-induced apoptosis in insulin-producing INS-1E cells

    DEFF Research Database (Denmark)

    Larsen, Claus Morten; Døssing, M G; Papa, S

    2006-01-01

    IL-1beta is a candidate mediator of apoptotic beta cell destruction, a process that leads to type 1 diabetes and progression of type 2 diabetes. IL-1beta activates beta cell c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and p38, all of which are members of the mitogen...

  10. ald of Mycobacterium tuberculosis Encodes both the Alanine Dehydrogenase and the Putative Glycine Dehydrogenase

    Science.gov (United States)

    Giffin, Michelle M.; Modesti, Lucia; Raab, Ronald W.; Wayne, Lawrence G.

    2012-01-01

    The putative glycine dehydrogenase of Mycobacterium tuberculosis catalyzes the reductive amination of glyoxylate to glycine but not the reverse reaction. The enzyme was purified and identified as the previously characterized alanine dehydrogenase. The Ald enzyme was expressed in Escherichia coli and had both pyruvate and glyoxylate aminating activities. The gene, ald, was inactivated in M. tuberculosis, which resulted in the loss of all activities. Both enzyme activities were found associated with the cell and were not detected in the extracellular filtrate. By using an anti-Ald antibody, the protein was localized to the cell membrane, with a smaller fraction in the cytosol. None was detected in the extracellular medium. The ald knockout strain grew without alanine or glycine and was able to utilize glycine but not alanine as a nitrogen source. Transcription of ald was induced when alanine was the sole nitrogen source, and higher levels of Ald enzyme were measured. Ald is proposed to have several functions, including ammonium incorporation and alanine breakdown. PMID:22210765

  11. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiangping [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China); Wang, Ziquan; Lu, Guannan [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); He, Wenxiang, E-mail: wenxianghe@nwafu.edu.cn [College of Natural Resources and Environment, Northwest A& F University, Yangling, 712100, Shaanxi (China); Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture, Northwest A& F University, Yangling, 712100, Shaanxi (China); Wei, Gehong [College of Life Sciences, Northwest A& F University, Yangling, 712100, Shaanxi (China); Huang, Feng; Xu, Xinlan; Shen, Weijun [Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, CAS 723 Xingke Rd., Tianhe District, Guangzhou 510650 (China)

    2017-05-05

    Highlights: • pH explained 30–45% of the dehydrogenase activity (DHA), V{sub max}, and K{sub m} variations across soils. • Different inhibition mechanism of Cd to DHA varied soil types. • Soil properties and inhibition constant affect the toxicity of Cd. • Reaction constant (k) could indicate sensitively the toxicity of Cd to DHA. - Abstract: Soil dehydrogenase plays a role in the biological oxidation of soil organic matter and can be considered a good measure of the change of microbial oxidative activity under environmental pollutions. However, the kinetic characteristic of soil dehydrogenase under heavy metal stresses has not been investigated thoroughly. In this study, we characterized the kinetic characteristic of soil dehydrogenase in 14 soil types, and investigated how kinetic parameters changed under spiked with different concentrations of cadmium (Cd). The results showed that the K{sub m} and V{sub max} values of soil dehydrogenase was among 1.4–7.3 mM and 15.9–235.2 μM h{sup −1} in uncontaminated soils, respectively. In latosolic red soil and brown soil, the inhibitory kinetic mechanism of Cd to soil dehydrogenase was anticompetitive inhibition with inhibition constants (K{sub i}) of 12 and 4.7 mM, respectively; in other soils belonged to linear mixed inhibition, the values of K{sub i} were between 0.7–4.2 mM. Soil total organic carbon and K{sub i} were the major factors affecting the toxicity of Cd to dehydrogenase activity. In addition, the velocity constant (k) was more sensitive to Cd contamination compared to V{sub max} and K{sub m}, which was established as an early indicator of gross changes in soil microbial oxidative activity caused by Cd contamination.

  12. Phosphorylation of Rac1 T108 by Extracellular Signal-Regulated Kinase in Response to Epidermal Growth Factor: a Novel Mechanism To Regulate Rac1 Function

    Science.gov (United States)

    Tong, Junfeng; Li, Laiji; Ballermann, Barbara

    2013-01-01

    Accumulating evidence has implicated Rho GTPases, including Rac1, in many aspects of cancer development. Recent findings suggest that phosphorylation might further contribute to the tight regulation of Rho GTPases. Interestingly, sequence analysis of Rac1 shows that Rac1 T108 within the 106PNTP109 motif is likely an extracellular signal-regulated kinase (ERK) phosphorylation site and that Rac1 also has an ERK docking site, 183KKRKRKCLLL192 (D site), at the C terminus. Indeed, we show here that both transfected and endogenous Rac1 interacts with ERK and that this interaction is mediated by its D site. Green fluorescent protein (GFP)-Rac1 is threonine (T) phosphorylated in response to epidermal growth factor (EGF), and EGF-induced Rac1 threonine phosphorylation is dependent on the activation of ERK. Moreover, mutant Rac1 with the mutation of T108 to alanine (A) is not threonine phosphorylated in response to EGF. In vitro ERK kinase assay further shows that pure active ERK phosphorylates purified Rac1 but not mutant Rac1 T108A. We also show that Rac1 T108 phosphorylation decreases Rac1 activity, partially due to inhibiting its interaction with phospholipase C-γ1 (PLC-γ1). T108 phosphorylation targets Rac1 to the nucleus, which isolates Rac1 from other guanine nucleotide exchange factors (GEFs) and hinders Rac1's role in cell migration. We conclude that Rac1 T108 is phosphorylated by ERK in response to EGF, which plays an important role in regulating Rac1. PMID:24043306

  13. Effect of Boron on Thymic Cytokine Expression, Hormone Secretion, Antioxidant Functions, Cell Proliferation, and Apoptosis Potential via the Extracellular Signal-Regulated Kinases 1 and 2 Signaling Pathway.

    Science.gov (United States)

    Jin, Erhui; Ren, Man; Liu, Wenwen; Liang, Shuang; Hu, Qianqian; Gu, Youfang; Li, Shenghe

    2017-12-27

    Boron is an essential trace element in animals. Appropriate boron supplementation can promote thymus development; however, a high dose of boron can lead to adverse effects and cause toxicity. The influencing mechanism of boron on the animal body remains unclear. In this study, we examined the effect of boron on cytokine expression, thymosin and thymopoietin secretion, antioxidant function, cell proliferation and apoptosis, and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway in the thymus of rats. We found that supplementation with 10 and 20 mg/L boron to the drinking water significantly elevated levels of interleukin 2 (IL-2), interferon γ (IFN-γ), interleukin 4 (IL-4), and thymosin α1 in the thymus of rats (p boron had no apparent effect on many of the above indicators. In contrast, supplementation with 480 and 640 mg/L boron had the opposite effect on the above indicators in rats and elevated levels of pro-inflammatory cytokines, such as interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor α (TNF-α) (p boron to the drinking water had a U-shaped dose-effect relationship with thymic cytokine expression, hormone secretion, antioxidant function, cell proliferation, and apoptosis. Specifically, supplementation with 10 and 20 mg/L boron promoted thymocyte proliferation and enhanced thymic functions. However, supplementation with 480 and 640 mg/L boron inhibited thymic functions and increased the number of apoptotic thymocytes, suggesting that the effects of boron on thymic functions may be caused via the ERK1/2 signaling pathway.

  14. TRX-ASK1-JNK signaling regulation of cell density-dependent cytotoxicity in cigarette smoke-exposed human bronchial epithelial cells.

    Science.gov (United States)

    Lee, Yong Chan; Chuang, Chun-Yu; Lee, Pak-Kei; Lee, Jin-Soo; Harper, Richart W; Buckpitt, Alan B; Wu, Reen; Oslund, Karen

    2008-05-01

    Cigarette smoke is a major environmental air pollutant that injures airway epithelium and incites subsequent diseases including chronic obstructive pulmonary disease. The lesion that smoke induces in airway epithelium is still incompletely understood. Using a LIVE/DEAD cytotoxicity assay, we observed that subconfluent cultures of bronchial epithelial cells derived from both human and monkey airway tissues and an immortalized normal human bronchial epithelial cell line (HBE1) were more susceptible to injury by cigarette smoke extract (CSE) and by direct cigarette smoke exposure than cells in confluent cultures. Scraping confluent cultures also caused an enhanced cell injury predominately in the leading edge of the scraped confluent cultures by CSE. Cellular ATP levels in both subconfluent and confluent cultures were drastically reduced after CSE exposure. In contrast, GSH levels were significantly reduced only in subconfluent cultures exposed to smoke and not in confluent cultures. Western blot analysis demonstrated ERK activation in both confluent and subconfluent cultures after CSE. However, activation of apoptosis signal-regulating kinase 1 (ASK1), JNK, and p38 were demonstrated only in subconfluent cultures and not in confluent cultures after CSE. Using short interfering RNA (siRNA) to JNK1 and JNK2 and a JNK inhibitor, we attenuated CSE-mediated cell death in subconfluent cultures but not with an inhibitor of the p38 pathway. Using the tetracycline (Tet)-on inducible approach, overexpression of thioredoxin (TRX) attenuated CSE-mediated cell death and JNK activation in subconfluent cultures. These results suggest that the TRX-ASK1-JNK pathway may play a critical role in mediating cell density-dependent CSE cytotoxicity.

  15. Nitric oxide production by Biomphalaria glabrata haemocytes: effects of Schistosoma mansoni ESPs and regulation through the extracellular signal-regulated kinase pathway

    Directory of Open Access Journals (Sweden)

    Kirk Ruth S

    2009-04-01

    Full Text Available Abstract Background Schistosoma mansoni uses Biomphalaria glabrata as an intermediate host during its complex life cycle. In the snail, the parasite initially transforms from a miracidium into a mother sporocyst and during this process excretory-secretory products (ESPs are released. Nitric oxide (NO and its reactive intermediates play an important role in host defence responses against pathogens. This study therefore aimed to determine the effects of S. mansoni ESPs on NO production in defence cells (haemocytes from schistosome-susceptible and schistosome-resistant B. glabrata strains. As S. mansoni ESPs have previously been shown to inhibit extracellular signal-regulated kinase (ERK phosphorylation (activation in haemocytes from susceptible, but not resistant, B. glabrata the regulation of NO output by ERK in these cells was also investigated. Results Haemocytes from resistant snails challenged with S. mansoni ESPs (20 μg/ml over 5 h displayed an increase in NO production that was 3.3 times greater than that observed for unchallenged haemocytes; lower concentrations of ESPs (0.1–10 μg/ml did not significantly increase NO output. In contrast, haemocytes from susceptible snails showed no significant change in NO output following challenge with ESPs at any concentration used (0.1–20 μg/ml. Western blotting revealed that U0126 (1 μM or 10 μM blocked the phosphorylation (activation status of ERK in haemocytes from both snail strains. Inhibition of ERK signalling by U0126 attenuated considerably intracellular NO production in haemocytes from both susceptible and resistant B. glabrata strains, identifying ERK as a key regulator of NO output in these cells. Conclusion S. mansoni ESPs differentially influence intracellular NO levels in susceptible and resistant B. glabrata haemocytes, possibly through modulation of the ERK signalling pathway. Such effects might facilitate survival of S. mansoni in its intermediate host.

  16. Corticotrigeminal Projections from the Insular Cortex to the Trigeminal Caudal Subnucleus Regulate Orofacial Pain after Nerve Injury via Extracellular Signal-Regulated Kinase Activation in Insular Cortex Neurons.

    Science.gov (United States)

    Wang, Jian; Li, Zhi-Hua; Feng, Ban; Zhang, Ting; Zhang, Han; Li, Hui; Chen, Tao; Cui, Jing; Zang, Wei-Dong; Li, Yun-Qing

    2015-01-01

    Cortical neuroplasticity alterations are implicated in the pathophysiology of chronic orofacial pain. However, the relationship between critical cortex excitability and orofacial pain maintenance has not been fully elucidated. We recently demonstrated a top-down corticospinal descending pain modulation pathway from the anterior cingulate cortex (ACC) to the spinal dorsal horn that could directly regulate nociceptive transmission. Thus, we aimed to investigate possible corticotrigeminal connections that directly influence orofacial nociception in rats. Infraorbital nerve chronic constriction injury (IoN-CCI) induced significant orofacial nociceptive behaviors as well as pain-related negative emotions such as anxiety/depression in rats. By combining retrograde and anterograde tract tracing, we found powerful evidence that the trigeminal caudal subnucleus (Vc), especially the superficial laminae (I/II), received direct descending projections from granular and dysgranular parts of the insular cortex (IC). Extracellular signal-regulated kinase (ERK), an important signaling molecule involved in neuroplasticity, was significantly activated in the IC following IoN-CCI. Moreover, in IC slices from IoN-CCI rats, U0126, an inhibitor of ERK activation, decreased both the amplitude and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and reduced the paired-pulse ratio (PPR) of Vc-projecting neurons. Additionally, U0126 also reduced the number of action potentials in the Vc-projecting neurons. Finally, intra-IC infusion of U0126 obviously decreased Fos expression in the Vc, accompanied by the alleviation of both nociceptive behavior and negative emotions. Thus, the corticotrigeminal descending pathway from the IC to the Vc could directly regulate orofacial pain, and ERK deactivation in the IC could effectively alleviate neuropathic pain as well as pain-related negative emotions in IoN-CCI rats, probably through this top-down pathway. These findings may help

  17. Extracellular signal-regulated kinase 1 and 2 are not required for GnRH neuron development and normal female reproductive axis function in mice.

    Science.gov (United States)

    Wierman, Margaret E; Xu, Mei; Pierce, A; Bliesner, B; Bliss, S P; Roberson, M S

    2012-01-01

    Selective deletion of extracellular signal-regulated kinase (ERK) 1 and ERK2 in the pituitary gonadotrope and ovarian granulosa cells disrupts female reproductive axis function. Thus, we asked if ERK1 and ERK2 are critical for GnRH neuron ontogeny or the central control of female reproductive function. GnRH-Cre-recombinase (Cre+) expressing mice were crossed with mice with a global deletion of ERK1 and a floxed ERK2 allele (Erk1-/Erk2fl/fl) to selectively delete ERK2 in GnRH neurons. Cre-recombinase mRNA was selectively expressed in the brain of Cre+ mice. GnRH neuron number and location were determined during embryogenesis and in the adult. GnRH neuron counts at E15 did not differ between experimental and control groups (1,198 ± 65 and 1,160 ± 80 respectively, p = NS). In adults, numbers of GnRH neurons in the GnRHCre+Erk1-/Erk2- mice (741 ± 157) were similar to those in controls (756 ± 7), without alteration in their distribution across the forebrain. ERK1 and 2 deficiency did not alter the timing of vaginal opening, age at first estrus, or estrous cyclicity. Although ERK1 and 2 are components of a dominant signaling pathway in GnRH neuronal cells that modulates survival and control of GnRH gene expression, other signaling pathways compensate for their deletion in vivo to allow GnRH neuron survival and targeting and normal onset of female sexual maturation and reproductive function. In contrast to effects at the pituitary and the ovary, ERK1 and ERK2 are dispensable at the level of the GnRH neuron. Copyright © 2011 S. Karger AG, Basel.

  18. Corynoxeine isolated from the hook of Uncaria rhynchophylla inhibits rat aortic vascular smooth muscle cell proliferation through the blocking of extracellular signal regulated kinase 1/2 phosphorylation.

    Science.gov (United States)

    Kim, Tack-Joong; Lee, Ju-Hyun; Lee, Jung-Jin; Yu, Ji-Yeon; Hwang, Bang-Yeon; Ye, Sang-Kyu; Shujuan, Li; Gao, Li; Pyo, Myoung-Yun; Yun, Yeo-Pyo

    2008-11-01

    The proliferation of vascular smooth muscle cells (VSMCs) induced by injury to the intima of arteries is an important etiologic factor in vascular proliferative disorders such as atherosclerosis and restenosis. Uncaria rhynchophylla is traditional Chinese herb that has been applied to the treatment of convulsive disorders, such as epilepsy, in China. In the present study, we examined whether corynoxeine exerts inhibitory effects on platelet-derived growth factor (PDGF)-BB-induced rat aortic VSMC proliferation and the possible mechanism of such effects. Pre-treatment of VSMCs with corynoxeine (5-50 microM) for 24 h resulted in significant decreases in cell number without any cytotoxicity; the inhibition percentages were 25.0+/-12.5, 63.0+/-27.5 and 88.0+/-12.5% at 5, 20 and 50 microM, respectively. Also, corynoxeine significantly inhibited the 50 ng/ml PDGF-BB-induced DNA synthesis of VSMCs in a concentration-dependent manner without any cytotoxicity; the inhibitions were 32.8+/-11.0, 51.8+/-8.0 and 76.9+/-7.4% at concentrations of 5, 20 and 50 microM, respectively. Pre-incubation of VSMCs with corynoxeine significantly inhibited PDGF-BB-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation, whereas corynoxeine had no effects on mitogen-activated protein kinase (MAPK/ERK)-activating kinase 1 and 2 (MEK1/2), Akt, or phospholipase C (PLC)gamma1 activation or on PDGF receptor beta (PDGF-Rbeta) phosphorylation. These results suggest that corynoxeine is a potent ERK1/2 inhibitor of key PDGF-BB-induced VSMC proliferation and may be useful in the prevention and treatment of vascular diseases and restenosis after angioplasty.

  19. Follicle-stimulating hormone (FSH) activates extracellular signal-regulated kinase phosphorylation independently of beta-arrestin- and dynamin-mediated FSH receptor internalization

    Science.gov (United States)

    Piketty, Vincent; Kara, Elodie; Guillou, Florian; Reiter, Eric; Crepieux, Pascale

    2006-01-01

    Background The follicle-stimulating hormone receptor (FSH-R) is a seven transmembrane spanning receptor (7TMR) which plays a crucial role in male and female reproduction. Upon FSH stimulation, the FSH-R activates the extracellular signal-regulated kinases (ERK). However, the mechanisms whereby the agonist-stimulated FSH-R activates ERK are poorly understood. In order to activate ERK, some 7 TMRs require beta-arrestin-and dynamin-dependent internalization to occur, whereas some others do not. In the present study, we examined the ability of the FSH-activated FSH-R to induce ERK phosphorylation, in conditions where its beta-arrestin- and dynamin-mediated internalization was impaired. Methods Human embryonic kidney (HEK) 293 cells were transiently transfected with the rat FSH-R. Internalization of the FSH-R was manipulated by co-expression of either a beta-arrestin (319–418) dominant negative peptide, either an inactive dynamin K44A mutant or of wild-type beta-arrestin 1 or 2. The outcomes on the FSH-R internalization were assayed by measuring 125I-FSH binding at the cell surface when compared to internalized 125I-FSH binding. The resulting ERK phosphorylation level was visualized by Western blot analysis. Results In HEK 293 cells, FSH stimulated ERK phosphorylation in a dose-dependent manner. Co-transfection of the beta- arrestin (319–418) construct, or of the dynamin K44A mutant reduced FSH-R internalization in response to FSH, without affecting ERK phosphorylation. Likewise, overexpression of wild-type beta-arrestin 1 or 2 significantly increased the FSH-R internalization level in response to FSH, without altering FSH-induced ERK phosphorylation. Conclusion From these results, we conclude that the FSH-R does not require beta-arrestin- nor dynamin-mediated internalization to initiate ERK phosphorylation in response to FSH. PMID:16787538

  20. Identification of two novel activities of the Wnt signaling regulator Dickkopf 3 and characterization of its expression in the mouse retina

    Directory of Open Access Journals (Sweden)

    Yi Hyun

    2007-12-01

    Full Text Available Abstract Background The Wnt signaling pathway is a cellular communication pathway that plays critical roles in development and disease. A major class of Wnt signaling regulators is the Dickkopf (Dkk family of secreted glycoproteins. Although the biological properties of Dickkopf 1 (Dkk1 and Dickkopf 2 (Dkk2 are well characterized, little is known about the function of the related Dickkopf 3 (Dkk3 protein in vivo or in cell lines. We recently demonstrated that Dkk3 transcripts are upregulated during photoreceptor death in a mouse model of retinal degeneration. In this study, we characterized the activity of Dkk3 in Wnt signaling and cell death. Results Dkk3 was localized to Müller glia and retinal ganglion cells in developing and adult mouse retina. Western blotting confirmed that Dkk3 is secreted from Müller glia cells in culture. We demonstrated that Dkk3 potentiated Wnt signaling in Müller glia and HEK293 cells but not in COS7 cells, indicating that it is a cell-type specific regulator of Wnt signaling. This unique Dkk3 activity was blocked by co-expression of Dkk1. Additionally, Dkk3 displayed pro-survival properties by decreasing caspase activation and increasing viability in HEK293 cells exposed to staurosporine and H2O2. In contrast, Dkk3 did not protect COS7 cells from apoptosis. Conclusion These data demonstrate that Dkk3 is a positive regulator of Wnt signaling, in contrast to its family member Dkk1. Furthermore, Dkk3 protects against apoptosis by reducing caspase activity, suggesting that Dkk3 may play a cytoprotective role in the retina.

  1. The Role of Pyruvate Dehydrogenase Kinase in Diabetes and Obesity

    Directory of Open Access Journals (Sweden)

    In-Kyu Lee

    2014-06-01

    Full Text Available The pyruvate dehydrogenase complex (PDC is an emerging target for the treatment of metabolic syndrome. To maintain a steady-state concentration of adenosine triphosphate during the feed-fast cycle, cells require efficient utilization of fatty acid and glucose, which is controlled by the PDC. The PDC converts pyruvate, coenzyme A (CoA, and oxidized nicotinamide adenine dinucleotide (NAD+ into acetyl-CoA, reduced form of nicotinamide adenine dinucleotide (NADH, and carbon dioxide. The activity of the PDC is up- and down-regulated by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase, respectively. In addition, pyruvate is a key intermediate of glucose oxidation and an important precursor for the synthesis of glucose, glycerol, fatty acids, and nonessential amino acids.

  2. Aminotransferase and glutamate dehydrogenase activities in lactobacilli and streptococci

    Directory of Open Access Journals (Sweden)

    Guillermo Hugo Peralta

    Full Text Available ABSTRACT Aminotransferases and glutamate dehydrogenase are two main types of enzymes involved in the initial steps of amino acid catabolism, which plays a key role in the cheese flavor development. In the present work, glutamate dehydrogenase and aminotransferase activities were screened in twenty one strains of lactic acid bacteria of dairy interest, either cheese-isolated or commercial starters, including fifteen mesophilic lactobacilli, four thermophilic lactobacilli, and two streptococci. The strains of Streptococcus thermophilus showed the highest glutamate dehydrogenase activity, which was significantly elevated compared with the lactobacilli. Aspartate aminotransferase prevailed in most strains tested, while the levels and specificity of other aminotransferases were highly strain- and species-dependent. The knowledge of enzymatic profiles of these starter and cheese-isolated cultures is helpful in proposing appropriate combinations of strains for improved or increased cheese flavor.

  3. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity.

    Science.gov (United States)

    Hecht, K; Wrba, A; Jaenicke, R

    1989-07-15

    Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.

  4. Screening of Glucose-6-Phosphate Dehydrogenase Deficiency in Cord Blood

    Directory of Open Access Journals (Sweden)

    Can Acipayam

    2014-02-01

    Aim: Glucose-6-phosphate dehydrogenase deficiency is an important factor in etiology of pathologic neonatal jaundice. The aim of this study was to indicate the significance of screening glucose-6-phosphate dehydrogenase deficiency in the cord blood of neonates and the frequency of this deficiency in the etiology of neonatal hyperbilirubinemia. Material and Method: The study was performed consecutive 1015 neonates were included. Five hundred fifty six (54.8% of them were male and 459 (45.2% were female. The following parameters were recorded: Gender, birth weight, birth height, head circumference and gestational age. The glucose-6-phosphate dehydrogenase level of neonates were measured with quantitative method in cord blood. Also, hemoglobine, hematocrite, red blood cell count and blood group were measured. The following parameters were recorded in cases with jaundice: exchange transfusion, phototherapy, physiologic and pathologic jaundice, peak bilirubin day, maximum bilirubin level, total bilirubin level at the first day of jaundice, beginning time of jaundice. Results: Enzyme deficiency was detected in 133 (13.1% of neonates and 76 (57% of them were male, 57 (43% were female. Significant difference was detected in low glucose-6-phosphate dehydrogenase enzyme level with jaundice group for total bilirubin level at the first day of jaundice, maximum total bilirubin level and pathologic jaundice (p<0.05. Discussion: The ratio of glucose-6-phosphate dehydrogenase deficiency was found in Edirne in this study and this ratio was higher than other studies conducted in our country. For this reason, glucose-6-phosphate dehydrogenase enzyme level in cord blood of neonates should be measured routinely and high risk neonates should be followed up for hyperbilirubinemia and parents should be informed in our region.

  5. Reversible inactivation of CO dehydrogenase with thiol compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kreß, Oliver [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Gnida, Manuel [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Pelzmann, Astrid M. [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany); Marx, Christian [Institute of Biochemistry and Biophysics, Friedrich-Schiller-University of Jena, 07745 Jena (Germany); Meyer-Klaucke, Wolfram [Department of Chemistry, University of Paderborn, 33098 Paderborn (Germany); Meyer, Ortwin, E-mail: Ortwin.Meyer@uni-bayreuth.de [Department of Microbiology, University of Bayreuth, 95440 Bayreuth (Germany)

    2014-05-09

    Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceeds at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in

  6. Metabotropic glutamate receptor 5 contributes to inflammatory tongue pain via extracellular signal-regulated kinase signaling in the trigeminal spinal subnucleus caudalis and upper cervical spinal cord

    Directory of Open Access Journals (Sweden)

    Liu Ming-Gang

    2012-11-01

    Full Text Available Abstract Background In the orofacial region, limited information is available concerning pathological tongue pain, such as inflammatory pain or neuropathic pain occurring in the tongue. Here, we tried for the first time to establish a novel animal model of inflammatory tongue pain in rats and to investigate the roles of metabotropic glutamate receptor 5 (mGluR5-extracellular signal-regulated kinase (ERK signaling in this process. Methods Complete Freund’s adjuvant (CFA was submucosally injected into the tongue to induce the inflammatory pain phenotype that was confirmed by behavioral testing. Expression of phosphorylated ERK (pERK and mGluR5 in the trigeminal subnucleus caudalis (Vc and upper cervical spinal cord (C1-C2 were detected with immunohistochemical staining and Western blotting. pERK inhibitor, a selective mGluR5 antagonist or agonist was continuously administered for 7 days via an intrathecal (i.t. route. Local inflammatory responses were verified by tongue histology. Results Submucosal injection of CFA into the tongue produced a long-lasting mechanical allodynia and heat hyperalgesia at the inflamed site, concomitant with an increase in the pERK immunoreactivity in the Vc and C1-C2. The distribution of pERK-IR cells was laminar specific, ipsilaterally dominant, somatotopically relevant, and rostrocaudally restricted. Western blot analysis also showed an enhanced activation of ERK in the Vc and C1-C2 following CFA injection. Continuous i.t. administration of the pERK inhibitor and a selective mGluR5 antagonist significantly depressed the mechanical allodynia and heat hyperalgesia in the CFA-injected tongue. In addition, the number of pERK-IR cells in ipsilateral Vc and C1-C2 was also decreased by both drugs. Moreover, continuous i.t. administration of a selective mGluR5 agonist induced mechanical allodynia in naive rats. Conclusions The present study constructed a new animal model of inflammatory tongue pain in rodents, and

  7. Lindersin B from Lindernia crustacea induces neuritogenesis by activation of tyrosine kinase A/phosphatidylinositol 3 kinase/extracellular signal-regulated kinase signaling pathway.

    Science.gov (United States)

    Cheng, Lihong; Ye, Ying; Xiang, Lan; Osada, Hiroyuki; Qi, Jianhua

    2017-01-15

    Neurotrophic factors such as nerve growth factor (NGF) play important roles in nervous system. NGF is a potential therapeutic drug for treatment of neurodegenerative diseases. However, because of physicochemical property, NGF cannot pass through the blood-brain barrier (BBB). Hence, small molecules which exhibit NGF-mimic activity and can pass through the BBB are considered to be promising drug candidates for treatment of such diseases. The present study was designed to isolate NGF-mimic substance from extract of natural products, determine their structures and investigate mechanism of action of the active substance. Extract of Lindernia crustacean was partitioned between water and ethyl acetate to obtain water layer and ethyl acetate layer samples, respectively, and then evaluated their neuritogenic activity in PC12 cells. The active sample was separated by open columns, followed by HPLC purification to obtain active compound. Then, specific inhibitors were used to investigate signaling pathway of neurite outgrowth induced by the active compound. Finally, western blot analysis was performed to confirm the pathway proposed by inhibitor experiments. The ethyl acetate layer sample of extract of Lindernia crustacea exhibited significant neuritogenic activity. Two new compounds, named as linderside A and lindersin B, were isolated; their structures were elucidated by spectroscopic and chemical derivatization methods. Linderside A is a cucurbitane glycoside, whereas lindersin B is a cucurbitane triterpenoid. Each compound has an unusual isopentene unit, namely, a double bond bound to an unmodified isopropyl group at the end of cucurbitane triterpenoid side chain. Among them, lindersin B induced significant neurite outgrowth in PC12 cells, while linderside A was inactive against PC12 cells. Western blotting analysis results showed that lindersin B-induced neuritogenic activity depended on the activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated

  8. Fractalkine Signaling Regulates Macrophage Recruitment into the Cochlea and Promotes the Survival of Spiral Ganglion Neurons after Selective Hair Cell Lesion.

    Science.gov (United States)

    Kaur, Tejbeer; Zamani, Darius; Tong, Ling; Rubel, Edwin W; Ohlemiller, Kevin K; Hirose, Keiko; Warchol, Mark E

    2015-11-11

    Macrophages are recruited into the cochlea in response to injury caused by acoustic trauma or ototoxicity, but the nature of the interaction between macrophages and the sensory structures of the inner ear remains unclear. The present study examined the role of fractalkine signaling in regulating the injury-evoked behavior of macrophages following the selective ablation of cochlear hair cells. We used a novel transgenic mouse model in which the human diphtheria toxin receptor (huDTR) is selectively expressed under the control of Pou4f3, a hair cell-specific transcription factor. Administration of diphtheria toxin (DT) to these mice resulted in nearly complete ablation of cochlear hair cells, with no evident pathology among supporting cells, spiral ganglion neurons, or cells of the cochlear lateral wall. Hair cell death led to an increase in macrophages associated with the sensory epithelium of the cochlea. Their numbers peaked at 14 days after DT and then declined at later survival times. Increased macrophages were also observed within the spiral ganglion, but their numbers remained elevated for (at least) 56 d after DT. To investigate the role of fractalkine signaling in macrophage recruitment, we crossed huDTR mice to a mouse line that lacks expression of the fractalkine receptor (CX3CR1). Disruption of fractalkine signaling reduced macrophage recruitment into both the sensory epithelium and spiral ganglion and also resulted in diminished survival of spiral ganglion neurons after hair cell death. Our results suggest a fractalkine-mediated interaction between macrophages and the neurons of the cochlea. It is known that damage to the inner ear leads to recruitment of inflammatory cells (macrophages), but the chemical signals that initiate this recruitment and the functions of macrophages in the damaged ear are unclear. Here we show that fractalkine signaling regulates macrophage recruitment into the cochlea and also promotes the survival of cochlear afferents after

  9. Region- or state-related differences in expression and activation of extracellular signal-regulated kinases (ERKs in naïve and pain-experiencing rats

    Directory of Open Access Journals (Sweden)

    Cui Xiu-Yu

    2007-07-01

    Full Text Available Abstract Background Extracellular signal-regulated kinase (ERK, one member of the mitogen-activated protein kinase (MAPK family, has been suggested to regulate a diverse array of cellular functions, including cell growth, differentiation, survival, as well as neuronal plasticity. Recent evidence indicates a role for ERKs in nociceptive processing in both dorsal root ganglion and spinal cord. However, little literature has been reported to examine the differential distribution and activation of ERK isoforms, ERK1 and ERK2, at different levels of pain-related pathways under both normal and pain states. In the present study, quantitative blot immunolabeling technique was used to determine the spatial and temporal expression of ERK1 and ERK2, as well as their activated forms, in the spinal cord, primary somatosensory cortex (SI area of cortex, and hippocampus under normal, transient pain and persistent pain states. Results In naïve rats, we detected regional differences in total expression of ERK1 and ERK2 across different areas. In the spinal cord, ERK1 was expressed more abundantly than ERK2, while in the SI area of cortex and hippocampus, there was a larger amount of ERK2 than ERK1. Moreover, phosphorylated ERK2 (pERK2, not phosphorylated ERK1 (pERK1, was normally expressed with a high level in the SI area and hippocampus, but both pERK1 and pERK2 were barely detectable in normal spinal cord. Intraplantar saline or bee venom injection, mimicking transient or persistent pain respectively, can equally initiate an intense and long-lasting activation of ERKs in all three areas examined. However, isoform-dependent differences existed among these areas, that is, pERK2 exhibited stronger response than pERK1 in the spinal cord, whereas ERK1 was more remarkably activated than ERK2 in the S1 area and hippocampus. Conclusion Taken these results together, we conclude that: (1 under normal state, while ERK immunoreactivity is broadly distributed in the rat

  10. Alcohol consumption, alcohol dehydrogenase 3 polymorphism, and colorectal adenomas

    NARCIS (Netherlands)

    Tiemersma, E.W.; Wark, P.A.; Ocké, M.C.; Bunschoten, A.; Otten, M.H.; Kok, F.J.; Kampman, E.

    2003-01-01

    Alcohol is a probable risk factor with regard to colorectal neoplasm and is metabolized to the carcinogen acetaldehyde by the genetically polymorphic alcohol dehydrogenase 3 (ADH3) enzyme. We evaluated whether the association between alcohol and colorectal adenomas is modified by ADH3 polymorphism.

  11. Glucose-6-phosphate dehydrogenase deficiency; the single most ...

    African Journals Online (AJOL)

    Introduction: Glucose- 6-phosphate dehydrogenase deficiency is the most common enzymatic disorder of the red cell and an important risk factor for neonatal jaundice. Methodology: The aim of the study was to determine the incidence of G-6-PD deficiency among jaundiced neonates, and describe the associated morbidity ...

  12. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol degrad...

  13. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    International Nuclear Information System (INIS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-01-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as · OH and ONOO - . In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  14. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Rodacka, Aleksandra, E-mail: olakow@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Serafin, Eligiusz, E-mail: serafin@biol.uni.lodz.p [Laboratory of Computer and Analytical Techniques, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland); Puchala, Mieczyslaw, E-mail: puchala@biol.uni.lodz.p [Department of Molecular Biophysics, University of Lodz, Banacha 12/16, 90-237 Lodz (Poland)

    2010-09-15

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as {sup {center_dot}}OH and ONOO{sup -}. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  15. Expanding the clinical spectrum of 3-phosphoglycerate dehydrogenase deficiency

    NARCIS (Netherlands)

    Tabatabaie, L; Klomp, L W J; Rubio-Gozalbo, M E; Spaapen, L J M; Haagen, A A M; Dorland, L; de Koning, T J

    UNLABELLED: 3-Phosphoglycerate dehydrogenase (3-PGDH) deficiency is considered to be a rare cause of congenital microcephaly, infantile onset of intractable seizures and severe psychomotor retardation. Here, we report for the first time a very mild form of genetically confirmed 3-PGDH deficiency in

  16. Nicotinoprotein methanol dehydrogenase enzymes in Gram-positive methylotrophic bacteria

    NARCIS (Netherlands)

    Hektor, Harm J.; Kloosterman, Harm; Dijkhuizen, Lubbert

    2000-01-01

    A novel type of alcohol dehydrogenase enzyme has been characterized from Gram-positive methylotrophic (Bacillus methanolicus, the actinomycetes Amycolatopsis methanolica and Mycobacterium gastri) and non-methylotrophic bacteria (Rhodococcus strains). Its in vivo role is in oxidation of methanol and

  17. Identification of glucose 6 phosphate dehydrogenase mutations by ...

    African Journals Online (AJOL)

    Identification of glucose 6 phosphate dehydrogenase mutations by single strand conformation polymorphism and gene sequencing analysis. ... Subject: Six DNA samples from Turkish males confirmed to have G-6-PD deficiency where available for the study. Results: One subject was found to have an abnormal mobility shift ...

  18. Medium-chain acyl-CoA dehydrogenase deficiency

    DEFF Research Database (Denmark)

    Waddell, Leigh; Wiley, Veronica; Carpenter, Kevin

    2006-01-01

    The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We ...

  19. New enzymatic assay, parasite lactate dehydrogenase in diagnosis ...

    African Journals Online (AJOL)

    Background: The unique ability of plasmodial lactate dehydrogenase p(LDH) to utilise 3-acetyl pyridine dinucleotide (APAD) in lieu of NAD as a coenzyme in the conversion of pyruvate to lactate, led to the development of a biochemical assay for the detection of plasmodial parasitaemia. Researchers have reported that ...

  20. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Nordestgaard, Børge; Rasmussen, S.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH) wherein genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. It is biologically plausible that these variations may be associated with alcohol drinking habits and alcoholism. By genotyping 9080 whi...

  1. Cloning and expression of chicken 20-hydroxysteroid dehydrogenase

    Czech Academy of Sciences Publication Activity Database

    Bryndová, Jana; Klusoňová, Petra; Kučka, Marek; Vagnerová, Karla; Mikšík, Ivan; Pácha, Jiří

    2006-01-01

    Roč. 37, č. 3 (2006), s. 453-462 ISSN 0952-5041 R&D Projects: GA AV ČR(CZ) IAA6011201 Grant - others:GA UK(CZ) 216/2004 Institutional research plan: CEZ:AV0Z50110509 Keywords : 20-hydroxysteroid dehydrogenase * SDR family Subject RIV: CE - Biochemistry Impact factor: 2.988, year: 2006

  2. Cofactor engineering of Lactobacillus brevis alcohol dehydrogenase by computational design

    NARCIS (Netherlands)

    Machielsen, M.P.; Looger, L.L.; Raedts, J.G.J.; Dijkhuizen, S.; Hummel, W.; Henneman, H.G.; Daussmann, T.; Oost, van der J.

    2009-01-01

    The R-specific alcohol dehydrogenase from Lactobacillus brevis (Lb-ADH) catalyzes the enantioselective reduction of prochiral ketones to the corresponding secondary alcohols. It is stable and has broad substrate specificity. These features make this enzyme an attractive candidate for

  3. Purification and characterization of xylitol dehydrogenase from Fusarium oxysporum

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Kekos, D.; Macris, B.J.

    2002-01-01

    An NAD(+)-dependent xylitol dehydrogenase (XDH) from Fusarium oxysporum, a key enzyme in the conversion of xylose to ethanol, was purified to homogeneity and characterised. It was homodimeric with a subunit of M-r 48 000, and pI 3.6. It was optimally active at 45degreesC and pH 9-10. It was fully...

  4. Aldehyde Dehydrogenase 1 and Raf Kinase Inhibitor Protein ...

    African Journals Online (AJOL)

    Aldehyde Dehydrogenase 1 and Raf Kinase Inhibitor Protein Expression Defines the Proliferative Nature of Cervical Cancer Stem Cells. ... of cervical cancer stem cells and also to validate them in initial and advanced stages of cervical cancer. Keywords: Cervical cancer, ALDH1, BALB/c-nu/nu, HeLa cells, RKIP, Sox2 ...

  5. Assay of partially purified glutamate dehydrogenase isolated from ...

    African Journals Online (AJOL)

    Glutamate dehydrogenase (E C 1.4.1.1) isolated from the seeds of asparagus beans was partially purified to a factor of 22 by dialysis after fractional precipitation with solid ammonium sulphate at 40 and 60% saturation. A specific activity of 11.78μmol min-1 mg-1 protein was calculated for the partially purified enzyme when ...

  6. Crystallization behaviour of glyceraldehyde dehydrogenase from Thermoplasma acidophilum

    Czech Academy of Sciences Publication Activity Database

    Lermark, L.; Degtjarik, Oksana; Steffler, F.; Sieber, V.; Kutá-Smatanová, Ivana

    2015-01-01

    Roč. 71, č. 12 (2015), s. 1475-1480 ISSN 2053-230X Institutional support: RVO:67179843 Keywords : TaAlDH * Thermoplasma acidophilum * bioproduction * cell-free enzyme cascade * glyceraldehyde dehydrogenase Subject RIV: CE - Biochemistry Impact factor: 0.647, year: 2015

  7. Novel thidiazuron-derived inhibitors of cytokinin oxidase/dehydrogenase

    Czech Academy of Sciences Publication Activity Database

    Nisler, Jaroslav; Kopečný, D.; Končitíková, R.; Zatloukal, Marek; Bazgier, Václav; Berka, K.; Zalabák, D.; Briozzo, P.; Strnad, Miroslav; Spíchal, Lukáš

    2016-01-01

    Roč. 92, 1-2 (2016), s. 235-248 ISSN 0167-4412 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GA15-22322S Institutional support: RVO:61389030 Keywords : Cytokinin oxidase/dehydrogenase * Crystal structure * Molecular docking Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.356, year: 2016

  8. Phosphorylation of formate dehydrogenase in potato tuber mitochondria

    DEFF Research Database (Denmark)

    Bykova, N.V.; Stensballe, A.; Egsgaard, H.

    2003-01-01

    Two highly phosphorylated proteins were detected after two-dimensional (blue native/SDS-PAGE) gel electrophoretic separation of the matrix fraction isolated from potato tuber mitochondria. These two phosphoproteins were identified by mass spectrometry as formate dehydrogenase (FDH) and the E1alpha...

  9. Characterization of the L-lactate dehydrogenase from Aggregatibacter actinomycetemcomitans.

    Directory of Open Access Journals (Sweden)

    Stacie A Brown

    Full Text Available Aggregatibacter actinomycetemcomitans is a Gram-negative opportunistic pathogen and the proposed causative agent of localized aggressive periodontitis. A. actinomycetemcomitans is found exclusively in the mammalian oral cavity in the space between the gums and the teeth known as the gingival crevice. Many bacterial species reside in this environment where competition for carbon is high. A. actinomycetemcomitans utilizes a unique carbon resource partitioning system whereby the presence of L-lactate inhibits uptake of glucose, thus allowing preferential catabolism of L-lactate. Although the mechanism for this process is not fully elucidated, we previously demonstrated that high levels of intracellular pyruvate are critical for L-lactate preference. As the first step in L-lactate catabolism is conversion of L-lactate to pyruvate by lactate dehydrogenase, we proposed a model in which the A. actinomycetemcomitans L-lactate dehydrogenase, unlike homologous enzymes, is not feedback inhibited by pyruvate. This lack of feedback inhibition allows intracellular pyruvate to rise to levels sufficient to inhibit glucose uptake in other bacteria. In the present study, the A. actinomycetemcomitans L-lactate dehydrogenase was purified and shown to convert L-lactate, but not D-lactate, to pyruvate with a K(m of approximately 150 microM. Inhibition studies reveal that pyruvate is a poor inhibitor of L-lactate dehydrogenase activity, providing mechanistic insight into L-lactate preference in A. actinomycetemcomitans.

  10. Natural history of succinic semialdehyde dehydrogenase deficiency through adulthood

    NARCIS (Netherlands)

    Lapalme-Remis, S.; Lewis, E.C.; De Meulemeester, C.; Chakraborty, P.; Gibson, K.M.; Torres, C.; Guberman, A.; Salomons, G.; Jakobs, C.; Ali-Ridha, A.; Parviz, M.; Pearl, P.L.

    2015-01-01

    Objective: The natural history of succinic semialdehyde dehydrogenase (SSADH) deficiency in adulthood is unknown; we elucidate the clinical manifestations of the disease later in life. Methods: A 63-year-old man with long-standing intellectual disability was diagnosed with SSADH deficiency following

  11. Assessment of creatine kinase and lactate dehydrogenase activities ...

    African Journals Online (AJOL)

    Ina bid to investigate the influence of menopausal on coronary heart disease, plasma creatine kinase (CK) and lactate dehydrogenase (LDH) enzymes were analysed on a prospective cohort of 100 women attending Irrua Specialist Teaching Hospital (ISTH), Irrua, Edo state-Nigeria. They were divided into two groups; ...

  12. Serum creatine kinase and lactate dehydrogenase activities in ...

    African Journals Online (AJOL)

    ... in thyroid function are common endocrine disorders affecting 5-10% of individuals over ... Key words: Hyperthyroidism, hypothyroidism, lactate dehydrogenase, serum creatine kinase ... individuals depends on age, race, lean body mass and physical activity. ... measured by radioimmunoassay on AXSYM System (Abbott.

  13. Novel guanidine-based inhibitors of inosine monophosphate dehydrogenase.

    Science.gov (United States)

    Iwanowicz, Edwin J; Watterson, Scott H; Liu, Chunjian; Gu, Henry H; Mitt, Toomas; Leftheris, Katerina; Barrish, Joel C; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Hollenbaugh, Diane L

    2002-10-21

    A series of novel guanidine-based small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH) was explored. IMPDH catalyzes the rate determining step in guanine nucleotide biosynthesis and is a target for anticancer, immunosuppressive and antiviral therapy. The synthesis and the structure-activity relationships (SARs), derived from in vitro studies, for this new series of inhibitors is given.

  14. Prevalence of glucose-6-phosphate dehydrogenase deficiency in ...

    African Journals Online (AJOL)

    Background: Glucose-6-phosphate dehydrogenase (G6PD) is a house keeping enzyme which catalyzes the first step in the hexose monophosphate pathway of glucose metabolism. G6PD deficiency is the commonest hemolytic X-linked genetic disease, which affects approximately 400 million people worldwide.

  15. Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency in patients ...

    African Journals Online (AJOL)

    This is a study of Glucose-6-phosphate dehydrogenase(G6PD) deficiency in sickle cell anaemia patients attending the haematology clinic of the Jos University Teaching Hospital (JUTH), Jos- Nigeria. The prevalence of G6PD deficiency among the 130 sickle cell anaemia patients studied was found to be 18.5%. G6PD ...

  16. Cytophotometry of glucose-6-phosphate dehydrogenase activity in individual cells

    NARCIS (Netherlands)

    van Noorden, C. J.; Tas, J.; Vogels, I. M.

    1983-01-01

    With the aid of thin films of polyacrylamide gel containing purified glucose-6-phosphate dehydrogenase subjected to cytochemical procedures for the enzyme using tetranitro blue tetrazolium, arbitrary units of integrated absorbance obtained with a Barr & Stroud GN5 cytophotometer were converted into

  17. Zinc and glutamate dehydrogenase in putative glutamatergic brain structures.

    Science.gov (United States)

    Wolf, G; Schmidt, W

    1983-01-01

    A certain topographic parallelism between the distribution of histochemically (TIMM staining) identified zinc and putative glutamatergic structures in the rat brain was demonstrated. Glutamate dehydrogenase as a zinc containing protein is in consideration to be an enzyme synthesizing transmitter glutamate. In a low concentration range externally added zinc ions (10(-9) to 10(-7) M) induced an increase in the activity of glutamate dehydrogenase (GDH) originating from rat hippocampal formation, neocortex, and cerebellum up to 142.4%. With rising molarity of Zn(II) in the incubation medium, the enzyme of hippocampal formation and cerebellum showed a biphasic course of activation. Zinc ions of a concentration higher than 10(-6) M caused a strong inhibition of GDH. The effect of Zn(II) on GDH originating from spinal ganglia and liver led only to a decrease of enzyme activity. These results are discussed in connection with a functional correlation between zinc and putatively glutamatergic system.

  18. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Small, Juan E. [Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Gonzalez, Guido E. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States); Clinica Alemana de Santiago, Departmento de Imagenes, Santiago (Chile); Nagao, Karina E.; Walton, David S. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Ophthalmology, Boston, MA (United States); Caruso, Paul A. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2009-10-15

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  19. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    International Nuclear Information System (INIS)

    Small, Juan E.; Gonzalez, Guido E.; Nagao, Karina E.; Walton, David S.; Caruso, Paul A.

    2009-01-01

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  20. Influence of thorax irradiation on lactic dehydrogenase isoenzyme activity

    International Nuclear Information System (INIS)

    Valle, C.; Munnich, A.; Pasquier, C.

    The right hemi-thorax of rats was irradiated with 1200 and 3000 rads ( 60 Co) and blood samples were taken sequentially. The five lactic dehydrogenase (LDH) isoenzymes which have proved to be useful as biochemical indicators of acute pulmonary injury in other experimental animals (dogs), were assayed, after irradiation, as a function of time and as a functon of dose. There was no significant change in LDH isoenzyme activities after lung irradiation in rats [fr

  1. Bioelectrochemical fuel cell and sensor based on quinoprotein alcohol dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Davis, G; Hill, H A.O.; Aston, W J; Higgins, I J; Turner, A P.F.

    1983-09-01

    A biofuel cell, yielding a stable and continuous low-power output, based on the enzymatic oxidation of methanol to formic acid has been designed and investigated. The homogeneous kinetics of the electrochemically-coupled enzymatic oxidation reaction were investigated and optimized. The biofuel cell also functioned as a sensitive method for the detection of primary alcohols. A method for medium-scale preparation of the enzyme alcohol dehydrogenase (alcohol: (acceptor) oxidoreductase, EC 1.1.99.8) is described. (Refs. 14).

  2. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    White, Tommi A.; Tanner, John J., E-mail: tannerjj@missouri.edu [Departments of Chemistry and Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65211 (United States)

    2005-08-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ{sup 1}-pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  3. Cloning, purification and crystallization of Thermus thermophilus proline dehydrogenase

    International Nuclear Information System (INIS)

    White, Tommi A.; Tanner, John J.

    2005-01-01

    Cloning, purification and crystallization of T. thermophilus proline dehydrogenase is reported. The detergent n-octyl β-d-glucopyranoside was used to reduce polydispersity, which enabled crystallization. Nature recycles l-proline by converting it to l-glutamate. This four-electron oxidation process is catalyzed by the two enzymes: proline dehydrogenase (PRODH) and Δ 1 -pyrroline-5-carboxylate dehydrogenase. This note reports the cloning, purification and crystallization of Thermus thermophilus PRODH, which is the prototype of a newly discovered superfamily of bacterial monofunctional PRODHs. The results presented here include production of a monodisperse protein solution through use of the detergent n-octyl β-d-glucopyranoside and the growth of native crystals that diffracted to 2.3 Å resolution at Advanced Light Source beamline 4.2.2. The space group is P2 1 2 1 2 1 , with unit-cell parameters a = 82.2, b = 89.6, c = 94.3 Å. The asymmetric unit is predicted to contain two protein molecules and 46% solvent. Molecular-replacement trials using a fragment of the PRODH domain of the multifunctional Escherichia coli PutA protein as the search model (24% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of T. thermophilus PRODH will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative

  4. Tumor Necrosis Factor-α and Apoptosis Signal-Regulating Kinase 1 Control Reactive Oxygen Species Release, Mitochondrial Autophagy and C-Jun N-Terminal Kinase/P38 Phosphorylation During Necrotizing Enterocolitis

    Directory of Open Access Journals (Sweden)

    Naira Baregamian

    2009-01-01

    Full Text Available Background: Oxidative stress and inflammation may contribute to the disruption of the protective gut barrier through various mechanisms; mitochondrial dysfunction resulting from inflammatory and oxidative injury may potentially be a significant source of apoptosis during necrotizing enterocolitis (NEC. Tumor necrosis factor (TNFα is thought to generate reactive oxygen species (ROS and activate the apoptosis signal-regulating kinase 1 (ASK1-c-Jun N-terminal kinase (JNK/p38 pathway. Hence, the focus of our study was to examine the effects of TNFα/ROs on mitochondrial function, ASK1-JNK/p38 cascade activation in intestinal epithelial cells during NEC.

  5. Alcohol dehydrogenase and aldehyde dehydrogenase gene polymorphisms, alcohol intake and the risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition study

    DEFF Research Database (Denmark)

    Ferrari, P.; McKay, J. D.; Jenab, M.

    2012-01-01

    BACKGROUND/OBJECTIVES: Heavy alcohol drinking is a risk factor of colorectal cancer (CRC), but little is known on the effect of polymorphisms in the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) on the alcohol-related risk of CRC in Caucasian populati...

  6. Effect of Punica granatum fruit peel on glucose-6-phosphate dehydrogenase and malate dehydrogenase in amphistome Gastrothylax indicus.

    Science.gov (United States)

    Aggarwal, Rama; Bagai, Upma

    2017-03-01

    Increasing anthelmintic resistance and the impact of conventional anthelmintics on the environment, it is important to look for alternative strategies against helminth parasite in sheep. Important lipogenic enzymes like glucose-6-phosphate dehydrogenase (G-6-PDH) and malate dehydrogenase (MDH) show subcellular distribution pattern. Activity of G-6-PDH was largely restricted to cytosolic fraction while MDH was found in both cytosolic and mitochondrial fraction in Gastrothylax indicus. Following in vitro treatment with ethanolic and aqueous extracts of Punica granatum fruit peel and commercial anthelmintic, albendazole G-6-PDH activity was decreased by 19-32 %, whereas MDH was suppressed by 24-41 %, compared to the respective control. Albendazole was quite effective when compared with negative control and both the extracts. The results indicate that phytochemicals of plant may act as potential vermifuge or vermicide.

  7. Selective short chain carboxylates production by mixed culture fermentation

    NARCIS (Netherlands)

    Arslan, D.

    2014-01-01

    SUMMARY

    Surfactants are produced and used in the formulation of many different commercial products. After use, these compounds end up in wastewater treatment plants (WWTPs) or in the environment. Although many surfactants can be degraded in aerobic conditions, anaerobic

  8. Capillary electrophoretic analysis of synthetic short-chain oligoribonucleotides.

    Science.gov (United States)

    Cellai, L; Onori, A M; Desiderio, C; Fanali, S

    1998-12-01

    Thirty synthetic oligoribonucleotides, 3 to 18 nucleotides (nt) long, were analyzed by capillary electrophoresis, under nondenaturing conditions, using a commercial kit. The migration time t(m) was dependent on nt length and composition, capillary length, operating temperature, and type of sieving polymer. Under fixed experimental conditions, the t(m) proved predictable by the equation: t(m) = [0.22(n-1) + 6.14A/n + 6.86G/n + 3.61 (C+U)/n] min, for n>3, where A/n, G/n, C/n, U/n is the frequency of each type of nt within the oligonucleotide (ONT). The equation accounts for the influence of charge-to-mass ratio on t(m), but not for structural effects, if present. This approximation is acceptable for short ONTs. The possibility of detecting n+1, n-1, n-2 impurities, having predicted the t(m), is of crucial importance in assessing the purity of synthetic ONTs dedicated to structural studies. This appears to be feasible. High resolution was shown among homologous series of ONTs of increasing length, and in some cases, even within groups of ONTs of the same length but different composition. The addition of 7 M urea to the buffer, as denaturing agent, accelerates the t(m) and significantly lowers the resolution for the shortest ONTs. It was also possible to monitor the state of association of mixtures of RNA and DNA sequence-complementary strands.

  9. Growth of Synthrophomonas wolfei on unsaturated short chain fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Amos, D.A.; McInerney, M.J. (Univ. of Oklahoma, Norman, OK (United States))

    1990-01-01

    The anaerobic fatty acid-degrading syntrophic bacterium, Syntrophomonas wolfei, was grown in pure culture with either trans-2-pentenoate, trans-2-hexenoate, trans-3-hexenoate, or trans, trans-2, 4-hexadienoate as the substrate. Trans-2-pentenoate was fermented to acetate, propionate, butyrate, and valerate. Acetate, butyrate and hexanoate were produced from the six-carbon mono- and di-unsaturated acids. Propionate was also product from the trans, trans-2, 4-hexadienoate which suggested that compound was degraded by another pathway in addition to [beta]-oxidation. The transient production of trans-2-hexenoate from trans-3-hexenoate suggested that the position of the double bound shifted from carbon-3 to carbon-2 prior to [beta]-oxidation. The specific growth rate decreased with increasing carbon length and degree of unsaturation. Molar growth yields ranged from 8.4 to 17.5 mg (dry wt.) per mmol and suggested that energy was conserved not only from substrate-level phosphorylation, but also from the reduction of unsaturated substrate.

  10. Short-Chain Chitin Oligomers: Promoters of Plant Growth

    Directory of Open Access Journals (Sweden)

    Alexander J. Winkler

    2017-02-01

    Full Text Available Chitin is the second most abundant biopolymer in nature after cellulose, and it forms an integral part of insect exoskeletons, crustacean shells, krill and the cell walls of fungal spores, where it is present as a high-molecular-weight molecule. In this study, we showed that a chitin oligosaccharide of lower molecular weight (tetramer induced genes in Arabidopsis that are principally related to vegetative growth, development and carbon and nitrogen metabolism. Based on plant responses to this chitin tetramer, a low-molecular-weight chitin mix (CHL enriched to 92% with dimers (2mer, trimers (3mer and tetramers (4mer was produced for potential use in biotechnological processes. Compared with untreated plants, CHL-treated plants had increased in vitro fresh weight (10%, radicle length (25% and total carbon and nitrogen content (6% and 8%, respectively. Our data show that low-molecular-weight forms of chitin might play a role in nature as bio-stimulators of plant growth, and they are also a known direct source of carbon and nitrogen for soil biomass. The biochemical properties of the CHL mix might make it useful as a non-contaminating bio-stimulant of plant growth and a soil restorer for greenhouses and fields.

  11. Cloning and cDNA sequence of the dihydrolipoamide dehydrogenase component of human α-ketoacid dehydrogenase complexes

    International Nuclear Information System (INIS)

    Pons, G.; Raefsky-Estrin, C.; Carothers, D.J.; Pepin, R.A.; Javed, A.A.; Jesse, B.W.; Ganapathi, M.K.; Samols, D.; Patel, M.S.

    1988-01-01

    cDNA clones comprising the entire coding region for human dihydrolipoamide dehydrogenase have been isolated from a human liver cDNA library. The cDNA sequence of the largest clone consisted of 2082 base pairs and contained a 1527-base open reading frame that encodes a precursor dihydrolipoamide dehydrogenase of 509 amino acid residues. The first 35-amino acid residues of the open reading frame probably correspond to a typical mitochondrial import leader sequence. The predicted amino acid sequence of the mature protein, starting at the residue number 36 of the open reading frame, is almost identical (>98% homology) with the known partial amino acid sequence of the pig heart dihydrolipoamide dehydrogenase. The cDNA clone also contains a 3' untranslated region of 505 bases with an unusual polyadenylylation signal (TATAAA) and a short poly(A) track. By blot-hybridization analysis with the cDNA as probe, two mRNAs, 2.2 and 2.4 kilobases in size, have been detected in human tissues and fibroblasts, whereas only one mRNA (2.4 kilobases) was detected in rat tissues

  12. Pyruvate Dehydrogenase and Pyruvate Dehydrogenase Kinase Expression in Non Small Cell Lung Cancer and Tumor-Associated Stroma

    Directory of Open Access Journals (Sweden)

    Michael I. Koukourakis

    2005-01-01

    Full Text Available Pyruvate dehydrogenase (PDH catalyzes the conversion of pyruvate to acetyl-coenzyme A, which enters into the Krebs cycle, providing adenosine triphosphate (ATP to the cell. PDH activity is under the control of pyruvate dehydrogenase kinases (PDKs. Under hypoxic conditions, conversion of pyruvate to lactate occurs, a reaction catalyzed by lactate dehydrogenase 5 (LDH5. In cancer cells, however, pyruvate is transformed to lactate occurs, regardless of the presence of oxygen (aerobic glycolysis/Warburg effect. Although hypoxic intratumoral conditions account for HIFia stabilization and induction of anaerobic metabolism, recent data suggest that high pyruvate concentrations also result in HIFia stabilization independently of hypoxia. In the present immunohistochemical study, we provide evidence that the PDH/PDK pathway is repressed in 73% of non small cell lung carcinomas, which may be a key reason for HIFia stabilization and “aerobic glycolysis.” However, about half of PDHdeficient carcinomas are not able to switch on the HIF pathway, and patients harboring these tumors have an excellent postoperative outcome. A small subgroup of clinically aggressive tumors maintains a coherent PDH and HIF/LDH5 expression. In contrast to cancer cells, fibroblasts in the tumor-supporting stroma exhibit an intense PDH but reduced PDK1 expression favoring maximum PDH activity. This means that stroma may use lactic acid produced by tumor cells, preventing the creation of an intolerable intratumoral acidic environment at the same time.

  13. High-fat diet enhanced retinal dehydrogenase activity, but suppressed retinol dehydrogenase activity in liver of rats

    Directory of Open Access Journals (Sweden)

    Mian Zhang

    2015-04-01

    Full Text Available Evidence has shown that hyperlipidemia is associated with retinoid dyshomeostasis. In liver, retinol is mainly oxidized to retinal by retinol dehydrogenases (RDHs and alcohol dehydrogenases (ADHs, further converted to retinoic acid by retinal dehydrogenases (RALDHs. The aim of this study was to investigate whether high-fat diet (HFD induced hyperlipidemia affected activity and expression of hepatic ADHs/RDHs and RALDHs in rats. Results showed that retinol levels in liver, kidney and adipose tissue of HFD rats were significantly increased, while plasma retinol and hepatic retinal levels were markedly decreased. HFD rats exhibited significantly downregulated hepatic ADHs/RDHs activity and Adh1, Rdh10 and Dhrs9 expression. Oppositely, hepatic RALDHs activity and Raldh1 expression were upregulated in HFD rats. In HepG2 cells, treatment of HFD rat serum inhibited ADHs/RDHs activity and induced RALDHs activity. Among the tested abnormally altered components in HFD rat serum, cholesterol reduced ADHs/RDHs activity and RDH10 expression, while induced RALDHs activity and RALDH1 expression in HepG2 cells. Contrary to the effect of cholesterol, cholesterol-lowering agent pravastatin upregulated ADHs/RDHs activity and RDH10 expression, while suppressed RALDHs activity and RALDH1 expression. In conclusion, hyperlipidemia oppositely altered activity and expression of hepatic ADHs/RDHs and RALDHs, which is partially due to the elevated cholesterol levels.

  14. Role of nongenomic activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase 1/2 pathways in 1,25D3-mediated apoptosis in squamous cell carcinoma cells.

    Science.gov (United States)

    Ma, Yingyu; Yu, Wei-Dong; Kong, Rui-Xian; Trump, Donald L; Johnson, Candace S

    2006-08-15

    Vitamin D is a steroid hormone that regulates calcium homeostasis and bone metabolism. The active form of vitamin D [1 alpha,25-dihydroxyvitamin D(3) (1,25D3)] acts through both genomic and nongenomic pathways. 1,25D3 has antitumor effects in a variety of cancers, including colorectal, prostate, breast, ovarian, and skin cancers. 1,25D3 exerts growth-inhibitory effects in cancer cells through the induction of apoptosis, cell cycle arrest, and differentiation. The mechanisms regulating 1,25D3-induced apoptosis remain unclear. We investigated the role of nongenomic signaling in 1,25D3-mediated apoptosis in squamous cell carcinoma (SCC) cells. 1,25D3 induced rapid and sustained activation of phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) 1/2 pathways in SCC cells. These effects were nongenomic: they occurred rapidly and were not inhibited by cycloheximide or actinomycin D. To examine whether the nongenomic activation of Akt and ERK1/2 plays a role in 1,25D3-mediated apoptosis, the expression of Akt or ERK1/2 was reduced by small interfering RNA (siRNA). siRNA-Akt significantly enhanced 1,25D3-induced apoptosis as indicated by increased levels of Annexin V-positive cells and increased sub-G(1) population and DNA fragmentation. In contrast, siRNA-ERK1/2 had no effects on 1,25D3-induced apoptosis. In addition, siRNA-Akt transfection followed by 1,25D3 treatment induced apoptosis much sooner than 1,25D3 alone. siRNA-Akt and 1,25D3 induced caspase-10 activation, suppressed the expression of c-IAP1 and XIAP, and promoted 1,25D3-induced caspase-3 activation. These results support a link between 1,25D3-induced nongenomic signaling and apoptosis. 1,25D3 induces the activation of phosphatidylinositol 3-kinase/Akt, which suppresses 1,25D3-mediated apoptosis and prolongs the survival of SCC cells.

  15. 9-Hydroxyprostaglandin dehydrogenase activity in the adult rat kidney. Regional distribution and sub-fractionation.

    Science.gov (United States)

    Asciak, C P; Domazet, Z

    1975-02-20

    1. Catabolism of prostaglandin F2alpha in the adult rat kidney takes place by the following sequence of enzymatic steps: (1) 15-hydroxyprostaglandin dehydrogenase; (2) prostaglandin delta13-reductase; and (3) 9-hydroxyprostaglandin dehydrogenase. 2. 9-Hydroxyprostaglandin dehydrogenase activity was highest in the cortex with lesser amounts in the medulla and negligible activity detected in the papilla. A similar distribution was observed for 15-hydroxyprostaglandin dehydrogenase and prostaglandin delta13-reductase. 3. Most of the 9-hydroxyprostaglandin dehydrogenase activity in the homogenate was found in the high-speed supernatant as also observed for 15-hydroxyprostaglandin dehydrogenase and prostaglandin delta13-reductase. 4. These observations indicate that the rat kidney contains an abundance of prostaglandin-catabolising enzymes which favour formation of metabolites of the E-type.

  16. Molecular structure of the pyruvate dehydrogenase complex from Escherichia coli K-12.

    Science.gov (United States)

    Vogel, O; Hoehn, B; Henning, U

    1972-06-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 x 10(6). All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This "excess" component is bound differently than are the eight dimers in the core complex.

  17. Purification of 2-oxo acid dehydrogenase multienzyme complexes from ox heart by a new method.

    OpenAIRE

    Stanley, C J; Perham, R N

    1980-01-01

    A new method is described that allows the parallel purification of the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multienzyme complexes from ox heart without the need for prior isolation of mitochondria. All the assayable activity of the 2-oxo acid dehydrogenase complexes in the disrupted tissue is made soluble by the inclusion of non-ionic detergents such as Triton X-100 or Tween-80 in the buffer used for the initial extraction of the enzyme complexes. The yields of the pyruvate...

  18. Increased superoxide accumulation in pyruvate dehydrogenase complex deficient fibroblasts.

    Science.gov (United States)

    Glushakova, Lyudmyla G; Judge, Sharon; Cruz, Alex; Pourang, Deena; Mathews, Clayton E; Stacpoole, Peter W

    2011-11-01

    The pyruvate dehydrogenase complex (PDC) oxidizes pyruvate to acetyl CoA and is critically important in maintaining normal cellular energy homeostasis. Loss-of-function mutations in PDC give rise to congenital lactic acidosis and to progressive cellular energy failure. However, the subsequent biochemical consequences of PDC deficiency that may contribute to the clinical manifestations of the disorder are poorly understood. We postulated that altered flux through PDC would disrupt mitochondrial electron transport, resulting in oxidative stress. Compared to cells from 4 healthy subjects, primary cultures of skin fibroblasts from 9 patients with variable mutations in the gene encoding the alpha subunit (E1α) of pyruvate dehydrogenase (PDA1) demonstrated reduced growth and viability. Superoxide (O(2)(.-)) from the Qo site of complex III of the electron transport chain accumulated in these cells and was associated with decreased activity of manganese superoxide dismutase. The expression of uncoupling protein 2 was also decreased in patient cells, but there were no significant changes in the expression of cellular markers of protein or DNA oxidative damage. The expression of hypoxia transcription factor 1 alpha (HIF1α) also increased in PDC deficient fibroblasts. We conclude that PDC deficiency is associated with an increase in O(2)(.-) accumulation coupled to a decrease in mechanisms responsible for its removal. Increased HIF1α expression may contribute to the increase in glycolytic flux and lactate production in PDC deficiency and, by trans-activating pyruvate dehydrogenase kinase, may further suppress residual PDC activity through phosphorylation of the E1α subunit. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Identification, Cloning, and Characterization of l-Phenylserine Dehydrogenase from Pseudomonas syringae NK-15

    Directory of Open Access Journals (Sweden)

    Sakuko Ueshima

    2010-01-01

    Full Text Available The gene encoding d-phenylserine dehydrogenase from Pseudomonas syringae NK-15 was identified, and a 9,246-bp nucleotide sequence containing the gene was sequenced. Six ORFs were confirmed in the sequenced region, four of which were predicted to form an operon. A homology search of each ORF predicted that orf3 encoded l-phenylserine dehydrogenase. Hence, orf3 was cloned and overexpressed in Escherichia coli cells and recombinant ORF3 was purified to homogeneity and characterized. The purified ORF3 enzyme showed l-phenylserine dehydrogenase activity. The enzymological properties and primary structure of l-phenylserine dehydrogenase (ORF3 were quite different from those of d-phenylserine dehydrogenase previously reported. l-Phenylserine dehydrogenase catalyzed the NAD+-dependent oxidation of the β-hydroxyl group of l-β-phenylserine. l-Phenylserine and l-threo-(2-thienylserine were good substrates for l-phenylserine dehydrogenase. The genes encoding l-phenylserine dehydrogenase and d-phenylserine dehydrogenase, which is induced by phenylserine, are located in a single operon. The reaction products of both enzymatic reactions were 2-aminoacetophenone and CO2.

  20. Two different dihydroorotate dehydrogenases from yeast Saccharomyees kluyveri

    DEFF Research Database (Denmark)

    Zameitat, E.; Knecht, Wolfgang; Piskur, Jure

    2004-01-01

    Genes for two structurally and functionally different dihydroorotate dehydrogenases (DHODHs, EC 1.3.99.11), catalyzing the fourth step of pyrimidine biosynthesis, have been previously found in yeast Saccharomyces klujveri. One is closely related to the Schizosaccharomyces pombe mitochondrial family...... for their biochemical properties and interaction with inhibitors. Benzoates as pyrimidine ring analogs were shown to he selective inhibitors of cytosolic DHODs. This unique property of Saccharomyces DHODHs could appoint DHODH as a species-specific target for novel anti-fungal therapeutics....

  1. Deracemization of Secondary Alcohols by using a Single Alcohol Dehydrogenase

    KAUST Repository

    Karume, Ibrahim

    2016-03-01

    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. We developed a single-enzyme-mediated two-step approach for deracemization of secondary alcohols. A single mutant of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase enables the nonstereoselective oxidation of racemic alcohols to ketones, followed by a stereoselective reduction process. Varying the amounts of acetone and 2-propanol cosubstrates controls the stereoselectivities of the consecutive oxidation and reduction reactions, respectively. We used one enzyme to accomplish the deracemization of secondary alcohols with up to >99% ee and >99.5% recovery in one pot and without the need to isolate the prochiral ketone intermediate.

  2. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based upon the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with continuous cofactor recycle. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value commodity chemical.

  3. [Genetic variations in alcohol dehydrogenase, drinking habits and alcoholism

    DEFF Research Database (Denmark)

    Tolstrup, J.S.; Rasmussen, S.; Tybjaerg-Hansen, A.

    2008-01-01

    Alcohol is degraded primarily by alcohol dehydrogenase (ADH), and genetic variation that affects the rate of alcohol degradation is found in ADH1B and ADH1C. By genotyping 9,080 white men and women from the general population, we found that men and women with ADH1B slow versus fast alcohol...... degradation drank approximately 30% more alcohol per week and had a higher risk of everyday and heavy drinking, and of alcoholism. Individuals with ADH1C slow versus fast alcohol degradation had a higher risk of heavy drinking Udgivelsesdato: 2008/8/25...

  4. Preparation of the Fv fragment from a short-chain mouse IgG2a anti-dansyl monoclonal antibody and use of selectively deuterated Fv analogues for two-dimensional 1H NMR analyses fo the antigen-antibody interactions

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Igarashi, Takako; Shimada, Ichio; Arata, Yoji

    1991-01-01

    The Fv fragment, a univalent antigen-binding unit with a molecular weight of 25,000, has successfully been prepared in high yield by limited proteolysis with clostripain of a short-chain mouse IgG2a anti-dansyl monoclonal antibody in which the entire C H 1 domain is deleted. The Fv fragment obtained is stable at room temperature and retains its full antigen-binding capability. It has been shown that selective deuterium labeling of the Fv fragment, which is half the size of the Fab fragment, provides 1 H NMR spectral data at a sufficient resolution for a detailed structural analysis of the antigen-combining site. NOESY spectra of an Fv analogue, in which all aromatic protons except for His C2'-H and Tyr C3',5'-H had been deuterated, were measured in the presence of varying amounts of dansyl-L-lysine. On the basis of the NOESY data obtained, it was possible to assign all the ring proton resonances for the dansly group that is bound to the Fv fragment. It was also possible to obtain information about His and Tyr residues of the Fv fragment in the absence and presence of the antigen. On the basis of the NMR data obtained, the authors have shown that at least two Tyr residues along with one of the amide groups are directly involved in antigen binding. The mode of interaction of the dansyl ring with these residues in the Fv fragment has briefly been discussed

  5. Preparation of the Fv fragment from a short-chain mouse IgG2a anti-dansyl monoclonal antibody and use of selectively deuterated Fv analogues for two-dimensional sup 1 H NMR analyses fo the antigen-antibody interactions

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hideo; Igarashi, Takako; Shimada, Ichio; Arata, Yoji (Univ. of Tokyo (Japan))

    1991-03-19

    The Fv fragment, a univalent antigen-binding unit with a molecular weight of 25,000, has successfully been prepared in high yield by limited proteolysis with clostripain of a short-chain mouse IgG2a anti-dansyl monoclonal antibody in which the entire C{sub H}1 domain is deleted. The Fv fragment obtained is stable at room temperature and retains its full antigen-binding capability. It has been shown that selective deuterium labeling of the Fv fragment, which is half the size of the Fab fragment, provides {sup 1}H NMR spectral data at a sufficient resolution for a detailed structural analysis of the antigen-combining site. NOESY spectra of an Fv analogue, in which all aromatic protons except for His C2{prime}-H and Tyr C3{prime},5{prime}-H had been deuterated, were measured in the presence of varying amounts of dansyl-L-lysine. On the basis of the NOESY data obtained, it was possible to assign all the ring proton resonances for the dansly group that is bound to the Fv fragment. It was also possible to obtain information about His and Tyr residues of the Fv fragment in the absence and presence of the antigen. On the basis of the NMR data obtained, the authors have shown that at least two Tyr residues along with one of the amide groups are directly involved in antigen binding. The mode of interaction of the dansyl ring with these residues in the Fv fragment has briefly been discussed.

  6. Oryza sativa (Rice) Hull Extract Inhibits Lipopolysaccharide-Induced Inflammatory Response in RAW264.7 Macrophages by Suppressing Extracellular Signal-regulated Kinase, c-Jun N-terminal Kinase, and Nuclear Factor-κB Activation.

    Science.gov (United States)

    Ha, Sang Keun; Sung, Jeehye; Choi, Inwook; Kim, Yoonsook

    2016-01-01

    Rice ( Oryza sativa ) is a major cereal crop in many Asian countries and an important staple food source. Rice hulls have been reported to possess antioxidant activities. In this study, we evaluated the antiinflammatory effects of rice hull extract and associated signal transduction mechanisms in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. We found that rice hull extract inhibited nitric oxide (NO) and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively. The release of interleukin-1β and tumor necrosis factor-α was also reduced in a dose-dependent manner. Furthermore, rice hull extract attenuated the activation of nuclear factor-kappa B (NF-κB), as well as the phosphorylation of mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK), in LPS-stimulated RAW264.7 cells. This suggests that rice hull extract decreases the production of inflammatory mediators by downregulating ERK and JNK and the NF-κB signal pathway in RAW 264.7 cells. Rice hull extract inhibits the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages.Rice hull extract inhibited nitric oxide and prostaglandin E 2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively.Rice hull extract exerted anti-inflammatory effect through inhibition of nuclear factor-kappa B, extracellular signal-regulated kinase and c-Jun N-terminal kinase signaling pathways.Rice hull extract may provide a potential therapeutic approach for inflammatory diseases. Abbreviations used: COX-2: cyclooxygenase-2, ERK: extracellular signal-regulated kinase, IκB: inhibitory kappa B, IL-1β: interleukin-1β, iNOS: inducible NO synthase, JNK: c-Jun N-terminal kinase, LPS: lipopolysaccharide, MAPKs: mitogen-activated protein kinases, NF-κB: nuclear factor-κB, NO: nitric oxide, PGE2: prostaglandin E2, RHE: rice hull extract, ROS: reactive oxygen species

  7. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus.

    Science.gov (United States)

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further studies are needed for introducing aldehyde dehydrogenase as a prognostic

  8. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus*

    Science.gov (United States)

    Mansourian, Arash; Shanbehzadeh, Najmeh; Kia, Seyed Javad; Moosavi, Mahdieh-Sadat

    2017-01-01

    Background Oral lichen planus is a potentially malignant disorder. One of the malignant transformation markers is cancer stem cells. One of the proposed marker for the detection of cancer stem cells's in head and neck cancer is aldehyde dehydrogenase. Recently it is shown that aldehyde dehydrogenase 1 expression in tissue samples is associated with oral lichen planus malignant transformation. Objective This study evaluates salivary aldehyde dehydrogenase 1 in oral lichen planus. Method Thirty patients and 30 age and sex-matched healthy volunteers were recruited. Oral lichen planus was diagnosed based on the modified World Health Organization criteria. Subjects in the case group were divided into reticular and non-reticular forms. Unstimulated salivary samples were collected at 10-12 AM. Saliva concentrations of aldehyde dehydrogenase 1 were measured by ELISA. Results The differences between aldehyde dehydrogenase levels in the oral lichen planus group compared with the control group were not significant but aldehyde dehydrogenase in non-reticular oral lichen planus was significantly higher than that of the reticular form. Limitations of the study This is a cross-sectional study, thus longitudinal studies in oral lichen planus may present similar or different results. Conclusions The mechanism of malignant transformation in oral lichen planus is not defined. Previous analyses revealed that the aldehyde dehydrogenase 1 expression is significantly correlated with increased risk of transformation. This finding is consistent with our results because in the erosive and ulcerative forms of oral lichen planus, which have an increased risk of transformation, salivary aldehyde dehydrogenase 1 was overexpressed. A higher salivary aldehyde dehydrogenase level in non-reticular oral lichen planus can be a defensive mechanism against higher oxidative stress in these groups. Aldehyde dehydrogenase may be one of the malignant transformation markers in oral lichen planus. Further

  9. Coenzyme- and His-tag-induced crystallization of octopine dehydrogenase

    International Nuclear Information System (INIS)

    Smits, Sander H. J.; Mueller, Andre; Grieshaber, Manfred K.; Schmitt, Lutz

    2008-01-01

    The crystal structure of octopine dehydrogenase revealed a specific role of the His 5 tag in inducing the crystal contacts required for successful crystallization. Over the last decade, protein purification has become more efficient and standardized through the introduction of affinity tags. The choice and position of the tag, however, can directly influence the process of protein crystallization. Octopine dehydrogenase (OcDH) without a His tag and tagged protein constructs such as OcDH-His 5 and OcDH-LEHis 6 have been investigated for their crystallizability. Only OcDH-His 5 yielded crystals; however, they were multiple. To improve crystal quality, the cofactor NADH was added, resulting in single crystals that were suitable for structure determination. As shown by the structure, the His 5 tag protrudes into the cleft between the NADH and l-arginine-binding domains and is mainly fixed in place by water molecules. The protein is thereby stabilized to such an extent that the formation of crystal contacts can proceed. Together with NADH, the His 5 tag obviously locks the enzyme into a specific conformation which induces crystal growth

  10. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase

    International Nuclear Information System (INIS)

    Nagae, Takayuki; Kawamura, Takashi; Chavas, Leonard M. G.; Niwa, Ken; Hasegawa, Masashi; Kato, Chiaki; Watanabe, Nobuhisa

    2012-01-01

    Structures of 3-isopropylmalate dehydrogenase were determined at pressures ranging from 0.1 to 650 MPa. Comparison of these structures gives a detailed picture of the swelling of a cavity at the dimer interface and the generation of a new cleft on the molecular surface, which are accompanied by water penetration. Hydrostatic pressure induces structural changes in proteins, including denaturation, the mechanism of which has been attributed to water penetration into the protein interior. In this study, structures of 3-isopropylmalate dehydrogenase (IPMDH) from Shewanella oneidensis MR-1 were determined at about 2 Å resolution under pressures ranging from 0.1 to 650 MPa using a diamond anvil cell (DAC). Although most of the protein cavities are monotonically compressed as the pressure increases, the volume of one particular cavity at the dimer interface increases at pressures over 340 MPa. In parallel with this volume increase, water penetration into the cavity could be observed at pressures over 410 MPa. In addition, the generation of a new cleft on the molecular surface accompanied by water penetration could also be observed at pressures over 580 MPa. These water-penetration phenomena are considered to be initial steps in the pressure-denaturation process of IPMDH

  11. Idiopathic intracranial hypertension, hormones, and 11ß-hydroxysteroid dehydrogenases

    Directory of Open Access Journals (Sweden)

    Markey KA

    2016-04-01

    Full Text Available Keira A Markey,1 Maria Uldall,2 Hannah Botfield,1 Liam D Cato,1 Mohammed A L Miah,1 Ghaniah Hassan-Smith,1 Rigmor H Jensen,2 Ana M Gonzalez,1 Alexandra J Sinclair1 1Neurometabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; 2Danish Headache Center, Clinic of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark Abstract: Idiopathic intracranial hypertension (IIH results in raised intracranial pressure (ICP leading to papilledema, visual dysfunction, and headaches. Obese females of reproductive age are predominantly affected, but the underlying pathological mechanisms behind IIH remain unknown. This review provides an overview of pathogenic factors that could result in IIH with particular focus on hormones and the impact of obesity, including its role in neuroendocrine signaling and driving inflammation. Despite occurring almost exclusively in obese women, there have been a few studies evaluating the mechanisms by which hormones and adipokines exert their effects on ICP regulation in IIH. Research involving 11ß-hydroxysteroid dehydrogenase type 1, a modulator of glucocorticoids, suggests a potential role in IIH. Improved understanding of the complex interplay between adipose signaling factors such as adipokines, steroid hormones, and ICP regulation may be key to the understanding and future management of IIH. Keywords: 11beta-hydroxysteroid dehydrogenase type 1, steroid and adipokines, obesity, leptin

  12. The Alcohol Dehydrogenase Isoenzyme as a Potential Marker of Pancreatitis.

    Science.gov (United States)

    Jelski, Wojciech; Piechota, Joanna; Orywal, Karolina; Szmitkowski, Maciej

    2018-05-01

    Human pancreas parenchyma contains various alcohol dehydrogenase (ADH) isoenzymes and also possesses aldehyde dehydrogenase (ALDH) activity. The altered activities of ADH and ALDH in damaged pancreatic tissue in the course of pancreatitis are reflected in the human serum. The aim of this study was to investigate a potential role of ADH and ALDH as markers for acute (AP) and chronic pancreatitis (CP). Serum samples were collected for routine biochemical investigations from 75 patients suffering from acute pancreatitis and 70 patients with chronic pancreatitis. Fluorometric methods were used to measure the activity of class I and II ADH and ALDH activity. The total ADH activity and activity of class III and IV isoenzymes were measured by a photometric method. There was a significant increase in the activity of ADH III isoenzyme (15.06 mU/l and 14.62 mU/l vs. 11.82 mU/l; ppancreatitis or chronic pancreatitis compared to the control. The diagnostic sensitivity for ADH III was about 84%, specificity was 92 %, positive and negative predictive values were 93% and 87% respectively in acute pancreatitis. Area under the Receiver Operating Curve (ROC) curve for ADH III in AP and CP was 0.88 and 0.86 respectively. ADH III has a potential role as a marker of acute and chronic pancreatitis. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. Modulation of NADP(+)-dependent isocitrate dehydrogenase in aging.

    Science.gov (United States)

    Kil, In Sup; Lee, Young Sup; Bae, Young Seuk; Huh, Tae Lin; Park, Jeen-Woo

    2004-01-01

    NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-specific isocitrate dehydrogenases (ICDHs). Here, we investigated age-related changes in ICDH activity and protein expression in IMR-90 human diploid fibroblast cells and tissues from Fischer 344 rats. We found that in IMR-90 cells the activity of cytosolic ICDH (IDPc) gradually increased with age up to the 46-48 population doubling level (PDL) and then gradually decreased at later PDL. 2',7'-Dichloro-fluorescein fluorescence which reflects intracellular ROS generation was increased with aging in IMR-90 cells. In ad libitum-fed rats, we noted age-related, tissue-specific modulations of IDPc and mitochondrial ICDH (IDPm) activities and protein expression in the liver, kidney and testes. In contrast, ICDH activities and protein expression were not significantly modulated in diet-restricted rats. These data suggest that modulation of ICDH is an age-dependent and a tissue-specific phenomenon.

  14. Signatures of cinnamyl alcohol dehydrogenase deficiency in poplar lignins.

    Science.gov (United States)

    Lapierre, Catherine; Pilate, Gilles; Pollet, Brigitte; Mila, Isabelle; Leplé, Jean-Charles; Jouanin, Lise; Kim, Hoon; Ralph, John

    2004-02-01

    A series of transgenic poplars down-regulated for cinnamyl alcohol dehydrogenase (CAD) was analyzed by thioacidolysis. Among the lignin-derived monomers, the indene compounds that were recently shown to originate from sinapaldehyde incorporated into lignins through 8-O-4-cross-coupling, were found to increase as a function of CAD deficiency level. While these syringyl markers were recovered in substantial amounts in the most severely depressed lines, the markers for coniferaldehyde incorporation were recovered in only low amounts. In conjunction with these additional sinapaldehyde units and relative to the control samples, lignins in CAD-deficient poplar lines had less conventional syringyl-units and beta-O-4-bonds and more free phenolic groups. We found that almost half of the polymers in the most deficient lines could be solubilized in alkali and at room temperature. This unusual behavior suggests that lignins in CAD-deficient poplars occur as small, alkali-leachable lignin domains. That mainly sinapaldehyde incorporates into the lignins of CAD-deficient poplars suggests that the recently identified sinapyl alcohol dehydrogenase (SAD), which is structurally distinct from the CAD enzyme targeted herein, does not play any substantial role in constitutive lignification in poplar.

  15. The radiation inactivation of glutamate and isocitrate dehydrogenases

    International Nuclear Information System (INIS)

    El Failat, R.R.A.

    1980-12-01

    The reaction of free radicals produced by ionizing radiation with the enzymes glutamate dehydrogenase (GDH) and NADP + -specific isocitrate dehydrogenase (ICDH) have been studied by steady-state and pulse radiolysis techniques. In de-aerated GDH solutions, hydroxyl radicals have been found to be the most efficient of the primary radicals generated from water in causing inactivation. The effect of reaction with the enzyme of selective free radicals (SCN) 2 - , (Br) 2 - and (I) 2 - on its activity has also been studied. In neutral solutions, the order of inactivating effectiveness is (I) 2 - > (Br) 2 - > (SCN) 2 - . In the case of the thiocyanate radical anion (SCN) 2 - , the inactivation efficiency is found to depend on KSCN concentration. The radiation inactivation of GDH at both neutral and alkaline pH is accompanied by the loss of sulphydryl groups. Pulse radiolysis was also used to determine the rate constants and the transient absorption spectra following the reaction of the free radicals with GDH. 60 Co-γ-radiolysis and pulse radiolysis were also used to study the effect of ionizing radiation on the activity of ICDH. The results obtained were similar to those of GDH. (author)

  16. Orthodontic Force Application in Correlation with Salivary Lactate Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Erik Husin

    2013-07-01

    Full Text Available Orthodontic tooth movement generate mechanical forces to periodontal ligament and alveolar bone. The forces correlate with initial responses of periodontal tissues and involving many metabolic changes. One of the metabolic changes detected in saliva is lactate dehydrogenase (LDH activity. Objectives: To evaluate the correlation between orthodontic interrupted force application, lactate dehydrogenase activity and the distance of tooth movement. Methods: upper premolar, pre-retraction of upper canine and 1, 7, 14, 21 and 28 days post-retraction of upper canine with 100g interrupted orthodontic force. Results: duration of force (F=11.926 p 14 and 28 days post-retraction of canine. The region of retraction correlated with the distance of tooth movement (F=7.377 p=0.007. The duration of force correlated with the distance of tooth movement (F=66.554 p=0.000. retraction of canine. Conclusion: This study concluded that orthodontic interrupted force application on canine could increase the distance of tooth movement and LDH activity in saliva.

  17. Inosine monophosphate dehydrogenase messenger RNA expression is correlated to clinical outcomes in mycophenolate mofetil-treated kidney transplant patients, whereas inosine monophosphate dehydrogenase activity is not

    NARCIS (Netherlands)

    Sombogaard, Ferdi; Peeters, Annemiek M. A.; Baan, Carla C.; Mathot, Ron A. A.; Quaedackers, Monique E.; Vulto, Arnold G.; Weimar, Willem; van Gelder, Teun

    2009-01-01

    Measurement of the pharmacodynamic biomarker inosine monophosphate dehydrogenase (IMPDH) activity in renal transplant recipients has been proposed to reflect the biological effect better than using pharmacokinetic parameters to monitor mycophenolate mofetil therapy. The IMPDH assays are however

  18. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    dehydrogenase encoding region of the bacterium, or is inserted into a phosphotransacetylase encoding region of the bacterium, or is inserted into an acetate kinase encoding region of the bacterium. It is operably linked to an inducible, a regulated or a constitutive promoter. The up-regulated glycerol......TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...

  19. Ras-Induced and Extracellular Signal-Regulated Kinase 1 and 2 Phosphorylation-Dependent Isomerization of Protein Tyrosine Phosphatase (PTP)-PEST by PIN1 Promotes FAK Dephosphorylation by PTP-PEST ▿

    Science.gov (United States)

    Zheng, Yanhua; Yang, Weiwei; Xia, Yan; Hawke, David; Liu, David X.; Lu, Zhimin

    2011-01-01

    Protein tyrosine phosphatase (PTP)-PEST is a critical regulator of cell adhesion and migration. However, the mechanism by which PTP-PEST is regulated in response to oncogenic signaling to dephosphorylate its substrates remains unclear. Here, we demonstrate that activated Ras induces extracellular signal-regulated kinase 1 and 2-dependent phosphorylation of PTP-PEST at S571, which recruits PIN1 to bind to PTP-PEST. Isomerization of the phosphorylated PTP-PEST by PIN1 increases the interaction between PTP-PEST and FAK, which leads to the dephosphorylation of FAK Y397 and the promotion of migration, invasion, and metastasis of v-H-Ras-transformed cells. These findings uncover an important mechanism for the regulation of PTP-PEST in activated Ras-induced tumor progression. PMID:21876001

  20. Cloning and mRNA Expression of NADH Dehydrogenase during Ochlerotatus taeniorhynchus Development and Pesticide Response

    Science.gov (United States)

    NADH dehydrogenase, the largest of the respiratory complexes, is the first enzyme of the mitochondrial electron transport chain. We have cloned and sequenced cDNA of NADH dehydrogenase gene from Ochlerotatus (Ochlerotatus) taeniorhynchus (Wiedemann) adult (GeneBank Accession number: FJ458415). The ...