WorldWideScience

Sample records for signaling promotes tumor

  1. EGFR-STAT3 signaling promotes formation of malignant peripheral nerve sheath tumors.

    Science.gov (United States)

    Wu, J; Patmore, D M; Jousma, E; Eaves, D W; Breving, K; Patel, A V; Schwartz, E B; Fuchs, J R; Cripe, T P; Stemmer-Rachamimov, A O; Ratner, N

    2014-01-09

    Malignant peripheral nerve sheath tumors (MPNSTs) develop sporadically or in the context of neurofibromatosis type 1. Epidermal growth factor receptor (EGFR) overexpression has been implicated in MPNST formation, but its precise role and relevant signaling pathways remain unknown. We found that EGFR overexpression promotes mouse neurofibroma transformation to aggressive MPNST (GEM-PNST). Immunohistochemistry demonstrated phosphorylated STAT3 (Tyr705) in both human MPNST and mouse GEM-PNST. A specific JAK2/STAT3 inhibitor FLLL32 delayed MPNST formation in an MPNST xenograft nude mouse model. STAT3 knockdown by shRNA prevented MPNST formation in vivo. Finally, reducing EGFR activity strongly reduced pSTAT3 in vivo. Thus, an EGFR-STAT3 pathway is necessary for MPNST transformation and establishment of MPNST xenografts growth but not for tumor maintenance. Efficacy of the FLLL32 pharmacological inhibitor in delaying MPNST growth suggests that combination therapies targeting JAK/STAT3 might be useful therapeutics.

  2. Ski Promotes Tumor Growth Through Abrogation of Transforming Growth Factor-β Signaling in Pancreatic Cancer

    Science.gov (United States)

    Heider, T Ryan; Lyman, Suzanne; Schoonhoven, Robert; Behrns, Kevin E.

    2007-01-01

    Objective: We hypothesized that human pancreatic cancer resists TGF-β signaling and cell death through increased Ski expression. Summary Background Data: Ski is an oncogenic protein that acts as a TGF-β repressor and prevents related gene transcription. Previous work suggests that Ski acts as an oncoprotein in melanoma and esophageal cancer. Ski expression and function have not been determined in human pancreatic cancer. Methods: Immunohistochemistry and immunoblots assessed Ski expression in human pancreatic cancer. Panc-1 cells were treated with or without Ski siRNA, and Ski and Smad protein expression, transcriptional reporter activation, and growth assays were determined. Panc-1 cells were inoculated in the flank of nude mice and tumor volume and histology assessed after administration of Ski siRNA or control vector. Results: Ski was abundantly expressed in human pancreatic cancer specimens assessed by immunohistochemistry (91%) and immunoblot analysis (67%). Panc-1 cells exhibited nascent Ski expression that was maximally inhibited 48 hours after transfection with Ski siRNA. TGF-β transcriptional activity was increased 2.5-fold in Ski siRNA-treated cells compared with control (P < 0.05). Ski siRNA increased TGF-β-induced Smad2 phosphorylation and p21 expression. Panc-1 growth in culture was decreased 2-fold at 72 hours. A Ski siRNA expression vector injected into nude mice resulted in a 5-fold decrease in growth. Conclusion: Inhibition of Ski through RNA interference restored TGF-β signaling and growth inhibition in vitro, and decreased tumor growth in vivo. PMID:17592292

  3. Reactivation of Embryonic Nodal Signaling is Associated with Tumor Progression and Promotes the Growth of Prostate Cancer Cells

    Science.gov (United States)

    Lawrence, Mitchell G.; Margaryan, Naira V.; Loessner, Daniela; Collins, Angus; Kerr, Kris M.; Turner, Megan; Seftor, Elisabeth A.; Stephens, Carson R.; Lai, John; BioResource, APC; Postovit, Lynne-Marie; Clements, Judith A.; Hendrix, Mary J.C.

    2011-01-01

    Background Nodal is a member of the Transforming Growth Factor β (TGFβ) superfamily that directs embryonic patterning and promotes the plasticity and tumorigenicity of tumor cells, but its role in the prostate is unknown. The goal of this study was to characterize the expression and function of Nodal in prostate cancer and determine whether, like other TGFβ ligands, it modulates androgen receptor (AR) activity. Methods Nodal expression was investigated using immunohistochemistry of tissue microarrays and Western blots of prostate cell lines. The functional role of Nodal was examined using Matrigel and soft agar growth assays. Cross-talk between Nodal and AR signaling was assessed with luciferase reporter assays and expression of endogenous androgen regulated genes. Results Significantly increased Nodal expression was observed in cancer compared with benign prostate specimens. Nodal was only expressed by DU145 and PC3 cells. All cell lines expressed Nodal’s co-receptor, Cripto-1, but lacked Lefty, a critical negative regulator of Nodal signaling. Recombinant human Nodal triggered downstream Smad2 phosphorylation in DU145 and LNCaP cells, and stable transfection of pre-pro-Nodal enhanced the growth of LNCaP cells in Matrigel and soft agar. Finally, Nodal attenuated AR signaling, reducing the activity of a PSA promoter construct in luciferase assays and down-regulating the endogenous expression of androgen regulated genes. Conclusions An aberrant Nodal signaling pathway is re-expressed and functionally active in prostate cancer cells. PMID:21656830

  4. Osteosarcoma cell-intrinsic colony stimulating factor-1 receptor functions to promote tumor cell metastasis through JAG1 signaling.

    Science.gov (United States)

    Wen, Zhi-Qiang; Li, Xi-Gong; Zhang, Yi-Jun; Ling, Zhi-Heng; Lin, Xiang-Jin

    2017-01-01

    Therapeutic antibodies or inhibitors targeting CSF-1R block colony stimulating factor-1/colony stimulating factor-1 receptor (CSF-1/CSF-R) signaling, and have shown remarkable efficacy in the treatment of cancer. However, little is known about tumor cell-intrinsic CSF-1R effects. Here, we show that human osteosarcomas contain CSF-1R-expressing cancer subpopulations, and demonstrate that osteosarcoma cell-intrinsic CSF-1R promotes growth in vitro and in vivo. CSF-1R inhibition in osteosarcoma cells by RNA interference suppresses cell proliferation and tumor growth in mice. Conversely, CSF-1R overexpression enhances cell proliferation and accelerates tumor growth. CSF-1R overexpression can significantly enhance osteosarcoma cell migration, invasion, and epithelial-mesenchymal transition (EMT), whereas silencing CSF-1R inhibits these processes. Microarray analysis suggests that jagged 1 (JAG1) can function as a downstream mediator of CSF-1R. Moreover, we report a signaling pathway involving CSF-1R and JAG1 that sustains osteosarcoma cell migration and invasion. Our results identify osteosarcoma cell intrinsic functions of the CSF-1R/JAG1 axis in dissemination of osteosarcoma cells.

  5. β-Catenin Signaling Increases during Melanoma Progression and Promotes Tumor Cell Survival and Chemoresistance

    Science.gov (United States)

    Sinnberg, Tobias; Menzel, Moritz; Ewerth, Daniel; Sauer, Birgit; Schwarz, Michael; Schaller, Martin; Garbe, Claus; Schittek, Birgit

    2011-01-01

    Beta-catenin plays an important role in embryogenesis and carcinogenesis by controlling either cadherin-mediated cell adhesion or transcriptional activation of target gene expression. In many types of cancers nuclear translocation of beta-catenin has been observed. Our data indicate that during melanoma progression an increased dependency on the transcriptional function of beta-catenin takes place. Blockade of beta-catenin in metastatic melanoma cell lines efficiently induces apoptosis, inhibits proliferation, migration and invasion in monolayer and 3-dimensional skin reconstructs and decreases chemoresistance. In addition, subcutaneous melanoma growth in SCID mice was almost completely inhibited by an inducible beta-catenin knockdown. In contrast, the survival of benign melanocytes and primary melanoma cell lines was less affected by beta-catenin depletion. However, enhanced expression of beta-catenin in primary melanoma cell lines increased invasive capacity in vitro and tumor growth in the SCID mouse model. These data suggest that beta-catenin is an essential survival factor for metastatic melanoma cells, whereas it is dispensable for the survival of benign melanocytes and primary, non-invasive melanoma cells. Furthermore, beta-catenin increases tumorigenicity of primary melanoma cell lines. The differential requirements for beta-catenin signaling in aggressive melanoma versus benign melanocytic cells make beta-catenin a possible new target in melanoma therapy. PMID:21858114

  6. Increased Serotonin Signaling Contributes to the Warburg Effect in Pancreatic Tumor Cells Under Metabolic Stress and Promotes Growth of Pancreatic Tumors in Mice.

    Science.gov (United States)

    Jiang, Shu-Heng; Li, Jun; Dong, Fang-Yuan; Yang, Jian-Yu; Liu, De-Jun; Yang, Xiao-Mei; Wang, Ya-Hui; Yang, Min-Wei; Fu, Xue-Liang; Zhang, Xiao-Xin; Li, Qing; Pang, Xiu-Feng; Huo, Yan-Miao; Li, Jiao; Zhang, Jun-Feng; Lee, Ho-Young; Lee, Su-Jae; Qin, Wen-Xin; Gu, Jian-Ren; Sun, Yong-Wei; Zhang, Zhi-Gang

    2017-07-01

    of 5-HT to be increased in human PDAC tissues compared with non-tumor pancreatic tissues, and PDAC cell lines compared with non-transformed pancreatic cells. Incubation of PDAC cell lines with 5-HT increased proliferation and prevented apoptosis. Agonists of HTR2B, but not other 5-HT receptors, promoted proliferation and prevented apoptosis of PDAC cells. Knockdown of HTR2B in PDAC cells, or incubation of cells with HTR2B inhibitors, reduced their growth as xenograft tumors in mice. We observed a correlation between 5-HT and glycolytic flux in PDAC cells; levels of metabolic enzymes involved in glycolysis, the phosphate pentose pathway, and hexosamine biosynthesis pathway increased significantly in PDAC cells following 5-HT stimulation. 5-HT stimulation led to formation of the HTR2B-LYN-p85 complex, which increased PI3K-Akt-mTOR signaling and the Warburg effect by increasing protein levels of MYC and HIF1A. Administration of SB204741 to KPC mice slowed growth and metabolism of established pancreatic tumors and prolonged survival of the mice. Human PDACs have increased levels of 5-HT, and PDAC cells increase expression of its receptor, HTR2B. These increases allow for tumor glycolysis under metabolic stress and promote growth of pancreatic tumors and PDAC xenograft tumors in mice. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. DUSP4 deficiency caused by promoter hypermethylation drives JNK signaling and tumor cell survival in diffuse large B cell lymphoma

    Science.gov (United States)

    Schmid, Corina A.; Robinson, Mark D.; Scheifinger, Nicole A.; Müller, Sebastian; Cogliatti, Sergio; Tzankov, Alexandar

    2015-01-01

    The epigenetic dysregulation of tumor suppressor genes is an important driver of human carcinogenesis. We have combined genome-wide DNA methylation analyses and gene expression profiling after pharmacological DNA demethylation with functional screening to identify novel tumor suppressors in diffuse large B cell lymphoma (DLBCL). We find that a CpG island in the promoter of the dual-specificity phosphatase DUSP4 is aberrantly methylated in nodal and extranodal DLBCL, irrespective of ABC or GCB subtype, resulting in loss of DUSP4 expression in 75% of >200 examined cases. The DUSP4 genomic locus is further deleted in up to 13% of aggressive B cell lymphomas, and the lack of DUSP4 is a negative prognostic factor in three independent cohorts of DLBCL patients. Ectopic expression of wild-type DUSP4, but not of a phosphatase-deficient mutant, dephosphorylates c-JUN N-terminal kinase (JNK) and induces apoptosis in DLBCL cells. Pharmacological or dominant-negative JNK inhibition restricts DLBCL survival in vitro and in vivo and synergizes strongly with the Bruton’s tyrosine kinase inhibitor ibrutinib. Our results indicate that DLBCL cells depend on JNK signaling for survival. This finding provides a mechanistic basis for the clinical development of JNK inhibitors in DLBCL, ideally in synthetic lethal combinations with inhibitors of chronic active B cell receptor signaling. PMID:25847947

  8. PI3K/Akt signaling mediated Hexokinase-2 expression inhibits cell apoptosis and promotes tumor growth in pediatric osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, Baobiao; Li, Yuan; Li, Zhengwei; Qin, Haihui; Sun, Qingzeng; Zhang, Fengfei; Shen, Yang; Shi, Yingchun [Department of Surgery, The Children' s Hospital of Xuzhou, Xuzhou, Jiangsu Province 221006 (China); Wang, Rong, E-mail: wangrong2008163@163.com [Department of Ultrasonography, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu Province 221006 (China)

    2015-08-21

    Accumulating evidence has shown that PI3K/Akt pathway is frequently hyperactivated in osteosarcoma (OS) and contributes to tumor initiation and progression. Altered phenotype of glucose metabolism is a key hallmark of cancer cells including OS. However, the relationship between PI3K/Akt pathway and glucose metabolism in OS remains largely unexplored. In this study, we showed that elevated Hexokinase-2 (HK2) expression, which catalyzes the first essential step of glucose metabolism by conversion of glucose into glucose-6-phosphate, was induced by activated PI3K/Akt signaling. Immunohistochemical analysis showed that HK2 was overexpressed in 83.3% (25/30) specimens detected and was closely correlated with Ki67, a cell proliferation index. Silencing of endogenous HK2 resulted in decreased aerobic glycolysis as demonstrated by reduced glucose consumption and lactate production. Inhibition of PI3K/Akt signaling also suppressed aerobic glycolysis and this effect can be reversed by reintroduction of HK2. Furthermore, knockdown of HK2 led to increased cell apoptosis and reduced ability of colony formation; meanwhile, these effects were blocked by 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor through its actions on hexokinase, indicating that HK2 functions in cell apoptosis and growth were mediated by altered aerobic glycolysis. Taken together, our study reveals a novel relationship between PI3K/Akt signaling and aerobic glycolysis and indicates that PI3K/Akt/HK2 might be potential therapeutic approaches for OS. - Highlights: • PI3K/Akt signaling contributes to elevated expression of HK2 in osteosarcoma. • HK2 inhibits cell apoptosis and promotes tumor growth through enhanced Warburg effect. • Inhibition of glycolysis blocks the oncogenic activity of HK2.

  9. CD133(+) liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1 signaling.

    Science.gov (United States)

    Tang, Kwan Ho; Ma, Stephanie; Lee, Terence K; Chan, Yuen Piu; Kwan, Pak Shing; Tong, Carol M; Ng, Irene O; Man, Kwan; To, Ka-Fai; Lai, Paul B; Lo, Chung-Mau; Guan, Xin-Yuan; Chan, Kwok Wah

    2012-03-01

    A novel theory in the field of tumor biology postulates that cancer growth is driven by a population of stem-like cells, called tumor-initiating cells (TICs). We previously identified a TIC population derived from hepatocellular carcinoma (HCC) that is characterized by membrane expression of CD133. Here, we describe a novel mechanism by which these cells mediate tumor growth and angiogenesis by systematic comparison of the gene expression profiles between sorted CD133 liver subpopulations through genome-wide microarray analysis. A significantly dysregulated interleukin-8 (IL-8) signaling network was identified in CD133(+) liver TICs obtained from HCC clinical samples and cell lines. IL-8 was found to be overexpressed at both the genomic and proteomic levels in CD133(+) cells isolated from HCC cell lines or clinical samples. Functional studies found enhanced IL-8 secretion in CD133(+) liver TICs to exhibit a greater ability to self-renew, induce tumor angiogenesis, and initiate tumors. In further support of these observations, IL-8 repression in CD133(+) liver TICs by knockdown or neutralizing antibody abolished these effects. Subsequent studies of the IL-8 functional network identified neurotensin (NTS) and CXCL1 to be preferentially expressed in CD133(+) liver TICs. Addition of exogenous NTS resulted in concomitant up-regulation of IL-8 and CXCL1 with simultaneous activation of p-ERK1/2 and RAF-1, both key components of the mitogen-activated protein kinase (MAPK) pathway. Enhanced IL-8 secretion by CD133(+) liver TICs can in turn activate an IL-8-dependent feedback loop that signals through the MAPK pathway. Further, in its role as a liver TIC marker CD133 also plays a functional part in regulating tumorigenesis of liver TICs by way of regulating NTS, IL-8, CXCL1, and MAPK signaling. CD133(+) liver TICs promote angiogenesis, tumorigenesis, and self-renewal through NTS-induced activation of the IL-8 signaling cascade. Copyright © 2011 American Association for the

  10. Nintedanib (BIBF 1120) blocks the tumor promoting signals of lung fibroblast soluble microenvironment.

    Science.gov (United States)

    Epstein Shochet, Gali; Israeli-Shani, Lilach; Koslow, Matthew; Shitrit, David

    2016-06-01

    Nintedanib is a potent, triple angiokinase inhibitor of vascular endothelial growth factor, fibroblast growth factor, and platelet-derived growth factor, and has been recently approved for the treatment of non-small cell lung cancer (NSCLC), following first-line chemotherapy. It is well established that microenvironment plays an important role in tumor progression. Therefore, targeting tumor microenvironment-cancer cell interaction may provide a significant therapeutic target. In this study we tested the effect of Nintedanib on NSCLC cells directly and in the presence of normal and tumor soluble microenvironment. Primary fibroblast cultures derived from NSCLC tumors and normal lung tissues were established and their supernatants were collected. These supernatants were added to NSCLC cell lines (H1299, H460 and A549) cultured with/without Nintedanib (0.1-10μM) for 24 and 48h. Cell death (AnnexinV-PI, flow-cytometry), cell number, proliferation (PCNA), protein expression (immunoblotting) and cell migration (scratch test), were tested. Expression of 10 pro-angiogenic cytokines was measured by ELISA-based quantitative array. Tumor and normal supernatants demonstrated similar pro-metastatic effects on the NSCLC phenotype: both elevated cancer cell number, PCNA levels, reduced total and apoptotic cell death and facilitated cell migration. Nintedanib had limited but significant effects on the NSCLC cell number, cell death and migration, but required high doses. However, at lower doses Nintedanib caused cell detachment and elevated integrin-alpha 5 and EGFR levels, both markers of anoikis resistance. This suggests them as possible targets in combination with Nintedanib. Moreover, Nintedanib completely blocked the supernatants ability to facilitate the aggressive cancer cell characteristics. While cytokine array analysis showed no significant changes in FGF, PDGF or VEGF, we found that both supernatants contained high HGF levels, suggesting it as the facilitator of cell

  11. HVEM signalling promotes colitis.

    Directory of Open Access Journals (Sweden)

    Corinne Schaer

    Full Text Available BACKGROUND: Tumor necrosis factor super family (TNFSF members regulate important processes involved in cell proliferation, survival and differentiation and are therefore crucial for the balance between homeostasis and inflammatory responses. Several members of the TNFSF are closely associated with inflammatory bowel disease (IBD. Thus, they represent interesting new targets for therapeutic treatment of IBD. METHODOLOGY/PRINCIPAL FINDINGS: We have used mice deficient in TNFSF member HVEM in experimental models of IBD to investigate its role in the disease process. Two models of IBD were employed: i chemical-induced colitis primarily mediated by innate immune cells; and ii colitis initiated by CD4(+CD45RB(high T cells following their transfer into immuno-deficient RAG1(-/- hosts. In both models of disease the absence of HVEM resulted in a significant reduction in colitis and inflammatory cytokine production. CONCLUSIONS: These data show that HVEM stimulatory signals promote experimental colitis driven by innate or adaptive immune cells.

  12. Dietary iron enhances colonic inflammation and IL-6/IL-11-Stat3 signaling promoting colonic tumor development in mice.

    Directory of Open Access Journals (Sweden)

    Anita C G Chua

    Full Text Available Chronic intestinal inflammation and high dietary iron are associated with colorectal cancer development. The role of Stat3 activation in iron-induced colonic inflammation and tumorigenesis was investigated in a mouse model of inflammation-associated colorectal cancer. Mice, fed either an iron-supplemented or control diet, were treated with azoxymethane and dextran sodium sulfate (DSS. Intestinal inflammation and tumor development were assessed by endoscopy and histology, gene expression by real-time PCR, Stat3 phosphorylation by immunoblot, cytokines by ELISA and apoptosis by TUNEL assay. Colonic inflammation was more severe in mice fed an iron-supplemented compared with a control diet one week post-DSS treatment, with enhanced colonic IL-6 and IL-11 release and Stat3 phosphorylation. Both IL-6 and ferritin, the iron storage protein, co-localized with macrophages suggesting iron may act directly on IL-6 producing-macrophages. Iron increased DSS-induced colonic epithelial cell proliferation and apoptosis consistent with enhanced mucosal damage. DSS-treated mice developed anemia that was not alleviated by dietary iron supplementation. Six weeks post-DSS treatment, iron-supplemented mice developed more and larger colonic tumors compared with control mice. Intratumoral IL-6 and IL-11 expression increased in DSS-treated mice and IL-6, and possibly IL-11, were enhanced by dietary iron. Gene expression of iron importers, divalent metal transporter 1 and transferrin receptor 1, increased and iron exporter, ferroportin, decreased in colonic tumors suggesting increased iron uptake. Dietary iron and colonic inflammation synergistically activated colonic IL-6/IL-11-Stat3 signaling promoting tumorigenesis. Oral iron therapy may be detrimental in inflammatory bowel disease since it may exacerbate colonic inflammation and increase colorectal cancer risk.

  13. DEPDC1 promotes cell proliferation and tumor growth via activation of E2F signaling in prostate cancer.

    Science.gov (United States)

    Huang, Lin; Chen, Keng; Cai, Zhao-Peng; Chen, Fu-Chao; Shen, Hui-Yong; Zhao, Wei-Hua; Yang, Song-Jie; Chen, Xu-Biao; Tang, Guo-Xue; Lin, Xi

    2017-08-26

    DEP domain containing 1 (DEPDC1) is recently reported to be overexpressed in several types of human cancer; however the role of DEPDC1 in prostate cancer remains to be investigated. Herein, we identified that the DEPDC1 mRNA and protein expression levels were dramatically increased in prostate cancer tissues and cell lines. Overexpression of DEPDC1 promoted, but depletion of DEPDC1 inhibited cell proliferation by regulating the G1-S phase cell cycle transition. Importantly, we found that DEPDC1 was essential for the tumor growth and formation of bone metastases of prostate cancer cells in vivo. Finally, we demonstrated that DEPDC1 interacted with E2F1 and increased its transcriptional activity, leading to hyper-activation of E2F signaling in prostate cancer cells. Our findings reveal an oncogenic role of DEPDC1 in prostate cancer progression via activation of E2F signaling, and suggest DEPDC1 might be a potential therapeutic target against the disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. ABL kinases promote breast cancer osteolytic metastasis by modulating tumor-bone interactions through TAZ and STAT5 signaling.

    Science.gov (United States)

    Wang, Jun; Rouse, Clay; Jasper, Jeff S; Pendergast, Ann Marie

    2016-02-02

    Bone metastases occur in up to 70% of advanced breast cancer. For most patients with breast cancer, bone metastases are predominantly osteolytic. Interactions between tumor cells and stromal cells in the bone microenvironment drive osteolytic bone metastasis, a process that requires the activation of osteoclasts, cells that break down bone. We report that ABL kinases promoted metastasis of breast cancer cells to bone by regulating the crosstalk between tumor cells and the bone microenvironment. ABL kinases protected tumor cells from apoptosis induced by TRAIL (TNF-related apoptosis-inducing ligand), activated the transcription factor STAT5, and promoted osteolysis through the STAT5-dependent expression of genes encoding the osteoclast-activating factors interleukin-6 (IL-6) and matrix metalloproteinase 1 (MMP1). Furthermore, in breast cancer cells, ABL kinases increased the abundance of the Hippo pathway mediator TAZ and the expression of TAZ-dependent target genes that promote bone metastasis. Knockdown of ABL kinases or treatment with ABL-specific allosteric inhibitor impaired osteolytic metastasis of breast cancer cells in mice. These findings revealed a role for ABL kinases in regulating tumor-bone interactions and provide a rationale for using ABL-specific inhibitors to limit breast cancer metastasis to bone. Copyright © 2016, American Association for the Advancement of Science.

  15. Gastrin promotes intestinal polyposis through cholecystokinin-B receptor-mediated proliferative signaling and fostering tumor microenvironment.

    Science.gov (United States)

    Han, Y-M; Park, J-M; Park, S-H; Hahm, K B; Hong, S P; Kim, E-H

    2013-08-01

    Increased serum gastrin concentrations in patients with colorectal cancer suggested the tumorigenic trophic effect of gastrin. Detailed and global molecular mechanisms explaining trophic effect of gastrin had not been revealed. In the current study, intestinal polyposis of APC(Min/⁺) mice was compared between phosphate buffered saline (PBS) injected and gastrin (10 μg/kg, thrice per week) injected group. Total number of intestinal polyposis was counted and immunohistochemical staining with F4/80 and CD3 was done. MTT assay, cell cycle analysis, and Western blot for cyclin D1, CDK4, and β-catenin were performed in Raw 264.7 and HCT116 cells before and after gastrin administration. Experiments were repeated with YM022 or transfection with si-cholecystokinin-B receptor (CCK-B-R). Intraperitoneal gastrin significantly increased intestinal polyposis in APC(Min/⁺) mice (Pgastrin. On comparative cytokine array, gastrin increased interleukin-1β (IL-1β), interleukin 3Rβ (IL-3Rβ), stromal cell-derived factor-1α (SDF-1α), thymus and activation-regulated chemokine (TARC), and thymus-derived chemotactic agent 3 (TCA-3) in macrophage cells, which was further confirmed with real time polymerase chain reaction (RT-PCR) analysis (Pgastrin increased macrophage proliferation accompanied with increased cyclin D1 and CDK4. Targeted for HCT116 cells, gastrin significantly increased proliferation as well as increases in synthetic phase of cell cycle. YM022 as gastrin antagonist significantly abolished the trophic actions of gastrin (Pgastrin did not increase either cell cycle or β-catenin in spite of gastrin administration. Conclusively, gastrin promoted intestinal polyposis through either direct gastrin receptor-mediated proliferative signaling or fostering tumor microenvironment such as macrophage activation.

  16. Promotion of Tumor Invasion by Tumor-Associated Macrophages: The Role of CSF-1-Activated Phosphatidylinositol 3 Kinase and Src Family Kinase Motility Signaling

    Directory of Open Access Journals (Sweden)

    Amy R. Dwyer

    2017-06-01

    Full Text Available Macrophages interact with cells in every organ to facilitate tissue development, function and repair. However, the close interaction between macrophages and parenchymal cells can be subverted in disease, particularly cancer. Motility is an essential capacity for macrophages to be able to carry out their various roles. In cancers, the macrophage’s interstitial migratory ability is frequently co-opted by tumor cells to enable escape from the primary tumor and metastatic spread. Macrophage accumulation within and movement through a tumor is often stimulated by tumor cell production of the mononuclear phagocytic growth factor, colony-stimulating factor-1 (CSF-1. CSF-1 also regulates macrophage survival, proliferation and differentiation, and its many effects are transduced by its receptor, the CSF-1R, via phosphotyrosine motif-activated signals. Mutational analysis of CSF-1R signaling indicates that the major mediators of CSF-1-induced motility are phosphatidyl-inositol-3 kinase (PI3K and one or more Src family kinase (SFK, which activate signals to adhesion, actin polymerization, polarization and, ultimately, migration and invasion in macrophages. The macrophage transcriptome, including that of the motility machinery, is very complex and highly responsive to the environment, with selective expression of proteins and splice variants rarely found in other cell types. Thus, their unique motility machinery can be specifically targeted to block macrophage migration, and thereby, inhibit tumor invasion and metastasis.

  17. Promotion of Tumor Invasion by Tumor-Associated Macrophages: The Role of CSF-1-Activated Phosphatidylinositol 3 Kinase and Src Family Kinase Motility Signaling

    Science.gov (United States)

    Dwyer, Amy R.; Greenland, Eloise L.; Pixley, Fiona J.

    2017-01-01

    Macrophages interact with cells in every organ to facilitate tissue development, function and repair. However, the close interaction between macrophages and parenchymal cells can be subverted in disease, particularly cancer. Motility is an essential capacity for macrophages to be able to carry out their various roles. In cancers, the macrophage’s interstitial migratory ability is frequently co-opted by tumor cells to enable escape from the primary tumor and metastatic spread. Macrophage accumulation within and movement through a tumor is often stimulated by tumor cell production of the mononuclear phagocytic growth factor, colony-stimulating factor-1 (CSF-1). CSF-1 also regulates macrophage survival, proliferation and differentiation, and its many effects are transduced by its receptor, the CSF-1R, via phosphotyrosine motif-activated signals. Mutational analysis of CSF-1R signaling indicates that the major mediators of CSF-1-induced motility are phosphatidyl-inositol-3 kinase (PI3K) and one or more Src family kinase (SFK), which activate signals to adhesion, actin polymerization, polarization and, ultimately, migration and invasion in macrophages. The macrophage transcriptome, including that of the motility machinery, is very complex and highly responsive to the environment, with selective expression of proteins and splice variants rarely found in other cell types. Thus, their unique motility machinery can be specifically targeted to block macrophage migration, and thereby, inhibit tumor invasion and metastasis. PMID:28629162

  18. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment

    Science.gov (United States)

    Xiao, Deyi; Barry, Samantha; Kmetz, Daniel; Egger, Michael; Pan, Jianmin; Rai, Shesh N; Qu, Jifu; McMasters, Kelly M.; Hao, Hongying

    2016-01-01

    The tumor microenvironment is abundant with exosomes that are secreted by the cancer cells themselves. Exosomes are nanosized, organelle-like membranous structures that are increasingly being recognized as major contributors in the progression of malignant neoplasms. A critical element in melanoma progression is its propensity to metastasize, but little is known about how melanoma cell-derived exosomes modulate the microenvironment to optimize conditions for tumor progression and metastasis. Here, we provide evidence that melanoma cell-derived exosomes promote phenotype switching in primary melanocytes through paracrine/autocrine signaling. We found that the mitogen-activated protein kinase (MAPK) signaling pathway was activated during the exosome-mediated epithelial-to-mesenchymal transition (EMT)-resembling process, which promotes metastasis. Let-7i, an miRNA modulator of EMT, was also involved in this process. We further defined two other miRNA modulators of EMT (miR-191 and let-7a) in serum exosomes for differentiating stage I melanoma patients from non-melanoma subjects. These results provide the first strong molecular evidence that melanoma cell-derived exosomes promote the EMT-resembling process in the tumor microenvironment. Thus, novel strategies targeting EMT and modulating the tumor microenvironment may emerge as important approaches for the treatment of metastatic melanoma. PMID:27063098

  19. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment.

    Science.gov (United States)

    Xiao, Deyi; Barry, Samantha; Kmetz, Daniel; Egger, Michael; Pan, Jianmin; Rai, Shesh N; Qu, Jifu; McMasters, Kelly M; Hao, Hongying

    2016-07-01

    The tumor microenvironment is abundant with exosomes that are secreted by the cancer cells themselves. Exosomes are nanosized, organelle-like membranous structures that are increasingly being recognized as major contributors in the progression of malignant neoplasms. A critical element in melanoma progression is its propensity to metastasize, but little is known about how melanoma cell-derived exosomes modulate the microenvironment to optimize conditions for tumor progression and metastasis. Here, we provide evidence that melanoma cell-derived exosomes promote phenotype switching in primary melanocytes through paracrine/autocrine signaling. We found that the mitogen-activated protein kinase (MAPK) signaling pathway was activated during the exosome-mediated epithelial-to-mesenchymal transition (EMT)-resembling process, which promotes metastasis. Let-7i, an miRNA modulator of EMT, was also involved in this process. We further defined two other miRNA modulators of EMT (miR-191 and let-7a) in serum exosomes for differentiating stage I melanoma patients from non-melanoma subjects. These results provide the first strong molecular evidence that melanoma cell-derived exosomes promote the EMT-resembling process in the tumor microenvironment. Thus, novel strategies targeting EMT and modulating the tumor microenvironment may emerge as important approaches for the treatment of metastatic melanoma. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Nerve growth factor regulates CD133 function to promote tumor cell migration and invasion via activating ERK1/2 signaling in pancreatic cancer.

    Science.gov (United States)

    Xin, Beibei; He, Xiaodan; Wang, Juan; Cai, Jun; Wei, Wei; Zhang, Ti; Shen, Xiaohong

    Perineural invasion (PNI) is extremely high frequency among the various metastatic routes in pancreatic cancer. Nerve growth factor, secreted by astroglial cells, exerts effects on tumor invasion in some cancer cells, but its function on migration and invasion in pancreatic cancer is still unclear. In the present study, we determined the effects of NGF on modulating tumor cell metastatic potential and invasion activity and explored its mechanisms in pancreatic cancer. NGF and CD133 expression were detected in tumor tissues using immunohistochemical analysis and Western blotting analysis. The effects of NGF on the regulation of CD133 expression and the promotion of cancer migration and invasion were investigated using wound healing and matrigel transwell assay. A related mechanism that NGF regulates CD133's function via activating ERK1/2 signaling also was observed. NGF/CD133 is overexpressed in human pancreatic cancer and promotes the migration and invasion of human pancreatic cancer cells through the activation of the ERK/CD133 signaling cascade. NGF/ERK signaling modulates the cancer cell EMT process, migration and invasion through the regulation of CD133 expression and its subcellular localization. NGF/CD133 signaling initiated the migration and invasion of pancreatic cancer cells. NGF/CD133 might be an effective and potent therapeutic target for pancreatic cancer metastasis, particularly in PNI. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  1. EGFR signaling enhances aerobic glycolysis in triple negative breast cancer cells to promote tumor growth and immune escape

    Science.gov (United States)

    Lim, Seung-Oe; Li, Chia-Wei; Xia, Weiya; Lee, Heng-Huan; Chang, Shih-Shin; Shen, Jia; Hsu, Jennifer L.; Raftery, Dan; Djukovic, Danijel; Gu, Haiwei; Chang, Wei-Chao; Wang, Hung-Ling; Chen, Mong-Liang; Huo, Longfei; Chen, Chung-Hsuan; Wu, Yun; Sahin, Aysegul; Hanash, Samir M.; Hortobagyi, Gabriel N.; Hung, Mien-Chie

    2016-01-01

    Oncogenic signaling reprograms cancer cell metabolism to augment the production of glycolytic metabolites in favor of tumor growth. The ability of cancer cells to evade immunosurveillance and the role of metabolic regulators in T cell functions suggest that oncogene-induced metabolic reprogramming may be linked to immune escape. Epidermal growth factor (EGF) signaling, frequently dysregulated in triple-negative breast cancer (TNBC), is also associated with increased glycolysis. Here, we demonstrated in TNBC cells that EGF signaling activates the first step in glycolysis, but impedes the last step, leading to an accumulation of metabolic intermediates in this pathway. Furthermore, we showed that one of these intermediates, fructose 1,6 bisphosphate (F1,6BP), directly binds to and enhances the activity of the EGF receptor (EGFR), thereby increasing lactate excretion which leads to inhibition of local cytotoxic T cell activity. Notably, combining the glycolysis inhibitor 2-deoxy-D-glucose (2-DG) with the EGFR inhibitor gefitinib effectively suppressed TNBC cell proliferation and tumor growth. Our results illustrate how jointly targeting the EGFR/F1,6BP signaling axis may offer an immediately applicable therapeutic strategy to treat TNBC. PMID:26759242

  2. EGFR Signaling Enhances Aerobic Glycolysis in Triple-Negative Breast Cancer Cells to Promote Tumor Growth and Immune Escape.

    Science.gov (United States)

    Lim, Seung-Oe; Li, Chia-Wei; Xia, Weiya; Lee, Heng-Huan; Chang, Shih-Shin; Shen, Jia; Hsu, Jennifer L; Raftery, Daniel; Djukovic, Danijel; Gu, Haiwei; Chang, Wei-Chao; Wang, Hung-Ling; Chen, Mong-Liang; Huo, Longfei; Chen, Chung-Hsuan; Wu, Yun; Sahin, Aysegul; Hanash, Samir M; Hortobagyi, Gabriel N; Hung, Mien-Chie

    2016-03-01

    Oncogenic signaling reprograms cancer cell metabolism to augment the production of glycolytic metabolites in favor of tumor growth. The ability of cancer cells to evade immunosurveillance and the role of metabolic regulators in T-cell functions suggest that oncogene-induced metabolic reprogramming may be linked to immune escape. EGF signaling, frequently dysregulated in triple-negative breast cancer (TNBC), is also associated with increased glycolysis. Here, we demonstrated in TNBC cells that EGF signaling activates the first step in glycolysis, but impedes the last step, leading to an accumulation of metabolic intermediates in this pathway. Furthermore, we showed that one of these intermediates, fructose 1,6 bisphosphate (F1,6BP), directly binds to and enhances the activity of the EGFR, thereby increasing lactate excretion, which leads to inhibition of local cytotoxic T-cell activity. Notably, combining the glycolysis inhibitor 2-deoxy-d-glucose with the EGFR inhibitor gefitinib effectively suppressed TNBC cell proliferation and tumor growth. Our results illustrate how jointly targeting the EGFR/F1,6BP signaling axis may offer an immediately applicable therapeutic strategy to treat TNBC. ©2016 American Association for Cancer Research.

  3. Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization.

    Directory of Open Access Journals (Sweden)

    J Saadi Imam

    Full Text Available Increasing evidence suggests that chromosomal regions containing microRNAs are functionally important in cancers. Here, we show that genomic loci encoding miR-204 are frequently lost in multiple cancers, including ovarian cancers, pediatric renal tumors, and breast cancers. MiR-204 shows drastically reduced expression in several cancers and acts as a potent tumor suppressor, inhibiting tumor metastasis in vivo when systemically delivered. We demonstrated that miR-204 exerts its function by targeting genes involved in tumorigenesis including brain-derived neurotrophic factor (BDNF, a neurotrophin family member which is known to promote tumor angiogenesis and invasiveness. Analysis of primary tumors shows that increased expression of BDNF or its receptor tropomyosin-related kinase B (TrkB parallel a markedly reduced expression of miR-204. Our results reveal that loss of miR-204 results in BDNF overexpression and subsequent activation of the small GTPase Rac1 and actin reorganization through the AKT/mTOR signaling pathway leading to cancer cell migration and invasion. These results suggest that microdeletion of genomic loci containing miR-204 is directly linked with the deregulation of key oncogenic pathways that provide crucial stimulus for tumor growth and metastasis. Our findings provide a strong rationale for manipulating miR-204 levels therapeutically to suppress tumor metastasis.

  4. Lipopolysaccharide-induced toll-like receptor 4 signaling in esophageal squamous cell carcinoma promotes tumor proliferation and regulates inflammatory cytokines expression.

    Science.gov (United States)

    Zu, Yukun; Ping, Wei; Deng, Taoran; Zhang, Ni; Fu, Xiangning; Sun, Wei

    2017-02-01

    Emerging evidence suggests toll-like receptor 4 (TLR4) signaling contributes to cancer development and progression. However, the consequences of signaling via the TLR4 pathway in esophageal squamous cell carcinoma (ESCC) are still unclear. Here, we investigated the impact of Lipopolysaccharide (LPS)-induced TLR4 signaling on ESCC cell proliferation, inflammatory cytokines expression, and downstream molecular mechanisms. Seventy-eight ESCC and 26 normal esophageal specimens were analyzed by immunohistochemistry, and two cell lines (Eca-109 and TE-1) were used for in vitro studies. LPS, a natural agonist of TLR4, was used to activate TLR4 signaling. The effects of LPS-TLR4 signaling on cell proliferation and inflammatory cytokines regulation were examined. Specific inhibitors of mitogen-activated protein kinase (MAPK) (extracellular regulated protein kinase [ERK] and p38) signaling pathways were used to investigate the role of each pathway in LPS-TLR4 signaling. TLR4 protein was increased in ESCC tumor tissues compared with the adjacent normal tissues. TLR4 over-expression was significantly correlated with tumor differentiation grade, lymph node metastasis, and UICC stage. LPS-induced activation of TLR4 signaling promoted cancer cell proliferation, increased production of proinflammatory or immunosuppressive cytokines TNF-α, TGF-β and inhibited the anti-inflammatory cytokine IL-10. LPS-TLR4 signaling was associated with the activation of ERK and p38 MAPK signaling pathways. Further inactivation of the two pathways by specific inhibitors attenuated cell proliferation and inflammatory cytokines expression induced by LPS. Our results indicate that LPS-TLR4 signaling in cancer cells contributes to the progression of human ESCC. © 2016 International Society for Diseases of the Esophagus.

  5. Notch Signaling and Brain Tumors

    DEFF Research Database (Denmark)

    Stockhausen, Marie; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2011-01-01

    Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch...... and medulloblastoma. In this chapter we will cover the present findings of Notch signaling in human glioma and medulloblastoma and try to create an overall picture of its relevance in the pathogenesis of these tumors....

  6. CTHRC1 Acts as a Prognostic Factor and Promotes Invasiveness of Gastrointestinal Stromal Tumors by Activating Wnt/PCP-Rho Signaling

    Directory of Open Access Journals (Sweden)

    Ming-Ze Ma

    2014-03-01

    Full Text Available Gastrointestinal stromal tumors (GISTs are the major gastrointestinal mesenchymal tumors with a variable malignancy ranging from a curable disorder to highly malignant sarcomas. Metastasis and recurrence are the main causes of death in GIST patients. To further explore the mechanism of metastasis and to more accurately estimate the recurrence risk of GISTs after surgery, the clinical significance and functional role of collagen triple helix repeat containing-1 (CTHRC1 in GIST were investigated. We found that CTHRC1 expression was gradually elevated as the risk grade of NIH classification increased, and was closely correlated with disease-free survival and overall survival in 412 GIST patients. In vitro experiments showed that recombinant CTHRC1 protein promoted the migration and invasion capacities of primary GIST cells. A luciferase reporter assay and pull down assay demonstrated that recombinant CTHRC1 protein activated noncanonical Wnt/PCP-Rho signaling but inhibited canonical Wnt signaling. The pro-motility effect of CTHRC1 on GIST cells was reversed by using a Wnt5a neutralizing antibody and inhibitors of Rac1 or ROCK. Taken together, these data indicate that CTHRC1 may serve as a new predictor of recurrence risk and prognosis in post-operative GIST patients and may play an important role in facilitating GIST progression. Furthermore, CTHRC1 promotes GIST cell migration and invasion by activating Wnt/PCP-Rho signaling, suggesting that the CTHRC1-Wnt/PCP-Rho axis may be a new therapeutic target for interventions against GIST invasion and metastasis.

  7. FBI-1 Is Overexpressed in Gestational Trophoblastic Disease and Promotes Tumor Growth and Cell Aggressiveness of Choriocarcinoma via PI3K/Akt Signaling.

    Science.gov (United States)

    Mak, Victor C Y; Wong, Oscar G W; Siu, Michelle K Y; Wong, Esther S Y; Ng, Wai-Yan; Wong, Richard W C; Chan, Ka-Kui; Ngan, Hextan Y S; Cheung, Annie N Y

    2015-07-01

    Human placental trophoblasts can be considered pseudomalignant, with tightly controlled proliferation, apoptosis, and invasiveness. Gestational trophoblastic disease (GTD) represents a family of heterogeneous trophoblastic lesions with aberrant apoptotic and proliferative activities and dysregulation of cell signaling pathways. We characterize the oncogenic effects of factor that binds to the inducer of short transcripts of HIV-1 [FBI-1, alias POZ and Krüppel erythroid myeloid ontogenic factor (POKEMON)/ZBTB7A] in GTD and its role in promoting cell aggressiveness in vitro and tumor growth in vivo. IHC studies showed increased nuclear expression of FBI-1, including hydatidiform moles, choriocarcinoma (CCA), and placental site trophoblastic tumor, in GTD. In JAR and JEG-3 CCA cells, ectopic FBI-1 expression opposed apoptosis through repression of proapoptotic genes (eg, BAK1, FAS, and CASP8). FBI-1 overexpression also promoted Akt activation, as indicated by Akt-pS473 phosphorylation. FBI-1 overexpression promoted mobility and invasiveness of JEG-3 and JAR, but not in the presence of the phosphoinositide 3-kinase inhibitor LY294002. These findings suggest that FBI-1 could promote cell migration and invasion via phosphoinositide 3-kinase/Akt signaling. In vivo, nude mice injected with CCA cells with stable FBI-1 knockdown demonstrated reduced tumor growth compared with that in control groups. These findings suggest that FBI-1 is clinically associated with the progression of, and may be a therapeutic target in, GTD, owing to its diverse oncogenic effects on dysregulated trophoblasts. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. CRH promotes human colon cancer cell proliferation via IL-6/JAK2/STAT3 signaling pathway and VEGF-induced tumor angiogenesis.

    Science.gov (United States)

    Fang, Xianjun; Hong, Yali; Dai, Li; Qian, Yuanyuan; Zhu, Chao; Wu, Biao; Li, Shengnan

    2017-11-01

    Corticotrophin-releasing hormone (CRH) has been demonstrated to participate in various diseases. Our previous study showed that its receptor CRHR1 mediated the development of colitis-associated cancer in mouse model. However, the detailed mechanisms remain unclear. In this study, we explored the oncogenetic role of CRH/CRHR1 signaling in colon cancer cells. Cell proliferation and colony formation assays revealed that CRH contributed to cell proliferation. Moreover, tube formation assay showed that CRH-treated colon cancer cell supernatant significantly promoted tube formation of human umbilical vein endothelial cells (HUVECs). And these effects could be reversed by the CRHR1 specific antagonist Antalarmin. Further investigation showed that CRH significantly upregulated the expressions of interlukin-6 (IL-6) and vascular endothelial growth factor (VEGF) through activating nuclear factor-kappa B (NF-κB). The CRH-induced IL-6 promoted phosphorylation of janus kinase 2 (JAK2) and signal transducers and activators of transcription 3 (STAT3). STAT3 inhibition by Stattic significantly inhibited the CRH-induced cell proliferation. In addition, silence of VEGF resulted in declined tube formation induced by CRH. Taken together, CRH/CRHR1 signaling promoted human colon cancer cell proliferation via NF-κB/IL-6/JAK2/STAT3 signaling pathway and tumor angiogenesis via NF-κB/VEGF signaling pathway. Our results provide evidence to support a critical role for the CRH/CRHR1 signaling in colon cancer progression and suggest its potential utility as a new therapeutic target for colon cancer. © 2017 Wiley Periodicals, Inc.

  9. Notch Signaling and Brain Tumors

    DEFF Research Database (Denmark)

    Stockhausen, Marie; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2011-01-01

    Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch...... signaling plays a fundamental role during development. Recent findings have shown that Notch signaling is dysregulated, and contributes to the malignant potential of these tumors. Growing evidence point towards an important role for cancer stem cells in the initiation and maintenance of glioma...... and medulloblastoma. In this chapter we will cover the present findings of Notch signaling in human glioma and medulloblastoma and try to create an overall picture of its relevance in the pathogenesis of these tumors....

  10. FGF-1/-3/FGFR4 signaling in cancer-associated fibroblasts promotes tumor progression in colon cancer through Erk and MMP-7

    Science.gov (United States)

    Bai, Yu-Pan; Shang, Kun; Chen, Huan; Ding, Fei; Wang, Zhen; Liang, Chen; Xu, Ye; Sun, Meng-Hong; LI, Ying-Yi

    2015-01-01

    Cancer-associated fibroblasts (CAFs), as the activated fibroblasts in the tumor stroma, are important modifiers of tumour progression. In the present study, we observed that azoxymethane and dextran sodium sulfate treatments induced increasingly severe colorectal mucosal inflammation and the intratumoural accumulation of CAFs. Fibroblast growth factor (FGF)-1 and FGF-3 were detected in infiltrating cells, and FGFR4, the specific receptor for FGF-1 and FGF-3, was detected in colon cancer tissues. The phosphorylation of FGFR4 enhanced the production of metalloproteinase (MMP)-7 and mitogen-activated protein kinase kinase (Mek)/extracellular signal-regulated kinase (Erk), which was accompanied by excessive vessel generation and cell proliferation. Moreover, we separated CAFs, pericarcinoma fibroblasts (PFs), and normal fibroblasts (NFs) from human colon tissue specimens to characterize the function of CAFs. We observed that CAFs secrete more FGF-1/-3 than NFs and PFs and promote cancer cell growth and angiogenesis through the activation of FGFR4, which is followed by the activation of Mek/Erk and the modulation of MMP-7 expression. The administration of FGF-1/-3-neutralizing antibodies or the treatment of cells with FGFR4 siRNA or the FGFR4 inhibitor PD173074 markedly suppressed colon cancer cell proliferation and neovascularization. These observations suggest a crucial role for CAFs and FGF signaling in the initiation and progression of colorectal cancer. The inhibition of the FGF signaling pathway may be a useful strategy for the treatment of colon cancer. PMID:26183471

  11. Resistin promotes tumor metastasis by down-regulation of miR-519d through the AMPK/p38 signaling pathway in human chondrosarcoma cells

    Science.gov (United States)

    Huang, Ho-Ning; Hung, Chih-Hung; Hsu, Chin-Jung; Fong, Yi-Chin; Hsu, Horng-Chaung; Huang, Yuan-Li; Tang, Chih-Hsin

    2015-01-01

    Resistin is a recently discovered adipocyte-secreting adipokine, which may play a critical role in modulating cancer pathogenesis. Chondrosarcoma is a highly malignant tumor known to frequently metastasize; however, the role of resistin in the metastasis of human chondrosarcoma is largely unknown. Here, we found that the expression of resistin was higher in chondrosarcoma biopsy tissues than in normal cartilage. Moreover, treatment with resistin increased matrix metalloproteinase (MMP)-2 expression and promoted cell migration in human chondrosarcoma cells. Co-transfection with microRNA (miR)-519d mimic resulted in reversed resistin-mediated cell migration and MMP-2 expression. Additionally, AMP-activated protein kinase (AMPK) and p38 inhibitors or siRNAs reduced the resistin-increased cell migration and miR-519d suppression, and inhibition of resistin expression resulted in suppression of MMP-2 expression and lung metastasis in vivo. Taken together, our results indicate that resistin promotes chondrosarcoma metastasis and MMP-2 expression through activation of the AMPK/p38 signaling pathway and down-regulation of miR-519d expression. Therefore, resistin may represent a potential novel molecular therapeutic target in chondrosarcoma metastasis. PMID:25404641

  12. H3K27 Demethylase JMJD3 Employs the NF-κB and BMP Signaling Pathways to Modulate the Tumor Microenvironment and Promote Melanoma Progression and Metastasis.

    Science.gov (United States)

    Park, Woo-Yong; Hong, Beom-Jin; Lee, Jungsul; Choi, Chulhee; Kim, Mi-Young

    2016-01-01

    Histone methylation is a key epigenetic mark that regulates gene expression. Recently, aberrant histone methylation patterns caused by deregulated histone demethylases have been associated with carcinogenesis. However, the role of histone demethylases, particularly the histone H3 lysine 27 (H3K27) demethylase JMJD3, remains largely uncharacterized in melanoma. Here, we used human melanoma cell lines and a mouse xenograft model to demonstrate a requirement for JMJD3 in melanoma growth and metastasis. Notably, in contrast with previous reports examining T-cell acute lymphoblastic leukemia and hepatoma cells, JMJD3 did not alter the general proliferation rate of melanoma cells in vitro. However, JMJD3 conferred melanoma cells with several malignant features such as enhanced clonogenicity, self-renewal, and transendothelial migration. In addition, JMJD3 enabled melanoma cells not only to create a favorable tumor microenvironment by promoting angiogenesis and macrophage recruitment, but also to activate protumorigenic PI3K signaling upon interaction with stromal components. Mechanistic investigations demonstrated that JMJD3 transcriptionally upregulated several targets of NF-κB and BMP signaling, including stanniocalcin 1 (STC1) and chemokine (C-C motif) ligand 2 (CCL2), which functioned as downstream effectors of JMJD3 in self-renewal and macrophage recruitment, respectively. Furthermore, JMJD3 expression was elevated and positively correlated with that of STC1 and CCL2 in human malignant melanoma. Moreover, we found that BMP4, another JMJD3 target gene, regulated JMJD3 expression via a positive feedback mechanism. Our findings reveal a novel epigenetic mechanism by which JMJD3 promotes melanoma progression and metastasis, and suggest JMJD3 as a potential target for melanoma treatment. ©2016 American Association for Cancer Research.

  13. Signaling of ghrelin and its functional receptor, the growth hormone secretagogue receptor, promote tumor growth in glioblastomas.

    Science.gov (United States)

    Okada, Yousuke; Sugita, Yasuo; Ohshima, Koichi; Morioka, Motohiro; Komaki, Satoru; Miyoshi, Junko; Abe, Hideyuki

    2016-12-01

    Ghrelin is a 28-amino-acid peptide that is the endogenous ligand for the pituitary growth hormone secretagogue receptor (GHS-R). Ghrelin is mainly produced from the stomach, but it is also expressed by various other tissues, including the CNS under normal conditions. Physiologically, ghrelin regulates appetite, gut motility, and GH release from the anterior pituitary, as well as cardiovascular and immune systems. Recent studies also indicate that ghrelin and GHS-R may play an important autocrine/paracrine role in neoplastic conditions. In order to clarify the role of ghrelin/GHS-R in gliomas, the present study assessed the expression of ghrelin and its functional receptor, GHS-R1a, in 39 glioblastomas (GBs), 13 anaplastic astrocytomas (AAs) and 11 diffuse astrocytomas (DAs) using immunohistochemical analyses. Immunohistochemical staining was evaluated as follows: no staining; 1+, 0-10% positive cells; 2+, 10-50% positive cells; 3+, >50% positive cells. Ghrelin expression was detected in 52 of 63 cases of which 38, 13 and one were scored as 3+, 2+ and 1+, respectively. GHS-R1a expression was detected in 45 of 63 cases of which 29, 15 and one were scored as 3+, 2+ and 1+, respectively. Ghrelin immunoreactivity was observed in 38 of 39 GBs, 12 of 13 AAs and two of 11 DAs. GHS-R1a immunoreactivity was observed in 39 of 39 GBs, five of 13 AAs, and one of 11 DAs. AAs and GBs showed moderate or strong immunostaining of ghrelin/GHS-R1a in the tumor cells and in proliferating microvessels. Patients were classified into lower to moderate-score, and high-score ghrelin/GHS-R categories according to the principal component and cluster analyses. Multivariate analysis of overall survival indicated that there was a significant difference (P = 0.0001) in the survival rate between these two groups. The combined results indicated that expression of the ghrelin/GHS-R1a axis increases the growth of AAs and GBs through an autocrine/paracrine mechanism. © 2016 Japanese Society of

  14. Binding of Galectin-3, a β-Galactoside-binding Lectin, to MUC1 Protein Enhances Phosphorylation of Extracellular Signal-regulated Kinase 1/2 (ERK1/2) and Akt, Promoting Tumor Cell Malignancy*

    Science.gov (United States)

    Mori, Yugo; Akita, Kaoru; Yashiro, Masakazu; Sawada, Tetsuji; Hirakawa, Kosei; Murata, Takeomi; Nakada, Hiroshi

    2015-01-01

    Both mucin 1 (MUC1) and galectin-3 are known to be overexpressed in various malignant tumors and associated with a poor prognosis. It has been extensively reported that MUC1 is involved in potentiation of growth factor-dependent signal transduction. Because some carbohydrate moieties carried on MUC1 change to preferable ones for binding of galectin-3 in cancer cells, we speculated that MUC1-mediated signaling may occur through direct binding of galectin-3. Immunochemical studies showed that the distribution of galectin-3 coincided with that of MUC1 in various human tumor tissues but not in human nonmalignant tissues, and the level of galectin-3 retained on the surface of various cancer cells paralleled that of MUC1. Treatment of MUC1-expressing cells with galectin-3 induced phosphorylation of ERK1/2 and Akt following enhanced phosphorylation of MUC1 C-terminal domain, consistently promoting tumor cell malignancy. It is also noted that this enhanced phosphorylation occurred independently of EGF receptor-mediated signaling in both EGF receptor- and MUC1-expressing cells, and multivalency of galectin-3 was important for initiation of MUC1-mediated signaling. Expectedly, both silencing of endogenous galectin-3 and treatment with galectin-3 antagonists down-regulated cell proliferation of MUC1-expressing cells. These results suggest that the binding of galectin-3 to MUC1 plays a key role in MUC1-mediated signaling. Thus, constitutive activation of MUC1-mediated signaling in an autocrine/paracrine manner caused by ligation of galectin-3 promotes uncontrolled tumor cell malignancy. This signaling may be another MUC1-mediated pathway and function in parallel with a growth factor-dependent MUC1-mediated signaling pathway. PMID:26342075

  15. Binding of Galectin-3, a β-Galactoside-binding Lectin, to MUC1 Protein Enhances Phosphorylation of Extracellular Signal-regulated Kinase 1/2 (ERK1/2) and Akt, Promoting Tumor Cell Malignancy.

    Science.gov (United States)

    Mori, Yugo; Akita, Kaoru; Yashiro, Masakazu; Sawada, Tetsuji; Hirakawa, Kosei; Murata, Takeomi; Nakada, Hiroshi

    2015-10-23

    Both mucin 1 (MUC1) and galectin-3 are known to be overexpressed in various malignant tumors and associated with a poor prognosis. It has been extensively reported that MUC1 is involved in potentiation of growth factor-dependent signal transduction. Because some carbohydrate moieties carried on MUC1 change to preferable ones for binding of galectin-3 in cancer cells, we speculated that MUC1-mediated signaling may occur through direct binding of galectin-3. Immunochemical studies showed that the distribution of galectin-3 coincided with that of MUC1 in various human tumor tissues but not in human nonmalignant tissues, and the level of galectin-3 retained on the surface of various cancer cells paralleled that of MUC1. Treatment of MUC1-expressing cells with galectin-3 induced phosphorylation of ERK1/2 and Akt following enhanced phosphorylation of MUC1 C-terminal domain, consistently promoting tumor cell malignancy. It is also noted that this enhanced phosphorylation occurred independently of EGF receptor-mediated signaling in both EGF receptor- and MUC1-expressing cells, and multivalency of galectin-3 was important for initiation of MUC1-mediated signaling. Expectedly, both silencing of endogenous galectin-3 and treatment with galectin-3 antagonists down-regulated cell proliferation of MUC1-expressing cells. These results suggest that the binding of galectin-3 to MUC1 plays a key role in MUC1-mediated signaling. Thus, constitutive activation of MUC1-mediated signaling in an autocrine/paracrine manner caused by ligation of galectin-3 promotes uncontrolled tumor cell malignancy. This signaling may be another MUC1-mediated pathway and function in parallel with a growth factor-dependent MUC1-mediated signaling pathway. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Tumor-produced versican V1 enhances hCAP18/LL-37 expression in macrophages through activation of TLR2 and vitamin D3 signaling to promote ovarian cancer progression in vitro.

    Directory of Open Access Journals (Sweden)

    Dong Li

    Full Text Available Tumor-associated macrophages have been shown to promote tumor growth. They may have an obligatory function in angiogenesis, invasion, and metastasis through release of inflammatory mediators. Their presence in ovarian cancer has been correlated with poor prognosis in these patients. The human cationic antimicrobial protein-18 (hCAP18/LL-37 was originally identified as an effector molecule of the innate immune system. It is released by innate immune cells, such as macrophages, to combat microorganisms. Previous studies have characterized the hCAP18/LL-37 as a growth factor that has been shown to promote ovarian tumor progression. However, the role hCAP18/LL-37 has in macrophage-promoted ovarian tumor development and how its expression is controlled in this context remains poorly understood. Here, we demonstrate in co-culture experiments of macrophages and ovarian cancer cells a significant increase in the in vitro proliferation and invasiveness of the tumor cells is observed. These enhanced growth and invasion properties correlated with hCAP18/LL-37 induction. HCAP18/LL-37 expression was diminished by addition of two neutralizing antibodies, TLR2 or TLR6, as well as Cyp27B1 or VDR inhibitors. Furthermore, either the TLR2 or TLR6 antibody reduced vitamin D3 signaling and tumor cell progression in vitro. Addition of Cyp27B1 or VDR inhibitors abrogated TLR2/6 activation-induced expression of hCAP18/LL-37 in macrophages. Knockdown of tumor-produced versican V1 by RNAi in these tumor cells led to a decreased induction of hCAP18/LL-37 in macrophages. Versican V1 knockdown also inhibited TLR2 and vitamin D3 signaling, as well as growth and invasiveness of these tumor cells in the in vitro co-culture. In summary, we have found that versican V1 enhances hCAP18/LL-37 expression in macrophages through activation of TLR2 and subsequent vitamin D-dependent mechanisms which promote ovarian tumor progression in vitro.

  17. Tumor-Associated Macrophages Promote Malignant Progression of Breast Phyllodes Tumors by Inducing Myofibroblast Differentiation.

    Science.gov (United States)

    Nie, Yan; Chen, Jianing; Huang, Di; Yao, Yandan; Chen, Jiewen; Ding, Lin; Zeng, Jiayi; Su, Shicheng; Chao, Xue; Su, Fengxi; Yao, Herui; Hu, Hai; Song, Erwei

    2017-07-01

    Myofibroblast differentiation plays an important role in the malignant progression of phyllodes tumor, a fast-growing neoplasm derived from periductal stromal cells of the breast. Macrophages are frequently found in close proximity with myofibroblasts, but it is uncertain whether they are involved in the myofibroblast differentiation during phyllodes tumor progression. Here we show that increased density of tumor-associated macrophage (TAM) correlates with malignant progression of phyllodes tumor. We found that TAMs stimulated myofibroblast differentiation and promoted the proliferation and invasion of phyllodes tumor cells. Furthermore, we found that levels of the chemokine CCL18 in TAM was an independent prognostic factor of phyllodes tumor. Mechanistic investigations showed that CCL18 promoted expression of α-smooth muscle actin, a hallmark of myofibroblast, along with the proliferation and invasion of phyllodes tumor cells, and that CCL18-driven myofibroblast differentiation was mediated by an NF-κB/miR-21/PTEN/AKT signaling axis. In murine xenograft models of human phyllodes tumor, CCL18 accelerated tumor growth, induced myofibroblast differentiation, and promoted metastasis. Taken together, our findings indicated that TAM drives myofibroblast differentiation and malignant progression of phyllodes tumor through a CCL18-driven signaling cascade amenable to antibody disruption. Cancer Res; 77(13); 3605-18. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. Flavopiridol induces cellular FLICE-inhibitory protein degradation by the proteasome and promotes TRAIL-induced early signaling and apoptosis in breast tumor cells.

    Science.gov (United States)

    Palacios, Carmen; Yerbes, Rosario; López-Rivas, Abelardo

    2006-09-01

    The cyclin-dependent kinase inhibitor flavopiridol is undergoing clinical trials as an antitumor drug. We show here that pretreatment of different human breast cancer cell lines with flavopiridol facilitates tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. In breast tumor cells, apoptosis induction by TRAIL is blocked at the level of apical caspase-8 activation. Flavopiridol treatment enhances TRAIL-induced formation of death-inducing signaling complex and early processing of procaspase-8. Subsequently, a TRAIL-induced, mitochondria-operated pathway of apoptosis is activated in cells treated with flavopiridol. Down-regulation of cellular FLICE-inhibitory proteins (c-FLIP; c-FLIP(L) and c-FLIP(S)) is observed on flavopiridol treatment. c-FLIP loss and apoptosis sensitization by flavopiridol are both prevented in cells treated with an inhibitor of the ubiquitin-proteasome system. Furthermore, targeting c-FLIP directly with small interfering RNA oligonucleotides also sensitizes various human breast tumor cell lines to TRAIL-induced apoptosis. Our results indicate that flavopiridol sensitizes breast cancer cells to TRAIL-induced apoptosis by facilitating early events in the apoptotic pathway, and this combination treatment could be regarded as a potential therapeutic tool against breast tumors.

  19. Loss of P53 Function Activates JAK2-STAT3 Signaling to Promote Pancreatic Tumor Growth, Stroma Modification, and Gemcitabine Resistance in Mice and Is Associated With Patient Survival.

    Science.gov (United States)

    Wörmann, Sonja M; Song, Liang; Ai, Jiaoyu; Diakopoulos, Kalliope N; Kurkowski, Magdalena U; Görgülü, Kivanc; Ruess, Dietrich; Campbell, Andrew; Doglioni, Claudio; Jodrell, Duncan; Neesse, Albrecht; Demir, Ihsan E; Karpathaki, Angelica-Phaedra; Barenboim, Maxim; Hagemann, Thorsten; Rose-John, Stefan; Sansom, Owen; Schmid, Roland M; Protti, Maria P; Lesina, Marina; Algül, Hana

    2016-07-01

    pancreatic stellate cells in the tumor stroma and altered the types of immune cells that infiltrated tumors. Mice given a combination of gemcitabine and a JAK2 inhibitor formed smaller tumors and survived longer than mice given control agents; the tumor stroma had fewer activated pancreatic stellate cells, lower levels of periostin, and alterations in collagen production and organization. Phosphorylation of STAT3 correlated with P53 mutation and features of infiltrating immune cells in human pancreatic tumors. Patients whose tumors had lower levels of phosphorylated STAT3 and functional P53 had significantly longer survival times than patients with high levels of phosphorylated STAT3 and P53 mutation. In pancreatic tumors of mice, loss of P53 function activates JAK2-STAT3 signaling, which promotes modification of the tumor stroma and tumor growth and resistance to gemcitabine. In human pancreatic tumors, STAT3 phosphorylation correlated with P53 mutation and patient survival time. Inhibitors of this pathway slow tumor growth and stroma formation, alter immune cell infiltration, and prolong survival of mice. Transcript profiling: ArrayExpress accession number: E-MTAB-3278. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. Notch Signaling and Brain Tumors

    DEFF Research Database (Denmark)

    Stockhausen, Marie; Kristoffersen, Karina; Poulsen, Hans Skovgaard

    2011-01-01

    Human brain tumors are a heterogenous group of neoplasms occurring inside the cranium and the central spinal cord. In adults and children, astrocytic glioma and medulloblastoma are the most common subtypes of primary brain tumors. These tumor types are thought to arise from cells in which Notch s...

  1. Ets2 in tumor fibroblasts promotes angiogenesis in breast cancer.

    Directory of Open Access Journals (Sweden)

    Julie A Wallace

    Full Text Available Tumor fibroblasts are active partners in tumor progression, but the genes and pathways that mediate this collaboration are ill-defined. Previous work demonstrates that Ets2 function in stromal cells significantly contributes to breast tumor progression. Conditional mouse models were used to study the function of Ets2 in both mammary stromal fibroblasts and epithelial cells. Conditional inactivation of Ets2 in stromal fibroblasts in PyMT and ErbB2 driven tumors significantly reduced tumor growth, however deletion of Ets2 in epithelial cells in the PyMT model had no significant effect. Analysis of gene expression in fibroblasts revealed a tumor- and Ets2-dependent gene signature that was enriched in genes important for ECM remodeling, cell migration, and angiogenesis in both PyMT and ErbB2 driven-tumors. Consistent with these results, PyMT and ErbB2 tumors lacking Ets2 in fibroblasts had fewer functional blood vessels, and Ets2 in fibroblasts elicited changes in gene expression in tumor endothelial cells consistent with this phenotype. An in vivo angiogenesis assay revealed the ability of Ets2 in fibroblasts to promote blood vessel formation in the absence of tumor cells. Importantly, the Ets2-dependent gene expression signatures from both mouse models were able to distinguish human breast tumor stroma from normal stroma, and correlated with patient outcomes in two whole tumor breast cancer data sets. The data reveals a key function for Ets2 in tumor fibroblasts in signaling to endothelial cells to promote tumor angiogenesis. The results highlight the collaborative networks that orchestrate communication between stromal cells and tumor cells, and suggest that targeting tumor fibroblasts may be an effective strategy for developing novel anti-angiogenic therapies.

  2. CD47 deficiency in tumor stroma promotes tumor progression by enhancing angiogenesis.

    Science.gov (United States)

    Gao, Lu; Chen, Kexin; Gao, Qi; Wang, Xiaodan; Sun, Jian; Yang, Yong-Guang

    2017-04-04

    CD47 is a transmembrane protein that functions as a receptor for thrombospondin-1 (TSP1) and a ligand for inhibitory receptor signal-regulatory protein-α (SIRPα). Blocking the interaction between CD47 on tumor cells and SIRPα on macrophages has been shown to induce antitumor responses. Here we investigated the role of CD47 expression in tumor stroma in tumorigenesis by comparing tumor growth in wild-type (WT) and CD47-deficient mice after subcutaneous injection of syngeneic prostate cancer cells. We found that CD47 deficiency in tumor stromal endothelial cells enhances angiogenesis, leading to suppressed tumor necrosis formation and accelerated tumor progression. Tumors from CD47-deficient mice also showed improved vascular integrity and stability, as well as increased expression of vascular endothelial growth factor (VEGF)-A and VEGF receptor 2 (VEGFR2) compared to those from WT mice. Moreover, reduced macrophage recruitment, likely due to decreased TSP1 production, was detected in tumors from CD47-deficient mice. Our results indicate that although treatment with antibody against CD47 induces antitumor immune responses by blocking the inhibitory CD47-SIRPα signaling, this treatment may also potentially promote tumor progression by blocking CD47 signaling in tumor stromal endothelial cells.

  3. ANXA3/JNK Signaling Promotes Self-Renewal and Tumor Growth, and Its Blockade Provides a Therapeutic Target for Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Man Tong

    2015-07-01

    Full Text Available Frequent tumor relapse in hepatocellular carcinoma (HCC has been commonly attributed to the presence of residual cancer stem cells (CSCs after conventional treatments. We have previously identified and characterized CD133 to mark a specific CSC subset in HCC. In the present study, we found endogenous and secretory annexin A3 (ANXA3 to play pivotal roles in promoting cancer and stem cell-like features in CD133+ liver CSCs through a dysregulated JNK pathway. Blockade of ANXA3 with an anti-ANXA3 monoclonal antibody in vitro as well as in human HCC xenograft models resulted in a significant reduction in tumor growth and self-renewal. Clinically, ANXA3 expression in HCC patient sera closely associated with aggressive clinical features. Our results suggest that ANXA3 can serve as a novel diagnostic biomarker and that the inhibition of ANXA3 may be a viable therapeutic option for the treatment of CD133+ liver-CSC-driven HCC.

  4. Molecular deregulation of signaling in lymphoid tumors.

    Science.gov (United States)

    Spina, Valeria; Martuscelli, Lavinia; Rossi, Davide

    2015-10-01

    Genomic studies have led to a significant impact both on the pace and the nature of understanding the molecular and biological bases of a variety of lymphoid tumors. An increasingly emerging aspect from genomic studies is that malignant lymphoid cells manipulate signaling pathways that are central to the homeostasis of their normal counterpart, including B- and T-cell receptor signaling, NF-κB signaling, Toll-like receptor signaling, cytokine signaling, MAP kinase signaling, and NOTCH signaling. This review aims at covering the signaling pathways that are affected by mutations in lymphoid tumors, and how genetic alteration of these pathways may contribute to disease pathogenesis and management. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Altered tumor cell glycosylation promotes metastasis

    Directory of Open Access Journals (Sweden)

    Irina eHäuselmann

    2014-02-01

    Full Text Available Malignant transformation of cells is associated with aberrant glycosylation presented on the cell-surface. Commonly observed changes in glycan structures during malignancy encompasses aberrant expression and glycosylation of mucins; abnormal branching of N-glycans; and increased presence of sialic acid on proteins and glycolipids. Accumulating evidence supports the notion that the presence of certain glycan structures correlates with cancer progression by affecting tumor cell invasiveness, ability to disseminate through the blood circulation and to metastasize in distant organs. During metastasis tumor cell-derived glycans enable binding to cells in their microenvironment including endothelium and blood constituents through glycan-binding receptors - lectins. In this review we will discuss current concepts how tumor cell-derived glycans contribute to metastasis with the focus on three types of lectins: siglecs, galectins and selectins. Siglecs are present on virtually all hematopoetic cells and usually negatively regulate immune responses. Galectins are mostly expressed by tumor cells and support tumor cell survival. Selectins are vascular adhesion receptors that promote tumor cell dissemination. All lectins facilitate interactions within the tumor microenvironment and thereby promote cancer progression. The identification of mechanisms how tumor glycans contribute to metastasis may help to improve diagnosis, prognosis and aid to develop clinical strategies to prevent metastasis.

  6. The methanol-ethyl acetate partitioned fraction from Chinese olive fruits inhibits cancer cell proliferation and tumor growth by promoting apoptosis through the suppression of the NF-κB signaling pathway.

    Science.gov (United States)

    Hsieh, Shu-Chen; Hsieh, Wang-Ju; Chiang, An-Na; Su, Nan-Wei; Yeh, Yu-Te; Liao, Yi-Chun

    2016-12-07

    Chinese olives (Canarium album L.) have historically been used for medicinal purposes rather than commercially for oil. In this report, we reveal that the methanol-ethyl acetate partitioned fraction from Chinese olive fruits (MEO), of which ellagic acid accounted for 12%, exhibited profound anti-proliferative activities in the human colon cancer cell line, HCT116. Additionally, oral administration of MEO remarkably inhibited the tumor growth of subcutaneously implanted CT26 cells, a mouse colon carcinoma cell line, in BALB/c mice. Treatment with MEO induced a significant increase in the percentage of apoptotic cells and resulted in poly(ADP-ribose) polymerase (PARP) cleavage, suggesting that MEO inhibits cancer cell proliferation by promoting apoptosis. Our study also showed that MEO exerted the most potent effect on the inhibition of NF-κB-mediated signaling among the partitioned fractions from Chinese olives. This process employed the use of reporter-based bio-platforms that are capable of detecting the activation of NF-κB. In addition, phosphorylation of NF-κB signaling-associated proteins, IKKα/β, IκBα, and p65, was reduced in MEO-incubated cancer cells, indicating that MEO suppresses NF-κB activation. Moreover, MEO treatment significantly suppressed lipopolysaccharide (LPS)-induced cancer cell proliferation, demonstrating that MEO promotes cancer cell apoptosis through the inhibition of the NF-κB signaling pathway. In summary, our findings demonstrate that the methanol-ethyl acetate partitioned fraction from Chinese olive fruits inhibits cancer cell proliferation and tumor growth by promoting apoptosis through the suppression of NF-κB signaling. Therefore, the Chinese olive fruit has promising potential in cancer treatment.

  7. Tumor Suppression and Promotion by Autophagy

    Directory of Open Access Journals (Sweden)

    Yenniffer Ávalos

    2014-01-01

    Full Text Available Autophagy is a highly regulated catabolic process that involves lysosomal degradation of proteins and organelles, mostly mitochondria, for the maintenance of cellular homeostasis and reduction of metabolic stress. Problems in the execution of this process are linked to different pathological conditions, such as neurodegeneration, aging, and cancer. Many of the proteins that regulate autophagy are either oncogenes or tumor suppressor proteins. Specifically, tumor suppressor genes that negatively regulate mTOR, such as PTEN, AMPK, LKB1, and TSC1/2 stimulate autophagy while, conversely, oncogenes that activate mTOR, such as class I PI3K, Ras, Rheb, and AKT, inhibit autophagy, suggesting that autophagy is a tumor suppressor mechanism. Consistent with this hypothesis, the inhibition of autophagy promotes oxidative stress, genomic instability, and tumorigenesis. Nevertheless, autophagy also functions as a cytoprotective mechanism under stress conditions, including hypoxia and nutrient starvation, that promotes tumor growth and resistance to chemotherapy in established tumors. Here, in this brief review, we will focus the discussion on this ambiguous role of autophagy in the development and progression of cancer.

  8. Lysophosphatidate Signaling: The Tumor Microenvironment's New Nemesis.

    Science.gov (United States)

    Benesch, Matthew G K; Yang, Zelei; Tang, Xiaoyun; Meng, Guanmin; Brindley, David N

    2017-11-01

    Lysophosphatidate (LPA) is emerging as a potent mediator of cancer progression in the tumor microenvironment. Strategies for targeting LPA signaling have recently entered clinical trials for fibrosis. These therapies have potential to improve the efficacies of existing chemotherapies and radiotherapy by attenuating chronic inflammation, irrespective of diverse mutations within cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Diminished Expression of Corticotropin-Releasing Hormone Receptor 2 in Human Colon Cancer Promotes Tumor Growth and Epithelial-to-Mesenchymal Transition via Persistent Interleukin-6/Stat3 SignalingSummary

    Directory of Open Access Journals (Sweden)

    Jorge A. Rodriguez

    2015-11-01

    Full Text Available Background & Aims: Chronic inflammation promotes development and progression of colorectal cancer (CRC. We explored the distribution of the corticotropin-releasing-hormone (CRH family of receptors and ligands in CRC and their contribution in tumor growth and oncogenic epithelial-to-mesenchymal transition (EMT. Methods: The mRNA expression of CRH-family members was analyzed in CRC (n = 56 and control (n = 46 samples, seven CRC cell lines, and normal NCM460 cells. Immunohistochemical detection of CRHR2 was performed in 20 CRC and five normal tissues. Cell proliferation, migration, and invasion were compared between urocortin-2 (Ucn2-stimulated parental and CRHR2-overexpressing (CRHR2+ cells in the absence or presence of interleukin-6 (IL-6. CRHR2/Ucn2-targeted effects on tumor growth and EMT were validated in SW620-xenograft mouse models. Results: CRC tissues and cell lines showed decreased mRNA and protein CRHR2 expression compared with controls and NCM460 cells, respectively. The opposite trend was shown for Ucn2. CRHR2/Ucn2 signaling inhibited cell proliferation, migration, invasion, and colony formation in CRC-CRHR2+ cells. In vivo, SW620-CRHR2+ xenografts showed decreased growth, reduced expression of EMT-inducers, and elevated levels of EMT-suppressors. IL-1b, IL-6, and IL-6R mRNAs were diminished in CRC-CRHR2+ cells, while CRHR2/Ucn2 signaling inhibited IL-6-mediated Stat3 activation, invasion, migration, and expression of downstream targets acting as cell cycle– and EMT-inducers. Expression of cell cycle– and EMT-suppressors was augmented in IL-6/Ucn2-stimulated CRHR2+ cells. In patients, CRHR2 mRNA expression was inversely correlated with IL-6R and vimentin levels and metastasis occurrence, while positively associated with E-cadherin expression and overall survival. Conclusions: CRHR2 down-regulation in CRC supports tumor expansion and spread through maintaining persistent inflammation and constitutive Stat3 activation

  10. A herpes simplex virus type 2-encoded microRNA promotes tumor cell metastasis by targeting suppressor of cytokine signaling 2 in lung cancer.

    Science.gov (United States)

    Wang, Xudong; Liu, Shupeng; Zhou, Zhenhua; Yan, Hongli; Xiao, Jianru

    2017-05-01

    Certain viruses use microRNAs to regulate the expression of their own genes, host genes, or both. A number of microRNAs expressed by herpes simplex virus type 2 have been confirmed by previous studies. However, whether these microRNAs play a role in the metastasis of lung cancers and how these viral microRNAs precisely regulated the tumor biological process in lung cancer bone metastasis remain obscure. We recently identified the high expression of an acutely and latently expressed viral microRNA, Hsv2-miR-H9-5p, encoded by herpes simplex virus type 2 latency-associated transcript through microarray and quantitative polymerase chain reaction analyses which compared the expression of microRNAs in bone metastasis from lung cancer with primary lung cancers. We now reported that Hsv2-miR-H9-5p was highly expressed in bone metastasis and closely associated with pathological and metastatic processes of lung cancers. The functions of Hsv2-miR-H9-5p were determined by overexpression which results in an increase in survival, migration, and invasion of lung cancer cells in vitro. We determined that Hsv2-miR-H9-5p directly targeted SOCS2 mechanistically by dual-luciferase reporter assay. Then, we investigated the functions of SOCS2 in the progress of lung cancers. Reduction of SOCS2 dosage by hsv2-miR-H9-5p induced increased migration and invasion of lung cancer cells. Overexpression of SOCS2 inverted these phenotypes generated by hsv2-miR-H9-5p, indicating the potential roles of SOCS2 in Hsv2-miR-H9-5p-driven metastasis in lung cancers. The results highlighted that Hsv2-miR-H9-5p regulated and contributed to bone metastasis of lung cancers. We proposed that Hsv2-miR-H9-5p could be used as a potential target in lung cancer therapy.

  11. Endogenous morphinergic signaling and tumor growth

    DEFF Research Database (Denmark)

    Cadet, Patrick; Rasmussen, Mads; Zhu, Wei

    2004-01-01

    signaling molecule in neural, immune and vascular systems. In addition to their use in the treatment of pain, opioid peptides appear to be important in the growth regulation of normal and neoplastic tissue. This review will focus on the influence of opiate alkaloids, e.g., morphine, on tumor growth......The mu3 opiate receptor subtype has been characterized by various binding assays as opiate alkaloid selective (e.g. morphine) and opioid peptide (e.g. methionine enkephalin) insensitive. This opiate receptor subtype has been found on human, including cancer cell lines, and invertebrate tissues...

  12. Soluble CD80 Protein Delays Tumor Growth and Promotes Tumor-Infiltrating Lymphocytes.

    Science.gov (United States)

    Horn, Lucas A; Long, Tiha M; Atkinson, Ryan; Clements, Virginia; Ostrand-Rosenberg, Suzanne

    2018-01-01

    Tumor cells use various immune-suppressive strategies to overcome antitumor immunity. One such method is tumor expression of programmed death ligand-1 (PD-L1), which triggers apoptotic death or anergy upon binding programmed death-1 (PD-1) on T cells. Our previous in vitro cellular studies with human and mouse PD-L1+ tumor cells demonstrated that a soluble form of the costimulatory molecule CD80 prevented PD-L1-mediated immune suppression and restored T-cell activation by binding PD-L1 and blocking interaction with PD-1. We now report that in vivo treatment of established syngeneic PD-L1+ CT26 colon carcinoma and B16F10 melanoma tumors with CD80-Fc delays tumor growth and promotes tumor-infiltrating T cells. Studies with PD-1-/- and CD28-/- mice demonstrate that soluble CD80 acts in vivo by simultaneously neutralizing PD-1 suppression and activating through CD28. We also report that soluble CD80 mediates its effects by activating transcription factors EGR1-4, NF-κB, and MAPK, downstream signaling components of the CD28 and T-cell receptor pathways. Soluble CD80 binds to CTLA-4 on activated human peripheral blood mononuclear cells. However, increasing quantities of CTLA-4 antagonist antibodies do not increase T-cell activation. These results indicate that soluble CD80 does not suppress T-cell function through CTLA-4 and suggest that CTLA-4 acts as a decoy receptor for CD80, rather than functioning as a suppressive signaling receptor. Collectively, these studies demonstrate that soluble CD80 has therapeutic efficacy in vivo in mouse tumor systems and that its effects are due to its ability to inhibit PD-1-mediated suppression while concurrently activating T cells through CD28. Cancer Immunol Res; 6(1); 59-68. ©2017 AACR. ©2017 American Association for Cancer Research.

  13. Src activates Abl to augment Robo1 expression in order to promote tumor cell migration

    OpenAIRE

    Khusial, P. Raaj; Vadla, Bhaskar; Krishnan, Harini; Ramlall, Trudy F.; Shen, Yongquan; Ichikawa, Hitoshi; Geng, Jian-Guo; Goldberg, Gary S.

    2010-01-01

    Cell migration is an essential step in cancer invasion and metastasis. A number of orchestrated cellular events involving tyrosine kinases and signaling receptors enable cancer cells to dislodge from primary tumors and colonize elsewhere in the body. For example, activation of the Src and Abl kinases can mediate events that promote tumor cell migration. Also, activation of the Robo1 receptor can induce tumor cell migration. However, while the importance of Src, Abl, and Robo1 in cell migratio...

  14. Fragmented sleep accelerates tumor growth and progression through recruitment of tumor-associated macrophages and TLR4 signaling

    Science.gov (United States)

    Hakim, Fahed; Wang, Yang; Zhang, Shelley XL; Zheng, Jiamao; Yolcu, Esma S.; Carreras, Alba; Khlayfa, Abdelnaby; Shirwan, Haval; Almendros, Isaac; Gozal, David

    2014-01-01

    Fragmented sleep (SF) is a highly prevalent condition and a hallmark of sleep apnea, a condition that has been associated with increased cancer incidence and mortality. In this study, we examined the hypothesis that SF promotes tumor growth and progression through pro-inflammatory TLR4 signaling. In the design, we compared mice that were exposed to SF one week before engraftment of syngeneic TC1 or LL3 tumor cells and tumor analysis three weeks later. We also compared host contributions through the use of mice genetically deficient in TLR4 or its effector molecules MYD88 or TRIF. We found that SF enhanced tumor size and weight compared to control mice. Increased invasiveness was apparent in SF tumors, which penetrated the tumor capsule into surrounding tissues including adjacent muscle. Tumor-associated macrophages (TAM) were more numerous in SF tumors where they were distributed in a relatively closer proximity to the tumor capsule, compared to control mice. Although tumors were generally smaller in both MYD88−/− and TRIF−/− hosts, the more aggressive features produced by SF persisted. In contrast, these more aggressive features produced by SF were abolished completely in TLR4−/− mice. Our findings offer mechanistic insights into how sleep perturbations can accelerate tumor growth and invasiveness through TAM recruitment and TLR4 signaling pathways. PMID:24448240

  15. Cellular senescence and tumor promotion: Is aging the key?

    Science.gov (United States)

    Loaiza, Natalia; Demaria, Marco

    2016-04-01

    The senescence response is a potent tumor suppressor mechanism characterized by an irreversible growth arrest in response to potentially oncogenic signals to prevent the proliferation of damaged cells. Late in life, some of the features of senescent cells seem to mediate the development of age-related pathologies, including cancer. In the present review, we present a summary of the current knowledge regarding the causes, effector pathways and cellular features of senescence. We also discuss how the senescence response, initially a tumor suppressor mechanism, turns into a tumor promoter apparently as a consequence of aging. We argue that three age-related phenomena--senescence-associated secretory phenotype (SASP) dysregulation, decline in the immune system function and genomic instability--could contribute, independently or synergistically, to deteriorate the efficacy of the senescence response in stopping cancer. As a consequence, senescent cells could be considered premalignant cells, and targeting senescent cells could be a preventive and therapeutic strategy against cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Noisy signaling through promoter logic gates

    Science.gov (United States)

    Gerstung, Moritz; Timmer, Jens; Fleck, Christian

    2009-01-01

    We study the influence of noisy transcription factor signals on cis-regulatory promoter elements. These elements process the probability of binary binding events analogous to computer logic gates. At equilibrium, this probability is given by the so-called input function. We show that transcription factor noise causes deviations from the equilibrium value due to the nonlinearity of the input function. For a single binding site, the correction is always negative resulting in an occupancy below the mean-field level. Yet for more complex promoters it depends on the correlation of the transcription factor signals and the geometry of the input function. We present explicit solutions for the basic types of AND and OR gates. The correction size varies among these different types of gates and signal types, mainly being larger in AND gates and for correlated fluctuations. In all cases we find excellent agreement between the analytical results and numerical simulations. We also study the E. coli Lac operon as an example of an AND NOR gate. We present a consistent mathematical method that allows one to separate different sources of noise and quantifies their effect on promoter occupation. A surprising result of our analysis is that Poissonian molecular fluctuations, in contrast to external fluctuations, do no contribute to the correction.

  17. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Energy Technology Data Exchange (ETDEWEB)

    Cannonier, Shellese A.; Sterling, Julie A., E-mail: Julie.sterling@vanderbilt.edu [Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37235 (United States); Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology Vanderbilt University, Nashville, TN 372335 (United States); Department of Cancer Biology, Vanderbilt University, Nashville, TN 37235 (United States)

    2015-08-26

    Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  18. The Role of Hedgehog Signaling in Tumor Induced Bone Disease

    Directory of Open Access Journals (Sweden)

    Shellese A. Cannonier

    2015-08-01

    Full Text Available Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung, directly invade into bone (head and neck or originate from the bone (melanoma, chondrosarcoma where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.

  19. Matrix stiffening promotes a tumor vasculature phenotype.

    Science.gov (United States)

    Bordeleau, Francois; Mason, Brooke N; Lollis, Emmanuel Macklin; Mazzola, Michael; Zanotelli, Matthew R; Somasegar, Sahana; Califano, Joseph P; Montague, Christine; LaValley, Danielle J; Huynh, John; Mencia-Trinchant, Nuria; Negrón Abril, Yashira L; Hassane, Duane C; Bonassar, Lawrence J; Butcher, Jonathan T; Weiss, Robert S; Reinhart-King, Cynthia A

    2017-01-17

    Tumor microvasculature tends to be malformed, more permeable, and more tortuous than vessels in healthy tissue, effects that have been largely attributed to up-regulated VEGF expression. However, tumor tissue tends to stiffen during solid tumor progression, and tissue stiffness is known to alter cell behaviors including proliferation, migration, and cell-cell adhesion, which are all requisite for angiogenesis. Using in vitro, in vivo, and ex ovo models, we investigated the effects of matrix stiffness on vessel growth and integrity during angiogenesis. Our data indicate that angiogenic outgrowth, invasion, and neovessel branching increase with matrix cross-linking. These effects are caused by increased matrix stiffness independent of matrix density, because increased matrix density results in decreased angiogenesis. Notably, matrix stiffness up-regulates matrix metalloproteinase (MMP) activity, and inhibiting MMPs significantly reduces angiogenic outgrowth in stiffer cross-linked gels. To investigate the functional significance of altered endothelial cell behavior in response to matrix stiffness, we measured endothelial cell barrier function on substrates mimicking the stiffness of healthy and tumor tissue. Our data indicate that barrier function is impaired and the localization of vascular endothelial cadherin is altered as function of matrix stiffness. These results demonstrate that matrix stiffness, separately from matrix density, can alter vascular growth and integrity, mimicking the changes that exist in tumor vasculature. These data suggest that therapeutically targeting tumor stiffness or the endothelial cell response to tumor stiffening may help restore vessel structure, minimize metastasis, and aid in drug delivery.

  20. B cells promote tumor progression via STAT3 regulated-angiogenesis.

    Directory of Open Access Journals (Sweden)

    Chunmei Yang

    Full Text Available The role of B cells in cancer and the underlying mechanisms remain to be further explored. Here, we show that tumor-associated B cells with activated STAT3 contribute to tumor development by promoting tumor angiogenesis. B cells with or without Stat3 have opposite effects on tumor growth and tumor angiogenesis in both B16 melanoma and Lewis Lung Cancer mouse models. Ex vivo angiogenesis assays show that B cell-mediated tumor angiogenesis is mainly dependent on the induction of pro-angiogenic gene expression, which requires Stat3 signaling in B cells. Furthermore, B cells with activated STAT3 are mainly found in or near tumor vasculature and correlate significantly with overall STAT3 activity in human tumors. Moreover, the density of B cells in human tumor tissues correlates significantly with expression levels of several STAT3-downstream pro-angiogenic genes, as well as the degree of tumor angiogenesis. Together, these findings define a novel role of B cells in promoting tumor progression through angiogenesis and identify STAT3 in B cells as potential therapeutic target for anti-angiogenesis therapy.

  1. Soy protein isolate inhibits hepatic tumor promotion in mice fed a high-fat liquid diet.

    Science.gov (United States)

    Mercer, Kelly E; Pulliam, Casey F; Pedersen, Kim B; Hennings, Leah; Ronis, Martin Jj

    2017-03-01

    Alcoholic and nonalcoholic fatty liver diseases are risk factors for development of hepatocellular carcinoma, but the underlying mechanisms are poorly understood. On the other hand, ingestion of soy-containing diets may oppose the development of certain cancers. We previously reported that replacing casein with a soy protein isolate reduced tumor promotion in the livers of mice with alcoholic liver disease after feeding a high fat ethanol liquid diet following initiation with diethylnitrosamine. Feeding soy protein isolate inhibited processes that may contribute to tumor promotion including inflammation, sphingolipid signaling, and Wnt/β-catenin signaling. We have extended these studies to characterize liver tumor promotion in a model of nonalcoholic fatty liver disease produced by chronic feeding of high-fat liquid diets in the absence of ethanol. Mice treated with diethylnitrosamine on postnatal day 14 were fed a high-fat liquid diet made with casein or SPI as the sole protein source for 16 weeks in adulthood. Relative to mice fed normal chow, a high fat/casein diet led to increased tumor promotion, hepatocyte proliferation, steatosis, and inflammation. Replacing casein with soy protein isolate counteracted these effects. The high fat diets also resulted in a general increase in transcripts for Wnt/β-catenin pathway components, which may be an important mechanism, whereby hepatic tumorigenesis is promoted. However, soy protein isolate did not block Wnt signaling in this nonalcoholic fatty liver disease model. We conclude that replacing casein with soy protein isolate blocks development of steatosis, inflammation, and tumor promotion in diethylnitrosamine-treated mice fed high fat diets. Impact statement The impact of dietary components on cancer is a topic of great interest for both the general public and the scientific community. Liver cancer is currently the second leading form of cancer deaths worldwide. Our study has addressed the effect of the protein

  2. Multistage skin tumor promotion: involvement of a protein kinase

    Energy Technology Data Exchange (ETDEWEB)

    Mamrack, M.; Slaga, T. J.

    1980-01-01

    Current information suggests that chemical carcinogenesis is a multistep process with one of the best studied models in this regard being the two-stage carcinogenesis system using mouse skin. The effects of several carcinogens and tumor promoters in various sequences of application were studied to examine the nature of the process. The actions of several tumor inhibitors were compared. (ACR)

  3. Signals to promote myelin formation and repair.

    Science.gov (United States)

    Taveggia, Carla; Feltri, Maria Laura; Wrabetz, Lawrence

    2010-05-01

    The myelin sheath wraps large axons in both the CNS and the PNS, and is a key determinant of efficient axonal function and health. Myelin is targeted in a series of diseases, notably multiple sclerosis (MS). In MS, demyelination is associated with progressive axonal damage, which determines the level of patient disability. The few treatments that are available for combating myelin damage in MS and related disorders, which largely comprise anti-inflammatory drugs, only show limited efficacy in subsets of patients. More-effective treatment of myelin disorders will probably be accomplished by early intervention with combinatorial therapies that target inflammation and other processes-for example, signaling pathways that promote remyelination. Indeed, evidence suggests that such pathways might be impaired in pathology and, hence, contribute to the failure of remyelination in such diseases. In this article, we review the molecular basis of signaling pathways that regulate myelination in the CNS and PNS, with a focus on signals that affect differentiation of myelinating glia. We also discuss factors such as extracellular molecules that act as modulators of these pathways. Finally, we consider the few preclinical and clinical trials of agents that augment this signaling.

  4. Inhibition of mouse skin tumor promotion by tenuazonic acid.

    Science.gov (United States)

    Antony, M; Gupta, K P; Janardanan, K K; Mehrotra, N K

    1991-12-09

    Tenuazonic acid (TA) was topically applied to the interscapular region of Swiss albino mice at different doses before the application of 12-O-tetradecanoyl phorbol-13-acetate (TPA). Skin from the painted area was examined for ornithine decarboxylase (ODC) enzyme estimation. It was observed that TA inhibited TPA induced ODC activity. The inhibitory effect of TA was also found in mouse skin tumor promotion in the two stage initiation promotion protocol. There was a remarkable delay in the latency period and decrease in the number of tumors developed and the percentage of tumor bearing animals after TA treatment.

  5. Evaluation of tumor-specific promoter activities in melanoma

    NARCIS (Netherlands)

    Lu, B; Makhija, SK; Nettelbeck, DM; Rivera, AA; Komarova, S; Zhou, F; Yamamoto, M; Haisma, HJ; Alvarez, RD; Curiel, DT; Zhu, ZB

    Gene therapy is a novel therapy for melanoma. To date, however, there is still no powerful tumor specific promoter (TSP) to restrict the transgene expression in melanoma cells. In order to define a useful TSP for targeting in the context of melanoma gene therapy, four promoters, the cyclooxygenase-2

  6. Matriptase promotes inflammatory cell accumulation and progression of established epidermal tumors

    DEFF Research Database (Denmark)

    Sales, K U; Friis, S; Abusleme, L

    2015-01-01

    Deregulation of matriptase is a consistent feature of human epithelial cancers and correlates with poor disease outcome. We have previously shown that matriptase promotes multi-stage squamous cell carcinogenesis in transgenic mice through dual activation of pro-hepatocyte growth factor...... the formation of matriptase-dependent tumors in 7,12-Dimethylbenz(a)anthracene-treated mouse skin. Interestingly, however, the induction of HAI-2 expression in already established tumors markedly impaired malignant progression and caused regression of individual tumors. Tumor regression correlated with reduced...... accumulation of tumor-associated inflammatory cells, likely caused by diminished expression of pro-tumorigenic inflammatory cytokines. The data suggest that matriptase-dependent signaling may be a therapeutic target for both squamous cell carcinoma chemoprevention and for the treatment of established tumors...

  7. Lack of promoting effects of chronic exposure to 1.95-GHz W-CDMA signals for IMT-2000 cellular system on development of N-ethylnitrosourea-induced central nervous system tumors in F344 rats.

    Science.gov (United States)

    Shirai, Tomoyuki; Ichihara, Toshio; Wake, Kanako; Watanabe, So-ichi; Yamanaka, Yukio; Kawabe, Mayumi; Taki, Masao; Fujiwara, Osamu; Wang, Jianqing; Takahashi, Satoru; Tamano, Seiko

    2007-10-01

    The present study was performed to evaluate effects of a 2-year exposure to an electromagnetic near-field (EMF) equivalent to that generated by cellular phones on tumor development in the central nervous system (CNS) of rats. For this purpose, pregnant F344 rats were given a single administration of N-ethylnitrosourea (ENU) on gestational day 18. A total of 500 pups were divided into five groups, each composed of 50 males and 50 females: Group 1, untreated controls; Group 2, ENU alone; Groups 3 to 5, ENU + EMF (sham exposure and two exposure levels). A 1.95-GHz wide-band code division multiple access (W-CDMA) signal, which is a feature of the International Mobile Telecommunication 2000 (IMT-2000) cellular system was employed for exposure of the rat head starting from 5 weeks of age, 90 min a day, 5 days a week, for 104 weeks. Brain average specific absorption rates (SARs) were designed to be .67 and 2.0 W/kg for low and high exposures, respectively. The incidence and numbers of brain tumors in female rats exposed to 1.95-GHz W-CDMA signals showed tendencies to increase but without statistical significance. Overall, no significant increase in incidences or numbers, either in the males or females, was detected in the EMF-exposed groups. In addition, no clear changes in tumor types in the brain were evident. Thus, under the present experimental conditions, exposure of heads of rats to 1.95-GHz W-CDMA signals for IMT-2000 for a 2-year period was not demonstrated to accelerate or otherwise affect ENU-initiated brain tumorigenesis. (c) 2007 Wiley-Liss, Inc.

  8. Cancer-associated adipocytes promotes breast tumor radioresistance

    Energy Technology Data Exchange (ETDEWEB)

    Bochet, Ludivine; Meulle, Aline [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Institut National de la Sante et de la Recherche Medicale, INSERM U1048, 1 Avenue du Pr Jean Poulhes, BP 84225, F-31432 Toulouse Cedex (France); Imbert, Sandrine [CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Salles, Bernard [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France); Valet, Philippe [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); Institut National de la Sante et de la Recherche Medicale, INSERM U1048, 1 Avenue du Pr Jean Poulhes, BP 84225, F-31432 Toulouse Cedex (France); Muller, Catherine, E-mail: muller@ipbs.fr [Universite de Toulouse, UPS, F-31077 Toulouse Cedex (France); CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex (France)

    2011-07-22

    Highlights: {yields} Tumor-surrounding adipocytes contribute to breast cancer progression. {yields} Breast tumor cells previously co-cultivated with mature adipocytes exhibit radioresistance. {yields} Increased in Chk1 phosphorylation is observed in irradiated co-cultivated tumor cells. {yields} IL-6 is over-expressed in tumor cells co-cultivated with adipocytes. {yields} IL-6 exposure confers increased Chk1 phosphorylation and radioresistance in tumor cells. -- Abstract: Mature adipocytes are excellent candidates to influence tumor behavior through heterotypic signaling processes since these cells produce hormones, growth factors, cytokines and other molecules, a heterogeneous group of molecules named adipokines. Using a 2D coculture system, we demonstrate that breast tumor cells previously co-cultivated with mature adipocytes exhibit radioresistance and an earlier and higher increase in the effector kinase Chk1, a phenotype that was associated with decreased cell death as compared to tumor cells grown alone. Interestingly, the adipocytes-induced tumor changes taking place during the coculture time preceding the exposure to IR were sufficient to confer the radioresistant effect. Notorious among the changes brought by adipocytes was the significant increase of IL-6 expression in tumor cells, whose activity may well account for the observed tumor cell protection from IR toxicity. Indeed, our data confirmed the protective role of this cytokine as tumor cells incubated after irradiation with recombinant IL-6 exhibit an increased in Chk1 phosphorylation and a radioresistant phenotype, thus far recapitulating the effects observed in the presence of adipocytes. Our current study sheds light on a new role of tumor-surrounding adipocytes in fostering a radioresistant phenotype in breast tumors, a finding that might have important clinical implications in obese patients that frequently exhibit aggressive diseases.

  9. Wnt Signaling in Stem Cells and Tumor Stem Cells.

    Science.gov (United States)

    Kahn, Michael

    2015-09-01

    The Wnt signaling cascade is critically important in stem cell biology, both in homeostatic maintenance and repair and regeneration of tissues and organs, through their respective somatic stem cells (SSCs). However, aberrant Wnt signaling is associated with a wide array of tumor types and Wnt signaling is important in the so-termed cancer stem cell/tumor-initiating cell (CSC/TIC) population. The ability to safely therapeutically target the Wnt signaling pathway offers enormous promise. However, just like the Sword of Damocles, significant risks and concerns regarding targeting such a critical pathway in normal stem cell maintenance and tissue homeostasis remain ever present. With this in mind, we review our current understanding of the role of Wnt signaling in SSCs and CSC/TICs and the potential to pharmacologically manipulate these endogenous stem cell populations (both normal and tumor). Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  10. Industasis, a promotion of tumor formation by nontumorigenic stray cells

    Czech Academy of Sciences Publication Activity Database

    Pajer, Petr; Karafiát, Vít; Pečenka, Vladimír; Průková, Dana; Dudlová, J.; Plachý, Jiří; Kašparová, P.; Dvořák, Michal

    2009-01-01

    Roč. 69, č. 11 (2009), s. 4605-4612 ISSN 0008-5472 R&D Projects: GA ČR GA204/06/1728; GA MŠk(CZ) LC06061; GA AV ČR IAA500520608 Institutional research plan: CEZ:AV0Z50520514 Keywords : tumor promotion * lung tumors * Fyn-related kinase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.543, year: 2009

  11. Tumor-Derived CXCL1 Promotes Lung Cancer Growth via Recruitment of Tumor-Associated Neutrophils

    Directory of Open Access Journals (Sweden)

    Ming Yuan

    2016-01-01

    Full Text Available Neutrophils have a traditional role in inflammatory process and act as the first line of defense against infections. Although their contribution to tumorigenesis and progression is still controversial, accumulating evidence recently has demonstrated that tumor-associated neutrophils (TANs play a key role in multiple aspects of cancer biology. Here, we detected that chemokine CXCL1 was dramatically elevated in serum from 3LL tumor-bearing mice. In vitro, 3LL cells constitutively expressed and secreted higher level of CXCL1. Furthermore, knocking down CXCL1 expression in 3LL cells significantly hindered tumor growth by inhibiting recruitment of neutrophils from peripheral blood into tumor tissues. Additionally, tumor-infiltrated neutrophils expressed higher levels of MPO and Fas/FasL, which may be involved in TAN-mediated inhibition of CD4+ and CD8+ T cells. These results demonstrate that tumor-derived CXCL1 contributes to TANs infiltration in lung cancer which promotes tumor growth.

  12. Hypoxia promotes tumor growth in linking angiogenesis to immune escape

    Directory of Open Access Journals (Sweden)

    Salem eCHOUAIB

    2012-02-01

    Full Text Available Despite the impressive progress over the past decade, in the field of tumor immunology, such as the identification of tumor antigens and antigenic peptides as potential targets, there are still many obstacles in eliciting an effective immune response to eradicate cancer. It has become increasingly clear that tumor microenvironment plays a crucial role in the control of immune protection and contains many overlapping mechanisms to evade antigen specific immunotherapy. Obviously, tumors have evolved to utilize hypoxic stress to their own advantage by activating key biochemical and cellular pathways that are important in progression, survival and metastasis. Among the hypoxia-induced genes, hypoxia-inducible factor (HIF-1 and vascular endothelial growth factor (VEGF play a determinant role in promoting tumor cell growth and survival. In this regard, hypoxia is emerging as an attractive target for cancer therapy. How the microenvironmental hypoxia poses both obstacles and opportunities for new therapeutic immune interventions will be discussed.

  13. Promotion of Tumor-Initiating Cells in Primary and Recurrent Breast Tumors

    Science.gov (United States)

    2013-07-01

    Thioridazine (an FDA approved drug that is known to block dopamine receptor signaling and to block MALT1, a factor upstream of IKK) strongly reduces...KR et al. (2008). Breast tumor cells with PI3K mutation or HER2 amplification are selectively addicted to Akt signaling. PLoS ONE 3: e3065. Singh S

  14. Mathematical modeling of Interleukin-35 promoting tumor growth and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Kang-Ling Liao

    Full Text Available Interleukin-35 (IL-35, a cytokine from the Interleukin-12 cytokine family, has been considered as an anti-inflammatory cytokine which promotes tumor progression and tumor immune evasion. It has also been demonstrated that IL-35 is secreted by regulatory T cells. Recent mouse experiments have shown that IL-35 produced by cancer cells promotes tumor growth via enhancing myeloid cell accumulation and angiogenesis, and reducing the infiltration of activated CD8[Formula: see text] T cells into tumor microenvironment. In the present paper we develop a mathematical model based on these experimental results. We include in the model an anti-IL-35 drug as treatment. The extended model (with drug is used to design protocols of anti-IL-35 injections for treatment of cancer. We find that with a fixed total amount of drug, continuous injection has better efficacy than intermittent injections in reducing the tumor load while the treatment is ongoing. We also find that the percentage of tumor reduction under anti-IL-35 treatment improves when the production of IL-35 by cancer is increased.

  15. Fibulin-3 promotes glioma growth and resistance through a novel paracrine regulation of Notch signaling.

    Science.gov (United States)

    Hu, Bin; Nandhu, Mohan S; Sim, Hosung; Agudelo-Garcia, Paula A; Saldivar, Joshua C; Dolan, Claire E; Mora, Maria E; Nuovo, Gerard J; Cole, Susan E; Viapiano, Mariano S

    2012-08-01

    Malignant gliomas are highly invasive and chemoresistant brain tumors with extremely poor prognosis. Targeting of the soluble factors that trigger invasion and resistance, therefore, could have a significant impact against the infiltrative glioma cells that are a major source of recurrence. Fibulin-3 is a matrix protein that is absent in normal brain but upregulated in gliomas and promotes tumor invasion by unknown mechanisms. Here, we show that fibulin-3 is a novel soluble activator of Notch signaling that antagonizes DLL3, an autocrine inhibitor or Notch, and promotes tumor cell survival and invasion in a Notch-dependent manner. Using a strategy for inducible knockdown, we found that controlled downregulation of fibulin-3 reduced Notch signaling and led to increased apoptosis, reduced self-renewal of glioblastoma-initiating cells, and impaired growth and dispersion of intracranial tumors. In addition, fibulin-3 expression correlated with expression levels of Notch-dependent genes and was a marker of Notch activation in patient-derived glioma samples. These findings underscore a major role for the tumor extracellular matrix in regulating glioma invasion and resistance to apoptosis via activation of the key Notch pathway. More importantly, this work describes a noncanonical, soluble activator of Notch in a cancer model and shows how Notch signaling can be reduced by targeting tumor-specific accessible molecules in the tumor microenvironment. ©2012 AACR.

  16. Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors.

    Science.gov (United States)

    Wang, Jie; Lu, Ze; Wang, Junfeng; Cui, Minjian; Yeung, Bertrand Z; Cole, David J; Wientjes, M Guillaume; Au, Jessie L-S

    2015-10-28

    The major barrier for using small interfering RNA (siRNA) as cancer therapeutics is the inadequate delivery and transfection in solid tumors. We have previously shown that paclitaxel tumor priming, by inducing apoptosis, expands the tumor interstitial space, improves the penetration and dispersion of nanoparticles and siRNA-lipoplexes in 3-dimensional tumor histocultures, and promotes the delivery and transfection efficiency of siRNA-lipoplexes under the locoregional setting in vivo (i.e., intraperitoneal treatment of intraperitoneal tumors). The current study evaluated whether tumor priming is functional for systemically delivered siRNA via intravenous injection, which would subject siRNA to several additional delivery barriers and elimination processes. We used the same pegylated cationic (PCat)-siRNA lipoplexes as in the intraperitoneal study to treat mice bearing subcutaneous human pancreatic Hs766T xenograft tumors. The target gene was survivin, an inducible chemoresistance gene. The results show single agent paclitaxel delayed tumor growth but also significantly induced the survivin protein level in residual tumors, whereas addition of PCat-siSurvivin completely reversed the paclitaxel-induced survivin and enhanced the paclitaxel activity (ppriming, by promoting the interstitial transport and cytoplasmic release, is critical to promote the delivery and transfection of siRNA in vivo. In addition, because paclitaxel has broad spectrum activity and is used to treat multiple types of solid tumors including the hard-to-treat pancreatic cancer, the synergistic paclitaxel+siSurvivin combination represents a potentially useful chemo-gene therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Cellular senescence and tumor promotion : Is aging the key?

    NARCIS (Netherlands)

    Loaiza, Natalia; Demaria, Marco

    The senescence response is a potent tumor suppressor mechanism characterized by an irreversible growth arrest in response to potentially oncogenic signals to prevent the proliferation of damaged cells. Late in life, some of the features of senescent cells seem to mediate the development of

  18. Inflammation and mitochondrial fatty acid β-oxidation link obesity to early tumor promotion

    OpenAIRE

    Khasawneh, J.; Schulz, M. D.; Walch, A.; Rozman, J.; de Angelis, M. Hrabe; Klingenspor, M.; de Buck, A.; M. Schwaiger; Saur, D; Schmid, R M; Klöppel, G; Sipos, B.; Greten, F. R.; Arkan, M. C.

    2009-01-01

    Obesity is associated with increased risk for developing pancreatic cancer, and it is suggested that insulin resistance provides the missing link. Here we demonstrate that under the context of genetic susceptibility, a high fat diet (HFD) predisposes mice with oncogenic K-ras activation to accelerated pancreatic intraepithelial neoplasm (PanIN) development. Tumor promotion is closely associated with increased inflammation and abrogation of TNFR1 signaling significantly blocks this process und...

  19. Mind the GAP: A Novel Tumor-Promoting Mechanism | Center for Cancer Research

    Science.gov (United States)

    RAS proteins, like light switches, toggle between an “on” conformation where they promote cell growth, survival, and/or the formation of blood vessels (known as angiogenesis) and an “off” conformation in which they are unable to stimulate their target effector proteins. Nearly one-third of human tumors express a mutated RAS gene, which encodes a protein locked permanently in the active state. Other tumors, including liver hepatocellular carcinomas (HCCs), display aberrant RAS pathway signaling but lack RAS gene mutations, suggesting alternative mechanisms for this excessive RAS activity.

  20. Eutrophication and the dietary promotion of sea turtle tumors

    Directory of Open Access Journals (Sweden)

    Kyle S. Van Houtan

    2014-09-01

    Full Text Available The tumor-forming disease fibropapillomatosis (FP has afflicted sea turtle populations for decades with no clear cause. A lineage of α-herpesviruses associated with these tumors has existed for millennia, suggesting environmental factors are responsible for its recent epidemiology. In previous work, we described how herpesviruses could cause FP tumors through a metabolic influx of arginine. We demonstrated the disease prevails in chronically eutrophied coastal waters, and that turtles foraging in these sites might consume arginine-enriched macroalgae. Here, we test the idea using High-Performance Liquid Chromatography (HPLC to describe the amino acid profiles of green turtle (Chelonia mydas tumors and five common forage species of macroalgae from a range of eutrophic states. Tumors were notably elevated in glycine, proline, alanine, arginine, and serine and depleted in lysine when compared to baseline samples. All macroalgae from eutrophic locations had elevated arginine, and all species preferentially stored environmental nitrogen as arginine even at oligotrophic sites. From these results, we estimate adult turtles foraging at eutrophied sites increase their arginine intake 17–26 g daily, up to 14 times the background level. Arginine nitrogen increased with total macroalgae nitrogen and watershed nitrogen, and the invasive rhodophyte Hypnea musciformis significantly outperformed all other species in this respect. Our results confirm that eutrophication substantially increases the arginine content of macroalgae, which may metabolically promote latent herpesviruses and cause FP tumors in green turtles.

  1. Eutrophication and the dietary promotion of sea turtle tumors.

    Science.gov (United States)

    Van Houtan, Kyle S; Smith, Celia M; Dailer, Meghan L; Kawachi, Migiwa

    2014-01-01

    The tumor-forming disease fibropapillomatosis (FP) has afflicted sea turtle populations for decades with no clear cause. A lineage of α-herpesviruses associated with these tumors has existed for millennia, suggesting environmental factors are responsible for its recent epidemiology. In previous work, we described how herpesviruses could cause FP tumors through a metabolic influx of arginine. We demonstrated the disease prevails in chronically eutrophied coastal waters, and that turtles foraging in these sites might consume arginine-enriched macroalgae. Here, we test the idea using High-Performance Liquid Chromatography (HPLC) to describe the amino acid profiles of green turtle (Chelonia mydas) tumors and five common forage species of macroalgae from a range of eutrophic states. Tumors were notably elevated in glycine, proline, alanine, arginine, and serine and depleted in lysine when compared to baseline samples. All macroalgae from eutrophic locations had elevated arginine, and all species preferentially stored environmental nitrogen as arginine even at oligotrophic sites. From these results, we estimate adult turtles foraging at eutrophied sites increase their arginine intake 17-26 g daily, up to 14 times the background level. Arginine nitrogen increased with total macroalgae nitrogen and watershed nitrogen, and the invasive rhodophyte Hypnea musciformis significantly outperformed all other species in this respect. Our results confirm that eutrophication substantially increases the arginine content of macroalgae, which may metabolically promote latent herpesviruses and cause FP tumors in green turtles.

  2. Promotion of lung tumor growth by interleukin-17

    Science.gov (United States)

    Xu, Beibei; Guenther, James F.; Pociask, Derek A.; Wang, Yu; Kolls, Jay K.; You, Zongbing; Chandrasekar, Bysani; Shan, Bin; Sullivan, Deborah E.

    2014-01-01

    Recent findings demonstrate that inhaled cigarette smoke, the predominant lung carcinogen, elicits a T helper 17 (Th17) inflammatory phenotype. Interleukin-17A (IL-17), the hallmark cytokine of Th17 inflammation, displays pro- and antitumorigenic properties in a manner that varies according to tumor type and assay system. To investigate the role of IL-17 in lung tumor growth, we used an autochthonous tumor model (K-RasLA1 mice) with lung delivery of a recombinant adenovirus that expresses IL-17A. Virus-mediated expression of IL-17A in K-RasLA1 mice at 8–10 wk of age doubled lung tumor growth in 3 wk relative to littermates that received a green fluorescent protein-expressing control adenovirus. IL-17 induced matrix metalloproteinase-9 (MMP-9) expression in vivo and in vitro. In accord with this finding, selective and specific inhibitors of MMP-9 repressed the increased motility and invasiveness of IL-17-treated lung tumor cells in culture. Knockdown or mutation of p53 promoted the motility of murine lung tumor cells and abrogated the promigratory role of IL-17. Coexpression of siRNA-resistant wild-type, but not mutant, human p53 rescued both IL-17-mediated migration and MMP-9 mRNA induction in p53 knockdown lung tumor cells. IL-17 increased MMP-9 mRNA stability by reducing interaction with the mRNA destabilizing serine/arginine-rich splicing factor 1 (SRSF1). Taken together, our results indicate that IL-17 stimulates lung tumor growth and regulates MMP-9 mRNA levels in a p53- and SRSF1-dependent manner. PMID:25038189

  3. Senescence from glioma stem cell differentiation promotes tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Rie [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Okabe, Sachiko; Migita, Toshiro [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Nakano, Ichiro [Department of Neurosurgery, Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL 35233 (United States); Seimiya, Hiroyuki, E-mail: hseimiya@jfcr.or.jp [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan)

    2016-02-05

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  4. Acidosis Promotes Metastasis Formation by Enhancing Tumor Cell Motility.

    Science.gov (United States)

    Riemann, A; Schneider, B; Gündel, D; Stock, C; Gekle, M; Thews, O

    2016-01-01

    The tumor microenvironment is characterized by hypoxia, acidosis as well as other metabolic and biochemical alterations. Its role in cancer progression is increasingly appreciated especially on invasive capacity and the formation of metastasis. The effect of acidosis on metastasis formation of two rat carcinoma cell lines was studied in the animal model. In order to analyze the pH dependency of different steps of metastasis formation, invasiveness, cell adhesion and migration of AT-1 prostate cancer cells as well as possible underlying cell signaling pathways were studied in vitro. Acidosis significantly increased the formation of lung metastases of both tumor cell lines in vivo. In vitro, extracellular acidosis neither enhanced invasiveness nor affected cell adhesion to a plastic or to an endothelial layer. However, cellular motility was markedly elevated at pH 6.6 and this effect was sustained even when extracellular pH was switched back to pH 7.4. When analyzing the underlying mechanism, a prominent role of ROS in the induction of migration was observed. Signaling through the MAP kinases ERK1/2 and p38 as well as Src family kinases was not involved. Thus, cancer cells in an acidic microenvironment can acquire enhanced motility, which is sustained even if the tumor cells leave their acidic microenvironment e.g. by entering the blood stream. This increase depended on elevated ROS production and may contribute to the augmented formation of metastases of acidosis-primed tumor cells in vivo.

  5. Slit2/Robo1 signaling promotes intestinal tumorigenesis through Src-mediated activation of the Wnt/β-catenin pathway.

    Science.gov (United States)

    Zhang, Qian-Qian; Zhou, Da-Lei; Lei, Yan; Zheng, Li; Chen, Sheng-Xia; Gou, Hong-Ju; Gu, Qu-Liang; He, Xiao-Dong; Lan, Tian; Qi, Cui-Ling; Li, Jiang-Chao; Ding, Yan-Qing; Qiao, Liang; Wang, Li-Jing

    2015-02-20

    Slit2 is often overexpressed in cancers. Slit2 is a secreted protein that binds to Roundabout (Robo) receptors to regulate cell growth and migration. Here, we employed several complementary mouse models of intestinal cancers, including the Slit2 transgenic mice, the ApcMin/+ spontaneous intestinal adenoma mouse model, and the DMH/DSS-induced colorectal carcinoma model to clarify function of Slit2/Robo1 signaling in intestinal tumorigenesis. We showed that Slit2 and Robo1 are overexpressed in intestinal tumors and may contribute to tumor generation. The Slit2/Robo1 signaling can induce precancerous lesions of the intestine and tumor progression. Ectopic expression of Slit2 activated Slit2/Robo1 signaling and promoted tumorigenesis and tumor growth. This was mediated in part through activation of the Src signaling, which then down-regulated E-cadherin, thereby activating Wnt/β-catenin signaling. Thus, Slit2/Robo1 signaling is oncogenic in intestinal tumorigenesis.

  6. Characteristic promoter hypermethylation signatures in male germ cell tumors

    Directory of Open Access Journals (Sweden)

    Bosl George J

    2002-11-01

    Full Text Available Abstract Background Human male germ cell tumors (GCTs arise from undifferentiated primordial germ cells (PGCs, a stage in which extensive methylation reprogramming occurs. GCTs exhibit pluripotentality and are highly sensitive to cisplatin therapy. The molecular basis of germ cell (GC transformation, differentiation, and exquisite treatment response is poorly understood. Results To assess the role and mechanism of promoter hypermethylation, we analyzed CpG islands of 21 gene promoters by methylation-specific PCR in seminomatous (SGCT and nonseminomatous (NSGCT GCTs. We found 60% of the NSGCTs demonstrating methylation in one or more gene promoters whereas SGCTs showed a near-absence of methylation, therefore identifying distinct methylation patterns in the two major histologies of GCT. DNA repair genes MGMT, RASSF1A, and BRCA1, and a transcriptional repressor gene HIC1, were frequently methylated in the NSGCTs. The promoter hypermethylation was associated with gene silencing in most methylated genes, and reactivation of gene expression occured upon treatment with 5-Aza-2' deoxycytidine in GCT cell lines. Conclusions Our results, therefore, suggest a potential role for epigenetic modification of critical tumor suppressor genes in pathways relevant to GC transformation, differentiation, and treatment response.

  7. Src activates Abl to augment Robo1 expression in order to promote tumor cell migration.

    Science.gov (United States)

    Khusial, P Raaj; Vadla, Bhaskar; Krishnan, Harini; Ramlall, Trudy F; Shen, Yongquan; Ichikawa, Hitoshi; Geng, Jian-Guo; Goldberg, Gary S

    2010-07-01

    Cell migration is an essential step in cancer invasion and metastasis. A number of orchestrated cellular events involving tyrosine kinases and signaling receptors enable cancer cells to dislodge from primary tumors and colonize elsewhere in the body. For example, activation of the Src and Abl kinases can mediate events that promote tumor cell migration. Also, activation of the Robo1 receptor can induce tumor cell migration. However, while the importance of Src, Abl, and Robo1 in cell migration have been demonstrated, molecular mechanisms by which they collectively influence cell migration have not been clearly elucidated. In addition, little is known about mechanisms that control Robo1 expression. We report here that Src activates Abl to stabilize Robo1 in order to promote cell migration. Inhibition of Abl kinase activity by siRNA or kinase blockers decreased Robo1 protein levels and suppressed the migration of transformed cells. We also provide evidence that Robo1 utilizes Cdc42 and Rac1 GTPases to induce cell migration. In addition, inhibition of Robo1 signaling can suppress transformed cell migration in the face of robust Src and Abl kinase activity. Therefore, inhibitors of Src, Abl, Robo1 and small GTPases may target a coordinated pathway required for tumor cell migration.

  8. Revisiting the TCA cycle: signaling to tumor formation.

    Science.gov (United States)

    Raimundo, Nuno; Baysal, Bora E; Shadel, Gerald S

    2011-11-01

    A role for mitochondria in tumor formation is suggested by mutations in enzymes of the TCA cycle: isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH) and fumarate hydratase (FH). Although they are all components of the TCA cycle, the resulting clinical presentations do not overlap. Activation of the hypoxia pathway can explain SDH phenotypes, but recent data suggest that FH and IDH mutations lead to tumor formation by repressing cellular differentiation. In this review, we discuss recent findings in the context of both mitochondrial and cytoplasmic components of the TCA cycle, and we propose that extrametabolic roles of TCA cycle metabolites result in reduced cellular differentiation. Furthermore, activation of the pseudohypoxia pathway likely promotes the growth of these neoplasias into tumors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. The Oncometabolite Fumarate Promotes Pseudohypoxia Through Noncanonical Activation of NF-κB Signaling*

    Science.gov (United States)

    Shanmugasundaram, Karthigayan; Nayak, Bijaya; Shim, Eun-Hee; Livi, Carolina B.; Block, Karen; Sudarshan, Sunil

    2014-01-01

    Inactivating mutations of the gene encoding the tricarboxylic acid cycle enzyme fumarate hydratase (FH) have been linked to an aggressive variant of hereditary kidney cancer (hereditary leiomyomatosis and renal cell cancer). These tumors accumulate markedly elevated levels of fumarate. Fumarate is among a growing list of oncometabolites identified in cancers with mutations of genes involved in intermediary metabolism. FH-deficient tumors are notable for their pronounced accumulation of the transcription factor hypoxia inducible factor-1α (HIF-1α) and aggressive behavior. To date, HIF-1α accumulation in hereditary leiomyomatosis and renal cell cancer tumors is thought to result from fumarate-dependent inhibition of prolyl hydroxylases and subsequent evasion from von Hippel-Lindau-dependent degradation. Here, we demonstrate a novel mechanism by which fumarate promotes HIF-1α mRNA and protein accumulation independent of the von Hippel-Lindau pathway. Here we demonstrate that fumarate promotes p65 phosphorylation and p65 accumulation at the HIF-1α promoter through non-canonical signaling via the upstream Tank binding kinase 1 (TBK1). Consistent with these data, inhibition of the TBK1/p65 axis blocks HIF-1α accumulation in cellular models of FH loss and markedly reduces cell invasion of FH-deficient RCC cancer cells. Collectively, our data demonstrate a novel mechanism by which pseudohypoxia is promoted in FH-deficient tumors and identifies TBK1 as a novel putative therapeutic target for the treatment of aggressive fumarate-driven tumors. PMID:25028521

  10. Effect of promoter strength and signal sequence on the periplasmic ...

    African Journals Online (AJOL)

    Two plasmids, pFLAG-ATS and pET 26b(+), were studied for the periplasmic expression of recombinant human interferon-2b (IFN-2b) in Escherichia coli. The pFLAG-ATS contains ompA signal sequence and tac promoter while pET 26b(+) contains pelB signal sequence and T7lac promoter. It was observed that periplasmic ...

  11. Effect of promoter strength and signal sequence on the periplasmic ...

    African Journals Online (AJOL)

    ONOS

    2010-01-18

    Jan 18, 2010 ... Two plasmids, pFLAG-ATS and pET 26b(+), were studied for the periplasmic expression of recombinant human interferon-α2b (IFN-α2b) in Escherichia coli. The pFLAG-ATS contains ompA signal sequence and tac promoter while pET 26b(+) contains pelB signal sequence and T7lac promoter.

  12. Steroid Hormone Receptor Signals as Prognosticators for Urothelial Tumor

    Directory of Open Access Journals (Sweden)

    Hiroki Ide

    2015-01-01

    Full Text Available There is a substantial amount of preclinical or clinical evidence suggesting that steroid hormone receptor-mediated signals play a critical role in urothelial tumorigenesis and tumor progression. These receptors include androgen receptor, estrogen receptors, glucocorticoid receptor, progesterone receptor, vitamin D receptor, retinoid receptors, peroxisome proliferator-activated receptors, and others including orphan receptors. In particular, studies using urothelial cancer tissue specimens have demonstrated that elevated or reduced expression of these receptors as well as alterations of their upstream or downstream pathways correlates with patient outcomes. This review summarizes and discusses available data suggesting that steroid hormone receptors and related signals serve as biomarkers for urothelial carcinoma and are able to predict tumor recurrence or progression.

  13. Activation of NF-kappa B signaling promotes growth of prostate cancer cells in bone.

    Directory of Open Access Journals (Sweden)

    Renjie Jin

    Full Text Available Patients with advanced prostate cancer almost invariably develop osseous metastasis. Although many studies indicate that the activation of NF-κB signaling appears to be correlated with advanced cancer and promotes tumor metastasis by influencing tumor cell migration and angiogenesis, the influence of altered NF-κB signaling in prostate cancer cells within boney metastatic lesions is not clearly understood. While C4-2B and PC3 prostate cancer cells grow well in the bone, LNCaP cells are difficult to grow in murine bone following intraskeletal injection. Our studies show that when compared to LNCaP, NF-κB activity is significantly higher in C4-2B and PC3, and that the activation of NF-κB signaling in prostate cancer cells resulted in the increased expression of the osteoclast inducing genes PTHrP and RANKL. Further, conditioned medium derived from NF-κB activated LNCaP cells induce osteoclast differentiation. In addition, inactivation of NF-κB signaling in prostate cancer cells inhibited tumor formation in the bone, both in the osteolytic PC3 and osteoblastic/osteoclastic mixed C4-2B cells; while the activation of NF-κB signaling in LNCaP cells promoted tumor establishment and proliferation in the bone. The activation of NF-κB in LNCaP cells resulted in the formation of an osteoblastic/osteoclastic mixed tumor with increased osteoclasts surrounding the new formed bone, similar to metastases commonly seen in patients with prostate cancer. These results indicate that osteoclastic reaction is required even in the osteoblastic cancer cells and the activation of NF-κB signaling in prostate cancer cells increases osteoclastogenesis by up-regulating osteoclastogenic genes, thereby contributing to bone metastatic formation.

  14. Tumor necrosis factor induces tumor promoting and anti-tumoral effects on pancreatic cancer via TNFR1.

    Directory of Open Access Journals (Sweden)

    Martin Chopra

    Full Text Available Multiple activities are ascribed to the cytokine tumor necrosis factor (TNF in health and disease. In particular, TNF was shown to affect carcinogenesis in multiple ways. This cytokine acts via the activation of two cell surface receptors, TNFR1, which is associated with inflammation, and TNFR2, which was shown to cause anti-inflammatory signaling. We assessed the effects of TNF and its two receptors on the progression of pancreatic cancer by in vivo bioluminescence imaging in a syngeneic orthotopic tumor mouse model with Panc02 cells. Mice deficient for TNFR1 were unable to spontaneously reject Panc02 tumors and furthermore displayed enhanced tumor progression. In contrast, a fraction of wild type (37.5%, TNF deficient (12.5%, and TNFR2 deficient mice (22.2% were able to fully reject the tumor within two weeks. Pancreatic tumors in TNFR1 deficient mice displayed increased vascular density, enhanced infiltration of CD4(+ T cells and CD4(+ forkhead box P3 (FoxP3(+ regulatory T cells (Treg but reduced numbers of CD8(+ T cells. These alterations were further accompanied by transcriptional upregulation of IL4. Thus, TNF and TNFR1 are required in pancreatic ductal carcinoma to ensure optimal CD8(+ T cell-mediated immunosurveillance and tumor rejection. Exogenous systemic administration of human TNF, however, which only interacts with murine TNFR1, accelerated tumor progression. This suggests that TNFR1 has basically the capability in the Panc02 model to trigger pro-and anti-tumoral effects but the spatiotemporal availability of TNF seems to determine finally the overall outcome.

  15. Mitochondrial Stress Signaling Promotes Cellular Adaptations

    Directory of Open Access Journals (Sweden)

    Jayne Alexandra Barbour

    2014-01-01

    Full Text Available Mitochondrial dysfunction has been implicated in the aetiology of many complex diseases, as well as the ageing process. Much of the research on mitochondrial dysfunction has focused on how mitochondrial damage may potentiate pathological phenotypes. The purpose of this review is to draw attention to the less well-studied mechanisms by which the cell adapts to mitochondrial perturbations. This involves communication of stress to the cell and successful induction of quality control responses, which include mitophagy, unfolded protein response, upregulation of antioxidant and DNA repair enzymes, morphological changes, and if all else fails apoptosis. The mitochondrion is an inherently stressful environment and we speculate that dysregulation of stress signaling or an inability to switch on these adaptations during times of mitochondrial stress may underpin mitochondrial dysfunction and hence amount to pathological states over time.

  16. HDAC Activity Is Required for Efficient Core Promoter Function at the Mouse Mammary Tumor Virus Promoter

    Directory of Open Access Journals (Sweden)

    Sang C. Lee

    2011-01-01

    Full Text Available Histone deacetylases (HDACs have been shown to be required for basal or inducible transcription at a variety of genes by poorly understood mechanisms. We demonstrated previously that HDAC inhibition rapidly repressed transcription from the mouse mammary tumor virus (MMTV promoter by a mechanism that does not require the binding of upstream transcription factors. In the current study, we find that HDACs work through the core promoter sequences of MMTV as well as those of several cellular genes to facilitate transcriptional initiation through deacetylation of nonhistone proteins.

  17. Inflammation and mitochondrial fatty acid beta-oxidation link obesity to early tumor promotion.

    Science.gov (United States)

    Khasawneh, J; Schulz, M D; Walch, A; Rozman, J; Hrabe de Angelis, M; Klingenspor, M; Buck, A; Schwaiger, M; Saur, D; Schmid, R M; Klöppel, G; Sipos, B; Greten, F R; Arkan, M C

    2009-03-03

    Obesity is associated with increased risk for developing pancreatic cancer, and it is suggested that insulin resistance provides the missing link. Here we demonstrate that under the context of genetic susceptibility, a high fat diet (HFD) predisposes mice with oncogenic K-ras activation to accelerated pancreatic intraepithelial neoplasm (PanIN) development. Tumor promotion is closely associated with increased inflammation and abrogation of TNFR1 signaling significantly blocks this process underlining a central role for TNFalpha in obesity-mediated enhancement of PanIN lesions. Interestingly, however, despite increased TNFalpha levels, mice remain insulin sensitive. We show that, while aggravating tumor promotion, a HFD exerts dramatic changes in energy metabolism through enhancement of pancreatic exocrine insufficiency, metabolic rates, and expression of genes involved in mitochondrial fatty acid (FA) beta-oxidation that collectively contribute to improved glucose tolerance in these mice. While on one hand these findings provide significant evidence that obesity is linked to tumor promotion in the pancreas, on the other it suggests alterations in inflammatory responses and bioenergetic pathways as the potential underlying cause.

  18. Inflammation and mitochondrial fatty acid β-oxidation link obesity to early tumor promotion

    Science.gov (United States)

    Khasawneh, J.; Schulz, M. D.; Walch, A.; Rozman, J.; de Angelis, M. Hrabe; Klingenspor, M.; Buck, A.; Schwaiger, M.; Saur, D.; Schmid, R. M.; Klöppel, G.; Sipos, B.; Greten, F. R.; Arkan, M. C.

    2009-01-01

    Obesity is associated with increased risk for developing pancreatic cancer, and it is suggested that insulin resistance provides the missing link. Here we demonstrate that under the context of genetic susceptibility, a high fat diet (HFD) predisposes mice with oncogenic K-ras activation to accelerated pancreatic intraepithelial neoplasm (PanIN) development. Tumor promotion is closely associated with increased inflammation and abrogation of TNFR1 signaling significantly blocks this process underlining a central role for TNFα in obesity-mediated enhancement of PanIN lesions. Interestingly, however, despite increased TNFα levels, mice remain insulin sensitive. We show that, while aggravating tumor promotion, a HFD exerts dramatic changes in energy metabolism through enhancement of pancreatic exocrine insufficiency, metabolic rates, and expression of genes involved in mitochondrial fatty acid (FA) β-oxidation that collectively contribute to improved glucose tolerance in these mice. While on one hand these findings provide significant evidence that obesity is linked to tumor promotion in the pancreas, on the other it suggests alterations in inflammatory responses and bioenergetic pathways as the potential underlying cause. PMID:19208810

  19. A RAB5/RAB4 recycling circuitry induces a proteolytic invasive program and promotes tumor dissemination

    Science.gov (United States)

    Frittoli, Emanuela; Palamidessi, Andrea; Marighetti, Paola; Confalonieri, Stefano; Bianchi, Fabrizio; Malinverno, Chiara; Mazzarol, Giovanni; Viale, Giuseppe; Martin-Padura, Ines; Garré, Massimilliano; Parazzoli, Dario; Mattei, Valentina; Cortellino, Salvatore; Bertalot, Giovanni

    2014-01-01

    The mechanisms by which tumor cells metastasize and the role of endocytic proteins in this process are not well understood. We report that overexpression of the GTPase RAB5A, a master regulator of endocytosis, is predictive of aggressive behavior and metastatic ability in human breast cancers. RAB5A is necessary and sufficient to promote local invasion and distant dissemination of various mammary and nonmammary tumor cell lines, and this prometastatic behavior is associated with increased intratumoral cell motility. Specifically, RAB5A is necessary for the formation of invadosomes, membrane protrusions specialized in extracellular matrix (ECM) degradation. RAB5A promotes RAB4- and RABENOSYN-5–dependent endo/exocytic cycles (EECs) of critical cargos (membrane-type 1 matrix metalloprotease [MT1-MMP] and β3 integrin) required for invadosome formation in response to motogenic stimuli. This trafficking circuitry is necessary for spatially localized hepatocyte growth factor (HGF)/MET signaling that drives invasive, proteolysis-dependent chemotaxis in vitro and for conversion of ductal carcinoma in situ to invasive ductal carcinoma in vivo. Thus, RAB5A/RAB4 EECs promote tumor dissemination by controlling a proteolytic, mesenchymal invasive program. PMID:25049275

  20. Protein Kinase C beta in the tumor microenvironment promotes mammary tumorigenesis

    Directory of Open Access Journals (Sweden)

    Julie A Wallace

    2014-04-01

    Full Text Available Protein kinase C beta (PKCβ expression in breast cancer is associated with a more aggressive tumor phenotype, yet the mechanism for how PKCβ is pro-tumorigenic in this disease is still unclear. Interestingly, while it is known that PKCβ mediates angiogenesis, immunity, fibroblast function and adipogenesis, all components of the mammary tumor microenvironment (TME, no study to date has investigated whether stromal PKCβ is functionally relevant in breast cancer. Herein, we evaluate mouse mammary tumor virus-polyoma middle T-antigen (MMTV-PyMT induced mammary tumorigenesis in the presence and absence of PKCβ. We utilize two model systems: one where PKCβ is deleted in both the epithelial and stromal compartments to test the global requirement for PKCβ on tumor formation, and second, where PKCβ is deleted only in the stromal compartment to test its role in the TME. MMTV-PyMT mice globally lacking PKCβ live longer and develop smaller tumors with decreased proliferation and decreased macrophage infiltration. Similarly, when PKCβ is null exclusively in the stroma, PyMT-driven B6 cells form smaller tumors. These experiments reveal for the first time a tumor promoting role for stromal PKCβ in MMTV-PyMT tumorigenesis. In corroboration with these results, PKCβ mRNA (Prkcb is increased in fibroblasts isolated from MMTV-PyMT tumors. These data were confirmed in a breast cancer patient cohort. Combined these data suggest the continued investigation of PKCβ in the mammary TME is necessary to elucidate how to effectively target this signaling pathway in breast cancer.

  1. Protein kinase C Beta in the tumor microenvironment promotes mammary tumorigenesis.

    Science.gov (United States)

    Wallace, Julie A; Pitarresi, Jason R; Sharma, Nandini; Palettas, Marilly; Cuitiño, Maria C; Sizemore, Steven T; Yu, Lianbo; Sanderlin, Allen; Rosol, Thomas J; Mehta, Kamal D; Sizemore, Gina M; Ostrowski, Michael C

    2014-01-01

    Protein kinase C beta (PKCβ) expression in breast cancer is associated with a more aggressive tumor phenotype, yet the mechanism for how PKCβ is pro-tumorigenic in this disease is still unclear. Interestingly, while it is known that PKCβ mediates angiogenesis, immunity, fibroblast function and adipogenesis, all components of the mammary tumor microenvironment (TME), no study to date has investigated whether stromal PKCβ is functionally relevant in breast cancer. Herein, we evaluate mouse mammary tumor virus-polyoma middle T-antigen (MMTV-PyMT) induced mammary tumorigenesis in the presence and absence of PKCβ. We utilize two model systems: one where PKCβ is deleted in both the epithelial and stromal compartments to test the global requirement for PKCβ on tumor formation, and second, where PKCβ is deleted only in the stromal compartment to test its role in the TME. MMTV-PyMT mice globally lacking PKCβ live longer and develop smaller tumors with decreased proliferation and decreased macrophage infiltration. Similarly, when PKCβ is null exclusively in the stroma, PyMT-driven B6 cells form smaller tumors with diminished collagen deposition. These experiments reveal for the first time a tumor promoting role for stromal PKCβ in MMTV-PyMT tumorigenesis. In corroboration with these results, PKCβ mRNA (Prkcb) is increased in fibroblasts isolated from MMTV-PyMT tumors. These data were confirmed in a breast cancer patient cohort. Combined these data suggest the continued investigation of PKCβ in the mammary TME is necessary to elucidate how to effectively target this signaling pathway in breast cancer.

  2. Tim-3 expression in cervical cancer promotes tumor metastasis.

    Directory of Open Access Journals (Sweden)

    Yang Cao

    Full Text Available T cell immunoglobulin mucin-3 (Tim-3 has been identified as a negative regulator of anti-tumor immunity. Recent studies highlight the important role of Tim-3 in the CD8(+ T cell exhaustion that takes place in both human and animal cancer models. However, the nature of Tim-3 expression in the tumor cell and the mechanism by which it inhibits anti-tumor immunity are unclear. This present study aims to determine Tim-3 is expressed in cervical cancer cells and to evaluate the role of Tim-3 in cervical cancer progression.A total of 85 cervical tissue specimens including 43 human cervical cancer, 22 cervical intraepithelial neoplasia (CIN and 20 chronic cervicitis were involved. Tim-3 expression in tumor cells was detected and was found to correlate with clinicopathological parameters. Meanwhile, expression of Tim-3 was assessed by RT-PCR, Western Blot and confocal microscopy in cervical cancer cell lines, HeLa and SiHa. The migration and invasion potential of Hela cells was evaluated after inhibiting Tim-3 expression by ADV-antisense Tim-3.We found that Tim-3 was expressed at a higher level in the clinical cervical cancer cells compared to the CIN and chronic cervicitis controls. We supported this finding by confirming the presence of Tim-3 mRNA and protein in the cervical cell lines. Tim-3 expression in tumor cells correlated with clinicopathological parameters. Patients with high expression of Tim-3 had a significant metastatic potential, advanced cancer grades and shorter overall survival than those with lower expression. Multivariate analysis showed that Tim-3 expression was an independent factor for predicting the prognosis of cervical cancer. Significantly, down-regulating the expression of Tim-3 protein inhibited migration and invasion of Hela cells. Our study suggests that the expression of Tim-3 in tumor cells may be an independent prognostic factor for patients with cervical cancer. Moreover, Tim-3 expression may promote metastatic

  3. The influence of glucocorticoid signaling on tumor progression.

    Science.gov (United States)

    Volden, Paul A; Conzen, Suzanne D

    2013-03-01

    The diagnosis of cancer elicits a broad range of well-characterized stress-related biobehavioral responses. Recent studies also suggest that an individual's neuroendocrine stress response can influence tumor biology. One of the major physiological pathways altered by the response to unrelenting social stressors is the hypothalamic-pituitary-adrenal or HPA axis. Initially following acute stress exposure, an increased glucocorticoid response is observed; eventually, chronic stress exposure can lead to a blunting of the normal diurnal cortisol pattern. Interestingly, recent evidence also links high primary tumor glucocorticoid receptor expression (and associated increased glucocorticoid-mediated gene expression) to more rapid estrogen-independent breast cancer progression. Furthermore, animal models of human breast cancer suggest that glucocorticoids inhibit tumor cell apoptosis. These findings provide a conceptual basis for understanding the molecular mechanisms underlying the influence of the individual's stress response, and specifically glucocorticoid action, on breast cancer and other solid tumor biology. How this increased glucocorticoid signaling might contribute to cancer progression is the subject of this review. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Sesquiterpene lactones isolated from indigenous Middle Eastern plants inhibit tumor promoter-induced transformation of JB6 cells

    Science.gov (United States)

    2012-01-01

    Background Sesquiterpene lactones (SL) are plant secondary metabolites that are known for their anti-fungal, anti-bacterial, anti-inflammatory, and anti-tumor properties. Considering that several SL-derived drugs are currently in cancer clinical trials, we have tested two SL molecules, 3-β-methoxy-iso-seco-tanapartholide (β-tan) isolated from Achillea falcata and salograviolide A (Sal A) isolated from Centaurea ainetensis, for their anti-tumor properties. We used the mouse epidermal JB6P + cells as a model for tumor promotion and cellular transformation. Key players that are involved in cellular transformation and tumorigenesis are the AP-1 and NF-κB transcription factors; therefore, we assessed how β-tan and Sal A modulate their signaling pathways in JB6P + cells. Methods The effects of β-tan and Sal A on the growth of normal and neoplastic keratinocytes and on the tumor promotion-responsive JB6P + cells were determined using the MTT assay. Anchorage-independent cell growth transformation assays were used to evaluate the anti-tumor promoting properties of these SL molecules in JB6P + cells and dual luciferase reporter assays and western blot analysis were used to investigate their effects on tumor promoter-induced AP-1 and NF-κB activities and protein levels of key AP-1 and NF-кB target genes. Results β-tan and Sal A selectively inhibited tumor promoter-induced cell growth and transformation of JB6P + cells at concentrations that do not affect JB6P + and primary keratinocytes basal cell growth. In addition, both molecules reduced basal and tumor promoter-induced NF-κB transcriptional activities, differentially regulated basal and tumor promoter-induced AP-1 transcriptional activities, and modulated key players of the AP-1 and NF-κB signaling pathways. Conclusions These results highlight the anti-tumor promoting properties of β-tan and Sal A. These SL molecules isolated from two plant species native to the Middle East may provide

  5. Sesquiterpene lactones isolated from indigenous Middle Eastern plants inhibit tumor promoter-induced transformation of JB6 cells

    Directory of Open Access Journals (Sweden)

    Saikali Melody

    2012-07-01

    Full Text Available Abstract Background Sesquiterpene lactones (SL are plant secondary metabolites that are known for their anti-fungal, anti-bacterial, anti-inflammatory, and anti-tumor properties. Considering that several SL-derived drugs are currently in cancer clinical trials, we have tested two SL molecules, 3-β-methoxy-iso-seco-tanapartholide (β-tan isolated from Achillea falcata and salograviolide A (Sal A isolated from Centaurea ainetensis, for their anti-tumor properties. We used the mouse epidermal JB6P + cells as a model for tumor promotion and cellular transformation. Key players that are involved in cellular transformation and tumorigenesis are the AP-1 and NF-κB transcription factors; therefore, we assessed how β-tan and Sal A modulate their signaling pathways in JB6P + cells. Methods The effects of β-tan and Sal A on the growth of normal and neoplastic keratinocytes and on the tumor promotion-responsive JB6P + cells were determined using the MTT assay. Anchorage-independent cell growth transformation assays were used to evaluate the anti-tumor promoting properties of these SL molecules in JB6P + cells and dual luciferase reporter assays and western blot analysis were used to investigate their effects on tumor promoter-induced AP-1 and NF-κB activities and protein levels of key AP-1 and NF-кB target genes. Results β-tan and Sal A selectively inhibited tumor promoter-induced cell growth and transformation of JB6P + cells at concentrations that do not affect JB6P + and primary keratinocytes basal cell growth. In addition, both molecules reduced basal and tumor promoter-induced NF-κB transcriptional activities, differentially regulated basal and tumor promoter-induced AP-1 transcriptional activities, and modulated key players of the AP-1 and NF-κB signaling pathways. Conclusions These results highlight the anti-tumor promoting properties of β-tan and Sal A. These SL molecules isolated from two plant species native to

  6. Sesquiterpene lactones isolated from indigenous Middle Eastern plants inhibit tumor promoter-induced transformation of JB6 cells.

    Science.gov (United States)

    Saikali, Melody; Ghantous, Akram; Halawi, Racha; Talhouk, Salma N; Saliba, Najat A; Darwiche, Nadine

    2012-07-09

    Sesquiterpene lactones (SL) are plant secondary metabolites that are known for their anti-fungal, anti-bacterial, anti-inflammatory, and anti-tumor properties. Considering that several SL-derived drugs are currently in cancer clinical trials, we have tested two SL molecules, 3-β-methoxy-iso-seco-tanapartholide (β-tan) isolated from Achillea falcata and salograviolide A (Sal A) isolated from Centaurea ainetensis, for their anti-tumor properties. We used the mouse epidermal JB6P + cells as a model for tumor promotion and cellular transformation. Key players that are involved in cellular transformation and tumorigenesis are the AP-1 and NF-κB transcription factors; therefore, we assessed how β-tan and Sal A modulate their signaling pathways in JB6P + cells. The effects of β-tan and Sal A on the growth of normal and neoplastic keratinocytes and on the tumor promotion-responsive JB6P + cells were determined using the MTT assay. Anchorage-independent cell growth transformation assays were used to evaluate the anti-tumor promoting properties of these SL molecules in JB6P + cells and dual luciferase reporter assays and western blot analysis were used to investigate their effects on tumor promoter-induced AP-1 and NF-κB activities and protein levels of key AP-1 and NF-кB target genes. β-tan and Sal A selectively inhibited tumor promoter-induced cell growth and transformation of JB6P + cells at concentrations that do not affect JB6P + and primary keratinocytes basal cell growth. In addition, both molecules reduced basal and tumor promoter-induced NF-κB transcriptional activities, differentially regulated basal and tumor promoter-induced AP-1 transcriptional activities, and modulated key players of the AP-1 and NF-κB signaling pathways. These results highlight the anti-tumor promoting properties of β-tan and Sal A. These SL molecules isolated from two plant species native to the Middle East may provide opportunities for complementary

  7. Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling.

    Science.gov (United States)

    López-Lago, Miguel A; Okada, Tomoyo; Murillo, Miguel M; Socci, Nick; Giancotti, Filippo G

    2009-08-01

    Integrin signaling promotes, through p21-activated kinase, phosphorylation and inactivation of the tumor suppressor merlin, thus removing a block to mitogenesis in normal cells. However, the biochemical function of merlin and the effector pathways critical for the pathogenesis of malignant mesothelioma and other NF2-related malignancies are not known. We report that integrin-specific signaling promotes activation of mTORC1 and cap-dependent mRNA translation. Depletion of merlin rescues mTORC1 signaling in cells deprived of anchorage to a permissive extracellular matrix, suggesting that integrin signaling controls mTORC1 through inactivation of merlin. This signaling pathway controls translation of the cyclin D1 mRNA and, thereby, cell cycle progression. In addition, it promotes cell survival. Analysis of a panel of malignant mesothelioma cell lines reveals a strong correlation between loss of merlin and activation of mTORC1. Merlin-negative lines are sensitive to the growth-inhibitory effect of rapamycin, and the expression of recombinant merlin renders them partially resistant to rapamycin. Conversely, depletion of merlin restores rapamycin sensitivity in merlin-positive lines. These results indicate that integrin-mediated adhesion promotes mTORC1 signaling through the inactivation of merlin. Furthermore, they reveal that merlin-negative mesotheliomas display unregulated mTORC1 signaling and are sensitive to rapamycin, thus providing a preclinical rationale for prospective, biomarker-driven clinical studies of mTORC1 inhibitors in these tumors.

  8. Gain-of-function mutant p53 activates small GTPase Rac1 through SUMOylation to promote tumor progression.

    Science.gov (United States)

    Yue, Xuetian; Zhang, Cen; Zhao, Yuhan; Liu, Juan; Lin, Alan W; Tan, Victor M; Drake, Justin M; Liu, Lianxin; Boateng, Michael N; Li, Jun; Feng, Zhaohui; Hu, Wenwei

    2017-08-15

    Tumor suppressor p53 is frequently mutated in human cancer. Mutant p53 often promotes tumor progression through gain-of-function (GOF) mechanisms. However, the mechanisms underlying mutant p53 GOF are not well understood. In this study, we found that mutant p53 activates small GTPase Rac1 as a critical mechanism for mutant p53 GOF to promote tumor progression. Mechanistically, mutant p53 interacts with Rac1 and inhibits its interaction with SUMO-specific protease 1 (SENP1), which in turn inhibits SENP1-mediated de-SUMOylation of Rac1 to activate Rac1. Targeting Rac1 signaling by RNAi, expression of the dominant-negative Rac1 (Rac1 DN), or the specific Rac1 inhibitor NSC23766 greatly inhibits mutant p53 GOF in promoting tumor growth and metastasis. Furthermore, mutant p53 expression is associated with enhanced Rac1 activity in clinical tumor samples. These results uncover a new mechanism for Rac1 activation in tumors and, most importantly, reveal that activation of Rac1 is an unidentified and critical mechanism for mutant p53 GOF in tumorigenesis, which could be targeted for therapy in tumors containing mutant p53. © 2017 Yue et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Loss of mesenchymal CSL signaling leads to field cancerization and multifocal epithelial tumors

    Science.gov (United States)

    Hu, Bing; Castillo, Einar; Harewood, Louise; Ostano, Paola; Reymond, Alexandre; Dummer, Reinhard; Raffoul, Wassim; Hoetzenecker, Wolfram; Hofbauer, Günther F. L.; Dotto, G. Paolo

    2012-01-01

    Summary It is currently unclear whether tissue changes surrounding multifocal epithelial tumors are a cause or consequence of cancer. Here, we provide evidence that loss of mesenchymal Notch/CSL signaling causes tissue alterations, including stromal atrophy and inflammation, which precede and are potent triggers for epithelial tumors. Mice carrying a mesenchymal-specific deletion of CSL/RBP-Jκ, a key Notch effector, exhibit spontaneous multifocal keratinocyte tumors that develop after dermal atrophy and inflammation. CSL-deficient dermal fibroblasts promote increased tumor cell proliferation through up-regulation of c-Jun and c-Fos expression and consequently higher levels of diffusible growth factors, inflammatory cytokines, and matrix remodeling enzymes. In human skin samples, stromal fields adjacent to cutaneous squamous cell carcinomas and multifocal premalignant actinic keratosis lesions exhibit decreased Notch/CSL signaling and associated molecular changes. Importantly, these changes in gene expression are also induced by UVA, a known environmental cause of cutaneous field cancerization and skin cancer. PMID:22682244

  10. Multifocal epithelial tumors and field cancerization from loss of mesenchymal CSL signaling.

    Science.gov (United States)

    Hu, Bing; Castillo, Einar; Harewood, Louise; Ostano, Paola; Reymond, Alexandre; Dummer, Reinhard; Raffoul, Wassim; Hoetzenecker, Wolfram; Hofbauer, Günther F L; Dotto, G Paolo

    2012-06-08

    It is currently unclear whether tissue changes surrounding multifocal epithelial tumors are a cause or consequence of cancer. Here, we provide evidence that loss of mesenchymal Notch/CSL signaling causes tissue alterations, including stromal atrophy and inflammation, which precede and are potent triggers for epithelial tumors. Mice carrying a mesenchymal-specific deletion of CSL/RBP-Jκ, a key Notch effector, exhibit spontaneous multifocal keratinocyte tumors that develop after dermal atrophy and inflammation. CSL-deficient dermal fibroblasts promote increased tumor cell proliferation through upregulation of c-Jun and c-Fos expression and consequently higher levels of diffusible growth factors, inflammatory cytokines, and matrix-remodeling enzymes. In human skin samples, stromal fields adjacent to multifocal premalignant actinic keratosis lesions exhibit decreased Notch/CSL signaling and associated molecular changes. Importantly, these changes in gene expression are also induced by UVA, a known environmental cause of cutaneous field cancerization and skin cancer. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting.

    Directory of Open Access Journals (Sweden)

    Kristian Pietras

    2008-01-01

    Full Text Available BACKGROUND: Important support functions, including promotion of tumor growth, angiogenesis, and invasion, have been attributed to the different cell types populating the tumor stroma, i.e., endothelial cells, cancer-associated fibroblasts, pericytes, and infiltrating inflammatory cells. Fibroblasts have long been recognized inside carcinomas and are increasingly implicated as functional participants. The stroma is prominent in cervical carcinoma, and distinguishable from nonmalignant tissue, suggestive of altered (tumor-promoting functions. We postulated that pharmacological targeting of putative stromal support functions, in particular those of cancer-associated fibroblasts, could have therapeutic utility, and sought to assess the possibility in a pre-clinical setting. METHODS AND FINDINGS: We used a genetically engineered mouse model of cervical carcinogenesis to investigate platelet-derived growth factor (PDGF receptor signaling in cancer-associated fibroblasts and pericytes. Pharmacological blockade of PDGF receptor signaling with the clinically approved kinase inhibitor imatinib slowed progression of premalignant cervical lesions in this model, and impaired the growth of preexisting invasive carcinomas. Inhibition of stromal PDGF receptors reduced proliferation and angiogenesis in cervical lesions through a mechanism involving suppression of expression of the angiogenic factor fibroblast growth factor 2 (FGF-2 and the epithelial cell growth factor FGF-7 by cancer-associated fibroblasts. Treatment with neutralizing antibodies to the PDGF receptors recapitulated these effects. A ligand trap for the FGFs impaired the angiogenic phenotype similarly to imatinib. Thus PDGF ligands expressed by cancerous epithelia evidently stimulate PDGFR-expressing stroma to up-regulate FGFs, promoting angiogenesis and epithelial proliferation, elements of a multicellular signaling network that elicits functional capabilities in the tumor microenvironment

  12. Blockade of Fas signaling in breast cancer cells suppresses tumor growth and metastasis via disruption of Fas signaling-initiated cancer-related inflammation.

    Science.gov (United States)

    Liu, Qiuyan; Tan, Qinchun; Zheng, Yuanyuan; Chen, Kun; Qian, Cheng; Li, Nan; Wang, Qingqing; Cao, Xuetao

    2014-04-18

    Mechanisms for cancer-related inflammation remain to be fully elucidated. Non-apoptotic functions of Fas signaling have been proposed to play an important role in promoting tumor progression. It has yet to be determined if targeting Fas signaling can control tumor progression through suppression of cancer-related inflammation. In the current study we found that breast cancer cells with constitutive Fas expression were resistant to apoptosis induction by agonistic anti-Fas antibody (Jo2) ligation or Fas ligand cross-linking. Higher expression of Fas in human breast cancer tissue has been significantly correlated with poorer prognosis in breast cancer patients. To determine whether blockade of Fas signaling in breast cancer could suppress tumor progression, we prepared an orthotopic xenograft mouse model with mammary cancer cells 4T1 and found that blockade of Fas signaling in 4T1 cancer cells markedly reduced tumor growth, inhibited tumor metastasis in vivo, and prolonged survival of tumor-bearing mice. Mechanistically, blockade of Fas signaling in cancer cells significantly decreased systemic or local recruitment of myeloid derived suppressor cells (MDSCs) in vivo. Furthermore, blockade of Fas signaling markedly reduced IL-6, prostaglandin E2 production from breast cancer cells by impairing p-p38, and activity of the NFκB pathway. In addition, administration of a COX-2 inhibitor and anti-IL-6 antibody significantly reduced MDSC accumulation in vivo. Therefore, blockade of Fas signaling can suppress breast cancer progression by inhibiting proinflammatory cytokine production and MDSC accumulation, indicating that Fas signaling-initiated cancer-related inflammation in breast cancer cells may be a potential target for treatment of breast cancer.

  13. Molecular cues on obesity signals, tumor markers and endometrial cancer.

    Science.gov (United States)

    Daley-Brown, Danielle; Oprea-Ilies, Gabriela M; Lee, Regina; Pattillo, Roland; Gonzalez-Perez, Ruben R

    2015-01-01

    Tumor markers are important tools for early diagnosis, prognosis, therapy response and endometrial cancer monitoring. A large number of molecular and pathologic markers have been described in types I and II endometrial cancers, which has served to define the main oncogenic, epidemiological, genetic, clinical and histopathological features. Ongoing attempts to stratify biological markers of endometrial cancer are presented. However, data on changes in tumor marker profiles in obesity-related endometrial cancer are scarce. Obesity is a pandemic in Western countries that has an important impact on endometrial cancers, albeit through not very well-defined mechanisms. Although endometrial cancer is more common in Caucasian women, higher mortality is found in African Americans who also show higher incidence of obesity. Here, we describe how obesity signals (estrogen, leptin, leptin induced-molecules, Notch; cytokines and growth factors) could affect endometrial cancer. Leptin signaling and its crosstalk may be associated to the more aggressive and poor prognosis type II endometrial cancer, which affects more postmenopausal and African-American women. In this regard, studies on expression of novel molecular markers (Notch, interleukin-1 and leptin crosstalk outcome) may provide essential clues for detection, prevention, treatment and prognosis.

  14. Molecular cues on obesity signals, tumor markers and endometrial cancer

    Science.gov (United States)

    Daley-Brown, Danielle; Oprea-Ilies, Gabriela M.; Lee, Regina; Pattillo, Roland

    2018-01-01

    Tumor markers are important tools for early diagnosis, prognosis, therapy response and endometrial cancer monitoring. A large number of molecular and pathologic markers have been described in types I and II endometrial cancers, which has served to define the main oncogenic, epidemiological, genetic, clinical and histopathological features. Ongoing attempts to stratify biological markers of endometrial cancer are presented. However, data on changes in tumor marker profiles in obesity-related endometrial cancer are scarce. Obesity is a pandemic in Western countries that has an important impact on endometrial cancers, albeit through not very well-defined mechanisms. Although endometrial cancer is more common in Caucasian women, higher mortality is found in African Americans who also show higher incidence of obesity. Here, we describe how obesity signals (estrogen, leptin, leptin induced-molecules, Notch; cytokines and growth factors) could affect endometrial cancer. Leptin signaling and its crosstalk may be associated to the more aggressive and poor prognosis type II endometrial cancer, which affects more postmenopausal and African-American women. In this regard, studies on expression of novel molecular markers (Notch, interleukin-1 and leptin crosstalk outcome) may provide essential clues for detection, prevention, treatment and prognosis. PMID:25781554

  15. Autoimmunity as a double agent in tumor killing and cancer promotion

    Directory of Open Access Journals (Sweden)

    Kevin H. Toomer

    2014-03-01

    Full Text Available Cancer immunotherapy through manipulation of the immune system holds great potential for the treatment of human cancers. However, recent trials targeting the negative immune regulators CTLA4, PD-1 and PD-L1 demonstrated that clinically significant antitumor responses were often associated with the induction of autoimmune toxicity. This finding suggests that the same immune mechanisms that elicit autoimmunity may also contribute to the destruction of tumors. Given that the immunological identity of tumors might be largely an immunoprivileged self, autoimmunity may not represent a wholly undesirable outcome in the context of cancer immunotherapy. Rather, targeted killing of cancer cells and autoimmune damage to healthy tissues may be intricately linked through molecular mechanisms, in particular inflammatory cytokine signaling. On the other hand, since chronic inflammation is a well-recognized condition that promotes tumor development, it appears that autoimmunity can be a double agent in mediating either pro-tumor or antitumor effects. This review surveys the tumor-promoting and tumoricidal activities of several prominent cytokines: IFN-γ, TNF-α, TGF-β, IL-17, IL-23, IL-4, and IL-13, produced by three major subsets of T helper cells that interact with innate immune cells. Many of these cytokines exert divergent and seemingly contradictory effects on cancer development in different human and animal models, suggesting a high degree of context dependence in their functions. We hypothesize that these inflammatory cytokines could mediate a feedback loop of autoimmunity, antitumor immunity and tumorigenesis. Understanding the diverse and paradoxical roles of cytokines from autoimmune responses in the setting of cancer will advance the long-term goal of improving cancer immunotherapy, while minimizing the hazards of immune-mediated tissue damage and the possibility of de novo tumorigenesis, through proper monitoring and preventive measures.

  16. Marine Natural Products as Inhibitors of Hypoxic Signaling in Tumors.

    Science.gov (United States)

    Nagle, Dale G; Zhou, Yu-Dong

    2009-06-01

    Marine natural products have become a major source of new chemical entities in the discovery of potential anticancer agents that potently suppress various antitumor molecular targets. As a consequence of insufficient vascularization, hypoxic regions form within rapidly growing solid tumor masses. Specific alterations of gene expression in these hypoxic tumor cells help facilitate the survival and metastatic spread of solid tumors. The transcriptional response to cellular hypoxia is primarily mediated by the transcription factor hypoxia-inducible factor-1 (HIF-1) that regulates the expression of more than 100 genes involved in cellular adaptation and survival under hypoxic stress. Clinical studies in cancer patients indicate that HIF-1 activation is directly correlated with advanced disease stages and treatment resistance. HIF-1 has emerged as an important tumor-selective molecular target for anticancer drug discovery. As a result, natural product-based inhibitors of HIF-1 activation have been identified from plants and microorganisms. Recently, structurally unique natural products from marine sponges, crinoids, and algae have been identified as HIF-1 activation inhibitors. The US National Cancer Institute's Open Repository of marine invertebrate and algae extracts has proven to be a valuable source of natural product HIF-1 inhibitors. Among the active compounds identified, certain marine natural products have also been shown to suppress the hypoxic induction of HIF-1 target genes such as vascular endothelial growth factor (VEGF). Some of these marine HIF-1 inhibitors act by interfering with the generation of mitochondrial signaling molecules in hypoxic cells. However, the precise mechanisms of action for many newly identified marine natural product HIF-1 inhibitors remain unresolved.

  17. SMC1A recruits tumor-associated-fibroblasts (TAFs) and promotes colorectal cancer metastasis.

    Science.gov (United States)

    Zhou, Pengyang; Xiao, Nan; Wang, Jian; Wang, Zhanhuai; Zheng, Shuchun; Shan, Siyang; Wang, Jianping; Du, Jinlin; Wang, Jianwei

    2017-01-28

    Tumor-associated-fibroblasts (TAFs) are the most important host cells in the stroma and take part in extracellular matrix construction and cancer colony development. During cancer colonization, seed cells from primary tumor can reconstruct the microenvironment by recruiting circulating cancer cells and TAFs to the metastasis site. Previous studies have established that SMC1A, a subunit of cohesin, is an important trigger signal for liver metastasis in colorectal cancer. We investigated the particular effects as well as the underlying mechanism of SMC1A on TAFs recruitment during liver metastasis of colorectal cancer. Here, We found that: first, the high expression of SMC1A in colorectal cancer cells promotes the invasiveness and the viability of these cells by recruiting circulating TAFs, facilitating early tumor construction and tumorigenesis; second, different expression levels of SMC1A influenced the reformation of fibroblasts, which assisted tumorigenesis, and third, expression of SMC1A stimulated the secretion of the inflammatory mediators of TNF-α and IL-1β, and up-regulated the transcriptional expression of MMP2 and VEGF-β, both of which were involved in the tumor-related gene pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana.

    Science.gov (United States)

    Lee, Chil-Woo; Efetova, Marina; Engelmann, Julia C; Kramell, Robert; Wasternack, Claus; Ludwig-Müller, Jutta; Hedrich, Rainer; Deeken, Rosalia

    2009-09-01

    Agrobacterium tumefaciens causes crown gall disease by transferring and integrating bacterial DNA (T-DNA) into the plant genome. To examine the physiological changes and adaptations during Agrobacterium-induced tumor development, we compared the profiles of salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and auxin (indole-3-acetic acid [IAA]) with changes in the Arabidopsis thaliana transcriptome. Our data indicate that host responses were much stronger toward the oncogenic strain C58 than to the disarmed strain GV3101 and that auxin acts as a key modulator of the Arabidopsis-Agrobacterium interaction. At initiation of infection, elevated levels of IAA and ET were associated with the induction of host genes involved in IAA, but not ET signaling. After T-DNA integration, SA as well as IAA and ET accumulated, but JA did not. This did not correlate with SA-controlled pathogenesis-related gene expression in the host, although high SA levels in mutant plants prevented tumor development, while low levels promoted it. Our data are consistent with a scenario in which ET and later on SA control virulence of agrobacteria, whereas ET and auxin stimulate neovascularization during tumor formation. We suggest that crosstalk among IAA, ET, and SA balances pathogen defense launched by the host and tumor growth initiated by agrobacteria.

  19. [Effect of bifunctional IL2-GMCSF in promoting dendritic cell activation in vitro in simulated tumor-induced immune suppression].

    Science.gov (United States)

    Wen, Qian; Xiong, Wenjing; Liu, Sudong; Zhou, Chaoying; Ma, Li

    2015-08-01

    To test the effect of bifunctional molecule IL2-GMCSF in promoting the activation of dendritic cells (DCs) cultured in tumor conditioned medium. We prepared a tumor conditioned medium using mouse melanoma cell line B16F10 supplemented with IL2-GMCSF, GM-CSF, IL-2, or the combination of the latter two. After culturing mouse DC cell line DC2.4 in the conditioned medium for 24 h, the DCs were examined for phagocytosis, proliferation, maturation phenotype, cytokine secretion, and signal pathway activation. DC2.4 cells displayed characteristics of immature DCs. After cell culture in the conditioned medium, the cells showed enhanced phagocytosis but significantly suppressed cell proliferation activity. Culture in the conditioned medium also promoted DC cell maturation and secretion of macrophage-derived chemokine (MDC), but inhibited IL-12 secretion. Supplementation of the conditioned medium with IL2-GMCSF promoted phagocytosis, proliferation, maturation, and cytokine (including both IL-12 and MDC) secretion of DC2.4 cells. Compared with GM-CSF, IL2-GMCSF induced a higher level of NF-κB signal pathway activation but suppressed STAT3 activation. Compared with GM-CSF, IL2-GMCSF can better promote DC activation in the context of tumor-induced immune suppression, and thus shows potentials in anti-tumor therapy.

  20. The oncometabolite fumarate promotes pseudohypoxia through noncanonical activation of NF-κB signaling.

    Science.gov (United States)

    Shanmugasundaram, Karthigayan; Nayak, Bijaya; Shim, Eun-Hee; Livi, Carolina B; Block, Karen; Sudarshan, Sunil

    2014-08-29

    Inactivating mutations of the gene encoding the tricarboxylic acid cycle enzyme fumarate hydratase (FH) have been linked to an aggressive variant of hereditary kidney cancer (hereditary leiomyomatosis and renal cell cancer). These tumors accumulate markedly elevated levels of fumarate. Fumarate is among a growing list of oncometabolites identified in cancers with mutations of genes involved in intermediary metabolism. FH-deficient tumors are notable for their pronounced accumulation of the transcription factor hypoxia inducible factor-1α (HIF-1α) and aggressive behavior. To date, HIF-1α accumulation in hereditary leiomyomatosis and renal cell cancer tumors is thought to result from fumarate-dependent inhibition of prolyl hydroxylases and subsequent evasion from von Hippel-Lindau-dependent degradation. Here, we demonstrate a novel mechanism by which fumarate promotes HIF-1α mRNA and protein accumulation independent of the von Hippel-Lindau pathway. Here we demonstrate that fumarate promotes p65 phosphorylation and p65 accumulation at the HIF-1α promoter through non-canonical signaling via the upstream Tank binding kinase 1 (TBK1). Consistent with these data, inhibition of the TBK1/p65 axis blocks HIF-1α accumulation in cellular models of FH loss and markedly reduces cell invasion of FH-deficient RCC cancer cells. Collectively, our data demonstrate a novel mechanism by which pseudohypoxia is promoted in FH-deficient tumors and identifies TBK1 as a novel putative therapeutic target for the treatment of aggressive fumarate-driven tumors. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Gα12/13 signaling promotes cervical cancer invasion through the RhoA/ROCK-JNK signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Bo; Cui, Jinquan, E-mail: jinquancuijqc@163.com; Wang, Wuliang; Deng, Kehong

    2016-05-13

    Several reports have indicated a role for the members of the G12 family of heterotrimeric G proteins (Gα12 and Gα13) in oncogenesis and tumor cell growth. The aims of the present study were to evaluate the role of G12 signaling in cervical cancer. We demonstrated that expression of the G12 proteins was highly upregulated in cervical cancer cells. Additionally, expression of the activated forms of Gα12/Gα13 but not expression of activated Gαq induced cell invasion through the activation of the RhoA family of G proteins, but had no effect on cell proliferation in the cervical cancer cells. Inhibition of G12 signaling by expression of the RGS domain of the p115-Rho-specific guanine nucleotide exchange factor (p115-RGS) blocked thrombin-stimulated cell invasion, but did not inhibit cell proliferation in cervical cells, whereas the inhibition of Gαq (RGS2) had no effect. Furthermore, G12 signaling was able to activate Rho proteins, and this stimulation was inhibited by p115-RGS, and Gα12-induced invasion was blocked by an inhibitor of RhoA/B/C (C3 toxin). Pharmacological inhibition of JNK remarkably decreased G12-induced JNK activation. Both a JNK inhibitor (SP600125) and a ROCK inhibitor (Y27632) reduced G12-induced JNK and c-Jun activation, and markedly inhibited G12-induced cellular invasion. Collectively, these findings demonstrate that stimulation of G12 proteins is capable of promoting invasion through RhoA/ROCK-JNK activation. -- Highlights: •Gα12/Gα13 is upregulated in cervical cancer cell lines. •Gα12/Gα13 is not involved in cervical cancer cell proliferation. •Gα12/Gα13 promotes cervical cancer cell invasion. •The role of Rho G proteins in G12-promoted cervical cancer cell invasion. •G12 promotes cell invasion through activation of the ROCK-JNK signaling axis.

  2. Disrupting hedgehog and WNT signaling interactions promotes cleft lip pathogenesis

    Science.gov (United States)

    Kurosaka, Hiroshi; Iulianella, Angelo; Williams, Trevor; Trainor, Paul A.

    2014-01-01

    Cleft lip, which results from impaired facial process growth and fusion, is one of the most common craniofacial birth defects. Many genes are known to be involved in the etiology of this disorder; however, our understanding of cleft lip pathogenesis remains incomplete. In the present study, we uncovered a role for sonic hedgehog (SHH) signaling during lip fusion. Mice carrying compound mutations in hedgehog acyltransferase (Hhat) and patched1 (Ptch1) exhibited perturbations in the SHH gradient during frontonasal development, which led to hypoplastic nasal process outgrowth, epithelial seam persistence, and cleft lip. Further investigation revealed that enhanced SHH signaling restricts canonical WNT signaling in the lambdoidal region by promoting expression of genes encoding WNT inhibitors. Moreover, reduction of canonical WNT signaling perturbed p63/interferon regulatory factor 6 (p63/IRF6) signaling, resulting in increased proliferation and decreased cell death, which was followed by persistence of the epithelial seam and cleft lip. Consistent with our results, mutations in genes that disrupt SHH and WNT signaling have been identified in both mice and humans with cleft lip. Collectively, our data illustrate that altered SHH signaling contributes to the etiology and pathogenesis of cleft lip through antagonistic interactions with other gene regulatory networks, including the canonical WNT and p63/IRF6 signaling pathways. PMID:24590292

  3. Blockade of Notch Signaling in Tumor-Bearing Mice May Lead to Tumor Regression, Progression, or Metastasis, Depending on Tumor Cell Types

    Directory of Open Access Journals (Sweden)

    Xing-Bin Hu

    2009-01-01

    Full Text Available It has been reported that blocking Notch signaling in tumor-bearing mice results in abortive angiogenesis and tumor regression. However, given that Notch signaling influences numerous cellular processes in vivo, a comprehensive evaluation of the effect of Notch inactivation on tumor growth would be favorable. In this study, we inoculated four cancer cell lines in mice with the conditional inactivation of recombination signal-binding protein-Jκ (RBP-J, which mediates signaling from all four mammalian Notch receptors. We found that whereas three tumors including hepatocarcinoma, lung cancer, and osteogenic sarcoma grew slower in the RBP-J-deficient mice, at least a melanoma, B16, grew significantly faster in the RBP-J-deficient mice than in the controls, suggesting that the RBP-J-deficient hosts could provide permissive cues for tumor growth. All these tumors showed increased microvessels and up-regulated hypoxia-inducible factor 1α, suggesting that whereas defective angiogenesis resulted in hypoxia, different tumors might grow differentially in the RBP-J-deleted mice. Similarly, increased infiltration of Gr1+/Mac1+ cells were noticed in tumors grown in the RBP-J-inactivated mice. Moreover, we found that when inoculated in the RBP-J knockout hosts, the H22 hepatoma cells had a high frequency of metastasis and lethality, suggesting that at least for H22, deficiency of environmental Notch signaling favored tumor metastasis. Our findings suggested that the general blockade of Notch signaling in tumor-bearing mice could lead to defective angiogenesis in tumors, but depending on tumor cell types, general inhibition of Notch signaling might result in tumor regression, progression, or metastasis.

  4. Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia

    Directory of Open Access Journals (Sweden)

    Meng-Chuan Chen

    2015-07-01

    Full Text Available Activation of hypoxia-induced hypoxia-inducible factors-1 (HIF-1 plays a critical role in promoting tumor angiogenesis, growth and metastasis. Low molecular weight fucoidan (LMWF is prepared from brown algae, and exhibits anticancer activity. However, whether LMWF attenuates hypoxia-induced angiogenesis in bladder cancer cells and the molecular mechanisms involved remain unclear. This is the first study to demonstrate that LMWF can inhibit hypoxia-stimulated H2O2 formation, HIF-1 accumulation and transcriptional activity vascular endothelial growth factor (VEGF secretion, and the migration and invasion in hypoxic human bladder cancer cells (T24 cells. LMWF also downregulated hypoxia-activated phosphorylation of PI3K/AKT/mTOR/p70S6K/4EBP-1 signaling in T24 cells. Blocking PI3K/AKT or mTOR activity strongly diminished hypoxia-induced HIF-1α expression and VEGF secretion in T24 cells, supporting the involvement of PI3K/AKT/mTOR in the induction of HIF-1α and VEGF. Additionally, LMWF significantly attenuated angiogenesis in vitro and in vivo evidenced by reduction of tube formation of hypoxic human umbilical vascular endothelial cells and blood capillary generation in the tumor. Similarly, administration of LMWF also inhibited the HIF-1α and VEGF expression in vivo, accompanied by a reduction of tumor growth. In summary, under hypoxia conditions, the antiangiogenic activity of LMWF in bladder cancer may be associated with suppressing HIF-1/VEGF-regulated signaling pathway.

  5. Pregnancy promotes pituitary tumors by increasing the rate of the cell cycle

    Science.gov (United States)

    Yin, Changjiang; Qi, Xiaoxia

    2017-01-01

    Pituitary tumors may secrete hormones that affect pregnancy. Pregnancy also induces pituitary tumor growth; however, how pregnancy increases the growth of pituitary tumors remains unclear. The present study investigated pregnant female mice with subcutaneous pituitary tumors. The time of tumor occurrence and tumor weight were detected in pregnant and control mice. Tumor weights were measured at the end of the experiment. Blood was collected from pregnant and control mice. Brain-derived neurotrophic factor (BDNF) levels in the blood were detected using an ELISA kit. The in vitro effects of BDNF on pituitary tumor AtT-20 cell proliferation and cell cycle were investigated. It was revealed that pregnancy promoted the growth of pituitary tumors. In comparison to non-pregnant mice, the pregnant mice exhibited increased BDNF levels in the blood. In vitro BDNF treatment was able to increase the rate of proliferation of pituitary tumor cells. Additional cell cycle analysis revealed that BDNF was able to alter the cell cycle distribution of pituitary tumor cells. These results indicated that pregnancy was able to increase the BDNF level and promote the growth of pituitary tumor cells by increasing the rate of the cell cycle, leading to increased tumor growth rate in vivo. The present study provides insights into how pregnancy affects the growth of pituitary tumors. Therefore, it may be beneficial to perform pituitary tumor diagnosis or therapy on pregnant patients. PMID:29085495

  6. Gamma-glutamylcyclotransferase promotes the growth of human glioma cells by activating Notch-Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Shang-Hang; Yu, Ning; Liu, Xi-Yao; Tan, Guo-Wei; Wang, Zhan-Xiang, E-mail: md_wzx7189@163.com

    2016-03-18

    Glioma as an aggressive type tumor is rapidly growing and has become one of the leading cause of cancer-related death worldwide. γ-Glutamylcyclotransferase (GGCT) has been shown as a diagnostic marker in various cancers. To reveal whether there is a correlation between GGCT and human glioma, GGCT expression in human glioma tissues and cell lines was first determined. We found that GGCT expression was up-regulated in human glioma tissues and cell lines. Further, we demonstrate that GGCT knockdown inhibits glioma cell T98G and U251 proliferation and colony formation, whereas GGCT overexpression leads to oppose effects. GGCT overexpression promotes the expression of Notch receptors and activates Akt signaling in glioma cells, and Notch-Akt signaling is activated in glioma tissues with high expression of GGCT. Finally, we show that inhibition of Notch-Akt signaling with Notch inhibitor MK-0752 blocks the effects of GGCT on glioma proliferation and colony formation. In conclusion, GGCT plays a critical role in glioma cell proliferation and may be a potential cancer therapeutic target. - Highlights: • GGCT expression is up-regulated in human glioma tissues and cell lines. • GGCT promotes glioma cell growth and colony formation. • GGCT promotes the activation of Notch-Akt signaling in glioma cells and tissues. • Notch inhibition blocks the role of GGCT in human glioma cells.

  7. The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics

    Science.gov (United States)

    Kang, R; Tang, D; Schapiro, NE; Loux, T; Livesey, KM; Billiar, TR; Wang, H; Van Houten, B; Lotze, MT; Zeh, HJ

    2013-01-01

    Tumor cells require increased adenosine triphosphate (ATP) to support anabolism and proliferation. The precise mechanisms regulating this process in tumor cells are unknown. Here, we show that the receptor for advanced glycation endproducts (RAGE) and one of its primary ligands, high-mobility group box 1 (HMGB1), are required for optimal mitochondrial function within tumors. We found that RAGE is present in the mitochondria of cultured tumor cells as well as primary tumors. RAGE and HMGB1 coordinately enhanced tumor cell mitochondrial complex I activity, ATP production, tumor cell proliferation and migration. Lack of RAGE or inhibition of HMGB1 release diminished ATP production and slowed tumor growth in vitro and in vivo. These findings link, for the first time, the HMGB1–RAGE pathway with changes in bioenergetics. Moreover, our observations provide a novel mechanism within the tumor microenvironment by which necrosis and inflammation promote tumor progression. PMID:23318458

  8. Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway.

    Science.gov (United States)

    Leung, E; Xue, A; Wang, Y; Rougerie, P; Sharma, V P; Eddy, R; Cox, D; Condeelis, J

    2017-05-11

    During metastasis to distant sites, tumor cells migrate to blood vessels. In vivo, breast tumor cells utilize a specialized mode of migration known as streaming, where a linear assembly of tumor cells migrate directionally towards blood vessels on fibronectin-collagen I-containing extracellular matrix (ECM) fibers in response to chemotactic signals. We have successfully reconstructed tumor cell streaming in vitro by co-plating tumors cells, macrophages and endothelial cells on 2.5 μm thick ECM-coated micro-patterned substrates. We found that tumor cells and macrophages, when plated together on the micro-patterned substrates, do not demonstrate sustained directional migration in only one direction (sustained directionality) but show random bi-directional walking. Sustained directionality of tumor cells as seen in vivo was established in vitro when beads coated with human umbilical vein endothelial cells were placed at one end of the micro-patterned 'ECM fibers' within the assay. We demonstrated that these endothelial cells supply the hepatocyte growth factor (HGF) required for the chemotactic gradient responsible for sustained directionality. Using this in vitro reconstituted streaming system, we found that directional streaming is dependent on, and most effectively blocked, by inhibiting the HGF/C-Met signaling pathway between endothelial cells and tumor cells. Key observations made with the in vitro reconstituted system implicating C-Met signaling were confirmed in vivo in mammary tumors using the in vivo invasion assay and intravital multiphoton imaging of tumor cell streaming. These results establish HGF/C-Met as a central organizing signal in blood vessel-directed tumor cell migration in vivo and highlight a promising role for C-Met inhibitors in blocking tumor cell streaming and metastasis in vivo, and for use in human trials.

  9. The Loss of TGF-β Signaling Promotes Prostate Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    William H. Tu

    2003-05-01

    Full Text Available In breast and colon cancers, transforming growth factor (TGIF-β signaling initially has an antineoplastic effect, inhibiting tumor growth, but eventually exerts a proneoplastic effect, increasing motility and cancer spread. In prostate cancer, studies using human samples have correlated the loss of the TGIF-β type II receptor (TβRll with higher tumor grade. To determine the effect of an inhibited TGIF-β pathway on prostate cancer, we bred transgenic mice expressing the tumorigenic SV40 large T antigen in the prostate with transgenic mice expressing a dominant negative TβRII mutant (DNIIR in the prostate. Transgene(s and TGIF-β expression were identified in the prostate and decreased protein levels of plasminogen activator inhibitor type I, as a marker for TGIF-β signaling, correlated with expression of the DNIIR. Although the sizes of the neoplastic prostates were not enlarged, increased amounts of metastasis were observed in mice expressing both transgenes compared to age-matched control mice expressing only the large T antigen transgene. Our study demonstrates for the first time that a disruption of TGIF-β signaling in prostate cancer plays a causal role in promoting tumor metastasis.

  10. MicroRNA-224 promotes tumor progression in nonsmall cell lung cancer

    Science.gov (United States)

    Cui, Ri; Meng, Wei; Sun, Hui-Lung; Kim, Taewan; Ye, Zhenqing; Fassan, Matteo; Jeon, Young-Jun; Li, Bin; Vicentini, Caterina; Peng, Yong; Lee, Tae Jin; Luo, Zhenghua; Liu, Lan; Xu, Dongyuan; Tili, Esmerina; Jin, Victor; Middleton, Justin; Chakravarti, Arnab; Lautenschlaeger, Tim; Croce, Carlo M.

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Despite advancements and improvements in surgical and medical treatments, the survival rate of lung cancer patients remains frustratingly poor. Local control for early-stage nonsmall cell lung cancer (NSCLC) has dramatically improved over the last decades for both operable and inoperable patients. However, the molecular mechanisms of NSCLC invasion leading to regional and distant disease spread remain poorly understood. Here, we identify microRNA-224 (miR-224) to be significantly up-regulated in NSCLC tissues, particularly in resected NSCLC metastasis. Increased miR-224 expression promotes cell migration, invasion, and proliferation by directly targeting the tumor suppressors TNFα-induced protein 1 (TNFAIP1) and SMAD4. In concordance with in vitro studies, mouse xenograft studies validated that miR-224 functions as a potent oncogenic miRNA in NSCLC in vivo. Moreover, we found promoter hypomethylation and activated ERK signaling to be involved in the regulation of miR-224 expression in NSCLC. Up-regulated miR-224, thus, facilitates tumor progression by shifting the equilibrium of the partially antagonist functions of SMAD4 and TNFAIP1 toward enhanced invasion and growth in NSCLC. Our findings indicate that targeting miR-224 could be effective in the treatment of certain lung cancer patients. PMID:26187928

  11. Tumor associated osteoclast-like giant cells promote tumor growth and lymphangiogenesis by secreting vascular endothelial growth factor-C

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Yu [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Department of Cardivascular Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Nakahama, Ken-ichi, E-mail: nakacell@tmd.ac.jp [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Isobe, Mitsuaki [Department of Cardivascular Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Morita, Ikuo [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan)

    2014-03-28

    findings revealed that OGCs in the tumor environment promoted tumor growth and lymphangiogenesis, at least in part, by secreting VEGF-C.

  12. [Total analysis system for tumor promoter microcystins produced by cyanobacteria].

    Science.gov (United States)

    Kondo, F

    2000-02-01

    Microcystins, produced by freshwater cyanobacteria, are cyclic peptide hepatotoxins and tumor promoters. An outbreak of human poisoning attributed to microcystins has been reported in Caruaru, Brazil in 1996, where exposure through renal dialysis led to the death of 50 patients. Although such severe acute effects on human health seem to be rare, microcystins poses problems to human health which could result from low-level, chronic exposure to microcystins in drinking water. It is therefore important to monitor the levels of microcystins in water reservoirs where cyanobacterial blooms occur. We have developed a total analysis system for microcystins using GC-MS and LC-MS. This comprises initial screening of samples to check for the presence of microcystins by detecting 2-methyl-3-methoxy-4-phenylbutyric acid as an ozonolysis product using thermospray interface LC-MS and electron ionization/GC-MS. If a sample is positive in a screening test, it will be necessary to follow through with identification and quantification. Frit-FAB interface LC-MS allowed the rapid identification of microcystins in cyanobacteria and lake water, and also enabled us to identify microcystins and their metabolites formed in vivo in mouse liver. Finally, Frit-FAB/LC-MS using selected ion monitoring could be used for quantitative analysis of microcystins in lake water in the low nanogram range. The total analysis system proposed in the present study should be applicable to studies of the metabolism of microcystins, of their detoxification, and those of the mechanism(s) of the accumulation in the food chain.

  13. Estimates of the risk of bladder tumor promotion by saccharin in rats.

    Science.gov (United States)

    Gaylor, D W; Kadlubar, F F; West, R W

    1988-12-01

    Tumor data from an initiation-promotion bioassay in rats are used to illustrate how urinary bladder tumor risk estimates can be modified to reflect tumor promotion by saccharin. Assuming equal carcinogenic potency in humans and rats, the estimated human risk is equal to the probability of tumors in rats due to saccharin promotion following administration of an initiator times the ratio of the proportion of humans that are initiated to the proportion of initiated rats. The proportion of initiated humans may be somewhere between the proportion of deaths due to bladder cancer in the U.S. population, 0.005, and 1.0. The proportion of initiated animals in the bioassay may be somewhere between the proportion of animals with bladder tumors, 0.41, as observed in an initiated group, and 1.0. Hence, the ratio of the proportion of initiated humans to animals may be between 0.005 and 2.4. Then, the risk of bladder tumors is estimated to be between 0.005 and 2.4 times the estimated risk of tumors in rats promoted by saccharin following administration of an initiator. An upper limit on bladder tumor risk is estimated to be between 0.00038 and 0.18 times the percentage of saccharin in the diet. If a threshold dose exists for saccharin bladder tumor promotion which is above the saccharin consumption level of all humans, then the risk is zero.

  14. Human carcinoma-associated mesenchymal stem cells promote ovarian cancer chemotherapy resistance via a BMP4/HH signaling loop.

    Science.gov (United States)

    Coffman, Lan G; Choi, Yun-Jung; McLean, Karen; Allen, Benjamin L; di Magliano, Marina Pasca; Buckanovich, Ronald J

    2016-02-09

    The tumor microenvironment is critical to cancer growth and therapy resistance. We previously characterized human ovarian carcinoma-associated mesenchymal stem cells (CA-MSCs). CA-MSCs are multi-potent cells that can differentiate into tumor microenvironment components including fibroblasts, myofibroblasts and adipocytes. We previously reported CA-MSCs, compared to normal MSCs, express high levels of BMP proteins and promote tumor growth by increasing numbers of cancer stem-like cells (CSCs). We demonstrate here that ovarian tumor cell-secreted Hedgehog (HH) induces CA-MSC BMP4 expression. CA-MSC-derived BMP4 reciprocally increases ovarian tumor cell HH expression indicating a positive feedback loop. Interruption of this loop with a HH pathway inhibitor or BMP4 blocking antibody decreases CA-MSC-derived BMP4 and tumor-derived HH preventing enrichment of CSCs and reversing chemotherapy resistance. The impact of HH inhibition was only seen in CA-MSC-containing tumors, indicating the importance of a humanized stroma. These results are reciprocal to findings in pancreatic and bladder cancer, suggesting HH signaling effects are tumor tissue specific warranting careful investigation in each tumor type. Collectively, we define a critical positive feedback loop between CA-MSC-derived BMP4 and ovarian tumor cell-secreted HH and present evidence for the further investigation of HH as a clinical target in ovarian cancer.

  15. High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney.

    Science.gov (United States)

    Stemmer, Kerstin; Perez-Tilve, Diego; Ananthakrishnan, Gayathri; Bort, Anja; Seeley, Randy J; Tschöp, Matthias H; Dietrich, Daniel R; Pfluger, Paul T

    2012-09-01

    Obesity and concomitant comorbidities have emerged as public health problems of the first order. For instance, obese individuals have an increased risk for kidney cancer. However, direct mechanisms linking obesity with kidney cancer remain elusive. We hypothesized that diet-induced obesity (DIO) promotes renal carcinogenesis by inducing an inflammatory and tumor-promoting microenvironment. We compared chow-fed lean Wistar rats with those that were sensitive (DIOsens) or partially resistant (DIOres) to DIO to investigate the impact of body adiposity versus dietary nutrient overload in the development of renal preneoplasia and activation of tumor-promoting signaling pathways. Our data clearly show a correlation between body adiposity, the severity of nephropathy, and the total number and incidence of preneoplastic renal lesions. However, similar plasma triglyceride, plasma free fatty acid and renal triglyceride levels were found in chow-fed, DIOres and DIOsens rats, suggesting that lipotoxicity is not a critical contributor to the renal pathology. Obesity-related nephropathy was further associated with regenerative cell proliferation, monocyte infiltration and higher renal expression of monocyte chemotactic protein-1 (MCP-1), interleukin (IL)-6, IL-6 receptor and leptin receptor. Accordingly, we observed increased signal transducer and activator of transcription 3 (STAT3) and mammalian target of rapamycin (mTOR) phosphorylation in tubules with preneoplastic phenotypes. In summary, our results demonstrate that high body adiposity induces an inflammatory and proliferative microenvironment in rat kidneys that promotes the development of preneoplastic lesions, potentially via activation of the STAT3 and mTOR signaling pathways.

  16. High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney

    Directory of Open Access Journals (Sweden)

    Kerstin Stemmer

    2012-09-01

    Obesity and concomitant comorbidities have emerged as public health problems of the first order. For instance, obese individuals have an increased risk for kidney cancer. However, direct mechanisms linking obesity with kidney cancer remain elusive. We hypothesized that diet-induced obesity (DIO promotes renal carcinogenesis by inducing an inflammatory and tumor-promoting microenvironment. We compared chow-fed lean Wistar rats with those that were sensitive (DIOsens or partially resistant (DIOres to DIO to investigate the impact of body adiposity versus dietary nutrient overload in the development of renal preneoplasia and activation of tumor-promoting signaling pathways. Our data clearly show a correlation between body adiposity, the severity of nephropathy, and the total number and incidence of preneoplastic renal lesions. However, similar plasma triglyceride, plasma free fatty acid and renal triglyceride levels were found in chow-fed, DIOres and DIOsens rats, suggesting that lipotoxicity is not a critical contributor to the renal pathology. Obesity-related nephropathy was further associated with regenerative cell proliferation, monocyte infiltration and higher renal expression of monocyte chemotactic protein-1 (MCP-1, interleukin (IL-6, IL-6 receptor and leptin receptor. Accordingly, we observed increased signal transducer and activator of transcription 3 (STAT3 and mammalian target of rapamycin (mTOR phosphorylation in tubules with preneoplastic phenotypes. In summary, our results demonstrate that high body adiposity induces an inflammatory and proliferative microenvironment in rat kidneys that promotes the development of preneoplastic lesions, potentially via activation of the STAT3 and mTOR signaling pathways.

  17. Folic Acid Supplementation Promotes Mammary Tumor Progression in a Rat Model

    Science.gov (United States)

    Deghan Manshadi, Shaidah; Ishiguro, Lisa; Sohn, Kyoung-Jin; Medline, Alan; Renlund, Richard; Croxford, Ruth; Kim, Young-In

    2014-01-01

    Folic acid supplementation may prevent the development of cancer in normal tissues but may promote the progression of established (pre)neoplastic lesions. However, whether or not folic acid supplementation can promote the progression of established (pre)neoplastic mammary lesions is unknown. This is a critically important issue because breast cancer patients and survivors in North America are likely exposed to high levels of folic acid owing to folic acid fortification and widespread supplemental use after cancer diagnosis. We investigated whether folic acid supplementation can promote the progression of established mammary tumors. Female Sprague-Dawley rats were placed on a control diet and mammary tumors were initiated with 7,12-dimethylbenza[a]anthracene at puberty. When the sentinel tumor reached a predefined size, rats were randomized to receive a diet containing the control, 2.5x, 4x, or 5x supplemental levels of folic acid for up to 12 weeks. The sentinel mammary tumor growth was monitored weekly. At necropsy, the sentinel and all other mammary tumors were analyzed histologically. The effect of folic acid supplementation on the expression of proteins involved in proliferation, apoptosis, and mammary tumorigenesis was determined in representative sentinel adenocarcinomas. Although no clear dose-response relationship was observed, folic acid supplementation significantly promoted the progression of the sentinel mammary tumors and was associated with significantly higher sentinel mammary tumor weight and volume compared with the control diet. Furthermore, folic acid supplementation was associated with significantly higher weight and volume of all mammary tumors. The most significant and consistent mammary tumor-promoting effect was observed with the 2.5x supplemental level of folic acid. Folic acid supplementation was also associated with an increased expression of BAX, PARP, and HER2. Our data suggest that folic acid supplementation may promote the progression

  18. Slit2-Robo1 signaling promotes the adhesion, invasion and migration of tongue carcinoma cells via upregulating matrix metalloproteinases 2 and 9, and downregulating E-cadherin

    OpenAIRE

    Zhao, Yuan; Zhou, Feng-li; Li, Wei-Ping; Wang,Jing; Wang, Li-Jing

    2016-01-01

    Whether Slit homologue 2 (Slit2) inhibits or promotes tumor cell migration remains controversial, and the role of Slit2-Roundabout 1 (Robo1) signaling in oral cancer remains to be fully elucidated. The aim of the present study was to investigate the role of Slit2-Robo1 signaling in the adhesion, invasion and migration of tongue carcinoma cells, and the mechanism by which Slit2-Robo1 signaling inhibits or promotes tumor cell migration. Tca8113 tongue carcinoma cells were treated with the monoc...

  19. Dysregulated KLF4 and Vitamin D Receptor Signaling Promotes Hepatocellular Carcinoma Progression

    Science.gov (United States)

    Li, Qi; Gao, Yong; Jia, Zhiliang; Mishra, Lopa; Guo, Kun; Li, Zhiwei; Le, Xiangdong; Wei, Daoyan; Huang, Suyun; Xie, Keping

    2013-01-01

    BACKGROUND & AIMS Krüppel-like factor 4 (KLF4) is a putative tumor suppressor gene, however, the functional status and significance of KLF4 in hepatocellular carcinogenesis is unknown. In this study, we sought to determine the clinical significance and underlying mechanisms of its dysregulated signaling and biologic impact. METHODS We have used HCC tissue microarray and molecular biology and animal models to evaluate the activation and function of KLF4-Vitamin D Receptor (VDR) pathway in human HCC. RESULTS KLF4 protein expression was decreased or lost in primary HCC and, in particular, lymph node metastases when compared with that in normal liver. Moreover, loss of KLF4 expression in the primary tumors was significantly associated with poor survival, and also a prognostic marker. Consistently, most human HCC cell lines exhibited loss of or a substantial decrease in KLF4 expression. Promoter hypermethylation contributed to the decreased KLF4 expression. Enforced restoration of KLF4 expression resulted in MET, and marked inhibition of cell migration, invasion and growth in vitro, and significantly attenuated tumor growth and metastasis in animal models. Moreover, VDR is a direct transcriptional target of KLF4 and two KLF4-binding sites in the VDR promoter bound specifically to KLF4 protein. Increased VDR expression sensitized the inhibitory effects of Vitamin D on tumor growth. CONCLUSIONS The novel KLF4-VDR pathway plays a critical role in HCC development and progression and its deregulated signaling could be a promising new molecular target for designing novel preventive and therapeutic strategies to control this malignancy. PMID:22677193

  20. Epigenetic identification of ZNF545 as a functional tumor suppressor in multiple myeloma via activation of p53 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yu [Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Zhan, Qian [The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Xu, Hongying [Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Li, Lili; Li, Chen [Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute (Hong Kong); Xiao, Qian; Xiang, Shili; Hui, Tianli [Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Xiang, Tingxiu, E-mail: larissaxiang@163.com [Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Ren, Guosheng, E-mail: rengs726@126.com [Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China)

    2016-06-10

    The KRAB–zinc-finger protein ZNF545 was recently identified as a potential suppressor gene in several tumors. However, the regulatory mechanisms of ZNF545 in tumorigenesis remain unclear. In this study, we investigated the expression and roles of ZNF545 in multiple myeloma (MM). ZNF545 was frequently downregulated in MM tissues compared with non-tumor bone marrow tissues. ZNF545 expression was silenced by promoter methylation in MM cell lines, and could be restored by demethylation treatment. ZNF545 methylation was detected in 28.3% of MM tissues, compared with 4.3% of normal bone marrow tissues. ZNF545 transcriptionally activated the p53 signaling pathway but had no effect on Akt in MM, whereas ectopic expression of ZNF545 in silenced cells suppressed their proliferation and induced apoptosis. We therefore identified ZNF545 as a novel tumor suppressor inhibiting tumor growth through activation of the p53 pathway in MM. Moreover, tumor-specific methylation of ZNF545 may represent an epigenetic biomarker for MM diagnosis, and a potential target for specific therapy. -- Highlights: •Downregulated ZNF545 in MM tissues and cell lines and ectopic expression of ZNF545 suppresses tumor growth. •Tumor-specific methylation of ZNF545 represents an epigenetic biomarker for MM diagnosis, and a potential target for specific therapy. •ZNF545 exerts its tumor suppressive effects via transcriptional activating p53 pathway.

  1. Adiponectin haploinsufficiency promotes mammary tumor development in MMTV-PyVT mice by modulation of phosphatase and tensin homolog activities.

    Directory of Open Access Journals (Sweden)

    Janice B B Lam

    Full Text Available Adiponectin is an adipokine possessing beneficial effects on obesity-related medical complications. A negative association of adiponectin levels with breast cancer development has been demonstrated. However, the precise role of adiponectin deficiency in mammary carcinogenesis remains elusive.In the present study, MMTV-polyomavirus middle T antigen (MMTV-PyVT transgenic mice with reduced adiponectin expressions were established and the stromal effects of adiponectin haploinsufficiency on mammary tumor development evaluated. In mice from both FVB/N and C57BL/6J backgrounds, insufficient adiponectin production promoted mammary tumor onset and development. A distinctive basal-like subtype of tumors, with a more aggressive phenotype, was derived from adiponectin haplodeficient MMTV-PyVT mice. Comparing with those from control MMTV-PyVT mice, the isolated mammary tumor cells showed enhanced tumor progression in re-implanted nude mice, accelerated proliferation in primary cultures, and hyperactivated phosphatidylinositol-3-kinase (PI3K/Akt/beta-catenin signaling, which at least partly attributed to the decreased phosphatase and tensin homolog (PTEN activities. Further analysis revealed that PTEN was inactivated by a redox-regulated mechanism. Increased association of PTEN-thioredoxin complexes was detected in tumors derived from mice with reduced adiponectin levels. The activities of thioredoxin (Trx1 and thioredoxin reductase (TrxR1 were significantly elevated, whereas treatment with either curcumin, an irreversible inhibitor of TrxR1, or adiponectin largely attenuated their activities and resulted in the re-activation of PTEN in these tumor cells. Moreover, adiponectin could inhibit TrxR1 promoter-mediated transcription and restore the mRNA expressions of TrxR1.Adiponectin haploinsufficiency facilitated mammary tumorigenesis by down-regulation of PTEN activity and activation of PI3K/Akt signalling pathway through a mechanism involving Trx1/TrxR1

  2. Triggering the landslide: The tumor-promotional effects of myofibroblasts.

    Science.gov (United States)

    Mehner, Christine; Radisky, Derek C

    2013-07-01

    Cancers become significantly more dangerous when the tumor progresses from in situ, or contained, to an invasive state, in which the cancer cells acquire the ability to pass through the surrounding basement membrane (BM), a specialized extracellular matrix (ECM) that provides structure and contextual information to the underlying tissue. While the majority of tumors are carcinomas, derived from epithelial cells, it is the stromal cells surrounding the epithelial-derived tumor cells, including fibroblasts and myofibroblasts, vasculature, and immune cells, that are largely responsible for the production and remodeling of the ECM. Here, we will discuss myofibroblasts as key effectors of tumor progression, focusing on recent advances in breast and pancreatic carcinoma, showing how myofibroblasts may function properly in normal tissue remodeling and wound-healing processes, how in the tumor context they can drive cancer invasion and metastasis, and how the pathogenic functions of myofibroblasts may be targeted therapeutically. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Binding Mode Analysis of Zerumbone to Key Signal Proteins in the Tumor Necrosis Factor Pathway

    Science.gov (United States)

    Fatima, Ayesha; Abdul, Ahmad Bustamam Hj.; Abdullah, Rasedee; Karjiban, Roghayeh Abedi; Lee, Vannajan Sanghiran

    2015-01-01

    Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF) α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL) death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ) and the Nuclear factor κB (NF-κB) component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis. PMID:25629232

  4. The epigenetic modifier PRDM5 functions as a tumor suppressor through modulating WNT/β-catenin signaling and is frequently silenced in multiple tumors.

    Directory of Open Access Journals (Sweden)

    Xing-sheng Shu

    Full Text Available BACKGROUND: PRDM (PRDI-BF1 and RIZ domain containing proteins are zinc finger proteins involved in multiple cellular regulations by acting as epigenetic modifiers. We studied a recently identified PRDM member PRDM5 for its epigenetic abnormality and tumor suppressive functions in multiple tumorigeneses. METHODOLOGY/PRINCIPAL FINDINGS: Semi-quantitative RT-PCR showed that PRDM5 was broadly expressed in human normal tissues, but frequently silenced or downregulated in multiple carcinoma cell lines due to promoter CpG methylation, including 80% (4/5 nasopharyngeal, 44% (8/18 esophageal, 76% (13/17 gastric, 50% (2/4 cervical, and 25% (3/12 hepatocellular carcinoma cell lines, but not in any immortalized normal epithelial cell lines. PRDM5 expression could be restored by 5-aza-2'-deoxycytidine demethylation treatment in silenced cell lines. PRDM5 methylation was frequently detected by methylation-specific PCR (MSP in multiple primary tumors, including 93% (43/46 nasopharyngeal, 58% (25/43 esophageal, 88% (37/42 gastric and 63% (29/46 hepatocellular tumors. PRDM5 was further found a stress-responsive gene, but its response was impaired when the promoter was methylated. Ectopic PRDM5 expression significantly inhibited tumor cell clonogenicity, accompanied by the inhibition of TCF/β-catenin-dependent transcription and downregulation of CDK4, TWIST1 and MDM2 oncogenes, while knocking down of PRDM5 expression lead to increased cell proliferation. ChIP assay showed that PRDM5 bound to its target gene promoters and suppressed their transcription. An inverse correlation between the expression of PRDM5 and activated β-catenin was also observed in cell lines. CONCLUSIONS/SIGNIFICANCE: PRDM5 functions as a tumor suppressor at least partially through antagonizing aberrant WNT/β-catenin signaling and oncogene expression. Frequent epigenetic silencing of PRDM5 is involved in multiple tumorigeneses, which could serve as a tumor biomarker.

  5. Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NFκB-TLR signaling pathway

    Directory of Open Access Journals (Sweden)

    Xiaoxia Li

    2016-04-01

    Full Text Available Abstract Background In tumor microenvironment, a continuous cross-talk between cancer cells and other cellular components is required to sustain tumor progression. Accumulating evidence suggests that exosomes, a novel way of cell communication, play an important role in such cross-talk. Exosomes could facilitate the direct intercellular transfer of proteins, lipids, and miRNA/mRNA/DNAs between cells. Since mesenchymal stem cells (MSCs can be attracted to tumor sites and become an important component of the tumor microenvironment, there is an urgent need to reveal the effect of tumor exosomes on MSCs and to further explore the underlying molecular mechanisms. Methods Exosomes were harvested from lung cancer cell line A549 and added to MSCs. Secretion of inflammation-associated cytokines in exosome-treated MSCs were analyzed by RT-PCR and ELISA. The growth-promoting effect of exosome-treated MSCs on lung tumor cells was evaluated by in vivo mouse xenograft model. Signaling pathway involved in exosomes-treated MSCs was detected by PCR array of human toll-like receptor signaling pathway, RT-PCR, and Western blot. Results Data showed that lung tumor cell A549-derived exosomes could induce a pro-inflammatory phenotype in MSCs named P-MSCs, which have significantly elevated secretion of IL-6, IL-8, and MCP-1. P-MSCs possess a greatly enhanced ability in promoting lung tumor growth in mouse xenograft model. Analysis of the signaling pathways in P-MSCs revealed a fast triggering of NF-κB. Genetic ablation of Toll-like receptor 2 (TLR2 by siRNA and TLR2-neutralizing antibody could block NF-κB activation by exosomes. We further found that Hsp70 present on the surface of lung tumor exosomes contributed to the induction of P-MSCs by A549 exosomes. Conclusions Our studies suggest a novel mechanism by which lung tumor cell-derived exosomes induce pro-inflammatory activity of MSCs which in turn get tumor supportive characteristics.

  6. IL-33 promotes growth and liver metastasis of colorectal cancer in mice by remodeling the tumor microenvironment and inducing angiogenesis.

    Science.gov (United States)

    Zhang, Yu; Davis, Celestia; Shah, Sapana; Hughes, Daniel; Ryan, James C; Altomare, Diego; Peña, Maria Marjorette O

    2017-01-01

    Liver metastasis is the major cause of death from colorectal cancer (CRC). Understanding its mechanisms is necessary for timely diagnosis and development of effective therapies. Interleukin-33 (IL-33) is an IL-1 cytokine family member that uniquely functions as a cytokine and nuclear factor. It is released by necrotic epithelial cells and activated innate immune cells, functioning as an alarmin or an early danger signal. Its role in invoking type 2 immune response has been established; however, it has contrasting roles in tumor development and metastasis. We identified IL-33 as a potently upregulated cytokine in a highly metastatic murine CRC cell line and examined its role in tumor growth and metastasis to the liver. IL-33 was transgenically expressed in murine and human adenocarcinoma and carcinoma cell lines and their growth and spontaneous metastasis to the liver were assessed in orthotopic models of CRC in wild-type C57Bl/6 and Il33 knockout mice. The results showed that increased expression of IL-33 in CRC cells enhanced their tumor take, growth, and liver metastasis. Tumor- rather than host-derived IL-33 induced the enhanced recruitment of CD11b+ GR1+ and CD11b+ F4/80+ myeloid cells to remodel the tumor microenvironment by increased expression of mobilizing cytokines, and tumor angiogenesis by activating endothelial cells. IL-33 expression was elevated in patient tumor tissues, induced early in adenoma development, and activated by pro-inflammatory cytokines derived from the tumor microenvironment. The data suggest that tumor-derived IL-33 modulates the tumor microenvironment to potently promote colon carcinogenesis and liver metastasis, underscoring its potential as a therapeutic target. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. PDGFRB Promotes Liver Metastasis Formation of Mesenchymal-Like Colorectal Tumor Cells

    Directory of Open Access Journals (Sweden)

    Ernst J.A. Steller

    2013-02-01

    Full Text Available In epithelial tumors, the platelet-derived growth factor receptor B (PDGFRB is mainly expressed by stromal cells of mesenchymal origin. Tumor cells may also acquire PDGFRB expression following epithelial-to-mesenchymal transition (EMT, which occurs during metastasis formation. Little is known about PDGFRB signaling in colorectal tumor cells. We studied the relationship between PDGFRB expression, EMT, and metastasis in human colorectal cancer (CRC cohorts by analysis of gene expression profiles. PDGFRB expression in primary CRC was correlated with short disease-free and overall survival. PDGFRB was co-expressed with genes involved in platelet activation, transforming growth factor beta (TGFB signaling, and EMT in three CRC cohorts. PDGFRB was expressed in mesenchymal-like tumor cell lines in vitro and stimulated invasion and liver metastasis formation in mice. Platelets, a major source of PDGF, preferentially bound to tumor cells in a non-activated state. Platelet activation caused robust PDGFRB tyrosine phosphorylation on tumor cells in vitro and in liver sinusoids in vivo. Platelets also release TGFB, which is a potent inducer of EMT. Inhibition of TGFB signaling in tumor cells caused partial reversion of the mesenchymal phenotype and strongly reduced PDGFRB expression and PDGF-stimulated tumor cell invasion. These results suggest that PDGFRB may contribute to the aggressive phenotype of colorectal tumors with mesenchymal properties, most likely downstream of platelet activation and TGFB signaling.

  8. Tumor-associated calcium signal transducer 2 regulates neovascularization of non-small-cell lung cancer via activating ERK1/2 signaling pathway.

    Science.gov (United States)

    Guo, Xiaobin; Zhu, Xiaoming; Zhao, Limin; Li, Xiao; Cheng, Dongjun; Feng, Keqing

    2017-03-01

    Lung cancer, especially the non-small-cell lung cancer, is a highly aggressive vascular cancer with excessively activated signaling pathways. Tumor-associated calcium signal transducer 2, also known as trop2, was identified to be correlated with tumor proliferation and invasion of non-small-cell lung cancer; however, the biological role of trop2 in neovascularization of non-small-cell lung cancer remained elusive. In this study, we first verified that trop2 was overexpressed in non-small-cell lung cancer tissues as well as cell lines and that the increased expression of trop2 promoted non-small-cell lung cancer cell proliferation and invasion. Then, we expanded the biological role of trop2 by in vitro and in vivo angiogenesis assay. The tubular formation analysis revealed that trop2 promoted non-small-cell lung cancer angiogenesis in vitro, and the immunohistochemistry staining of vascular markers (CD31 and CD34) provided evidences that trop2 promoted in vivo neovascularization. The results of polymerase chain reaction array revealed that trop2 promoted the expression level of two well-known angiogenesis factors MMP13 and PECAM1. By screening the trop2-related signaling pathways, we observed that excessive angiogenesis was correlated with activation of ERK1/2 signaling pathway, and ERK1/2 inhibitor (U0126) could suppress the tubular formation ability induced by trop2 expression. These results suggested that trop2 facilitated neovascularization of non-small-cell lung cancer via activating ERK1/2 signaling pathway. Targeting trop2 might provide novel anti-angiogenesis strategy for non-small-cell lung cancer treatment.

  9. Tumor-secreted LOXL2 activates fibroblasts through FAK signaling

    DEFF Research Database (Denmark)

    Barker, Holly E; Bird, Demelza; Lang, Georgina

    2013-01-01

    models. Here, we discovered that tumor-derived LOXL2 directly activated stromal fibroblasts in the tumor microenvironment. Genetic manipulation or antibody inhibition of LOXL2 in orthotopically grown mammary tumors reduced the expression of α-smooth muscle actin (α-SMA). Using a marker for reticular...... fibroblasts, it was determined that expression of α-SMA was localized to fibroblasts recruited from the host tissue. This marker also revealed that the matrix present in tumors with reduced levels of LOXL2 was more scattered compared with control tumors which exhibited matrices with dense, parallel alignments....... Importantly, in vitro assays revealed that tumor-derived LOXL2 and a recombinant LOXL2 protein induced fibroblast branching on collagen matrices, as well as increased fibroblast-mediated collagen contraction and invasion of fibroblasts through extracellular matrix. Moreover, LOXL2 induced the expression of α-SMA...

  10. Osteoprotegerin mediates tumor-promoting effects of Interleukin-1beta in breast cancer cells

    NARCIS (Netherlands)

    Chung, S.T.M. (Stephanie Tsang Mui); D. Geerts (Dirk); Roseman, K. (Kim); Renaud, A. (Ashleigh); Connelly, L. (Linda)

    2017-01-01

    markdownabstract__Background:__ It is widely recognized that inflammation promotes breast cancer invasion and metastasis. Given the complex nature of the breast tumor inflammatory microenvironment, much remains to be understood of the molecular mechanisms that govern these effects. We have

  11. CDC5L Promotes hTERT Expression and Colorectal Tumor Growth

    Directory of Open Access Journals (Sweden)

    Jia Li

    2017-05-01

    Full Text Available Background/Aims: Colorectal cancer (CRC is the third leading cause of cancer-related death worldwide because the survival rate remains low. Cell division cycle 5-like (CDC5L is highly expressed in some cancer cells, but the mechanism requires clarification. Human telomerase reverse transcriptase (hTERT plays important roles in CRC. Methods: This study aimed to identify a link between CDC5L and hTERT and to determine their effects on the signaling pathways, migration and prognosis of CRC cells. We first treated LoVo cells with biotin-labeled hTERT and identified CDC5L. Then, pulldown and ChIP assays were used to verify whether CDC5L was a promoter of hTERT. The roles of CDC5L and hTERT in cell growth and migration were studied using siRNA in vivo and in vitro. 130 human CRC specimens were analyzed using immunohistochemistry. Western blot and wound scratch analyses were used to determine the signaling pathway for CDC5L-mediated activation of CRC growth and migration. Results: We identified CDC5L as a new hTERT promoter-binding protein. Clinically, CDC5L and hTERT expression levels were key factors in the prognosis of CRC patients. CDC5L knockdown inhibited tumor growth by down-regulating hTERT expression, and CDC5L was shown to be a transcriptional activator of hTERT in a luciferase reporter assay. Conclusion: Altogether, the above results demonstrated that CDC5L was positively correlated with hTERT as a key promoter of CRC cells. To some extent, our findings suggest that CDC5L may serve as a novel therapeutic target for human colorectal cancer.

  12. Tumor sialylation impedes T cell mediated anti-tumor responses while promoting tumor associated-regulatory T cells

    NARCIS (Netherlands)

    Perdicchio, Maurizio; Cornelissen, Lenneke A. M.; Streng-Ouwehand, Ingeborg; Engels, Steef; Verstege, Marleen I.; Boon, Louis; Geerts, Dirk; van Kooyk, Yvette; Unger, Wendy W. J.

    2016-01-01

    The increased presence of sialylated glycans on the tumor surface has been linked to poor prognosis, yet the effects on tumor-specific T cell immunity are hardly studied. We here show that hypersialylation of B16 melanoma substantially influences tumor growth by preventing the formation of effector

  13. Tumor sialylation impedes T cell mediated anti-tumor responses while promoting tumor associated-regulatory T cells

    NARCIS (Netherlands)

    M. Perdicchio (Maurizio); L.A.M. Cornelissen (Lenneke A.M.); I. Streng-Ouwehand (Ingeborg); S. Engels (Steef); M.I. Verstege (Marleen I.); L. Boon (Louis); D. Geerts (Dirk); Y. van Kooyk (Yvette); W.W. Unger (Wendy)

    2016-01-01

    textabstractThe increased presence of sialylated glycans on the tumor surface has been linked to poor prognosis, yet the effects on tumor-specific T cell immunity are hardly studied. We here show that hypersialylation of B16 melanoma substantially influences tumor growth by preventing the formation

  14. Epithelial membrane protein-2 promotes endometrial tumor formation through activation of FAK and Src.

    Directory of Open Access Journals (Sweden)

    Maoyong Fu

    Full Text Available Endometrial cancer is the most common gynecologic malignancy diagnosed among women in developed countries. One recent biomarker strongly associated with disease progression and survival is epithelial membrane protein-2 (EMP2, a tetraspan protein known to associate with and modify surface expression of certain integrin isoforms. In this study, we show using a xenograft model system that EMP2 expression is necessary for efficient endometrial tumor formation, and we have started to characterize the mechanism by which EMP2 contributes to this malignant phenotype. In endometrial cancer cells, the focal adhesion kinase (FAK/Src pathway appears to regulate migration as measured through wound healing assays. Manipulation of EMP2 levels in endometrial cancer cells regulates the phosphorylation of FAK and Src, and promotes their distribution into lipid raft domains. Notably, cells with low levels of EMP2 fail to migrate and poorly form tumors in vivo. These findings reveal the pivotal role of EMP2 in endometrial cancer carcinogenesis, and suggest that the association of elevated EMP2 levels with endometrial cancer prognosis may be causally linked to its effect on integrin-mediated signaling.

  15. Caffeine promotes wakefulness via dopamine signaling in Drosophila

    Science.gov (United States)

    Nall, Aleksandra H.; Shakhmantsir, Iryna; Cichewicz, Karol; Birman, Serge; Hirsh, Jay; Sehgal, Amita

    2016-01-01

    Caffeine is the most widely-consumed psychoactive drug in the world, but our understanding of how caffeine affects our brains is relatively incomplete. Most studies focus on effects of caffeine on adenosine receptors, but there is evidence for other, more complex mechanisms. In the fruit fly Drosophila melanogaster, which shows a robust diurnal pattern of sleep/wake activity, caffeine reduces nighttime sleep behavior independently of the one known adenosine receptor. Here, we show that dopamine is required for the wake-promoting effect of caffeine in the fly, and that caffeine likely acts presynaptically to increase dopamine signaling. We identify a cluster of neurons, the paired anterior medial (PAM) cluster of dopaminergic neurons, as the ones relevant for the caffeine response. PAM neurons show increased activity following caffeine administration, and promote wake when activated. Also, inhibition of these neurons abrogates sleep suppression by caffeine. While previous studies have focused on adenosine-receptor mediated mechanisms for caffeine action, we have identified a role for dopaminergic neurons in the arousal-promoting effect of caffeine. PMID:26868675

  16. Tumor Restrictive Suicide Gene Therapy for Glioma Controlled by the FOS Promoter.

    Science.gov (United States)

    Pan, Jianqing; Wang, Hao; Liu, Xinmin; Hu, Jiliang; Song, Weijian; Luo, Jie; Jiang, Shan; Yan, Fei; Zhai, Baojin

    2015-01-01

    Effective suicide gene delivery and expression are crucial to achieving successful effects in gene therapy. An ideal tumor-specific promoter expresses therapeutic genes in tumor cells with minimal normal tissue expression. We compared the activity of the FOS (FBJ murine osteosarcoma viral oncogene homolog) promoter with five alternative tumor-specific promoters in glioma cells and non-malignant astrocytes. The FOS promoter caused significantly higher transcriptional activity in glioma cell lines than all alternative promoters with the exception of CMV. The FOS promoter showed 13.9%, 32.4%, and 70.8% of the transcriptional activity of CMV in three glioma cell lines (U87, U251, and U373). Importantly, however, the FOS promoter showed only 1.6% of the transcriptional activity of CMV in normal astrocytes. We also tested the biologic activity of recombinant adenovirus containing the suicide gene herpes simplex virus thymidine kinase (HSV-tk) driven by the FOS promoter, including selective killing efficacy in vitro and tumor inhibition rate in vivo. Adenoviral-mediated delivery of the HSV-tk gene controlled by the FOS promoter conferred a cytotoxic effect on human glioma cells in vitro and in vivo. This study suggests that use of the FOS-tk adenovirus system is a promising strategy for glioma-specific gene therapy but still much left for improvement.

  17. Tumor Restrictive Suicide Gene Therapy for Glioma Controlled by the FOS Promoter.

    Directory of Open Access Journals (Sweden)

    Jianqing Pan

    Full Text Available Effective suicide gene delivery and expression are crucial to achieving successful effects in gene therapy. An ideal tumor-specific promoter expresses therapeutic genes in tumor cells with minimal normal tissue expression. We compared the activity of the FOS (FBJ murine osteosarcoma viral oncogene homolog promoter with five alternative tumor-specific promoters in glioma cells and non-malignant astrocytes. The FOS promoter caused significantly higher transcriptional activity in glioma cell lines than all alternative promoters with the exception of CMV. The FOS promoter showed 13.9%, 32.4%, and 70.8% of the transcriptional activity of CMV in three glioma cell lines (U87, U251, and U373. Importantly, however, the FOS promoter showed only 1.6% of the transcriptional activity of CMV in normal astrocytes. We also tested the biologic activity of recombinant adenovirus containing the suicide gene herpes simplex virus thymidine kinase (HSV-tk driven by the FOS promoter, including selective killing efficacy in vitro and tumor inhibition rate in vivo. Adenoviral-mediated delivery of the HSV-tk gene controlled by the FOS promoter conferred a cytotoxic effect on human glioma cells in vitro and in vivo. This study suggests that use of the FOS-tk adenovirus system is a promising strategy for glioma-specific gene therapy but still much left for improvement.

  18. CDKN3 expression is negatively associated with pathological tumor stage and CDKN3 inhibition promotes cell survival in hepatocellular carcinoma.

    Science.gov (United States)

    Dai, Wei; Miao, Huilai; Fang, Shuo; Fang, Tao; Chen, Nianping; Li, Mingyi

    2016-08-01

    Aberrant expression of CDKN3 may be involved in carcinogenesis of liver cancer. The effect of CDKN3 on tumorigenesis and the molecular mechanisms involved have not been fully elucidated. Immunohistochemistry was performed to detect CDKN3 expression levels in tumor tissues. CDKN3 siRNA was used to knockdown CDKN3 in QGY7701 hepatocellular carcinoma (HCC) cells. Colony formation assay was used to measure the clonogenic capacity of the tumor cells. Cell viability was determined by MTT assay. Logistic regression was performed to analyze the association between CDKN3 expression level and the HCC clinical pathology index. The CDKN3 expression level was significantly decreased in HCC tumor tissues compared with normal liver tissue and liver cirrhosis tissue. Additionally, CDKN3 expression was negatively‑associated with the pathological stage of the tumor. Inhibition of CKDN3 promoted the clonogenic capacity and chemotherapeutic tolerance in HCC tissues compared with controls. Knockdown of CDKN3 resulted in downregulation of p53 and p21 protein levels, whereas, AKT serine/threonine kinase 1 expression was upregulated. Thus, CDKN3 expression may reduce the survival of tumor cells and alter the sensitivity to therapeutic agents via the AKT/P53/P21 signaling pathway. Therefore, CDKN3 may be involved in tumor differentiation and self-renewal.

  19. Targeting Calcium Signaling Induces Epigenetic Reactivation of Tumor Suppressor Genes in Cancer.

    Science.gov (United States)

    Raynal, Noël J-M; Lee, Justin T; Wang, Youjun; Beaudry, Annie; Madireddi, Priyanka; Garriga, Judith; Malouf, Gabriel G; Dumont, Sarah; Dettman, Elisha J; Gharibyan, Vazganush; Ahmed, Saira; Chung, Woonbok; Childers, Wayne E; Abou-Gharbia, Magid; Henry, Ryan A; Andrews, Andrew J; Jelinek, Jaroslav; Cui, Ying; Baylin, Stephen B; Gill, Donald L; Issa, Jean-Pierre J

    2016-03-15

    Targeting epigenetic pathways is a promising approach for cancer therapy. Here, we report on the unexpected finding that targeting calcium signaling can reverse epigenetic silencing of tumor suppressor genes (TSG). In a screen for drugs that reactivate silenced gene expression in colon cancer cells, we found three classical epigenetic targeted drugs (DNA methylation and histone deacetylase inhibitors) and 11 other drugs that induced methylated and silenced CpG island promoters driving a reporter gene (GFP) as well as endogenous TSGs in multiple cancer cell lines. These newly identified drugs, most prominently cardiac glycosides, did not change DNA methylation locally or histone modifications globally. Instead, all 11 drugs altered calcium signaling and triggered calcium-calmodulin kinase (CamK) activity, leading to MeCP2 nuclear exclusion. Blocking CamK activity abolished gene reactivation and cancer cell killing by these drugs, showing that triggering calcium fluxes is an essential component of their epigenetic mechanism of action. Our data identify calcium signaling as a new pathway that can be targeted to reactivate TSGs in cancer. ©2015 American Association for Cancer Research.

  20. Mesenchymal stem cell 1 (MSC1-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ruth S Waterman

    Full Text Available Currently, there are many promising clinical trials using mesenchymal stem cells (MSCs in cell-based therapies of numerous diseases. Increasingly, however, there is a concern over the use of MSCs because they home to tumors and can support tumor growth and metastasis. For instance, we established that MSCs in the ovarian tumor microenvironment promoted tumor growth and favored angiogenesis. In parallel studies, we also developed a new approach to induce the conventional mixed pool of MSCs into two uniform but distinct phenotypes we termed MSC1 and MSC2.Here we tested the in vitro and in vivo stability of MSC1 and MSC2 phenotypes as well as their effects on tumor growth and spread. In vitro co-culture of MSC1 with various cancer cells diminished growth in colony forming units and tumor spheroid assays, while conventional MSCs or MSC2 co-culture had the opposite effect in these assays. Co-culture of MSC1 and cancer cells also distinctly affected their migration and invasion potential when compared to MSCs or MSC2 treated samples. The expression of bioactive molecules also differed dramatically among these samples. MSC1-based treatment of established tumors in an immune competent model attenuated tumor growth and metastasis in contrast to MSCs- and MSC2-treated animals in which tumor growth and spread was increased. Also, in contrast to these groups, MSC1-therapy led to less ascites accumulation, increased CD45+leukocytes, decreased collagen deposition, and mast cell degranulation.These observations indicate that the MSC1 and MSC2 phenotypes may be convenient tools for the discovery of critical components of the tumor stroma. The continued investigation of these cells may help ensure that cell based-therapy is used safely and effectively in human disease.

  1. Macrophage migration inhibitory factor promotes tumor growth in the context of lung injury and repair.

    Science.gov (United States)

    Arenberg, Douglas; Luckhardt, Tracy R; Carskadon, Shannon; Zhao, Liujian; Amin, Mohammad A; Koch, Alisa E

    2010-10-15

    Tissue injury and repair involve highly conserved processes governed by mechanisms that can be co-opted in tumors. We hypothesized that soluble factors released during the repair response to lung injury would promote orthotopic tumor growth. To determine whether lung injury promoted growth of orthotopic lung tumors and to study the molecular mechanisms. We initiated lung injury in C57Bl6 mice using different stimuli, then injected Lewis lung carcinoma cells during the repair phase. We assessed tumor growth 14 days later. We measured tumor angiogenesis, cytokine expression, proliferation, and apoptosis. Regardless of the mechanism, injured lungs contained more numerous and larger tumors than sham-injured lungs. Tumors from injured lungs were no more vascular, but had higher levels of proliferation and reduced rates of apoptosis. The cytokine macrophage migration inhibitory factor (MIF) was highly expressed in both models of tissue injury. We observed no increase in tumor growth after lung injury in MIF knockout mice. We induced lung-specific overexpression of MIF in a double-transgenic mouse, and observed that MIF overexpression by itself was sufficient to accelerate the growth of orthotopic Lewis lung carcinoma tumors. Lung injury leads to increased expression of the cytokine MIF, which results in protection from apoptosis and increased proliferation in orthotopic tumors injected after the acute phase of injury.

  2. Fas signalling promotes intercellular communication in T cells.

    Science.gov (United States)

    Luchetti, Francesca; Canonico, Barbara; Arcangeletti, Marcella; Guescini, Michele; Cesarini, Erica; Stocchi, Vilberto; Degli Esposti, Mauro; Papa, Stefano

    2012-01-01

    Cell-to-cell communication is a fundamental process for development and maintenance of multicellular organisms. Diverse mechanisms for the exchange of molecular information between cells have been documented, such as the exchange of membrane fragments (trogocytosis), formation of tunneling nanotubes (TNTs) and release of microvesicles (MVs). In this study we assign to Fas signalling a pivotal role for intercellular communication in CD4+ T cells. Binding of membrane-bound FasL to Fas expressing target cells triggers a well-characterized pro-apoptotic signalling cascade. However, our results, pairing up flow cytometric studies with confocal microscopy data, highlight a new social dimension for Fas/FasL interactions between CD4+ T cells. Indeed, FasL enhances the formation of cell conjugates (8 fold of increase) in an early time-frame of stimulation (30 min), and this phenomenon appears to be a crucial step to prime intercellular communication. Our findings show that this communication mainly proceeds along a cytosolic material exchange (ratio of exchange >10, calculated as ratio of stimulated cells signal divided by that recorded in control cells) via TNTs and MVs release. In particular, inhibition of TNTs genesis by pharmacological agents (Latruculin A and Nocodazole) markedly reduced this exchange (inhibition percentage: >40% and >50% respectively), suggesting a key role for TNTs in CD4+ T cells communication. Although MVs are present in supernatants from PHA-activated T cells, Fas treatment also leads to a significant increase in the amount of released MVs. In fact, the co-culture performed between MVs and untreated cells highlights a higher presence of MVs in the medium (1.4 fold of increase) and a significant MVs uptake (6 fold of increase) by untreated T lymphocytes. We conclude that Fas signalling induces intercellular communication in CD4+ T cells by different mechanisms that seem to start concomitantly with the main pathway (programmed cell death) promoted

  3. Fas signalling promotes intercellular communication in T cells.

    Directory of Open Access Journals (Sweden)

    Francesca Luchetti

    Full Text Available Cell-to-cell communication is a fundamental process for development and maintenance of multicellular organisms. Diverse mechanisms for the exchange of molecular information between cells have been documented, such as the exchange of membrane fragments (trogocytosis, formation of tunneling nanotubes (TNTs and release of microvesicles (MVs. In this study we assign to Fas signalling a pivotal role for intercellular communication in CD4+ T cells. Binding of membrane-bound FasL to Fas expressing target cells triggers a well-characterized pro-apoptotic signalling cascade. However, our results, pairing up flow cytometric studies with confocal microscopy data, highlight a new social dimension for Fas/FasL interactions between CD4+ T cells. Indeed, FasL enhances the formation of cell conjugates (8 fold of increase in an early time-frame of stimulation (30 min, and this phenomenon appears to be a crucial step to prime intercellular communication. Our findings show that this communication mainly proceeds along a cytosolic material exchange (ratio of exchange >10, calculated as ratio of stimulated cells signal divided by that recorded in control cells via TNTs and MVs release. In particular, inhibition of TNTs genesis by pharmacological agents (Latruculin A and Nocodazole markedly reduced this exchange (inhibition percentage: >40% and >50% respectively, suggesting a key role for TNTs in CD4+ T cells communication. Although MVs are present in supernatants from PHA-activated T cells, Fas treatment also leads to a significant increase in the amount of released MVs. In fact, the co-culture performed between MVs and untreated cells highlights a higher presence of MVs in the medium (1.4 fold of increase and a significant MVs uptake (6 fold of increase by untreated T lymphocytes. We conclude that Fas signalling induces intercellular communication in CD4+ T cells by different mechanisms that seem to start concomitantly with the main pathway (programmed cell death

  4. FGFR3 stimulates stearoyl CoA desaturase 1 activity to promote bladder tumor growth.

    Science.gov (United States)

    Du, Xiangnan; Wang, Qian-Rena; Chan, Emily; Merchant, Mark; Liu, Jinfeng; French, Dorothy; Ashkenazi, Avi; Qing, Jing

    2012-11-15

    Fibroblast growth factor receptor 3 (FGFR3) belongs to a family of receptor tyrosine kinases that control cell proliferation, differentiation, and survival. Aberrant activation of FGFR3 via overexpression or mutation is a frequent feature of bladder cancer; however, its molecular and cellular consequences and functional relevance to carcinogenesis are not well understood. Through transcriptional profiling of bladder carcinoma cells subjected to short hairpin RNA knockdown of FGFR3, we identified a gene-signature linking FGFR3 signaling with de novo sterol and lipid biosynthesis and metabolism. We found that FGFR3 signaling promotes the cleavage and activation of the master transcriptional regulator of lipogenesis, sterol regulatory element-binding protein 1(SREBP1/SREBF1), in a PI3K-mTORC1-dependent fashion. In turn, SREBP1 regulates the expression of key lipogenic enzymes, including stearoyl CoA desaturase 1 (SCD1/SCD). SCD1 is the rate-limiting enzyme in the biosynthesis of monounsaturated fatty acids and is crucial for lipid homeostasis. In human bladder cancer cell lines expressing constitutively active FGFR3, knockdown of SCD1 by siRNA markedly attenuated cell-cycle progression, reduced proliferation, and induced apoptosis. Furthermore, inducible knockdown of SCD1 in a bladder cancer xenograft model substantially inhibited tumor progression. Pharmacologic inhibition of SCD1 blocked fatty acid desaturation and also exerted antitumor activity in vitro and in vivo. Together, these findings reveal a previously unrecognized role of FGFR3 in regulating lipid metabolism to maintain tumor growth and survival, and also identify SCD1 as a potential therapeutic target for FGFR3-driven bladder cancer. ©2012 AACR.

  5. Zoospore interspecific signaling promotes plant infection by Phytophthora

    Directory of Open Access Journals (Sweden)

    Zhou Zhaohui S

    2010-12-01

    Full Text Available Abstract Background Oomycetes attack a huge variety of economically and ecologically important plants. These pathogens release, detect and respond to signal molecules to coordinate their communal behaviors including the infection process. When signal molecules are present at or above threshold level, single zoospores can infect plants. However, at the beginning of a growing season population densities of individual species are likely below those required to reach a quorum and produce threshold levels of signal molecules to trigger infection. It is unclear whether these molecules are shared among related species and what their chemistries are. Results Zoospore-free fluids (ZFF from Phytophthora capsici, P. hydropathica, P. nicotianae (ZFFnic, P. sojae (ZFFsoj and Pythium aphanidermatum were cross tested for stimulating plant infection in three pathosystems. All ZFFs tested significantly increased infection of Catharanthus roseus by P. nicotianae. Similar cross activities were observed in infection of Lupinus polyphyllus and Glycine max by P. sojae. Only ZFFnic and ZFFsoj cross induced zoospore aggregation at a density of 2 × 103 ml-1. Pure autoinducer-2 (AI-2, a component in ZFF, caused zoospore lysis of P. nicotianae before encystment and did not stimulate plant infection at concentrations from 0.01 to 1000 μM. P. capsici transformants with a transiently silenced AI-2 synthase gene, ribose phosphate isomerase (RPI, infected Capsicum annuum seedlings at the same inoculum concentration as the wild type. Acyl-homoserine lactones (AHLs were not detected in any ZFFs. After freeze-thaw treatments, ZFF remained active in promoting plant infection but not zoospore aggregation. Heat treatment by boiling for 5 min also did not affect the infection-stimulating property of ZFFnic. Conclusion Oomycetes produce and use different molecules to regulate zoospore aggregation and plant infection. We found that some of these signal molecules could act in an inter

  6. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity.

    Science.gov (United States)

    Wang, Biao; Xiao, Yang; Ding, Bei Bei; Zhang, Na; Yuan, Xiao bin; Gui, Lü; Qian, Kai Xian; Duan, Shumin; Chen, Zhengjun; Rao, Yi; Geng, Jian Guo

    2003-07-01

    Slit is a secreted protein known to function through the Roundabout (Robo) receptor as a chemorepellent in axon guidance and neuronal migration, and as an inhibitor in leukocyte chemotaxis. Here we show Slit2 expression in a large number of solid tumors and Robo1 expression in vascular endothelial cells. Recombinant Slit2 protein attracted endothelial cells and promoted tube formation in a Robo1- and phosphatidylinositol kinase-dependent manner. Neutralization of Robo1 reduced the microvessel density and the tumor mass of human malignant melanoma A375 cells in vivo. These findings demonstrate the angiogenic function of Slit-Robo signaling, reveal a mechanism in mediating the crosstalk between cancer cells and endothelial cells, and indicate the effectiveness of blocking this signaling pathway in treating cancers.

  7. Id-1 promotes osteosarcoma cell growth and inhibits cell apoptosis via PI3K/AKT signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Liang; Liao, Qi; Tang, Qiang [Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 300006 (China); Deng, Huan [Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang 330006 (China); Chen, Lu, E-mail: chenlu0578@163.com [Department of Orthopaedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 300006 (China)

    2016-02-12

    Accumulating evidence reveals that Id-1 is upregulated and functions as a potential tumor promoter in several human cancer types. However, the role of Id-1 in osteosarcoma (OS) is unknown. In present study, we found that Id-1 expression was elevated in OS tissues than adjacent normal bone tissues. More importantly, we demonstrated that overexpression of Id-1 is significantly correlated with tumor progression and poor survival in OS patients. Furthermore, increased expression of Id-1 was observed in OS cell lines and ectopic expression of Id-1 significantly enhanced in vitro cell proliferation and promoted in vivo tumor growth, whereas knockdown of Id-1 suppressed OS cells growth. Moreover, our experimental data revealed that Id-1 promotes cell proliferation by facilitating cell cycle progression and inhibits cell apoptosis. Mechanistically, the effects of Id-1 in OS cells is at least partly through activation of PI3K/Akt signaling pathway. Therefore, we identified a tumorigenic role of Id-1 in OS and suggested a potential therapeutic target for OS patients. - Highlights: • Id-1 expression is positively correlated in OS patients with poor prognosis. • Overexpression of Id-1 promotes OS cell growth in vitro and in vivo. • Id-1induces cell cycle progression and inhibits cell apoptosis. • PI3K/Akt signaling pathway contributed to the oncogenic effects of Id-1 in OS cells.

  8. Tumor-promoting phorbol ester transiently down-modulates the p53 level and blocks the cell cycle

    DEFF Research Database (Denmark)

    Skouv, J; Jensen, P O; Forchhammer, J

    1994-01-01

    Activation of the protein kinase C signaling pathway by tumor-promoting phorbol esters, such as 4 beta-phorbol 12-myristate 13-acetate (PMA), induced a decrease in the level of p53 mRNA in several serum-starved human cell lines. Also, the tumor-promoting phosphatase inhibitor okadaic acid induced...... rate or the p53 mRNA stability. The protein synthesis inhibitor cycloheximide completely abolished the PMA-induced down-modulation of the p53 mRNA, suggesting that a short-lived protein was involved in the down-modulation. Flow cytometric cell cycle analysis showed that the phorbol ester treatment...... a decrease in the p53 mRNA level in the cell lines. Normal diploid as well as various tumor cell lines were tested. Two tumor cell lines, HeLa and A549, both containing the wild-type p53 gene, but very different levels of p53 protein, were studied in detail. In both cell lines, the level of p53 m...

  9. Tumor-promoting phorbol ester transiently down-modulates the p53 level and blocks the cell cycle

    DEFF Research Database (Denmark)

    Skouv, J.; Jensen, P O; Forchhammer, J

    1994-01-01

    Activation of the protein kinase C signaling pathway by tumor-promoting phorbol esters, such as 4 beta-phorbol 12-myristate 13-acetate (PMA), induced a decrease in the level of p53 mRNA in several serum-starved human cell lines. Also, the tumor-promoting phosphatase inhibitor okadaic acid induced...... a decrease in the p53 mRNA level in the cell lines. Normal diploid as well as various tumor cell lines were tested. Two tumor cell lines, HeLa and A549, both containing the wild-type p53 gene, but very different levels of p53 protein, were studied in detail. In both cell lines, the level of p53 m......RNA was minimal after 9 h of exposure to PMA. After approximately 120 h, the p53 mRNA level was similar to the pretreatment level. PMA induced a similar transient decrease in the level of p53 protein in the A549 cell line. The decrease in the p53 mRNA level could not be explained by changes in the transcriptional...

  10. MGMT promoter methylation status in brain metastases from colorectal cancer and corresponding primary tumors.

    Science.gov (United States)

    De Maglio, Giovanna; Casagrande, Mariaelena; Guardascione, Michela; Fontanella, Caterina; Lutrino, Stefania Eufemia; Rihawi, Karim; Pisa, Federica Edith; Tuniz, Francesco; Fasola, Gianpiero; Pizzolitto, Stefano; Aprile, Giuseppe

    2015-01-01

    Brain metastases (BM) from colorectal cancer are usually associated with poor prognosis. The aim of this retrospective study is to evaluate MGMT promoter methylation in BM and their corresponding primary colorectal cancer tumors. MGMT promoter methylation status was assessed by pyrosequencing in 53 consecutive patients resected for BM. A concordance analysis between BM and matched primary tumor was performed in 39 cases. MGMT methylation was found in 34 (64.2%) BM and in 25 corresponding primary tumors (64.1%). Median survival after neurosurgery was independent from MGMT promoter methylation (163 days for those with methylated MGMT versus 193 days for the unmethylated). Epigenetic MGMT promoter methylation was common and the concordance between primary and secondary lesions was high.

  11. GPNMB cooperates with neuropilin-1 to promote mammary tumor growth and engages integrin α5β1 for efficient breast cancer metastasis.

    Science.gov (United States)

    Maric, G; Annis, M G; Dong, Z; Rose, A A N; Ng, S; Perkins, D; MacDonald, P A; Ouellet, V; Russo, C; Siegel, P M

    2015-10-01

    Glycoprotein nmb (GPNMB) promotes breast tumor growth and metastasis and its expression in tumor epithelium correlates with poor prognosis in breast cancer patients. Despite its biological and clinical significance, little is known regarding the molecular mechanisms engaged by GPNMB. Herein, we show that GPNMB engages distinct functional domains and mechanisms to promote primary tumor growth and metastasis. We demonstrate that neuropilin-1 (NRP-1) expression is increased in breast cancer cells that overexpress GPNMB. Interestingly, the GPNMB-driven increase in NRP-1 expression potentiated vascular endothelial growth factor signaling in breast cancer cells and was required for the growth, but not metastasis, of these cells in vivo. Interrogation of RNAseq data sets revealed a positive correlation between GPNMB and NRP-1 levels in human breast tumors. Furthermore, we ascribe pro-growth and pro-metastatic functions of GPNMB to its ability to bind α5β1 integrin and increase downstream signaling in breast cancer cells. We show that GPNMB enhances breast cancer cell adhesion to fibronectin, increases α5β1 expression and associates with this receptor through its RGD motif. GPNMB recruitment into integrin complexes activates Src and Fak signaling pathways in an RGD-dependent manner. Importantly, both the RGD motif and cytoplasmic tail of GPNMB are required to promote primary mammary tumor growth; however, only mutation of the RGD motif impaired the formation of lung metastases. Together, these findings identify novel and distinct molecular mediators of GPNMB-induced breast cancer growth and metastasis.

  12. HCV tumor promoting effect is dependent on host genetic background.

    Directory of Open Access Journals (Sweden)

    Naama Klopstock

    Full Text Available BACKGROUND: The hepatitis C virus (HCV is one of the major risk factors for the development of hepatocellular carcinoma (HCC. Nevertheless, transgenic mice which express the whole HCV polyprotein (HCV-Tg do not develop HCC. Whereas chronic HCV infection causes inflammation in patients, in HCV-Tg mice, the host immune reaction against viral proteins is lacking. We aimed to test the role of HCV proteins in HCC development on the background of chronic inflammation in vivo. METHODOLOGY/PRINCIPAL FINDINGS: We crossed HCV-Tg mice that do not develop HCC with the Mdr2-knockout (Mdr2-KO mice which develop inflammation-associated HCC, to generate Mdr2-KO/HCV-Tg mice. We studied the effect of the HCV transgene on tumor incidence, hepatocyte mitosis and apoptosis, and investigated the potential contributing factors for the generated phenotype by gene expression and protein analyses. The Mdr2-KO/HCV-Tg females from the N2 generation of this breeding (having 75% of the FVB/N genome and 25% of the C57BL/6 genome produced significantly larger tumors in comparison with Mdr2-KO mice. In parallel, the Mdr2-KO/HCV-Tg females had an enhanced inflammatory gene expression signature. However, in the N7 generation (having 99.2% of the FVB/N genome and 0.8% of the C57BL/6 genome there was no difference in tumor development between Mdr2-KO/HCV-Tg and Mdr2-KO animals of both sexes. The HCV transgene was similarly expressed in the livers of Mdr2-KO/HCV-Tg females of both generations, as revealed by detection of the HCV transcript and the core protein. CONCLUSION: These findings suggest that the HCV transgene accelerated inflammation-associated hepatocarcinogenesis in a host genetic background-dependent manner.

  13. S100A9 interaction with TLR4 promotes tumor growth.

    Directory of Open Access Journals (Sweden)

    Eva Källberg

    Full Text Available By breeding TRAMP mice with S100A9 knock-out (S100A9(-/- animals and scoring the appearance of palpable tumors we observed a delayed tumor growth in animals devoid of S100A9 expression. CD11b(+ S100A9 expressing cells were not observed in normal prostate tissue from control C57BL/6 mice but were readily detected in TRAMP prostate tumors. Also, S100A9 expression was observed in association with CD68(+ macrophages in biopsies from human prostate tumors. Delayed growth of TRAMP tumors was also observed in mice lacking the S100A9 ligand TLR4. In the EL-4 lymphoma model tumor growth inhibition was observed in S100A9(-/- and TLR4(-/-, but not in RAGE(-/- animals lacking an alternative S100A9 receptor. When expression of immune-regulating genes was analyzed using RT-PCR the only common change observed in mice lacking S100A9 and TLR4 was a down-regulation of TGFβ expression in splenic CD11b(+ cells. Lastly, treatment of mice with a small molecule (ABR-215050 that inhibits S100A9 binding to TLR4 inhibited EL4 tumor growth. Thus, S100A9 and TLR4 appear to be involved in promoting tumor growth in two different tumor models and pharmacological inhibition of S100A9-TLR4 interactions is a novel and promising target for anti-tumor therapies.

  14. Transmembrane TNF-α promotes activation-induced cell death by forward and reverse signaling

    Science.gov (United States)

    Jia, Lingwei; Huang, Jin; He, Cheng; Hu, Fuqing; Yuan, Lifei; Wang, Guihua; Yu, Mingxia; Li, Zhuoya

    2017-01-01

    Secretory tumor necrosis factor-alpha (sTNF-α) is known to mediate activation- induced cell death (AICD). However, the role of tmTNF-α in AICD is still obscure. Here, we demonstrated that tmTNF-α expression significantly increased accompanied with enhanced apoptosis during AICD in Jurkat and primary human T cells. Knockdown or enhancement of tmTNF-α expression in activated T cells suppressed or promoted AICD, respectively. Treatment of activated T cells with exogenous tmTNF-α significantly augmented AICD, indicating that tmTNF-α as an effector molecule mediates AICD. As tmTNF-α can function as a receptor, an anti-TNF-α polyclonal antibody was used to trigger reverse signaling of tmTNF-α. This antibody treatment upregulated the expression of Fas ligand, TNF-related apoptosis-inducing ligand and tmTNF-α to amplify AICD, and promoted activated T cells expressing death receptor 4, TNF receptor (TNFR) 1 and TNFR2 to enhance their sensitivity to AICD. Knockdown of TNFR1 or TNFR2 expression totally blocked tmTNF-α reverse signaling increased sensitivity to sTNF-α- or tmTNF-α-mediated AICD, respectively. Our results indicate that tmTNF-α functions as a death ligand in mediation of AICD and as a receptor in sensitization of activated T cells to AICD. Targeting tmTNF-α in activated T cells may be helpful in facilitating AICD for treatment of autoimmune diseases. PMID:28969030

  15. A compartmentalized phosphoinositide signaling axis at cilia is regulated by INPP5E to maintain cilia and promote Sonic Hedgehog medulloblastoma.

    Science.gov (United States)

    Conduit, S E; Ramaswamy, V; Remke, M; Watkins, D N; Wainwright, B J; Taylor, M D; Mitchell, C A; Dyson, J M

    2017-10-26

    Sonic Hedgehog (SHH) signaling at primary cilia drives the proliferation and progression of a subset of medulloblastomas, the most common malignant paediatric brain tumor. Severe side effects associated with conventional treatments and resistance to targeted therapies has led to the need for new strategies. SHH signaling is dependent on primary cilia for signal transduction suggesting the potential for cilia destabilizing mechanisms as a therapeutic target. INPP5E is an inositol polyphosphate 5-phosphatase that hydrolyses PtdIns(4,5)P2 and more potently, the phosphoinositide (PI) 3-kinase product PtdIns(3,4,5)P3. INPP5E promotes SHH signaling during embryonic development via PtdIns(4,5)P2 hydrolysis at cilia, that in turn regulates the cilia recruitment of the SHH suppressor GPR161. However, the role INPP5E plays in cancer is unknown and the contribution of PI3-kinase signaling to cilia function is little characterized. Here, we reveal INPP5E promotes SHH signaling in SHH medulloblastoma by negatively regulating a cilia-compartmentalized PI3-kinase signaling axis that maintains primary cilia on tumor cells. Conditional deletion of Inpp5e in a murine model of constitutively active Smoothened-driven medulloblastoma slowed tumor progression, suppressed cell proliferation, reduced SHH signaling and promoted tumor cell cilia loss. PtdIns(3,4,5)P3, its effector pAKT and the target pGSK3β, which when non-phosphorylated promotes cilia assembly/stability, localized to tumor cell cilia. The number of PtdIns(3,4,5)P3/pAKT/pGSK3β-positive cilia was increased in cultured Inpp5e-null tumor cells relative to controls. PI3-kinase inhibition or expression of wild-type, but not catalytically inactive HA-INPP5E partially rescued cilia loss in Inpp5e-null tumor cells in vitro. INPP5E mRNA and copy number were reduced in human SHH medulloblastoma compared to other molecular subtypes and consistent with the murine model, reduced INPP5E was associated with improved overall survival

  16. NOR1 promotes hepatocellular carcinoma cell proliferation and migration through modulating the Notch signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    You, Kun; Sun, Peisheng; Yue, Zhongyi; Li, Jian; Xiong, Wancheng; Wang, Jianguo, E-mail: jianguowangjgw@163.com

    2017-03-15

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Previous studies have reported that the oxidored-nitro domain containing protein 1 (NOR1) is a novel tumor suppressor in several tumors. Recent evidence suggests that NOR1 is strongly expressed in HCC cells. However, its role and mechanism in HCC are unclear. In the current study, Western blot and qPCR detected strong NOR1 mRNA and protein expression in HepG2 and Hep3B cells. After transfection with NOR1 siRNA or pcDNA3.1-myc-his-NOR1, the proliferation and migration of HepG2 and Hep3B cells were analyzed in vitro. HepG2 or Hep3B cells overexpressing NOR1 showed an increased proliferation and migration, whereas siRNA-mediated silencing of NOR1 showed the opposite effect. Furthermore, NOR1 activated the Notch signaling pathway, indicated by increased levels of Notch1, NICD, Hes1, and Hey1 in protein. Importantly, the Notch inhibitor DAPT downregulated Notch activation and further enhanced siNOR1-induced reduction of cell proliferation and migration in HepG2 and Hep3B cells, whereas DAPT reversed the effect of NOR1 overexpression on cell proliferation and migration. In conclusion, these results indicate that NOR1 may be involved in the progression of HCC and thus may be a potential target for the treatment of liver cancer. - Highlights: • NOR1 expression is up-regulated in HCC cells. • NOR1 promotes the proliferation and migration of HCC cells. • NOR1 promotes the progression of HCC cells by activating Notch pathway.

  17. FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis

    Science.gov (United States)

    Zhang, Hui; Li, Jiufeng; He, Tianfang; Yeo, Eun-Jin; Soong, Daniel Y.H.; Carragher, Neil O.; Munro, Alison; Chang, Alvin; Bresnick, Anne R.; Lang, Richard A.

    2015-01-01

    Although the link between inflammation and cancer initiation is well established, its role in metastatic diseases, the primary cause of cancer deaths, has been poorly explored. Our previous studies identified a population of metastasis-associated macrophages (MAMs) recruited to the lung that promote tumor cell seeding and growth. Here we show that FMS-like tyrosine kinase 1 (Flt1, also known as VEGFR1) labels a subset of macrophages in human breast cancers that are significantly enriched in metastatic sites. In mouse models of breast cancer pulmonary metastasis, MAMs uniquely express FLT1. Using several genetic models, we show that macrophage FLT1 signaling is critical for metastasis. FLT1 inhibition does not affect MAM recruitment to metastatic lesions but regulates a set of inflammatory response genes, including colony-stimulating factor 1 (CSF1), a central regulator of macrophage biology. Using a gain-of-function approach, we show that CSF1-mediated autocrine signaling in MAMs is downstream of FLT1 and can restore the tumor-promoting activity of FLT1-inhibited MAMs. Thus, CSF1 is epistatic to FLT1, establishing a link between FLT1 and inflammatory responses within breast tumor metastases. Importantly, FLT1 inhibition reduces tumor metastatic efficiency even after initial seeding, suggesting that these pathways represent therapeutic targets in metastatic disease. PMID:26261265

  18. LRIG1, a 3p tumor suppressor, represses EGFR signaling and is a novel epigenetic silenced gene in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kou, Changhua, E-mail: chkoukou@hotmail.com [Department of Oncological Surgery, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000 (China); Zhou, Tian [Department of Gastroenterology, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000 (China); Han, Xilin; Zhuang, Huijie [Department of Oncological Surgery, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000 (China); Qian, Haixin, E-mail: qianhaixin@hotmail.com [The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000 (China)

    2015-08-21

    Downregulation of LRIG1 was found in many types of cancer. However, data concerning the possible mechanism of LRIG1 reduction in cancers were not reported yet. To analyze the regulation and function of LRIG1 in colorectal cancer (CRC), 6 cell lines, 46 paired tissues from primary CRC cases were employed in this study. In CRC cell lines, under-expression of LRIG1 was correlated with promoter region hypermethylation, and restoration of LRIG1 was induced by 5-Aza-2'-deoxyazacytidine treatment. Subsequently, we ectopically expressed LRIG1 in LRIG1 low-expressing HCT-116 cells and suppressed LRIG1 in LRIG1 high-expressing LoVo cells. We found that over-expression of LRIG1 inhibits cell proliferation and colony formation and tumor growth, while knockdown of LRIG1 promotes cell proliferation and colony formation. Decreased and increased EGFR/AKT signaling pathway may partially explain the lower and higher rates of proliferation in CRC cells transfected with LRIG1 cDNA or shRNA. In clinical samples, we compared the methylation, mRNA and protein expression of LRIG1 in samples of CRC tissues. A significant increase in LRIG1 methylation was identified in CRC specimens compared to adjacent normal tissues and that it was negatively correlated with its mRNA and protein expression. In conclusion, LRIG1 is frequently methylated in human CRC and consequent mRNA and protein downregulation may contribute to tumor growth by activating EGFR/AKT signaling. - Highlights: • Promoter methylation of LRIG1 occurred in colorectal cancer cells and tumors. • Restoration of LRIG1 inhibits tumor growth in vitro and in vivo. • Overexpression or knockdown of LRIG1 regulates EGFR/AKT and downstream apoptosis. • Methylation of LRIG1 correlates with its mRNA and protein downregulation. • LRIG1 was firstly identified as an epigenetic target in cancer.

  19. Harmine promotes osteoblast differentiation through bone morphogenetic protein signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yonezawa, Takayuki [Department of Nutriproteomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Lee, Ji-Won [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Hibino, Ayaka; Asai, Midori [Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Hojo, Hironori [Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Cha, Byung-Yoon [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Teruya, Toshiaki [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan); Nagai, Kazuo [Research Institute for Biological Functions, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487-8501 (Japan); Chung, Ung-Il [Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yagasaki, Kazumi [Department of Nutriproteomics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Division of Applied Biological Chemistry, Institute of Agriculture, Tokyo Noko University, 3-5-8 Saiwai, Fuchu, Tokyo 183-8509 (Japan); and others

    2011-06-03

    Highlights: {yields} Harmine promotes the activity and mRNA expression of ALP. {yields} Harmine enhances the expressions of osteocalcin mRNA and protein. {yields} Harmine induces osteoblastic mineralization. {yields} Harmine upregulates the mRNA expressions of BMPs, Runx2 and Osterix. {yields} BMP signaling pathways are involved in the actions of harmine. -- Abstract: Bone mass is regulated by osteoblast-mediated bone formation and osteoclast-mediated bone resorption. We previously reported that harmine, a {beta}-carboline alkaloid, inhibits osteoclast differentiation and bone resorption in vitro and in vivo. In this study, we investigated the effects of harmine on osteoblast proliferation, differentiation and mineralization. Harmine promoted alkaline phosphatase (ALP) activity in MC3T3-E1 cells without affecting their proliferation. Harmine also increased the mRNA expressions of the osteoblast marker genes ALP and Osteocalcin. Furthermore, the mineralization of MC3T3-E1 cells was enhanced by treatment with harmine. Harmine also induced osteoblast differentiation in primary calvarial osteoblasts and mesenchymal stem cell line C3H10T1/2 cells. Structure-activity relationship studies using harmine-related {beta}-carboline alkaloids revealed that the C3-C4 double bond and 7-hydroxy or 7-methoxy group of harmine were important for its osteogenic activity. The bone morphogenetic protein (BMP) antagonist noggin and its receptor kinase inhibitors dorsomorphin and LDN-193189 attenuated harmine-promoted ALP activity. In addition, harmine increased the mRNA expressions of Bmp-2, Bmp-4, Bmp-6, Bmp-7 and its target gene Id1. Harmine also enhanced the mRNA expressions of Runx2 and Osterix, which are key transcription factors in osteoblast differentiation. Furthermore, BMP-responsive and Runx2-responsive reporters were activated by harmine treatment. Taken together, these results indicate that harmine enhances osteoblast differentiation probably by inducing the expressions of

  20. Disruption of Lysosome Function Promotes Tumor Growth and Metastasis in Drosophila *

    OpenAIRE

    Chi, Congwu; Zhu, Huanhu; Han, Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-01-01

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the RasV12 cells....

  1. Correlation of CCNA1 Promoter Methylation with Malignant Tumors: A Meta-Analysis Introduction

    OpenAIRE

    Yang, Bin; Miao, Shuai; Zhang, Le-Ning; Sun, Hong-Bin; Xu, Zhe-Nan; Han, Chun-Shan

    2015-01-01

    Epigenetic silencing of tumor suppressor genes by promoter methylation plays vital roles in the process of carcinogenesis. The purpose of this meta-analysis was to determine whether the aberrant methylation of cyclin A1 (CCNA1) may be of great significance to human malignant tumors. By searching both English and Chinese language-based electronic databases carefully, we tabulated and analyzed parameters from each study. All human-associated case-control studies were included providing availabl...

  2. Tumor-infiltrating plasmacytoid dendritic cells promote immunosuppression by Tr1 cells in human liver tumors

    NARCIS (Netherlands)

    Pedroza-Gonzalez, A.; Zhou, G.; Vargas-Mendez, E.; Boor, P.P.; Mancham, S.; Verhoef, C.; Polak, W.G.; Grunhagen, D.; Pan, Q.; Janssen, H.; Garcia-Romo, G.S.; Biermann, K.; Tjwa, E.T.; Ijzermans, J.N.M.; Kwekkeboom, J.; Sprengers, D.

    2015-01-01

    CD4+ type 1 T regulatory (Tr1) cells have a crucial role in inducing tolerance. Immune regulation by these cells is mainly mediated through the secretion of high amounts of IL-10. Several studies have suggested that this regulatory population may be involved in tumor-mediated immune-suppression.

  3. Living in CIN: Mitotic Infidelity and Its Consequences for Tumor Promotion and Suppression.

    Science.gov (United States)

    Funk, Laura C; Zasadil, Lauren M; Weaver, Beth A

    2016-12-19

    Errors in chromosome segregation during mitosis have been recognized as a hallmark of tumor cells since the late 1800s, resulting in the long-standing hypothesis that mitotic abnormalities drive tumorigenesis. Recent work has shown that mitotic defects can promote tumors, suppress them, or do neither, depending on the rate of chromosome missegregation. Here we discuss the causes of chromosome missegregation, their effects on tumor initiation and progression, and the evidence that increasing the rate of chromosome missegregation may be an effective chemotherapeutic strategy. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Effect of tumor promoters on ultraviolet light-induced mutation and mitotic recombination in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kunz, B A; Hannan, M A; Haynes, R H

    1980-07-01

    Recently, it has been suggested that mitotic recombination is involved in tumor promotion. On this basis, one might expect tumor promoters to be recombinagenic. D7 is a diploid strain of yeast in which both mutation and mitotic recombination can be measured. We have used this strain to assay the known tumor promoters, iodoacetate, anthralin, and 12-O-tetradecanoylphorbol-13-acetate, and the cocarcinogen, catechol, for mutagenicity, recombinagenicity, and the ability to enhance ultraviolet light (UV)-induced genetic events. In the absence of preirradiation with UV, iodoacetate was found to be recombinagenic whereas catechol was mutagenic; however, in both cases, the effects were small. Iodoacetate, anthralin, and catechol potentiated UV-induced mitotic crossing-over, aberrant colony formation, and mutation, while catechol also increased UV-induced gene conversion. We were unable to detect any mutagenic or recombinagenic effect of 12-O-tetradecanoyl-phorbol-13-acetate in either whole cells or spheroplasts. Our results do not indicate any consistent correlation between tumor-promoting activity and the ability of an agent to induce mitotic recombination in yeast. However, the ability to potentiate UV-induced mutation and mitotic recombination may reflect the cocarcinogenic activity of certain promoters.

  5. Nicotine promotes tumor growth and metastasis in mouse models of lung cancer.

    Directory of Open Access Journals (Sweden)

    Rebecca Davis

    2009-10-01

    Full Text Available Nicotine is the major addictive component of tobacco smoke. Although nicotine is generally thought to have limited ability to initiate cancer, it can induce cell proliferation and angiogenesis in a variety of systems. These properties might enable nicotine to facilitate the growth of tumors already initiated. Here we show that nicotine significantly promotes the progression and metastasis of tumors in mouse models of lung cancer. This effect was observed when nicotine was administered through intraperitoneal injections, or through over-the-counter transdermal patches.In the present study, Line1 mouse adenocarcinoma cells were implanted subcutaneously into syngenic BALB/c mice. Nicotine administration either by intraperitoneal (i.p. injection or transdermal patches caused a remarkable increase in the size of implanted Line1 tumors. Once the tumors were surgically removed, nicotine treated mice had a markedly higher tumor recurrence (59.7% as compared to the vehicle treated mice (19.5%. Nicotine also increased metastasis of dorsally implanted Line1 tumors to the lungs by 9 folds. These studies on transplanted tumors were extended to a mouse model where the tumors were induced by the tobacco carcinogen, NNK. Lung tumors were initiated in A/J mice by i.p. injection of NNK; administration of 1 mg/kg nicotine three times a week led to an increase in the size and the number of tumors formed in the lungs. In addition, nicotine significantly reduced the expression of epithelial markers, E-Cadherin and beta-Catenin as well as the tight junction protein ZO-1; these tumors also showed an increased expression of the alpha(7 nAChR subunit. We believe that exposure to nicotine either by tobacco smoke or nicotine supplements might facilitate increased tumor growth and metastasis.Our earlier results indicated that nicotine could induce invasion and epithelial-mesenchymal transition (EMT in cultured lung, breast and pancreatic cancer cells. This study

  6. Morphine Promotes Tumor Angiogenesis and Increases Breast Cancer Progression

    Directory of Open Access Journals (Sweden)

    Sabrina Bimonte

    2015-01-01

    Full Text Available Morphine is considered a highly potent analgesic agent used to relieve suffering of patients with cancer. Several in vitro and in vivo studies showed that morphine also modulates angiogenesis and regulates tumour cell growth. Unfortunately, the results obtained by these studies are still contradictory. In order to better dissect the role of morphine in cancer cell growth and angiogenesis we performed in vitro studies on ER-negative human breast carcinoma cells, MDA.MB231 and in vivo studies on heterotopic mouse model of human triple negative breast cancer, TNBC. We demonstrated that morphine in vitro enhanced the proliferation and inhibited the apoptosis of MDA.MB231 cells. In vivo studies performed on xenograft mouse model of TNBC revealed that tumours of mice treated with morphine were larger than those observed in other groups. Moreover, morphine was able to enhance the neoangiogenesis. Our data showed that morphine at clinical relevant doses promotes angiogenesis and increases breast cancer progression.

  7. Metastases and Colon Cancer Tumor Growth Display Divergent Responses to Modulation of Canonical WNT Signaling.

    Directory of Open Access Journals (Sweden)

    Chandan Seth

    Full Text Available Human colon cancers commonly harbor loss of function mutations in APC, a repressor of the canonical WNT pathway, thus leading to hyperactive WNT-TCF signaling. Re-establishment of Apc function in mice, engineered to conditionally repress Apc through RNAi, resolve the intestinal tumors formed due to hyperactivated Wnt-Tcf signaling. These and other results have prompted the search for specific WNT pathway antagonists as therapeutics for clinically problematic human colon cancers and associated metastases, which remain largely incurable. This widely accepted view seems at odds with a number of findings using patient-derived material: Canonical TCF targets are repressed, instead of being hyperactivated, in advanced colon cancers, and repression of TCF function does not generally result in tumor regression in xenografts. The results of a number of genetic mouse studies have also suggested that canonical WNT-TCF signaling drives metastases, but direct in vivo tests are lacking, and, surprisingly, TCF repression can enhance directly seeded metastatic growth. Here we have addressed the abilities of enhanced and blocked WNT-TCF signaling to alter tumor growth and distant metastases using xenografts of advanced human colon cancers in mice. We find that endogenous WNT-TCF signaling is mostly anti-metastatic since downregulation of TCF function with dnTCF generally enhances metastatic spread. Consistently, elevating the level of WNT signaling, by increasing the levels of WNT ligands, is not generally pro-metastatic. Our present and previous data reveal a heterogeneous response to modulating WNT-TCF signaling in human cancer cells. Nevertheless, the findings that a fraction of colon cancers tested require WNT-TCF signaling for tumor growth but all respond to repressed signaling by increasing metastases beg for a reevaluation of the goal of blocking WNT-TCF signaling to universally treat colon cancers. Our data suggest that WNT-TCF blockade may be effective

  8. Gene Promoter Hypermethylation in Tumors and Plasma of Breast Cancer Patients

    Science.gov (United States)

    Shim, Young Ran; Choi, Joon Hyuk; Kim, Mi Jin; Gabrielson, Edward; Lee, Soo Jung; Hwang, Tae Yoon; Shin, Sei One

    2005-01-01

    Purpose To measure the hypermethylation of four genes in primary tumors and paired plasma samples to determine the feasibility of gene promoter hypermethylation markers for detecting breast cancer in the plasma. Materials and Methods DNA was extracted from the tumor tissues and peripheral blood plasma of 34 patients with invasive breast cancer, and the samples examined for aberrant hypermethylation in cyclin D2, retinoic acid receptor β (RARβ), twist and high in normal-1 (HIN-1) genes using methylation-specific PCR (MSP), and the results correlated with the clinicopathological parameters. Results Promoter hypermethylation was detected at high frequency in the primary tumors for cyclin D2 (53%), RARβ (56%), twist (41%) and HIN-1 (77%). Thirty-three of the 34 (97%) primary tumors displayed promoter hypermethylation in at least one of the genes examined. The corresponding plasma samples showed hyperme thylation of the same genes, although at lower frequencies (6% for cyclin D2, 16% for RARβ, 36% for twist, and 54% for HIN-1). Overall, 22 of the 33 (67%) primary tumors with hypermethylation of at least one of the four genes also had abnormally hypermethylated DNA in their matched plasma samples. No significant relationship was recognized between any of the clinical or pathological parameters (tumor size, axillary lymph node metastasis, stage, or Ki-67 labeling index) with the frequency of hypermethylated DNA in the primary tumor or plasma. Conclusion The detection of aberrant promoter hypermethylation of cancer-related genes in the plasma may be a useful tool for the detection of breast cancer. PMID:19956520

  9. Signaling molecules and pathways involved in MSC tumor tropism.

    Science.gov (United States)

    Ho, Ivy A W; Lam, Paula Y P

    2013-11-01

    Human bone marrow is a reservoir containing cells with different self-renewal capabilities, such as mesenchymal stem cells (MSC) and hematopoeitic stem cells (HSC). MSC in particular have been increasingly used in preclinical and clinical treatment of tissue regenerative disorder. Understanding the molecular mechanisms underlying MSC homing and mobilization is critical to the design of rational cell therapy approaches. In this review, we will discuss the key molecular mechanisms that govern the homing of MSC to bone marrow, the mobilization of MSC to tumors and injured sites via circulation, and strategies that enhance MSC migration.

  10. Deoxypodophyllotoxin suppresses tumor vasculature in HUVECs by promoting cytoskeleton remodeling through LKB1-AMPK dependent Rho A activatio.

    Science.gov (United States)

    Wang, Yurong; Wang, Bin; Guerram, Mounia; Sun, Li; Shi, Wei; Tian, Chongchong; Zhu, Xiong; Jiang, Zhenzhou; Zhang, Luyong

    2015-10-06

    Angiogenesis plays a critical role in the growth and metastasis of tumors, which makes it an attractive target for anti-tumor drug development. Deoxypodophyllotoxin (DPT), a natural product isolated from Anthriscus sylvestris, inhibits cell proliferation and migration in various cancer cell types. Our previous studies indicate that DPT possesses both anti-angiogenic and vascular-disrupting activities. Although the RhoA/ RhoA kinase (ROCK) signaling pathway is implicated in DPT-stimulated cytoskeleton remodeling and tumor vasculature suppressing, the detailed mechanisms by which DPT mediates these effects are poorly understood. In the current study, we found that DPT promotes cytoskeleton remodeling in human umbilical vein endothelial cells (HUVECs) via stimulation of AMP-activated protein kinase (AMPK) and that this effect is abolished by either treatment with a selective AMPK inhibitor or knockdown. Moreover, the cellular levels of LKB1, a kinase upstream of AMPK, were enhanced following DPT exposure. DPT-induced activation of AMPK in tumor vasculature effect was also verified by transgenic zebrafish (VEGFR2:GFP), Matrigel plug assay, and xenograft model in nude mice. The present findings may lay the groundwork for a novel therapeutic approach in treating cancer.

  11. Cell aggregation induces phosphorylation of PECAM-1 and Pyk2 and promotes tumor cell anchorage-independent growth

    Directory of Open Access Journals (Sweden)

    Yu Qiang

    2010-01-01

    Full Text Available Abstract Background Apoptosis caused by inadequate or inappropriate cell-matrix interactions is defined as anoikis. Although transformed cells are known to be anoikis-resistant, the underlying mechanisms have not been well understood. We investigated the mechanisms of anoikis resistance of tumor cells. Results We observed that cell aggregation in suspension promoted cell survival and proliferation. We demonstrated a correlation between tumor cell aggregation in suspension and cell growth in soft agar. Analysis of tyrosine kinase-mediated cell survival and growth signaling pathways revealed increased levels of tyrosine-phosphorylation of PECAM-1 and Pyk2 in cell aggregates. We also showed that PECAM-1 and Pyk2 physically interact with each other, and that PECAM-1 carrying a deletion of exons 11-16 could no longer bind to Pyk2. Furthermore, RNA interference-mediated reduction of Pyk2 and PECAM-1 protein levels reduced cell aggregation and inhibited the growth of tumor cells in soft agar. Conclusions The data demonstrated that Pyk2 and PECAM-1 were critical mediators of both anchorage-independent growth and anoikis resistance in tumor cells.

  12. Adiponectin deficiency promotes tumor growth in mice by reducing macrophage infiltration.

    Directory of Open Access Journals (Sweden)

    Yutong Sun

    Full Text Available Adiponectin is an adipocyte-derived plasma protein that has been implicated in regulating angiogenesis, but the role of adiponectin in regulating this process is still controversial. In this study, in order to determine whether adiponectin affects tumor growth and tumor induced vascularization, we implanted B16F10 melanoma and Lewis Lung Carcinoma cells subcutaneously into adiponectin knockout and wild-type control mice, and found that adiponectin deficiency markedly promoted the growth of both tumors. Immunohistochemical analyses indicated that adiponectin deficiency reduced macrophage recruitment to the tumor, but did not affect cancer cell mitosis, apoptosis, or tumor-associated angiogenesis. In addition, treatment with recombinant adiponectin did not affect the proliferation of cultured B16F10 tumor cells. Importantly, the restoration of microphage infiltration at an early stage of tumorigenesis by means of co-injection of B16F10 cells and macrophages reversed the increased tumor growth in adiponectin knockout mice. Thus, we conclude that the enhanced tumor growth observed in adiponectin deficient mice is likely due to the reduction of macrophage infiltration rather than enhanced angiogenesis.

  13. Adiponectin deficiency promotes tumor growth in mice by reducing macrophage infiltration.

    Science.gov (United States)

    Sun, Yutong; Lodish, Harvey F

    2010-08-05

    Adiponectin is an adipocyte-derived plasma protein that has been implicated in regulating angiogenesis, but the role of adiponectin in regulating this process is still controversial. In this study, in order to determine whether adiponectin affects tumor growth and tumor induced vascularization, we implanted B16F10 melanoma and Lewis Lung Carcinoma cells subcutaneously into adiponectin knockout and wild-type control mice, and found that adiponectin deficiency markedly promoted the growth of both tumors. Immunohistochemical analyses indicated that adiponectin deficiency reduced macrophage recruitment to the tumor, but did not affect cancer cell mitosis, apoptosis, or tumor-associated angiogenesis. In addition, treatment with recombinant adiponectin did not affect the proliferation of cultured B16F10 tumor cells. Importantly, the restoration of microphage infiltration at an early stage of tumorigenesis by means of co-injection of B16F10 cells and macrophages reversed the increased tumor growth in adiponectin knockout mice. Thus, we conclude that the enhanced tumor growth observed in adiponectin deficient mice is likely due to the reduction of macrophage infiltration rather than enhanced angiogenesis.

  14. Tumor fibroblast–derived epiregulin promotes growth of colitis-associated neoplasms through ERK

    Science.gov (United States)

    Neufert, Clemens; Becker, Christoph; Türeci, Özlem; Waldner, Maximilian J.; Backert, Ingo; Floh, Katharina; Atreya, Imke; Leppkes, Moritz; Jefremow, Andre; Vieth, Michael; Schneider-Stock, Regine; Klinger, Patricia; Greten, Florian R.; Threadgill, David W.; Sahin, Ugur; Neurath, Markus F.

    2013-01-01

    Molecular mechanisms specific to colitis-associated cancers have been poorly characterized. Using comparative whole-genome expression profiling, we observed differential expression of epiregulin (EREG) in mouse models of colitis-associated, but not sporadic, colorectal cancer. Similarly, EREG expression was significantly upregulated in cohorts of patients with colitis-associated cancer. Furthermore, tumor-associated fibroblasts were identified as a major source of EREG in colitis-associated neoplasms. Functional studies showed that Ereg-deficient mice, although more prone to colitis, were strongly protected from colitis-associated tumors. Serial endoscopic studies revealed that EREG promoted tumor growth rather than initiation. Additionally, we demonstrated that fibroblast-derived EREG requires ERK activation to induce proliferation of intestinal epithelial cells (IEC) and tumor development in vivo. To demonstrate the functional relevance of EREG-producing tumor-associated fibroblasts, we developed a novel system for adoptive transfer of these cells via mini-endoscopic local injection. It was found that transfer of EREG-producing, but not Ereg-deficient, fibroblasts from tumors significantly augmented growth of colitis-associated neoplasms in vivo. In conclusion, our data indicate that EREG and tumor-associated fibroblasts play a crucial role in controlling tumor growth in colitis-associated neoplasms. PMID:23549083

  15. Tumor fibroblast-derived epiregulin promotes growth of colitis-associated neoplasms through ERK.

    Science.gov (United States)

    Neufert, Clemens; Becker, Christoph; Türeci, Özlem; Waldner, Maximilian J; Backert, Ingo; Floh, Katharina; Atreya, Imke; Leppkes, Moritz; Jefremow, Andre; Vieth, Michael; Schneider-Stock, Regine; Klinger, Patricia; Greten, Florian R; Threadgill, David W; Sahin, Ugur; Neurath, Markus F

    2013-04-01

    Molecular mechanisms specific to colitis-associated cancers have been poorly characterized. Using comparative whole-genome expression profiling, we observed differential expression of epiregulin (EREG) in mouse models of colitis-associated, but not sporadic, colorectal cancer. Similarly, EREG expression was significantly upregulated in cohorts of patients with colitis-associated cancer. Furthermore, tumor-associated fibroblasts were identified as a major source of EREG in colitis-associated neoplasms. Functional studies showed that Ereg-deficient mice, although more prone to colitis, were strongly protected from colitis-associated tumors. Serial endoscopic studies revealed that EREG promoted tumor growth rather than initiation. Additionally, we demonstrated that fibroblast-derived EREG requires ERK activation to induce proliferation of intestinal epithelial cells (IEC) and tumor development in vivo. To demonstrate the functional relevance of EREG-producing tumor-associated fibroblasts, we developed a novel system for adoptive transfer of these cells via mini-endoscopic local injection. It was found that transfer of EREG-producing, but not Ereg-deficient, fibroblasts from tumors significantly augmented growth of colitis-associated neoplasms in vivo. In conclusion, our data indicate that EREG and tumor-associated fibroblasts play a crucial role in controlling tumor growth in colitis-associated neoplasms.

  16. Endothelial Cells Enhance Tumor Cell Invasion through a Crosstalk Mediated by CXC Chemokine Signaling

    Directory of Open Access Journals (Sweden)

    Kristy A. Warner

    2008-02-01

    Full Text Available Field cancerization involves the lateral spread of premalignant or malignant disease and contributes to the recurrence of head and neck tumors. The overall hypothesis underlying this work is that endothelial cells actively participate in tumor cell invasion by secreting chemokines and creating a chemotactic gradient for tumor cells. Here we demonstrate that conditioned medium from head and neck tumor cells enhance Bcl-2 expression in neovascular endothelial cells. Oral squamous cell carcinoma-3 (OSCC3 and Kaposi's sarcoma (SLK show enhanced invasiveness when cocultured with pools of human dermal microvascular endothelial cells stably expressing Bcl-2 (HDMEC-Bcl-2, compared to cocultures with empty vector controls (HDMEC-LXSN. Xenografted OSCC3 tumors vascularized with HDMEC-Bcl-2 presented higher local invasion than OSCC3 tumors vascularized with control HDMEC-LXSN. CXCL1 and CXCL8 were upregulated in primary endothelial cells exposed to vascular endothelial growth factor (VEGF, as well as in HDMEC-Bcl-2. Notably, blockade of CXCR2 signaling, but not CXCR1, inhibited OSCC3 and SLK invasion toward endothelial cells. These data demonstrate that CXC chemokines secreted by endothelial cells induce tumor cell invasion and suggest that the process of lateral spread of tumor cells observed in field cancerization is guided by chemotactic signals that originated from endothelial cells.

  17. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Heyu [Central Laboratory, Peking University School of Stomatology, Beijing (China); Nan, Xu [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Xuefen [Central Laboratory, Peking University School of Stomatology, Beijing (China); Chen, Yan; Zhang, Jianyun [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China); Sun, Lisha [Central Laboratory, Peking University School of Stomatology, Beijing (China); Han, Wenlin [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Tiejun, E-mail: litiejun22@vip.sina.com [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China)

    2014-05-02

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.

  18. TERT promoter mutations are frequent and show association with MED12 mutations in phyllodes tumors of the breast

    Science.gov (United States)

    Yoshida, Masayuki; Ogawa, Reiko; Yoshida, Hiroshi; Maeshima, Akiko; Kanai, Yae; Kinoshita, Takayuki; Hiraoka, Nobuyoshi; Sekine, Shigeki

    2015-01-01

    Background: Phyllodes tumors are rare fibroepithelial neoplasms of the breast, which carry the potential risk of local recurrence and metastasis. Phyllodes tumors share several histological features with fibroadenomas, and no widely accepted markers for distinguishing these lesions have been identified. Methods: We analyzed molecular abnormalities related to telomere elongation in tumors, including TERT promoter mutations, as well as loss of expression of ATRX and DAXX, in a total of 104 phyllodes tumors and fibroadenomas. Results: Sequencing analyses showed that TERT promoter mutations were frequent in phyllodes tumors (30/46, 65%), but rare in fibroadenomas (4/58, 7%). Among phyllodes tumors, the mutations were more frequent in borderline tumors (13/15, 87%), but were also common in benign (9/18, 50%) and malignant tumors (8/13, 62%). Remarkably, all but one TERT promoter-mutated tumor also contained MED12 mutations, indicating that these mutations are strongly associated (P=8.4 × 10−6). Expression of ATRX and DAXX, as evaluated by immunohistochemistry, was retained in all tumors. Conclusions: Our observations suggest a critical role of TERT promoter mutations, in cooperation with MED12 mutations, in the development of phyllodes tumors. Because TERT promoter mutations are rare among fibroadenomas, their detection may be of potential use in discriminating between phyllodes tumors and fibroadenomas. PMID:26355235

  19. Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2.

    Science.gov (United States)

    Yin, Feng; Yu, Jianzhong; Zheng, Yonggang; Chen, Qian; Zhang, Nailing; Pan, Duojia

    2013-09-12

    Although Merlin/NF2 was discovered two decades ago as a tumor suppressor underlying Neurofibromatosis type II, its precise molecular mechanism remains poorly understood. Recent studies in Drosophila revealed a potential link between Merlin and the Hippo pathway by placing Merlin genetically upstream of the kinase Hpo/Mst. In contrast to the commonly depicted linear model of Merlin functioning through Hpo/Mst, here we show that in both Drosophila and mammals, Merlin promotes downstream Hippo signaling without activating the intrinsic kinase activity of Hpo/Mst. Instead, Merlin directly binds and recruits the effector kinase Wts/Lats to the plasma membrane. Membrane recruitment, in turn, promotes Wts phosphorylation by the Hpo-Sav kinase complex. We further show that disruption of the actin cytoskeleton promotes Merlin-Wts interactions, which implicates Merlin in actin-mediated regulation of Hippo signaling. Our findings elucidate an important molecular function of Merlin and highlight the plasma membrane as a critical subcellular compartment for Hippo signal transduction. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Mesenchymal Stem Cells Promote Pancreatic Tumor Growth by Inducing Alternative Polarization of Macrophages

    Directory of Open Access Journals (Sweden)

    Esha Mathew

    2016-03-01

    Significance: Targeting the stroma is emerging as a new paradigm in pancreatic cancer; however, efforts to that effect are hampered by our limited understanding of the nature and function of stromal components. Here, we uncover previously unappreciated heterogeneity within the stroma and identify interactions among stromal components that promote tumor growth and could be targeted therapeutically.

  1. Curcumin and Turmeric Modulate the Tumor-Promoting Effects of Iron In Vitro.

    Science.gov (United States)

    Messner, Donald J; Robinson, Todd; Kowdley, Kris V

    2017-04-01

    Free or loosely chelated iron has tumor-promoting properties in vitro. Curcumin, a polyphenol derived from the food spice turmeric (Curcuma longa), is a potent antioxidant that binds iron. The primary aim of this study was to investigate whether curcuminoids prevent tumor-promoting effects of iron in T51B cells, a non-neoplastic rat liver epithelial cell line. Purified curcuminoids (curcumin) or a standardized turmeric extract similarly reduced oxidative stress and cytotoxicity associated with iron overload (IC50 values near 10 μM, P turmeric for 16 wk in culture; subsequently assayed by soft agar colony formation) was nearly complete at 20 μM of total curcuminoids (P turmeric extract were taken up better by cells, had a longer half-life, and appeared more effective in blocking tumor promotion (P < 0.01), suggesting enhanced curcuminoid delivery to cells in culture. The primary finding that curcuminoids can inhibit tumor promotion caused by iron in T51B cells is tempered by evidence for an underlying increase in neoplastic transformation at lower concentrations.

  2. Sennosides and aloin do not promote dimethylhydrazine-induced colorectal tumors in mice.

    Science.gov (United States)

    Siegers, C P; Siemers, J; Baretton, G

    1993-10-01

    In a model of dimethylhydrazine-induced colorectal tumors in male mice aloin- or sennoside-enriched diets (0.03%) did not promote incidence and growth of adenomas and carcinomas after 20 weeks. Furthermore, in anthranoid-fed mice no significant changes in serum electrolytes as well as parameters of hepato- and nephrotoxicity were observed.

  3. Intra- and Extra-Cellular Events Related to Altered Glycosylation of MUC1 Promote Chronic Inflammation, Tumor Progression, Invasion, and Metastasis

    Directory of Open Access Journals (Sweden)

    Sandra Cascio

    2016-10-01

    Full Text Available Altered glycosylation of mucin 1 (MUC1 on tumor cells compared to normal epithelial cells was previously identified as an important antigenic modification recognized by the immune system in the process of tumor immunosurveillance. This tumor form of MUC1 is considered a viable target for cancer immunotherapy. The importance of altered MUC1 glycosylation extends also to its role as a promoter of chronic inflammatory conditions that lead to malignant transformation and cancer progression. We review here what is known about the role of specific cancer-associated glycans on MUC1 in protein-protein interactions and intracellular signaling in cancer cells and in their adhesion to each other and the tumor stroma. The tumor form of MUC1 also creates a different landscape of inflammatory cells in the tumor microenvironment by controlling the recruitment of inflammatory cells, establishing specific interactions with dendritic cells (DCs and macrophages, and facilitating tumor escape from the immune system. Through multiple types of short glycans simultaneously present in tumors, MUC1 acquires multiple oncogenic properties that control tumor development, progression, and metastasis at different steps of the process of carcinogenesis.

  4. Tumorer

    DEFF Research Database (Denmark)

    Prause, J.U.; Heegaard, S.

    2005-01-01

    oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer......oftalmologi, øjenlågstumorer, conjunctivale tumorer, malignt melanom, retinoblastom, orbitale tumorer...

  5. Role of Acid Sphingomyelinase-Induced Signaling in Melanoma Cells for Hematogenous Tumor Metastasis.

    Science.gov (United States)

    Carpinteiro, Alexander; Beckmann, Nadine; Seitz, Aaron; Hessler, Gabriele; Wilker, Barbara; Soddemann, Matthias; Helfrich, Iris; Edelmann, Bärbel; Gulbins, Erich; Becker, Katrin Anne

    2016-01-01

    Hematogenous metastasis of malignant tumor cells is a multistep process that requires release of tumor cells from the local tumor mass, interaction of the tumor cells with platelets in the blood, and adhesion of either the activated tumor cells or the complexes of platelets and tumor cells to the endothelial cells of the target organ. We have previously shown that the interaction of melanoma cells with platelets results in the release of acid sphingomyelinase (Asm) from activated platelets. Secreted platelet-derived Asm acts on malignant tumor cells to cluster and activate integrins; such clustering and activation are necessary for tumor cell adhesion to endothelial cells and for metastasis. We examined the response of tumor cells to treatment with extracellular sphingomyelinase or co-incubation with wild-type and Asm-deficient platelets. We determined the phosphorylation and activation of several intracellular signaling molecules, in particular p38 kinase (p38K), phospholipase Cx03B3; (PLCx03B3;), ezrin, and extracellular signal-regulated kinases. Incubation of B16F10 melanoma cells with Asm activates p38 MAP kinase (p38K), phospholipase Cx03B3; (PLCx03B3;), ezrin, and extracellular signal-regulated kinases. Co-incubation of B16F10 melanoma cells with wild-type or Asm-deficient platelets showed that the phosphorylation/activation of p38K is dependent on Asm. Pharmacological blockade of p38K prevents activation of β1 integrin and adhesion in vitro. Most importantly, inhibition of p38K activity in B16F10 melanoma cells prevents tumor cell adhesion and metastasis to the lung in vivo, a finding indicating the importance of p38K for metastasis. Asm, secreted from activated platelets after tumor cell-platelet contact, induces p38K phosphorylation in tumor cells. This in turn stimulates β1 integrin activation that is necessary for adhesion and subsequent metastasis of tumor cells. Thus, inhibition of p38K might be a novel target to prevent tumor metastasis. © 2016 The

  6. Mutant p53 Amplifies Epidermal Growth Factor Receptor Family Signaling to Promote Mammary Tumorigenesis.

    Science.gov (United States)

    Yallowitz, Alisha R; Li, Dun; Lobko, Anthony; Mott, Daniel; Nemajerova, Alice; Marchenko, Natalia

    2015-04-01

    The EGFR family (ErbB2/Her2 and EGFR/ErbB1/Her1) often modulates the transcriptional program involved in promoting mammary tumorigenesis. In humans, the majority of ErbB2-positive sporadic breast cancers harbor p53 mutations, which correlate with poor prognosis. Also, the extremely high incidence of ErbB2-positive breast cancer in women with p53 germline mutations (Li-Fraumeni syndrome) suggests a key role of mutant p53 specifically in ErbB2-mediated mammary tumorigenesis. To examine the role of mutant p53 during ErbB2-mediated mammary tumorigenesis, a mutant p53 allele (R172H) was introduced into the (MMTV)-ErbB2/Neu mouse model system. Interestingly, we show in heterozygous p53 mice that mutant p53 R172H is a more potent activator of ErbB2-mediated mammary tumorigenesis than simple loss of p53. The more aggressive disease in mutant p53 animals was reflected by earlier tumor onset, increased mammary tumor multiplicity, and shorter survival. These in vivo and in vitro data provide mechanistic evidence that mutant p53 amplifies ErbB2 and EGFR signaling to promote the expansion of mammary stem cells and induce cell proliferation. This study identifies mutant p53 as an essential player in ErbB2 and EGFR-mediated mammary tumorigenesis and indicates the potential translational importance of targeting mutant p53 in this subset of patients with breast cancer. ©2015 American Association for Cancer Research.

  7. BET Bromodomain Inhibition Promotes Anti-tumor Immunity by Suppressing PD-L1 Expression

    Directory of Open Access Journals (Sweden)

    Hengrui Zhu

    2016-09-01

    Full Text Available Restoration of anti-tumor immunity by blocking PD-L1 signaling through the use of antibodies has proven to be beneficial in cancer therapy. Here, we show that BET bromodomain inhibition suppresses PD-L1 expression and limits tumor progression in ovarian cancer. CD274 (encoding PD-L1 is a direct target of BRD4-mediated gene transcription. In mouse models, treatment with the BET inhibitor JQ1 significantly reduced PD-L1 expression on tumor cells and tumor-associated dendritic cells and macrophages, which correlated with an increase in the activity of anti-tumor cytotoxic T cells. The BET inhibitor limited tumor progression in a cytotoxic T-cell-dependent manner. Together, these data demonstrate a small-molecule approach to block PD-L1 signaling. Given the fact that BET inhibitors have been proven to be safe with manageable reversible toxicity in clinical trials, our findings indicate that pharmacological BET inhibitors represent a treatment strategy for targeting PD-L1 expression.

  8. Podocalyxin promotes glioblastoma multiforme cell invasion and proliferation by inhibiting angiotensin-(1-7)/Mas signaling.

    Science.gov (United States)

    Liu, Bo; Liu, Yu; Jiang, Yugang

    2015-05-01

    Podocalyxin (PODX) reportedly enhances invasion in many human cancers including glioblastoma multiforme (GBM). Recent studies have shown that the local renin-angiotensin system (RAS) in tumor environment contributes significantly to tumor progression. As a counter-regulatory axis in RAS, angiotensin (Ang)-(1-7)/Mas signaling has been shown to inhibit the growth and invasiveness of several human cancers including GBM. In the present study, we examined the crosstalk between PODX and Ang-(1-7)/Mas signaling in GBM cells, and assessed its impact on GBM cell invasion and proliferation. A strong negative correlation between the expression of PODX and Mas in GBM tumor tissues from 10 consecutive patients (r=-0.768, pMas at the mRNA and protein levels, which led to decreased density of Ang-(1-7)-binding Mas on the cell membrane. This effect was completely abolished by selective phosphatidylinositol 3-kinase (PI3K) inhibitor BKM120. By contrast, the stable knockdown of PODX in LN-229 and U-118 MG cells increased the expression of Mas and the density of Ang-(1-7)-binding Mas on the cell membrane. Overexpression and knockdown of PODX respectively reversed and enhanced the inhibitory effects of Ang-(1-7) on the expression/activity of matrix metalloproteinase-9 and cell invasion and proliferation in GBM cells. Although the overexpression of Mas showed no significant effect on the promoting effect of PODX on GBM cell invasion and proliferation in the absence of Ang-(1-7), it completely eliminated the effect of PODX in the presence of Ang-(1-7). In conclusion, to the best of our knowledge, the present study provided the first evidence that PODX inhibits Ang-(1-7)/Mas signaling by downregulating the expression of Mas through a PI3K-dependent mechanism in GBM cells. This effect led to enhanced GBM cell invasion and proliferation. The results of this study add new insight into the biological functions of PODX and the molecular mechanisms underlying GBM progression.

  9. Inhibition of BRD4 attenuates tumor cell self-renewal and suppresses stem cell signaling in MYC driven medulloblastoma

    Science.gov (United States)

    Balakrishnan, Ilango; Harris, Peter; Birks, Diane K; Griesinger, Andrea; Amani, Vladimir; Cristiano, Brian; Remke, Marc; Taylor, Michael D; Handler, Michael; Foreman, Nicholas K; Vibhakar, Rajeev

    2014-01-01

    Medulloblastoma is a pediatric brain tumor with a variable prognosis due to clinical and genomic heterogeneity. Among the 4 major genomic sub-groups, patients with MYC amplified tumors have a particularly poor prognosis despite therapy with surgery, radiation and chemotherapy. Targeting the MYC oncogene has traditionally been problematic. Here we report that MYC driven medulloblastoma can be targeted by inhibition of the bromodomain protein BRD4. We show that bromodomain inhibition with JQ1 restricts c-MYC driven transcriptional programs in medulloblastoma, suppresses medulloblastoma cell growth and induces a cell cycle arrest. Importantly JQ1 suppresses stem cell associated signaling in medulloblastoma cells and inhibits medulloblastoma tumor cell self-renewal. Additionally JQ1 also promotes senescence in medulloblastoma cells by activating cell cycle kinase inhibitors and inhibiting activity of E2F1. Furthermore BRD4 inhibition displayed an anti-proliferative, pro-senescence effect in a medulloblastoma model in vivo. In clinical samples we found that transcriptional programs suppressed by JQ1 are associated with adverse risk in medulloblastoma patients. Our work indicates that BRD4 inhibition attenuates stem cell signaling in MYC driven medulloblastoma and demonstrates the feasibility BET domain inhibition as a therapeutic approach in vivo. PMID:24796395

  10. Racial Variations in Prostate Cancer Molecular Subtypes and Androgen Receptor Signaling Reflect Anatomic Tumor Location.

    Science.gov (United States)

    Faisal, Farzana A; Sundi, Debasish; Tosoian, Jeffrey J; Choeurng, Voleak; Alshalalfa, Mohammed; Ross, Ashley E; Klein, Eric; Den, Robert; Dicker, Adam; Erho, Nicholas; Davicioni, Elai; Lotan, Tamara L; Schaeffer, Edward M

    2016-07-01

    Prostate cancer (PCa) subtypes based on ETS gene expression have been described. Recent studies suggest there are racial differences in tumor location, with PCa located anteriorly more often among African-American (AA) compared to Caucasian-American (CA) men. In this retrospective analysis of a multi-institutional cohort treated by radical prostatectomy (179 CA, 121 AA), we evaluated associations among molecular subtype, race, anatomic tumor location, and androgen receptor (AR) signaling. Subtype (m-ERG(+), m-ETS(+), m-SPINK1(+), or triple-negative) was determined using distribution-based outlier analysis. AR signaling was investigated using gene expression profiling of canonical AR targets. m-ERG(+) was more common in CA than AA men (47% vs 22%, pRacial differences in molecular subtypes did not persist when tumors were analyzed by location, suggesting a biologically important relationship between tumor location and subtype. Accordingly, anterior tumor location was associated with higher Decipher scores and lower global AR signaling. This study demonstrates associations among patient race, prostate cancer molecular subtypes, and tumor location. Location-specific differences in androgen regulation may further underlie these relationships. Copyright © 2015. Published by Elsevier B.V.

  11. Fragile X mental retardation protein promotes astrocytoma proliferation via the MEK/ERK signaling pathway

    Science.gov (United States)

    Zhang, Hui; Hao, Zhuofang; Long, Yuesheng; Chen, Shengqiang; Su, Hang; Yuan, Zhongmin; Xu, Meng; Chen, Jingqi

    2016-01-01

    Objective To examine the association between fragile X mental retardation protein (FMRP) expression and astrocytoma characteristics. Methods Pathologic grade and expressions of glial fibrillary acidic protein (GFAP), Ki67 (proliferation marker), and FMRP were determined in astrocytoma specimens from 74 patients. Kaplan-Meier survival analysis was undertaken. Pathologic grade and protein levels of FMRP were determined in 24 additional patients with astrocytoma and 6 controls (cerebral trauma). In cultured U251 and U87 cell lines, the effects of FMRP knock-down on cell proliferation, AKT/mTOR/GSK-3β and MEK/ERK signaling were studied. The effects of FMRP knock-down on the volumes and weights of U251 cell-derived orthotopic tumors in mice were investigated. Results In patients, FMRP expression was increased in grade IV (5.1-fold, Pastrocytoma, compared with controls. FMRP and Ki67 expressions were positively correlated (R2=0.877, P30 (Pastrocytoma cell lines, FMRP knock-down slowed proliferation (Pastrocytoma may promote proliferation through activation of MEK/ERK signaling. PMID:27683117

  12. S100A9 Interaction with TLR4 Promotes Tumor Growth

    Science.gov (United States)

    Källberg, Eva; Vogl, Thomas; Liberg, David; Olsson, Anders; Björk, Per; Wikström, Pernilla; Bergh, Anders; Roth, Johannes; Ivars, Fredrik; Leanderson, Tomas

    2012-01-01

    By breeding TRAMP mice with S100A9 knock-out (S100A9−/−) animals and scoring the appearance of palpable tumors we observed a delayed tumor growth in animals devoid of S100A9 expression. CD11b+ S100A9 expressing cells were not observed in normal prostate tissue from control C57BL/6 mice but were readily detected in TRAMP prostate tumors. Also, S100A9 expression was observed in association with CD68+ macrophages in biopsies from human prostate tumors. Delayed growth of TRAMP tumors was also observed in mice lacking the S100A9 ligand TLR4. In the EL-4 lymphoma model tumor growth inhibition was observed in S100A9−/− and TLR4−/−, but not in RAGE−/− animals lacking an alternative S100A9 receptor. When expression of immune-regulating genes was analyzed using RT-PCR the only common change observed in mice lacking S100A9 and TLR4 was a down-regulation of TGFβ expression in splenic CD11b+ cells. Lastly, treatment of mice with a small molecule (ABR-215050) that inhibits S100A9 binding to TLR4 inhibited EL4 tumor growth. Thus, S100A9 and TLR4 appear to be involved in promoting tumor growth in two different tumor models and pharmacological inhibition of S100A9-TLR4 interactions is a novel and promising target for anti-tumor therapies. PMID:22470535

  13. Intersection of interferon and hypoxia signal transduction pathways in nitric oxide-induced tumor apoptosis.

    Science.gov (United States)

    Tendler, D S; Bao, C; Wang, T; Huang, E L; Ratovitski, E A; Pardoll, D A; Lowenstein, C J

    2001-05-01

    Activated macrophages play a central role in antitumor immunity. However, the stimuli that activate macrophages to kill tumor cells are not completely understood. Because the center of solid tumors can be hypoxic, we hypothesized that hypoxia may be an important signal in activating macrophages to kill tumor cells. Hypoxia stimulates IFN-primed macrophages to express the inducible nitric oxide synthase (NOS2) and to synthesize nitric oxide (NO). We show that this synergy between IFN and hypoxia is mediated by the direct interaction of the hypoxia inducible factor-1 (HIF-1) and IFN regulatory factor-1 (IRF-1), which are both required for the hypoxic transcription of NOS2. This interaction between HIF-1 and IRF-1 may explain the mechanism by which macrophages infiltrating into tumors are activated to express NOS2 and to produce NO, a mediator of tumor apoptosis.

  14. Quantitative Analysis of Diffusion Weighted MR Images of Brain Tumor Using Signal Intensity Gradient Technique

    Directory of Open Access Journals (Sweden)

    S. S. Shanbhag

    2014-01-01

    Full Text Available The purpose of this study was to evaluate the role of diffusion weighted-magnetic resonance imaging (DW-MRI in the examination and classification of brain tumors, namely, glioma and meningioma. Our hypothesis was that as signal intensity variations on diffusion weighted (DW images depend on histology and cellularity of the tumor, analysing the signal intensity characteristics on DW images may allow differentiating between the tumor types. Towards this end the signal intensity variations on DW images of the entire tumor volume data of 20 subjects with glioma and 12 subjects with meningioma were investigated and quantified using signal intensity gradient (SIG parameter. The relative increase in the SIG values (RSIG for the subjects with glioma and meningioma was in the range of 10.08–28.36 times and 5.60–9.86 times, respectively, compared to their corresponding SIG values on the contralateral hemisphere. The RSIG values were significantly different between the subjects with glioma and meningioma (P<0.01, with no overlap between RSIG values across the two tumors. The results indicate that the quantitative changes in the RSIG values could be applied in the differential diagnosis of glioma and meningioma, and their adoption in clinical diagnosis and treatment could be helpful and informative.

  15. Signaling Circuits and Regulation of Immune Suppression by Ovarian Tumor-Associated Macrophages

    Directory of Open Access Journals (Sweden)

    Martin J. Cannon

    2015-05-01

    Full Text Available The barriers presented by immune suppression in the ovarian tumor microenvironment present one of the biggest challenges to development of successful tumor vaccine strategies for prevention of disease recurrence and progression following primary surgery and chemotherapy. New insights gained over the last decade have revealed multiple mechanisms of immune regulation, with ovarian tumor-associated macrophages/DC likely to fulfill a central role in creating a highly immunosuppressive milieu that supports disease progression and blocks anti-tumor immunity. This review provides an appraisal of some of the key signaling pathways that may contribute to immune suppression in ovarian cancer, with a particular focus on the potential involvement of the c-KIT/PI3K/AKT, wnt/β-catenin, IL-6/STAT3 and AhR signaling pathways in regulation of indoleamine 2,3-dioxygenase expression in tumor-associated macrophages. Knowledge of intercellular and intracellular circuits that shape immune suppression may afford insights for development of adjuvant treatments that alleviate immunosuppression in the tumor microenvironment and enhance the clinical efficacy of ovarian tumor vaccines.

  16. ABERRANT SPLICING OF A BRAIN-ENRICHED ALTERNATIVE EXON ELIMINATES TUMOR SUPPRESSOR FUNCTION AND PROMOTES ONCOGENE FUNCTION DURING BRAIN TUMORIGENESIS

    Science.gov (United States)

    Bredel, Markus; Ferrarese, Roberto; Harsh, Griffith R.; Yadav, Ajay K.; Bug, Eva; Maticzka, Daniel; Reichardt, Wilfried; Masilamani, Anie P.; Dai, Fangping; Kim, Hyunsoo; Hadler, Michael; Scholtens, Denise M.; Yu, Irene L.Y.; Beck, Jürgen; Srinivasasainagendra, Vinodh; Costa, Fabrizio; Baxan, Nicoleta; Pfeifer, Dietmar; Elverfeldt, Dominik v.; Backofen, Rolf; Weyerbrock, Astrid; Duarte, Christine W.; He, Xiaolin; Prinz, Marco; Chandler, James P.; Vogel, Hannes; Chakravarti, Arnab; Rich, Jeremy N.; Carro, Maria S.

    2014-01-01

    . CONCLUSIONS: Our data illustrate how anomalous splicing of a tissue-regulated exon in a constituent of an oncogenic signaling pathway eliminates its tumor suppressor function and promotes tumorigenesis. This paradigm of malignant glial transformation as a consequence of tissue-specific alternative exon splicing in a tumor suppressor, may have widespread applicability in explaining how changes in critical tissue-specific regulatory mechanisms reprogram normal development to oncogenesis. SECONDARY CATEGORY: n/a.

  17. R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m6A/MYC/CEBPA Signaling.

    Science.gov (United States)

    Su, Rui; Dong, Lei; Li, Chenying; Nachtergaele, Sigrid; Wunderlich, Mark; Qing, Ying; Deng, Xiaolan; Wang, Yungui; Weng, Xiaocheng; Hu, Chao; Yu, Mengxia; Skibbe, Jennifer; Dai, Qing; Zou, Dongling; Wu, Tong; Yu, Kangkang; Weng, Hengyou; Huang, Huilin; Ferchen, Kyle; Qin, Xi; Zhang, Bin; Qi, Jun; Sasaki, Atsuo T; Plas, David R; Bradner, James E; Wei, Minjie; Marcucci, Guido; Jiang, Xi; Mulloy, James C; Jin, Jie; He, Chuan; Chen, Jianjun

    2018-01-11

    R-2-hydroxyglutarate (R-2HG), produced at high levels by mutant isocitrate dehydrogenase 1/2 (IDH1/2) enzymes, was reported as an oncometabolite. We show here that R-2HG also exerts a broad anti-leukemic activity in vitro and in vivo by inhibiting leukemia cell proliferation/viability and by promoting cell-cycle arrest and apoptosis. Mechanistically, R-2HG inhibits fat mass and obesity-associated protein (FTO) activity, thereby increasing global N6-methyladenosine (m6A) RNA modification in R-2HG-sensitive leukemia cells, which in turn decreases the stability of MYC/CEBPA transcripts, leading to the suppression of relevant pathways. Ectopically expressed mutant IDH1 and S-2HG recapitulate the effects of R-2HG. High levels of FTO sensitize leukemic cells to R-2HG, whereas hyperactivation of MYC signaling confers resistance that can be reversed by the inhibition of MYC signaling. R-2HG also displays anti-tumor activity in glioma. Collectively, while R-2HG accumulated in IDH1/2 mutant cancers contributes to cancer initiation, our work demonstrates anti-tumor effects of 2HG in inhibiting proliferation/survival of FTO-high cancer cells via targeting FTO/m6A/MYC/CEBPA signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effect of hydroxyurea on the promoter occupancy profiles of tumor suppressor p53 and p73

    Directory of Open Access Journals (Sweden)

    Lu Xin

    2009-06-01

    Full Text Available Abstract Background The p53 tumor suppressor and its related protein, p73, share a homologous DNA binding domain, and mouse genetics studies have suggested that they have overlapping as well as distinct biological functions. Both p53 and p73 are activated by genotoxic stress to regulate an array of cellular responses. Previous studies have suggested that p53 and p73 independently activate the cellular apoptotic program in response to cytotoxic drugs. The goal of this study was to compare the promoter-binding activity of p53 and p73 at steady state and after genotoxic stress induced by hydroxyurea. Results We employed chromatin immunoprecipitation, the NimbleGen promoter arrays and a model-based algorithm for promoter arrays to identify promoter sequences enriched in anti-p53 or anti-p73 immunoprecipitates, either before or after treatment with hydroxyurea, which increased the expression of both p53 and p73 in the human colon cancer cell line HCT116-3(6. We calculated a model-based algorithm for promoter array score for each promoter and found a significant correlation between the promoter occupancy profiles of p53 and p73. We also found that after hydroxyurea treatment, the p53-bound promoters were still bound by p73, but p73 became associated with additional promoters that that did not bind p53. In particular, we showed that hydroxyurea induces the binding of p73 but not p53 to the promoter of MLH3, which encodes a mismatch repair protein, and causes an up-regulation of the MLH3 mRNA. Conclusion These results suggest that hydroxyurea exerts differential effects on the promoter-binding functions of p53 and p73 and illustrate the power of model-based algorithm for promoter array in the analyses of promoter occupancy profiles of highly homologous transcription factors.

  19. Quantitative promoter methylation analysis of multiple cancer-related genes in renal cell tumors

    Directory of Open Access Journals (Sweden)

    Oliveira Jorge

    2007-07-01

    Full Text Available Abstract Background Aberrant promoter hypermethylation of cancer-associated genes occurs frequently during carcinogenesis and may serve as a cancer biomarker. In this study we aimed at defining a quantitative gene promoter methylation panel that might identify the most prevalent types of renal cell tumors. Methods A panel of 18 gene promoters was assessed by quantitative methylation-specific PCR (QMSP in 85 primarily resected renal tumors representing the four major histologic subtypes (52 clear cell (ccRCC, 13 papillary (pRCC, 10 chromophobe (chRCC, and 10 oncocytomas and 62 paired normal tissue samples. After genomic DNA isolation and sodium bisulfite modification, methylation levels were determined and correlated with standard clinicopathological parameters. Results Significant differences in methylation levels among the four subtypes of renal tumors were found for CDH1 (p = 0.0007, PTGS2 (p = 0.002, and RASSF1A (p = 0.0001. CDH1 hypermethylation levels were significantly higher in ccRCC compared to chRCC and oncocytoma (p = 0.00016 and p = 0.0034, respectively, whereas PTGS2 methylation levels were significantly higher in ccRCC compared to pRCC (p = 0.004. RASSF1A methylation levels were significantly higher in pRCC than in normal tissue (p = 0.035. In pRCC, CDH1 and RASSF1A methylation levels were inversely correlated with tumor stage (p = 0.031 and nuclear grade (p = 0.022, respectively. Conclusion The major subtypes of renal epithelial neoplasms display differential aberrant CDH1, PTGS2, and RASSF1A promoter methylation levels. This gene panel might contribute to a more accurate discrimination among common renal tumors, improving preoperative assessment and therapeutic decision-making in patients harboring suspicious renal masses.

  20. Activin type IB receptor signaling in prostate cancer cells promotes lymph node metastasis in a xenograft model

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Masatoshi, E-mail: nomura@med.kyushu-u.ac.jp [Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Tanaka, Kimitaka; Wang, Lixiang; Goto, Yutaka; Mukasa, Chizu; Ashida, Kenji; Takayanagi, Ryoichi [Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer ActRIB signaling induces Snail and S100A4 expressions in prostate cancer cells. Black-Right-Pointing-Pointer The prostate cancer cell lines expressing an active form of ActRIB were established. Black-Right-Pointing-Pointer ActRIB signaling promotes EMT and lymph node metastasis in xenograft model. -- Abstract: Activin, a member of the transforming growth factor-{beta} family, has been known to be a growth and differentiating factor. Despite its pluripotent effects, the roles of activin signaling in prostate cancer pathogenesis are still unclear. In this study, we established several cell lines that express a constitutive active form of activin type IB receptor (ActRIBCA) in human prostate cancer cells, ALVA41 (ALVA-ActRIBCA). There was no apparent change in the proliferation of ALVA-ActRIBCA cells in vitro; however, their migratory ability was significantly enhanced. In a xenograft model, histological analysis revealed that the expression of Snail, a cell-adhesion-suppressing transcription factor, was dramatically increased in ALVA-ActRIBCA tumors, indicating epithelial mesenchymal transition (EMT). Finally, mice bearing ALVA-ActRIBCA cells developed multiple lymph node metastases. In this study, we demonstrated that ActRIBCA signaling can promote cell migration in prostate cancer cells via a network of signaling molecules that work together to trigger the process of EMT, and thereby aid in the aggressiveness and progression of prostate cancers.

  1. NRG1/ERBB3 signaling in melanocyte development and melanoma: inhibition of differentiation and promotion of proliferation

    Science.gov (United States)

    Buac, Kristina; Xu, Mai; Cronin, Julie; Weeraratna, Ashani T.; Hewitt, Stephen M.; Pavan, William J.

    2010-01-01

    Summary Neuregulin (NRG) signaling through the receptor tyrosine kinase, ERBB3, is required for embryonic development, and dysregulated signaling has been associated with cancer progression. Here we show that NRG1/ERBB3 signaling inhibits melanocyte (MC) maturation and promotes undifferentiated, migratory and proliferative cellular characteristics. Embryonic analyses demonstrated that initial MC specification and distribution were not dependent on ERBB3 signaling. However NRG1/ERBB3 signaling was both necessary and sufficient to inhibit differentiation of later stages of MC development in culture. Analysis of tissue arrays of human melanoma samples suggests that ERBB3 signaling may also contribute to metastatic progression of melanoma as ERBB3 was phosphorylated in primary tumors compared to nevi or metastatic lesions. NRG1-treated MCs demonstrated increased proliferation and invasion and altered morphology concomitant with decreased levels of differentiation genes, increased levels of proliferation genes and altered levels of melanoma progression and metastases genes. ERBB3 activation in primary melanomas suggests that NRG1/ERBB3 signaling may contribute to the progression of melanoma from benign nevi to malignancies. We propose that targeting ERBB3 activation and downstream genes identified in this study may provide novel therapeutic interventions for malignant melanoma. PMID:19659570

  2. Notch ligand Delta-like 1 promotes the metastasis of melanoma by enhancing tumor adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.P. [Department of Orthopedic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi' an (China); Li, N. [Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Xi' an (China); Bai, W.Z.; Qiu, X.C.; Ma, B.A.; Zhou, Y.; Fan, Q.Y.; Shan, L.Q. [Department of Orthopedic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi' an (China)

    2014-03-28

    Notch signaling plays a vital role in tumorigenicity and tumor progression by regulating proliferation, invasion, and the tumor microenvironment. Previous research by our group indicated that Notch ligand Delta-like 1 (Dll1) is involved in angiogenesis in melanoma, and we noticed that it took a longer time to trypsinize Dll1-expressing B16 melanoma cells than the control cells. In this article, we extended our study to investigate the effects of Dll1 on tumor cell adhesion and metastasis. Dll1 overexpression activated Notch signaling in B16 tumor cells and significantly enhanced the adhering capacity of B16 tumor cells both in vitro and in vivo. B16-Dll1 cells also had a higher metastatic potential than their counterpart in the mouse model of lung metastasis. Along with increased Dll1 expression, N-cadherin, but not E-cadherin, was upregulated in B16-Dll1 cells. These data suggested that Notch ligand Dll1 may enhance the adhesion and metastasis of melanoma cells by upregulation of N-cadherin.

  3. RASSF1A promoter methylation in high-grade serous ovarian cancer: A direct comparison study in primary tumors, adjacent morphologically tumor cell-free tissues and paired circulating tumor DNA.

    Science.gov (United States)

    Giannopoulou, Lydia; Chebouti, Issam; Pavlakis, Kitty; Kasimir-Bauer, Sabine; Lianidou, Evi S

    2017-03-28

    The RASSF1A promoter is frequently methylated in high-grade serous ovarian cancer (HGSC). We examined RASSF1A promoter methylation in primary tumors, adjacent morphologically tumor cell-free tissues and corresponding circulating tumor DNA (ctDNA) samples of patients with HGSC, using a real-time methylation specific PCR (real-time MSP) and a methylation-sensitive high-resolution melting analysis (MS-HRMA) assay for the detection and semi-quantitative estimation of methylation, respectively. Two groups of primary HGSC tumor FFPE samples were recruited (Group A n=67 and Group B n=61), along with matched adjacent morphologically tumor cell-free tissues (n=58) and corresponding plasma samples (n=59) for group B. Using both assays, RASSF1A promoter was found highly methylated in primary tumors of both groups, and at lower percentages in the adjacent morphologically tumor cell-free tissues. Interestingly, RASSF1A promoter methylation was also observed in ctDNA by real-time MSP. Overall survival (OS) was significantly associated with RASSF1A promoter methylation in primary tumor samples using MS-HRMA (P=0.023). Our results clearly indicate that RASSF1A promoter is methylated in adjacent tissue surrounding the tumor in HGSC patients. We report for the first time that RASSF1A promoter methylation provides significant prognostic information in HGSC patients.

  4. Ligand-dependent Notch signaling is involved in tumor initiation and tumor maintenance in pancreatic cancer

    NARCIS (Netherlands)

    Mullendore, Michael E.; Koorstra, Jan-Bart; Li, Yue-Ming; Offerhaus, G. Johan; Fan, Xing; Henderson, Clark M.; Matsui, William; Eberhart, Charles G.; Maitra, Anirban; Feldmann, Georg

    2009-01-01

    PURPOSE: Aberrant activation of the Notch signaling pathway is commonly observed in human pancreatic cancer, although the mechanism(s) for this activation has not been elucidated. EXPERIMENTAL DESIGN: A panel of 20 human pancreatic cancer cell lines was profiled for the expression of Notch

  5. Regulator of G-Protein Signaling 5 Reduces HeyA8 Ovarian Cancer Cell Proliferation and Extends Survival in a Murine Tumor Model

    Directory of Open Access Journals (Sweden)

    Molly K. Altman

    2012-01-01

    Full Text Available The regulator of G-protein signaling 5 (RGS5 belongs to a family of GTPase activators that terminate signaling cascades initiated by extracellular mediators and G-protein-coupled receptors. RGS5 has an interesting dual biological role. One functional RGS5 role is as a pericyte biomarker influencing the switch to angiogenesis during malignant progression. Its other functional role is to promote apoptosis in hypoxic environments. We set out to clarify the extent to which RGS5 expression regulates tumor progression—whether it plays a pathogenic or protective role in ovarian tumor biology. We thus constructed an inducible gene expression system to achieve RGS5 expression in HeyA8-MDR ovarian cancer cells. Through this we observed that inducible RGS5 expression significantly reduces in vitro BrdU-positive HeyA8-MDR cells, although this did not correlate with a reduction in tumor volume observed using an in vivo mouse model of ovarian cancer. Interestingly, mice bearing RGS5-expressing tumors demonstrated an increase in survival compared with controls, which might be attributed to the vast regions of necrosis observed by pathological examination. Additionally, mice bearing RGS5-expressing tumors were less likely to have ulcerated tumors. Taken together, this data supports the idea that temporal expression and stabilization of RGS5 could be a valuable tactic within the context of a multicomponent approach for modulating tumor progression.

  6. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Qingyi [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Qing, Yong, E-mail: qingyongxy@yahoo.co.jp [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Yang [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Hu, Xiaojuan; Jiang, Lei [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Xiaohua, E-mail: wuxh@scu.edu.cn [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China)

    2014-12-01

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway.

  7. Notching on cancer’s door: Notch signaling in brain tumors

    Directory of Open Access Journals (Sweden)

    Marcin eTeodorczyk

    2015-01-01

    Full Text Available Notch receptors play an essential role in the regulation of central cellular processes during embryonic and postnatal development. The mammalian genome encodes for four Notch paralogs (Notch 1-4, which are activated by three Delta-like (Dll1/3/4 and two Serrate-like (Jagged1/2 ligands. Further, non-canonical Notch ligands such as EGFL7 have been identified and serve mostly as antagonists of Notch signaling. The Notch pathway prevents neuronal differentiation in the central nervous system by driving neural stem cell maintenance and commitment of neural progenitor cells into the glial lineage. Notch is therefore often implicated in the development of brain tumors, as tumor cells share various characteristics with neural stem and progenitor cells. Notch receptors are overexpressed in gliomas and their oncogenicity has been confirmed by gain- and loss-of-function studies in vitro and in vivo. To this end, special attention is paid to the impact of Notch signaling on stem-like brain tumor-propagating cells as these cells contribute to growth, survival, invasion and recurrence of brain tumors. Based on the outcome of ongoing studies in vivo, Notch-directed therapies such as γ secretase inhibitors and blocking antibodies have entered and completed various clinical trials. This review summarizes the current knowledge on Notch signaling in brain tumor formation and therapy.

  8. Oncolytic virotherapy synergism with signaling inhibitors: Rapamycin increases myxoma virus tropism for human tumor cells.

    Science.gov (United States)

    Stanford, Marianne M; Barrett, John W; Nazarian, Steven H; Werden, Steven; McFadden, Grant

    2007-02-01

    Myxoma virus is a rabbit-specific poxvirus pathogen that also exhibits a unique tropism for human tumor cells and is dramatically oncolytic for human cancer xenografts. Most tumor cell lines tested are permissive for myxoma infection in a fashion intimately tied to the activation state of Akt kinase. A host range factor of myxoma virus, M-T5, directly interacts with Akt and mediates myxoma virus tumor cell tropism. mTOR is a regulator of cell growth and metabolism downstream of Akt and is specifically inhibited by rapamycin. We report that treatment of nonpermissive human tumor cell lines, which normally restrict myxoma virus replication, with rapamycin dramatically increased virus tropism and spread in vitro. This increased myxoma replication is concomitant with global effects on mTOR signaling, specifically, an increase in Akt kinase. In contrast to the effects on human cancer cells, rapamycin does not increase myxoma virus replication in rabbit cell lines or permissive human tumor cell lines with constitutively active Akt. This indicates that rapamycin increases the oncolytic capacity of myxoma virus for human cancer cells by reconfiguring the internal cell signaling environment to one that is optimal for productive virus replication and suggests the possibility of a potentially therapeutic synergism between kinase signaling inhibitors and oncolytic poxviruses for cancer treatment.

  9. Tumor-associated macrophages promote Ezrin phosphorylation-mediated epithelial-mesenchymal transition in lung adenocarcinoma through FUT4/LeY up-regulation.

    Science.gov (United States)

    Wang, Aman; Lu, Chang; Ning, Zhen; Gao, Wei; Xie, Yunpeng; Zhang, Ningning; Liang, Jinxiao; Abbasi, Faisal S; Yan, Qiu; Liu, Jiwei

    2017-04-25

    Tumor-associated macrophages (TAMs) are key components of tumor microenvironment (TME) during tumorigenesis and progression. However, the role of TAMs in lung adenocarcinoma is still unclear. In this study, we aimed to clarify the mechanism underlying the crosstalk between TAMs and epithelial-mesenchymal transition (EMT) of lung adenocarcinoma. Fucosyltransferase IV (FUT4) and its synthetic cancer sugar antigen Lewis Y (LeY) was aberrantly elevated in various solid tumors, it plays critical role in the invasion and metastasis. Here, we found that in lung adenocarcinoma samples, the density of TAMs correlates with E-cadherin level and LeY level. In vitro assays, M2 macrophages promoted FUT4/LeY expression through the transforming growth factor-β1(TGF-β1)/Smad2/3 signaling pathway. FUT4/LeY was indispensable in M2 macrophages-mediated cytoskeletal remodeling and EMT. Furthermore, fucosylation of Ezrin mediated by FUT4/LeY can promote the phosphorylation of Ezrin, which was the critical mechanism of M2 macrophages-induced EMT. In vivo assays confirmed that M2 macrophages promoted EMT through the up-regulation of LeY and phosphorylated Ezrin. Together, our results revealed that TAMs promote Ezrin phosphorylation-mediated EMT in lung adenocarcinoma through FUT4/LeY- mediated fucosylation. Targeting this newly identified signaling may offer new possibilities for immunotherapy in lung adenocarcinoma.

  10. Truncating Prolactin Receptor Mutations Promote Tumor Growth in Murine Estrogen Receptor-Alpha Mammary Carcinomas

    Directory of Open Access Journals (Sweden)

    Obi L. Griffith

    2016-09-01

    Full Text Available Estrogen receptor alpha-positive (ERα+ luminal tumors are the most frequent subtype of breast cancer. Stat1−/− mice develop mammary tumors that closely recapitulate the biological characteristics of this cancer subtype. To identify transforming events that contribute to tumorigenesis, we performed whole genome sequencing of Stat1−/− primary mammary tumors and matched normal tissues. This investigation identified somatic truncating mutations affecting the prolactin receptor (PRLR in all tumor and no normal samples. Targeted sequencing confirmed the presence of these mutations in precancerous lesions, indicating that this is an early event in tumorigenesis. Functional evaluation of these heterozygous mutations in Stat1−/− mouse embryonic fibroblasts showed that co-expression of truncated and wild-type PRLR led to aberrant STAT3 and STAT5 activation downstream of the receptor, cellular transformation in vitro, and tumor formation in vivo. In conclusion, truncating mutations of PRLR promote tumor growth in a model of human ERα+ breast cancer and warrant further investigation.

  11. 'Cross-talk' between Schwannian stroma and neuroblasts promotes neuroblastoma tumor differentiation and inhibits angiogenesis.

    Science.gov (United States)

    Liu, Shuqing; Tian, Yufeng; Chlenski, Alexandre; Yang, Qiwei; Salwen, Helen R; Cohn, Susan L

    2005-10-18

    Neuroblastoma (NB) tumors with abundant Schwannian stroma have a differentiated phenotype, low vascularity, and are associated with a favorable prognosis. These observations have led to the hypothesis that 'cross-talk' between Schwann cells and neuroblasts influences the biology and clinical behavior of NB tumors. In support of this hypothesis, laboratory studies have shown that factors secreted by Schwann cells are capable of promoting NB differentiation, inhibiting angiogenesis, and impairing NB growth. Recently, using a novel NB xenograft model that was designed to directly investigate the affects of infiltrating Schwann cells, we demonstrated that infiltrating mouse Schwann cells can directly impact the phenotype of human NB xenografts in vivo. Taken together, these studies indicate that tumor-stroma interactions are critical in determining the biology of NB tumors. Further research investigating the molecules involved in the 'cross-talk' between Schwann cells and neuroblasts may lead to new treatment strategies that will modify tumor biology and alter the clinically aggressive nature of Schwannian stroma-poor NB tumors.

  12. Truncating Prolactin Receptor Mutations Promote Tumor Growth in Murine Estrogen Receptor-Alpha Mammary Carcinomas.

    Science.gov (United States)

    Griffith, Obi L; Chan, Szeman Ruby; Griffith, Malachi; Krysiak, Kilannin; Skidmore, Zachary L; Hundal, Jasreet; Allen, Julie A; Arthur, Cora D; Runci, Daniele; Bugatti, Mattia; Miceli, Alexander P; Schmidt, Heather; Trani, Lee; Kanchi, Krishna-Latha; Miller, Christopher A; Larson, David E; Fulton, Robert S; Vermi, William; Wilson, Richard K; Schreiber, Robert D; Mardis, Elaine R

    2016-09-27

    Estrogen receptor alpha-positive (ERα+) luminal tumors are the most frequent subtype of breast cancer. Stat1(-/-) mice develop mammary tumors that closely recapitulate the biological characteristics of this cancer subtype. To identify transforming events that contribute to tumorigenesis, we performed whole genome sequencing of Stat1(-/-) primary mammary tumors and matched normal tissues. This investigation identified somatic truncating mutations affecting the prolactin receptor (PRLR) in all tumor and no normal samples. Targeted sequencing confirmed the presence of these mutations in precancerous lesions, indicating that this is an early event in tumorigenesis. Functional evaluation of these heterozygous mutations in Stat1(-/-) mouse embryonic fibroblasts showed that co-expression of truncated and wild-type PRLR led to aberrant STAT3 and STAT5 activation downstream of the receptor, cellular transformation in vitro, and tumor formation in vivo. In conclusion, truncating mutations of PRLR promote tumor growth in a model of human ERα+ breast cancer and warrant further investigation. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Tumor-induced thymic atrophy: alteration in interferons and Jak/Stats signaling pathways.

    Science.gov (United States)

    Carrio, Roberto; Torroella-Kouri, Marta; Iragavarapu-Charyulu, Vijaya; Lopez, Diana M

    2011-02-01

    The thymus is the major site of T cell differentiation and a key organ of the immune system. Thym atrophy has been observed in several model systems including aging, and tumor development. Previous results from our laboratory have reported that the thymic atrophy seen in mammary tumor bearers is associated with a severe depletion of CD4+CD8+ double positive immature cells and changes in the levels of cytokines expressed in the thymus microenvironment. Cytokines regulate numerous aspects of hematopoiesis via activation of the Jak/Stat pathways. In the present study we have used our mammary tumor model to investigate whether changes in the levels of cytokines in the thymus could affect the normal expression of the aforementioned pathways. RNA and protein analysis revealed an overexpression of the different members of interferons, a downregulation of most of the Jak/Stat pathways, and an increased expression of several suppressors of cytokine signaling (SOSC) in the thymuses of tumor bearers. Together, our data suggest that the impaired Jak/Stat signaling pathways observed in the whole thymus of tumor-bearing mice could be contributing to the abnormal T cell development and apoptosis observed during the tumor-induced thymic atrophy.

  14. CXCL17 expression by tumor cells recruits CD11b+Gr1 high F4/80- cells and promotes tumor progression.

    Directory of Open Access Journals (Sweden)

    Aya Matsui

    Full Text Available BACKGROUND: Chemokines are involved in multiple aspects of pathogenesis and cellular trafficking in tumorigenesis. In this study, we report that the latest member of the C-X-C-type chemokines, CXCL17 (DMC/VCC-1, recruits immature myeloid-derived cells and enhances early tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: CXCL17 was preferentially expressed in some aggressive types of gastrointestinal, breast, and lung cancer cells. CXCL17 expression did not impart NIH3T3 cells with oncogenic potential in vitro, but CXCL17-expressing NIH3T3 cells could form vasculature-rich tumors in immunodeficient mice. Our data showed that CXCL17-expressing tumor cells increased immature CD11b(+Gr1(+ myeloid-derived cells at tumor sites in mice and promoted CD31(+ tumor angiogenesis. Extensive chemotactic assays proved that CXCL17-responding cells were CD11b(+Gr1(highF4/80(- cells (≈ 90% with a neutrophil-like morphology in vitro. Although CXCL17 expression could not increase the number of CD11b(+Gr1(+ cells in tumor-burdened SCID mice or promote metastases of low metastatic colon cancer cells, the existence of CXCL17-responding myeloid-derived cells caused a striking enhancement of xenograft tumor formation. CONCLUSIONS/SIGNIFICANCE: These results suggest that aberrant expression of CXCL17 in tumor cells recruits immature myeloid-derived cells and promotes tumor progression through angiogenesis.

  15. Use phase signals to promote lifetime extension for Windows PCs.

    Science.gov (United States)

    Hickey, Stewart; Fitzpatrick, Colin; O'Connell, Maurice; Johnson, Michael

    2009-04-01

    This paper proposes a signaling methodology for personal computers. Signaling may be viewed as an ecodesign strategy that can positively influence the consumer to consumer (C2C) market process. A number of parameters are identified that can provide the basis for signal implementation. These include operating time, operating temperature, operating voltage, power cycle counts, hard disk drive (HDD) self-monitoring, and reporting technology (SMART) attributes and operating system (OS) event information. All these parameters are currently attainable or derivable via embedded technologies in modern desktop systems. A case study detailing a technical implementation of how the development of signals can be achieved in personal computers that incorporate Microsoft Windows operating systems is presented. Collation of lifetime temperature data from a system processor is demonstrated as a possible means of characterizing a usage profile for a desktop system. In addition, event log data is utilized for devising signals indicative of OS quality. The provision of lifetime usage data in the form of intuitive signals indicative of both hardware and software quality can in conjunction with consumer education facilitate an optimal remarketing strategy for used systems. This implementation requires no additional hardware.

  16. Flor-Essence? Herbal Tonic Promotes Mammary Tumor Development in Sprague Dawley Rats

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, L; Montgomery, J; Steinberg, S; Kulp, K

    2004-01-28

    Background: Women who are diagnosed with breast cancer often self-administer complementary and alternative medicines to augment their conventional treatments, improve health, or prevent recurrence. Flor-Essence{reg_sign} Tonic is a complex mixture of herbal extracts used by cancer patients because of anecdotal evidence that it can treat or prevent disease. Methods: Female Sprague Dawley rats were given water or exposed to 3% or 6% Flor-Essence{reg_sign} beginning at one day of age. Mammary tumors were induced with a single oral 40 mg/kg/bw dose of dimethylbenz(a)anthracene at 50 days of age and sacrificed at 23 weeks. Rats were maintained on AIN-76A diet. Results: Control rats had palpable mammary tumor incidence of 51.0% at 19 weeks of age compared to 65.0% and 59.4% for the 3% and 6% Flor-Essence{reg_sign} groups respectively. Overall, no significant difference in time until first palpable tumor was detected among any of the groups. At necropsy, mammary tumor incidence was 82.5% for controls compared to 90.0% and 97.3% for rats consuming 3% and 6% Flor-Essence{reg_sign}, respectively. Mean mammary tumor multiplicity ({+-}SES) for the controls was 2.8 ({+-} 0.5) and statistically different from the 3% or 6% Flor- Essence{reg_sign} groups with 5.2 ({+-} 0.7), and 4.8 ({+-} 0.6), respectively (p{<=}0.01). As expected, the majority of isolated tumors were diagnosed as adenocarcinomas. Conclusions: Flor-Essence{reg_sign} can promote mammary tumor development in the Sprague Dawley rat model. This observation is contrary to widely available anecdotal evidence as well as the desire of the consumer that this commercially available herbal tonic will suppress and/or inhibit tumor growth.

  17. Increased expression of CYP4Z1 promotes tumor angiogenesis and growth in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Li, Ying; Zhao, Haixia; Xie, Xianfei; Zheng, Hao; Wang, Chenlong; Wang, Xue [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yang, Guifang [Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Cai, Xiaojun [Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Falck, John R. [Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 (United States); Yang, Jing, E-mail: yangjingliu@yahoo.com.cn [Department of Pharmacology, School of Medicine, Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-10-01

    Cytochrome P450 (CYP) 4Z1, a novel CYP4 family member, is over-expressed in human mammary carcinoma and associated with high-grade tumors and poor prognosis. However, the precise role of CYP4Z1 in tumor progression is unknown. Here, we demonstrate that CYP4Z1 overexpression promotes tumor angiogenesis and growth in breast cancer. Stable expression of CYP4Z1 in T47D and BT-474 human breast cancer cells significantly increased mRNA expression and production of vascular endothelial growth factor (VEGF)-A, and decreased mRNA levels and secretion of tissue inhibitor of metalloproteinase-2 (TIMP-2), without affecting cell proliferation and anchorage-independent cell growth in vitro. Notably, the conditioned medium from CYP4Z1-expressing cells enhanced proliferation, migration and tube formation of human umbilical vein endothelial cells, and promoted angiogenesis in the zebrafish embryo and chorioallantoic membrane of the chick embryo. In addition, there were lower levels of myristic acid and lauric acid, and higher contents of 20-hydroxyeicosatetraenoic acid (20-HETE) in CYP4Z1-expressing T47D cells compared with vector control. CYP4Z1 overexpression significantly increased tumor weight and microvessel density by 2.6-fold and 1.9-fold in human tumor xenograft models, respectively. Moreover, CYP4Z1 transfection increased the phosphorylation of ERK1/2 and PI3K/Akt, while PI3K or ERK inhibitors and siRNA silencing reversed CYP4Z1-mediated changes in VEGF-A and TIMP-2 expression. Conversely, HET0016, an inhibitor of the CYP4 family, potently inhibited the tumor-induced angiogenesis with associated changes in the intracellular levels of myristic acid, lauric acid and 20-HETE. Collectively, these data suggest that increased CYP4Z1 expression promotes tumor angiogenesis and growth in breast cancer partly via PI3K/Akt and ERK1/2 activation. -- Highlights: ► CYP4Z1 overexpression promotes human breast cancer growth and angiogenesis. ► The pro-angiogenic effects of CYP4Z1 have

  18. Laser Therapy Inhibits Tumor Growth in Mice by Promoting Immune Surveillance and Vessel Normalization

    Directory of Open Access Journals (Sweden)

    Giulia Ottaviani

    2016-09-01

    Full Text Available Laser therapy, recently renamed as photobiomodulation, stands as a promising supportive treatment for oral mucositis induced by oncological therapies. However, its mechanisms of action and, more importantly, its safety in cancer patients, are still unclear. Here we explored the anti-cancer effect of 3 laser protocols, set at the most commonly used wavelengths, in B16F10 melanoma and oral carcinogenesis mouse models. While laser light increased cell metabolism in cultured cells, the in vivo outcome was reduced tumor progression. This striking, unexpected result, was paralleled by the recruitment of immune cells, in particular T lymphocytes and dendritic cells, which secreted type I interferons. Laser light also reduced the number of highly angiogenic macrophages within the tumor mass and promoted vessel normalization, an emerging strategy to control tumor progression. Collectively, these results set photobiomodulation as a safety procedure in oncological patients and open the way to its innovative use for cancer therapy.

  19. ATR promotes cilia signalling: links to developmental impacts.

    Science.gov (United States)

    Stiff, Tom; Casar Tena, Teresa; O'Driscoll, Mark; Jeggo, Penny A; Philipp, Melanie

    2016-04-15

    Mutations in ATR(ataxia telangiectasia and RAD3-related) cause Seckel syndrome (ATR-SS), a microcephalic primordial dwarfism disorder. Hitherto, the clinical manifestation of ATR deficiency has been attributed to its canonical role in DNA damage response signalling following replication fork stalling/collapse. Here, we show that ATR regulates cilia-dependent signalling in a manner that can be uncoupled from its function during replication. ATR-depleted or patient-derived ATR-SS cells form cilia of slightly reduced length but are dramatically impaired in cilia-dependent signalling functions, including growth factor and Sonic hedgehog signalling. To better understand the developmental impact of ATR loss of function, we also used zebrafish as a model. Zebrafish embryos depleted of Atr resembled ATR-SS morphology, showed a modest but statistically significant reduction in cilia length and other morphological features indicative of cilia dysfunction. Additionally, they displayed defects in left-right asymmetry including ambiguous expression of southpaw, incorrectly looped hearts and randomized localization of internal organs including the pancreas, features typically conferred by cilia dysfunction. Our findings reveal a novel role for ATR in cilia signalling distinct from its canonical function during replication and strengthen emerging links between cilia function and development. © The Author 2016. Published by Oxford University Press.

  20. Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway.

    Science.gov (United States)

    Yang, Jian; Liao, Debbie; Chen, Cong; Liu, Yan; Chuang, Tsung-Hsien; Xiang, Rong; Markowitz, Dorothy; Reisfeld, Ralph A; Luo, Yunping

    2013-02-01

    The cancer stem cell (CSC) hypothesis has gained significant recognition as a descriptor of tumorigenesis. Additionally, tumor-associated macrophages (TAMs) are known to promote growth and metastasis of breast cancer. However, it is not known whether TAMs mediate tumorigenesis through regulation of breast CSCs. Here, we report that TAMs promote CSC-like phenotypes in murine breast cancer cells by upregulating their expression of Sox-2. These CSC-like phenotypes were characterized by increased Sox-2, Oct-4, Nanog, AbcG2, and Sca-1 gene expression, in addition to increased drug-efflux capacity, resistance to chemotherapy, and increased tumorigenicity in vivo. Downregulation of Sox-2 in tumor cells by siRNA blocked the ability of TAMs to induce these CSC-like phenotypes and inhibited tumor growth in vivo. Furthermore, we identified a novel epidermal growth factor receptor (EGFR)/signal transducers and activators of transcription 3 (Stat3)/Sox-2 paracrine signaling pathway between macrophages and mouse breast cancer cells that is required for macrophage-induced upregulation of Sox-2 and CSC phenotypes in tumor cells. We showed that this crosstalk was effectively blocked by the small molecule inhibitors AG1478 or CDDO-Im against EGFR and Stat3, respectively. Therefore, our report identifies a novel role for TAMs in breast CSC regulation and establishes a rationale for targeting the EGFR/Stat3/Sox-2 signaling pathway for CSC therapy. Copyright © 2012 AlphaMed Press.

  1. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  2. Interleukin-6 Induced "Acute" Phenotypic Microenvironment Promotes Th1 Anti-Tumor Immunity in Cryo-Thermal Therapy Revealed By Shotgun and Parallel Reaction Monitoring Proteomics.

    Science.gov (United States)

    Xue, Ting; Liu, Ping; Zhou, Yong; Liu, Kun; Yang, Li; Moritz, Robert L; Yan, Wei; Xu, Lisa X

    2016-01-01

    Cryo-thermal therapy has been emerged as a promising novel therapeutic strategy for advanced breast cancer, triggering higher incidence of tumor regression and enhanced remission of metastasis than routine treatments. To better understand its anti-tumor mechanism, we utilized a spontaneous metastatic mouse model and quantitative proteomics to compare N-glycoproteome changes in 94 serum samples with and without treatment. We quantified 231 highly confident N-glycosylated proteins using iTRAQ shotgun proteomics. Among them, 53 showed significantly discriminated regulatory patterns over the time course, in which the acute phase response emerged as the most enhanced pathway. The anti-tumor feature of the acute response was further investigated using parallel reaction monitoring target proteomics and flow cytometry on 23 of the 53 significant proteins. We found that cryo-thermal therapy reset the tumor chronic inflammation to an "acute" phenotype, with up-regulation of acute phase proteins including IL-6 as a key regulator. The IL-6 mediated "acute" phenotype transformed IL-4 and Treg-promoting ICOSL expression to Th1-promoting IFN-γ and IL-12 production, augmented complement system activation and CD86(+)MHCII(+) dendritic cells maturation and enhanced the proliferation of Th1 memory cells. In addition, we found an increased production of tumor progression and metastatic inhibitory proteins under such "acute" environment, favoring the anti-metastatic effect. Moreover, cryo-thermal on tumors induced the strongest "acute" response compared to cryo/hyperthermia alone or cryo-thermal on healthy tissues, accompanying by the most pronounced anti-tumor immunological effect. In summary, we demonstrated that cryo-thermal therapy induced, IL-6 mediated "acute" microenvironment shifted the tumor chronic microenvironment from Th2 immunosuppressive and pro-tumorigenic to Th1 immunostimulatory and tumoricidal state. Moreover, the magnitude of "acute" and "danger" signals play a key

  3. Direct contact with perivascular tumor cells enhances integrin αvβ3 signaling and migration of endothelial cells

    OpenAIRE

    Burgett, M E; Lathia, J D; Roth, P.; Nowacki, A S; Galileo, D S; Pugacheva, E.; Huang, P.; Vasanji, A.; Li, M.; Byzova, T; Mikkelsen, T; Bao, S.; Rich, J N; Weller, M.; Gladson, C. L.

    2016-01-01

    The secretion of soluble pro-angiogenic factors by tumor cells and stromal cells in the perivascular niche promotes the aggressive angiogenesis that is typical of glioblastoma (GBM). Here, we show that angiogenesis also can be promoted by a direct interaction between brain tumor cells, including tumor cells with cancer stem-like properties (CSCs), and endothelial cells (ECs). As shown in vitro, this direct interaction is mediated by binding of integrin ?v?3 expressed on ECs to the RGD-peptide...

  4. Silencing of tumor suppressor genes RASSF1A, SLIT2, and WIF1 by promoter hypermethylation in hereditary breast cancer.

    Science.gov (United States)

    Alvarez, Carolina; Tapia, Teresa; Cornejo, Valeria; Fernandez, Wanda; Muñoz, Alex; Camus, Mauricio; Alvarez, Manuel; Devoto, Luigi; Carvallo, Pilar

    2013-06-01

    Promoter hypermethylation is gaining strength as one of the main mechanisms through which tumor suppressor genes are silenced during tumor progression. Three tumor suppressor genes are frequently found methylated in their promoter, in concordance with absence of expression, RASSF1A, SLIT2, and WIF1. In addition, a previous array-CGH analysis from our group showed that these genes are found in deleted genomic regions observed in hereditary breast cancer tumors. In the present work we analyzed the methylation status of these three tumor suppressor gene promoters in 47 hereditary breast cancer tumors. Promoter methylation status analysis of hereditary breast tumors revealed high methylation frequencies for the three genes (67% RASSF1A, 80% SLIT2, and 72% WIF1). Additionally, the presence of methylated PCR products was associated with absence of protein expression for the three genes and statistically significant for RASSF1A and WIF1. Interestingly, methylation of all the three genes was found in 4 out of 6 grade I invasive ductal carcinoma tumors. Association between RASSF1A methylation and DCIS tumors was found. These results suggest that silencing of these tumor suppressor genes is an early event in hereditary breast cancer, and could be a marker for pre-malignant phenotypes. Copyright © 2012 Wiley Periodicals, Inc.

  5. Tumor Necrosis Factor-Mediated Survival of CD169+ Cells Promotes Immune Activation during Vesicular Stomatitis Virus Infection

    DEFF Research Database (Denmark)

    Shinde, Prashant V; Xu, Haifeng C; Maney, Sathish Kumar

    2018-01-01

    Innate immune activation is essential to mount an effective antiviral response and to prime adaptive immunity. Although a crucial role of CD169(+) cells during vesicular stomatitis virus (VSV) infections is increasingly recognized, factors regulating CD169(+) cells during viral infections remain...... defense against viral pathogens. CD169(+) macrophages are shown to activate innate and adaptive immunity via "enforced virus replication" a controlled amplification of virus particles. However, factors regulating the CD169(+) macrophages remain to be studied. In this paper, we show that after Vesicular...... stomatitis virus infection, phagocytes produce tumor necrosis factor (TNF) which signals via TNFR1 and promote "enforced virus replication" in CD169(+) macrophages. Consequently, lack of TNF or TNFR1 resulted in defective immune activation and VSV clearance....

  6. Interleukin-8 promotes canine hemangiosarcoma growth by regulating the tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Hyuk, E-mail: jhkim@umn.edu [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); Frantz, Aric M.; Anderson, Katie L.; Graef, Ashley J.; Scott, Milcah C. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Robinson, Sally [Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Sharkey, Leslie C. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); O' Brien, Timothy D. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Dickerson, Erin B. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); Modiano, Jaime F., E-mail: modiano@umn.edu [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States)

    2014-04-15

    Interleukin-8 (IL-8) gene expression is highly up-regulated in canine hemangiosarcoma (HSA); however, its role in the pathogenesis of this disease is unknown. We investigated the expression of IL-8 in canine HSA tissues and cell lines, as well and the effects of IL-8 on canine HSA in vitro, and in vivo using a mouse xenograft model for the latter. Constitutive expression of IL-8 mRNA, IL-8 protein, and IL-8 receptor were variable among different tumor samples and cell lines, but they showed stable steady states in each cell line. Upon the addition of IL-8, HSA cells showed transient intracellular calcium fluxes, suggesting that their IL-8 receptors are functional and that IL-8 binding activates relevant signaling pathways. Yet, neither addition of exogenous IL-8 nor blockade of endogenous IL-8 by neutralizing anti-IL-8 antibody (α-IL-8 Ab) affected HSA cell proliferation or survival in vitro. To assess potential effects of IL-8 in other tumor constituents, we stratified HSA cell lines and whole tumor samples into “IL-8 high” and “IL-8 low” groups. Genome-wide gene expression profiling showed that samples in the “IL-8 high” tumor group were enriched for genes associated with a “reactive microenvironment,” including activation of coagulation, inflammation, and fibrosis networks. Based on these findings, we hypothesized that the effects of IL-8 on these tumors were mostly indirect, regulating interactions with the microenvironment. This hypothesis was supported by in vivo xenograft experiments where survival and engraftment of tumor cells was inhibited by administration of neutralizing α-IL-8 Ab. Together, our results suggest that IL-8 contributes to establishing a permissive microenvironment during the early stages of tumorigenesis in HSA. - Highlights: • IL-8 is expressed in canine hemangiosarcoma tumor samples and cell lines. • IL-8 transduces a relevant biological signal in canine hemangiosarcoma cells. • IL-8 gene signature is associated

  7. Disruption of lysosome function promotes tumor growth and metastasis in Drosophila.

    Science.gov (United States)

    Chi, Congwu; Zhu, Huanhu; Han, Min; Zhuang, Yuan; Wu, Xiaohui; Xu, Tian

    2010-07-09

    Lysosome function is essential to many physiological processes. It has been suggested that deregulation of lysosome function could contribute to cancer. Through a genetic screen in Drosophila, we have discovered that mutations disrupting lysosomal degradation pathway components contribute to tumor development and progression. Loss-of-function mutations in the Class C vacuolar protein sorting (VPS) gene, deep orange (dor), dramatically promote tumor overgrowth and invasion of the Ras(V12) cells. Knocking down either of the two other components of the Class C VPS complex, carnation (car) and vps16A, also renders Ras(V12) cells capable for uncontrolled growth and metastatic behavior. Finally, chemical disruption of the lysosomal function by feeding animals with antimalarial drugs, chloroquine or monensin, leads to malignant tumor growth of the Ras(V12) cells. Taken together, our data provide evidence for a causative role of lysosome dysfunction in tumor growth and invasion and indicate that members of the Class C VPS complex behave as tumor suppressors.

  8. Methylglyoxal-Mediated Stress Correlates with High Metabolic Activity and Promotes Tumor Growth in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Barbara Chiavarina

    2017-01-01

    Full Text Available Cancer cells generally rely on aerobic glycolysis as a major source of energy. Methylglyoxal (MG, a dicarbonyl compound that is produced as a side product during glycolysis, is highly reactive and induces the formation of advanced glycation end-products that are implicated in several pathologies including cancer. All mammalian cells have an enzymatic defense against MG composed by glyoxalases GLO1 and GLO2 that converts MG to d-lactate. Colorectal cancer (CRC is one of the most frequently occurring cancers with high morbidity and mortality. In this study, we used immunohistochemistry to examine the level of MG protein adducts, in a series of 102 CRC human tumors divided into four clinical stages. We consistently detected a high level of MG adducts and low GLO1 activity in high stage tumors compared to low stage ones suggesting a pro-tumor role for dicarbonyl stress. Accordingly, GLO1 depletion in CRC cells promoted tumor growth in vivo that was efficiently reversed using carnosine, a potent MG scavenger. Our study represents the first demonstration that MG adducts accumulation is a consistent feature of high stage CRC tumors. Our data point to MG production and detoxification levels as an important molecular link between exacerbated glycolytic activity and CRC progression.

  9. Deregulated SLC2A1 Promotes Tumor Cell Proliferation and Metastasis in Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Shiyan Yan

    2015-07-01

    Full Text Available Gastric cancer (GC is one of the common reasons of cancer-related death with few biomarkers for diagnosis and prognosis. Solute carrier family 2 (facilitated glucose transporter member 1 protein SLC2A1, also known as glucose transporter type 1 (GLUT1, has been associated with tumor progression, metastasis, and poor prognosis in many human solid tumors. However, little is reported about its clinical significance and biological functions in GC. Here we observed a strong up-regulation of SLC2A1 in patients with GC and found that SLC2A1 was significantly correlated with depth of invasion and clinical stage. Additionally, over-expression of SLC2A1 in GC cells promotes cellular proliferation and metastasis in vitro and enhances tumor growth in vivo as well as enhancement of glucose utilization. Meanwhile, elevated SLC2A1 also contributes to tumor metastasis in vitro. Our results indicate SLC2A1 exhibits a pivotal role in tumor growth, metastasis and glucose metabolism, and also suggest SLC2A1 as a promising target for gastric cancer therapy.

  10. Tumor viruses and cancer biology: Modulating signaling pathways for therapeutic intervention.

    Science.gov (United States)

    Saha, Abhik; Kaul, Rajeev; Murakami, Masanao; Robertson, Erle S

    2010-11-15

    Tumor viruses have provided relatively simple genetic systems, which can be manipulated for understanding the molecular mechanisms of the cellular transformation process. A growing body of information in the tumor virology field provides several prospects for rationally targeted therapies. However, further research is needed to better understand the multiple mechanisms utilized by these viruses in cancer progression in order to develop therapeutic strategies. Initially viruses were believed to be associated with cancers as causative agents only in animals. It was almost half a century before the first human tumor virus, Epstein-Barr virus (EBV), was identified in 1964. Subsequently, several human tumor viruses have been identified including Kaposi sarcoma associated herpesvirus (KSHV), human Papillomaviruses (HPV), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Human T lymphotropic virus (HTLV-1) and recently identified Merkel cell Polyomavirus (MCPyV). Tumor viruses are sub-categorized as either DNA viruses, which include EBV, KSHV, HPV, HBV, and MCPyV, or RNA viruses such as HCV and HTLV-1. Tumor-viruses induce oncogenesis through manipulating an array of different cellular pathways. These viruses initiate a series of cellular events, which lead to immortalization and proliferation of the infected cells by disrupting the mitotic checkpoint upon infection of the host cell. This is often accomplished by functional inhibition or proteasomal degradation of many tumor suppressor proteins by virally encoded gene products. The virally infected cells can either be eliminated via cell-mediated apoptosis or persist in a state of chronic infection. Importantly, the chronic persistence of infection by tumor viruses can lead to oncogenesis. This review discusses the major human tumor associated viruses and their ability to modulate numerous cell signaling pathways, which can be targeted for potential therapeutic approaches.

  11. Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer.

    Science.gov (United States)

    Yabuuchi, Shinichi; Pai, Shweta G; Campbell, Nathaniel R; de Wilde, Roeland F; De Oliveira, Elizabeth; Korangath, Preethi; Streppel, Mirte M; Rasheed, Zeshaan A; Hidalgo, Manuel; Maitra, Anirban; Rajeshkumar, N V

    2013-07-10

    Pancreatic ductal adenocarcinoma (PDA) remains a lethal human malignancy with historically limited success in treatment. The role of aberrant Notch signaling, which requires the constitutive activation of γ-secretase, in the initiation and progression of PDA is well defined and inhibitors of this pathway are currently in clinical trials. Here we investigated the in vivo therapeutic effect of PF-03084014, a selective γ-secretase inhibitor, alone and in combination with gemcitabine in pancreatic cancer xenografts. PF-03084014 treatment inhibited the cleavage of nuclear Notch 1 intracellular domain and Notch targets Hes-1 and Hey-1. Gemcitabine treatment showed good response but not capable of inducing tumor regressions and targeting the tumor-resident cancer stem cells (CD24(+)CD44(+) and ALDH(+) tumor cells). A combination of PF-03084014 and gemcitabine treatment resulted tumor regression in 3 of 4 subcutaneously implanted xenograft models. PF-03084014, and in combination with gemcitabine reduced putative cancer stem cells, indicating that PF-03084014 target the especially dangerous and resilient cancer stem cells within pancreatic tumors. Tumor re-growth curves plotted after drug treatments demonstrated that the effect of the combination therapy was sustainable than that of gemcitabine. Notably, in a highly aggressive orthotopic model, PF-03084014 and gemcitabine combination was effective in inducing apoptosis, inhibition of tumor cell proliferation and angiogenesis, resulting in the attenuation of primary tumor growth as well as controlling metastatic dissemination, compared to gemcitabine treatment. In summary, our preclinical data suggest that PF-03084014 has greater anti-tumor activity in combination with gemcitabine in PDA and provides rationale for further investigation of this combination in PDA. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. ALA-PDT inhibits proliferation and promotes apoptosis of SCC cells through STAT3 signal pathway.

    Science.gov (United States)

    Qiao, Li; Mei, Zhusong; Yang, Zhiyong; Li, Xinji; Cai, Hong; Liu, Wei

    2016-06-01

    Previous studies suggest that apoptosis of carcinoma cells led by photodynamics is mainly intrinsic apoptosis, but whether the extrinsic pathway is involved in the treatment of carcinoma by photodynamic therapy is not confirmed. This research investigated the effect of ALA-PDT on the proliferation and apoptosis of SCC cell A431 and COLO-16, and discussed the role played by JAK/STAT3 signal pathway in this process. Our data showed that the expression levels STAT3 and p-STAT3 protein in the cancer tissue are higher than the corresponding adjacent tissue to carcinoma. The expression level of p-STAT3 in cancerous tissue has a correlation with the tumor size and tissue histopathological differentiation. ALA-PDT could inhibit proliferation of A431 and COLO-16 cells, STAT3 knock down could enhance ALA-PDT's inhibition of cell proliferation, and promote apoptosis induced by ALA-PDT. On the other hand, overexpression of STAT3 has the opposite effect. In addition, ALA-PDT can weaken the protein expression of STAT3 and its target gene Bcl-2 mRNA, and ALA-PDT can strengthen the protein expression of STAT3's target gene Bax mRNA. Overexpression of STAT3 can offset the effect on Bcl-2 and Bax by ALA-PDT; on the other hand, STAT3 knocking down can strengthen ALA-PDT's effect on Bcl-2 and Bax. Copyright © 2016. Published by Elsevier B.V.

  13. Fas ligand based immunotherapy: A potent and effective neoadjuvant with checkpoint inhibitor properties, or a systemically toxic promoter of tumor growth?

    Science.gov (United States)

    Modiano, Jaime F; Bellgrau, Donald

    2016-02-01

    Fas ligand (FasL, CD95L) is a 40-kDa type II transmembrane protein that binds to Fas (CD95) receptors and promotes programmed cell death. Fas receptors are expressed at higher levels in many tumors than in normal cells; however, systemic administration of FasL or agonistic anti-Fas antibodies to mice with tumors caused lethal hepatitis. Somewhat paradoxically, elimination of Fas or FasL from tumors also leads to death induced by CD95 receptor/ligand elimination (DICE). At face value, this suggests that Fas signaling not only kills normal cells, but that it also is essential for tumor cell survival. Targeting this pathway may not only fail to kill tumors, but instead may even enhance their growth, leading some to report the demise of Fas ligand in cancer immunotherapy. But, to paraphrase Mark Twain, is this death an exaggeration? Here, we provide a careful examination of the literature exploring the merits of FasL as a novel form of cancer immunotherapy. With local administration using delivery vectors that achieve high levels of expression in the tumor environment, our results indicate that the potential for systemic toxicity is eliminated in higher mammals, and that a systemic anti-tumor response ensues, which delays or prevents progression and simultaneously attacks distant metastases.

  14. Tumor-Derived Factors and Reduced p53 Promote Endothelial Cell Centrosome Over-Duplication.

    Directory of Open Access Journals (Sweden)

    Zhixian Yu

    Full Text Available Approximately 30% of tumor endothelial cells have over-duplicated (>2 centrosomes, which may contribute to abnormal vessel function and drug resistance. Elevated levels of vascular endothelial growth factor A induce excess centrosomes in endothelial cells, but how other features of the tumor environment affect centrosome over-duplication is not known. To test this, we treated endothelial cells with tumor-derived factors, hypoxia, or reduced p53, and assessed centrosome numbers. We found that hypoxia and elevated levels of bone morphogenetic protein 2, 6 and 7 induced excess centrosomes in endothelial cells through BMPR1A and likely via SMAD signaling. In contrast, inflammatory mediators IL-8 and lipopolysaccharide did not induce excess centrosomes. Finally, down-regulation in endothelial cells of p53, a critical regulator of DNA damage and proliferation, caused centrosome over-duplication. Our findings suggest that some tumor-derived factors and genetic changes in endothelial cells contribute to excess centrosomes in tumor endothelial cells.

  15. Cancer Stem Cell Plasticity as Tumor Growth Promoter and Catalyst of Population Collapse

    Directory of Open Access Journals (Sweden)

    Jan Poleszczuk

    2016-01-01

    Full Text Available It is increasingly argued that cancer stem cells are not a cellular phenotype but rather a transient state that cells can acquire, either through intrinsic signaling cascades or in response to environmental cues. While cancer stem cell plasticity is generally associated with increased aggressiveness and treatment resistance, we set out to thoroughly investigate the impact of different rates of plasticity on early and late tumor growth dynamics and the response to therapy. We develop an agent-based model of cancer stem cell driven tumor growth, in which plasticity is defined as a spontaneous transition between stem and nonstem cancer cell states. Simulations of the model show that plasticity can substantially increase tumor growth rate and invasion. At high rates of plasticity, however, the cells get exhausted and the tumor will undergo spontaneous remission in the long term. In a series of in silico trials, we show that such remission can be facilitated through radiotherapy. The presented study suggests that stem cell plasticity has rather complex, nonintuitive implications on tumor growth and treatment response. Further theoretical, experimental, and integrated studies are needed to fully decipher cancer stem cell plasticity and how it can be harnessed for novel therapeutic approaches.

  16. Diminished WNT → β-catenin → c-MYC signaling is a barrier for malignant progression of BRAFV600E-induced lung tumors

    Science.gov (United States)

    Juan, Joseph; Muraguchi, Teruyuki; Iezza, Gioia; Sears, Rosalie C.; McMahon, Martin

    2014-01-01

    Oncogene-induced senescence (OIS) is proposed as a cellular defense mechanism that restrains malignant progression of oncogene-expressing, initiated tumor cells. Consistent with this, expression of BRAFV600E in the mouse lung epithelium elicits benign tumors that fail to progress to cancer due to an apparent senescence-like proliferative arrest. Here we demonstrate that nuclear β-catenin → c-MYC signaling is essential for early stage proliferation of BRAFV600E-induced lung tumors and is inactivated in the subsequent senescence-like state. Furthermore, either β-catenin silencing or pharmacological blockade of Porcupine, an acyl-transferase essential for WNT ligand secretion and activity, significantly inhibited BRAFV600E-initiated lung tumorigenesis. Conversely, sustained activity of β-catenin or c-MYC significantly enhanced BRAFV600E-induced lung tumorigenesis and rescued the anti-tumor effects of Porcupine blockade. These data indicate that early stage BRAFV600E-induced lung tumors are WNT-dependent and suggest that inactivation of WNT → β-catenin → c-MYC signaling is a trigger for the senescence-like proliferative arrest that constrains the expansion and malignant progression of BRAFV600E-initiated lung tumors. Moreover, these data further suggest that the trigger for OIS in initiated BRAFV600E-expressing lung tumor cells is not simply a surfeit of signals from oncogenic BRAF but an insufficiency of WNT → β-catenin → c-MYC signaling. These data have implications for understanding how genetic abnormalities cooperate to initiate and promote lung carcinogenesis. PMID:24589553

  17. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling

    OpenAIRE

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-01

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1?Bub3 and BubR1?Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1?Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or ...

  18. Neuroglobin Overexpression Inhibits AMPK Signaling and Promotes Cell Anabolism.

    Science.gov (United States)

    Cai, Bin; Li, Wenjun; Mao, XiaoOu; Winters, Ali; Ryou, Myoung-Gwi; Liu, Ran; Greenberg, David A; Wang, Ning; Jin, Kunlin; Yang, Shao-Hua

    2016-03-01

    Neuroglobin (Ngb) is a recently discovered globin with preferential localization to neurons. Growing evidence indicates that Ngb has distinct physiological functions separate from the oxygen storage and transport roles of other globins, such as hemoglobin and myoglobin. We found increased ATP production and decreased glycolysis in Ngb-overexpressing immortalized murine hippocampal cell line (HT-22), in parallel with inhibition of AMP-activated protein kinase (AMPK) signaling and activation of acetyl-CoA carboxylase (ACC). In addition, lipid and glycogen content was increased in Ngb-overexpressing HT-22 cells. AMPK signaling was also inhibited in the brain and heart from Ngb-overexpressing transgenic mice. Although Ngb overexpression did not change glycogen content in whole brain, glycogen synthase was activated in cortical neurons of Ngb-overexpressing mouse brain and Ngb overexpression primary neurons. Moreover, lipid and glycogen content was increased in hearts derived from Ngb-overexpressing mice. These findings suggest that Ngb functions as a metabolic regulator and enhances cellular anabolism through the inhibition of AMPK signaling.

  19. Long non-coding RNA CRNDE promotes tumor growth in medulloblastoma.

    Science.gov (United States)

    Song, H; Han, L-M; Gao, Q; Sun, Y

    2016-06-01

    Medulloblastoma is the most common malignant brain tumor in children. Despite remarkable advances over the past decades, a novel therapeutic strategy is urgently required to increase long-term survival. This study aimed to understand the role of a long non-coding RNA (lncRNA), colorectal neoplasia differentially expressed (CRNDE), in medulloblastoma tumor growth. The transcript level of CRNDE was initially examined in dissected clinical tissues and cultured cancerous cells. Effects of CRNDE knockdown on cell viability and colony formation in vitro were assessed using the CCK-8 and colony formation assays, respectively. Cell cycle progression and survival were also determined after CRNDE knockdown. A xenograft mouse model of human medulloblastoma was established by injecting nude mice with medulloblastoma cells stably depleted of CRNDE expression. Our data suggest that transcript levels of CRNDE are elevated in clinical medulloblastoma tissues instead of in adjacent non-cancerous tissues. Knockdown of CRNDE significantly slowed cell proliferation rates and inhibited colony formation in Daoy and D341 cells. Tumor growth in vivo was also inhibited after CRNDE knockdown. Moreover, after knockdown of CRNDE, cell cycle progression was arrested in S phase and apoptosis was promoted by 15-20% in Daoy and D341 cells. In vivo data further showed that proliferating cell nuclei antigen (PCNA) was decreased, whereas the apoptosis initiator cleaved-caspase-3 was increased upon CRNDE knockdown in cancerous tissues from the mouse model. All these data suggest that CRNDE promotes tumor growth both in vitro and in vivo. This growth-promotion effect might be achieved via arresting cell cycle progression and inhibiting apoptosis. Therapeutics against CRNDE may be a novel strategy for the treatment of medulloblastoma.

  20. The promotion of tumor metastasis by surgery and stress: immunological basis and implications for psychoneuroimmunology.

    Science.gov (United States)

    Ben-Eliyahu, Shamgar

    2003-02-01

    This mini-review emphasizes a psychoneuroimmunology (PNI) perspective of the hypothesis that stress and surgical excision of the primary tumor can promote tumor metastasis. It first establishes the empirical and theoretical basis for control of metastasis by cell-mediated immunity (CMI), as well as the interactive role of non-immunological risk factors. It then describes the various aspects of surgery that suppress CMI, and the neuroendocrine mechanisms mediating suppression by stress and surgery. Last, it briefly reviews the empirical evidence, from animal and human studies, for the promotion of metastasis by stress and surgery, with specific reference to the mediating role of CMI. It is concluded that: (a) Immunological mechanisms most likely play a role in limiting metastasis in patients with solid tumors. (b) Immunosuppression can be deleterious, especially when surgery is conducted early, before the tumor develops insurmountable mechanisms to escape immune destruction. (c) The most sensitive period for the establishment of metastases is the immediate aftermath of surgery. Interventions aiming at reducing stress and immunosuppression should thus strive to start beforehand. (d) 'Psychological and physiological insults activate similar neuroendocrine mechanisms of immunosuppression. Therefore, a multimodal therapeutic approach should be used to prevent tumor metastasis during the perioperative period. (e) Studies employing interventions aimed at reducing the surgical stress response should preferably assess immunological indices with an established clinical relevance, and follow up long-term recurrence provided sample size assure statistical power. (f) The progress toward earlier detection of cancer, and our growing understanding of immunosuppression, continuously improves the chances for successful PNI interventions.

  1. Bif-1 promotes tumor cell migration and metastasis via Cdc42 expression and activity.

    Science.gov (United States)

    Zhang, Cunzhen; Liu, Fenghua; Chen, Haiyang; Li, Nan; Luo, Zaili; Guo, Weixing; Huang, Dandan; Tang, Shanhua; Wang, Honggang; Cheng, Shuqun; Li, Zhong; Wang, Hongyang

    2017-01-01

    Tumor metastasis is the process by which tumor cells disseminate from tumors and enter nearby and distant microenvironments for new colonization. Bif-1 (BAX-interacting factor 1), which has a BAR domain and an SH3 domain, has been reported to be involved in cell growth, apoptosis and autophagy. However, the influence of Bif-1 on metastasis has been less studied. To understand the role of Bif-1 in metastasis, we studied the expression levels of Bif-1 in human HCC specimens using immunohistochemistry, a tissue microarray and quantitative PCR. The function of Bif-1 was assessed in migration and translocation assays and the pulmonary metastatic animal model. The relationship between Bif-1 and the Rho family was determined using immunoblot analyses and chromatin immunoprecipitation. The results showed that the expression of Bif-1 was higher in hepatocellular carcinoma (HCC) than matched adjacent non-tumor liver tissues. Increased Bif-1 expression was associated with tumor size and the intercellular spread and metastasis of HCC. Analysis of the relationship between Bif-1 expression and patients' clinical characteristics revealed that patients with higher levels of Bif-1 had shorter disease-free and overall survival rates. Knockdown of Bif-1 with RNAi suppressed the migration of HCC cells and pulmonary metastasis and decreased the expression of Cdc42, a member of the Rho family. Bif-1 localized to the cytosol and nucleus and interacted with the promoter transcription region of Cdc42, which may regulate Cdc42 expression. Our results demonstrate a novel role of Bif-1 in HCC, in which Bif-1 promotes cell metastasis by regulating Cdc42 expression and activity.

  2. Robo1 promotes angiogenesis in hepatocellular carcinoma through the Rho family of guanosine triphosphatases' signaling pathway.

    Science.gov (United States)

    Ao, Jian-Yang; Chai, Zong-Tao; Zhang, Yuan-Yuan; Zhu, Xiao-Dong; Kong, Ling-Qun; Zhang, Ning; Ye, Bo-Gen; Cai, Hao; Gao, Dong-mei; Sun, Hui-Chuan

    2015-11-01

    Robo1 is a member of the Robo immunoglobulin superfamily of proteins, and it plays an important role in angiogenesis and cancer. In this study, we investigate the role of roundabout 1 (Robo1) in tumor angiogenesis in hepatocellular carcinoma (HCC). Firstly, the relationship between Robo1 expression on tumors and patient's survival and endothelial cells in tumor blood vessels and patient's survival was studied. Secondly, Robo1 was overexpressed or knocked down in human umbilical vein endothelial cells (HUVECs). Cell proliferation, motility, and tube formation were compared in HUVEC with different Robo1 expression. Also, HUVECs with different Robo1 expression were mixed with HCCLM3 and HepG2 hepatoma cells and then implanted in a nude mouse model to examine the effects of Robo1 in endothelial cells on tumor growth and angiogenesis. Cell motility-related molecules were studied to investigate the potential mechanism how Robo1 promoted tumor angiogenesis in HCC. The disease-free survival of the patients with high Robo1 expression in tumoral endothelial cells was significantly shorter than that of those with low expression (P = 0.021). Overexpression of Robo1 in HUVECs resulted in increased proliferation, motility, and tube formation in vitro. In the implanted mixture of tumor cells and HUVECs with an increased Robo1 expression, tumor growth and microvessel density were enhanced compared with controls. Robo1 promoted cell division cycle 42 (Cdc42) expression in HUVECs, and a distorted actin cytoskeleton in HUVECs was observed when Robo1 expression was suppressed. In conclusion, Robo1 promoted angiogenesis in HCC mediated by Cdc42.

  3. Bortezomib enhances expression of effector molecules in anti-tumor CD8+ T lymphocytes by promoting Notch-nuclear factor-κB crosstalk.

    Science.gov (United States)

    Thounaojam, Menaka C; Dudimah, Duafalia F; Pellom, Samuel T; Uzhachenko, Roman V; Carbone, David P; Dikov, Mikhail M; Shanker, Anil

    2015-10-20

    The immunosuppressive tumor microenvironment usurps host antitumor immunity by multiple mechanisms including interference with the Notch system, which is important for various metazoan cell fate decisions and hematopoietic cell differentiation and function. We observed that treatment with the proteasome inhibitor bortezomib in mice bearing various solid tumors resulted in an upregulated expression of various Notch signaling components in lymphoid tissues, thereby increasing CD8+T-lymphocyte IFNγ secretion and expression of effector molecules, perforin and granzyme B, as well as the T-box transcription factor eomesodermin. Bortezomib also neutralized TGFβ-mediated suppression of IFNγ and granzyme B expression in activated CD8+T-cells. Of note, bortezomib reversed tumor-induced downregulation of Notch receptors, Notch1 and Notch2, as well as increased the levels of cleaved Notch intracellular domain (NICD) and downstream targets Hes1 and Hey1 in tumor-draining CD8+T-cells. Moreover, bortezomib promoted CD8+T-cell nuclear factor-κB (NFκB) activity by increasing the total and phosphorylated levels of the IκB kinase and IκBα as well as the cytoplasmic and nuclear levels of phosphorylated p65. Even when we blocked NFκB activity by Bay-11-7082, or NICD cleavage by γ-secretase inhibitor, bortezomib significantly increased expression of Notch Hes1 and Hey1 genes as well as perforin, granzyme B and eomesodermin in activated CD8+T-cells. Data suggest that bortezomib can rescue tumor-induced dysfunction of CD8+T-cells by its intrinsic stimulatory effects promoting NICD-NFκB crosstalk. These findings provide novel insights on using bortezomib not only as an agent to sensitize tumors to cell death but also to provide lymphocyte-stimulatory effects, thereby overcoming immunosuppressive actions of tumor on anti-tumor T-cell functions.

  4. Remodeling epigenetic modifications at tumor suppressor gene promoters with bovine oocyte extract.

    Science.gov (United States)

    Wang, Zhenfei; Yue, Yongli; Han, Pengyong; Sa, Rula; Ren, Xiaolv; Wang, Jie; Bai, Haidong; Yu, Haiquan

    2013-09-01

    Epigenetic silencing of tumor suppressor genes by aberrant DNA methylation and histone modifications at their promoter regions plays an important role in the initiation and progression of cancer. The therapeutic effect of the widely used epigenetic drugs, including DNA methyltransferase inhibitors and histone deacetylase inhibitors, remains unsatisfactory. One important underlying factor in the ineffectiveness of these drugs is that their actions lack specificity. To investigate whether oocyte extract can be used for epigenetic re-programming of cancer cells, H460 human lung cancer cells were reversibly permeabilized and incubated with bovine oocyte extract. Bisulfite sequencing showed that bovine oocyte extract induced significant demethylation at hypermethylated promoter CpG islands of the tumor suppressor genes RUNX3 and CDH1; however, the DNA methylation levels of repetitive sequences were not affected. Chromatin immunoprecipitation showed that bovine oocyte extract significantly reduced transcriptionally repressive histone modifications and increased transcriptionally activating histone modifications at the promoter regions of RUNX3 and CDH1. Bovine oocyte extract reactivated the expression of RUNX3 and CDH1 at both the messenger RNA and the protein levels without up-regulating the transcription of pluripotency-associated genes. At the functional level, anchorage-independent proliferation, migration and invasion of H460 cells was strongly inhibited. These results demonstrate that bovine oocyte extract reactivates epigenetically silenced tumor suppressor genes by remodeling the epigenetic modifications at their promoter regions. Bovine oocyte extract may provide a useful tool for investigating epigenetic mechanisms in cancer and a valuable source for developing novel safe therapeutic approaches that target epigenetic alterations. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  5. Progesterone receptor membrane component 1 deficiency attenuates growth while promoting chemosensitivity of human endometrial xenograft tumors.

    Science.gov (United States)

    Friel, Anne M; Zhang, Ling; Pru, Cindy A; Clark, Nicole C; McCallum, Melissa L; Blok, Leen J; Shioda, Toshi; Peluso, John J; Rueda, Bo R; Pru, James K

    2015-01-28

    Endometrial cancer is the leading gynecologic cancer in women in the United States with 52,630 women predicted to be diagnosed with the disease in 2014. The objective of this study was to determine if progesterone (P4) receptor membrane component 1 (PGRMC1) influenced endometrial cancer cell viability in response to chemotherapy in vitro and in vivo. A lentiviral-based shRNA knockdown approach was used to generate stable PGRMC1-intact and PGRMC1-deplete Ishikawa endometrial cancer cell lines that also lacked expression of the classical progesterone receptor (PGR). Progesterone treatment inhibited mitosis of PGRMC1-intact, but not PGRMC1-deplete cells, suggesting that PGRMC1 mediates the anti-mitotic actions of P4. To test the hypothesis that PGRMC1 attenuates chemotherapy-induced apoptosis, PGRMC1-intact and PGRMC1-deplete cells were treated in vitro with vehicle, P4 (1 µM), doxorubicin (Dox, 2 µg/ml), or P4 + Dox for 48 h. Doxorubicin treatment of PGRMC1-intact cells resulted in a significant increase in cell death; however, co-treatment with P4 significantly attenuated Dox-induced cell death. This response to P4 was lost in PGRMC1-deplete cells. To extend these observations in vivo, a xenograft model was employed where PGRMC1-intact and PGRMC1-deplete endometrial tumors were generated following subcutaneous and intraperitoneal inoculation of immunocompromised NOD/SCID and nude mice, respectively. Tumors derived from PGRMC1-deplete cells grew slower than tumors from PGRMC1-intact cells. Mice harboring endometrial tumors were then given three treatments of vehicle (1:1 cremophor EL: ethanol + 0.9% saline) or chemotherapy [Paclitaxel (15 mg/kg, i.p.) followed after an interval of 30 minutes by CARBOplatin (50 mg/kg)] at five day intervals. In response to chemotherapy, tumor volume decreased approximately four-fold more in PGRMC1-deplete tumors when compared with PGRMC1-intact control tumors, suggesting that PGRMC1 promotes tumor cell viability

  6. The commonly used antimicrobial additive triclosan is a liver tumor promoter.

    Science.gov (United States)

    Yueh, Mei-Fei; Taniguchi, Koji; Chen, Shujuan; Evans, Ronald M; Hammock, Bruce D; Karin, Michael; Tukey, Robert H

    2014-12-02

    Triclosan [5-chloro-2-(2,4-dichlorophenoxy)phenol; TCS] is a synthetic, broad-spectrum antibacterial chemical used in a wide range of consumer products including soaps, cosmetics, therapeutics, and plastics. The general population is exposed to TCS because of its prevalence in a variety of daily care products as well as through waterborne contamination. TCS is linked to a multitude of health and environmental effects, ranging from endocrine disruption and impaired muscle contraction to effects on aquatic ecosystems. We discovered that TCS was capable of stimulating liver cell proliferation and fibrotic responses, accompanied by signs of oxidative stress. Through a reporter screening assay with an array of nuclear xenobiotic receptors (XenoRs), we found that TCS activates the nuclear receptor constitutive androstane receptor (CAR) and, contrary to previous reports, has no significant effect on mouse peroxisome proliferation activating receptor α (PPARα). Using the procarcinogen diethylnitrosamine (DEN) to initiate tumorigenesis in mice, we discovered that TCS substantially accelerates hepatocellular carcinoma (HCC) development, acting as a liver tumor promoter. TCS-treated mice exhibited a large increase in tumor multiplicity, size, and incidence compared with control mice. TCS-mediated liver regeneration and fibrosis preceded HCC development and may constitute the primary tumor-promoting mechanism through which TCS acts. These findings strongly suggest there are adverse health effects in mice with long-term TCS exposure, especially on enhancing liver fibrogenesis and tumorigenesis, and the relevance of TCS liver toxicity to humans should be evaluated.

  7. β-elemene inhibits tumor-promoting effect of M2 macrophages in lung cancer.

    Science.gov (United States)

    Yu, Xiaomu; Xu, Maoyi; Li, Na; Li, Zongjuan; Li, Hongye; Shao, Shujuan; Zou, Kun; Zou, Lijuan

    2017-08-19

    Macrophages in tumor are mostly M2-polarized and have been reported to promote tumorigenesis, which are also defined as tumor-associated macrophages (TAMs). β-elemene has therapeutic effects against several cancers, however, it remains unknown whether β-elemene could inhibit cancer by targeting TAMs. Herein, we examined the effect of β-elemene on macrophages to elucidate a novel mechanism of β-elemene in tumor therapy. We showed that the conditioned medium of M2 macrophages promoted lung cancer cells to migration, invasion and epithelial mesenchymal transition, which could be inhibited by β-elemene. Moreover, β-elemene regulated the polarization of macrophages from M2 to M1. β-elemene also inhibited the proliferation, migration, invasion of lung cancer cells and enhanced its radiosensitivity. These results indicate β-elemene suppresses lung cancer by regulating both macrophages and lung cancer cells, it is a promising drug for combination with chemotherapy or radiotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Human CDK18 promotes replication stress signaling and genome stability.

    Science.gov (United States)

    Barone, Giancarlo; Staples, Christopher J; Ganesh, Anil; Patterson, Karl W; Bryne, Dominic P; Myers, Katie N; Patil, Abhijit A; Eyers, Claire E; Maslen, Sarah; Skehel, J Mark; Eyers, Patrick A; Collis, Spencer J

    2016-10-14

    Cyclin-dependent kinases (CDKs) coordinate cell cycle checkpoints with DNA repair mechanisms that together maintain genome stability. However, the myriad mechanisms that can give rise to genome instability are still to be fully elucidated. Here, we identify CDK18 (PCTAIRE 3) as a novel regulator of genome stability, and show that depletion of CDK18 causes an increase in endogenous DNA damage and chromosomal abnormalities. CDK18-depleted cells accumulate in early S-phase, exhibiting retarded replication fork kinetics and reduced ATR kinase signaling in response to replication stress. Mechanistically, CDK18 interacts with RAD9, RAD17 and TOPBP1, and CDK18-deficiency results in a decrease in both RAD17 and RAD9 chromatin retention in response to replication stress. Importantly, we demonstrate that these phenotypes are rescued by exogenous CDK18 in a kinase-dependent manner. Collectively, these data reveal a rate-limiting role for CDK18 in replication stress signalling and establish it as a novel regulator of genome integrity. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Interleukin 6 promotes endometrial cancer growth through an autocrine feedback loop involving ERK–NF-κB signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Che, Qi; Liu, Bin-Ya; Wang, Fang-Yuan; He, Yin-Yan; Lu, Wen; Liao, Yun [Department of Obstetrics and Gynecology, Shanghai First People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai (China); Gu, Wei, E-mail: krisgu70@163.com [Department of Obstetrics and Gynecology, International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai (China); Wan, Xiao-Ping, E-mail: wanxp@sjtu.edu.cn [Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital Affiliated to Tong Ji University, Shanghai (China)

    2014-03-28

    Highlights: • IL-6 could promote endometrial cancer cells proliferation. • IL-6 promotes its own production through an autocrine feedback loop. • ERK and NF-κB pathway inhibitors inhibit IL-6 production and tumor growth. • IL-6 secretion relies on the activation of ERK–NF-κB pathway axis. • An orthotopic nude endometrial carcinoma model confirms the effect of IL-6. - Abstract: Interleukin (IL)-6 as an inflammation factor, has been proved to promote cancer proliferation in several human cancers. However, its role in endometrial cancer has not been studied clearly. Previously, we demonstrated that IL-6 promoted endometrial cancer progression through local estrogen biosynthesis. In this study, we proved that IL-6 could directly stimulate endometrial cancer cells proliferation and an autocrine feedback loop increased its production even after the withdrawal of IL-6 from the medium. Next, we analyzed the mechanism underlying IL-6 production in the feedback loop and found that its production and IL-6-stimulated cell proliferation were effectively blocked by pharmacologic inhibitors of nuclear factor-kappa B (NF-κB) and extra-cellular signal-regulated kinase (ERK). Importantly, activation of ERK was upstream of the NF-κB pathways, revealing the hierarchy of this event. Finally, we used an orthotopic nude endometrial carcinoma model to confirm the effects of IL-6 on the tumor progression. Taken together, these data indicate that IL-6 promotes endometrial carcinoma growth through an expanded autocrine regulatory loop and implicate the ERK–NF-κB pathway as a critical mediator of IL-6 production, implying IL-6 to be an important therapeutic target in endometrial carcinoma.

  10. Interleukin-8 promotes canine hemangiosarcoma growth by regulating the tumor microenvironment.

    Science.gov (United States)

    Kim, Jong-Hyuk; Frantz, Aric M; Anderson, Katie L; Graef, Ashley J; Scott, Milcah C; Robinson, Sally; Sharkey, Leslie C; O'Brien, Timothy D; Dickerson, Erin B; Modiano, Jaime F

    2014-04-15

    Interleukin-8 (IL-8) gene expression is highly up-regulated in canine hemangiosarcoma (HSA); however, its role in the pathogenesis of this disease is unknown. We investigated the expression of IL-8 in canine HSA tissues and cell lines, as well and the effects of IL-8 on canine HSA in vitro, and in vivo using a mouse xenograft model for the latter. Constitutive expression of IL-8 mRNA, IL-8 protein, and IL-8 receptor were variable among different tumor samples and cell lines, but they showed stable steady states in each cell line. Upon the addition of IL-8, HSA cells showed transient intracellular calcium fluxes, suggesting that their IL-8 receptors are functional and that IL-8 binding activates relevant signaling pathways. Yet, neither addition of exogenous IL-8 nor blockade of endogenous IL-8 by neutralizing anti-IL-8 antibody (α-IL-8 Ab) affected HSA cell proliferation or survival in vitro. To assess potential effects of IL-8 in other tumor constituents, we stratified HSA cell lines and whole tumor samples into "IL-8 high" and "IL-8 low" groups. Genome-wide gene expression profiling showed that samples in the "IL-8 high" tumor group were enriched for genes associated with a "reactive microenvironment," including activation of coagulation, inflammation, and fibrosis networks. Based on these findings, we hypothesized that the effects of IL-8 on these tumors were mostly indirect, regulating interactions with the microenvironment. This hypothesis was supported by in vivo xenograft experiments where survival and engraftment of tumor cells was inhibited by administration of neutralizing α-IL-8 Ab. Together, our results suggest that IL-8 contributes to establishing a permissive microenvironment during the early stages of tumorigenesis in HSA. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Targeting Slit-Roundabout signaling inhibits tumor angiogenesis in chemical-induced squamous cell carcinogenesis.

    Science.gov (United States)

    Wang, Li-Jing; Zhao, Yuan; Han, Bing; Ma, Yu-Guang; Zhang, Jie; Yang, Ding-Ming; Mao, Jian-Wen; Tang, Fu-Tian; Li, Wei-Dong; Yang, Yang; Wang, Rui; Geng, Jian-Guo

    2008-03-01

    Slit is a secreted protein known to function through the Roundabout (Robo) receptor as a repellent for axon guidance and neuronal migration, and as an inhibitor in leukocyte chemotaxis. We have previously shown that Slit2 is also secreted by a variety of human cancer cells whereby it acts as a chemoattractant to vascular endothelial cells for tumor angiogenesis. We used a blocking antibody to investigate the role of Slit-Robo signaling in tumor angiogenesis during oral carcinogenesis. In this report we undertook a multistage model of 7,12-dimethyl-1,2-benzanthracene-induced squamous cell carcinoma in the hamster buccal pouch. R5, a monoclonal antibody against the first immunoglobulin domain of Robo1, was used to study whether R5 blocks the Slit-Robo interaction and furthermore inhibits tumor angiogenesis and growth in our model. In addition, the expression of Slit2, von Willebrand factor, and vascular endothelial growth factor were examined using human tissue of oral cheek mucosa with oral squamous cell carcinoma. Our data showed that Slit2 was expressed minimally in normal and hyperplastic mucosa, moderately in dysplastic mucosa, and highly in neoplastic mucosa obtained from hamster buccal pouch. We also found that increased Slit2 expression was associated with higher tumor angiogenesis, as reflected by increased vascular endothelial growth factor expression and microvessel density. A similar Slit2 expression profile was found in human tissue. Importantly, interruption of the Slit2-Robo interaction using R5 inhibited tumor angiogenesis and growth in our in vivo model, which indicates that Slit2-mediated tumor angiogenesis is a critical process underlying the carcinogenesis of chemical-induced squamous cell carcinoma. Therefore, targeting Slit-Robo signaling may offer a novel antiangiogenesis approach for oral cancer therapy.

  12. LRP5 Signaling in Osteosarcomagenesis: a Cautionary Tale of Translation from Cell Lines to Tumors

    Directory of Open Access Journals (Sweden)

    Logan Horne

    2016-10-01

    Full Text Available Previous reports document expression of low-density lipoprotein receptor-related protein 5 (LRP5 in osteosarcoma (OS tissue. Expression of this Wnt receptor correlated with metastatic disease and poor disease-free survival. Forced expression of dominant-negative LRP5 (dnLRP5, which lacks the membrane binding domain of the native protein and therefore functions as a soluble receptor-sponge for Wnt ligands, reduced in vitro cellular invasion and in vivo xenograft tumor growth for osteosarcoma cell lines. Here, we use a genetically engineered mouse model of osteosarcomagenesis with and without expression of dnLRP5 to assess to what degree tumorigenesis is affected and whether Wnt/β-catenin signaling is circumvented or maintained. Each cohort of mice developed osteosarcoma at a similar ultimate prevalence, but after a slightly increased latency in those also expressing dnLRP5. On histology, there was no difference between groups, despite previous reports that the dnLRP5 osteosarcoma cells specifically undergo a mesenchymal-to-epithelial transition in vitro. Finally, immunohistochemistry showed the presence of cytosolic and nuclear β-catenin and nuclear Cyclin D1, markers consistent with preserved Wnt/β-catenin signaling despite constitutive blockade of the cell surface receipt of Wnt signaling ligand. These data suggest that canonical Wnt signaling plays a role in OS progression and that while blockade of singular nodes in signaling pathways can have dramatic effects on individual cell lines, real tumors readily evade such focused attacks.

  13. FAM83D activates the MEK/ERK signaling pathway and promotes cell proliferation in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong; Han, Sheng; Peng, Rui; Wang, Xing; Yang, Xin-Xiang; Yang, Ren-Jie; Jiao, Chen-Yu; Ding, Dong; Ji, Gu-Wei; Li, Xiang-Cheng, E-mail: drxcli@njmu.edu.cn

    2015-03-06

    Publicly available microarray data suggests that the expression of FAM83D (Family with sequence similarity 83, member D) is elevated in a wide variety of tumor types, including hepatocellular carcinoma (HCC). However, its role in the pathogenesis of HCC has not been elucidated. Here, we showed that FAM83D was frequently up-regulated in HCC samples. Forced FAM83D expression in HCC cell lines significantly promoted their proliferation and colony formation while FAM83D knockdown resulted in the opposite effects. Mechanistic analyses indicated that FAM83D was able to activate the MEK/ERK signaling pathway and promote the entry into S phase of cell cycle progression. Taken together, these results demonstrate that FAM83D is a novel oncogene in HCC development and may constitute a potential therapeutic target in HCC. - Highlights: • FAM83D is up-regulated in HCC tissues and cell lines. • Ectopic expression of FAM83D promotes HCC cell proliferation and colony formation. • Depletion of FAM83D inhibits HCC cell proliferation and colony formation. • FAM83D activates the MEK/ERK signaling pathway in HCC.

  14. Cleavage/Repair and Signal Transduction Pathways in Irradiated Breast Tumor Cells

    Science.gov (United States)

    2000-09-01

    influence of p53 function on Radiation Research, 135, 75-80. radiosensitivity of human glioblastoma cells . Cancer SuMŽ•,txRAN,• V. N., EALOVEGA, N’I. WV...after drug exposure while Leung et ted mitotic arrest and giant cell formation in irradiated al. [75] reported that continuous exposure for 24 h to MCF-7...Signal Transduction Pathways in Irradiated Breast Tumor Cells PRINCIPAL INVESTIGATOR: David A. Gewirtz, Ph.D. CONTRACTING ORGANIZATION: Virginia

  15. Soft matrices downregulate FAK activity to promote growth of tumor-repopulating cells.

    Science.gov (United States)

    Tan, Youhua; Wood, Adam Richard; Jia, Qiong; Zhou, Wenwen; Luo, Junyu; Yang, Fang; Chen, Junwei; Chen, Junjian; Sun, Jian; Seong, Jihye; Tajik, Arash; Singh, Rishi; Wang, Ning

    2017-01-29

    Tumor-repopulating cells (TRCs) are a tumorigenic sub-population of cancer cells that drives tumorigenesis. We have recently reported that soft fibrin matrices maintain TRC growth by promoting histone 3 lysine 9 (H3K9) demethylation and Sox2 expression and that Cdc42 expression influences H3K9 methylation. However, the underlying mechanisms of how soft matrices induce H3K9 demethylation remain elusive. Here we find that TRCs exhibit lower focal adhesion kinase (FAK) and H3K9 methylation levels in soft fibrin matrices than control melanoma cells on 2D rigid substrates. Silencing FAK in control melanoma cells decreases H3K9 methylation, whereas overexpressing FAK in tumor-repopulating cells enhances H3K9 methylation. Overexpressing Cdc42 or RhoA in the presence of FAK knockdown restores H3K9 methylation levels. Importantly, silencing FAK, Cdc42, or RhoA promotes Sox2 expression and proliferation of control melanoma cells in stiff fibrin matrices, whereas overexpressing each gene suppresses Sox2 expression and reduces growth of TRCs in soft but not in stiff fibrin matrices. Our findings suggest that low FAK mediated by soft fibrin matrices downregulates H3K9 methylation through reduction of Cdc42 and RhoA and promotes TRC growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway

    Science.gov (United States)

    Li, Jie; Yu, Zhenjia; Wang, Xiaofeng; Li, Jiaanfang; Li, Chen; Yan, Min; Zhu, Zhenggang; Liu, Bingya; Su, Liping

    2017-01-01

    Cancer-associated fibroblasts (CAFs), as the activated fibroblasts in tumor stroma, are important modifiers of tumor progression. However, the molecular mechanisms underlying the tumor-promoting properties of CAFs in gastric cancer remain unclear. Here, we show that CAFs isolated from gastric cancer produce significant amounts of interleukin-6 (IL-6). CAFs enhances the migration and EMT of gastric cancer cells through the secretion of IL-6 that activates Janus kinase 2/signal transducers and activators of transcription (JAK2/STAT3) pathway in gastric cancer cells, while deprivation of IL-6 using a neutralizing antibody or inhibition of JAK/STAT3 pathway with specific inhibitor AG490 markedly attenuates these phenotypes in gastric cancer cells induced by CAFs. Moreover, silencing IL-6 expression in CAFs or inhibiting JAK2/STAT3 pathway in gastric cancer cells impairs tumor peritoneal metastasis induced by CAFs in vivo. Taken together, these results suggest that CAFs in the tumor microenvironment promote the progression of gastric cancer through IL-6/JAK2/STAT3 signaling, and IL-6 targeted therapy could be a complementary approach against gastric cancer by exerting their action on stromal fibroblasts. PMID:28186964

  17. SLIT/ROBO2 Signaling Promotes Mammary Stem Cell Senescence by Inhibiting Wnt Signaling

    Directory of Open Access Journals (Sweden)

    Gwyndolen Harburg

    2014-09-01

    Full Text Available WNT signaling stimulates the self-renewal of many types of adult stem cells, including mammary stem cells (MaSCs, but mechanisms that limit this activity are poorly understood. Here, we demonstrate that SLIT2 restricts stem cell renewal by signaling through ROBO2 in a subset of basal cells to negatively regulate WNT signaling. The absence of SLIT/ROBO2 signaling leads to increased levels of nuclear β-catenin. Robo2 loss does not increase the number of stem cells; instead, stem cell renewal is enhanced in the absence of SLIT/ROBO2 signaling. This is due to repressed expression of p16 INK4a, which, in turn, delays MaSC senescence. Together, our studies support a model in which SLITs restrict the expansion of MaSCs by countering the activity of WNTs and limiting self-renewal.

  18. miR-148a-3p Mediates Notch Signaling to Promote the Differentiation and M1 Activation of Macrophages

    Directory of Open Access Journals (Sweden)

    Fei Huang

    2017-10-01

    Full Text Available The Notch pathway plays critical roles in the differentiation and polarized activation of macrophages; however, the downstream molecular mechanisms underlying Notch activity in macrophages remain elusive. Our previous study has identified a group of microRNAs that mediate Notch signaling to regulate macrophage activation and tumor-associated macrophages (TAMs. In this study, we demonstrated that miR-148a-3p functions as a novel downstream molecule of Notch signaling to promote the differentiation of monocytes into macrophages in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF. Meanwhile, miR-148a-3p promoted M1 and inhibited M2 polarization of macrophages upon Notch activation. Macrophages overexpressing miR-148a-3p exhibited enhanced ability to engulf and kill bacteria, which was mediated by excessive production of reactive oxygen species (ROS. Further studies using reporter assay and Western blotting identified Pten as a direct target gene of miR-148a-3p in macrophages. Macrophages overexpressing miR-148a-3p increased their ROS production through the PTEN/AKT pathway, likely to defend against bacterial invasion. Moreover, miR-148a-3p also enhanced M1 macrophage polarization and pro-inflammatory responses through PTEN/AKT-mediated upregulation of NF-κB signaling. In summary, our data establish a novel molecular mechanism by which Notch signaling promotes monocyte differentiation and M1 macrophage activation through miR-148a-3p, and suggest that miR-148a-3p-modified monocytes or macrophages are potential new tools for the treatment of inflammation-related diseases.

  19. Tetrathiomolybdate inhibits head and neck cancer metastasis by decreasing tumor cell motility, invasiveness and by promoting tumor cell anoikis

    Directory of Open Access Journals (Sweden)

    Merajver Sofia D

    2010-08-01

    Full Text Available Abstract Background The metastatic spread of solid tumors is directly or indirectly responsible for most cancer-related deaths. Tumor metastasis is very complex and this process requires a tumor cell to acquire enhanced motility, invasiveness and anoikis resistance to successfully establish a tumor at a distal site. Metastatic potential of tumor cells is directly correlated with the expression levels of several angiogenic cytokines. Copper is a mandatory cofactor for the function of many of these angiogenic mediators as well as other proteins that play an important role in tumor cell motility and invasiveness. We have previously shown that tetrathiomolybdate (TM is a potent chelator of copper and it mediates its anti-tumor effects by suppressing tumor angiogenesis. However, very little is known about the effect of TM on tumor cell function and tumor metastasis. In this study, we explored the mechanisms underlying TM-mediated inhibition of tumor metastasis. Results We used two in vivo models to examine the effects of TM on tumor metastasis. Animals treated with TM showed a significant decrease in lung metastasis in both in vivo models as compared to the control group. In addition, tumor cells from the lungs of TM treated animals developed significantly smaller colonies and these colonies had significantly fewer tumor cells. TM treatment significantly decreased tumor cell motility and invasiveness by inhibiting lysyl oxidase (LOX activity, FAK activation and MMP2 levels. Furthermore, TM treatment significantly enhanced tumor cell anoikis by activating p38 MAPK cell death pathway and by downregulating XIAP survival protein expression. Conclusions Taken together, these results suggest that TM is a potent suppressor of head and neck tumor metastasis by modulating key regulators of tumor cell motility, invasiveness and anoikis resistance.

  20. Toddler: an embryonic signal that promotes cell movement via Apelin receptors.

    Science.gov (United States)

    Pauli, Andrea; Norris, Megan L; Valen, Eivind; Chew, Guo-Liang; Gagnon, James A; Zimmerman, Steven; Mitchell, Andrew; Ma, Jiao; Dubrulle, Julien; Reyon, Deepak; Tsai, Shengdar Q; Joung, J Keith; Saghatelian, Alan; Schier, Alexander F

    2014-02-14

    It has been assumed that most, if not all, signals regulating early development have been identified. Contrary to this expectation, we identified 28 candidate signaling proteins expressed during zebrafish embryogenesis, including Toddler, a short, conserved, and secreted peptide. Both absence and overproduction of Toddler reduce the movement of mesendodermal cells during zebrafish gastrulation. Local and ubiquitous production of Toddler promote cell movement, suggesting that Toddler is neither an attractant nor a repellent but acts globally as a motogen. Toddler drives internalization of G protein-coupled APJ/Apelin receptors, and activation of APJ/Apelin signaling rescues toddler mutants. These results indicate that Toddler is an activator of APJ/Apelin receptor signaling, promotes gastrulation movements, and might be the first in a series of uncharacterized developmental signals.

  1. Raldh1 promotes adiposity during adolescence independently of retinal signaling.

    Directory of Open Access Journals (Sweden)

    Di Yang

    Full Text Available All-trans-retinoic acid (RA inhibits adipogenesis in established preadipocyte cell lines. Dosing pharmacological amounts of RA reduces weight gain in mice fed a high-fat diet, i.e. counteracts diet-induced obesity (DIO. The aldehyde dehydrogenase Raldh1 (Aldh1a1 functions as one of three enzymes that converts the retinol metabolite retinal into RA, and one of many proteins that contribute to RA homeostasis. Female Raldh1-ablated mice resist DIO. This phenotype contrasts with ablations of other enzymes and binding-proteins that maintain RA homeostasis, which gain adiposity. The phenotype observed prompted the conclusion that loss of Raldh1 causes an increase in adipose tissue retinal, and therefore, retinal functions independently of RA to prevent DIO. A second deduction proposed that low nM concentrations of RA stimulate adipogenesis, in contrast to higher concentrations. Using peer-reviewed LC/MS/MS assays developed and validated for quantifying tissue RA and retinal, we show that endogenous retinal and RA concentrations in adipose tissues from Raldh1-null mice do not correlate with the phenotype. Moreover, male Raldh1-null mice resist weight gain regardless of dietary fat content. Resistance to weight gain occurs during adolescence in both sexes. We show that RA concentrations as low as 1 nM, i.e. in the sub-physiological range, impair adipogenesis of embryonic fibroblasts from wild-type mice. Embryonic fibroblasts from Raldh1-null mice resist differentiating into adipocytes, but retain ability to generate RA. These fibroblasts remain sensitive to an RA receptor pan-agonist, and are not affected by an RA receptor pan-antagonist. Thus, the data do not support the hypothesis that retinal itself represses weight gain and adipogenesis independently of RA. Instead, the data indicate that Raldh1 functions as a retinal and atRA-independent promoter of adiposity during adolescence, and enhances adiposity through pre-adipocyte cell autonomous actions.

  2. YB-1 regulates tumor growth by promoting MACC1/c-Met pathway in human lung adenocarcinoma

    Science.gov (United States)

    Xue, Xiaoyuan; Zhang, Yan; Yang, Mengying; Li, Nan; Li, Zhuoshi; Xu, Lingzhi; Jiang, Lei; Zhao, Lei; Ma, Patrick C.; Rosell, Rafael; Li, Jinxiu; Gu, Chundong

    2017-01-01

    Aberrant overexpression of the transcription/translation factor Y-box-binding protein (YB-1) is associated with poor prognosis of lung adenocarcinoma, however the underlying mechanism by which YB-1 acts has not been fully elucidated. Here, we reported that inhibition of YB-1 diminished proliferation, migration and invasion of lung adenocarcinoma cells. Interestingly, we identified metastasis associated in colon cancer-1 (MACC1) as a target of YB-1. Depletion of YB-1 markedly decreased MACC1 promoter activity and suppressed the MACC1/c-Met signaling pathway in lung adenocarcinoma cells. Additionally, chromatin immunoprecipitation (ChIP) assay demonstrated that YB-1 bound to the MACC1 promoter. Moreover, YB-1 was positively correlated with MACC1, and both proteins were over-expressed in lung adenocarcinoma tissues. The Cox-regression analysis indicated that high YB-1 expression was an independent risk factor for prognosis in enrolled patients. Furthermore, depletion of YB-1 attenuated tumorigenesis in a xenograft mouse model and reduced MACC1 expression in tumor tissues. Collectively, our data suggested that targeting YB-1 suppressed lung adenocarcinoma progression through the MACC1/c-Met pathway and that the high expression of YB-1/MACC1 is a potential prognostic marker in lung adenocarcinoma. PMID:28624808

  3. Lymphotoxin β receptor signaling promotes development of autoimmune pancreatitis.

    Science.gov (United States)

    Seleznik, Gitta M; Reding, Theresia; Romrig, Franziska; Saito, Yasuyuki; Mildner, Alexander; Segerer, Stephan; Sun, Li-Kang; Regenass, Stephan; Lech, Maciej; Anders, Hans-Joachim; McHugh, Donal; Kumagi, Teru; Hiasa, Yoichi; Lackner, Carolin; Haybaeck, Johannes; Angst, Eliane; Perren, Aurel; Balmer, Maria Luisa; Slack, Emma; MacPherson, Andrew; Manz, Markus G; Weber, Achim; Browning, Jeffrey L; Arkan, Melek Canan; Rülicke, Thomas; Aguzzi, Adriano; Prinz, Marco; Graf, Rolf; Heikenwalder, Mathias

    2012-11-01

    Little is known about the pathogenic mechanisms of autoimmune pancreatitis (AIP), an increasingly recognized, immune-mediated form of chronic pancreatitis. Current treatment options are limited and disease relapse is frequent. We investigated factors that contribute to the development of AIP and new therapeutic strategies. We used quantitative polymerase chain reaction, immunohistochemical, and enzyme-linked immunosorbent analyses to measure the expression of cytokines and chemokines in tissue and serum samples from patients with and without AIP. We created a mouse model of human AIP by overexpressing lymphotoxin (LT)α and β specifically in acinar cells (Ela1-LTab mice). Messenger RNA levels of LTα and β were increased in pancreatic tissues from patients with AIP, compared with controls, and expression of chemokines (CXCL13, CCL19, CCL21, CCL1, and B-cell-activating factor) was increased in pancreatic and serum samples from patients. Up-regulation of these factors was not affected by corticosteroid treatment. Acinar-specific overexpression of LTαβ (Ela1-LTαβ) in mice led to an autoimmune disorder with various features of AIP. Chronic inflammation developed only in the pancreas but was sufficient to cause systemic autoimmunity. Acinar-specific overexpression of LTαβ did not cause autoimmunity in mice without lymphocytes (Ela1-LTab/Rag1(-/-)); moreover, lack of proinflammatory monocytes (Ela1-LTab/Ccr2(-/-)) failed to prevent AIP but prevented early pancreatic tissue damage. Administration of corticosteroids reduced pancreatitis but did not affect production of autoantibodies, such as antipancreatic secretory trypsin inhibitor in Ela1-LTab mice. In contrast, inhibition of LTβR signaling reduced chemokine expression, renal immune-complex deposition, and features of AIP in Ela1-LTab mice. Overexpression of LTαβ specifically in acinar cells of mice causes features of AIP. Reagents that neutralize LTβR ligands might be used to treat patients with AIP

  4. Herbal Extract SH003 Suppresses Tumor Growth and Metastasis of MDA-MB-231 Breast Cancer Cells by Inhibiting STAT3-IL-6 Signaling

    Directory of Open Access Journals (Sweden)

    Youn Kyung Choi

    2014-01-01

    Full Text Available Cancer inflammation promotes cancer progression, resulting in a high risk of cancer. Here, we demonstrate that our new herbal extract, SH003, suppresses both tumor growth and metastasis of MDA-MB-231 breast cancer cells via inhibiting STAT3-IL-6 signaling path. Our new herbal formula, SH003, mixed extract from Astragalus membranaceus, Angelica gigas, and Trichosanthes kirilowii Maximowicz, suppressed MDA-MB-231 tumor growth and lung metastasis in vivo and reduced the viability and metastatic abilities of MDA-MB-231 cells in vitro. Furthermore, SH003 inhibited STAT3 activation, which resulted in a reduction of IL-6 production. Therefore, we conclude that SH003 suppresses highly metastatic breast cancer growth and metastasis by inhibiting STAT3-IL-6 signaling path.

  5. Immunolocalization of notch signaling protein molecules in a maxillary chondrosarcoma and its recurrent tumor

    Directory of Open Access Journals (Sweden)

    Siar CH

    2010-10-01

    Full Text Available Abstract Background Notch receptors are critical determinants of cell fate in a variety of organisms. Notch signaling is involved in the chondrogenic specification of neural crest cells. Aberrant Notch activity has been implicated in numerous human diseases including cancers; however its role in chondrogenic tumors has not been clarified. Method Tissue samples from a case of primary chondrosarcoma of the maxilla and its recurrent tumor were examined immunohistochemically for Notch1-4 and their ligands (Jagged1, Jagged2 and Delta1 expression. Results Both primary and recurrent tumors were histopathologically diagnosed as conventional hyaline chondrosarcoma (WHO Grade I. Hypercellular tumor areas strongly expressed Notch3 and Jagged1 in spindle and pleomorphic cells suggesting up-regulation of these protein molecules at sites of tumor proliferation. Expression patterns were distinct with some overlap. Differentiated malignant and atypical chondrocytes demonstrated variable expression levels of Jagged1, and weak to absent staining for Notch1, 4 and Delta1. Protein immunolocalization was largely membranous and cytoplasmic, sometimes outlining the lacunae of malignant chondrocytes. Hyaline cartilage demonstrated a diffuse or granular precipitation of Jagged1 suggesting presence of soluble Jagged1 activity at sites of abnormal chondrogenesis. No immunoreactivity for the other Notch members was observed. Calcified cartilage was consistently Notch-negative indicating down-regulation of Notch with cartilage maturation. Stromal components namely endothelial cells and fibroblasts variably expressed Notch1, 3 and Jagged1 but were mildly or non-reactive for the other members. Conclusions Results indicate that Notch signaling pathway may participate in cellular differentiation and proliferation in chondrosarcoma. Findings implicate Notch3 and Jagged1 as key molecules that influence the differentiation and maturation of cells of chondrogenic lineage.

  6. Promoter hypermethylation of KLF4 inactivates its tumor suppressor function in cervical carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Wen-Ting Yang

    Full Text Available OBJECTIVE: The KLF4 gene has been shown to be inactivated in cervical carcinogenesis as a tumor suppressor. However, the mechanism of KLF4 silencing in cervical carcinomas has not yet been identified. DNA methylation plays a key role in stable suppression of gene expression. METHODS: The methylation status of the KLF4 promoter CpG islands was analyzed by bisulfite sequencing (BSQ in tissues of normal cervix and cervical cancer. KLF4 gene expression was detected by RT-PCR, immunohistochemistry and western blot. KLF4 promoter methylation in cervical cancer cell line was determined by BSQ and methylation-specific polymerase chain reaction (MS-PCR. Cell proliferation ability was detected by cell growth curve and MTT assay. RESULTS: The methylated allele was found in 41.90% of 24 cervical cancer tissues but only in 11.11% of 11 normal cervix tissues (P<0.005. KLF4 mRNA levels were significantly reduced in cervical cancer tissues compared with normal cervix tissues (P<0.01 and KLF4 mRNA expression showed a significant negative correlation with the promoter hypermethylation (r = -0.486, P = 0.003. Cervical cancer cell lines also showed a significant negative correlation between KLF4 expression and hypermethylation. After treatment with the demethylating agent 5-Azacytidine (5-Aza, the expression of KLF4 in the cervical cancer cell lines at both mRNA and protein levels was drastically increased, the cell proliferation ability was inhibited and the chemosensitivity for cisplatin was significantly increased. CONCLUSION: KLF4 gene is inactivated by methylation-induced silencing mechanisms in a large subset of cervical carcinomas and KLF4 promoter hypermethylation inactivates the gene's function as a tumor suppressor in cervical carcinogenesis.

  7. Wnt3a Promotes the Vasculogenic Mimicry Formation of Colon Cancer via Wnt/β-Catenin Signaling.

    Science.gov (United States)

    Qi, Lisha; Song, Wangzhao; Liu, Zhiyong; Zhao, Xiulan; Cao, Wenfeng; Sun, Baocun

    2015-08-10

    Our previous study provided evidence that non-canonical Wnt signaling is involved in regulating vasculogenic mimicry (VM) formation. However, the functions of canonical Wnt signaling in VM formation have not yet been explored. In this study, we found the presence of VM was related to colon cancer histological differentiation (p colon cancer samples showed increased Wnt3a expression (p colon cancer cells promoted the capacity to form tube-like structures in the three-dimensional (3-D) culture together with increased expression of endothelial phenotype-associated proteins such as VEGFR2 and VE-cadherin. The mouse xenograft model showed that Wnt3a-overexpressing cells grew into larger tumor masses and formed more VM than the control cells. In addition, the Wnt/β-catenin signaling antagonist Dickkopf-1(Dkk1) can reverse the capacity to form tube-like structures and can decrease the expressions of VEGFR2 and VE-cadherin in Wnt3a-overexpressing cells. Taken together, our results suggest that Wnt/β-catenin signaling is involved in VM formation in colon cancer and might contribute to the development of more accurate treatment modalities aimed at VM.

  8. Telomerase reverse transcriptase promoter mutations in tumors originating from the adrenal gland and extra-adrenal paraganglia

    NARCIS (Netherlands)

    Papathomas, T.G.; Oudijk, L.; Zwarthoff, E.C.; Post, E.; Duijkers, F.A.; Noesel, M.M. van; Hofland, L.J.; Pollard, P.J.; Maher, E.R.; Restuccia, D.F.; Feelders, R.A.; Franssen, G.J.; Timmers, H.J.; Sleijfer, S.; Herder, W.W. de; Krijger, R.R. de; Dinjens, W.N.; Korpershoek, E.

    2014-01-01

    Hotspot mutations in the promoter of the telomerase reverse transcriptase (TERT) gene have been recently reported in human cancers and proposed as a novel mechanism of telomerase activation. To explore TERT promoter mutations in tumors originating from the adrenal gland and extra-adrenal

  9. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Chian, Song; Thapa, Ruby; Chi, Zhexu [Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Wang, Xiu Jun [Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058 (China); Tang, Xiuwen, E-mail: xiuwentang@zju.edu.cn [Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou 310058 (China)

    2014-05-16

    Highlights: • Luteolin inhibits the Nrf2 pathway in mouse liver and in xenografted tumors. • Luteolin markedly inhibits the growth of xenograft tumors. • Luteolin enhances the anti-cancer effect of cisplatin in mice in vivo. • Luteolin could serve as an adjuvant in the chemotherapy of NSCLC. - Abstract: Nuclear factor erythroid 2-related factor 2 (Nrf2) is over-expressed in many types of tumor, promotes tumor growth, and confers resistance to anticancer therapy. Hence, Nrf2 is regarded as a novel therapeutic target in cancer. Previously, we reported that luteolin is a strong inhibitor of Nrf2 in vitro. Here, we showed that luteolin reduced the constitutive expression of NAD(P)H quinone oxidoreductase 1 in mouse liver in a time- and dose-dependent manner. Further, luteolin inhibited the expression of antioxidant enzymes and glutathione transferases, decreasing the reduced glutathione in the liver of wild-type mice under both constitutive and butylated hydroxyanisole-induced conditions. In contrast, such distinct responses were not detected in Nrf2{sup −/−} mice. In addition, oral administration of luteolin, either alone or combined with intraperitoneal injection of the cytotoxic drug cisplatin, greatly inhibited the growth of xenograft tumors from non-small-cell lung cancer (NSCLC) cell line A549 cells grown subcutaneously in athymic nude mice. Cell proliferation, the expression of Nrf2, and antioxidant enzymes were all reduced in tumor xenograft tissues. Furthermore, luteolin enhanced the anti-cancer effect of cisplatin. Together, our findings demonstrated that luteolin inhibits the Nrf2 pathway in vivo and can serve as an adjuvant in the chemotherapy of NSCLC.

  10. FGF7/FGFR2 signal promotes invasion and migration in human gastric cancer through upregulation of thrombospondin-1.

    Science.gov (United States)

    Huang, Tingting; Wang, Lei; Liu, Dian; Li, Piao; Xiong, Huihua; Zhuang, Liang; Sun, Li; Yuan, Xianglin; Qiu, Hong

    2017-05-01

    Fibroblast growth factor 7 (FGF7) is a mesenchyme-specific heparin-binding growth factor that binds FGF receptor 2 (FGFR2) to regulate numerous cellular and physiological processes. FGF7/FGFR2 signal is associated with gastric cancer progression. In the present study, we investigated the molecular mechanism by which FGF7/FGFR2 promotes invasion and migration in human gastric cancer. We first demonstrated that increased FGFR2 expression in human gastric cancer tissues was significantly associated with tumor depth and clinical stage in human gastric cancer tissues. Thrombospondin 1 (THBS1) is an extracellular glycoprotein that plays multiple roles in cell-matrix and cell-cell interactions. Increased expression of THBS1 significantly correlated with tumor differentiation. FGFR2 and THBS1 expression were both increased in cancer tissues as compared with adjacent normal tissues and their expression was positively correlated. In vitro, FGF7 stimulation of cell invasion and migration was partially suppressed by the FGFR2 knockdown. In addition, FGF7/FGFR2 upregulated THBS1, and cell invasion and migration were decreased by knockdown of THBS1. Furthermore, the PI3K/Akt/mTOR signaling pathway was predominantly responsible for FGF7/FGFR2-induced THBS1 upregulation. Taken together, our data suggest that FGF7/FGFR2/THBS1 is associated with the regulation of invasion and migration in human gastric cancer.

  11. Increased ERK signalling promotes inflammatory signalling in primary airway epithelial cells expressing Z α1-antitrypsin.

    Science.gov (United States)

    van 't Wout, Emily F A; Dickens, Jennifer A; van Schadewijk, Annemarie; Haq, Imran; Kwok, Hang Fai; Ordóñez, Adriana; Murphy, Gillian; Stolk, Jan; Lomas, David A; Hiemstra, Pieter S; Marciniak, Stefan J

    2014-02-15

    Overexpression of Z α1-antitrypsin is known to induce polymer formation, prime the cells for endoplasmic reticulum stress and initiate nuclear factor kappa B (NF-κB) signalling. However, whether endogenous expression in primary bronchial epithelial cells has similar consequences remains unclear. Moreover, the mechanism of NF-κB activation has not yet been elucidated. Here, we report excessive NF-κB signalling in resting primary bronchial epithelial cells from ZZ patients compared with wild-type (MM) controls, and this appears to be mediated by mitogen-activated protein/extracellular signal-regulated kinase, EGF receptor and ADAM17 activity. Moreover, we show that rather than being a response to protein polymers, NF-κB signalling in airway-derived cells represents a loss of anti-inflammatory signalling by M α1-antitrypsin. Treatment of ZZ primary bronchial epithelial cells with purified plasma M α1-antitrypsin attenuates this inflammatory response, opening up new therapeutic options to modulate airway inflammation in the lung.

  12. Similar effects of phospholipase C and phorbol ester tumor promoters on primary mouse epidermal cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeng, A.Y.; Lichti, U.; Strickland, J.E.; Blumberg, P.M.

    1985-11-01

    Interaction of tumor promoting phorbol esters with specific high affinity receptors is probably essential for many of the biological responses elicited by these agents. Since diacylglycerols which can be produced enzymatically from phospholipids by phospholipase C are postulated to be the physiological ligands for the phorbol ester receptor, the authors have examined primary cultures of mouse epidermal basal cells exposed to phospholipase C (Clostridium perfringens) for several biological and biochemical responses characteristic of treatment with 12-O-tetradecanoyl-phorbol-13-acetate, the most potent phorbol ester tumor promoter. Formation of diacylglycerols by treatment with phospholipase C was demonstrated by the dose-dependent release of radioactive diacylglycerols in cells prelabeled with (TH)arachidonic acid. Treatment with phospholipase C led to the morphological changes and to the reduction in epidermal growth factor binding (90%) associated with 12-O-tetradecanoylphorbol-13-acetate treatment. Continuous treatment at the same dose led to the induction of the enzymes ornithine decarboxylase and transglutaminase with a time course and extent similar to the inductions by 12-O-tetradecanoylphorbol-13-acetate. Treatment with phospholipase C yielded substantial suppression of the binding affinity of phorbol-12,13-dibutyrate for its receptors without reduction in total number of binding sites, consistent with the production by phospholipase C of a competitive inhibitor of phorbol ester binding.

  13. ANALYSIS OF 2,3,7,8-TCDD TUMOR PROMOTION ACTIVITY ...

    Science.gov (United States)

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has a high estimated cancer potency in animals which has been reasoned to imply that TCDD might be carcinogenic to man. The animal cancer data show that TCDD can act in a solitary manner causing tumors without the participation of other known factors. owever, there exist animal cancer data indicating that TCDD can act as a tumor-promoting compound. This analysis examines which type of carcinogen and which mechanism best characterize TCDD cancer activity. It is suggested that TCDD acts by a hormonal mechanism to cause cancer in solitary manner, at low doses, in two species, and in a number of different organs, including rare sites. These observations in toto characterize TCDD as a complete carcinogen, which by definition encompasses both initiation and promotion carcinogenic activities. This analysis examines which type of carcinogen and which mechanism best characterize TCDD cancer activity. It is suggested that TCDD acts by a hormonal mechanism to cause cancer in solitary manner, at low doses, in two species, and in a number of different organs, including rare sites

  14. MGMT and CALCA promoter methylation are associated with poor prognosis in testicular germ cell tumor patients.

    Science.gov (United States)

    Martinelli, Camila Maria da Silva; Lengert, André van Helvoort; Cárcano, Flavio Mavignier; Silva, Eduardo Caetano Albino; Brait, Mariana; Lopes, Luiz Fernando; Vidal, Daniel Onofre

    2017-08-01

    Testicular germ cell tumors (TGCT) represent the second main cause of cancer-related death in young men. Despite high cure rates, refractory disease results in poor prognosis. Epigenetic reprogramming occurs during the development of seminomas and non-seminomas. Understanding the molecular and genetic basis of these tumors would represent an important advance in the search for new TGCT molecular markers. Hence the frequency of methylation of a gene panel (VGF, MGMT, ADAMTS1, CALCA, HOXA9, CDKN2B, CDO1 and NANOG) was evaluated in 72 primary TGCT by quantitative methylation specific PCR. A high frequency of MGMT (90.9%, 20/22; p=0.019) and CALCA (90.5%, 19/21; p<0.026) methylation was associated with non-seminomatous tumors while CALCA methylation was also associated with refractory disease (47.4%, 09/19; p=0.005). Moreover, promoter methylation of both genes predicts poor clinical outcome for TGCT patients (5-year EFS: 50.5% vs 77.1%; p=0.032 for MGMT and 51.3% vs 77.0%; p=0.029 for CALCA). The findings of this study indicate that methylation of MGMT and CALCA are frequent and could be used as new molecular markers of prognosis in TGCT.

  15. NFAT1 Directly Regulates IL8 and MMP3 to Promote Melanoma Tumor Growth and Metastasis.

    Science.gov (United States)

    Shoshan, Einav; Braeuer, Russell R; Kamiya, Takafumi; Mobley, Aaron K; Huang, Li; Vasquez, Mayra E; Velazquez-Torres, Guermarie; Chakravarti, Nitin; Ivan, Cristina; Prieto, Victor; Villares, Gabriel J; Bar-Eli, Menashe

    2016-06-01

    Nuclear factor of activated T cell (NFAT1, NFATC2) is a transcription factor that binds and positively regulates IL2 expression during T-cell activation. NFAT1 has important roles in both innate and adaptive immune responses, but its involvement in cancer is not completely understood. We previously demonstrated that NFAT1 contributes to melanoma growth and metastasis by regulating the autotaxin gene (Enpp2). Here, we report a strong correlation between NFAT1 expression and metastatic potential in melanoma cell lines and tumor specimens. To elucidate the mechanisms underlying NFAT1 overexpression during melanoma progression, we conducted a microarray on a highly metastatic melanoma cell line in which NFAT1 expression was stably silenced. We identified and validated two downstream targets of NFAT1, IL8, and MMP3. Accordingly, NFAT1 depletion in metastatic melanoma cell lines was associated with reduced IL8 and MMP3 expression, whereas NFAT1 overexpression in a weakly metastatic cell line induced expression of these targets. Restoration of NFAT1 expression recovered IL8 and MMP3 expression levels back to baseline, indicating that both are direct targets of NFAT1. Moreover, in vivo studies demonstrated that NFAT1 and MMP3 promoted melanoma tumor growth and lung metastasis. Collectively, our findings assign a new role for NFAT1 in melanoma progression, underscoring the multifaceted functions that immunomodulatory factors may acquire in an unpredictable tumor microenvironment. Cancer Res; 76(11); 3145-55. ©2016 AACR. ©2016 American Association for Cancer Research.

  16. Laser Therapy Inhibits Tumor Growth in Mice by Promoting Immune Surveillance and Vessel Normalization.

    Science.gov (United States)

    Ottaviani, Giulia; Martinelli, Valentina; Rupel, Katia; Caronni, Nicoletta; Naseem, Asma; Zandonà, Lorenzo; Perinetti, Giuseppe; Gobbo, Margherita; Di Lenarda, Roberto; Bussani, Rossana; Benvenuti, Federica; Giacca, Mauro; Biasotto, Matteo; Zacchigna, Serena

    2016-09-01

    Laser therapy, recently renamed as photobiomodulation, stands as a promising supportive treatment for oral mucositis induced by oncological therapies. However, its mechanisms of action and, more importantly, its safety in cancer patients, are still unclear. Here we explored the anti-cancer effect of 3 laser protocols, set at the most commonly used wavelengths, in B16F10 melanoma and oral carcinogenesis mouse models. While laser light increased cell metabolism in cultured cells, the in vivo outcome was reduced tumor progression. This striking, unexpected result, was paralleled by the recruitment of immune cells, in particular T lymphocytes and dendritic cells, which secreted type I interferons. Laser light also reduced the number of highly angiogenic macrophages within the tumor mass and promoted vessel normalization, an emerging strategy to control tumor progression. Collectively, these results set photobiomodulation as a safety procedure in oncological patients and open the way to its innovative use for cancer therapy. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Long non-coding RNA BCAR4 promotes chondrosarcoma cell proliferation and migration through activation of mTOR signaling pathway.

    Science.gov (United States)

    Shui, Xiaolong; Zhou, Chengwei; Lin, Wei; Yu, Yang; Feng, Yongzeng; Kong, Jianzhong

    2017-05-01

    Chondrosarcoma is one of the common malignant histologic tumors, very difficult to treat, but the concrete cause and mechanism have not yet been elucidated. The present study aimed to investigate the functional involvement of BCAR4 in chondrosarcoma and its potentially underlying mechanism. QRT-PCR and western blot were used to determine the expression of BCAR4 and mTOR signaling pathway proteins both in chondrosarcoma tissues and cells. Chondrosarcoma cell proliferation and migration were assessed by MTT assay and transwell migration assay, respectively. The expression vectors were constructed and used to modulate the expression of BCAR4 and mTOR. Chondrosarcoma xenograft mouse model was established by subcutaneous injection with chondrosarcoma cell lines. The tumor volume was monitored to evaluate the effect of BCAR4 on chondrosarcoma cell tumorigenicity. The expressions of BCAR4, p-mTOR and p-P70S6K were up-regulated in chondrosarcoma tissues and cell lines. Moreover, BCAR4 overexpression had significant promoting effect on cell proliferation and migration in chondrosarcoma cells. Furthermore, mTOR signaling pathway was epigenetically activated by BCAR4-induced hyperacetylation of histone H3. We also found that mTOR overexpression abolished the decrease of chondrosarcoma cell proliferation and migration induced by BCAR4 knockdown. In vivo experiments confirmed that BCAR4 overexpression significantly accelerated tumor growth, while the knockdown of BCAR4 significantly inhibited tumor growth. BCAR4 promoted chondrosarcoma cell proliferation and migration through activation of mTOR signaling pathway, and thus contributed to chondrosarcoma progression. Impact statement LncRNA BCAR4 promoted chondrosarcoma cell proliferation and migration through activation of mTOR signaling pathway, and thus contributed to chondrosarcoma progression.

  18. Chronic psychological stress promotes lung metastatic colonization of circulating breast cancer cells by decorating a pre-metastatic niche through activating β-adrenergic signaling.

    Science.gov (United States)

    Chen, Hongyu; Liu, Dan; Guo, Liang; Cheng, Xiang; Guo, Ning; Shi, Ming

    2017-09-22

    Numerous studies have indicated that primary tumors induce the formation of a pre-metastatic niche in distant organs by secreting tumor-derived factors. The present study shows that pre-exposure to chronic stress enhanced lung colonization efficiency by circulating tumor cells, suggesting that chronic stress critically influences pre-metastatic lungs before the arrival of disseminated tumor cells. Ablation of the sympathetic nerve function by 6-OHDA or blockage of the β-adrenergic signaling by propranolol remarkably suppressed stress-induced lung metastasis. Depletion of circulating monocytes or lung macrophages strongly abolished stress-induced lung seeding by tumor cells, whereas treatment of mice with the β-adrenergic agonist isoproterenol (ISO) during the pre-metastatic phase promoted the infiltration of macrophages to the lung. Meanwhile, the numbers of monocytes in peripheral blood, spleen, and bone marrow were remarkably increased in response to ISO stimulation. These data indicate that the β-adrenergic signaling promotes lung metastatic colonization by tumor cells through increased output of monocytes in the pre-metastatic phase and infiltration of macrophages into the pre-metastatic lung. Mechanistic studies revealed that ISO stimulation upregulated the expression of CCL2 in pulmonary stromal cells and CCR2 in monocytes/macrophages, leading to the recruitment and infiltration of macrophages into the pre-metastatic lung. By inducing a response of monocytes/macrophages driven by the CCL2/CCR2 axis, stress-related catecholamine may act as a crucial factor in regulating the pre-metastatic niche for and lung colonization by tumor cells. Our data demonstrate that disturbance of host macro-environmental homeostasis has an influence on future metastatic organs. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley

  19. Semaphorin7A promotes tumor growth and exerts a pro-angiogenic effect in macrophages of mammary tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Ramon eGarcia-Areas

    2014-02-01

    Full Text Available Semaphorins, a large family of molecules involved in the axonal guidance and development of the nervous system, have been recently shown to have both angiogenic and anti-angiogenic properties. Specifically, semaphorin 7A (SEMA7A has been reported to have a chemotactic activity in neurogenesis, and to be an immune modulator via it binding to α1β1integrins. Additionally, SEMA7A has been shown to promote chemotaxis of monocytes, inducing them to produce proinflammatory mediators. In this study we explored the role of SEMA7A in the tumoral context. We show that SEMA7A is highly expressed by DA-3 murine mammary tumor cells in comparison to normal mammary cells (EpH4, and that peritoneal macrophages from mammary tumor-bearing mice also express SEMA7A at higher levels compared to peritoneal macrophages derived from normal control mice. We also show that murine macrophages treated with recombinant murine SEMA7A significantly increased their expression of proangiogenic molecules, such as CXCL2/MIP-2. Gene silencing of SEMA7A in peritoneal elicited macrophages from DA-3 tumor-bearing mice resulted in decreased CXCL2 expression. Mice implanted with SEMA7A silenced tumor cells showed decreased angiogenesis in the tumors compared to the wild type tumors. Furthermore, peritoneal elicited macrophages from mice bearing SEMA7A-silenced tumors produce significantly (p< 0.01 lower levels of angiogenic proteins, such as MIP-2, CXCL1 and MMP-9, compared to macrophages from control DA-3 mammary tumors. We postulate that SEMA7A derived from mammary carcinomas may serve as a monocyte chemoattractant and skew monocytes into a pro-tumorigenic phenotype. A putative relationship between tumor-derived SEMA7A and monocytes could prove valuable in establishing new research avenues towards unraveling important tumor-host immune interactions in breast cancer patients.

  20. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors.

    Science.gov (United States)

    Eckel-Passow, Jeanette E; Lachance, Daniel H; Molinaro, Annette M; Walsh, Kyle M; Decker, Paul A; Sicotte, Hugues; Pekmezci, Melike; Rice, Terri; Kosel, Matt L; Smirnov, Ivan V; Sarkar, Gobinda; Caron, Alissa A; Kollmeyer, Thomas M; Praska, Corinne E; Chada, Anisha R; Halder, Chandralekha; Hansen, Helen M; McCoy, Lucie S; Bracci, Paige M; Marshall, Roxanne; Zheng, Shichun; Reis, Gerald F; Pico, Alexander R; O'Neill, Brian P; Buckner, Jan C; Giannini, Caterina; Huse, Jason T; Perry, Arie; Tihan, Tarik; Berger, Mitchell S; Chang, Susan M; Prados, Michael D; Wiemels, Joseph; Wiencke, John K; Wrensch, Margaret R; Jenkins, Robert B

    2015-06-25

    The prediction of clinical behavior, response to therapy, and outcome of infiltrative glioma is challenging. On the basis of previous studies of tumor biology, we defined five glioma molecular groups with the use of three alterations: mutations in the TERT promoter, mutations in IDH, and codeletion of chromosome arms 1p and 19q (1p/19q codeletion). We tested the hypothesis that within groups based on these features, tumors would have similar clinical variables, acquired somatic alterations, and germline variants. We scored tumors as negative or positive for each of these markers in 1087 gliomas and compared acquired alterations and patient characteristics among the five primary molecular groups. Using 11,590 controls, we assessed associations between these groups and known glioma germline variants. Among 615 grade II or III gliomas, 29% had all three alterations (i.e., were triple-positive), 5% had TERT and IDH mutations, 45% had only IDH mutations, 7% were triple-negative, and 10% had only TERT mutations; 5% had other combinations. Among 472 grade IV gliomas, less than 1% were triple-positive, 2% had TERT and IDH mutations, 7% had only IDH mutations, 17% were triple-negative, and 74% had only TERT mutations. The mean age at diagnosis was lowest (37 years) among patients who had gliomas with only IDH mutations and was highest (59 years) among patients who had gliomas with only TERT mutations. The molecular groups were independently associated with overall survival among patients with grade II or III gliomas but not among patients with grade IV gliomas. The molecular groups were associated with specific germline variants. Gliomas were classified into five principal groups on the basis of three tumor markers. The groups had different ages at onset, overall survival, and associations with germline variants, which implies that they are characterized by distinct mechanisms of pathogenesis. (Funded by the National Institutes of Health and others.).

  1. Classic Ras Proteins Promote Proliferation and Survival Via Distinct Phosphoproteome Alterations in Neurofibromin-Null Malignant Peripheral Nerve Sheath Tumor Cells

    Science.gov (United States)

    Brossier, Nicole M.; Prechtl, Amanda M.; Longo, Jody Fromm; Barnes, Stephen; Wilson, Landon S.; Byer, Stephanie J.; Brosius, Stephanie N.; Carroll, Steven L.

    2015-01-01

    Neurofibromin, the tumor suppressor encoded by the neurofibromatosis type 1 (NF1) gene, potentially suppresses the activation of H-Ras, N-Ras and K-Ras. However, it is not known whether these classic Ras proteins are hyperactivated in NF1-null nerve sheath tumors, how they contribute to tumorigenesis and what signaling pathways mediate their effects. Here we show that H-Ras, N-Ras and K-Ras are coexpressed with their activators, (guanine nucleotide exchange factors), in neurofibromin-null malignant peripheral nerve sheath tumor (MPNST) cells and that all 3 Ras proteins are activated. Dominant negative (DN) H-Ras, a pan-inhibitor of the classic Ras family, inhibited MPNST proliferation and survival, but not migration. However, NF1-null MPNST cells were variably dependent on individual Ras proteins. In some lines, ablation of H-Ras, N-Ras and/or K-Ras inhibited mitogenesis. In others, ablation of a single Ras protein had no effect on proliferation; in these lines, ablation of a single Ras protein resulted in compensatory increases in the activation and/or expression of other Ras proteins. Using mass spectrometry-based phosphoproteomics, we identified 7 signaling networks affecting morphology, proliferation and survival that are regulated by DN H-Ras. Thus, neurofibromin loss activates multiple classic Ras proteins that promote proliferation and survival by regulating several distinct signaling cascades. PMID:25946318

  2. Deficiency of thioredoxin binding protein-2 (TBP-2) enhances TGF-β signaling and promotes epithelial to mesenchymal transition.

    Science.gov (United States)

    Masaki, So; Masutani, Hiroshi; Yoshihara, Eiji; Yodoi, Junji

    2012-01-01

    Transforming growth factor beta (TGF-β) has critical roles in regulating cell growth, differentiation, apoptosis, invasion and epithelial-mesenchymal transition (EMT) of various cancer cells. TGF-β-induced EMT is an important step during carcinoma progression to invasion state. Thioredoxin binding protein-2 (TBP-2, also called Txnip or VDUP1) is downregulated in various types of human cancer, and its deficiency results in the earlier onset of cancer. However, it remains unclear how TBP-2 suppresses the invasion and metastasis of cancer. In this study, we demonstrated that TBP-2 deficiency increases the transcriptional activity in response to TGF-β and also enhances TGF-β-induced Smad2 phosphorylation levels. Knockdown of TBP-2 augmented the TGF-β-responsive expression of Snail and Slug, transcriptional factors related to TGF-β-mediated induction of EMT, and promoted TGF-β-induced spindle-like morphology consistent with the depletion of E-Cadherin in A549 cells. Our results indicate that TBP-2 deficiency enhances TGF-β signaling and promotes TGF-β-induced EMT. The control of TGF-β-induced EMT is critical for the inhibition of the invasion and metastasis. Thus TBP-2, as a novel regulatory molecule of TGF-β signaling, is likely to be a prognostic indicator or a potential therapeutic target for preventing tumor progression.

  3. Deficiency of thioredoxin binding protein-2 (TBP-2 enhances TGF-β signaling and promotes epithelial to mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    So Masaki

    Full Text Available Transforming growth factor beta (TGF-β has critical roles in regulating cell growth, differentiation, apoptosis, invasion and epithelial-mesenchymal transition (EMT of various cancer cells. TGF-β-induced EMT is an important step during carcinoma progression to invasion state. Thioredoxin binding protein-2 (TBP-2, also called Txnip or VDUP1 is downregulated in various types of human cancer, and its deficiency results in the earlier onset of cancer. However, it remains unclear how TBP-2 suppresses the invasion and metastasis of cancer.In this study, we demonstrated that TBP-2 deficiency increases the transcriptional activity in response to TGF-β and also enhances TGF-β-induced Smad2 phosphorylation levels. Knockdown of TBP-2 augmented the TGF-β-responsive expression of Snail and Slug, transcriptional factors related to TGF-β-mediated induction of EMT, and promoted TGF-β-induced spindle-like morphology consistent with the depletion of E-Cadherin in A549 cells.Our results indicate that TBP-2 deficiency enhances TGF-β signaling and promotes TGF-β-induced EMT. The control of TGF-β-induced EMT is critical for the inhibition of the invasion and metastasis. Thus TBP-2, as a novel regulatory molecule of TGF-β signaling, is likely to be a prognostic indicator or a potential therapeutic target for preventing tumor progression.

  4. Pigment epithelium-derived factor (PEDF) promotes tumor cell death by inducing macrophage membrane tumor necrosis factor-related apoptosis-inducing ligand (TRAIL).

    Science.gov (United States)

    Ho, Tsung-Chuan; Chen, Show-Li; Shih, Shou-Chuan; Chang, Shing-Jyh; Yang, Su-Lin; Hsieh, Jui-Wen; Cheng, Huey-Chuan; Chen, Lee-Jen; Tsao, Yeou-Ping

    2011-10-14

    Pigment epithelium-derived factor (PEDF) is an intrinsic anti-angiogenic factor and a potential anti-tumor agent. The tumoricidal mechanism of PEDF, however, has not been fully elucidated. Here we report that PEDF induces the apoptosis of TC-1 and SK-Hep-1 tumor cells when they are cocultured with bone marrow-derived macrophages (BMDMs). This macrophage-mediated tumor killing is prevented by blockage of TNF-related apoptosis-inducing ligand (TRAIL) following treatment with the soluble TRAIL receptor. PEDF also increases the amount of membrane-bound TRAIL on cultured mouse BMDMs and on macrophages surrounding subcutaneous tumors. PEDF-induced tumor killing and TRAIL induction are abrogated by peroxisome proliferator-activated receptor γ (PPARγ) antagonists or small interfering RNAs targeting PPARγ. PEDF also induces PPARγ in BMDMs. Furthermore, the activity of the TRAIL promoter in human macrophages is increased by PEDF stimulation. Chromatin immunoprecipitation and DNA pull-down assays confirmed that endogenous PPARγ binds to a functional PPAR-response element (PPRE) in the TRAIL promoter, and mutation of this PPRE abolishes the binding of the PPARγ-RXRα heterodimer. Also, PPARγ-dependent transactivation and PPARγ-RXRα binding to this PPRE are prevented by PPARγ antagonists. Our results provide a novel mechanism for the tumoricidal activity of PEDF, which involves tumor cell killing via PPARγ-mediated TRAIL induction in macrophages.

  5. Metformin Reduces Prostate Tumor Growth, in a Diet-Dependent Manner, by Modulating Multiple Signaling Pathways.

    Science.gov (United States)

    Sarmento-Cabral, André; L-López, Fernando; Gahete, Manuel D; Castaño, Justo P; Luque, Raúl M

    2017-07-01

    Prostate-cancer is strongly influenced by obesity, wherein metformin could represent a promising treatment; however, the endocrine metabolic/cellular/molecular mechanisms underlying these associations and effects are still unclear. To determine the beneficial antitumoral effects of metformin on prostate cancer progression/aggressiveness and the relative contribution of high-fat diet (HFD; independently of obesity), we used HFD-fed immunosuppressed mice inoculated with PC3 cells (which exhibited partial resistance to diet-induced obesity) compared with low-fat diet (LFD)-fed control mice. Moreover, gene expression analysis was performed on cancer-associated genes in the xenografted tumors, and the antitumorigenic role of metformin on tumoral (PC3/22Rv1/LNCaP) and normal (RWPE1) prostate cells was evaluated. The results demonstrate that HFD is associated with enhanced prostate cancer growth irrespective of body weight gain and endocrine metabolic dysregulations and that metformin can reduce prostate cancer growth under LFD but more prominently under HFD, acting through the modulation of several tumoral-associated processes (e.g., cell cycle, apoptosis, and/or necrosis). Moreover, the actions observed in vivo could be mediated by the modulation of the local expression of GH/IGF1 axis components. Finally, it was demonstrated that metformin had disparate effects on proliferation, migration, and prostate-specific antigen secretion from different cell lines. Altogether, these data reveal that metformin inhibits prostate cancer growth under LFD and, specially, under HFD conditions through multiple metabolic/tumoral signaling pathways. Implications: The current study linking dietary influence on metformin-regulated signaling pathways and antitumoral response provides new and critical insight on environment-host interactions in cancer and therapy. Mol Cancer Res; 15(7); 862-74. ©2017 AACR . ©2017 American Association for Cancer Research.

  6. DNA promoter methylation in breast tumors: no association with genetic polymorphisms in MTHFR and MTR.

    Science.gov (United States)

    Tao, Meng Hua; Shields, Peter G; Nie, Jing; Marian, Catalin; Ambrosone, Christine B; McCann, Susan E; Platek, Mary; Krishnan, Shiva S; Xie, Bin; Edge, Stephen B; Winston, Janet; Vito, Dominica; Trevisan, Maurizio; Freudenheim, Jo L

    2009-03-01

    Aberrant promoter methylation is recognized as an important feature of breast carcinogenesis. We hypothesized that genetic variation of genes for methylenetetrahydrofolate reductase (MTHFR) and methionine synthase (MTR), two critical enzymes in the one-carbon metabolism, may alter DNA methylation levels and thus influence DNA methylation in breast cancer. We evaluated case-control association of MTHFR C677T, A1298C, and MTR A2756G polymorphisms for cases strata-defined by promoter methylation status for each of three genes, E-cadherin, p16, and RAR-beta2 in breast cancer; in addition, we evaluated case-case comparisons of the likelihood of promoter methylation in relation to genotypes using a population-based case-control study conducted in Western New York State. Methylation was evaluated with real-time methylation-specific PCRs for 803 paraffin-embedded breast tumor tissues from women with primary, incident breast cancer. We applied unordered polytomous regression and unconditional logistic regression to derive adjusted odds ratios and 95% confidence intervals. We did not find any association of MTHFR and MTR polymorphisms with breast cancer risk stratified by methylation status nor between polymorphisms and likelihood of promoter methylation of any of the genes. There was no evidence of difference within strata defined by menopausal status, estrogen receptor status, folate intake, and lifetime alcohol consumption. Overall, we found no evidence that these common polymorphisms of the MTHFR and MTR genes are associated with promoter methylation of E-cadherin, p16, and RAR-beta2 genes in breast cancer.

  7. Sorafenib inhibits tumor growth and vascularization of rhabdomyosarcoma cells by blocking IGF-1R-mediated signaling

    Directory of Open Access Journals (Sweden)

    Wessen Maruwge

    2008-11-01

    Full Text Available Wessen Maruwge1, Pádraig D’Arcy1, Annika Folin1,2, Slavica Brnjic1, Johan Wejde1, Anthony Davis1, Fredrik Erlandsson3, Jonas Bergh1,2, Bertha Brodin11Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden; 2Radiumhemmet, Karolinska University Hospital, Stockholm, Sweden; 3Bayer Pharmaceutical Corporation, SwedenAbstract: The growth of many soft tissue sarcomas is dependent on aberrant growth factor signaling, which promotes their proliferation and motility. With this in mind, we evaluated the effect of sorafenib, a receptor tyrosine kinase inhibitor, on cell growth and apoptosis in sarcoma cell lines of various histological subtypes. We found that sorafenib effectively inhibited cell proliferation in rhabdomyosarcoma, synovial sarcoma and Ewing’s sarcoma with IC50 values <5 µM. Sorafenib effectively induced growth arrest in rhabdomyosarcoma cells, which was concurrent with inhibition of Akt and Erk signaling. Studies of ligand-induced phosphorylation of Erk and Akt in rhabdomyosarcoma cells showed that insulin-like growth factor-1 is a potent activator, which can be blocked by treatment with sorafenib. In vivo sorafenib treatment of rhabdomyosarcoma xenografts had a significant inhibitory effect on tumor growth, which was associated with inhibited vascularization and enhanced necrosis in the adjacent tumor stroma. Our results demonstrate that in vitro and in vivo growth of rhabdomyosarcoma can be suppressed by treatment with sorafenib, and suggests the possibilities of using sorafenib as a potential adjuvant therapy for the treatment of rhabdomyosarcoma.Keywords: soft tissue sarcoma, kinase inhibitors, targeted therapy, vascularization

  8. Tumor-associated endothelial cells display GSTP1 and RARβ2 promoter methylation in human prostate cancer

    Directory of Open Access Journals (Sweden)

    Pohida Thomas J

    2006-03-01

    Full Text Available Abstract Background A functional blood supply is essential for tumor growth and proliferation. However, the mechanism of blood vessel recruitment to the tumor is still poorly understood. Ideally, a thorough molecular assessment of blood vessel cells would be critical in our comprehension of this process. Yet, to date, there is little known about the molecular makeup of the endothelial cells of tumor-associated blood vessels, due in part to the difficulty of isolating a pure population of endothelial cells from the heterogeneous tissue environment. Methods Here we describe the use of a recently developed technique, Expression Microdissection, to isolate endothelial cells from the tumor microenvironment. The methylation status of the dissected samples was evaluated for GSTP1 and RARβ2 promoters via the QMS-PCR method. Results Comparing GSTP1 and RARβ2 promoter methylation data, we show that 100% and 88% methylation is detected, respectively, in the tumor areas, both in epithelium and endothelium. Little to no methylation is observed in non-tumor tissue areas. Conclusion We applied an accurate microdissection technique to isolate endothelial cells from tissues, enabling DNA analysis such as promoter methylation status. The observations suggest that epigenetic alterations may play a role in determining the phenotype of tumor-associated vasculature.

  9. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haibin; Shang, Linshan; Li, Xi; Zhang, Xiyu; Gao, Guimin; Guo, Chenhong; Chen, Bingxi; Liu, Qiji [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Gong, Yaoqin, E-mail: yxg8@sdu.edu.cn [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Shao, Changshun, E-mail: shao@biology.rutgers.edu [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Department of Genetics, Rutgers University, Piscataway, NJ 08854 (United States)

    2009-10-15

    Resveratrol has been shown to possess many health-benefiting effects, including the promotion of bone formation. In this report we investigated the mechanism by which resveratrol promotes osteoblastic differentiation from pluripotent mesenchymal cells. Since Wnt signaling is well documented to induce osteoblastogenesis and bone formation, we characterized the factors involved in Wnt signaling in response to resveratrol treatment. Resveratrol treatment of mesenchymal cells led to an increase in stabilization and nuclear accumulation of {beta}-catenin dose-dependently and time-dependently. As a consequence of the increased nuclear accumulation of {beta}-catenin, the ability to activate transcription of {beta}-catenin-TCF/LEF target genes that are required for osteoblastic differentiation was upregulated. However, resveratrol did not affect the initial step of the Wnt signaling pathway, as resveratrol was as effective in upregulating the activity of {beta}-catenin in cells in which Lrp5 was knocked down as in control cells. In addition, while conditioned medium enriched in Wnt signaling antagonist Dkk1 was able to inhibit Wnt3a-induced {beta}-catenin upregulation, this inhibitory effect can be abolished in resveratrol-treated cells. Furthermore, we showed that the level of glycogen synthase kinase 3{beta} (GSK-3{beta}), which phosphorylates and destabilizes {beta}-catenin, was reduced in response to resveratrol treatment. The phosphorylation of GSK-3{beta} requires extracellular signal-regulated kinase (ERK)1/2. Together, our data indicate that resveratrol promotes osteoblastogenesis and bone formation by augmenting Wnt signaling.

  10. HOXB13 promotes androgen independent growth of LNCaP prostate cancer cells by the activation of E2F signaling

    Directory of Open Access Journals (Sweden)

    Choi Chan

    2010-05-01

    Full Text Available Abstract Background Androgen signaling plays a critical role in the development of prostate cancer and its progression. However, androgen-independent prostate cancer cells emerge after hormone ablation therapy, resulting in significant clinical problems. We have previously demonstrated that the HOXB13 homeodomain protein functions as a prostate cancer cell growth suppressor by inhibiting androgen-mediated signals. However, the role of the HOXB13 in androgen-independent growth of prostate cancer cells remains unexplained. Results In this report, we first demonstrated that HOXB13 was highly overexpressed in hormone-refractory tumors compared to tumors without prostate-specific antigen after initial treatment. Functionally, in an androgen-free environment minimal induction of HOXB13 in LNCaP prostate cancer cells, to the level of the normal prostate, markedly promoted cell proliferation while suppression inhibited cell proliferation. The HOXB13-mediated cell growth promotion in the absence of androgen, appears to be mainly accomplished through the activation of RB-E2F signaling by inhibiting the expression of the p21waf tumor suppressor. Indeed, forced expression of HOXB13 dramatically decreased expression of p21waf; this inhibition largely affected HOXB13-mediated promotion of E2F signaling. Conclusions Taken together, the results of this study demonstrated the presence of a novel pathway that helps understand androgen-independent survival of prostate cancer cells. These findings suggest that upregulation of HOXB13 is associated with an additive growth advantage of prostate cancer cells in the absence of or low androgen concentrations, by the regulation of p21-mediated E2F signaling.

  11. Nucleolar and spindle associated protein 1 promotes the aggressiveness of astrocytoma by activating the Hedgehog signaling pathway.

    Science.gov (United States)

    Wu, Xianqiu; Xu, Benke; Yang, Chao; Wang, Wentao; Zhong, Dequan; Zhao, Zhan; He, Longshuang; Hu, Yuanjun; Jiang, Lili; Li, Jun; Song, Libing; Zhang, Wei

    2017-09-12

    The prognosis of human astrocytoma is poor, and the molecular alterations underlying its pathogenesis still needed to be elucidated. Nucleolar and spindle associated protein 1 (NUSAP1) was observed in several types of cancers, but its role in astrocytoma remained unknown. The expression of NUSAP1 in astrocytoma cell lines and tissues were measured with western blotting and Real-Time PCR. Two hundred and twenty-one astrocytoma tissue samples were analyzed by immunochemistry to demonstrate the correlation between the NUSAP1 expression and clinicopathological characteristics. 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay, colony formation, transwell matrix penetration assay, wound healing assay and anchorage-independent growth assay were used to investigate the biological effect of NUSAP1 in astrocytoma. An intracranial brain xenograft tumor model was used to confirm the oncogenic role of NUSAP1 in human astrocytoma. Luciferase reporter assay was used to investigate the effect of NUSAP1 on Hedgehog signaling pathway. NUSAP1 was markedly overexpressed in astrocytoma cell lines and tissues compared with normal astrocytes and brain tissues. NUSAP1 was found to be overexpressed in 152 of 221 (68.78%) astrocytoma tissues, and was significantly correlated to poor survival. Further, ectopic expression or knockdown of NUSAP1 significantly promoted or inhibited, respectively, the invasive ability of astrocytoma cells. Moreover, intracranial xenografts of astrocytoma cells engineered to express NUSAP1 were highly invasive compared with the parental cells. With regard to its molecular mechanism, upregulation of NUSAP1 in astrocytoma cells promoted the nuclear translocation of GLI family zinc finger 1 (GLI1) and upregulated the downstream genes of the Hedgehog pathway. These findings indicate that NUSAP1 contributes to the progression of astrocytoma by enhancing tumor cell invasiveness via activation of the Hedgehog signaling pathway, and that NUSAP1

  12. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors.

    Science.gov (United States)

    Willingham, Stephen B; Volkmer, Jens-Peter; Gentles, Andrew J; Sahoo, Debashis; Dalerba, Piero; Mitra, Siddhartha S; Wang, Jian; Contreras-Trujillo, Humberto; Martin, Robin; Cohen, Justin D; Lovelace, Patricia; Scheeren, Ferenc A; Chao, Mark P; Weiskopf, Kipp; Tang, Chad; Volkmer, Anne Kathrin; Naik, Tejaswitha J; Storm, Theresa A; Mosley, Adriane R; Edris, Badreddin; Schmid, Seraina M; Sun, Chris K; Chua, Mei-Sze; Murillo, Oihana; Rajendran, Pradeep; Cha, Adriel C; Chin, Robert K; Kim, Dongkyoon; Adorno, Maddalena; Raveh, Tal; Tseng, Diane; Jaiswal, Siddhartha; Enger, Per Øyvind; Steinberg, Gary K; Li, Gordon; So, Samuel K; Majeti, Ravindra; Harsh, Griffith R; van de Rijn, Matt; Teng, Nelson N H; Sunwoo, John B; Alizadeh, Ash A; Clarke, Michael F; Weissman, Irving L

    2012-04-24

    CD47, a "don't eat me" signal for phagocytic cells, is expressed on the surface of all human solid tumor cells. Analysis of patient tumor and matched adjacent normal (nontumor) tissue revealed that CD47 is overexpressed on cancer cells. CD47 mRNA expression levels correlated with a decreased probability of survival for multiple types of cancer. CD47 is a ligand for SIRPα, a protein expressed on macrophages and dendritic cells. In vitro, blockade of CD47 signaling using targeted monoclonal antibodies enabled macrophage phagocytosis of tumor cells that were otherwise protected. Administration of anti-CD47 antibodies inhibited tumor growth in orthotopic immunodeficient mouse xenotransplantation models established with patient tumor cells and increased the survival of the mice over time. Anti-CD47 antibody therapy initiated on larger tumors inhibited tumor growth and prevented or treated metastasis, but initiation of the therapy on smaller tumors was potentially curative. The safety and efficacy of targeting CD47 was further tested and validated in immune competent hosts using an orthotopic mouse breast cancer model. These results suggest all human solid tumor cells require CD47 expression to suppress phagocytic innate immune surveillance and elimination. These data, taken together with similar findings with other human neoplasms, show that CD47 is a commonly expressed molecule on all cancers, its function to block phagocytosis is known, and blockade of its function leads to tumor cell phagocytosis and elimination. CD47 is therefore a validated target for cancer therapies.

  13. Aberrant TGFβ/SMAD4 signaling contributes to epigenetic silencing of a putative tumor suppressor, RunX1T1, in ovarian cancer

    Science.gov (United States)

    Yang, Hui-Wen; Chou, Jian-Liang; Chen, Lin-Yu; Yeh, Chia-Ming; Chen, Yu-Hsin; Lin, Ru-Inn; Su, Her-Young; Chen, Gary CW; Deatherage, Daniel E; Huang, Yi-Wen; Yan, Pearlly S; Lin, Huey-Jen; Nephew, Kenneth P; Huang, Tim H-M; Lai, Hung-Cheng

    2011-01-01

    Aberrant TGFβ signaling pathway may alter the expression of down-stream targets and promotes ovarian carcinogenesis. However, the mechanism of this impairment is not fully understood. Our previous study identified RunX1T1 as a putative SMAD4 target in an immortalized ovarian surface epithelial cell line, IOSE. In this study, we report that transcription of RunX1T1 was confirmed to be positively regulated by SMAD4 in IOSE cells and epigenetically silenced in a panel of ovarian cancer cell lines by promoter hypermethylation and histone methylation at H3 lysine 9. SMAD4 depletion increased repressive histone modifications of RunX1T1 promoter without affecting promoter methylation in IOSE cells. Epigenetic treatment can restore RunX1T1 expression by reversing its epigenetic status in MCP 3 ovarian cancer cells. When transiently treated with a demethylating agent, the expression of RunX1T1 was partially restored in MCP 3 cells, but gradual re-silencing through promoter re-methylation was observed after the treatment. Interestingly, SMAD4 knockdown accelerated this re-silencing process, suggesting that normal TGFβ signaling is essential for the maintenance of RunX1T1 expression. In vivo analysis confirmed that hypermethylation of RunX1T1 was detected in 35.7% (34/95) of ovarian tumors with high clinical stages (p = 0.035) and in 83% (5/6) of primary ovarian cancer-initiating cells. Additionally, concurrent methylation of RunX1T1 and another SMAD4 target, FBXO32 which was previously found to be hypermethylated in ovarian cancer was observed in this same sample cohort (p cancer cell growth. Taken together, dysregulated TGFβ/SMAD4 signaling may lead to epigenetic silencing of a putative tumor suppressor, RunX1T1, during ovarian carcinogenesis. PMID:21540640

  14. Activation of Smurf E3 ligase promoted by smoothened regulates hedgehog signaling through targeting patched turnover.

    Directory of Open Access Journals (Sweden)

    Shoujun Huang

    2013-11-01

    Full Text Available Hedgehog signaling plays conserved roles in controlling embryonic development; its dysregulation has been implicated in many human diseases including cancers. Hedgehog signaling has an unusual reception system consisting of two transmembrane proteins, Patched receptor and Smoothened signal transducer. Although activation of Smoothened and its downstream signal transduction have been intensively studied, less is known about how Patched receptor is regulated, and particularly how this regulation contributes to appropriate Hedgehog signal transduction. Here we identified a novel role of Smurf E3 ligase in regulating Hedgehog signaling by controlling Patched ubiquitination and turnover. Moreover, we showed that Smurf-mediated Patched ubiquitination depends on Smo activity in wing discs. Mechanistically, we found that Smo interacts with Smurf and promotes it to mediate Patched ubiquitination by targeting the K1261 site in Ptc. The further mathematic modeling analysis reveals that a bidirectional control of activation of Smo involving Smurf and Patched is important for signal-receiving cells to precisely interpret external signals, thereby maintaining Hedgehog signaling reliability. Finally, our data revealed an evolutionarily conserved role of Smurf proteins in controlling Hh signaling by targeting Ptc during development.

  15. Osteoprotegerin mediates tumor-promoting effects of Interleukin-1beta in breast cancer cells.

    Science.gov (United States)

    Chung, Stephanie Tsang Mui; Geerts, Dirk; Roseman, Kim; Renaud, Ashleigh; Connelly, Linda

    2017-02-01

    It is widely recognized that inflammation promotes breast cancer invasion and metastasis. Given the complex nature of the breast tumor inflammatory microenvironment, much remains to be understood of the molecular mechanisms that govern these effects. We have previously shown that osteoprotegerin knockdown in breast cancer cells resulted in reduced invasion and metastasis. Here we present novel insight into the role of osteoprotegerin in inflammation-driven tumor progression in breast cancer by investigating the link between osteoprotegerin, macrophages and the potent pro-inflammatory cytokine Interleukin-1beta. We used human breast cancer cell lines to investigate the effects of Interleukin-1beta treatment on osteoprotegerin secretion as measured by ELISA. We analyzed public datasets containing human breast cancer genome-wide mRNA expression data to reveal a significant and positive correlation between osteoprotegerin mRNA expression and the mRNA expression of Interleukin-1beta and of monocyte chemoattractant protein CC-chemokine ligand 2. Osteoprotegerin, Interleukin-1beta and CC-chemokine ligand 2 mRNA levels were also examined by qPCR on cDNA from normal and cancerous human breast tissue. We determined the effect of Interleukin-1beta-producing macrophages on osteoprotegerin expression by co-culturing breast cancer cells and differentiated THP-1 macrophages. Immunohistochemistry was performed on human breast tumor tissue microarrays to assess macrophage infiltration and osteoprotegerin expression. To demonstrate that osteoprotegerin mediated functional effects of Interleukin-1beta we performed cell invasion studies with control and OPG siRNA knockdown on Interleukin-1beta-treated breast cancer cells. We report that Interleukin-1beta induces osteoprotegerin secretion, independent of breast cancer subtype and basal osteoprotegerin levels. Co-culture of breast cancer cells with Interleukin-1beta-secreting macrophages resulted in a similar increase in osteoprotegerin

  16. Short-term in vitro and in vivo analyses for assessing the tumor-promoting potentials of cigarette smoke condensates.

    Science.gov (United States)

    Curtin, Geoffrey M; Hanausek, Margaret; Walaszek, Zbigniew; Mosberg, Arnold T; Slaga, Thomas J

    2004-09-01

    Previous studies found that repeated application of smoke condensate from tobacco-burning reference cigarettes to chemically initiated SENCAR mouse skin promoted the development of tumors in a statistically significant and dose-dependent manner, while condensate from prototype cigarettes that primarily heat tobacco promoted statistically fewer tumors. Based on the recognized correlation between sustained, potentiated epidermal hyperplasia and tumor promotion, we conducted tests to examine the utility of selected short-term analyses for discriminating between condensates exhibiting significantly different promotion activities. In vitro analyses assessing the potential for inducing cytotoxicity (ATP bioluminescence) or free radical production (cytochrome c reduction, salicylate trapping) demonstrated significant reductions when comparing condensate collected from prototype cigarettes to reference condensate. Short-term in vivo analyses conducted within the context of a mouse skin, tumor-promotion protocol (i.e., comparative measures of epidermal thickness, proliferative index, myeloperoxidase activity, leukocyte invasion, mutation of Ha-ras, and formation of modified DNA bases) provided similar results. Reference condensate induced statistically significant and dose-dependent increases (relative to vehicle control) for nearly all indices examined, while prototype condensate possessed a significantly reduced potential for inducing changes that we regarded as consistent with sustained epidermal hyperplasia and/or inflammation. Collectively, these data support the contention that selected short-term analyses associated with sustained hyperplasia and/or inflammation are capable of discriminating between smoke condensates with dissimilar tumor-promotion potentials. Moreover, our results suggest that comparative measures of proliferative index and myeloperoxidase activity, both possessing favorable correlation coefficients relative to tumor formation (i.e., > or = 0

  17. Oncogenic signaling by Kit tyrosine kinase occurs selectively on the Golgi apparatus in gastrointestinal stromal tumors.

    Science.gov (United States)

    Obata, Y; Horikawa, K; Takahashi, T; Akieda, Y; Tsujimoto, M; Fletcher, J A; Esumi, H; Nishida, T; Abe, R

    2017-06-29

    Gastrointestinal stromal tumors (GISTs) are caused by gain-of-function mutations in the Kit receptor tyrosine kinase. Most primary GIST patients respond to the Kit inhibitor imatinib, but this drug often becomes ineffective because of secondary mutations in the Kit kinase domain. The characteristic intracellular accumulation of imatinib-sensitive and -resistant Kit protein is well documented, but its relationship to oncogenic signaling remains unknown. Here, we show that in cancer tissue from primary GIST patients as well as in cell lines, mutant Kit accumulates on the Golgi apparatus, whereas normal Kit localizes to the plasma membrane (PM). In imatinib-resistant GIST with a secondary Kit mutation, Kit localizes predominantly on the Golgi apparatus. Both imatinib-sensitive and imatinib-resistant Kit (Kit(mut)) become fully auto-phosphorylated only on the Golgi and only if in a complex-glycosylated form. Kit(mut) accumulates on the Golgi during the early secretory pathway, but not after endocytosis. The aberrant kinase activity of Kit(mut) prevents its export from the Golgi to the PM. Furthermore, Kit(mut) on the Golgi signals and activates the phosphatidylinositol 3-kinase-Akt (PI3K-Akt) pathway, signal transducer and activator of transcription 5 (STAT5), and the Mek-Erk pathway. Blocking the biosynthetic transport of Kit(mut) to the Golgi from the endoplasmic reticulum inhibits oncogenic signaling. PM localization of Kit(mut) is not required for its signaling. Activation of Src-family tyrosine kinases on the Golgi is essential for oncogenic Kit signaling. These results suggest that the Golgi apparatus serves as a platform for oncogenic Kit signaling. Our study demonstrates that Kit(mut)'s pathogenicity is related to its mis-localization, and may offer a new strategy for treating imatinib-resistant GISTs.

  18. Hypermethylation of CDH13, DKK3 and FOXL2 promoters and the expression of EZH2 in ovary granulosa cell tumors.

    Science.gov (United States)

    Xu, Yanmei; Li, Xia; Wang, Hongtao; Xie, Pengmu; Yan, Xun; Bai, Yu; Zhang, Tingguo

    2016-09-01

    Aberrant epigenetic modification is associated with the development and progression of cancer. Hypermethylation of tumor suppressor gene promoters and cooperative histone modification have been considered to be the primary mechanisms of epigenetic modification. Ovary granulosa cell tumors (GCTs) are relatively rare, accounting for ~3% of all ovarian malignancies. The present study assessed hypermethylation of the cadherin 13 (CDH13), dickkopf WNT signaling pathway inhibitor 3 (DKK3) and forkhead box L2 (FOXL2) promoters in 30 GCT tissues and 30 healthy control tissues using methylation-specific polymerase chain reaction analysis. The data showed that the frequencies of CDH13, DKK3 and FOXL2 promoter methylation were significantly higher in the GCT tissues, compared with the healthy control tissues (86.67, vs. 23.33%; 80, vs. 26.67% and 66.67, vs. 20%, respectively; P<0.001). Immunostaining of enhancer of zeste homolog 2 (EZH2), a histone H3K27 methyltransferase, showed that the EZH2 protein was expressed in 11 of the 30 GCT tissue samples, whereas no EZH2 protein was expressed in the 30 healthy control tissues (P<0.01). These data suggested that hypermethylation of the CDH13, DKK3 and FOXL2 gene promoters, and overexpression of the EZH2 protein were involved in the development of GCT.

  19. Scribbled Optimizes BMP Signaling through Its Receptor Internalization to the Rab5 Endosome and Promote Robust Epithelial Morphogenesis.

    Science.gov (United States)

    Gui, Jinghua; Huang, Yunxian; Shimmi, Osamu

    2016-11-01

    Epithelial cells are characterized by apical-basal polarity. Intrinsic factors underlying apical-basal polarity are crucial for tissue homeostasis and have often been identified to be tumor suppressors. Patterning and differentiation of epithelia are key processes of epithelial morphogenesis and are frequently regulated by highly conserved extrinsic factors. However, due to the complexity of morphogenesis, the mechanisms of precise interpretation of signal transduction as well as spatiotemporal control of extrinsic cues during dynamic morphogenesis remain poorly understood. Wing posterior crossvein (PCV) formation in Drosophila serves as a unique model to address how epithelial morphogenesis is regulated by secreted growth factors. Decapentaplegic (Dpp), a conserved bone morphogenetic protein (BMP)-type ligand, is directionally trafficked from longitudinal veins (LVs) into the PCV region for patterning and differentiation. Our data reveal that the basolateral determinant Scribbled (Scrib) is required for PCV formation through optimizing BMP signaling. Scrib regulates BMP-type I receptor Thickveins (Tkv) localization at the basolateral region of PCV cells and subsequently facilitates Tkv internalization to Rab5 endosomes, where Tkv is active. BMP signaling also up-regulates scrib transcription in the pupal wing to form a positive feedback loop. Our data reveal a unique mechanism in which intrinsic polarity genes and extrinsic cues are coupled to promote robust morphogenesis.

  20. Scribbled Optimizes BMP Signaling through Its Receptor Internalization to the Rab5 Endosome and Promote Robust Epithelial Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Jinghua Gui

    2016-11-01

    Full Text Available Epithelial cells are characterized by apical-basal polarity. Intrinsic factors underlying apical-basal polarity are crucial for tissue homeostasis and have often been identified to be tumor suppressors. Patterning and differentiation of epithelia are key processes of epithelial morphogenesis and are frequently regulated by highly conserved extrinsic factors. However, due to the complexity of morphogenesis, the mechanisms of precise interpretation of signal transduction as well as spatiotemporal control of extrinsic cues during dynamic morphogenesis remain poorly understood. Wing posterior crossvein (PCV formation in Drosophila serves as a unique model to address how epithelial morphogenesis is regulated by secreted growth factors. Decapentaplegic (Dpp, a conserved bone morphogenetic protein (BMP-type ligand, is directionally trafficked from longitudinal veins (LVs into the PCV region for patterning and differentiation. Our data reveal that the basolateral determinant Scribbled (Scrib is required for PCV formation through optimizing BMP signaling. Scrib regulates BMP-type I receptor Thickveins (Tkv localization at the basolateral region of PCV cells and subsequently facilitates Tkv internalization to Rab5 endosomes, where Tkv is active. BMP signaling also up-regulates scrib transcription in the pupal wing to form a positive feedback loop. Our data reveal a unique mechanism in which intrinsic polarity genes and extrinsic cues are coupled to promote robust morphogenesis.

  1. Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling

    Directory of Open Access Journals (Sweden)

    Grusche Felix A

    2011-09-01

    Full Text Available Abstract Background Epithelial neoplasias are associated with alterations in cell polarity and excessive cell proliferation, yet how these neoplastic properties are related to one another is still poorly understood. The study of Drosophila genes that function as neoplastic tumor suppressors by regulating both of these properties has significant potential to clarify this relationship. Results Here we show in Drosophila that loss of Scribbled (Scrib, a cell polarity regulator and neoplastic tumor suppressor, results in impaired Hippo pathway signaling in the epithelial tissues of both the eye and wing imaginal disc. scrib mutant tissue overgrowth, but not the loss of cell polarity, is dependent upon defective Hippo signaling and can be rescued by knockdown of either the TEAD/TEF family transcription factor Scalloped or the transcriptional coactivator Yorkie in the eye disc, or reducing levels of Yorkie in the wing disc. Furthermore, loss of Scrib sensitizes tissue to transformation by oncogenic Ras-Raf signaling, and Yorkie-Scalloped activity is required to promote this cooperative tumor overgrowth. The inhibition of Hippo signaling in scrib mutant eye disc clones is not dependent upon JNK activity, but can be significantly rescued by reducing aPKC kinase activity, and ectopic aPKC activity is sufficient to impair Hippo signaling in the eye disc, even when JNK signaling is blocked. In contrast, warts mutant overgrowth does not require aPKC activity. Moreover, reducing endogenous levels of aPKC or increasing Scrib or Lethal giant larvae levels does not promote increased Hippo signaling, suggesting that aPKC activity is not normally rate limiting for Hippo pathway activity. Epistasis experiments suggest that Hippo pathway inhibition in scrib mutants occurs, at least in part, downstream or in parallel to both the Expanded and Fat arms of Hippo pathway regulation. Conclusions Loss of Scrib promotes Yorkie/Scalloped-dependent epithelial tissue

  2. Gram-negative bacteria facilitate tumor outgrowth and metastasis by promoting lipid synthesis in lung cancer patients

    Science.gov (United States)

    Ye, Maosong; Gu, Xia; Han, Yang

    2016-01-01

    Background Lung cancer is the leading cause of cancer-related death worldwide. Patients with lung cancer are very frequently present with pulmonary infections, in particular with Gram-negative bacteria. Herein, we investigated the effect of the co-presence of Gram-negative bacteria on outgrowth and metastasis of lung cancer cells in clinical patients. Methods Lung cancer cells were isolated from clinical surgical tissues. Heat-inactivated E. coli was used as Gram-negative bacteria. Tumor outgrowth and invasion in vitro was analyzed with MTT assay and Biocoat Matrigel Invasion Chamber. Tumor growth and metastasis in vivo was evaluated in BALB/c nude mice. Lipid synthesis was evidenced by expressions of FASN and ACC1, as well as BODIPY Fluorophores staining. Block lipid synthesis was performed with C75 as a FAS inhibitor and transfection with ACC1 siRNA. Knockdown of TLR4 and TLR9 signaling was achieved by transfection with specific shRNAs and administration of specific antagonists. Results Gram-negative bacteria significantly promoted lung cancer development including growth and metastasis in dose dependent manner. Mechanistically, Gram-negative bacteria activate TLR4 and TLR9 signaling and enhance lipid synthesis in human lung cancer cells. Knockdown of TLR4 and/or TLR9 was able to block Gram-negative bacteria mediated lipid synthesis and lung cancer development. Interference with lipid synthesis efficiently abrogated Gram-negative-bacteria-induced lung cancer development. In lung cancer patients, higher expressions of innate immune receptors, TLR4 and TLR9, were observed in those with Gram-negative infections and associated with the aberrant lipid synthesis that was observed in vitro. Conclusions Pulmonary infections with Gram-negative bacteria lead to aberrant lipid synthesis through TLR4 and TLR9 signaling in lung cancer patients and result in rapid proliferation and metastasis of lung cancer cells. These findings reveal a new mechanism for pulmonary infection

  3. Gram-negative bacteria facilitate tumor outgrowth and metastasis by promoting lipid synthesis in lung cancer patients.

    Science.gov (United States)

    Ye, Maosong; Gu, Xia; Han, Yang; Jin, Meiling; Ren, Tao

    2016-08-01

    Lung cancer is the leading cause of cancer-related death worldwide. Patients with lung cancer are very frequently present with pulmonary infections, in particular with Gram-negative bacteria. Herein, we investigated the effect of the co-presence of Gram-negative bacteria on outgrowth and metastasis of lung cancer cells in clinical patients. Lung cancer cells were isolated from clinical surgical tissues. Heat-inactivated E. coli was used as Gram-negative bacteria. Tumor outgrowth and invasion in vitro was analyzed with MTT assay and Biocoat Matrigel Invasion Chamber. Tumor growth and metastasis in vivo was evaluated in BALB/c nude mice. Lipid synthesis was evidenced by expressions of FASN and ACC1, as well as BODIPY Fluorophores staining. Block lipid synthesis was performed with C75 as a FAS inhibitor and transfection with ACC1 siRNA. Knockdown of TLR4 and TLR9 signaling was achieved by transfection with specific shRNAs and administration of specific antagonists. Gram-negative bacteria significantly promoted lung cancer development including growth and metastasis in dose dependent manner. Mechanistically, Gram-negative bacteria activate TLR4 and TLR9 signaling and enhance lipid synthesis in human lung cancer cells. Knockdown of TLR4 and/or TLR9 was able to block Gram-negative bacteria mediated lipid synthesis and lung cancer development. Interference with lipid synthesis efficiently abrogated Gram-negative-bacteria-induced lung cancer development. In lung cancer patients, higher expressions of innate immune receptors, TLR4 and TLR9, were observed in those with Gram-negative infections and associated with the aberrant lipid synthesis that was observed in vitro. Pulmonary infections with Gram-negative bacteria lead to aberrant lipid synthesis through TLR4 and TLR9 signaling in lung cancer patients and result in rapid proliferation and metastasis of lung cancer cells. These findings reveal a new mechanism for pulmonary infection-trigged caner development and provide

  4. Partial promoter substitutions generating transcriptional sentinels of diverse signaling pathways in embryonic stem cells and mice

    Science.gov (United States)

    Serup, Palle; Gustavsen, Carsten; Klein, Tino; Potter, Leah A.; Lin, Robert; Mullapudi, Nandita; Wandzioch, Ewa; Hines, Angela; Davis, Ashley; Bruun, Christine; Engberg, Nina; Petersen, Dorthe R.; Peterslund, Janny M. L.; MacDonald, Raymond J.; Grapin-Botton, Anne; Magnuson, Mark A.; Zaret, Kenneth S.

    2012-01-01

    SUMMARY Extracellular signals in development, physiology, homeostasis and disease often act by regulating transcription. Herein we describe a general method and specific resources for determining where and when such signaling occurs in live animals and for systematically comparing the timing and extent of different signals in different cellular contexts. We used recombinase-mediated cassette exchange (RMCE) to test the effect of successively deleting conserved genomic regions of the ubiquitously active Rosa26 promoter and substituting the deleted regions for regulatory sequences that respond to diverse extracellular signals. We thereby created an allelic series of embryonic stem cells and mice, each containing a signal-responsive sentinel with different fluorescent reporters that respond with sensitivity and specificity to retinoic acids, bone morphogenic proteins, activin A, Wnts or Notch, and that can be adapted to any pathway that acts via DNA elements. PMID:22888097

  5. Cycling Hypoxia Induces a Specific Amplified Inflammatory Phenotype in Endothelial Cells and Enhances Tumor-Promoting Inflammation In Vivo12

    Science.gov (United States)

    Tellier, Céline; Desmet, Déborah; Petit, Laurenne; Finet, Laure; Graux, Carlos; Raes, Martine; Feron, Olivier; Michiels, Carine

    2015-01-01

    Abnormal architecture of the tumor blood network, as well as heterogeneous erythrocyte flow, leads to temporal fluctuations in tissue oxygen tension exposing tumor and stromal cells to cycling hypoxia. Inflammation is another feature of tumor microenvironment and is considered as a new enabling characteristic of tumor progression. As cycling hypoxia is known to participate in tumor aggressiveness, the purpose of this study was to evaluate its role in tumor-promoting inflammation. Firstly, we assessed the impact of cycling hypoxia in vitro on endothelial inflammatory response induced by tumor necrosis factor α. Results showed that endothelial cells exposed to cycling hypoxia displayed an amplified proinflammatory phenotype, characterized by an increased expression of inflammatory cytokines, namely, interleukin (IL)-6 and IL-8; by an increased expression of adhesion molecules, in particular intercellular adhesion molecule–1 (ICAM-1); and consequently by an increase in THP-1 monocyte adhesion. This exacerbation of endothelial inflammatory phenotype occurs through nuclear factor–κB overactivation. Secondly, the role of cycling hypoxia was studied on overall tumor inflammation in vivo in tumor-bearing mice. Results showed that cycling hypoxia led to an enhanced inflammation in tumors as prostaglandin-endoperoxide synthase 2 (PTGS2), IL-6, CXCL1 (C-X-C motif ligand 1), and macrophage inflammatory protein 2 (murine IL-8 functional homologs) mRNA expression was increased and as a higher leukocyte infiltration was evidenced. Furthermore, cycling hypoxia–specific inflammatory phenotype, characterized by a simultaneous (baculoviral inhibitor of apoptosis repeat-containing 5)low/PTGS2high/ICAM-1high/IL-6high/IL-8high expression, is associated with a poor prognosis in human colon cancer. This new phenotype could thus be used in clinic to more precisely define prognosis for colon cancer patients. In conclusion, our findings evidenced for the first time the involvement of

  6. Epigenetic silencing of the NR4A3 tumor suppressor, by aberrant JAK/STAT signaling, predicts prognosis in gastric cancer

    Science.gov (United States)

    Yeh, Chung-Min; Chang, Liang-Yu; Lin, Shu-Hui; Chou, Jian-Liang; Hsieh, Hsiao-Yen; Zeng, Li-Han; Chuang, Sheng-Yu; Wang, Hsiao-Wen; Dittner, Claudia; Lin, Cheng-Yu; Lin, Jora M. J.; Huang, Yao-Ting; Ng, Enders K. W.; Cheng, Alfred S. L.; Wu, Shu-Fen; Lin, Jiayuh; Yeh, Kun-Tu; Chan, Michael W. Y.

    2016-08-01

    While aberrant JAK/STAT signaling is crucial to the development of gastric cancer (GC), its effects on epigenetic alterations of its transcriptional targets remains unclear. In this study, by expression microarrays coupled with bioinformatic analyses, we identified a putative STAT3 target gene, NR4A3 that was downregulated in MKN28 GC daughter cells overexpressing a constitutively activated STAT3 mutant (S16), as compared to an empty vector control (C9). Bisulphite pyrosequencing and demethylation treatment showed that NR4A3 was epigenetically silenced by promoter DNA methylation in S16 and other GC cell lines including AGS cells, showing constitutive activation of STAT3. Subsequent experiments revealed that NR4A3 promoter binding by STAT3 might repress its transcription. Long-term depletion of STAT3 derepressed NR4A3 expression, by promoter demethylation, in AGS GC cells. NR4A3 re-expression in GC cell lines sensitized the cells to cisplatin, and inhibited tumor growth in vitro and in vivo, in an animal model. Clinically, GC patients with high NR4A3 methylation, or lower NR4A3 protein expression, had significantly shorter overall survival. Intriguingly, STAT3 activation significantly associated only with NR4A3 methylation in low-stage patient samples. Taken together, aberrant JAK/STAT3 signaling epigenetically silences a potential tumor suppressor, NR4A3, in gastric cancer, plausibly representing a reliable biomarker for gastric cancer prognosis.

  7. CXCL1-Mediated Interaction of Cancer Cells with Tumor-Associated Macrophages and Cancer-Associated Fibroblasts Promotes Tumor Progression in Human Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Makito Miyake

    2016-10-01

    Full Text Available Tumor-associated macrophages (TAMs and cancer-associated fibroblasts (CAFs are reported to be associated with poor prognosis, depending on their pro-tumoral roles. Current knowledge of TAMs and CAFs in the tumor microenvironment of urothelial cancer of the bladder (UCB is limited. Therefore, we investigated the paracrine effect induced by TAMs and CAFs in the tumor microenvironment of human UCB. For this, we first carried out immunohistochemical analysis for CXCL1, CD204 (TAM marker, αSMA (CAF marker, E-cadherin, and MMP2 using 155 UBC tissue samples. Next, CXCL1-overexpressing clones of THP-1-derived TAMs and NIH3T3-derived CAFs were developed by lentiviral vector infection. The immunohistochemical study showed high CXCL1 levels in UCB cells to be associated with enhanced recruitment of TAMs/CAFs, higher metastatic potential, and poor prognosis. Three-dimensional (3D co-culture of UCB cells and TAMs/CAFs suggested that CXCL1 production in TAMs/CAFs play an important role in cell-to-cell adhesion and interaction among cancer cells and these stromal cells. CXCL1-expressing TAMs/CAFs enhanced tumor growth of subcutaneous UCB tumors in nude mice when injected together. In addition, an experiment using the orthotopic bladder cancer model revealed that CXCL1 production in TAMs/CAFs supported tumor implantation into the murine bladder wall and UCB growth when injected together, which was confirmed by clinical data of patients with bladder cancer. Thus, CXCL1 signaling in the tumor microenvironment is highly responsible for repeated intravesical recurrence, disease progression, and drug resistance through enhanced invasion ability. In conclusion, disrupting CXCL1 signaling to dysregulate this chemokine is a promising therapeutic approach for human UCB.

  8. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function

    Energy Technology Data Exchange (ETDEWEB)

    Sangsuwan, Jiraporn [Department of Molecular Biology and Bioinformatics, Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn [Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand)

    2015-09-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC + TCTP, BIO-GIC and BIO-GIC + TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC + TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC + TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC + TCTP can promote osteoblast cells proliferation, differentiation and function. - Highlights: • Developed a new GIC by supplementing TCTP in BIO-GIC (GIC with chitosan and albumin) • BIO-GIC + TCTP released a higher amount of TCTP than GIC + TCTP. • BIO-GIC + TCTP promoted cell proliferation higher than other specimens and control. • BIO-GIC + TCTP promoted osteoblasts differentiation and function.

  9. miR-942 promotes cancer stem cell-like traits in esophageal squamous cell carcinoma through activation of Wnt/β-catenin signalling pathway.

    Science.gov (United States)

    Ge, Chunlei; Wu, Shikai; Wang, Weiwei; Liu, Zhimin; Zhang, Jianhua; Wang, Zhenyu; Li, Ruilei; Zhang, Zhiwei; Li, Zhen; Dong, Suwei; Wang, Ying; Xue, Yuanbo; Yang, Jinyan; Tan, Qinghua; Wang, Ziping; Song, Xin

    2015-05-10

    The Wnt/β-catenin signalling pathway is known to play a vital role in the maintenance of cancer stem cells (CSCs), which are reported to be the origin of malignant cancers, and result in poor prognosis of multiple kinds of cancer. Therefore, it is of great importance to illuminate the mechanism by which the Wnt/β-catenin pathway regulates the cancer stem cell-like traits in cancers. Here, we report that miR-942 is significantly upregulated in esophageal squamous cell carcinoma (ESCC), and miR-942 levels are associated with poor prognosis in ESCC patients. Overexpression of miR-942 promotes, whereas inhibition of miR-942 decreases, the tumor sphere formation, the CD90+ subpopulation cells and the expression of pluripotency associated markers. Moreover, in vivo assay shows that miR-942 overexpressing cells form larger tumors and display higher tumourigenesis. Furthermore, we demonstrate that miR-942 upregulates the Wnt/β-catenin signaling activity via directly targeting sFRP4, GSK3β and TLE1, which are multiple level negative regulators of the Wnt/β-catenin signaling cascade. In addition, our results indicate that c-myc directly binds to the miR-942 promoter and promotes its expression. Taken together, our findings establish an oncogenic role of miR-942 in ESCC and indicate that miR-942 might be an effective therapeutic target for ESCC.

  10. Estrogen and cigarette sidestream smoke particulate matter exhibit ERα-dependent tumor-promoting effects in lung adenocarcinoma cells.

    Science.gov (United States)

    Kuo, Lun-Cheng; Cheng, Li-Chuan; Lee, Chia-Huei; Lin, Chun-Ju; Chen, Pei-Yu; Li, Lih-Ann

    2017-09-01

    Estrogen and secondhand smoke are key risk factors for nonsmoking female lung cancer patients who frequently have lung adenocarcinoma and show tumor estrogen receptor α (ERα) expression. We speculated that estrogen and secondhand smoke might cause harmful effects via ERα signaling. Our results showed that 17β-estradiol (E2), the primary form of endogenous estrogen, exacerbated proliferation, migration, and granzyme B resistance of lung adenocarcinoma cells in an ERα-dependent manner. Cigarette sidestream smoke particulate matter (CSSP), the major component of secondhand smoke, could activate ERα activity dose dependently in human lung adenocarcinoma cells. The estrogenic activity of CSSP was abolished by an ERα-selective antagonist. CSSP regulated the nuclear entry, phosphorylation, and turnover of ERα similarly to E2. Furthermore, CSSP enhanced E2-stimulated ERα activity and Ser118 phosphorylation even when ERα became saturated with E2. Activation of ERα by CSSP required GSK3β activity, but not involving polycyclic aromatic hydrocarbons, reactive oxygen species, calcium, epidermal growth factor receptor, and PI3K/Akt. Although CSSP possessed cytotoxicity, ERα-expressing cells grew and migrated faster than nonexpressing cells on recovery from CSSP exposure as observed in E2-pretreated cells. Knockdown of ERα by siRNA diminished E2- and CSSP-stimulated cell migration. Twenty-one genes, including SERPINB9, were identified to be upregulated by both E2 and CSSP via ERα. Increased SERPINB9 expression was accompanied with increased resistance to granzyme B-mediated apoptosis. This study demonstrates that estrogen has ERα-dependent tumor-promoting activity. CSSP acts like estrogen and shows a potential to enhance estrogen-induced ERα action. Copyright © 2017 the American Physiological Society.

  11. In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions.

    Directory of Open Access Journals (Sweden)

    Flora Rey-Giraud

    Full Text Available The tumor promoting role of M2 macrophages has been described in in vivo models and the presence of macrophages in certain tumor types has been linked to a poor clinical outcome. In light of burgeoning activities to clinically develop new therapies targeting tumor-associated macrophages (TAMs, reliable in vitro models faithfully mimicking the tumor promoting functions of TAMs are required. Generation and activation of human monocyte-derived macrophages (MDM in vitro, described as M1 or M2 macrophages attributed with tumoricidal or tumor-promoting functions, respectively, has been widely reported using mainly serum containing culture methods. In this study, we compared the properties of macrophages originating from monocytes cultured either in media containing serum together with M-CSF for M2 and GM-CSF for M1 macrophages or in serum-free media supplemented with M-CSF or GM-CSF and cytokines such as IL-4, IL-10 to induce activated M2 or LPS together with IFN-γ to generate activated M1 phenotype. We observed differences in cell morphology as well as increased surface receptor expression levels in serum-containing culture whereas similar or higher cytokine production levels were detected under serum-free culture conditions. More importantly, MDM differentiated under serum-free conditions displayed enhanced tumoricidal activity for M1 and tumor promoting property for M2 macrophages in contrast to MDM differentiated in the presence of serum. Moreover, evaluation of MDM phagocytic activity in serum free condition resulted in greater phagocytic properties of M2 compared to M1. Our data therefore confirm the tumor promoting properties of M2 macrophages in vitro and encourage the targeting of TAMs for cancer therapy.

  12. Caffeine promotes anti-tumor immune response during tumor initiation: Involvement of the adenosine A2A receptor.

    Science.gov (United States)

    Eini, Hadar; Frishman, Valeria; Yulzari, Robert; Kachko, Leonid; Lewis, Eli C; Chaimovitz, Cidio; Douvdevani, Amos

    2015-11-01

    Epidemiologic studies depict a negative correlation between caffeine consumption and incidence of tumors in humans. The main pharmacological effects of caffeine are mediated by antagonism of the adenosine receptor, A2AR. Here, we examine whether the targeting of A2AR by caffeine plays a role in anti-tumor immunity. In particular, the effects of caffeine are studied in wild-type and A2AR knockout (A2AR(-/-)) mice. Tumor induction was achieved using the carcinogen 3-methylcholanthrene (3-MCA). Alternatively, tumor cells, comprised of 3-MCA-induced transformed cells or B16 melanoma cells, were inoculated into animal footpads. Cytokine release was determined in a mixed lymphocyte tumor reaction (MLTR). According to our findings, caffeine-consuming mice (0.1% in water) developed tumors at a lower rate compared to water-consuming mice (14% vs. 53%, respectively, p=0.0286, n=15/group). Within the caffeine-consuming mice, tumor-free mice displayed signs of autoimmune alopecia and pronounced leukocyte recruitment intocarcinogen injection sites. Similarly, A2AR(-/-) mice exhibited reduced rates of 3-MCA-induced tumors. In tumor inoculation studies, caffeine treatment resulted in inhibition of tumor growth and elevation in proinflammatory cytokine release over water-consuming mice, as depicted by MLTR. Addition of the adenosine receptor agonist, NECA, to MLTR resulted in a sharp decrease in IFNγ levels; this was reversed by the highly selective A2AR antagonist, ZM241385. Thus, immune response modulation through either caffeine or genetic deletion of A2AR leads to a Th1 immune profile and suppression of carcinogen-induced tumorigenesis. Taken together, our data suggest that the use of pharmacologic A2AR antagonists may hold therapeutic potential in diminishing the rate of cancer development. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Early T cell signalling is reversibly altered in PD-1+ T lymphocytes infiltrating human tumors.

    Directory of Open Access Journals (Sweden)

    Shu-Fang Wang

    Full Text Available To improve cancer immunotherapy, a better understanding of the weak efficiency of tumor-infiltrating T lymphocytes (TIL is necessary. We have analyzed the functional state of human TIL immediately after resection of three types of tumors (NSCLC, melanoma and RCC. Several signalling pathways (calcium, phosphorylation of ERK and Akt and cytokine secretion are affected to different extents in TIL, and show a partial spontaneous recovery within a few hours in culture. The global result is an anergy that is quite distinct from clonal anergy induced in vitro, and closer to adaptive tolerance in mice. PD-1 (programmed death -1 is systematically expressed by TIL and may contribute to their anergy by its mere expression, and not only when it interacts with its ligands PD-L1 or PD-L2, which are not expressed by every tumor. Indeed, the TCR-induced calcium and ERK responses were reduced in peripheral blood T cells transfected with PD-1. Inhibition by sodium stibogluconate of the SHP-1 and SHP-2 phosphatases that associate with several inhibitory receptors including PD-1, relieves part of the anergy apparent in TIL or in PD-1-transfected T cells. This work highlights some of the molecular modifications contributing to functional defects of human TIL.

  14. Long Noncoding RNA AFAP1-AS1 Promoted Tumor Growth and Invasion in Cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Xu Lu

    2017-05-01

    Full Text Available Background: Long non-coding RNAs (lncRNAs have been shown to play important roles in a wide range of pathophysiological processes, including cancer progression. Our previous study has shown that AFAP1-AS1 was upregulated and acted as an oncogene in hepatocellular carcinoma. However, the expression and biological functions of lncRNA AFAP1-AS1 in intrahepatic cholangiocarcinoma (CCA remains largely unknown. Methods: The expression level of AFAP1-AS1 was measured in 56 pairs of human cholangiocarcinoma tumor tissues and corresponding adjacent normal bile duct tissues. The correlation between AFAP1-AS1 and the clinicopathological features were evaluated by chi-square test. The effects of AFAP1-AS1 on CCA cells were determined by CCK-8 assay, clone formation assay, flow cytometry and transwell assay. Finally, to determine the effect of AFAP1-AS1 on tumor growth in vivo, AFAP1-AS1 knockdowned CCLP-1 cells were subcutaneously into nude mice to evaluate tumor growth. Results: In this study, we found that lncRNA AFAP1-AS1 was increased in CCA tissues and patients with high AFAP1-AS1 expression had a shorter overall survival. SiRNA-mediated AFAP1-AS1 knockdown significantly decreased cell proliferation of the CCA cells, with downregulation of C-myc and Cycling D1 in vitro. Furthermore, AFAP1-AS1 silencing inhibited cell migration partly due to decrease the expression of MMP-2 and MMP-9. In addition, CCLP-1 cells with AFAP1-AS1 knockdown were injected into nude mice to investigate the effect of AFAP1-AS1 on the tumorigenesis in vivo. Conclusions: Taken together, our findings suggested that AFAP1-AS1 might promote the CCA progression and provided a novel potential therapeutic target for CCA.

  15. Human cytomegalovirus-encoded US28 may act as a tumor promoter in colorectal cancer.

    Science.gov (United States)

    Cai, Zhen-Zhai; Xu, Jian-Gang; Zhou, Yu-Hui; Zheng, Ji-Hang; Lin, Ke-Zhi; Zheng, Shu-Zhi; Ye, Meng-Si; He, Yun; Liu, Chang-Bao; Xue, Zhan-Xiong

    2016-03-07

    To assess human cytomegalovirus-encoded US28 gene function in colorectal cancer (CRC) pathogenesis. Immunohistochemical analysis was performed to determine US28 expression in 103 CRC patient samples and 98 corresponding adjacent noncancerous samples. Patient data were compared by age, sex, tumor location, histological grade, Dukes' stage, and overall mean survival time. In addition, the US28 gene was transiently transfected into the CRC LOVO cell line, and cell proliferation was assessed using a cell counting kit-8 assay. Cell cycle analysis by flow cytometry and a cell invasion transwell assay were also carried out. US28 levels were clearly higher in CRC tissues (38.8%) than in adjacent noncancerous samples (7.1%) (P = 0.000). Interestingly, elevated US28 amounts in CRC tissues were significantly associated with histological grade, metastasis, Dukes' stage, and overall survival (all P < 0.05); meanwhile, US28 expression was not significantly correlated with age, sex or tumor location. In addition, multivariate Cox regression data revealed US28 level as an independent CRC prognostic marker (P = 0.000). LOVO cells successfully transfected with the US28 gene exhibited higher viability, greater chemotherapy resistance, accelerated cell cycle progression, and increased invasion ability. US28 expression is predictive of poor prognosis and may promote CRC.

  16. The quassinoid derivative NBT-272 targets both the AKT and ERK signaling pathways in embryonal tumors.

    Science.gov (United States)

    Castelletti, Deborah; Fiaschetti, Giulio; Di Dato, Valeria; Ziegler, Urs; Kumps, Candy; De Preter, Katleen; Zollo, Massimo; Speleman, Frank; Shalaby, Tarek; De Martino, Daniela; Berg, Thorsten; Eggert, Angelika; Arcaro, Alexandre; Grotzer, Michael A

    2010-12-01

    The quassinoid analogue NBT-272 has been reported to inhibit MYC, thus warranting a further effort 7to better understand its preclinical properties in models of embryonal tumors (ET), a family of childhood malignancies sharing relevant biological and genetic features such as deregulated expression of MYC oncogenes. In our study, NBT-272 displayed a strong antiproliferative activity in vitro that resulted from the combination of diverse biological effects, ranging from G(1)/S arrest of the cell cycle to apoptosis and autophagy. The compound prevented the full activation of both eukaryotic translation initiation factor 4E (eIF4E) and its binding protein 4EBP-1, regulating cap-dependent protein translation. Interestingly, all responses induced by NBT-272 in ET could be attributed to interference with 2 main proproliferative signaling pathways, that is, the AKT and the MEK/extracellular signal-regulated kinase pathways. These findings also suggested that the depleting effect of NBT-272 on MYC protein expression occurred via indirect mechanisms, rather than selective inhibition. Finally, the ability of NBT-272 to arrest tumor growth in a xenograft model of neuroblastoma plays a role in the strong antitumor activity of this compound, both in vitro and in vivo, with its potential to target cell-survival pathways that are relevant for the development and progression of ET.

  17. Fractionation of a tumor-initiating UV dose introduces DNA damage-retaining cells in hairless mouse skin and renders subsequent TPA-promoted tumors non-regressing.

    Science.gov (United States)

    van de Glind, Gerline; Rebel, Heggert; van Kempen, Marika; Tensen, Kees; de Gruijl, Frank

    2016-02-16

    Sunburns and especially sub-sunburn chronic UV exposure are associated with increased risk of squamous cell carcinomas (SCCs). Here we focus on a possible difference in tumor initiation from a single severe-sunburn dose (on day 1, 21 hairless mice) and from an equal dose fractionated into very low sub-sunburn doses not causing any (growth-promoting) epidermal hyperplasia (40 days daily exposure, n=20). From day 47 all mice received 12-O-Tetradecanoylphorbol-13-acetate (TPA) applications (2x/wk) for 20 weeks to promote tumor development within the lifetime of the animals. After the sub-sunburn regimen sparse DNA damage-retaining basal cells (quiescent stem cells, QSCs) remained in the non-hyperplastic epidermis. These cells were forced to divide by TPA. After discontinuation of TPA tumors regressed and disappeared in the 'sunburn group' but persisted and grew in the 'sub-sunburn group' (0.06 vs 2.50 SCCs and precursors ≥4 mm/mouse after 280 days, p=0.03). As the tumors carried no mutations in p53, H/K/N-Ras and Notch1/2, these 'usual suspects' were not involved in the UV-driven tumor initiation. Although we could not selectively eliminate QSCs (unknown phenotype) to establish causality, our data suggest that forcing specifically DNA damage-retaining QSCs to divide--with high mutagenic risk--gives rise to persisting (mainly 'in situ') skin carcinomas.

  18. Wnt/β-catenin signaling in T-cells drives epigenetic imprinting of pro-inflammatory properties and promotes colitis and colon cancer

    Science.gov (United States)

    Keerthivasan, Shilpa; Aghajani, Katayoun; Dose, Marei; Molinero, Luciana; Khan, Mohammad W.; Venkatesvaran, Vysak; Weber, Christopher; Emmanuel, Akinola Olumide; Sun, Tianjao; Ramos, Elena M.; Keshavarzian, Ali; Mulcahy, Mary; Blatner, Nichole; Khazaie, Khashayarsha; Gounari, Fotini

    2014-01-01

    The density and type of lymphocytes that infiltrate colon tumors are predictive of the clinical outcome of colon cancer. High densities of TH17 cells and inflammation predict poor outcome, while infiltration by Tregs that naturally suppress inflammation is associated with longer patient survival. However, the role of Tregs in cancer remains controversial. We recently reported that Tregs in colon cancer patients can become pro-inflammatory and tumor promoting. These properties were directly linked with their expression of RORγt, the signature transcription factor of TH17 cells. Here, we report that Wnt/β-catenin signaling in T-cells promotes expression of RORγt. Expression of β-catenin was elevated in T-cells and Tregs of patients with colitis and colon cancer. Genetically engineered activation of β-catenin in mouse T-cells resulted in enhanced chromatin accessibility in the proximity of Tcf-1 binding sites genome-wide, induced expression of TH17 signature genes including RORγt, and promoted TH17-mediated inflammation. Strikingly, the mice had inflammation of intestine and colon and developed lesions indistinguishable from colitis-induced cancer. Activation of β-catenin only in Tregs was sufficient to produce inflammation and initiate cancer. Based on these findings we conclude that activation of Wnt/β-catenin signaling in T-cells and/or Tregs is causatively linked with the imprinting of pro-inflammatory properties and the promotion of colon cancer. PMID:24574339

  19. Genes Associated With Prognosis After Surgery For Malignant Pleural Mesothelioma Promote Tumor Cell Survival In Vitro

    Directory of Open Access Journals (Sweden)

    Sugarbaker David J

    2011-05-01

    Full Text Available Abstract Background Mesothelioma is an aggressive neoplasm with few effective treatments, one being cytoreductive surgery. We previously described a test, based on differential expression levels of four genes, to predict clinical outcome in prospectively consented mesothelioma patients after surgery. In this study, we determined whether any of these four genes could be linked to a cancer relevant phenotype. Methods We conducted a high-throughput RNA inhibition screen to knockdown gene expression levels of the four genes comprising the test (ARHGDIA, COBLL1, PKM2, TM4SF1 in both a human lung-derived normal and a tumor cell line using three different small inhibitory RNA molecules per gene. Successful knockdown was confirmed using quantitative RT-PCR. Detection of statistically significant changes in apoptosis and mitosis was performed using immunological assays and quantified using video-assisted microscopy at a single time-point. Changes in nuclear shape, size, and numbers were used to provide additional support of initial findings. Each experiment was conducted in triplicate. Specificity was assured by requiring that at least 2 different siRNAs produced the observed change in each cell line/time-point/gene/assay combination. Results Knockdown of ARHGDIA, COBLL1, and TM4SF1 resulted in 2- to 4-fold increased levels of apoptosis in normal cells (ARHGDIA only and tumor cells (all three genes. No statistically significant changes were observed in apoptosis after knockdown of PKM2 or for mitosis after knockdown of any gene. Conclusions We provide evidence that ARHGDIA, COBLL1, and TM4SF1 are negative regulators of apoptosis in cultured tumor cells. These genes, and their related intracellular signaling pathways, may represent potential therapeutic targets in mesothelioma.

  20. Lysyl oxidase propeptide promotes adipogenesis through inhibition of FGF-2 signaling.

    Science.gov (United States)

    Griner, John D; Rogers, Carl J; Zhu, Mei-Jun; Du, Min

    2017-01-02

    Lysyl oxidase (LOX) catalyzes the oxidative deamination of lysine residues in collagen and elastin, key components of connective tissue. LOX is synthesized as an inactive 50 kD pre-proenzyme, and secreted to the extracellular matrix where it is cleaved into an active 32 kD LOX, and an 18kD free propeptide (LOX-PP), purportedly an inhibitor of fibroblast growth factor-2 (FGF-2) signaling. Given that adipocytes are distributed inside the connective tissue, it is likely that LOX-PP has an important regulatory role in adipogenesis, which has not been studied. Using NIH 3T3-L1 cells, we observed that FGF-2 inhibited adipogenesis, and LOX-PP promoted adipogenesis of 3T3-L1 cells in the presence of FGF-2; the expression of peroxisome proliferator-activated receptor (PPAR) γ and CCAAT-enhancer binding protein (C/EBP) α, two markers of adipogenesis, were enhanced in the presence of LOX-PP. We further observed that LOX-PP down-regulated AKT and ERK1/2, two proliferative signaling proteins down-stream of FGF-2 signaling. Similarly, inhibition of FGF-2 receptor signaling by canofin, a competitive inhibitor of FGF-2 receptor, promoted adipogenesis albeit less effective compared to LOX-PP. To further explore whether LOX-PP promoted adipogenesis through inhibition of FGF-2 signaling, site directed mutagenesis of LOX-PP, resulting in an Arg158 to Gln158 mutation which abolishes the inhibitory activity of LOX-PP to FGF-2 receptor, attenuated the adipogenic promoting properties of LOX-PP. In summary, for the first time, our data show that LOX-PP enhances adipogenesis at least partially through inhibition of FGF-2 receptor signaling. Our data suggest that LOX-PP may serve as a bona fide therapeutic target for regulating adipogenesis and adipose tissue development.

  1. Decreased miR-320a promotes invasion and metastasis of tumor budding cells in tongue squamous cell carcinoma.

    Science.gov (United States)

    Xie, Nan; Wang, Cheng; Zhuang, Zehang; Hou, Jinson; Liu, Xiqiang; Wu, Yue; Liu, Haichao; Huang, Hongzhang

    2016-10-04

    We aimed to determine the specific miRNA profile of tumor budding cells and investigate the potential role of miR-320a in invasion and metastasis of tongue squamous cell carcinoma (TSCC). We collected tumor budding cells and paired central tumor samples from five TSCC specimens with laser capture microdissection and examined the specimens using a miRNA microarray. The specific miRNA signature of tumor budding cells was identified. We found that miR-320a was dramatically decreased in tumor budding cells. Knockdown of miR-320a significantly enhanced migration and invasion of TSCC cell lines. Suz12 was shown to be a direct target of miR-320a. Similar results were also observed in nude mouse models. Multivariate analysis indicated that miR-320a was an independent prognostic factor. Kaplan-Meier analysis demonstrated that decreased miR-320a and high intensity of tumor budding were correlated with poor survival rate, especially in the subgroup with high-intensity tumor budding and low expression of miR-320a. We concluded that decreased expression of miR-320a could promote invasion and metastasis of tumor budding cells by targeting Suz12 in TSCC. A combination of tumor budding and miR-320a may serve as an index to identify an aggressive sub-population of TSCC cells with high metastatic potential.

  2. Delphinidin Inhibits Tumor Growth by Acting on VEGF Signalling in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Thérèse Keravis

    Full Text Available The vasculoprotective properties of delphinidin are driven mainly by its action on endothelial cells. Moreover, delphinidin displays anti-angiogenic properties in both in vitro and in vivo angiogenesis models and thereby might prevent the development of tumors associated with excessive vascularization. This study was aimed to test the effect of delphinidin on melanoma-induced tumor growth with emphasis on its molecular mechanism on endothelial cells. Delphinidin treatment significantly decreased in vivo tumor growth induced by B16-F10 melanoma cell xenograft in mice. In vitro, delphinidin was not able to inhibit VEGFR2-mediated B16-F10 melanoma cell proliferation but it specifically reduced basal and VEGFR2-mediated endothelial cell proliferation. The anti-proliferative effect of delphinidin was reversed either by the MEK1/2 MAP kinase inhibitor, U-0126, or the PI3K inhibitor, LY-294002. VEGF-induced proliferation was reduced either by U-0126 or LY-294002. Under these conditions, delphinidin failed to decrease further endothelial cell proliferation. Delphinidin prevented VEGF-induced phosphorylation of ERK1/2 and p38 MAPK and decreased the expression of the transcription factors, CREB and ATF1. Finally, delphinidin was more potent in inhibiting in vitro cyclic nucleotide phosphodiesterases (PDEs, PDE1 and PDE2, compared to PDE3-PDE5. Altogether delphinidin reduced tumor growth of melanoma cell in vivo by acting specifically on endothelial cell proliferation. The mechanism implies an association between inhibition of VEGF-induced proliferation via VEGFR2 signalling, MAPK, PI3K and at transcription level on CREB/ATF1 factors, and the inhibition of PDE2. In conjunction with our previous studies, we demonstrate that delphinidin is a promising compound to prevent pathologies associated with generation of vascular network in tumorigenesis.

  3. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function.

    Science.gov (United States)

    Sangsuwan, Jiraporn; Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn

    2015-09-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC+TCTP, BIO-GIC and BIO-GIC+TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC+TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC+TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC+TCTP can promote osteoblast cells proliferation, differentiation and function. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. TWIST1 and TWIST2 promoter methylation and protein expression in tumor stroma influence the epithelial-mesenchymal transition-like tumor budding phenotype in colorectal cancer.

    Science.gov (United States)

    Galván, José A; Helbling, Melina; Koelzer, Viktor H; Tschan, Mario P; Berger, Martin D; Hädrich, Marion; Schnüriger, Beat; Karamitopoulou, Eva; Dawson, Heather; Inderbitzin, Daniel; Lugli, Alessandro; Zlobec, Inti

    2015-01-20

    Tumor budding in colorectal cancer is likened to an epithelial-mesenchymal transition (EMT) characterized predominantly by loss of E-cadherin and up-regulation of E-cadherin repressors like TWIST1 and TWIST2. Here we investigate a possible epigenetic link between TWIST proteins and the tumor budding phenotype. TWIST1 and TWIST2 promoter methylation and protein expression were investigated in six cell lines and further correlated with tumor budding in patient cohort 1 (n = 185). Patient cohort 2 (n = 112) was used to assess prognostic effects. Laser capture microdissection (LCM) of tumor epithelium and stroma from low- and high-grade budding cancers was performed. In colorectal cancers, TWIST1 and TWIST2 expression was essentially restricted to stromal cells. LCM results of a high-grade budding case show positive TWIST1 and TWIST2 stroma and no methylation, while the low-grade budding case was characterized by negative stroma and strong hypermethylation. TWIST1 stromal cell staining was associated with adverse features like more advanced pT (p = 0.0044), lymph node metastasis (p = 0.0301), lymphatic vessel invasion (p = 0.0373), perineural invasion (p = 0.0109) and worse overall survival time (p = 0.0226). Stromal cells may influence tumor budding in colorectal cancers through expression of TWIST1. Hypermethylation of the tumor stroma may represent an alternative mechanism for regulation of TWIST1.

  5. Both canonical and non-canonical Wnt signaling independently promote stem cell growth in mammospheres.

    Directory of Open Access Journals (Sweden)

    Alexander M Many

    Full Text Available The characterization of mammary stem cells, and signals that regulate their behavior, is of central importance in understanding developmental changes in the mammary gland and possibly for targeting stem-like cells in breast cancer. The canonical Wnt/β-catenin pathway is a signaling mechanism associated with maintenance of self-renewing stem cells in many tissues, including mammary epithelium, and can be oncogenic when deregulated. Wnt1 and Wnt3a are examples of ligands that activate the canonical pathway. Other Wnt ligands, such as Wnt5a, typically signal via non-canonical, β-catenin-independent, pathways that in some cases can antagonize canonical signaling. Since the role of non-canonical Wnt signaling in stem cell regulation is not well characterized, we set out to investigate this using mammosphere formation assays that reflect and quantify stem cell properties. Ex vivo mammosphere cultures were established from both wild-type and Wnt1 transgenic mice and were analyzed in response to manipulation of both canonical and non-canonical Wnt signaling. An increased level of mammosphere formation was observed in cultures derived from MMTV-Wnt1 versus wild-type animals, and this was blocked by treatment with Dkk1, a selective inhibitor of canonical Wnt signaling. Consistent with this, we found that a single dose of recombinant Wnt3a was sufficient to increase mammosphere formation in wild-type cultures. Surprisingly, we found that Wnt5a also increased mammosphere formation in these assays. We confirmed that this was not caused by an increase in canonical Wnt/β-catenin signaling but was instead mediated by non-canonical Wnt signals requiring the receptor tyrosine kinase Ror2 and activity of the Jun N-terminal kinase, JNK. We conclude that both canonical and non-canonical Wnt signals have positive effects promoting stem cell activity in mammosphere assays and that they do so via independent signaling mechanisms.

  6. Loss of Endogenous Interleukin-12 Activates Survival Signals in Ultraviolet-Exposed Mouse Skin and Skin Tumors

    Directory of Open Access Journals (Sweden)

    Syed M. Meeran

    2009-09-01

    Full Text Available Interleukin-12 (IL-12-deficiency promotes photocarcinogenesis in mice; however, the molecular mechanisms underlying this effect have not been fully elucidated. Here, we report that long-term exposure to ultraviolet (UV radiation resulted in enhancement of the levels of cell survival kinases, such as phosphatidylinositol 3-kinase (PI3K, Akt (Ser473, p-ERK1/2, and p-p38 in the skin of IL-12p40 knockout (IL-12 KO mice compared with the skin of wild-type mice. UV-induced activation of nuclear factor-κB (NF-κB/p65 in the skin of IL-12 KO mice was also more prominent. The levels of NF-κB-targeted proteins, such as proliferating cell nuclear antigen (PCNA, cyclooxygenase-2, cyclin D1, and inducible nitric oxide synthase, were higher in the UV-exposed skin of IL-12 KO mice than the UV-exposed skin of wild types. In short-term UV irradiation experiments, subcutaneous treatment of IL-12 KO mice with recombinant IL-12 (rIL-12 or topical treatment with oridonin, an inhibitor of NF-κB, resulted in the inhibition of UV-induced increases in the levels of PCNA, cyclin D1, and NF-κB compared with non-rIL-12- or non-oridonin-treated IL-12 KO mice. UV-induced skin tumors of IL-12 KO mice had higher levels of PI3K, p-Akt (Ser473, p-ERK1/2, p-p38, NF-κB, and PCNA and fewer apoptotic cells than skin tumors of wild types. Together, these data suggest that the loss of endogenous IL-12 activates survival signals in UV-exposed skin and that may lead to the enhanced photocarcinogenesis in mice.

  7. mTOR Promotes Survival and Astrocytic Characteristics Induced by Pten/Akt Signaling in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Xiaoyi Hu

    2005-04-01

    Full Text Available Combined activation of Ras and Akt leads to the formation of astrocytic glioblastoma multiforme (GBM in mice. In human GBMs, AKT is not mutated but is activated in approximately 70% of these tumors, in association with loss of PTEN and/or activation of receptor tyrosine kinases. Mechanistic justification for the therapeutic blockade of targets downstream of AKT, such as mTOR, in these cancers requires demonstration that the oncogenic effect of PTEN loss is through elevated AKT activity. We demonstrate here that loss of Pten is similar to Akt activation in the context of glioma formation in mice. We further delineate the role of mTOR activity downstream of Akt in the maintenance of Akt+KRas-induced GBMs. Blockade of mTOR results in regional apoptosis in these tumors and conversion in the character of surviving tumor cells from astrocytoma to oligodendroglioma. These data suggest that mTOR activity is required for the survival of some cells within these GBMs, and mTOR appears required for the maintenance of astrocytic character in the surviving cells. Furthermore, our study provides the first example of conversion between two distinct tumor types usually thought of as belonging to specific lineages, and provides evidence for signal transduction-mediated transdifferentiation between glioma subtypes.

  8. SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate.

    Science.gov (United States)

    Wong, Chi Chun; Qian, Yun; Li, Xiaona; Xu, Jiaying; Kang, Wei; Tong, Joanna H; To, Ka-Fai; Jin, Ye; Li, Weilin; Chen, Huarong; Go, Minnie Y Y; Wu, Jian-Lin; Cheng, Ka Wing; Ng, Simon S M; Sung, Joseph J Y; Cai, Zongwei; Yu, Jun

    2016-11-01

    regeneration of oxidized nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate. Reduced oxidized nicotinamide adenine dinucleotide inhibited glycolysis and decreased levels of adenosine triphosphate, which inactivated mitogen-activated protein kinase kinase and extracellular signal-regulated kinase signaling via activation of AMP-activated protein kinase. An increased ratio of oxidized nicotinamide adenine dinucleotide phosphate to reduced nicotinamide adenine dinucleotide phosphate induced oxidative stress and glutathione oxidation, which suppressed cell proliferation. Asparagine synthetase mediated synthesis of asparagine from aspartate to promote cell migration. SLC25A22 promotes proliferation and migration of CRC cells with mutations KRAS, and formation and metastasis of CRC xenograft tumors in mice. Patients with colorectal tumors that express increased levels of SLC25A22 have shorter survival times than patients whose tumors have lower levels. SLC25A22 induces intracellular synthesis of aspartate, activation of mitogen-activated protein kinase kinase and extracellular signal-regulated kinase signaling and reduces oxidative stress. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. Antibody Blockade of Semaphorin 4D Promotes Immune Infiltration into Tumor and Enhances Response to Other Immunomodulatory Therapies.

    Science.gov (United States)

    Evans, Elizabeth E; Jonason, Alan S; Bussler, Holm; Torno, Sebold; Veeraraghavan, Janaki; Reilly, Christine; Doherty, Michael A; Seils, Jennifer; Winter, Laurie A; Mallow, Crystal; Kirk, Renee; Howell, Alan; Giralico, Susan; Scrivens, Maria; Klimatcheva, Katya; Fisher, Terrence L; Bowers, William J; Paris, Mark; Smith, Ernest S; Zauderer, Maurice

    2015-06-01

    Semaphorin 4D (SEMA4D, CD100) and its receptor plexin-B1 (PLXNB1) are broadly expressed in murine and human tumors, and their expression has been shown to correlate with invasive disease in several human tumors. SEMA4D normally functions to regulate the motility and differentiation of multiple cell types, including those of the immune, vascular, and nervous systems. In the setting of cancer, SEMA4D-PLXNB1 interactions have been reported to affect vascular stabilization and transactivation of ERBB2, but effects on immune-cell trafficking in the tumor microenvironment (TME) have not been investigated. We describe a novel immunomodulatory function of SEMA4D, whereby strong expression of SEMA4D at the invasive margins of actively growing tumors influences the infiltration and distribution of leukocytes in the TME. Antibody neutralization of SEMA4D disrupts this gradient of expression, enhances recruitment of activated monocytes and lymphocytes into the tumor, and shifts the balance of cells and cytokines toward a proinflammatory and antitumor milieu within the TME. This orchestrated change in the tumor architecture was associated with durable tumor rejection in murine Colon26 and ERBB2(+) mammary carcinoma models. The immunomodulatory activity of anti-SEMA4D antibody can be enhanced by combination with other immunotherapies, including immune checkpoint inhibition and chemotherapy. Strikingly, the combination of anti-SEMA4D antibody with antibody to CTLA-4 acts synergistically to promote complete tumor rejection and survival. Inhibition of SEMA4D represents a novel mechanism and therapeutic strategy to promote functional immune infiltration into the TME and inhibit tumor progression. ©2015 American Association for Cancer Research.

  10. Slit2-Robo1 signaling promotes the adhesion, invasion and migration of tongue carcinoma cells via upregulating matrix metalloproteinases 2 and 9, and downregulating E-cadherin

    Science.gov (United States)

    Zhao, Yuan; Zhou, Feng-Li; Li, Wei-Ping; Wang, Jing; Wang, Li-Jing

    2016-01-01

    Whether Slit homologue 2 (Slit2) inhibits or promotes tumor cell migration remains controversial, and the role of Slit2-Roundabout 1 (Robo1) signaling in oral cancer remains to be fully elucidated. The aim of the present study was to investigate the role of Slit2-Robo1 signaling in the adhesion, invasion and migration of tongue carcinoma cells, and the mechanism by which Slit2-Robo1 signaling inhibits or promotes tumor cell migration. Tca8113 tongue carcinoma cells were treated with the monoclonal anti-human Robo1 antibody, R5, to inhibit the Slit2-Robo1 signaling pathway, with immunoglobulin (Ig)G2b treatment as a negative control. The expression levels of Slit2 and Robo1 were determined using flow cytometry. The effects of R5 on the adhesion, invasion and migration of Tca8113 tongue carcinoma cells were investigated. Gelatin zymography was used to investigate the activity of matrix metalloproteinase 2 (MMP2) and MMP9. Western blot analysis was used to evaluate the expression levels of E-cadherin in Tca8113 cells treated with 10 µg/ml of either R5 or IgG2b. Slit2 and Robo1 proteins were found to be expressed in the Tca8113 cells. R5 significantly inhibited the adhesion, invasion and migration of Tca8113 cells in vitro. R5 also inhibited the activities of MMP2 and MMP9, and increased the expression of E-cadherin in the Tca8113 cells. These results suggested that Slit2-Robo1 signaling promoted the adhesion, invasion and migration of tongue carcinoma cells by upregulating the expression levels of MMP2 and MMP9 and, downregulating the expression of E-cadherin. PMID:27431199

  11. HDAC Inhibitor Panobinostat Engages Host Innate Immune Defenses to Promote the Tumoricidal Effects of Trastuzumab in HER2(+) Tumors.

    Science.gov (United States)

    Medon, Mikolaj; Vidacs, Eva; Vervoort, Stephin J; Li, Jason; Jenkins, Misty R; Ramsbottom, Kelly M; Trapani, Joseph A; Smyth, Mark J; Darcy, Phillip K; Atadja, Peter W; Henderson, Michael A; Johnstone, Ricky W; Haynes, Nicole M

    2017-05-15

    Histone deacetylase inhibitors (HDACi) may engage host immunity as one basis for their antitumor effects. Herein, we demonstrate an application of this concept using the HDACi panobinostat to augment the antitumor efficacy of trastuzumab (anti-HER2) therapy, through both tumor cell autonomous and nonautonomous mechanisms. In HER2(+) tumors that are inherently sensitive to the cytostatic effects of trastuzumab, cotreatment with panobinostat abrogated AKT signaling and triggered tumor regression in mice that lacked innate and/or adaptive immune effector cells. However, the cooperative ability of panobinostat and trastuzumab to harness host anticancer immune defenses was essential for their curative activity in trastuzumab-refractory HER2(+) tumors. In trastuzumab-resistant HER2(+) AU565(pv) xenografts and BT474 tumors expressing constitutively active AKT, panobinostat enhanced the antibody-dependent cell-mediated cytotoxicity function of trastuzumab. IFNγ-mediated, CXCR3-dependent increases in tumor-associated NK cells underpinned the combined curative activity of panobinostat and trastuzumab in these tumors. These data highlight the immune-enhancing effects of panobinostat and provide compelling evidence that this HDACi can license trastuzumab to evoke NK-cell-mediated responses capable of eradicating trastuzumab-refractory HER2(+) tumors. Cancer Res; 77(10); 2594-606. ©2017 AACR. ©2017 American Association for Cancer Research.

  12. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase

    DEFF Research Database (Denmark)

    Thastrup, Ole; Cullen, P J; Drøbak, B K

    1990-01-01

    Thapsigargin, a tumor-promoting sesquiterpene lactone, discharges intracellular Ca2+ in rat hepatocytes, as it does in many vertebrate cell types. It appears to act intracellularly, as incubation of isolated rat liver microsomes with thapsigargin induces a rapid, dose-dependent release of stored Ca...

  13. Induction of interleukin-1β by mouse mammary tumor irradiation promotes triple negative breast cancer cells invasion and metastasis development.

    Science.gov (United States)

    Bouchard, Gina; Therriault, Hélène; Bujold, Rachel; Saucier, Caroline; Paquette, Benoit

    2017-05-01

    Radiotherapy increases the level of inflammatory cytokines, some of which are known to promote metastasis. In a mouse model of triple negative breast cancer (TNBC), we determined whether irradiation of the mammary tumor increases the level of key cytokines and favors the development of lung metastases. D2A1 TNBC cells were implanted in the mammary glands of a Balb/c mouse and then 7 days old tumors were irradiated (4 × 6 Gy). The cytokines IL-1β, IL-4, IL-6, IL-10, IL-17 and MIP-2 were quantified in plasma before, midway and after irradiation. The effect of tumor irradiation on the invasion of cancer cells, the number of circulating tumor cells (CTC) and lung metastases were also measured. TNBC tumor irradiation significantly increased the plasma level of IL-1β, which was associated with a greater number of CTC (3.5-fold) and lung metastases (2.3-fold), compared to sham-irradiated animals. Enhancement of D2A1 cell invasion in mammary gland was associated with an increase of the matrix metalloproteinases-2 and -9 activity (MMP-2, -9). The ability of IL-1β to stimulate the invasiveness of irradiated D2A1 cells was confirmed by in vitro invasion chamber assays. Irradiation targeting a D2A1 tumor and its microenvironment increased the level of the inflammatory cytokine IL-1β and was associated with the promotion of cancer cell invasion and lung metastasis development.

  14. Clove Extract Inhibits Tumor Growth and Promotes Cell Cycle Arrest and Apoptosis

    Science.gov (United States)

    Liu, Haizhou; Schmitz, John C.; Wei, Jianteng; Cao, Shousong; Beumer, Jan H.; Strychor, Sandra; Cheng, Linyou; Liu, Ming; Wang, Cuicui; Wu, Ning; Zhao, Xiangzhong; Zhang, Yuyan; Liao, Joshua; Chu, Edward; Lin, Xiukun

    2014-01-01

    Cloves (Syzygium aromaticum) have been used as a traditional Chinese medicinal herb for thousands of years. Cloves possess antiseptic, antibacterial, antifungal, and antiviral properties, but their potential anticancer activity remains unknown. In this study, we investigated the in vitro and in vivo antitumor effects and biological mechanisms of ethyl acetate extract of cloves (EAEC) and the potential bioactive components responsible for its antitumor activity. The effects of EAEC on cell growth, cell cycle distribution, and apoptosis were investigated using human cancer cell lines. The molecular changes associated with the effects of EAEC were analyzed by Western blot and (qRT)-PCR analysis. The in vivo effect of EAEC and its bioactive component was investigated using the HT-29 tumor xenograft model. We identified oleanolic acid (OA) as one of the components of EAEC responsible for its antitumor activity. Both EAEC and OA display cytotoxicity against several human cancer cell lines. Interestingly, EAEC was superior to OA and the chemotherapeutic agent 5-fluorouracil at suppressing growth of colon tumor xenografts. EAEC promoted G0/G1 cell cycle arrest and induced apoptosis in a dose-dependent manner. Treatment with EAEC and OA selectively increased protein expression of p21WAF1/Cip1 and γ-H2AX and downregulated expression of cell cycle-regulated proteins. Moreover, many of these changes were at the mRNA level, suggesting transcriptional regulation by EAEC treatment. Our results demonstrate that clove extract may represent a novel therapeutic herb for the treatment of colorectal cancer, and OA appears to be one of the bioactive components. PMID:24854101

  15. IncRNA H19 promotes tongue squamous cell carcinoma progression through β-catenin/GSK3β/EMT signaling via association with EZH2.

    Science.gov (United States)

    Zhang, Da-Ming; Lin, Zhao-Yu; Yang, Zhao-Hui; Wang, You-Yuan; Wan, Di; Zhong, Jiang-Long; Zhuang, Pei-Lin; Huang, Zhi-Quan; Zhou, Bin; Chen, Wei-Liang

    2017-01-01

    H19 is involved in tumor metastasis and associated with tumor progression. Enhancer of zest homolog 2 (EZH2) is overexpressed in multiple cancer types and correlates with tumor proliferation, epithelial-mesenchymal transition, and poor prognosis. However, the interaction between H19 and EZH2 to promote tongue squamous cell carcinoma (TSCC) progression remains largely uncharacterized. Insitu hybridization and quantitative reverse-transcription PCR (qRT-PCR) were performed to measure H19 expression in primary TSCC and adjacent normal tissues and cell lines. EZH2 expression was determined by immunohistochemistry in matched primary TSCC and adjacent normal tissues. The correlation between H19 and EZH2 expression and clinicopathological characteristics were analyzed. The roles of H19 in cell proliferation, apoptosis, and invasion were analyzed using a H19-targeted lentivirus. Western blot and qRT-PCR were carried out to detect downstream signal pathway changes. Expression levels of downstream signaling proteins in primary TSCC tissues and adjacent normal tissues were analyzed by immunohistochemistry. H19 and EZH2 were upregulated in TSCC tissues compared to matched normal tissues, and significantly correlated with WHO grade, lymph node metastasis, and poor prognosis. H19 silencing attenuated cell proliferation, apoptosis, and invasion in vitro. H19 knockdown inhibited the activation of β-catenin/GSK-3β/cyclin D1/c-myc, upregulated E-cadherin and zonula occludens-1 (ZO-1), and inhibited N-cadherin, vimentin, Snail1, Twist1, and ZEB1. Silencing H19 expression also inhibited tumor progression and lung metastasis in an animal model. Our findings indicate that H19 promotes TSCC progression through association with EZH2, and affects downstream β-Catenin/GSK3β/EMT signaling, suggesting that H19 inhibition might be a potential target for the treatment of TSCC.

  16. A novel tumor-promoting function residing in the 5' non-coding region of vascular endothelial growth factor mRNA.

    Directory of Open Access Journals (Sweden)

    Kiyoshi Masuda

    2008-05-01

    Full Text Available BACKGROUND: Vascular endothelial growth factor-A (VEGF is one of the key regulators of tumor development, hence it is considered to be an important therapeutic target for cancer treatment. However, clinical trials have suggested that anti-VEGF monotherapy was less effective than standard chemotherapy. On the basis of the evidence, we hypothesized that vegf mRNA may have unrecognized function(s in cancer cells. METHODS AND FINDINGS: Knockdown of VEGF with vegf-targeting small-interfering (si RNAs increased susceptibility of human colon cancer cell line (HCT116 to apoptosis caused with 5-fluorouracil, etoposide, or doxorubicin. Recombinant human VEGF165 did not completely inhibit this apoptosis. Conversely, overexpression of VEGF165 increased resistance to anti-cancer drug-induced apoptosis, while an anti-VEGF165-neutralizing antibody did not completely block the resistance. We prepared plasmids encoding full-length vegf mRNA with mutation of signal sequence, vegf mRNAs lacking untranslated regions (UTRs, or mutated 5'UTRs. Using these plasmids, we revealed that the 5'UTR of vegf mRNA possessed anti-apoptotic activity. The 5'UTR-mediated activity was not affected by a protein synthesis inhibitor, cycloheximide. We established HCT116 clones stably expressing either the vegf 5'UTR or the mutated 5'UTR. The clones expressing the 5'UTR, but not the mutated one, showed increased anchorage-independent growth in vitro and formed progressive tumors when implanted in athymic nude mice. Microarray and quantitative real-time PCR analyses indicated that the vegf 5'UTR-expressing tumors had up-regulated anti-apoptotic genes, multidrug-resistant genes, and growth-promoting genes, while pro-apoptotic genes were down-regulated. Notably, expression of signal transducers and activators of transcription 1 (STAT1 was markedly repressed in the 5'UTR-expressing tumors, resulting in down-regulation of a STAT1-responsive cluster of genes (43 genes. As a result, the

  17. Chromosomal Rainbows detect Oncogenic Rearrangements of Signaling Molecules in Thyroid Tumors

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Benjamin; Jossart, Gregg H.; Ito, Yuko; Greulich-Bode, Karin M.; Weier, Jingly F.; Munne, Santiago; Clark, Orlo H.; Weier, Heinz-Ulrich G.

    2010-08-19

    Altered signal transduction can be considered a hallmark of many solid tumors. In thyroid cancers the receptor tyrosine kinase (rtk) genes NTRK1 (Online Mendelian Inheritance in Man = OMIM *191315, also known as 'TRKA'), RET ('Rearranged during Transfection protooncogene', OMIM *164761) and MET (OMIM *164860) have been reported as activated, rearranged or overexpressed. In many cases, a combination of cytogenetic and molecular techniques allows elucidation of cellular changes that initiate tumor development and progression. While the mechanisms leading to overexpression of the rtk MET gene remain largely unknown, a variety of chromosomal rearrangements of the RET or NTKR1 gene could be demonstrated in thyroid cancer. Abnormal expressions in these tumors seem to follow a similar pattern: the rearrangement translocates the 3'-end of the rtk gene including the entire catalytic domain to an expressed gene leading to a chimeric RNA and protein with kinase activity. Our research was prompted by an increasing number of reports describing translocations involving ret and previously unknown translocation partners. We developed a high resolution technique based on fluorescence in situ hybridization (FISH) to allow rapid screening for cytogenetic rearrangements which complements conventional chromosome banding analysis. Our technique applies simultaneous hybridization of numerous probes labeled with different reporter molecules which are distributed along the target chromosome allowing the detection of cytogenetic changes at near megabase-pair (Mbp) resolution. Here, we report our results using a probe set specific for human chromosome 10, which is altered in a significant portion of human thyroid cancers (TC's). While rendering accurate information about the cytogenetic location of rearranged elements, our multi-locus, multi-color analysis was developed primarily to overcome limitations of whole chromosome painting (WCP) and chromosome banding

  18. ‘Chromosomal Rainbows’ Detect Oncogenic Rearrangements of Signaling Molecules in Thyroid Tumors

    Science.gov (United States)

    O’Brien, Benjamin; Jossart, Gregg H.; Ito, Yuko; Greulich-Bode, Karin M.; Weier, Jingly F.; Munne, Santiago; Clark, Orlo H.; Weier, Heinz-Ulrich G.

    2011-01-01

    Altered signal transduction can be considered a hallmark of many solid tumors. In thyroid cancers the receptor tyrosine kinase (rtk) genes NTRK1 (Online Mendelian Inheritance in Man = OMIM *191315, also known as ‘TRKA’), RET (‘Rearranged during Transfection protooncogene’, OMIM *164761) and MET (OMIM *164860) have been reported as activated, rearranged or overexpressed. In many cases, a combination of cytogenetic and molecular techniques allows elucidation of cellular changes that initiate tumor development and progression. While the mechanisms leading to overexpression of the rtk MET gene remain largely unknown, a variety of chromosomal rearrangements of the RET or NTKR1 gene could be demonstrated in thyroid cancer. Abnormal expressions in these tumors seem to follow a similar pattern: the rearrangement translocates the 3′- end of the rtk gene including the entire catalytic domain to an expressed gene leading to a chimeric RNA and protein with kinase activity. Our research was prompted by an increasing number of reports describing translocations involving ret and previously unknown translocation partners. We developed a high resolution technique based on fluorescence in situ hybridization (FISH) to allow rapid screening for cytogenetic rearrangements which complements conventional chromosome banding analysis. Our technique applies simultaneous hybridization of numerous probes labeled with different reporter molecules which are distributed along the target chromosome allowing the detection of cytogenetic changes at near megabasepair (Mbp) resolution. Here, we report our results using a probe set specific for human chromosome 10, which is altered in a significant portion of human thyroid cancers (TC’s). While rendering accurate information about the cytogenetic location of rearranged elements, our multi-locus, multi-color analysis was developed primarily to overcome limitations of whole chromosome painting (WCP) and chromosome banding techniques for fine

  19. 'Chromosomal Rainbows' Detect Oncogenic Rearrangements of Signaling Molecules in Thyroid Tumors.

    Science.gov (United States)

    O'Brien, Benjamin; Jossart, Gregg H; Ito, Yuko; Greulich-Bode, Karin M; Weier, Jingly F; Munne, Santiago; Clark, Orlo H; Weier, Heinz-Ulrich G

    2010-01-01

    Altered signal transduction can be considered a hallmark of many solid tumors. In thyroid cancers the receptor tyrosine kinase (rtk) genes NTRK1 (Online Mendelian Inheritance in Man = OMIM *191315, also known as 'TRKA'), RET ('Rearranged during Transfection protooncogene', OMIM *164761) and MET (OMIM *164860) have been reported as activated, rearranged or overexpressed. In many cases, a combination of cytogenetic and molecular techniques allows elucidation of cellular changes that initiate tumor development and progression. While the mechanisms leading to overexpression of the rtk MET gene remain largely unknown, a variety of chromosomal rearrangements of the RET or NTKR1 gene could be demonstrated in thyroid cancer. Abnormal expressions in these tumors seem to follow a similar pattern: the rearrangement translocates the 3'- end of the rtk gene including the entire catalytic domain to an expressed gene leading to a chimeric RNA and protein with kinase activity. Our research was prompted by an increasing number of reports describing translocations involving ret and previously unknown translocation partners.We developed a high resolution technique based on fluorescence in situ hybridization (FISH) to allow rapid screening for cytogenetic rearrangements which complements conventional chromosome banding analysis. Our technique applies simultaneous hybridization of numerous probes labeled with different reporter molecules which are distributed along the target chromosome allowing the detection of cytogenetic changes at near megabasepair (Mbp) resolution. Here, we report our results using a probe set specific for human chromosome 10, which is altered in a significant portion of human thyroid cancers (TC's). While rendering accurate information about the cytogenetic location of rearranged elements, our multi-locus, multi-color analysis was developed primarily to overcome limitations of whole chromosome painting (WCP) and chromosome banding techniques for fine mapping of

  20. Tumor Suppressor A20 Protects against Cardiac Hypertrophy and Fibrosis through Blocking TAK1-Dependent Signaling

    Science.gov (United States)

    Huang, He; Tang, Qi-Zhu; Wang, Ai-Bing; Chen, Manyin; Zhou, Heng; Liu, Chen; Jiang, Hong; Yang, Qinglin; Bian, Zhou-Yan; Bai, Xue; Zhu, Li-Hua; Wang, Lang; Li, Hongliang

    2010-01-01

    A20 or tumor necrosis factor–induced protein 3 is a negative regulator of nuclear factor κB signaling. A20 has been shown previously to attenuate cardiac hypertrophy in vitro and postmyocardial infarction remodeling in vivo. In the present study, we tested the hypothesis that overexpression of A20 in the murine heart would protect against cardiac hypertrophy in vivo. The effects of constitutive human A20 expression on cardiac hypertrophy were investigated using in vitro and in vivo models. Cardiac hypertrophy was produced by aortic banding in A20 transgenic mice and control animals. The extent of cardiac hypertrophy was quantitated by echocardiography, as well as by pathological and molecular analyses of heart samples. Constitutive overexpression of human A20 in the murine heart attenuated the hypertrophicresponse and markedly reduced inflammation, apoptosis, and fibrosis. Cardiac function was also preserved in hearts with increased A20 levels in response to hypertrophic stimuli. Western blot experiments further showed A20 expression markedly blocked transforming growth factor-β–activated kinase 1–dependent c-Jun N-terminal kinase/p38 signaling cascade but with no difference in either extracellular signal-regulated kinase 1/2 or AKT activation in vivo and in vitro. In cultured neonatal rat cardiac myocytes, [3H]proline incorporation and Western blot assays revealed that A20 expression suppressed transforming growth factor-β–induced collagen synthesis and transforming growth factor-β–activated kinase 1–dependent Smad 2/3/4 activation. In conclusion, A20 improves cardiac functions and inhibits cardiac hypertrophy, inflammation, apoptosis, and fibrosis by blocking transforming growth factor-β–activated kinase 1–dependent signaling. PMID:20585109

  1. Cooperation of tyrosine kinase receptor TrkB and epidermal growth factor receptor signaling enhances migration and dispersal of lung tumor cells.

    Directory of Open Access Journals (Sweden)

    Rudolf Götz

    Full Text Available TrkB mediates the effects of brain-derived neurotrophic factor (BDNF in neuronal and nonnneuronal cells. Based on recent reports that TrkB can also be transactivated through epidermal growth-factor receptor (EGFR signaling and thus regulates migration of early neurons, we investigated the role of TrkB in migration of lung tumor cells. Early metastasis remains a major challenge in the clinical management of non-small cell lung cancer (NSCLC. TrkB receptor signaling is associated with metastasis and poor patient prognosis in NSCLC. Expression of this receptor in A549 cells and in another adenocarcinoma cell line, NCI-H441, promoted enhanced migratory capacity in wound healing assays in the presence of the TrkB ligand BDNF. Furthermore, TrkB expression in A549 cells potentiated the stimulatory effect of EGF in wound healing and in Boyden chamber migration experiments. Consistent with a potential loss of cell polarity upon TrkB expression, cell dispersal and de-clustering was induced in A549 cells independently of exogeneous BDNF. Morphological transformation involved extensive cytoskeletal changes, reduced E-cadherin expression and suppression of E-cadherin expression on the cell surface in TrkB expressing tumor cells. This function depended on MEK and Akt kinase activity but was independent of Src. These data indicate that TrkB expression in lung adenoma cells is an early step in tumor cell dissemination, and thus could represent a target for therapy development.

  2. Rap2B promotes proliferation, migration, and invasion of human breast cancer through calcium-related ERK1/2 signaling pathway.

    Science.gov (United States)

    Di, Jiehui; Huang, Hui; Qu, Debao; Tang, Juangjuan; Cao, Wenjia; Lu, Zheng; Cheng, Qian; Yang, Jing; Bai, Jin; Zhang, Yanping; Zheng, Junnian

    2015-07-23

    Rap2B, a member of GTP-binding proteins, is widely upregulated in many types of tumors and promotes migration and invasion of human suprarenal epithelioma. However, the function of Rap2B in breast cancer is unknown. Expression of Rap2B was examined in breast cancer cell lines and human normal breast cell line using Western blot analysis. Using the CCK-8 cell proliferation assay, cell cycle analysis, and transwell migration assay, we also elucidated the role of Rap2B in breast cancer cell proliferation, migration, and invasion. Results showed that the expression of Rap2B is higher in tumor cells than in normal cells. Flow cytometry and Western blot analysis revealed that Rap2B elevates the intracellular calcium level and further promotes extracellular signal-related kinase (ERK) 1/2 phosphorylation. By contrast, calcium chelator BAPTM/AM and MEK inhibitor (U0126) can reverse Rap2B-induced ERK1/2 phosphorylation. Furthermore, Rap2B knockdown inhibits cell proliferation, migration, and invasion abilities via calcium related-ERK1/2 signaling. In addition, overexpression of Rap2B promotes cell proliferation, migration and invasion abilities, which could be neutralized by BAPTM/AM and U0126. Taken together, these findings shed light on Rap2B as a therapeutic target for breast cancer.

  3. Identification of PCTA, a TGIF antagonist that promotes PML function in TGF-β signalling

    OpenAIRE

    Faresse, Nourdine; Colland, Frédéric; Ferrand, Nathalie; Prunier, Céline; Bourgeade, Marie-Francoise; Atfi, Azeddine

    2008-01-01

    The TGIF homoeodomain protein functions as an important negative regulator in the TGF-β signalling pathway. The inhibitory function of TGIF is executed in part through its ability to sequester the tumour suppressor cytoplasmic promyelocytic leukaemia (cPML) in the nucleus, thereby preventing the phosphorylation of Smad2 by the activated TGF-β type I receptor. Here, we report on the identification of PCTA (PML competitor for TGIF association), a TGIF antagonist that promotes TGF-β-induced tran...

  4. Inhibition of NF-κB promotes autophagy via JNK signaling pathway in porcine granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Lin, Lu; Haq, Ihtesham Ul; Zeng, Shen-ming, E-mail: zengshenming@gmail.com

    2016-04-22

    The transcription factor nuclear factor-κB (NF-κB) plays an important role in diverse processes, including cell proliferation and differentiation, apoptosis and inflammation. However, the role of NF-κB in porcine follicle development is not clearly elucidated. In this study, we demonstrated that follicle stimulating hormone (FSH) increased the level of inhibitor of NF-κB (IκB) protein and promoted the cytoplasmic localization of p65, indicating that FSH inhibits the activation of NF-κB in porcine granulosa cells. Moreover, inhibition of NF-κB by FSH or another specific inhibitor of NF-κB, pyrrolidine dithiocarbamate (PDTC), could activate JNK signaling and enhance autophagic activity in porcine granulosa cells. Knockdown of RelA (p65) Subunit of NF-κB by RNA interference abrogated the activation of JNK signaling pathway and the increase of autophagic protein expression by FSH. Meanwhile, the functional significance of FSH or PDTC-mediated autophagy were further investigated. Our results demonstrated that the increased autophagy promoted progesterone secretion in porcine granulosa cells. Blockage of autophagy by chloroquine obviated the FSH or PDTC-induced progesterone production. Taken together, these results indicate that inhibition of NF-κB increased autophagy via JNK signaling, and promote steroidogenesis in porcine granulosa cells. Our results provide new insights into the regulation and function of autophagy in mammalian follicle development. - Highlights: • FSH inhibits the activation of NF-κB in porcine primary granulosa cells. • Inhibition of NF-κB by FSH promotes autophagy via JNK signaling in granulosa cells. • Increased autophagy contributes to progesterone production in granulosa cells. • This is the first report against beclin1 regulation in porcine granulosa cells.

  5. Polarized activation of notum at wounds inhibits Wnt signaling to promote planarian head regeneration

    OpenAIRE

    Petersen, Christian P.; Reddien, Peter W.

    2011-01-01

    Regeneration requires initiation of programs tailored to the identity of missing parts. Head-versus-tail regeneration in planarians presents a paradigm for study of this phenomenon. Following injury, Wnt signaling promotes tail regeneration. We report that wounding elicits expression of the Wnt inhibitor notum preferentially at anterior-facing wounds. This expression asymmetry occurs at essentially any wound, even if the anterior pole is intact. notum(RNAi) animals regenerate an anterior-faci...

  6. Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1α.

    Science.gov (United States)

    Faubert, Brandon; Vincent, Emma E; Griss, Takla; Samborska, Bozena; Izreig, Said; Svensson, Robert U; Mamer, Orval A; Avizonis, Daina; Shackelford, David B; Shaw, Reuben J; Jones, Russell G

    2014-02-18

    One of the major metabolic changes associated with cellular transformation is enhanced nutrient utilization, which supports tumor progression by fueling both energy production and providing biosynthetic intermediates for growth. The liver kinase B1 (LKB1) is a serine/threonine kinase and tumor suppressor that couples bioenergetics to cell-growth control through regulation of mammalian target of rapamycin (mTOR) activity; however, the influence of LKB1 on tumor metabolism is not well defined. Here, we show that loss of LKB1 induces a progrowth metabolic program in proliferating cells. Cells lacking LKB1 display increased glucose and glutamine uptake and utilization, which support both cellular ATP levels and increased macromolecular biosynthesis. This LKB1-dependent reprogramming of cell metabolism is dependent on the hypoxia-inducible factor-1α (HIF-1α), which accumulates under normoxia in LKB1-deficient cells and is antagonized by inhibition of mTOR complex I signaling. Silencing HIF-1α reverses the metabolic advantages conferred by reduced LKB1 signaling and impairs the growth and survival of LKB1-deficient tumor cells under low-nutrient conditions. Together, our data implicate the tumor suppressor LKB1 as a central regulator of tumor metabolism and growth control through the regulation of HIF-1α-dependent metabolic reprogramming.

  7. Degradation of Jatropha curcas phorbol esters derived from Jatropha oil cake and their tumor-promoting activity.

    Science.gov (United States)

    Nakao, Motoyuki; Hasegawa, Go; Yasuhara, Tadashi; Ishihara, Yoko

    2015-04-01

    Large amount of oil cake is generated during biodiesel production from Jatropha seeds. Although Jatropha oil cake is rich in plant nutrients, presence of toxic phorbol esters restricts the usage of oil cake as a fertilizer. The objective of this study is to evaluate the components and tumor promoting activity of phorbol esters in Jatropha oil cake-supplemented soil and plants grown in the treated soil. Contents and their biological activity of Jatropha phorbol esters in soil and plants were sequentially analyzed by high-performance liquid chromatography (HPLC) and in vitro cell transformation assay, respectively. Disappearance of Jatropha phorbol-ester-specific peaks were followed with HPLC during incubation of Jatropha oil cake with soil for five weeks. Along with the degradation of Jatropha phorbol ester in soil, tumor-promoting activity in the sample was also attenuated and ultimately disappeared. Jatropha phorbol esters and tumor promoting activity were not detected from mustard spinach grown in the Jatropha oil cake-supplemented soil. In addition, the esterase KM109 degrades DHPB (see definition below; Jatropha phorbol ester) and reduced its tumor-promoting activity. From these data, we conclude: (1) components and tumor promoting activity of Jatropha phorbol esters in the oil cake disappeared completely by incubation with soil for five-week, (2) Jatropha phorbol esters did not transfer into plants grown in the Jatropha oil cake-supplemented soil, and (3) DHPB can be degraded by esterase from soil bacterium. These observations are useful for utilization of Jatropha oil cake as a fertilizer. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Suppression of miR-184 in malignant gliomas upregulates SND1 and promotes tumor aggressiveness.

    Science.gov (United States)

    Emdad, Luni; Janjic, Aleksandar; Alzubi, Mohammad A; Hu, Bin; Santhekadur, Prasanna K; Menezes, Mitchell E; Shen, Xue-Ning; Das, Swadesh K; Sarkar, Devanand; Fisher, Paul B

    2015-03-01

    Malignant glioma is an aggressive cancer requiring new therapeutic targets. MicroRNAs (miRNAs) regulate gene expression post transcriptionally and are implicated in cancer development and progression. Deregulated expressions of several miRNAs, specifically hsa-miR-184, correlate with glioma development. Bioinformatic approaches were used to identify potential miR-184-regulated target genes involved in malignant glioma progression. This strategy identified a multifunctional nuclease, SND1, known to be overexpressed in multiple cancers, including breast, colon, and hepatocellular carcinoma, as a putative direct miR-184 target gene. SND1 levels were evaluated in patient tumor samples and human-derived cell lines. We analyzed invasion and signaling in vitro through SND1 gain-of-function and loss-of-function. An orthotopic xenograft model with primary glioma cells demonstrated a role of miR-184/SND1 in glioma pathogenesis in vivo. SND1 is highly expressed in human glioma tissue and inversely correlated with miR-184 expression. Transfection of glioma cells with a miR-184 mimic inhibited invasion, suppressed colony formation, and reduced anchorage-independent growth in soft agar. Similar phenotypes were evident when SND1 was knocked down with siRNA. Additionally, knockdown (KD) of SND1 induced senescence and improved the chemoresistant properties of malignant glioma cells. In an orthotopic xenograft model, KD of SND1 or transfection with a miR-184 mimic induced a less invasive tumor phenotype and significantly improved survival of tumor bearing mice. Our study is the first to show a novel regulatory role of SND1, a direct target of miR-184, in glioma progression, suggesting that the miR-184/SND1 axis may be a useful diagnostic and therapeutic tool for malignant glioma. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Gas6-Axl signaling in presence of Sunitinib is enhanced, diversified and sustained in renal tumor cells, resulting in tumor-progressive advantages.

    Science.gov (United States)

    Gustafsson, Anna; Fritz, Helena K M; Dahlbäck, Björn

    2017-06-01

    Clear Cell Renal Cell Carcinoma (CCRCC) is a lethal cancer with bad prognosis due to development of chemoresistance and recurrence of more aggressive tumors. Investigation of Gas6-mediated Axl signaling in CCRCC and endothelial cells reveals a Sunitinib resistant Gas6-Axl signaling that is sustained and enhanced and specifically triggers downstream AKT and PRAS40 activation in an intensified manner. Gas6-induced Axl signaling in presence of Sunitinib is also diversified displaying onset of Axl-dependent EGFR and METR activation and activation of classical MAPK pathways. Gas6+Sunitinib-adapted CCRCC cells present increased viability and decreased apoptosis and enhanced production of the multi-tumorigenic Osteopontin (OPN) and of one of its activator matrix metalloproteinase-7. Axl activity is necessary for CCRCC cell sphere formation and the ability of the cells to attach after non-adhesive growth. In addition, Gas6+Sunitinib-adapted CCRCC cells displayed enhanced migration and sphere formation, both mechanisms being Axl and OPN dependent. Altogether, this suggests that Sunitinib while targeting endothelial cells and tumor angiogenesis, simultaneously provides protumorigenic effects due to a constitutively, intensified and divergent Gas6-Axl system. Gas6-mediated Axl signaling, which is enhanced and diversified in the presence of Sunitinib possibly contributes to acquired chemoresistance, recurrence of aggressive disease and metastasis of CCRCC tumors. Therefore, combinatorial Axl-targeted therapy might be beneficial for CCRCC patients intended for Sunitinib treatment. Copyright © 2017. Published by Elsevier Inc.

  10. Bub3 reads phosphorylated MELT repeats to promote spindle assembly checkpoint signaling.

    Science.gov (United States)

    Primorac, Ivana; Weir, John R; Chiroli, Elena; Gross, Fridolin; Hoffmann, Ingrid; van Gerwen, Suzan; Ciliberto, Andrea; Musacchio, Andrea

    2013-09-24

    Regulation of macromolecular interactions by phosphorylation is crucial in signaling networks. In the spindle assembly checkpoint (SAC), which enables errorless chromosome segregation, phosphorylation promotes recruitment of SAC proteins to tensionless kinetochores. The SAC kinase Mps1 phosphorylates multiple Met-Glu-Leu-Thr (MELT) motifs on the kinetochore subunit Spc105/Knl1. The phosphorylated MELT motifs (MELT(P)) then promote recruitment of downstream signaling components. How MELT(P) motifs are recognized is unclear. In this study, we report that Bub3, a 7-bladed β-propeller, is the MELT(P) reader. It contains an exceptionally well-conserved interface that docks the MELT(P) sequence on the side of the β-propeller in a previously unknown binding mode. Mutations targeting the Bub3 interface prevent kinetochore recruitment of the SAC kinase Bub1. Crucially, they also cause a checkpoint defect, showing that recognition of phosphorylated targets by Bub3 is required for checkpoint signaling. Our data provide the first detailed mechanistic insight into how phosphorylation promotes recruitment of checkpoint proteins to kinetochores. DOI:http://dx.doi.org/10.7554/eLife.01030.001.

  11. Switch-Hitting Immune Cells: From Tumor Protection to Metastasis Promotion | Center for Cancer Research

    Science.gov (United States)

    The leading cause of death from cancer is not a primary tumor but is the metastases, or invasion of tumor cells into other locations in the body, that result from it. A complex and incompletely understood process, metastatic tumor formation is thought to require several steps in which tumor cells invade the tissue surrounding the primary tumor, enter local blood vessels, navigate the circulation, exit the vasculature, and colonize a new site. Tumor cells do not, however, operate independently, and the role that the immune system plays in this metastatic process is beginning to be appreciated.

  12. Signaling mechanisms in tumor necrosis factor alpha-induced death of microvascular endothelial cells of the corpus luteum

    Directory of Open Access Journals (Sweden)

    Rueda Bo R

    2003-02-01

    Full Text Available Abstract The microvasculature of the corpus luteum (CL, which comprises greater than 50% of the total number of cells in the CL, is thought to be the first structure to undergo degeneration via apoptosis during luteolysis. These studies compared the apoptotic potential of various cytokines (tumor necrosis factor α, TNFα; interferon gamma, IFNγ; soluble Fas ligand, sFasL, a FAS activating antibody (FasAb, and the luteolytic hormone prostaglandin F2α (PGF2α on CL-derived endothelial (CLENDO cells. Neither sFasL, FasAb nor PGF2α had any effect on CLENDO cell viability. Utilizing morphological and biochemical parameters it was evident that TNFα and IFNγ initiated apoptosis in long-term cultures. However, TNFα was the most potent stimulus for CLENDO cell apoptosis at early time points. Unlike many other studies described in non-reproductive cell types, TNFα induced apoptosis of CLENDO cells occurs in the absence of inhibitors of protein synthesis. TNFα-induced death is typically associated with acute activation of distinct intracellular signaling pathways (e.g. MAPK and sphingomyelin pathways. Treatment with TNFα for 5–30 min activated MAPKs (ERK, p38, and JNK, and increased ceramide accumulation. Ceramide, a product of sphingomyelin hydrolysis, can serve as an upstream activator of members of the MAPK family independently in numerous cell types, and is a well-established pro-apoptotic second messenger. Like TNFα, treatment of CLENDO cells with exogenous ceramide significantly induced endothelial apoptosis. Ceramide also activated the JNK pathway, but had no effect on ERK and p38 MAPKs. Pretreatment of CLENDO cells with glutathione (GSH, an intracellular reducing agent and known inhibitor of reactive oxygen species (ROS or TNFα-induced apoptosis, significantly attenuated TNFα-induced apoptosis. It is hypothesized that TNFα kills CLENDO cells through elevation of reactive oxygen species, and intracellular signals that promote

  13. OVOL2, an Inhibitor of WNT Signaling, Reduces Invasive Activities of Human and Mouse Cancer Cells and Is Down-regulated in Human Colorectal Tumors.

    Science.gov (United States)

    Ye, Guo-Dong; Sun, Guang-Bin; Jiao, Peng; Chen, Chen; Liu, Qing-Feng; Huang, Xiao-Li; Zhang, Rui; Cai, Wang-Yu; Li, Sheng-Nan; Wu, Jia-Fa; Liu, Yun-Jia; Wu, Rong-Si; Xie, Yuan-Yuan; Chan, Err-Cheng; Liou, Yih-Cherng; Li, Bo-An

    2016-03-01

    Activation of WNT signaling promotes the invasive activities of several types of cancer cells, but it is not clear if it regulates the same processes in colorectal cancer (CRC) cells, or what mechanisms are involved. We studied the expression and function of OVOL2, a member of the Ovo family of conserved zinc-finger transcription factors regulated by the WNT signaling pathway, in intestinal tumors of mice and human beings. We analyzed the expression of OVOL2 protein and messenger RNA in CRC cell lines and tissue arrays, as well as CRC samples from patients who underwent surgery at Xiamen University in China from 2009 to 2012; clinical information also was collected. CRC cell lines (SW620) were infected with lentivirus expressing OVOL2, analyzed in migration and invasion assays, and injected into nude mice to assess tumor growth and metastasis. Tandem affinity purification was used to purify the OVOL2-containing complex from CRC cells; the complex was analyzed by liquid chromatography, tandem mass spectrometry, and immunoprecipitation experiments. Gene promoter activities were measured in luciferase reporter assays. We analyzed mice with an intestine-specific disruption of Ovol2 (Ovol2(flox/+) transgenic mice), as well as Apc(min/+) mice; these mice were crossed and analyzed. Analysis of data from patients indicated that the levels of OVOL2 messenger RNA were significantly lower in colon carcinomas than adenomas, and decreased significantly as carcinomas progressed from grades 2 to 4. Immunohistochemical analysis of a tissue array of 275 CRC samples showed a negative association between tumor stage and OVOL2 level. Overexpression of OVOL2 in SW620 cells decreased their migration and invasion, reduced markers of the epithelial-to-mesenchymal transition, and suppressed their metastasis as xenograft tumors in nude mice; knockdown of OVOL2 caused LS174T cells to transition from epithelial to mesenchymal phenotypes. OVOL2 bound T-cell factor (TCF)4 and

  14. Snail and serpinA1 promote tumor progression and predict prognosis in colorectal cancer.

    Science.gov (United States)

    Kwon, Chae Hwa; Park, Hye Ji; Choi, Jin Hwa; Lee, Ja Rang; Kim, Hye Kyung; Jo, Hong-Jae; Kim, Hyun Sung; Oh, Nahmgun; Song, Geun Am; Park, Do Youn

    2015-08-21

    The role of Snail and serpin peptidase inhibitor clade A member 1 (serpinA1) in tumorigenesis has been previously identified. However, the exact role and mechanism of these proteins in progression of colorectal cancer (CRC) are controversial. In this study, we investigated the role of Snail and serpinA1 in colorectal cancer (CRC) and examined the mechanisms through which these proteins mediate CRC progression. Immunohistochemical analysis of 528 samples from patients with CRC showed that elevated expression of Snail or serpinA1 was correlated with advanced stage, lymph node metastasis, and poor prognosis. Moreover, we detected a correlation between Snail and serpinA1 expression. Functional studies performed using the CRC cell lines DLD-1 and SW-480 showed that overexpression of Snail or serpinA1 significantly increased CRC cell invasion and migration. Conversely, knockdown of Snail or serpinA1 expression suppressed CRC cell invasion and migration. ChIP analysis revealed that Snail regulated serpinA1 by binding to its promoter. In addition, fibronectin mediated Snail and serpinA1 signaling was involved in CRC cell invasion and migration. Taken together, our data showed that Snail and serpinA1 promoted CRC progression through fibronectin. These findings suggested that Snail and serpinA1 were novel prognostic biomarkers and candidate therapeutic targets in CRC.

  15. Conditional IFNAR1 ablation reveals distinct requirements of Type I IFN signaling for NK cell maturation and tumor surveillance

    OpenAIRE

    Mizutani, Tatsuaki; Neugebauer, Nina; Putz, Eva M.; Moritz, Nadine; Simma, Olivia; Zebedin-Brandl, Eva; Gotthardt, Dagmar; Warsch, Wolfgang; Eckelhart, Eva; Kantner, Hans-Peter; Kalinke, Ulrich; Lienenklaus, Stefan; Weiss, Siegfried; Strobl, Birgit; Müller, Mathias

    2012-01-01

    Mice with an impaired Type I interferon (IFN) signaling (IFNAR1- and IFNβ-deficient mice) display an increased susceptibility toward v-ABL-induced B-cell leukemia/lymphoma. The enhanced leukemogenesis in the absence of an intact Type I IFN signaling is caused by alterations within the tumor environment. Deletion of Ifnar1 in tumor cells (as obtained in Ifnar1f/f CD19-Cre mice) failed to impact on disease latency or type. In line with this observation, the initial transformation and proliferat...

  16. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling.

    Science.gov (United States)

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-10

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1-Bub3 and BubR1-Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1-Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/C(Cdc20)) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1-Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment.

  17. The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells.

    Science.gov (United States)

    Coffelt, Seth B; Marini, Frank C; Watson, Keri; Zwezdaryk, Kevin J; Dembinski, Jennifer L; LaMarca, Heather L; Tomchuck, Suzanne L; Honer zu Bentrup, Kerstin; Danka, Elizabeth S; Henkle, Sarah L; Scandurro, Aline B

    2009-03-10

    Bone marrow-derived mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) have been shown to engraft into the stroma of several tumor types, where they contribute to tumor progression and metastasis. However, the chemotactic signals mediating MSC migration to tumors remain poorly understood. Previous studies have shown that LL-37 (leucine, leucine-37), the C-terminal peptide of human cationic antimicrobial protein 18, stimulates the migration of various cell types and is overexpressed in ovarian, breast, and lung cancers. Although there is evidence to support a pro-tumorigenic role for LL-37, the function of the peptide in tumors remains unclear. Here, we demonstrate that neutralization of LL-37 in vivo significantly reduces the engraftment of MSCs into ovarian tumor xenografts, resulting in inhibition of tumor growth as well as disruption of the fibrovascular network. Migration and invasion experiments conducted in vitro indicated that the LL-37-mediated migration of MSCs to tumors likely occurs through formyl peptide receptor like-1. To assess the response of MSCs to the LL-37-rich tumor microenvironment, conditioned medium from LL-37-treated MSCs was assessed and found to contain increased levels of several cytokines and pro-angiogenic factors compared with controls, including IL-1 receptor antagonist, IL-6, IL-10, CCL5, VEGF, and matrix metalloproteinase-2. Similarly, Matrigel mixed with LL-37, MSCs, or the combination of the two resulted in a significant number of vascular channels in nude mice. These data indicate that LL-37 facilitates ovarian tumor progression through recruitment of progenitor cell populations to serve as pro-angiogenic factor-expressing tumor stromal cells.

  18. Arginine Methylation of SREBP1a via PRMT5 Promotes De Novo Lipogenesis and Tumor Growth.

    Science.gov (United States)

    Liu, Liu; Zhao, Xiaoping; Zhao, Li; Li, Jiajin; Yang, Hao; Zhu, Zongping; Liu, Jianjun; Huang, Gang

    2016-03-01

    Dysregulation of the sterol regulatory element-binding transcription factors sterol regulatory element-binding protein (SREBP) and SREBF activates de novo lipogenesis to high levels in cancer cells, a critical event in driving malignant growth. In this study, we identified an important posttranslational mechanism by which SREBP1a is regulated during metabolic reprogramming in cancer cells. Mass spectrometry revealed protein arginine methyltransferase 5 (PRMT5) as a binding partner of SREBP1a that symmetrically dimethylated it on R321, thereby promoting transcriptional activity. Furthermore, PRMT5-induced methylation prevented phosphorylation of SREBP1a on S430 by GSK3β, leading to its disassociation from Fbw7 (FBXW7) and its evasion from degradation through the ubiquitin-proteasome pathway. Consequently, methylation-stabilized SREBP1a increased de novo lipogenesis and accelerated the growth of cancer cells in vivo and in vitro. Clinically, R321 symmetric dimethylation status was associated with malignant progression of human hepatocellular carcinoma, where it served as an independent risk factor of poor prognosis. By showing how PRMT5-induced methylation of SREBP1a triggers hyperactivation of lipid biosynthesis, a key event in tumorigenesis, our findings suggest a new generalized strategy to selectively attack tumor metabolism. ©2016 American Association for Cancer Research.

  19. Overexpression of GRK3, Promoting Tumor Proliferation, Is Predictive of Poor Prognosis in Colon Cancer

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2017-01-01

    Full Text Available Deregulation of G protein-coupled receptor kinase 3 (GRK3, which belongs to a subfamily of kinases called GRKs, acts as a promoter mechanism in some cancer types. Our study found that GRK3 was significantly overexpressed in 162 pairs of colon cancer tissues than in the matched noncancerous mucosa (P<0.01. Based on immunohistochemistry staining of TMAs, GRK3 was dramatically stained positive in primary colon cancer (130/180, 72.22%, whereas it was detected minimally or negative in paired normal mucosa specimens (50/180, 27.78%. Overexpression of GRK3 was closely correlated with AJCC stage (P=0.001, depth of tumor invasion (P<0.001, lymph node involvement (P=0.004, distant metastasis (P=0.016, and histologic differentiation (P=0.004. Overexpression of GRK3 is an independent prognostic indicator that correlates with poor survival in colon cancer patients. Consistent with this, downregulation of GRK3 exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate, and impaired colon tumorigenicity in a xenograft model. Hence, a specific overexpression of GRK3 was observed in colon cancer, GRK3 potentially contributing to progression by mediating cancer cell proliferation and functions as a poor prognostic indicator in colon cancer and potentially represent a novel therapeutic target for the disease.

  20. Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes

    Science.gov (United States)

    Li, Y. P.; Atkins, C. M.; Sweatt, J. D.; Reid, M. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is implicated in muscle atrophy and weakness associated with a variety of chronic diseases. Recently, we reported that TNF-alpha directly induces muscle protein degradation in differentiated skeletal muscle myotubes, where it rapidly activates nuclear factor kappaB (NF-kappaB). We also have found that protein loss induced by TNF-alpha is NF-kappaB dependent. In the present study, we analyzed the signaling pathway by which TNF-alpha activates NF-kappaB in myotubes differentiated from C2C12 and rat primary myoblasts. We found that activation of NF-kappaB by TNF-alpha was blocked by rotenone or amytal, inhibitors of complex I of the mitochondrial respiratory chain. On the other hand, antimycin A, an inhibitor of complex III, enhanced TNF-alpha activation of NK-kappaB. These results suggest a key role of mitochondria-derived reactive oxygen species (ROS) in mediating NF-kappaB activation in muscle. In addition, we found that TNF-alpha stimulated protein kinase C (PKC) activity. However, other signal transduction mediators including ceramide, Ca2+, phospholipase A2 (PLA2), and nitric oxide (NO) do not appear to be involved in the activation of NF-kappaB.

  1. Modeling the altered expression levels of genes on signaling pathways in tumors as causal bayesian networks.

    Science.gov (United States)

    Neapolitan, Richard; Xue, Diyang; Jiang, Xia

    2014-01-01

    This paper concerns a study indicating that the expression levels of genes in signaling pathways can be modeled using a causal Bayesian network (BN) that is altered in tumorous tissue. These results open up promising areas of future research that can help identify driver genes and therapeutic targets. So, it is most appropriate for the cancer informatics community. Our central hypothesis is that the expression levels of genes that code for proteins on a signal transduction network (STP) are causally related and that this causal structure is altered when the STP is involved in cancer. To test this hypothesis, we analyzed 5 STPs associated with breast cancer, 7 STPs associated with other cancers, and 10 randomly chosen pathways, using a breast cancer gene expression level dataset containing 529 cases and 61 controls. We identified all the genes related to each of the 22 pathways and developed separate gene expression datasets for each pathway. We obtained significant results indicating that the causal structure of the expression levels of genes coding for proteins on STPs, which are believed to be implicated in both breast cancer and in all cancers, is more altered in the cases relative to the controls than the causal structure of the randomly chosen pathways.

  2. Nodal/Cripto signaling in fetal male germ cell development: implications for testicular germ cell tumors.

    Science.gov (United States)

    Spiller, Cassy M; Bowles, Josephine; Koopman, Peter

    2013-01-01

    Testicular cancer is the most frequent cancer in young men aged 15-40 years and accounts for 1% of all cancer diagnosed in males. Testicular germ cell tumors (TGCT) encompass a broad group of cancers, each displaying different levels of pluripotency and differentiation as well as malignancy potential. The TGCT cell of origin is thought to be a fetal germ cell that failed to correctly differentiate during development: this is known as the ‘fetal origins hypothesis’. This theory predicts that developmental pathways that control germ cell pluripotency or differentiation may be involved in the malignant transformation of these cells. Recently the Nodal/Cripto signaling pathway, known to control pluripotency and differentiation in embryonic stem (ES) cells, was implicated in regulating normal male fetal germ cell pluripotency. Although genes of this pathway are not normally expressed in germ cells during adult life, ectopic expression of this pathway was detected in several sub-groups of TGCTs. In this review, we consider the evidence for the fetal origins of TGCT and discuss the implications of Nodal/Cripto signaling in various aspects of germ cell development and cancer progression.

  3. Timp1 Promotes Cell Survival by Activating the PDK1 Signaling Pathway in Melanoma

    Directory of Open Access Journals (Sweden)

    Mariana Toricelli

    2017-04-01

    Full Text Available High TIMP1 expression is associated with poor prognosis in melanoma, where it can bind to CD63 and β1 integrin, inducing PI3-kinase pathway and cell survival. Phosphatidylinositol (3,4,5-trisphosphate (PIP3, generated under phosphatidylinositol-3-kinase (PI3K activation, enables the recruitment and activation of protein kinase B (PKB/AKT and phosphoinositide-dependent kinase 1 (PDK1 at the membrane, resulting in the phosphorylation of a host of other proteins. Using a melanoma progression model, we evaluated the impact of Timp1 and AKT silencing, as well as PI3K, PDK1, and protein kinase C (PKC inhibitors on aggressiveness characteristics. Timp1 downregulation resulted in decreased anoikis resistance, clonogenicity, dacarbazine resistance, and in vivo tumor growth and lung colonization. In metastatic cells, pAKTThr308 is highly expressed, contributing to anoikis resistance. We showed that PDK1Ser241 and PKCβIISer660 are activated by Timp1 in different stages of melanoma progression, contributing to colony formation and anoikis resistance. Moreover, simultaneous inhibition of Timp1 and AKT in metastatic cells resulted in more effective anoikis inhibition. Our findings demonstrate that Timp1 promotes cell survival with the participation of PDK1 and PKC in melanoma. In addition, Timp1 and AKT act synergistically to confer anoikis resistance in advanced tumor stages. This study brings new insights about the mechanisms by which Timp1 promotes cell survival in melanoma, and points to novel perspectives for therapeutic approaches.

  4. Tumor

    Science.gov (United States)

    ... peanut plants (aflatoxins) Excessive sunlight exposure Genetic problems Obesity Radiation exposure Viruses Types of tumors known to be caused by or linked with viruses are: Cervical cancer (human papillomavirus) Most anal cancers (human papillomavirus) Some ...

  5. Decidual vascular endothelial cells promote maternal-fetal immune tolerance by inducing regulatory T cells through canonical Notch1 signaling.

    Science.gov (United States)

    Yao, Yanyi; Song, Jieping; Wang, Weipeng; Liu, Nian

    2016-05-01

    Adaptation of the maternal immune response to accommodate the semiallogeneic fetus is necessary for pregnancy success. However, the mechanisms by which the fetus avoids rejection despite expression of paternal alloantigens remain incompletely understood. Regulatory T cells (Treg cells) are pivotal for maintaining immune homeostasis, preventing autoimmune disease and fetus rejection. In this study, we found that maternal decidual vascular endothelial cells (DVECs) sustained Foxp3 expression in resting Treg cells in vitro. Moreover, under in vitro Treg cell induction condition with agonistic antibodies and transforming growth factor (TGF)-β, DVECs promoted Treg cell differentiation from non-Treg conventional T cells. Consistent with the promotion of Treg cell maintenance and differentiation, Treg cell-associated gene expression such as TGF-β, Epstein-Barr-induced gene-3, CD39 and glucocorticoid-induced tumor necrosis factor receptor was also increased in the presence of DVECs. Further study revealed that DVECs expressed Notch ligands such as Jagged-1, Delta-like protein 1 (DLL-1) and DLL-4, while Treg cells expressed Notch1 on their surface. The effects of DVECs on Treg cells was inhibited by siRNA-induced knockdown of expression of Jagged-1 and DLL-1 in DVECs. Downregulation of Notch1 in Treg cells using lentiviral shRNA transduction decreased Foxp3 expression in Treg cells. Adoptive transfer of Notch1-deficient Treg cells increased abortion rate in a murine semiallogeneic pregnancy model. Taken together, our study suggests that maternal DVECs are able to maintain decidual Treg cell identity and promote Treg cell differentiation through activation of Notch1 signal pathway in Treg cells and subsequently inhibit the immune response against semiallogeneic fetuses and preventing spontaneous abortion.

  6. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein

    Directory of Open Access Journals (Sweden)

    Yulei Chen

    2017-02-01

    Full Text Available Abstract Background The macrophage, one of the several key immune cell types, is believed to be involved in tumorigenesis. However, the mechanism of macrophages promoting tumor progression is largely unknown. Methods The differentially secreted proteins of M1 and M2 macrophages were analyzed by mass spectrometry. We performed GST pull-down assay for the identification of cell-membrane receptors that interact with chitinase 3-like protein 1 (CHI3L1 protein. The mouse model was used to validate the function of CHI3L1 in cancer metastasis in vivo. Protein phosphorylation and gene expression were performed to study the signaling pathway activation of cancer cells after CHI3L1 treatment. Results M2 macrophage-secreted CHI3L1 promoted the metastasis of gastric and breast cancer cells in vitro and in vivo. The CHI3L1 protein functioned by interacting with interleukin-13 receptor α2 chain (IL-13Rα2 molecules on the plasma membranes of cancer cells. Activation of IL-13Rα2 by CHI3L1 triggered the activation of the mitogen-activated protein kinase signaling pathway, leading to the upregulated expression of matrix metalloproteinase genes, which promoted tumor metastasis. The results of this study indicated that the level of CHI3L1 protein in the sera of patients with gastric or breast cancer was significantly elevated compared with those of healthy donors. Conclusions Our study revealed a novel aspect of macrophages with respect to cancer metastasis and showed that CHI3L1 could be a marker of metastatic gastric and breast cancer in patients.

  7. Targeting G-Protein Signaling for the Therapeutics of Prostate Tumor Bone Metastases and the Associated Chronic Bone Pain

    Science.gov (United States)

    2015-09-01

    Cancer Bone Metastasis, heterotrimeric G protein  subunits, G protein -coupled receptors, signal transduction 16. SECURITY CLASSIFICATION OF: 17...comparable to that of Gαt-expressing cells (Fig.2A), indicating the involvement of G subunits released from Gi/o proteins . Interestingly, the growth...1 AWARD NUMBER: W81XWH-12-1-0213 TITLE: Targeting G- Protein Signaling for the Therapeutics of Prostate Tumor Bone Metastases and the

  8. Visual setup of logical models of signaling and regulatory networks with ProMoT

    Directory of Open Access Journals (Sweden)

    Gilles Ernst

    2006-11-01

    Full Text Available Abstract Background The analysis of biochemical networks using a logical (Boolean description is an important approach in Systems Biology. Recently, new methods have been proposed to analyze large signaling and regulatory networks using this formalism. Even though there is a large number of tools to set up models describing biological networks using a biochemical (kinetic formalism, however, they do not support logical models. Results Herein we present a flexible framework for setting up large logical models in a visual manner with the software tool ProMoT. An easily extendible library, ProMoT's inherent modularity and object-oriented concept as well as adaptive visualization techniques provide a versatile environment. Both the graphical and the textual description of the logical model can be exported to different formats. Conclusion New features of ProMoT facilitate an efficient set-up of large Boolean models of biochemical interaction networks. The modeling environment is flexible; it can easily be adapted to specific requirements, and new extensions can be introduced. ProMoT is freely available from http://www.mpi-magdeburg.mpg.de/projects/promot/.

  9. Visual setup of logical models of signaling and regulatory networks with ProMoT.

    Science.gov (United States)

    Saez-Rodriguez, Julio; Mirschel, Sebastian; Hemenway, Rebecca; Klamt, Steffen; Gilles, Ernst Dieter; Ginkel, Martin

    2006-11-17

    The analysis of biochemical networks using a logical (Boolean) description is an important approach in Systems Biology. Recently, new methods have been proposed to analyze large signaling and regulatory networks using this formalism. Even though there is a large number of tools to set up models describing biological networks using a biochemical (kinetic) formalism, however, they do not support logical models. Herein we present a flexible framework for setting up large logical models in a visual manner with the software tool ProMoT. An easily extendible library, ProMoT's inherent modularity and object-oriented concept as well as adaptive visualization techniques provide a versatile environment. Both the graphical and the textual description of the logical model can be exported to different formats. New features of ProMoT facilitate an efficient set-up of large Boolean models of biochemical interaction networks. The modeling environment is flexible; it can easily be adapted to specific requirements, and new extensions can be introduced. ProMoT is freely available from http://www.mpi-magdeburg.mpg.de/projects/promot/.

  10. Estrogen modulates NFκB signaling by enhancing IκBα levels and blocking p65 binding at the promoters of inflammatory genes via estrogen receptor-β.

    Directory of Open Access Journals (Sweden)

    Dongqi Xing

    Full Text Available NFκB signaling is critical for expression of genes involved in the vascular injury response. We have shown that estrogen (17β-estradiol, E2 inhibits expression of these genes in an estrogen receptor (ER-dependent manner in injured rat carotid arteries and in tumor necrosis factor (TNF-α treated rat aortic smooth muscle cells (RASMCs. This study tested whether E2 inhibits NFκB signaling in RASMCs and defined the mechanisms.TNF-α treated RASMCs demonstrated rapid degradation of IκBα (10-30 min, followed by dramatic increases in IκBα mRNA and protein synthesis (40-60 min. E2 enhanced TNF-α induced IκBα synthesis without affecting IκBα degradation. Chromatin immunoprecipitation (ChIP assays revealed that E2 pretreatment both enhanced TNF-α induced binding of NFκB p65 to the IκBα promoter and suppressed TNF-α induced binding of NFκB p65 to and reduced the levels of acetylated histone 3 at promoters of monocyte chemotactic protein (MCP-1 and cytokine-induced neutrophil chemoattractant (CINC-2β genes. ChIP analyses also demonstrated that ERβ can be recruited to the promoters of MCP-1 and CINC-2β during co-treatment with TNF-α and E2.These data demonstrate that E2 inhibits inflammation in RASMCs by two distinct mechanisms: promoting new synthesis of IκBα, thus accelerating a negative feedback loop in NFκB signaling, and directly inhibiting binding of NFκB to the promoters of inflammatory genes. This first demonstration of multifaceted modulation of NFκB signaling by E2 may represent a novel mechanism by which E2 protects the vasculature against inflammatory injury.

  11. Point of care assessment of melanoma tumor signaling and metastatic burden from μNMR analysis of tumor fine needle aspirates and peripheral blood.

    Science.gov (United States)

    Gee, Michael S; Ghazani, Arezou A; Haq, Rizwan; Wargo, Jennifer A; Sebas, Matthew; Sullivan, Ryan J; Lee, Hakho; Weissleder, Ralph

    2017-04-01

    This study evaluates μNMR technology for molecular profiling of tumor fine needle aspirates and peripheral blood of melanoma patients. In vitro assessment of melanocyte (MART-1, HMB45) and MAP kinase signaling (pERK, pS6K) molecule expression was performed in human cell lines, while clinical validation was performed in an IRB-approved study of melanoma patients undergoing biopsy and blood sampling. Tumor FNA and blood specimens were compared with BRAF genetic analysis and cross-sectional imaging. μNMR in vitro analysis showed increased expression of melanocyte markers in melanoma cells as well as increased expression of phosphorylated MAP kinase targets in BRAF-mutant melanoma cells. Melanoma patient FNA samples showed increased pERK and pS6K levels in BRAF mutant compared with BRAF WT melanomas, with μNMR blood circulating tumor cell level increased with higher metastatic burden visible on imaging. These results indicate that μNMR technology provides minimally invasive point-of-care evaluation of tumor signaling and metastatic burden in melanoma patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. A novel SNP analysis method to detect copy number alterations with an unbiased reference signal directly from tumor samples

    Directory of Open Access Journals (Sweden)

    LaFramboise William A

    2011-01-01

    Full Text Available Abstract Background Genomic instability in cancer leads to abnormal genome copy number alterations (CNA as a mechanism underlying tumorigenesis. Using microarrays and other technologies, tumor CNA are detected by comparing tumor sample CN to normal reference sample CN. While advances in microarray technology have improved detection of copy number alterations, the increase in the number of measured signals, noise from array probes, variations in signal-to-noise ratio across batches and disparity across laboratories leads to significant limitations for the accurate identification of CNA regions when comparing tumor and normal samples. Methods To address these limitations, we designed a novel "Virtual Normal" algorithm (VN, which allowed for construction of an unbiased reference signal directly from test samples within an experiment using any publicly available normal reference set as a baseline thus eliminating the need for an in-lab normal reference set. Results The algorithm was tested using an optimal, paired tumor/normal data set as well as previously uncharacterized pediatric malignant gliomas for which a normal reference set was not available. Using Affymetrix 250K Sty microarrays, we demonstrated improved signal-to-noise ratio and detected significant copy number alterations using the VN algorithm that were validated by independent PCR analysis of the target CNA regions. Conclusions We developed and validated an algorithm to provide a virtual normal reference signal directly from tumor samples and minimize noise in the derivation of the raw CN signal. The algorithm reduces the variability of assays performed across different reagent and array batches, methods of sample preservation, multiple personnel, and among different laboratories. This approach may be valuable when matched normal samples are unavailable or the paired normal specimens have been subjected to variations in methods of preservation.

  13. Tumor-specific expression of αvβ3 integrin promotes spontaneous metastasis of breast cancer to bone

    Science.gov (United States)

    Sloan, Erica K; Pouliot, Normand; Stanley, Kym L; Chia, Jenny; Moseley, Jane M; Hards, Daphne K; Anderson, Robin L

    2006-01-01

    Introduction Studies in xenograft models and experimental models of metastasis have implicated several β3 integrin-expressing cell populations, including endothelium, platelets and osteoclasts, in breast tumor progression. Since orthotopic human xenograft models of breast cancer are poorly metastatic to bone and experimental models bypass the formation of a primary tumor, however, the precise contribution of tumor-specific αvβ3 to the spontaneous metastasis of breast tumors from the mammary gland to bone remains unclear. Methods We used a syngeneic orthotopic model of spontaneous breast cancer metastasis to test whether exogenous expression of αvβ3 in a mammary carcinoma line (66cl4) that metastasizes to the lung, but not to bone, was sufficient to promote its spontaneous metastasis to bone from the mammary gland. The tumor burden in the spine and the lung following inoculation of αvβ3-expressing 66cl4 (66cl4beta3) tumor cells or control 66cl4pBabe into the mammary gland was analyzed by real-time quantitative PCR. The ability of these cells to grow and form osteolytic lesions in bone was determined by histology and tartrate-resistant acid phosphatase staining of bone sections following intratibial injection of tumor cells. The adhesive, migratory and invasive properties of 66cl4pBabe and 66cl4beta3 cells were evaluated in standard in vitro assays. Results The 66cl4beta3 tumors showed a 20-fold increase in metastatic burden in the spine compared with 66cl4pBabe. A similar trend in lung metastasis was observed. αvβ3 did not increase the proliferation of 66cl4 cells in vitro or in the mammary gland in vivo. Similarly, αvβ3 is not required for the proliferation of 66cl4 cells in bone as both 66cl4pBabe and 66cl4beta3 proliferated to the same extent when injected directly into the tibia. 66cl4beta3 tumor growth in the tibia, however, increased osteoclast recruitment and bone resorption compared with 66cl4 tumors. Moreover, αvβ3 increased 66cl4 tumor cell

  14. Direct engagement of the PI3K pathway by mutant KIT dominates oncogenic signaling in gastrointestinal stromal tumor.

    Science.gov (United States)

    Bosbach, Benedikt; Rossi, Ferdinand; Yozgat, Yasemin; Loo, Jennifer; Zhang, Jennifer Q; Berrozpe, Georgina; Warpinski, Katherine; Ehlers, Imke; Veach, Darren; Kwok, Andrew; Manova, Katia; Antonescu, Cristina R; DeMatteo, Ronald P; Besmer, Peter

    2017-10-03

    Gastrointestinal stromal tumors (GISTs) predominantly harbor activating mutations in the receptor tyrosine kinase KIT. To genetically dissect in vivo the requirement of different signal transduction pathways emanating from KIT for tumorigenesis, the oncogenic KitV558Δ mutation was combined with point mutations abrogating specific phosphorylation sites on KIT. Compared with single-mutant KitV558Δ/+ mice, double-mutant KitV558Δ;Y567F/Y567F knock-in mice lacking the SRC family kinase-binding site on KIT (pY567) exhibited attenuated MAPK signaling and tumor growth. Surprisingly, abrogation of the PI3K-binding site (pY719) in KitV558Δ;Y719F/Y719F mice prevented GIST development, although the interstitial cells of Cajal (ICC), the cells of origin of GIST, were normal. Pharmacologic inhibition of the PI3K pathway in tumor-bearing KitV558Δ/+ mice with the dual PI3K/mTOR inhibitor voxtalisib, the pan-PI3K inhibitor pilaralisib, and the PI3K-alpha-restricted inhibitor alpelisib each diminished tumor proliferation. The addition of the MEK inhibitor PD-325901 or binimetinib further decreased downstream KIT signaling. Moreover, combining PI3K and MEK inhibition was effective against imatinib-resistant KitV558Δ;T669I/+ tumors.

  15. The somatic reproductive tissues of C. elegans promote longevity through steroid hormone signaling.

    Directory of Open Access Journals (Sweden)

    Tracy M Yamawaki

    2010-08-01

    Full Text Available In Caenorhabditis elegans and Drosophila melanogaster, removing the germline precursor cells increases lifespan. In worms, and possibly also in flies, this lifespan extension requires the presence of somatic reproductive tissues. How the somatic gonad signals other tissues to increase lifespan is not known. The lifespan increase triggered by loss of the germ cells is known to require sterol hormone signaling, as reducing the activity of the nuclear hormone receptor DAF-12, or genes required for synthesis of the DAF-12 ligand dafachronic acid, prevents germline loss from extending lifespan. In addition to sterol signaling, the FOXO transcription factor DAF-16 is required to extend lifespan in animals that lack germ cells. DAF-12/NHR is known to assist with the nuclear accumulation of DAF-16/FOXO in these animals, yet we find that loss of DAF-12/NHR has little or no effect on the expression of at least some DAF-16/FOXO target genes. In this study, we show that the DAF-12-sterol signaling pathway has a second function to activate a distinct set of genes and extend lifespan in response to the somatic reproductive tissues. When germline-deficient animals lacking somatic reproductive tissues are given dafachronic acid, their expression of DAF-12/NHR-dependent target genes is restored and their lifespan is increased. Together, our findings indicate that in C. elegans lacking germ cells, the somatic reproductive tissues promote longevity via steroid hormone signaling to DAF-12.

  16. Human CAFs promote lymphangiogenesis in ovarian cancer via the Hh-VEGF-C signaling axis.

    Science.gov (United States)

    Wei, Rui; Lv, Mengqin; Li, Fei; Cheng, Teng; Zhang, Zhengzhong; Jiang, Guiying; Zhou, Ying; Gao, Ruiqiu; Wei, Xiao; Lou, Jicheng; Wu, Xizi; Luo, Danfeng; Ma, Xiangyi; Jiang, Jin; Ma, Ding; Xi, Ling

    2017-09-15

    Cancer-associated fibroblasts (CAFs) play a pivotal role in the development and progression of many human cancers. Recent studies have shown that Hedgehog (Hh) signalling modulates the stromal microenvironment and prepares a suitable niche for tumour metastasis. However, the detailed molecular mechanisms underlying CAF-mediated lymphangiogenesis have not been fully elucidated. Therefore, our goal is to illustrate whether Hh ligands can activate Hh signalling in CAFs in a paracrine fashion and elucidate the effect of CAFs on lymphangiogenesis. We determined here that Sonic Hedgehog (SHH) secreted by ovarian cancer (OC) cells activated Hh signalling in CAFs and promoted the proliferation of CAFs. Moreover, we co-injected SHH-overexpressing OC cells and CAFs in a xenograft model and found that the CAFs accelerated tumourigenesis and lymphangiogenesis in OC. Mechanistically, we found that SHH secreted by the OC cells induced VEGF-C expression in CAFs. Inhibition of Hh signalling in CAFs decreased VEGF-C expression and diminished the positive role of CAFs in supporting tumourigenesis and lymphangiogenesis in a murine xenograft model. Our results demonstrate that CAFs constitute a supportive niche for cancer lymphangiogenesis via the Hh/VEGF-C signalling axis and provide evidence for the clinical application of Hh inhibitors in the treatment of OC.

  17. Histamine-HisCl1 Receptor Axis Regulates Wake-Promoting Signals in Drosophila melanogaster

    Science.gov (United States)

    Oh, Yangkyun; Jang, Donghoon; Sonn, Jun Young; Choe, Joonho

    2013-01-01

    Histamine and its two receptors, histamine-gated chloride channel subunit 1 (HisCl1) and ora transientless (Ort), are known to control photoreception and temperature sensing in Drosophila. However, histamine signaling in the context of neural circuitry for sleep-wake behaviors has not yet been examined in detail. Here, we obtained mutant flies with compromised or enhanced histamine signaling and tested their baseline sleep. Hypomorphic mutations in histidine decarboxylase (HDC), an enzyme catalyzing the conversion from histidine to histamine, caused an increase in sleep duration. Interestingly, hisCl1 mutants but not ort mutants showed long-sleep phenotypes similar to those in hdc mutants. Increased sleep duration in hisCl1 mutants was rescued by overexpressing hisCl1 in circadian pacemaker neurons expressing a neuropeptide pigment dispersing factor (PDF). Consistently, RNA interference (RNAi)-mediated depletion of hisCl1 in PDF neurons was sufficient to mimic hisCl1 mutant phenotypes, suggesting that PDF neurons are crucial for sleep regulation by the histamine-HisCl1 signaling. Finally, either hisCl1 mutation or genetic ablation of PDF neurons dampened wake-promoting effects of elevated histamine signaling via direct histamine administration. Taken together, these data clearly demonstrate that the histamine-HisCl1 receptor axis can activate and maintain the wake state in Drosophila and that wake-activating signals may travel via the PDF neurons. PMID:23844178

  18. Inflammatory milieu cultivated Sema3A signaling promotes chondrocyte apoptosis in knee osteoarthritis.

    Science.gov (United States)

    Sun, Jie; Wei, Xuelei; Wang, Zengliang; Liu, Yunjiao; Lu, Jie; Lu, Yandong; Cui, Meng; Zhang, Xi; Li, Fangguo

    2018-03-01

    Osteoarthritis (OA) is the leading degenerative joint disease and featured by articular cartilage destruction, where chondrocyte apoptosis plays a critical role. Semaphorin-3A (Sema3A) has been implicated in OA chondrocyte physiology. In this study we aimed to uncover how Sema3A signaling is regulated in chondrocytes and investigate its role in OA chondrocyte survival. Here, we report that Sema3A and its receptor neuropilin-1 (Nrp1) are synchronously upregulated in cartilage chondrocytes of knee OA patients. Their expressions in chondrocytes could be induced by the stimulation of proinflammatory cytokines IL-1β and TNF-α and subsequent transcriptional activation orchestrated by C/EBPβ. The resulting excessive Sema3A signaling promotes chondrocyte apoptosis through impairing PI3K/Akt prosurvival signaling. These findings indicate a regulatory mechanism and a proapoptotic function of aberrant Sema3A signaling in OA chondrocytes, and suggest that targeting Sema3A signaling might interfere OA pathogenesis. © 2017 Wiley Periodicals, Inc.

  19. Tumor Associated Fibroblasts Promote PD-L1 Expression in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Haiyang HE

    2017-05-01

    Full Text Available Background and objective Tumor-associated fibroblasts (TAF is an important part of TME, which inhibits the function of immune cells. CD8+ T cells play a significant role in tumor immunity. T-cell membrane possesses a distinct type of molecule with a negative regulatory function. Upon interaction with its corresponding ligand [programmed death factor ligand 1 (PD-L1], programmed death factor 1 (PD-1 is activated and thus inhibits the kinase activity of T cells. This study aims to explore the possible effects of TAF on PD-L1 expression in lung cancer cells. Methods Lung cancer cell lines H1975 and H520 were co-cultured with (experiment or without TAF (control via Transwell assay for through 48 hours under the same culture condition. H1975 and H520 cells were counted using a microscope. The protein and mRNA expression levels of PD-L1 were detected by FCM assay and PCR analysis, respectively. Results The numbers of lung cancer cells in 100 μm2 for H1975 and H520 cells are (46±21 and (38±10 in the experiment group, respectively, and (16±5 and (12±5 in the control group, respectively (P<0.05. The expression levels of the PD-L1 protein in H1975 and H520 cells are (20.93%±3.54% and (19.26%±3.04% in the experiment group, respectively, and (12.58%±2.52% and (11.60%±2.65% in the control group, respectively (P<0.05. The mRNA expression levels in H1975 and H520 cells are (16.45±1.25 and (15.38±2.02 pg/mL in the experiment group, respectively, and (7.78±1.27 and (7.20±1.58 pg/mL (P<0.05 in the control group, respectively (P<0.05. Conclusion TAF promotes the growth and increases the expression of PD-L1 in H1975 and H520 cells.

  20. Fibroblast growth factor receptor 1 activation in mammary tumor cells promotes macrophage recruitment in a CX3CL1-dependent manner.

    Directory of Open Access Journals (Sweden)

    Johanna R Reed

    Full Text Available Tumor formation is an extensive process requiring complex interactions that involve both tumor cell-intrinsic pathways and soluble mediators within the microenvironment. Tumor cells exploit the intrinsic functions of many soluble molecules, including chemokines and their receptors, to regulate pro-tumorigenic phenotypes that are required for growth and progression of the primary tumor. Previous studies have shown that activation of inducible FGFR1 (iFGFR1 in mammary epithelial cells resulted in increased proliferation, migration, and invasion in vitro and tumor formation in vivo. These studies also demonstrated that iFGFR1 activation stimulated recruitment of macrophages to the epithelium where macrophages contributed to iFGFR1-mediated epithelial cell proliferation and angiogenesis. The studies presented here further utilize this model to identify the mechanisms that regulate FGFR1-induced macrophage recruitment. Results from this study elucidate a novel role for the inflammatory chemokine CX3CL1 in FGFR1-induced macrophage migration. Specifically, we illustrate that activation of both the inducible FGFR1 construct in mouse mammary epithelial cells and endogenous FGFR in the triple negative breast cancer cell line, HS578T, leads to expression of the chemokine CX3CL1. Furthermore, we demonstrate that FGFR-induced CX3CL1 is sufficient to recruit CX3CR1-expressing macrophages in vitro. Finally, blocking CX3CR1 in vivo leads to decreased iFGFR1-induced macrophage recruitment, which correlates with decreased angiogenesis. While CX3CL1 is a known target of FGF signaling in the wound healing environment, these studies demonstrate that FGFR activation also leads to induction of CX3CL1 in a tumor setting. Furthermore, these results define a novel role for CX3CL1 in promoting macrophage recruitment during mammary tumor formation, suggesting that the CX3CL1/CX3CR1 axis may represent a potential therapeutic approach for targeting breast cancers associated

  1. Fibroblast growth factor signaling pathway in endothelial cells is activated by BMPER to promote angiogenesis.

    Science.gov (United States)

    Esser, Jennifer S; Rahner, Susanne; Deckler, Meike; Bode, Christoph; Patterson, Cam; Moser, Martin

    2015-02-01

    Previously, we have identified bone morphogenetic protein endothelial cell precursor-derived regulator (BMPER) to increase the angiogenic activity of endothelial cells in a concentration-dependent manner. In this project, we now investigate how BMPER acts in concert with key molecules of angiogenesis to promote blood vessel formation. To assess the effect of BMPER on angiogenesis-related signaling pathways, we performed an angiogenesis antibody array with BMPER-stimulated endothelial cells. We detected increased basic fibroblast growth factor (bFGF/FGF-2) expression after BMPER stimulation and decreased expression of thrombospondin-1. Additionally, FGF receptor-1 expression, phosphorylation, FGF signaling pathway activity, and cell survival were increased. Consistently, silencing of BMPER by small interfering RNA decreased bFGF and FGF receptor-1 expression and increased thrombospondin-1 expression and cell apoptosis. Next, we investigated the interaction of BMPER and the FGF signaling pathway in endothelial cell function. BMPER stimulation increased endothelial cell angiogenic activity in migration, Matrigel, and spheroid assays. To block FGF signaling, an anti-bFGF antibody was used, which effectively inhibited the proangiogenic BMPER effect. Accordingly, BMPER-silenced endothelial cells under bFGF stimulation showed decreased angiogenic activity compared with bFGF control. We confirmed these findings in vivo by subcutaneous Matrigel injections with and without bFGF in C57BL/6_Bmper(+/-) mice. Aortic ring assays of C57BL/6_Bmper(+/-) mice confirmed a specific effect for bFGF but not for vascular endothelial growth factor. Taken together, the proangiogenic BMPER effect in endothelial cells is mediated by inhibition of antiangiogenic thrombospondin-1 and enhanced expression and activation of the FGF signaling pathway that is crucial in the promotion of angiogenesis. © 2014 American Heart Association, Inc.

  2. β1 integrin signaling promotes neuronal migration along vascular scaffolds in the post-stroke brain

    Directory of Open Access Journals (Sweden)

    Teppei Fujioka

    2017-02-01

    Full Text Available Cerebral ischemic stroke is a main cause of chronic disability. However, there is currently no effective treatment to promote recovery from stroke-induced neurological symptoms. Recent studies suggest that after stroke, immature neurons, referred to as neuroblasts, generated in a neurogenic niche, the ventricular-subventricular zone, migrate toward the injured area, where they differentiate into mature neurons. Interventions that increase the number of neuroblasts distributed at and around the lesion facilitate neuronal repair in rodent models for ischemic stroke, suggesting that promoting neuroblast migration in the post-stroke brain could improve efficient neuronal regeneration. To move toward the lesion, neuroblasts form chain-like aggregates and migrate along blood vessels, which are thought to increase their migration efficiency. However, the molecular mechanisms regulating these migration processes are largely unknown. Here we studied the role of β1-class integrins, transmembrane receptors for extracellular matrix proteins, in these migrating neuroblasts. We found that the neuroblast chain formation and blood vessel-guided migration critically depend on β1 integrin signaling. β1 integrin facilitated the adhesion of neuroblasts to laminin and the efficient translocation of their soma during migration. Moreover, artificial laminin-containing scaffolds promoted neuroblast chain formation and migration toward the injured area. These data suggest that laminin signaling via β1 integrin supports vasculature-guided neuronal migration to efficiently supply neuroblasts to injured areas. This study also highlights the importance of vascular scaffolds for cell migration in development and regeneration.

  3. Chronic cisplatin treatment promotes enhanced damage repair and tumor progression in a mouse model of lung cancer

    Science.gov (United States)

    Oliver, Trudy G.; Mercer, Kim L.; Sayles, Leanne C.; Burke, James R.; Mendus, Diana; Lovejoy, Katherine S.; Cheng, Mei-Hsin; Subramanian, Aravind; Mu, David; Powers, Scott; Crowley, Denise; Bronson, Roderick T.; Whittaker, Charles A.; Bhutkar, Arjun; Lippard, Stephen J.; Golub, Todd; Thomale, Juergen; Jacks, Tyler; Sweet-Cordero, E. Alejandro

    2010-01-01

    Chemotherapy resistance is a major obstacle in cancer treatment, yet the mechanisms of response to specific therapies have been largely unexplored in vivo. Employing genetic, genomic, and imaging approaches, we examined the dynamics of response to a mainstay chemotherapeutic, cisplatin, in multiple mouse models of human non-small-cell lung cancer (NSCLC). We show that lung tumors initially respond to cisplatin by sensing DNA damage, undergoing cell cycle arrest, and inducing apoptosis—leading to a significant reduction in tumor burden. Importantly, we demonstrate that this response does not depend on the tumor suppressor p53 or its transcriptional target, p21. Prolonged cisplatin treatment promotes the emergence of resistant tumors with enhanced repair capacity that are cross-resistant to platinum analogs, exhibit advanced histopathology, and possess an increased frequency of genomic alterations. Cisplatin-resistant tumors express elevated levels of multiple DNA damage repair and cell cycle arrest-related genes, including p53-inducible protein with a death domain (Pidd). We demonstrate a novel role for PIDD as a regulator of chemotherapy response in human lung tumor cells. PMID:20395368

  4. The calcium mobilizing tumor promoting agent, thapsigargin elevates the platelet cytoplasmic free calcium concentration to a higher steady state level. A possible mechanism of action for the tumor promotion

    DEFF Research Database (Denmark)

    Thastrup, Ole; Foder, B; Scharff, O

    1987-01-01

    stimulation with thrombin and Tg, respectively. The thrombin induced rise of [Ca2+]i was reversible, which indicates that active calcium sequestration and/or extrusion is operating. Tg affected [Ca2+]i in a divergent manner, thus, [Ca2+]i was stabilized on a elevated level without initial formation...... that the tumor promoting activity of Tg is attributable to its ability to stabilize [Ca2+]i on a new elevated steady state level....

  5. Highly conserved molecular pathways, including Wnt signaling, promote functional recovery from spinal cord injury in lampreys.

    Science.gov (United States)

    Herman, Paige E; Papatheodorou, Angelos; Bryant, Stephanie A; Waterbury, Courtney K M; Herdy, Joseph R; Arcese, Anthony A; Buxbaum, Joseph D; Smith, Jeramiah J; Morgan, Jennifer R; Bloom, Ona

    2018-01-15

    In mammals, spinal cord injury (SCI) leads to dramatic losses in neurons and synaptic connections, and consequently function. Unlike mammals, lampreys are vertebrates that undergo spontaneous regeneration and achieve functional recovery after SCI. Therefore our goal was to determine the complete transcriptional responses that occur after SCI in lampreys and to identify deeply conserved pathways that promote regeneration. We performed RNA-Seq on lamprey spinal cord and brain throughout the course of functional recovery. We describe complex transcriptional responses in the injured spinal cord, and somewhat surprisingly, also in the brain. Transcriptional responses to SCI in lampreys included transcription factor networks that promote peripheral nerve regeneration in mammals such as Atf3 and Jun. Furthermore, a number of highly conserved axon guidance, extracellular matrix, and proliferation genes were also differentially expressed after SCI in lampreys. Strikingly, ~3% of differentially expressed transcripts belonged to the Wnt pathways. These included members of the Wnt and Frizzled gene families, and genes involved in downstream signaling. Pharmacological inhibition of Wnt signaling inhibited functional recovery, confirming a critical role for this pathway. These data indicate that molecular signals present in mammals are also involved in regeneration in lampreys, supporting translational relevance of the model.

  6. A simple and effective approach for treatment of situs tumor and metastasis:to promote intratumor pus formation

    Directory of Open Access Journals (Sweden)

    Hong Li

    2015-12-01

    Full Text Available Purpose: The recent emergence of the tumor microenvironment as the critical determinant in cancer outcome opens a new routes to fight cancer, however, the clinical results of targeting microenvironment for treating human cancer have not met expectations. Our purpose is to investigate how to target microenvironment for treatment of situs tumor and metastasis.Methods : We suppose that tumor is a robber from times of anarchy and disorder and can be eradicated in flourishing age. We also suppose that carcinogenesis is largely attributed to physically weak that cann’t get rid of ulcer by pus formation. In vivo,the subcutaneous implant model and pulmonary metastasis model of lewis lung cancer were established. Tumor bearing mice were taken water decoction of Astragalus mongholicus(huangqi and Spina Gleditsiae (zaojiaoci by intragastric administration b.i.d for ten weeks, and the influences of Astragalus mongholicus and Spina Gleditsiae  on tumor progression were evaluated by body temperature,blood oxygen saturation,red cell ATPase,blood  rheology,intratumor hypoxia,capillary permeability, matrix metalloproteinase (MMPs and intratumor pus formation.  Results:We found that both of Astragalus mongholicus and Spina Gleditsiae could keep body temperature,blood oxygen saturation,red cell ATPase and blood rheology,and improve intratumor hypoxia,capillary permeability and MMPs in tumor bearing mice,which led to slower tumor growth and less metastasis. Astragalus mongholicus could remove body poison and stimulate immune responses, and Spina Gleditsiae  could  promote pus formation and proteolytic enzymes. The combination of  Astragalus mongholicus and Spina Gleditsiae favored the restoration of tumor immune responses and proteolytic activity at the tumor site, which not only result to an increase in aseptic pus formation, but also to a decrease in necrotic tissue accumulation, and finally caused a complete intratumor pus

  7. C. elegans DAF-16/FOXO interacts with TGF-ß/BMP signaling to induce germline tumor formation via mTORC1 activation.

    Directory of Open Access Journals (Sweden)

    Wenjing Qi

    2017-05-01

    Full Text Available Activation of the FOXO transcription factor DAF-16 by reduced insulin/IGF signaling (IIS is considered to be beneficial in C. elegans due to its ability to extend lifespan and to enhance stress resistance. In the germline, cell-autonomous DAF-16 activity prevents stem cell proliferation, thus acting tumor-suppressive. In contrast, hypodermal DAF-16 causes a tumorous germline phenotype characterized by hyperproliferation of the germline stem cells and rupture of the adjacent basement membrane. Here we show that cross-talk between DAF-16 and the transforming growth factor ß (TGFß/bone morphogenic protein (BMP signaling pathway causes germline hyperplasia and results in disruption of the basement membrane. In addition to activating MADM/NRBP/hpo-11 gene alone, DAF-16 also directly interacts with both R-SMAD proteins SMA-2 and SMA-3 in the nucleus to regulate the expression of mTORC1 pathway. Knocking-down of BMP genes or each of the four target genes in the hypodermis was sufficient to inhibit germline proliferation, indicating a cell-non-autonomously controlled regulation of stem cell proliferation by somatic tissues. We propose the existence of two antagonistic DAF-16/FOXO functions, a cell-proliferative somatic and an anti-proliferative germline activity. Whereas germline hyperplasia under reduced IIS is inhibited by DAF-16 cell-autonomously, activation of somatic DAF-16 in the presence of active IIS promotes germline proliferation and eventually induces tumor-like germline growth. In summary, our results suggest a novel pathway crosstalk of DAF-16 and TGF-ß/BMP that can modulate mTORC1 at the transcriptional level to cause stem-cell hyperproliferation. Such cell-type specific differences may help explaining why human FOXO activity is considered to be tumor-suppressive in most contexts, but may become oncogenic, e.g. in chronic and acute myeloid leukemia.

  8. Replication Study: The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors.

    Science.gov (United States)

    Horrigan, Stephen K

    2017-01-19

    In 2015, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Chroscinski et al., 2015) that described how we intended to replicate selected experiments from the paper "The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors "(Willingham et al., 2012). Here we report the results of those experiments. We found that treatment of immune competent mice bearing orthotopic breast tumors with anti-mouse CD47 antibodies resulted in short-term anemia compared to controls, consistent with the previously described function of CD47 in normal phagocytosis of aging red blood cells and results reported in the original study (Table S4; Willingham et al., 2012). The weight of tumors after 30 days administration of anti-CD47 antibodies or IgG isotype control were not found to be statistically different, whereas the original study reported inhibition of tumor growth with anti-CD47 treatment (Figure 6A,B; Willingham et al., 2012). However, our efforts to replicate this experiment were confounded because spontaneous regression of tumors occurred in several of the mice. Additionally, the excised tumors were scored for inflammatory cell infiltrates. We found IgG and anti-CD47 treated tumors resulted in minimal to moderate lymphocytic infiltrate, while the original study observed sparse lymphocytic infiltrate in IgG-treated tumors and increased inflammatory cell infiltrates in anti-CD47 treated tumors (Figure 6C; Willingham et al., 2012). Furthermore, we observed neutrophilic infiltration was slightly increased in anti-CD47 treated tumors compared to IgG control. Finally, we report a meta-analysis of the result.

  9. Overexpression of long noncoding RNA HOTTIP promotes tumor invasion and predicts poor prognosis in gastric cancer

    Directory of Open Access Journals (Sweden)

    Ye H

    2016-04-01

    Full Text Available Heng Ye,1 Kun Liu,2 Keqing Qian1 1Department of Oncology, 2Department of General Surgery, The Affiliated Hospital of Nanjing Medical University, Changzhou No 2 People’s Hospital, Changzhou, Jiangsu, People’s Republic of China Purpose: Long noncoding RNAs have been proved to play important roles in the tumorigenesis and development of human gastric cancer (GC. Our study aims to investigate the expression and function of Homeobox A transcript at the distal tip (HOTTIP in GC.Methods: HOTTIP expression was detected in GC tissues and cell lines by using quantitative reverse transcription polymerase chain reaction. Association between HOTTIP levels and clinicopathological factors and patient prognosis was also analyzed. MTT, flow cytometry, and transwell invasion and migration assays were used to investigate the role of HOTTIP in the regulation of biological behaviors of GC cells.Results: HOTTIP expression was remarkably increased in GC tissues and cell lines compared with that in the normal control. Clinicopathologic analysis revealed that high HOTTIP expression correlated with larger tumor size, deeper invasion depth, positive lymph node metastasis, advanced TNM stage, and shorter overall survival. Multivariate regression analysis identified HOTTIP overexpression as an independent unfavorable prognostic factor in GC patients. Moreover, HOTTIP downregulation by si-HOTTIP transfection impaired GC cell proliferation, promoted cell apoptosis, and reduced cell invasion and migration.Conclusion: These findings suggested that HOTTIP may contribute to GC initiation and progression, and would be not only a novel prognostic marker but also a potential therapeutic target for this disease. Keywords: long noncoding RNA, HOTTIP, gastric cancer, prognosis

  10. Gastrin regulates ABCG2 to promote the migration, invasion and side populations in pancreatic cancer cells via activation of NF-κB signaling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Juan; Xin, Beibei; Wang, Hui; He, Xiaodan [School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071 (China); Wei, Wei; Zhang, Ti [Tianjin Medical University Cancer Institute and Hospital, Huanhu West Road, Tianjin 300060 (China); Shen, Xiaohong, E-mail: zebal2014@163.com [School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071 (China)

    2016-08-01

    Gastrin is absent in most normal adult pancreatic tissues but is highly expressed in pancreatic cancer tissues. Although Gastrin expression was reported to be associated with tumor proliferation in human pancreatic cancer, studies on the relationship between Gastrin and tumor metastasis in pancreatic cancer are rare. In this study, we performed an analysis to determine the effects of Gastrin on modulating the side populations, cell proportion and tumor cell metastatic potential and invasion activity and explored its mechanisms in pancreatic cancer. We indicated that Gastrin and ABCG2 were widely expressed in pancreatic cancer cell lines and overexpressed in cancer tissues. Gastrin induced ABCG2 expression, and this effect was mediated by NF-κB activation. Gastrin regulated the SP proportion of BxPC-3 cells via modulating ABCG2 expression. Through the regulation of the functions of NF-κB/ABCG2, Gastrin functionally promoted the migration and invasion in pancreatic cancer cell. The present study indicated that Gastrin induced ABCG2 expression by activating NF-κB and thereby modulated the SP proportion, tumor cell metastatic potential and invasion activity in pancreatic cancer. Gastrin could serve as an effective therapeutic target for the metastasis of pancreatic cancer. - Highlights: • Gastrin induces ABCG2 expression mediated by NF-κB activation. • Gastrin regulates NF-κB's function that binds to the ABCG2 promoter in BxPC-3 cells. • Gastrin promotes the SP proportion in BxPC-3 cells by modulating ABCG2 expression via activation of NF-κB molecule. • Gastrin induces an increase in migration and invasion potential in pancreatic cancer cell by regulating NF-κB/ABCG2 signaling.

  11. Metastasis-inducing S100A4 and RANTES cooperate in promoting tumor progression in mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Forst

    Full Text Available BACKGROUND: The tumor microenvironment has been described as a critical milieu determining tumor growth and metastases. A pivotal role of metastasis-inducing S100A4 in the development of tumor stroma has been proven in animal models and verified in human breast cancer biopsies. Expression and release of S100A4 has been shown in various types of stroma composing cells, including fibroblasts and immune cells. However, the events implicated in upstream and downstream pathways regulating the activity of the extracellular S100A4 protein in the tumor milieu remain unsolved. METHODOLOGY/PRINCIPAL FINDINGS: We studied the interplay between the tumor cell-derived cytokine regulated-upon-activation, normal T-cell expressed and secreted (RANTES; CCL5 and S100A4 which were shown to be critical factors in tumor progression. We found that RANTES stimulates the externalization of S100A4 via microparticle shedding from the plasma membrane of tumor and stroma cells. Conversely, the released S100A4 protein induces the upregulation of fibronectin (FN in fibroblasts and a number of cytokines, including RANTES in tumor cells as well as stimulates cell motility in a wound healing assay. Importantly, using wild type and S100A4-deficient mouse models, we demonstrated a substantial influence of tumor cell-derived RANTES on S100A4 release into blood circulation which ultimately increases the metastatic burden in mice. CONCLUSIONS/SIGNIFICANCE: Altogether, the data presented strongly validate the pro-metastatic function of S100A4 in the tumor microenvironment and define how the tumor cell-derived cytokine RANTES acts as a critical regulator of S100A4-dependent tumor cell dissemination. Additionally, for the first time we demonstrated the mechanism of S100A4 release associated with plasma membrane microparticle shedding from various cells types.

  12. CD47 Promotes Tumor Invasion and Metastasis in Non-small Cell Lung Cancer

    OpenAIRE

    Hui Zhao; Jianxin Wang; Xiaodan Kong; Encheng Li; Yuanbin Liu; Xiaohui Du; Zhijie Kang; Ying Tang; Yanbin Kuang; Zhihui Yang; Youwen Zhou; Qi Wang

    2016-01-01

    CD47 is overexpressed in many human cancers, its level positively correlates with tumor invasion and metastasis. However, it is largely unknown whether CD47 overexpression drives metastasis and how CD47 lead to tumor metastasis in non-small cell lung cancer (NSCLC). In this study, we analyzed NSCLC specimens and cell lines, and revealed that CD47 is expressed at a higher level than in tumor-free control samples. Furthermore, increased CD47 expression correlated with clinical staging, lymph no...

  13. Regulation of Transgene Expression in Tumor Cells by Exploiting Endogenous Intracellular Signals

    Science.gov (United States)

    Asai, Daisuke; Kang, Jeong-Hun; Toita, Riki; Tsuchiya, Akira; Niidome, Takuro; Nakashima, Hideki; Katayama, Yoshiki

    2009-03-01

    Recently, we have proposed a novel strategy for a cell-specific gene therapy system based on responses to intracellular signals. In this system, an intracellular signal that is specifically and abnormally activated in the diseased cells is used for the activation of transgene expression. In this study, we used protein kinase C (PKC)α as a trigger to activate transgene expression. We prepared a PKCα-responsive polymer conjugate [PPC(S)] and a negative control conjugate [PPC(A)], in which the phosphorylation site serine (Ser) was replaced with alanine (Ala). The phosphorylation for polymer/DNA complexes was determined with a radiolabel assay using [γ-32P]ATP. PPC(S)/DNA complexes were phosphorylated by the addition of PKCα, but no phosphorylation of the PPC(A)/DNA complex was observed. Moreover, after microinjection of polymer/GFP-encoding DNA complexes into HepG2 cells at cation/anion (C/A) ratios of 0.5 to 2.0, significant expression of GFP was observed in all cases using PPC(S)/DNA complexes, but no GFP expression was observed in the negative control PPC(A)/DNA complex-microinjected cells at C/A ratios of 1.0 and 2.0. On the other hand, GFP expression from PPC(S)/DNA complexes was completely suppressed in cells pretreated with PKCα inhibitor (Ro31-7549). These results suggest that our gene regulation system can be used for tumor cell-specific expression of a transgene in response to PKCα activity.

  14. A human monoclonal antibody targeting the stem cell factor receptor (c-Kit) blocks tumor cell signaling and inhibits tumor growth

    Science.gov (United States)

    Lebron, Maria B; Brennan, Laura; Damoci, Christopher B; Prewett, Marie C; O’Mahony, Marguerita; Duignan, Inga J; Credille, Kelly M; DeLigio, James T; Starodubtseva, Marina; Amatulli, Michael; Zhang, Yiwei; Schwartz, Kaben D; Burtrum, Douglas; Balderes, Paul; Persaud, Kris; Surguladze, David; Loizos, Nick; Paz, Keren; Kotanides, Helen

    2014-01-01

    Stem cell factor receptor (c-Kit) exerts multiple biological effects on target cells upon binding its ligand stem cell factor (SCF). Aberrant activation of c-Kit results in dysregulated signaling and is implicated in the pathogenesis of numerous cancers. The development of more specific and effective c-Kit therapies is warranted given its essential role in tumorigenesis. In this study, we describe the biological properties of CK6, a fully human IgG1 monoclonal antibody against the extracellular region of human c-Kit. CK6 specifically binds c-Kit receptor with high affinity (EC50 = 0.06 nM) and strongly blocks its interaction with SCF (IC50 = 0.41 nM) in solid phase assays. Flow cytometry shows CK6 binding to c-Kit on the cell surface of human small cell lung carcinoma (SCLC), melanoma, and leukemia tumor cell lines. Furthermore, exposure to CK6 inhibits SCF stimulation of c-Kit tyrosine kinase activity and downstream signaling pathways such as mitogen-activated protein kinase (MAPK) and protein kinase B (AKT), in addition to reducing tumor cell line growth in vitro. CK6 treatment significantly decreases human xenograft tumor growth in NCI-H526 SCLC (T/C% = 57) and Malme-3M melanoma (T/C% = 58) models in vivo. The combination of CK6 with standard of care chemotherapy agents, cisplatin and etoposide for SCLC or dacarbazine for melanoma, more potently reduces tumor growth (SCLC T/C% = 24, melanoma T/C% = 38) compared with CK6 or chemotherapy alone. In summary, our results demonstrate that CK6 is a c-Kit antagonist antibody with tumor growth neutralizing properties and are highly suggestive of potential therapeutic application in treating human malignancies harboring c-Kit receptor. PMID:24921944

  15. PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer

    Science.gov (United States)

    Jeong, Jaekwang; VanHouten, Joshua N.; Dann, Pamela; Kim, Wonnam; Sullivan, Catherine; Yu, Herbert; Liotta, Lance; Espina, Virginia; Stern, David F.; Friedman, Peter A.; Wysolmerski, John J.

    2016-01-01

    In the lactating mammary gland, the plasma membrane calcium ATPase2 (PMCA2) transports milk calcium. Its expression is activated in breast cancers, where high tumor levels predict increased mortality. We find that PMCA2 expression correlates with HER2 levels in breast cancers and that PMCA2 interacts with HER2 in specific actin-rich membrane domains. Knocking down PMCA2 increases intracellular calcium, disrupts interactions between HER2 and HSP-90, inhibits HER2 signaling, and results in internalization and degradation of HER2. Manipulating PMCA2 levels regulates the growth of breast cancer cells, and knocking out PMCA2 inhibits the formation of tumors in mouse mammary tumor virus (MMTV)-Neu mice. These data reveal previously unappreciated molecular interactions regulating HER2 localization, membrane retention, and signaling, as well as the ability of HER2 to generate breast tumors, suggesting that interactions between PMCA2 and HER2 may represent therapeutic targets for breast cancer. PMID:26729871

  16. Internal radiotherapy of liver cancer with rat hepato-carcinoma-intestine-pancreas gene as a liver tumor-specific promoter

    Energy Technology Data Exchange (ETDEWEB)

    Herve, J.; Cunha, A. Sa; Liu, B.; Valogne, Y.; Longuet, M.; Bregerie, O.; Guettier, C.; Samuel, D.; Brechot, C.; Faivre, J. [Hop Paul Brousse, INSERM, Hepatobiliary Ctr, U785, F-94800 Villejuif (France); Herve, J.; Cunha, A. Sa; Liu, B.; Valogne, Y.; Longuet, M.; Bregerie, O.; Guettier, C.; Samuel, D.; Brechot, C.; Faivre, J. [Univ Paris Sud, Fac Med, F-94800 Villejuif (France); Boisgard, R.; Tavitian, B. [INSERM, U803, F-91400 Orsay (France); Boisgard, R.; Tavitian, B. [CEA, Serv Hosp Frederic Joliot, Lab Imagerie Mol Expt, F-91400 Orsay (France); Roux, J.; Cales, P. [Univ Angers, UPRES EA 3859, Lab Hemodynam Interact Fibrose et Invas Tumorale H, Angers (France); Clerc, J. [Hop Cochin, AP HP, Dept Nucl Med, F-75014 Paris (France)

    2008-07-01

    The hepato-carcinoma-intestine-pancreas (HIP) gene, also called pancreatitis-associated protein-1 (PAP1) or Reg III {alpha}, is activated in most human hepatocellular carcinomas (HCCs) but not in normal liver, which suggests that HIP regulatory sequence could be used as efficient liver tumor-specific promoters to express a therapeutic polynucleotide in liver cancer. The sodium iodide sym-porter (NIS), which has recognized therapeutic and reporter gene properties, is appropriate to evaluate the transcriptional strength and specificity of the HIP promoter in HCC. For this purpose, we constructed a recombinant rat HIP-NIS adeno-viral vector (AdrHIP-NIS), and evaluated its performance as a mediator of selective radio-iodide uptake in tumor hepatocytes. Western blot, immunofluorescence, and iodide uptake assays were performed in AdrHIP-NIS-infected primary hepatocytes and transformed hepatic and non-hepatic cells. Nuclear imaging, tissue counting and immuno-histo-chemistry were performed in normal and HCC-bearing Wistar rats infected with AdrHIP-NIS intra-tumorally or via the hepatic artery. In AdrHIP-NIS-infected transformed hepatic cells, functional NIS was strongly expressed, as in cells infected with a cytomegalovirus-NIS vector. No NIS expression was found in AdrHIP-NIS-infected normal hepatocytes or transformed non-hepatic cells. In rats bearing multi-nodular HCC, AdrHIP-NIS triggered functional NIS expression that was preferential in tumor hepatocytes. Administration of 18 mCi of {sup 131}I resulted in the destruction of AdrHIP-NIS-injected nodules. This study has identified the rHIP regulatory sequence as a potent liver tumor-specific promoter for the transfer of therapeutic genes, and AdrHIP-NIS-mediated. {sup 131}I therapy as a valuable option for the treatment of multi-nodular HCC. (authors)

  17. Assessing tumor progression factors by somatic gene transfer into a mouse model: Bcl-xL promotes islet tumor cell invasion.

    Directory of Open Access Journals (Sweden)

    Yi-Chieh Nancy Du

    2007-10-01

    Full Text Available Tumors develop through multiple stages, implicating multiple effectors, but the tools to assess how candidate genes contribute to stepwise tumor progression have been limited. We have developed a novel system in which progression of phenotypes in a mouse model of pancreatic islet cell tumorigenesis can be used to measure the effects of genes introduced by cell-type-specific infection with retroviral vectors. In this system, bitransgenic mice, in which the rat insulin promoter (RIP drives expression of both the SV40 T antigen (RIP-Tag and the receptor for subgroup A avian leukosis virus (RIP-tva, are infected with avian viral vectors carrying cDNAs encoding candidate progression factors. Like RIP-Tag mice, RIP-Tag; RIP-tva bitransgenic mice develop isolated carcinomas by approximately 14 wk of age, after progression through well-defined stages that are similar to aspects of human tumor progression, including hyperplasia, angiogenesis, adenoma, and invasive carcinoma. When avian retroviral vectors carrying a green fluorescent protein marker were introduced into RIP-Tag; RIP-tva mice by intra-cardiac injection at the hyperplastic or early dysplastic stage of tumorigenesis, approximately 20% of the TVA-positive cells were infected and expressed green fluorescent proteins as measured by flow cytometry. Similar infection with vectors carrying cDNA encoding either of two progression factors, a dominant-negative version of cadherin 1 (dnE-cad or Bcl-xL, accelerated the formation of islet tumors with invasive properties and pancreatic lymph node metastasis. To begin studying the mechanism by which Bcl-xL, an anti-apoptotic protein, promotes invasion and metastasis, RIP-Tag; RIP-tva pancreatic islet tumor cells were infected in vitro with RCASBP-Bcl-xL. Although no changes were observed in rates of proliferation or apoptosis, Bcl-xL altered cell morphology, remodeled the actin cytoskeleton, and down-regulated cadherin 1; it also induced cell migration and

  18. BAFF and MyD88 signals promote a lupuslike disease independent of T cells

    Science.gov (United States)

    Groom, Joanna R.; Fletcher, Carrie A.; Walters, Stacey N.; Grey, Shane T.; Watt, Sally V.; Sweet, Mathew J.; Smyth, Mark J.; Mackay, Charles R.; Mackay, Fabienne

    2007-01-01

    Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by the production of autoantibodies. However, the underlying cause of disease appears to relate to defects in T cell tolerance or T cell help to B cells. Transgenic (Tg) mice overexpressing the cytokine B cell–activating factor of the tumor necrosis factor family (BAFF) develop an autoimmune disorder similar to SLE and show impaired B cell tolerance and altered T cell differentiation. We generated BAFF Tg mice that were completely deficient in T cells, and, surprisingly, these mice developed an SLE-like disease indistinguishable from that of BAFF Tg mice. Autoimmunity in BAFF Tg mice did, however, require B cell–intrinsic signals through the Toll-like receptor (TLR)–associated signaling adaptor MyD88, which controlled the production of proinflammatory autoantibody isotypes. TLR7/9 activation strongly up-regulated expression of transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), which is a receptor for BAFF involved in B cell responses to T cell–independent antigens. Moreover, BAFF enhanced TLR7/9 expression on B cells and TLR-mediated production of autoantibodies. Therefore, autoimmunity in BAFF Tg mice results from altered B cell tolerance, but requires TLR signaling and is independent of T cell help. It is possible that SLE patients with elevated levels of BAFF show a similar basis for disease. PMID:17664289

  19. The hippo pathway promotes Notch signaling in regulation of cell differentiation, proliferation, and oocyte polarity.

    Directory of Open Access Journals (Sweden)

    Jianzhong Yu

    2008-03-01

    Full Text Available Specification of the anterior-posterior axis in Drosophila oocytes requires proper communication between the germ-line cells and the somatically derived follicular epithelial cells. Multiple signaling pathways, including Notch, contribute to oocyte polarity formation by controlling the temporal and spatial pattern of follicle cell differentiation and proliferation. Here we show that the newly identified Hippo tumor-suppressor pathway plays a crucial role in the posterior follicle cells in the regulation of oocyte polarity. Disruption of the Hippo pathway, including major components Hippo, Salvador, and Warts, results in aberrant follicle-cell differentiation and proliferation and dramatic disruption of the oocyte anterior-posterior axis. These phenotypes are related to defective Notch signaling in follicle cells, because misexpression of a constitutively active form of Notch alleviates the oocyte polarity defects. We also find that follicle cells defective in Hippo signaling accumulate the Notch receptor and display defects in endocytosis markers. Our findings suggest that the interaction between Hippo and classic developmental pathways such as Notch is critical to spatial and temporal regulation of differentiation and proliferation and is essential for development of the body axes in Drosophila.

  20. High expression of G-protein signaling modulator 2 in hepatocellular carcinoma facilitates tumor growth and metastasis by activating the PI3K/AKT signaling pathway.

    Science.gov (United States)

    He, Xiao-Qin; Zhang, Yue-Feng; Yu, Jia-Jun; Gan, Yuan-Yuan; Han, Na-Na; Zhang, Mei-Xia; Ge, Wei; Deng, Jun-Jian; Zheng, Yong-Fa; Xu, Xi-Ming

    2017-03-01

    The aim of this study was to investigate the role of G-protein signaling modulator 2 in the carcinogenesis and progression of hepatocellular carcinoma. We previously showed that G-protein signaling modulator 2 was upregulated in hepatitis B virus-related hepatocellular carcinoma tissues through a hierarchical clustering analysis. With this study, we first assessed the expression pattern of G-protein signaling modulator 2 in hepatocellular carcinoma specimens and adjacent noncancerous tissues; clinical data were analyzed, along survival times, utilizing the Kaplan-Meier method. Moreover, the functions of G-protein signaling modulator 2 were examined using small-interfering RNAs in vitro. The results showed that G-protein signaling modulator 2 was clearly overexpressed in hepatocellular carcinoma tissues and cell lines and that the G-protein signaling modulator 2 expression level was related to tumor size and hepatitis B virus infection. Furthermore, G-protein signaling modulator 2 knockdown studies suggested that G-protein signaling modulator 2 accelerates cell growth, cell cycle, migration, and invasion and inhibits apoptosis, acting as an oncogene in hepatocellular carcinoma. Western blotting indicated that silencing of G-protein signaling modulator 2 in HepG2 and SMMC-7721 cells increased the expression levels of Bax, caspase-3, and E-cadherin, while notably suppressing the cyclin-dependent kinase 4, cyclin-dependent kinase 6, CyclinD1, Snail1, Vimentin, and matrix metallopeptidase 9 expression levels, compared with that in the control groups. In addition, we found that G-protein signaling modulator 2 can affect the expression of key proteins involved in protein kinase B activation. In conclusion, high expression of G-protein signaling modulator 2 was involved in the pathological processes of hepatocellular carcinoma through activation of the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, which may provide an attractive potential diagnostic