WorldWideScience

Sample records for signal fraction measurements

  1. Void fraction measurement in two-phase flow processes via symbolic dynamic filtering of ultrasonic signals

    International Nuclear Information System (INIS)

    Chakraborty, Subhadeep; Keller, Eric; Talley, Justin; Srivastav, Abhishek; Ray, Asok; Kim, Seungjin

    2009-01-01

    This communication introduces a non-intrusive method for void fraction measurement and identification of two-phase flow regimes, based on ultrasonic sensing. The underlying algorithm is built upon the recently reported theory of a statistical pattern recognition method called symbolic dynamic filtering (SDF). The results of experimental validation, generated on a laboratory test apparatus, show a one-to-one correspondence between the flow measure derived from SDF and the void fraction measured by a conductivity probe. A sharp change in the slope of flow measure is found to be in agreement with a transition from fully bubbly flow to cap-bubbly flow. (rapid communication)

  2. On Generalized Fractional Differentiator Signals

    Directory of Open Access Journals (Sweden)

    Hamid A. Jalab

    2013-01-01

    Full Text Available By employing the generalized fractional differential operator, we introduce a system of fractional order derivative for a uniformly sampled polynomial signal. The calculation of the bring in signal depends on the additive combination of the weighted bring-in of N cascaded digital differentiators. The weights are imposed in a closed formula containing the Stirling numbers of the first kind. The approach taken in this work is to consider that signal function in terms of Newton series. The convergence of the system to a fractional time differentiator is discussed.

  3. Measurement of oxygen extraction fraction (OEF): An optimized BOLD signal model for use with hypercapnic and hyperoxic calibration.

    Science.gov (United States)

    Merola, Alberto; Murphy, Kevin; Stone, Alan J; Germuska, Michael A; Griffeth, Valerie E M; Blockley, Nicholas P; Buxton, Richard B; Wise, Richard G

    2016-04-01

    Several techniques have been proposed to estimate relative changes in cerebral metabolic rate of oxygen consumption (CMRO2) by exploiting combined BOLD fMRI and cerebral blood flow data in conjunction with hypercapnic or hyperoxic respiratory challenges. More recently, methods based on respiratory challenges that include both hypercapnia and hyperoxia have been developed to assess absolute CMRO2, an important parameter for understanding brain energetics. In this paper, we empirically optimize a previously presented "original calibration model" relating BOLD and blood flow signals specifically for the estimation of oxygen extraction fraction (OEF) and absolute CMRO2. To do so, we have created a set of synthetic BOLD signals using a detailed BOLD signal model to reproduce experiments incorporating hypercapnic and hyperoxic respiratory challenges at 3T. A wide range of physiological conditions was simulated by varying input parameter values (baseline cerebral blood volume (CBV0), baseline cerebral blood flow (CBF0), baseline oxygen extraction fraction (OEF0) and hematocrit (Hct)). From the optimization of the calibration model for estimation of OEF and practical considerations of hypercapnic and hyperoxic respiratory challenges, a new "simplified calibration model" is established which reduces the complexity of the original calibration model by substituting the standard parameters α and β with a single parameter θ. The optimal value of θ is determined (θ=0.06) across a range of experimental respiratory challenges. The simplified calibration model gives estimates of OEF0 and absolute CMRO2 closer to the true values used to simulate the experimental data compared to those estimated using the original model incorporating literature values of α and β. Finally, an error propagation analysis demonstrates the susceptibility of the original and simplified calibration models to measurement errors and potential violations in the underlying assumptions of isometabolism

  4. MR signal-fat-fraction analysis and T2* weighted imaging measure BAT reliably on humans without cold exposure.

    Science.gov (United States)

    Holstila, Milja; Pesola, Marko; Saari, Teemu; Koskensalo, Kalle; Raiko, Juho; Borra, Ronald J H; Nuutila, Pirjo; Parkkola, Riitta; Virtanen, Kirsi A

    2017-05-01

    Brown adipose tissue (BAT) is compositionally distinct from white adipose tissue (WAT) in terms of triglyceride and water content. In adult humans, the most significant BAT depot is localized in the supraclavicular area. Our aim is to differentiate brown adipose tissue from white adipose tissue using fat T2* relaxation time mapping and signal-fat-fraction (SFF) analysis based on a commercially available modified 2-point-Dixon (mDixon) water-fat separation method. We hypothesize that magnetic resonance (MR) imaging can reliably measure BAT regardless of the cold-induced metabolic activation, with BAT having a significantly higher water and iron content compared to WAT. The supraclavicular area of 13 volunteers was studied on 3T PET-MRI scanner using T2* relaxation time and SFF mapping both during cold exposure and at ambient temperature; and 18 F-FDG PET during cold exposure. Volumes of interest (VOIs) were defined semiautomatically in the supraclavicular fat depot, subcutaneous WAT and muscle. The supraclavicular fat depot (assumed to contain BAT) had a significantly lower SFF and fat T2* relaxation time compared to subcutaneous WAT. Cold exposure did not significantly affect MR-based measurements. SFF and T2* values measured during cold exposure and at ambient temperature correlated inversely with the glucose uptake measured by 18 F-FDG PET. Human BAT can be reliably and safely assessed using MRI without cold activation and PET-related radiation exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Fractional Processes and Fractional-Order Signal Processing Techniques and Applications

    CERN Document Server

    Sheng, Hu; Qiu, TianShuang

    2012-01-01

    Fractional processes are widely found in science, technology and engineering systems. In Fractional Processes and Fractional-order Signal Processing, some complex random signals, characterized by the presence of a heavy-tailed distribution or non-negligible dependence between distant observations (local and long memory), are introduced and examined from the ‘fractional’ perspective using simulation, fractional-order modeling and filtering and realization of fractional-order systems. These fractional-order signal processing (FOSP) techniques are based on fractional calculus, the fractional Fourier transform and fractional lower-order moments. Fractional Processes and Fractional-order Signal Processing: • presents fractional processes of fixed, variable and distributed order studied as the output of fractional-order differential systems; • introduces FOSP techniques and the fractional signals and fractional systems point of view; • details real-world-application examples of FOSP techniques to demonstr...

  6. Measuring condensate fraction in superconductors

    International Nuclear Information System (INIS)

    Chakravarty, Sudip; Kee, Hae-Young

    2000-01-01

    An analysis of off-diagonal long-range order in superconductors shows that the spin-spin correlation function is significantly influenced by the order if the order parameter is anisotropic on a microscopic scale. Thus, magnetic neutron scattering can provide a direct measurement of the condensate fraction of a superconductor. It is also argued that recent measurements in high-temperature superconductors come very close to achieving this goal. (c) 2000 The American Physical Society

  7. Bioelectric Signal Measuring System

    Science.gov (United States)

    Guadarrama-Santana, A.; Pólo-Parada, L.; García-Valenzuela, A.

    2015-01-01

    We describe a low noise measuring system based on interdigitated electrodes for sensing bioelectrical signals. The system registers differential voltage measurements in order of microvolts. The base noise during measurements was in nanovolts and thus, the sensing signals presented a very good signal to noise ratio. An excitation voltage of 1Vrms with 10 KHz frequency was applied to an interdigitated capacitive sensor without a material under test and to a mirror device simultaneously. The output signals of both devices was then subtracted in order to obtain an initial reference value near cero volts and reduce parasitic capacitances due to the electronics, wiring and system hardware as well. The response of the measuring system was characterized by monitoring temporal bioelectrical signals in real time of biological materials such as embryo chicken heart cells and bovine suprarenal gland cells.

  8. Reduced Order Fractional Fourier Transform A New Variant to Fractional Signal Processing Definition and Properties

    OpenAIRE

    Kumar, Sanjay

    2018-01-01

    In this paper, a new variant to fractional signal processing is proposed known as the Reduced Order Fractional Fourier Transform. Various properties satisfied by its transformation kernel is derived. The properties associated with the proposed Reduced Order Fractional Fourier Transform like shift, modulation, time-frequency shift property are also derived and it is shown mathematically that when the rotation angle of Reduced Order Fractional Fourier Transform approaches 90 degrees, the propos...

  9. Apparent diffusion coefficient and vascular signal fraction measurements with magnetic resonance imaging: feasibility in metastatic ovarian cancer at 3 Tesla. Technical development

    International Nuclear Information System (INIS)

    Sala, Evis; Priest, Andrew N.; Kataoka, Masako; Graves, Martin J.; Joubert, Ilse; Lomas, David J.; McLean, Mary A.; Griffiths, John R.; Crawford, Robin A.F.; Jimenez-Linan, Mercedes; Earl, Helena M.; Brenton, James D.

    2010-01-01

    This prospective study aims to evaluate the feasibility of DWI at 3 Tesla in patients with advanced ovarian cancer and investigate the differences in vascular signal fraction (VSF) and apparent diffusion coefficient (ADC) values between primary ovarian mass and metastatic disease. Twenty patients with suspected advanced ovarian carcinoma were enrolled in the study. High-resolution T2W FRFSE images were used to confirm the position of three marker lesions: primary ovarian mass, omental cake and peritoneal deposit. Multislice DWI was acquired in a single breath-hold using multiple b-values. The three marker lesions were outlined by an experienced radiologist on ADC and VSF maps. Ovarian lesions showed the highest ADC values. The mean ADC value for peritoneal deposits was significantly lower than for both ovarian lesions (p = 0.03) and omental cake (p = 0.03). The VSF for omental cake was significantly higher than for ovarian lesions (p = 0.01) and peritoneal deposits (p = 0.04). There was a significant positive correlation between ADC and VSF for peritoneal deposits (p = 0.04). DWI in advanced ovarian cancer is feasible at 3 T. There are significant differences in baseline ADC and VSF values between ovarian cancer, omental cake and peritoneal deposits that may explain the mixed treatment response that occurs at different disease sites. (orig.)

  10. Measurement of Tau Lepton Branching Fractions

    Energy Technology Data Exchange (ETDEWEB)

    Nicol, N.

    2003-12-19

    We present {tau}{sup -} lepton branching fraction measurements based on data from the TPC/Two-Gamma detector at PEP. Using a sample of {tau}{sup -} {yields} {nu}{sub {tau}}K{sup -}{pi}{sup +}{pi}{sup -} events, we examine the resonance structure of the K{sup -}{pi}{sup +}{pi}{sup -} system and obtain the first measurements of branching fractions for {tau}{sup -} {yields} {nu}{sub {tau}}K{sub 1}{sup -}(1270) and {tau}{sup -} {yields} {nu}{sub {tau}}K{sub 1}{sup -}(1400). We also describe a complete set of branching fraction measurements in which all the decays of the {tau}{sup -} lepton are separated into classes defined by the identities of the charged particles and an estimate of the number of neutrals. This is the first such global measurement with decay classes defined by the four possible charged particle species, e, {mu}, {pi}, and K.

  11. Measurement of void fractions by nuclear techniques

    International Nuclear Information System (INIS)

    Hernandez G, A.; Vazquez G, J.; Diaz H, C.; Salinas R, G.A.

    1997-01-01

    In this work it is done a general analysis of those techniques used to determine void fractions and it is chosen a nuclear technique to be used in the heat transfer circuit of the Physics Department of the Basic Sciences Management. The used methods for the determination of void fractions are: radioactive absorption, acoustic techniques, average velocity measurement, electromagnetic flow measurement, optical methods, oscillating absorption, nuclear magnetic resonance, relation between pressure and flow oscillation, infrared absorption methods, sound neutron analysis. For the case of this work it will be treated about the radioactive absorption method which is based in the gamma rays absorption. (Author)

  12. Contextual Fraction as a Measure of Contextuality

    Science.gov (United States)

    Abramsky, Samson; Barbosa, Rui Soares; Mansfield, Shane

    2017-08-01

    We consider the contextual fraction as a quantitative measure of contextuality of empirical models, i.e., tables of probabilities of measurement outcomes in an experimental scenario. It provides a general way to compare the degree of contextuality across measurement scenarios; it bears a precise relationship to violations of Bell inequalities; its value, and a witnessing inequality, can be computed using linear programing; it is monotonic with respect to the "free" operations of a resource theory for contextuality; and it measures quantifiable advantages in informatic tasks, such as games and a form of measurement-based quantum computing.

  13. Void fraction measurements using neutron radiography

    International Nuclear Information System (INIS)

    Glickstein, S.S.; Vance, W.H.; Joo, H.

    1992-01-01

    Real-time neutron radiography is being evaluated for studying the dynamic behavior of two phase flow and for measuring void fraction in vertical and inclined water ducts. This technique provides a unique means of visualizing the behavior of fluid flow inside thick metal enclosures. To simulate vapor conditions encountered in a fluid flow duct, an air-water flow system was constructed. Air was injected into the bottom of the duct at flow rates up to 0.47 I/s (1 cfm). The water flow rate was varied between 0--3.78 I/m (0--1 gpm). The experiments were performed at the Pennsylvania State University nuclear reactor facility using a real-time neutron radiography camera. With a thermal neutron flux on the order of 10 6 n/cm 2 /s directed through the thin duct dimension, the dynamic behavior of the air bubbles was clearly visible through 5 cm (2 in.) thick aluminum support plates placed on both sides of the duct wall. Image analysis techniques were employed to extract void fractions from the data which was recorded on videotape. This consisted of time averaging 256 video frames and measuring the gray level distribution throughout the region. The distribution of the measured void fraction across the duct was determined for various air/water mixtures. Details of the results of experiments for a variety of air and water flow conditions are presented

  14. Signal transforms in dynamic measurements

    CERN Document Server

    Layer, Edward

    2015-01-01

    This book is devoted to the analysis of measurement signals which requires specific mathematical operations like Convolution, Deconvolution, Laplace, Fourier, Hilbert, Wavelet or Z transform which are all presented in the present book. The different problems refer to the modulation of signals, filtration of disturbance as well as to the orthogonal signals and their use in digital form for the measurement of current, voltage, power and frequency are also widely discussed. All the topics covered in this book are presented in detail and illustrated by means of examples in MathCad and LabVIEW. This book provides a useful source for researchers, scientists and engineers who in their daily work are required to deal with problems of measurement and signal processing and can also be helpful to undergraduate students of electrical engineering.    

  15. Laser-induced incandescence: Towards quantitative soot volume fraction measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tzannis, A P; Wienbeucker, F; Beaud, P; Frey, H -M; Gerber, T; Mischler, B; Radi, P P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Laser-Induced Incandescence has recently emerged as a versatile tool for measuring soot volume fraction in a wide range of combustion systems. In this work we investigate the essential features of the method. LII is based on the acquisition of the incandescence of soot when heated through a high power laser pulse. Initial experiments have been performed on a model laboratory flame. The behaviour of the LII signal is studied experimentally. By applying numerical calculations we investigate the possibility to obtain two-dimensional soot volume fraction distributions. For this purpose a combination of LII with other techniques is required. This part is discussed in some extent and the future work is outlined. (author) 4 figs., 3 refs.

  16. Electrical measurement, signal processing, and displays

    CERN Document Server

    Webster, John G

    2003-01-01

    ELECTROMAGNETIC VARIABLES MEASUREMENTVoltage MeasurementCurrent Measurement Power Measurement Power Factor Measurement Phase Measurement Energy Measurement Electrical Conductivity and Resistivity Charge Measurement Capacitance and Capacitance Measurements Permittivity Measurement Electric Field Strength Magnetic Field Measurement Permeability and Hysteresis MeasurementInductance Measurement Immittance MeasurementQ Factor Measurement Distortion Measurement Noise Measurement.Microwave Measurement SIGNAL PROCESSINGAmplifiers and Signal ConditionersModulation Filters Spectrum Analysis and Correlat

  17. Experimental analysis of ultrasonic signals in air-water vertical upward for void fraction measurement using neural networks; Analise experimental dos sinais ultra-sonicos em escoamentos verticais bifasicos para medicao da fracao de vazios atraves de redes neurais

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Milton Y.; Massignan, Joao P.D.; Daciuk, Rafael J.; Neves Junior, Flavio; Arruda, Lucia V.R. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2008-07-01

    Rheology of emulsion mixtures and void fraction measurements of multiphase flows requires proper instrumentation. Sometimes it is not possible to install this instrumentation inside the pipe or view the flow. Ultrasound technology has characteristics compatible with the requirements of the oil industry. It can assist the production of heavy oil. This study provides important information for an analysis of the feasibility of developing non-intrusive equipment. These probes can be used for measurement of multiphase void fraction and detect the flow pattern using ultrasound. Experiments using simulated upward air-water vertical two-phase flow show that there is a correlation between the acoustic attenuation and the concentration of the gas phase. Experimental data were obtained through the prototype developed for ultrasonic data acquisition. This information was processed and used as input parameters for a neural network classifier. Void fractions ({proportional_to}) were analyzed between 0% - 16%, in increments of 1%. The maximum error of the neural network for the classification of the flow pattern was 6%. (author)

  18. Variable reflectivity signal mirrors and signal response measurements

    International Nuclear Information System (INIS)

    Vine, Glenn de; Shaddock, Daniel A; McClelland, David E

    2002-01-01

    Future gravitational wave detectors will include some form of signal mirror in order to alter the signal response of the device. We introduce interferometer configurations which utilize a variable reflectivity signal mirror allowing a tunable peak frequency and variable signal bandwidth. A detector configured with a Fabry-Perot cavity as the signal mirror is compared theoretically with one using a Michelson interferometer for a signal mirror. A system for the measurement of the interferometer signal responses is introduced. This technique is applied to a power-recycled Michelson interferometer with resonant sideband extraction. We present broadband measurements of the benchtop prototype's signal response for a range of signal cavity detunings. This technique is also applicable to most other gravitational wave detector configurations

  19. Variable reflectivity signal mirrors and signal response measurements

    CERN Document Server

    Vine, G D; McClelland, D E

    2002-01-01

    Future gravitational wave detectors will include some form of signal mirror in order to alter the signal response of the device. We introduce interferometer configurations which utilize a variable reflectivity signal mirror allowing a tunable peak frequency and variable signal bandwidth. A detector configured with a Fabry-Perot cavity as the signal mirror is compared theoretically with one using a Michelson interferometer for a signal mirror. A system for the measurement of the interferometer signal responses is introduced. This technique is applied to a power-recycled Michelson interferometer with resonant sideband extraction. We present broadband measurements of the benchtop prototype's signal response for a range of signal cavity detunings. This technique is also applicable to most other gravitational wave detector configurations.

  20. Signal Processing for Nondifferentiable Data Defined on Cantor Sets: A Local Fractional Fourier Series Approach

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Chen

    2014-01-01

    Full Text Available From the signal processing point of view, the nondifferentiable data defined on the Cantor sets are investigated in this paper. The local fractional Fourier series is used to process the signals, which are the local fractional continuous functions. Our results can be observed as significant extensions of the previously known results for the Fourier series in the framework of the local fractional calculus. Some examples are given to illustrate the efficiency and implementation of the present method.

  1. Noninvasive measurement of blood flow and extraction fraction

    Energy Technology Data Exchange (ETDEWEB)

    Peters, A.M.; Gunasekera, R.D.; Henderson, B.L.; Brown, J.; Lavender, J.P.; De Souza, M.; Ash, J.M.; Gilday, D.L.

    1987-10-01

    We describe the theory of a technique for the noninvasive measurement of organ blood flow which is based on the principle of fractionation of cardiac output and is applicable with any recirculating gamma emitting tracer. The technique effectively determines the count rate that would be recorded over the organ if the tracer behaved like radiolabelled microspheres and was completely trapped in the organ's vascular bed on first pass. After correction for organ depth, the estimated first pass activity plateau, expressed as a fraction of the injected dose is equal to the organ's fraction of the cardiac output (CO). By extending the theory, organ extraction fraction of extractable tracers or mean transit time of nonextractable tracers can be measured. The technique was applied to the measurement of renal blood flow in the native and transplanted kidney, splenic blood flow, the extraction fraction of DTPA by the kidney and of sulphur colloid by the spleen.

  2. Noninvasive measurement of blood flow and extraction fraction

    International Nuclear Information System (INIS)

    Peters, A.M.; Gunasekera, R.D.; Henderson, B.L.; Brown, J.; Lavender, J.P.; De Souza, M.; Ash, J.M.; Gilday, D.L.

    1987-01-01

    We describe the theory of a technique for the noninvasive measurement of organ blood flow which is based on the principle of fractionation of cardiac output and is applicable with any recirculating gamma emitting tracer. The technique effectively determines the count rate that would be recorded over the organ if the tracer behaved like radiolabelled microspheres and was completely trapped in the organ's vascular bed on first pass. After correction for organ depth, the estimated first pass activity plateau, expressed as a fraction of the injected dose is equal to the organ's fraction of the cardiac output (CO). By extending the theory, organ extraction fraction of extractable tracers or mean transit time of nonextractable tracers can be measured. The technique was applied to the measurement of renal blood flow in the native and transplanted kidney, splenic blood flow, the extraction fraction of DTPA by the kidney and of sulphur colloid by the spleen. (author)

  3. Measurements of the branching fractions of [Formula: see text] decays.

    Science.gov (United States)

    Aaij, R; Abellan Beteta, C; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dickens, J; Dijkstra, H; Dogaru, M; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jansen, F; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Mazurov, A; McCarthy, J; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nisar, S; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    The branching fractions of the decay [Formula: see text] for different intermediate states are measured using data, corresponding to an integrated luminosity of 1.0 fb -1 , collected by the LHCb experiment. The total branching fraction, its charmless component [Formula: see text] and the branching fractions via the resonant [Formula: see text] states η c (1 S ) and ψ (2 S ) relative to the decay via a J / ψ intermediate state are [Formula: see text] Upper limits on the B + branching fractions into the η c (2 S ) meson and into the charmonium-like states X (3872) and X (3915) are also obtained.

  4. Measuring displacement signal with an accelerometer

    International Nuclear Information System (INIS)

    Han, Sang Bo

    2010-01-01

    An effective and simple way to reconstruct displacement signal from a measured acceleration signal is proposed in this paper. To reconstruct displacement signal by means of double-integrating the time domain acceleration signal, the Nyquist frequency of the digital sampling of the acceleration signal should be much higher than the highest frequency component of the signal. On the other hand, to reconstruct displacement signal by taking the inverse Fourier transform, the magnitude of the significant frequency components of the Fourier transform of the acceleration signal should be greater than the 6 dB increment line along the frequency axis. With a predetermined resolution in time and frequency domain, determined by the sampling rate to measure and record the original signal, reconstructing high-frequency signals in the time domain and reconstructing low-frequency signals in the frequency domain will produce biased errors. Furthermore, because of the DC components inevitably included in the sampling process, low-frequency components of the signals are overestimated when displacement signals are reconstructed from the Fourier transform of the acceleration signal. The proposed method utilizes curve-fitting around the significant frequency components of the Fourier transform of the acceleration signal before it is inverse-Fourier transformed. Curve-fitting around the dominant frequency components provides much better results than simply ignoring the insignificant frequency components of the signal

  5. Measurement of the τ leptonic branching fractions in DELPHI

    International Nuclear Information System (INIS)

    Dam, M.

    1994-11-01

    Preliminary measurements of the τ leptonic branching fractions from the DELPHI experiment at LEP are presented. The analysis is based on about 25000 Z o →τ + τ - events observed in 1991 and 1992. 7 refs., 5 tabs

  6. Measurement of unattached fractions in open-pit uranium mines

    International Nuclear Information System (INIS)

    Solomon, S.B.; Wise, K.N.

    1983-01-01

    A preliminary set of measurements of the unattached fraction of potential alpha energy was made at the Ranger open pit uranium uranium mine and the Nabarlek uranium mill. The measurement system, which incorporated a parallel plate diffusion battery and diffuse junction detectors, is described. Results for RaA show a wide variation in the unattached fraction. They range up to 0.76 and are higher than corresponding values for underground mining operations

  7. MEASUREMENT OF THE B0 ---> D*- A+(1) BRANCHING FRACTION WITH PARTIALLY RECONSTRUCTED D*

    Energy Technology Data Exchange (ETDEWEB)

    Salvatore, Pasquale F

    2002-07-26

    The B{sup 0} {yields} D*{sup -} a{sub 1}{sup +} branching fraction has been measured with data collected by the BaBar experiment in 1999 and 2000 corresponding to a total integrated luminosity of 20.6 fb{sup -1}. Signal events have been selected using a partial reconstruction technique, in which only the a{sub 1}{sup +} and the slow pion ({pi}{sub s}) from the D*{sup -} decay are identified. A signal yield of 18400 {+-} 1200 events has been found, corresponding to a preliminary branching fraction of (1.20 {+-} 0.07(stat) {+-} 0.14(syst))%.

  8. Multiwavelength pulse oximetry in the measurement of hemoglobin fractions

    Science.gov (United States)

    Manzke, Bernd; Schwider, Johannes; Lutter, Norbert O.; Engelhardt, Kai; Stork, Wilhelm

    1996-04-01

    The two wavelength design of the majority of pulse oximeters assumes only two absorbing hemoglobin fractions, oxyhemoglobin (O2Hb), and reduced hemoglobin (HHb) irrespective of the presence of methemoglobin (MetHb) and carboxyhemoglobin (COHb). If MetHb or COHb is present, it contributes to the pulse-added absorbance signal and will be interpreted as either HHb or O2Hb or some combination of the two. In this paper we describe a noninvasive multi-wavelength pulse oximeter measuring O2Hb, HHb, MetHb, and COHb at a specified accuracy of 1.0%. The system was designed with respect to the results of numerical simulations. It consists of 9 laserdiodes (LDs) and 7 light emitting diodes (LEDs), a 16-bit analog-digital converter (ADC) and has a sampling rate of 16 kHz. The laser didoes and LEDs were coupled into multi-mode fibers and led with a liquid lightguide to the finger clip and then the photodiode. It also presents the results of a clinical study, including a setup with a quartz tungsten halogen lamp (with fiber output) and a diode array spectrometer, a standard pulse oximeter and two in-vitro oximeters (radiometer OSM3 and radiometer ABL 520) as references.

  9. Measurement of local void fraction in a ribbed annulus

    International Nuclear Information System (INIS)

    Steimke, J.L.

    1992-01-01

    The computer code FLOWTRAN-TF is used to analyze hypothetical hydraulic accidents for the nuclear reactor at the Savannah River Site. During a hypothetical Large Break Loss-of-Coolant Accident (LOCA), reactor assemblies would contain a two-phase mixture of air and water which flows downward. Reactor assemblies consist of nested, ribbed annuli. Longitudinal ribs divide each annulus into four subchannels. For accident conditions, air and water can flow past ribs from one subchannel to another. For FLOWTRAN-TF to compute the size of those flows, it is necessary to know the local void fraction in the region of the rib. Measurements have previously been made of length-average void fraction in a ribbed annulus. However, no direct measurements were available of local void fraction. Due to the lack of data, a test was designed to measure local void fraction at the rib. One question addressed by the test was whether void fraction at the rib is solely a function of azimuthal-average void fraction or a function of additional variables such as pressure boundary conditions. This report provides a discussion of this test

  10. Fractional Poincaré inequalities for general measures

    KAUST Repository

    Mouhot, Clément

    2011-01-01

    We prove a fractional version of Poincaré inequalities in the context of Rn endowed with a fairly general measure. Namely we prove a control of an L2 norm by a non-local quantity, which plays the role of the gradient in the standard Poincaré inequality. The assumption on the measure is the fact that it satisfies the classical Poincaré inequality, so that our result is an improvement of the latter inequality. Moreover we also quantify the tightness at infinity provided by the control on the fractional derivative in terms of a weight growing at infinity. The proof goes through the introduction of the generator of the Ornstein-Uhlenbeck semigroup and some careful estimates of its powers. To our knowledge this is the first proof of fractional Poincaré inequality for measures more general than Lévy measures. © 2010 Elsevier Masson SAS.

  11. Transient void fraction measurements in rod bundle geometries

    International Nuclear Information System (INIS)

    Chan, A.M.C.

    1998-01-01

    A new gamma densitometer with a Ba-133 source and a Nal(TI) scintillator operated in the count mode has been designed for transient void fraction measurements in the RD-14M heated channels containing a seven-element heater bundle. The device was calibrated dynamically in the laboratory using an air-water flow loop. The void fraction measured was found to compare well with values obtained using the trapped-water method. The device was also found to follow very well the passage of air slugs in pulsating flow with slug passing frequencies of up to about 1.5 hz. (author)

  12. Measurement of shoulder motion fraction and motion ratio

    International Nuclear Information System (INIS)

    Kang, Yeong Han

    2006-01-01

    This study was to understand about the measurement of shoulder motion fraction and motion ratio. We proposed the radiological criterior of glenohumeral and scapulothoracic movement ratio. We measured the motion fraction of the glenohumeral and scapulothoracic movement using CR (computed radiological system) of arm elevation at neutral, 90 degree, full elevation. Central ray was 15 .deg., 19 .deg., 22 .deg. to the cephald for the parallel scapular spine, and the tilting of torso was external oblique 40 .deg., 36 .deg., 22 .deg. for perpendicular to glenohumeral surface. Healthful donor of 100 was divided 5 groups by age (20, 30, 40, 50, 60). The angle of glenohumeral motion and scapulothoracic motion could be taken from gross arm angle and radiological arm angle. We acquired 3 images at neutral, 90 .deg. and full elevation position and measured radiographic angle of glenoheumeral, scapulothoracic movement respectively. While the arm elevation was 90 .deg., the shoulder motion fraction was 1.22 (M), 1.70 (W) in right arm and 1.31, 1.54 in left. In full elevation, Right arm fraction was 1.63, 1.84 and left was 1.57, 1.32. In right dominant arm (78%), 90 .deg. and Full motion fraction was 1.58, 1.43, in left (22%) 1.82, 1.94. In generation 20, 90 .deg. and Full motion fraction was 1.56, 1.52, 30' was 1.82, 1.43, 40' was 1.23, 1.16, 50' was 1.80, 1.28,60' was 1.24, 1.75. There was not significantly by gender, dominant arm and age. The criteria of motion fraction was useful reference for clinical diagnosis the shoulder instability

  13. Fractional Gaussian noise-enhanced information capacity of a nonlinear neuron model with binary signal input

    Science.gov (United States)

    Gao, Feng-Yin; Kang, Yan-Mei; Chen, Xi; Chen, Guanrong

    2018-05-01

    This paper reveals the effect of fractional Gaussian noise with Hurst exponent H ∈(1 /2 ,1 ) on the information capacity of a general nonlinear neuron model with binary signal input. The fGn and its corresponding fractional Brownian motion exhibit long-range, strong-dependent increments. It extends standard Brownian motion to many types of fractional processes found in nature, such as the synaptic noise. In the paper, for the subthreshold binary signal, sufficient conditions are given based on the "forbidden interval" theorem to guarantee the occurrence of stochastic resonance, while for the suprathreshold binary signal, the simulated results show that additive fGn with Hurst exponent H ∈(1 /2 ,1 ) could increase the mutual information or bits count. The investigation indicated that the synaptic noise with the characters of long-range dependence and self-similarity might be the driving factor for the efficient encoding and decoding of the nervous system.

  14. A measurement of the $\\tau$ leptonic branching fractions

    CERN Document Server

    Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Allport, P P; Almehed, S; Alvsvaag, S J; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bocci, V; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Buys, A; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carrilho, P; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Daum, A; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; De Boeck, H; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Dupont, F; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Ferrer, A; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gibbs, M; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Grosdidier, G; Gunnarsson, P; Günther, M; Guy, J; Haedinger, U; Hahn, F; Hahn, M; Hahn, S; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Ioannou, P; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Köhne, J H; Köne, B; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Kramer, P H; Kreuter, C; Królikowski, J; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Lokajícek, M; Loken, J G; López, J M; López-Fernandez, A; López-Aguera, M A; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; Medbo, J; Meroni, C; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Negri, P; Némécek, S; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schneider, H; Schyns, M A E; Sciolla, G; Scuri, F; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stepaniak, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Weierstall, M; Weilhammer, Peter; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Woschnagg, K; Yip, K; Yushchenko, O P; Zach, F; Zacharatou-Jarlskog, C; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G

    1995-01-01

    A sample of 25000 \\Z\\rightarrow\\tt events collected by the DELPHI experiment at LEP in 1991 and 1992 is used to measure the leptonic branching fractions of the \\tau lepton. The results are B(\\TEL) = (17.51 \\pm 0.39)\\% and B(\\tau\\rightarrow \\mu\

  15. Adaptive synchronization of fractional Lorenz systems using a reduced number of control signals and parameters

    International Nuclear Information System (INIS)

    Aguila-Camacho, Norelys; Duarte-Mermoud, Manuel A.; Delgado-Aguilera, Efredy

    2016-01-01

    This paper analyzes the synchronization of two fractional Lorenz systems in two cases: the first one considering fractional Lorenz systems with unknown parameters, and the second one considering known upper bounds on some of the fractional Lorenz systems parameters. The proposed control strategies use a reduced number of control signals and control parameters, employing mild assumptions. The stability of the synchronization errors is analytically demonstrated in all cases, and the convergence to zero of the synchronization errors is analytically proved in the case when the upper bounds on some system parameters are assumed to be known. Simulation studies are presented, which allows verifying the effectiveness of the proposed control strategies.

  16. Capacitance sensor for void fraction measurement in a natural circulation refrigeration circuit

    International Nuclear Information System (INIS)

    Rocha, Marcelo S.; Cabral, Eduardo L.L.; Simoes-Moreira, Jose R.

    2009-01-01

    Natural circulation is widely used in nuclear reactors for residual heat refrigeration. In this work, a conductance probe is designed and constructed to measure the instantaneous bulk void fraction in a vertical tube section. This probe is installed in a natural circulation refrigeration loop designed to simulate a nuclear reactor primary refrigeration circuit. During the operation of the natural circulation loop several gas-liquid flow patterns are observed, including oscillatory flow. The instantaneous signal generated by the capacitance probe allows the calculation of the two-phase flow void fraction. The void fraction obtained by the probe will be compared with the theoretical void fraction calculated by the computational program RELAP5/MOD3.2.2 gamma. The probe design and electronics, as well as the previous results obtained are presented and discussed. (author)

  17. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. [Pacific Northwest Lab., Richland, WA (United States); Cuenca, R.H. [Oregon State Univ., Corvallis, OR (United States)

    1990-12-31

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program`s SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  18. The evaporative fraction as a measure of surface energy partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, W.E. (Pacific Northwest Lab., Richland, WA (United States)); Cuenca, R.H. (Oregon State Univ., Corvallis, OR (United States))

    1990-01-01

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program's SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  19. ECG artifact cancellation in surface EMG signals by fractional order calculus application.

    Science.gov (United States)

    Miljković, Nadica; Popović, Nenad; Djordjević, Olivera; Konstantinović, Ljubica; Šekara, Tomislav B

    2017-03-01

    New aspects for automatic electrocardiography artifact removal from surface electromyography signals by application of fractional order calculus in combination with linear and nonlinear moving window filters are explored. Surface electromyography recordings of skeletal trunk muscles are commonly contaminated with spike shaped artifacts. This artifact originates from electrical heart activity, recorded by electrocardiography, commonly present in the surface electromyography signals recorded in heart proximity. For appropriate assessment of neuromuscular changes by means of surface electromyography, application of a proper filtering technique of electrocardiography artifact is crucial. A novel method for automatic artifact cancellation in surface electromyography signals by applying fractional order calculus and nonlinear median filter is introduced. The proposed method is compared with the linear moving average filter, with and without prior application of fractional order calculus. 3D graphs for assessment of window lengths of the filters, crest factors, root mean square differences, and fractional calculus orders (called WFC and WRC graphs) have been introduced. For an appropriate quantitative filtering evaluation, the synthetic electrocardiography signal and analogous semi-synthetic dataset have been generated. The examples of noise removal in 10 able-bodied subjects and in one patient with muscle dystrophy are presented for qualitative analysis. The crest factors, correlation coefficients, and root mean square differences of the recorded and semi-synthetic electromyography datasets showed that the most successful method was the median filter in combination with fractional order calculus of the order 0.9. Statistically more significant (p ECG peak reduction was obtained by the median filter application compared to the moving average filter in the cases of low level amplitude of muscle contraction compared to ECG spikes. The presented results suggest that the

  20. Effect-independent measures of tissue response to fractionated radiation

    International Nuclear Information System (INIS)

    Thames, H.D.

    1984-01-01

    Tissue repair factors are measures of sparing from dose fractionation, in the absence of proliferation. A desirable feature of any repair factor is that it be independent of the level of injury induced in the tissue, since otherwise the comparison of tissues on the basis of the factor would not be meaningful. The repair factors F/sub R/ and F/sub rec/ are increasing functions of D/sub 1/, and depend on level of skin reaction after fractionated radiation. By contrast, β/α is effect-independent as a measure of repair capacity in skin, gut, and bone marrow. For late fibrotic reactions in the kidney, there was an increase in β/α with increased levels of injury that was statistically insignificant. The halftime, T/sub 1/2/, for intracellular repair processes in tissues is a measure of repair kinetics. Effect-independence is defend for T/sub 1/2/ as independence from size of dose per fraction. T/sub 1/2/ is independent of fraction size in skin, gut, and spinal cord, and is longer (1.5 hours) in the late-reacting tissues (lung and spinal cord) than in those that react acutely (less than 1 hour), with skin as the exception (1.3 hours). Therefore, early and late-responding normal tissues may be distinguished in terms of both repair capacity and repair kinetics: repair is slower in late-responding tissues, which are also more sensitive to changes in dose fractionation

  1. Measurement of right and left ventricular ejection fraction in dogs

    Energy Technology Data Exchange (ETDEWEB)

    Brynjolf, I.; Qvist, J.; Mygind, T.; Jordening, H.; Dorph, S.; Munck, O.

    1983-08-01

    Three techniques for measurement of right (RVEF) and two techniques for left (LVEF) ventricular ejection fraction were evaluated in five dogs. RVEF was measured with a first-pass radionuclide technique using erythrocytes labelled in vitro with Technetium-99m methylene disphosphonate (MDP) and compared with RVEF measured with a thermodilution technique. Thermodilution-determined RVEF was compared with RVEF values measured with cine angiocardiography. LVEF was measured with a radionuclide ECG-gated equilibrium technique and compared with cine angiocardiography. Measurements were performed before and during a continuous infusion of dopamine. There was an excellent correlation between RVEF measured with the first-pass and the thermodilution technique. LVEF measured with the ECG-gated equilibrium technique correlated well with cine angiocardiography.

  2. Interference Reduction Selected Measurement Signals of Ships

    Directory of Open Access Journals (Sweden)

    Jan Monieta

    2014-08-01

    Full Text Available The paper presents problems encountered at the signal processing of mechanical values with electric methods. Depending on the measured quantity, the location of the sensors and the analysis frequency band, they are differently interferences. The article presents the results of applying the analysis of parameters of working and accompanying process marine medium speed reciprocating engines in the time, amplitude, frequency domain and wavelet analysis to select a reasonable method. The applied signal acquisition program allows you to perform some analysis of signals in different areas and the transformation of the data to other programs. The ways of interference reducing at various stages of their occurrence and analysis are presented. [b]Keywords[/b]: electrical signals, domain analysis, measurement interference

  3. UMTS signal measurements with digital spectrum analysers

    International Nuclear Information System (INIS)

    Licitra, G.; Palazzuoli, D.; Ricci, A. S.; Silvi, A. M.

    2004-01-01

    The launch of the Universal Mobile Telecommunications System (UNITS), the most recent mobile telecommunications standard has imposed the requirement of updating measurement instrumentation and methodologies. In order to define the most reliable measurement procedure, which is aimed at assessing the exposure to electromagnetic fields, modern spectrum analysers' features for correct signal characterisation has been reviewed. (authors)

  4. Measurement of the tau lepton electronic branching fraction

    International Nuclear Information System (INIS)

    Akerib, D.S.; Barish, B.; Chadha, M.; Cowen, D.F.; Eigen, G.; Miller, J.S.; Urheim, J.; Weinstein, A.J.; Acosta, D.; Masek, G.; Ong, B.; Paar, H.; Sivertz, M.; Bean, A.; Gronberg, J.; Kutschke, R.; Menary, S.; Morrison, R.J.; Nelson, H.N.; Richman, J.D.; Tajima, H.; Schmidt, D.; Sperka, D.; Witherell, M.S.; Procario, M.; Yang, S.; Daoudi, M.; Ford, W.T.; Johnson, D.R.; Lingel, K.; Lohner, M.; Rankin, P.; Smith, J.G.; Alexander, J.P.; Bebek, C.; Berkelman, K.; Besson, D.; Browder, T.E.; Cassel, D.G.; Coffman, D.M.; Drell, P.S.; Ehrlich, R.; Galik, R.S.; Garcia-Sciveres, M.; Geiser, B.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Honscheid, K.; Jones, C.; Kandaswamy, J.; Katayama, N.; Kim, P.C.; Kreinick, D.L.; Ludwig, G.S.; Masui, J.; Mevissen, J.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; O'Grady, C.; Patterson, J.R.; Peterson, D.; Riley, D.; Sapper, M.; Selen, M.; Worden, H.; Worris, M.; Wuerthwein, F.; Avery, P.; Freyberger, A.; Rodriguez, J.; Stephens, R.; Yelton, J.; Cinabro, D.; Henderson, S.; Kinoshita, K.; Liu, T.; Saulnier, M.; Wilson, R.; Yamamoto, H.; Sadoff, A.J.; Ammar, R.; Ball, S.; Baringer, P.; Coppage, D.; Copty, N.; Davis, R.; Hancock, N.; Kelly, M.; Kwak, N.; Lam, H.; Kubota, Y.; Lattery, M.; Nelson, J.K.; Patton, S.; Perticone, D.; Poling, R.; Savinov, V.; Schrenk, S.; Wang, R.; Alam, M.S.; Kim, I.J.; Nemati, B.; O'Neill, J.J.; Romero, V.; Severini, H.; Sun, C.R.; Wang, P.; Zoeller, M.M.; Crawford, G.; Fulton, R.; Gan, K.K.; Kagan, H.; Kass, R.; Lee, J.; Malchow, R.; Morrow, F.; Sung, M.; White, C.; Whitmore, J.; Wilson, P.; Butler, F.; Fu, X.; Kalbfleisch, G.; Lambrecht, M.; Ross, W.R.; Skubic, P.; Snow, J.; Wang, P.; Bortoletto, D.; Brown, D.N.; Dominick, J.; McIlwain, R.L.; Miao, T.; Miller, D.H.; Modesitt, M.; Schaffner, S.F.; Shibata, E.I.; Shipsey, I.P.J.; Battle, M.; Ernst, J.; Kroha, H.; Roberts, S.; Sparks, K.; Thorndike, E.H.; Wang, C.; Sanghera, S.; Skwarnicki, T.; Stroynowski, R.; Artuso, M.; Goldberg, M.; Horwitz, N.

    1992-01-01

    The tau lepton electron branching fraction has been measured with the CLEO II detector at the Cornell Electron Storage Ring as B e =0.1749±0.0014±0.0022, with the first error statistical and the second systematic. The measurement involves counting electron-positron annihilation events in which both taus decay to electrons, and normalizing to the number of tau-pair decays expected from the measured luminosity. Detected photons in these events constitute a definitive observation of tau decay radiation

  5. An algebraic fractional order differentiator for a class of signals satisfying a linear differential equation

    KAUST Repository

    Liu, Da-Yan; Tian, Yang; Boutat, Driss; Laleg-Kirati, Taous-Meriem

    2015-01-01

    This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.

  6. An algebraic fractional order differentiator for a class of signals satisfying a linear differential equation

    KAUST Repository

    Liu, Da-Yan

    2015-04-30

    This paper aims at designing a digital fractional order differentiator for a class of signals satisfying a linear differential equation to estimate fractional derivatives with an arbitrary order in noisy case, where the input can be unknown or known with noises. Firstly, an integer order differentiator for the input is constructed using a truncated Jacobi orthogonal series expansion. Then, a new algebraic formula for the Riemann-Liouville derivative is derived, which is enlightened by the algebraic parametric method. Secondly, a digital fractional order differentiator is proposed using a numerical integration method in discrete noisy case. Then, the noise error contribution is analyzed, where an error bound useful for the selection of the design parameter is provided. Finally, numerical examples illustrate the accuracy and the robustness of the proposed fractional order differentiator.

  7. Precision measurement of the D*(0) decay branching fractions

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, Y.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, T.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Harris, F. A.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; Lange, J. S.; Lara, M.; Larin, P.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrie, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Spruck, B.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.

    2015-01-01

    Using 482 pb(-1) of data taken at root s = 4.009 GeV, we measure the branching fractions of the decays of D*(0) into D-0 pi(0) and D-0 gamma to be B(D*(0) -> D-0 pi(0)) = (65.5 +/- 0.8 +/- 0.5)% and B(D*(0) -> D0 gamma) = (34.5 +/- 0.8 +/- 0.5)%, respectively, by assuming that the D*(0) decays only

  8. Measurement of the branching fraction for D0 -> K- π+

    Science.gov (United States)

    Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Miquel, R.; Mir, Ll. M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Becker, U.; Bazarko, A. O.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rizzo, G.; Rolandi, L.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Zachariadou, K.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thompson, E.; Thomson, F.; Turnbull, R. M.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Giehl, I.; Greene, A. M.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Coyle, P.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Leroy, O.; Motsch, F.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Choi, Y.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Schune, M.-H.; Simion, S.; Tournefier, E.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassis, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A.; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zobernig, G.

    1997-02-01

    The branching fraction for D0 -> K- π+ is measured with the statistics collected by ALEPH from 1991 to 1994. The method is based on the comparison between the rate for the reconstructed D*+ -> D0π+, D0 -> K-π+ decay chain and the rate for inclusive soft pion production at low transverse momentum with respect to the nearest jet. The result is B(D0 -> K- π+) = (3.90 +/- 0.09 +/- 0.12)%

  9. A simple capacitance sensor for void fraction measurement in gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Silva, Luiz C.R.P.; Faccini, José L.H.; Farias, Marcos S.; Su, Jian

    2017-01-01

    In this work we present a simple and inexpensive capacitance sensor for time averaging void fraction measurement of gas-liquid two-phase flow, which was developed at Experimental Thermal hydraulics Laboratory in the Nuclear Engineering Institute, IEN/CNEN. The sensor is a non-invasive device causing no flow disturbances. It is formed by two parallel plates and four electronic circuits: a signal input circuit, an amplification circuit, a frequency generator, and a power supply circuit. The frequency generator applies a sinusoidal signal with appropriate frequency into the signal input circuit which converts the capacitance variation value (or void fraction) of the two-phase flow into a voltage signal that goes to the amplifier stage; the output signal of the amplifier stage will be an input to an analogic/digital converter, installed inside of a computer, and it will provide interpretation of the signal behavior. The capacitance sensor was calibrated by using a horizontal acrylic tube filled with a known volume of water. (author)

  10. A simple capacitance sensor for void fraction measurement in gas-liquid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luiz C.R.P.; Faccini, José L.H.; Farias, Marcos S., E-mail: reina@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Su, Jian, E-mail: sujian@con.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Engenharia Nuclear

    2017-07-01

    In this work we present a simple and inexpensive capacitance sensor for time averaging void fraction measurement of gas-liquid two-phase flow, which was developed at Experimental Thermal hydraulics Laboratory in the Nuclear Engineering Institute, IEN/CNEN. The sensor is a non-invasive device causing no flow disturbances. It is formed by two parallel plates and four electronic circuits: a signal input circuit, an amplification circuit, a frequency generator, and a power supply circuit. The frequency generator applies a sinusoidal signal with appropriate frequency into the signal input circuit which converts the capacitance variation value (or void fraction) of the two-phase flow into a voltage signal that goes to the amplifier stage; the output signal of the amplifier stage will be an input to an analogic/digital converter, installed inside of a computer, and it will provide interpretation of the signal behavior. The capacitance sensor was calibrated by using a horizontal acrylic tube filled with a known volume of water. (author)

  11. Void fraction measurement system for high temperature flows

    Energy Technology Data Exchange (ETDEWEB)

    Teyssedou, A; Aube, F; Champagne, P [Montreal Univ., PQ (Canada). Institut de Genie Energetique

    1992-05-01

    A {gamma}-ray absorption technique has been developed for measuring the axial distribution of the void fraction for high-temperature and high-pressure two-phase flows. The system is mounted on a moving platform driven by a high-power stepping motor. A personal computer (IBM AT) connected to a data acquisition system is used to control the displacement of the {gamma} source and detector, and to read the response of the detector. All the measurement procedures are carried out automatically by dedicated software developed for this purpose. (Author).

  12. Select polyphenolic fractions from dried plum enhance osteoblast activity through BMP-2 signaling.

    Science.gov (United States)

    Graef, Jennifer L; Rendina-Ruedy, Elizabeth; Crockett, Erica K; Ouyang, Ping; King, Jarrod B; Cichewicz, Robert H; Lucas, Edralin A; Smith, Brenda J

    2018-05-01

    Dried plum supplementation has been shown to enhance bone formation while suppressing bone resorption. Evidence from previous studies has demonstrated that these responses can be attributed in part to the fruit's polyphenolic compounds. The purpose of this study was to identify the most bioactive polyphenolic fractions of dried plum with a focus on their osteogenic activity and to investigate their mechanisms of action under normal and inflammatory conditions. Utilizing chromatographic techniques, six fractions of polyphenolic compounds were prepared from a crude extract of dried plum. Initial screening assays revealed that two fractions (DP-FrA and DP-FrB) had the greatest osteogenic potential. Subsequent experiments using primary bone-marrow-derived osteoblast cultures demonstrated these two fractions enhanced extracellular alkaline phosphatase (ALP), an indicator of osteoblast activity, and mineralized nodule formation under normal conditions. Both fractions enhanced bone morphogenetic protein (BMP) signaling, as indicated by increased Bmp2 and Runx2 gene expression and protein levels of phosphorylated Smad1/5. DP-FrB was most effective at up-regulating Tak1 and Smad1, as well as protein levels of phospho-p38. Under inflammatory conditions, TNF-α suppressed ALP and tended to decrease nodule formation (P=.0674). This response coincided with suppressed gene expression of Bmp2 and the up-regulation of Smad6, an inhibitor of BMP signaling. DP-FrA and DP-FrB partially normalized these responses. Our results show that certain fractions of polyphenolic compounds in dried plum up-regulate osteoblast activity by enhancing BMP signaling, and when this pathway is inhibited by TNF-α, the osteogenic response is attenuated. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Measurements of void fraction by an improved multi-channel conductance void meter

    International Nuclear Information System (INIS)

    Song, Chul-Hwa; Chung, Moon Ki; No, Hee Cheon

    1998-01-01

    An improved multi-channel Conductance Void Meter (CVM) was developed to measure a void fraction. Its measuring principle is basically based upon the differences of electrical conductance of a two-phase mixture due to the variation of void fraction around a sensor. The sensor is designed to be flush-mounted to the inner wall of the test section to avoid the flow disturbances. The signal processor with three channels is specially designed so as to minimize the inherent error due to the phase difference between channels. It is emphasized that the guard electrodes are electrically shielded in order not to affect the measurements of two-phase mixture conductance, but to make the electric fields evenly distributed in a measuring volume. Void fraction is measured for bubbly and slug flow regimes in a vertical air-water loop, and statistical signal processing techniques are applied to show that CVM has a good dynamic resolution which is required to investigate the structural developments of bubbly flow and the propagation of void waves in a flow channel. (author)

  14. Gamma ray densitometry techniques for measuring of volume fractions

    Energy Technology Data Exchange (ETDEWEB)

    Affonso, Renato Raoni Werneck; Silva, Ademir Xavier da; Salgado, Cesar Marques, E-mail: raoniwa@yahoo.com.br, E-mail: ademir@nuclear.ufrj.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Knowledge of the volume fraction in a multiphase flow is of key importance in predicting the performance of many systems and processes. It is therefore an important parameter to characterize such flows. In the context of nuclear techniques, the gamma ray densitometry is promising and this is due to its non-invasive characteristics and very reliable results. It is used in several applications for multiphase flows (water-oil-air), which are employed tools such as: computational fluid dynamics, artificial neural networks and statistical methods of radiation transport, such as the Monte Carlo method. Based on the gamma radiation techniques for measurements of volume fractions, the aim of this paper is to present several techniques developed for this purpose. (author)

  15. Gamma ray densitometry techniques for measuring of volume fractions

    International Nuclear Information System (INIS)

    Affonso, Renato Raoni Werneck; Silva, Ademir Xavier da; Salgado, Cesar Marques

    2015-01-01

    Knowledge of the volume fraction in a multiphase flow is of key importance in predicting the performance of many systems and processes. It is therefore an important parameter to characterize such flows. In the context of nuclear techniques, the gamma ray densitometry is promising and this is due to its non-invasive characteristics and very reliable results. It is used in several applications for multiphase flows (water-oil-air), which are employed tools such as: computational fluid dynamics, artificial neural networks and statistical methods of radiation transport, such as the Monte Carlo method. Based on the gamma radiation techniques for measurements of volume fractions, the aim of this paper is to present several techniques developed for this purpose. (author)

  16. Planar measurements of soot volume fraction and OH in a JP-8 pool fire

    Energy Technology Data Exchange (ETDEWEB)

    Henriksen, Tara L.; Ring, Terry A.; Eddings, Eric G. [Department of Chemical Engineering, University of Utah, Salt Lake City, UT 84112 (United States); Nathan, Graham J. [School of Mechanical Engineering, University of Adelaide, SA 5005 (Australia); Alwahabi, Zeyad T.; Qamar, Nader [School of Chemical Engineering, University of Adelaide, SA 5005 (Australia)

    2009-07-15

    The simultaneous measurement of soot volume fraction by laser induced incandescence (LII) and qualitative imaging of OH by laser induced fluorescence (LIF) was performed in a JP-8 pool fire contained in a 152 mm diameter pan. Line of sight extinction was used to calibrate the LII system in a laminar flame, and to provide an independent method of measuring average soot volume fraction in the turbulent flame. The presence of soot in the turbulent flame was found to be approximately 50% probable, resulting in high levels of optical extinction, which increased slightly through the flame from approximately 30% near the base, to approximately 50% at the tip. This high soot loading pushes both techniques toward their detection limit. Nevertheless, useful accuracy was obtained, with the LII measurement of apparent extinction in the turbulent flame being approximately 21% lower than a direct measurement, consistent with the influence of signal trapping. The axial and radial distributions of soot volume fraction are presented, along with PDFs of volume fraction, and new insight into the behavior of soot sheets in pool fires are sought from the simultaneous measurements of OH and LII. (author)

  17. Measurement of the ratios of branching fractions and.

    Science.gov (United States)

    Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben-Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Connolly, A; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cruz, A; Cuevas, J; Culbertson, R; Cyr, D; Daronco, S; D'Auria, S; D'onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J; DiTuro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia, J E; Sciverez, M Garcia; Garfinkel, A F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heijboer, A; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreps, M; Kreymer, A; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; LeCompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Mulhearn, M; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Papikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Worm, S; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, Y; Yang, C; Yang, U K; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-05-19

    We report an observation of the decay B(O)(S) --> D(-)(s)pi(+) in pp collisions at radical S = 1.96 TeV using 115 pb(-1) of data collected by the CDF II detector at the Fermilab Tevatron. We observe 83 +/- 11(stat) B(O)(s) --> D(-)(s)pi(+) candidates, representing a large increase in statistics over previous measurements and the first observation of this decay at a pp collider. We present the first measurement of the relative branching fraction Beta(B(O)(s) --> D(-)(s)pi(+))/Beta(B(0) --> D(-)(pi)(+)) = 1.32 +/- 0.18(stat) +/- 0.38(syst). We also measure Beta(B(+) --> D(0)pi(+))/Beta(B(0) -->D(-)pi(+)) = 1.97 +/- 0.10(stat) +/- 0.21(syst), which is consistent with previous measurements.

  18. Method for traceable measurement of LTE signals

    Science.gov (United States)

    Sunder Dash, Soumya; Pythoud, Frederic; Leuchtmann, Pascal; Leuthold, Juerg

    2018-04-01

    This contribution presents a reference setup to measure the power of the cell-specific resource elements present in downlink long term evolution (LTE) signals in a way that the measurements are traceable to the international system of units. This setup can be used to calibrate the LTE code-selective field probes that are used to measure the radiation of base stations for mobile telephony. It can also be used to calibrate LTE signal generators and receivers. The method is based on traceable scope measurements performed directly at the output of a measuring antenna. It implements offline digital signal processing demodulation algorithms that consider the digital down-conversion, timing synchronization, frequency synchronization, phase synchronization and robust LTE cell identification to produce the downlink time-frequency LTE grid. Experimental results on conducted test scenarios, both single-input-single-output and multiple-input-multiple-output antenna configuration, show promising results confirming measurement uncertainties of the order of 0.05 dB with a coverage factor of 2.

  19. Measurement of charm fragmentation fractions in photoproduction at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max-Planck-Institute for Physics, Munich (Germany); Abt, I. [Max-Planck-Institute for Physics, Muinch (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Science] [and others; Collaboration: ZEUS Collaboration

    2013-06-15

    The production of D{sup 0}, D{sup *+}, D{sup +}, D{sub s}{sup +} and {Lambda}{sub c}{sup +} charm hadrons and their antiparticles in ep scattering at HERA has been studied with the ZEUS detector, using a total integrated luminosity of 372 pb{sup -1}. The fractions of charm quarks hadronising into a particular charm hadron were derived. In addition, the ratio of neutral to charged D-meson production rates, the fraction of charged D mesons produced in a vector state, and the strangeness-suppression factor have been determined. The measurements have been performed in the photoproduction regime. The charm hadrons were reconstructed in the range of transverse momentum p{sub T} > 3.8GeV and pseudorapidity vertical stroke {eta} vertical stroke <1.6. The charm fragmentation fractions are compared to previous results from HERA and from e{sup +}e{sup -} experiments. The data support the hypothesis that fragmentation is independent of the production process.

  20. An improved electrical-conductance sensor for void-fraction measurement in a horizontal pipe

    International Nuclear Information System (INIS)

    Ko, Min Seok; Jemg, Dong Wook; Kim, Sin; Lee, Bo An; Won, Woo Youn; Lee, Yeon Gun

    2015-01-01

    The electrical-impedance method has been widely used for void-fraction measurement in two-phase flow due to its many favorable features. In the impedance method, the response characteristics of the electrical signal heavily depend upon flow pattern, as well as phasic volume. Thus, information on the flow pattern should be given for reliable void-fraction measurement. This study proposes an improved electrical-conductance sensor composed of a three-electrode set of adjacent and opposite electrodes. In the proposed sensor, conductance readings are directly converted into the flow pattern through a specified criterion and are consecutively used to estimate the corresponding void fraction. Since the flow pattern and the void fraction are evaluated by reading conductance measurements, complexity of data processing can be significantly reduced and real-time information provided. Before actual applications, several numerical calculations are performed to optimize electrode and insulator sizes, and optimal design is verified by static experiments. Finally, the proposed sensor is applied for air-water two-phase flow in a horizontal loop with a 40-mm inner diameter and a 5-m length, and its measurement results are compared with those of a wire-mesh sensor

  1. Biosynthetically directed fractional 13C labeling facilitates identification of Phe and Tyr aromatic signals in proteins

    International Nuclear Information System (INIS)

    Jacob, Jaison; Louis, John M.; Nesheiwat, Issa; Torchia, Dennis A.

    2002-01-01

    Analysis of 2D [ 13 C, 1 H]-HSQC spectra of biosynthetic fractionally 13 C labeled proteins is a reliable, straightforward means to obtain stereospecific assignments of Val and Leu methyl sites in proteins. Herein we show that the same fractionally labeled protein sample facilitates observation and identification of Phe and Tyr aromatic signals. This is the case, in part, because the fractional 13 C labeling yields aromatic rings in which some of the 13 C- 13 C J-couplings, present in uniformly labeled samples, are absent. Also, the number of homonuclear J-coupling partners differs for the δ-, ε- and ζ-carbons. This enabled us to vary their signal intensities in distinctly different ways by appropriately setting the 13 C constant-time period in 2D [ 13 C, 1 H]-HSQC spectra. We illustrate the application of this approach to an 18 kDa protein, c-VIAF, a modulator of apoptosis. In addition, we show that cancellation of the aromatic 13 C CSA and 13 C- 1 H dipolar interactions can be fruitfully utilized in the case of the fractionally labeled sample to obtain high resolution 13 C constant-time spectra with good sensitivity

  2. Measurement Of Multiphase Flow Water Fraction And Water-cut

    Science.gov (United States)

    Xie, Cheng-gang

    2007-06-01

    This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.

  3. Fractional Modeling of the AC Large-Signal Frequency Response in Magnetoresistive Current Sensors

    Directory of Open Access Journals (Sweden)

    Sergio Iván Ravelo Arias

    2013-12-01

    Full Text Available Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function  is obtained considering it as the relationship between sensor output voltage and input sensing current,[PLEASE CHECK FORMULA IN THE PDF]. The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR, giant magnetoresistance (GMR, spin-valve (GMR-SV and tunnel magnetoresistance (TMR. The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications.

  4. Measurement of the Branching Fraction for B+- -> chic0 K+-

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2003-10-07

    We present a measurement of the branching fraction of the decay B{sup {+-}} {yields} {chi}{sub c0}K{sup {+-}} from a sample of 89 million B{bar B} pairs collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. The {chi}{sub c0} meson is reconstructed through its two-body decays to {pi}{sup +}{pi}{sup -} and K{sup +}K{sup -}. The authors measure {Beta}(B{sup {+-}} {yields} {chi}{sub c0}K{sup {+-}}) x {Beta}({chi}{sub c0} {yields} {pi}{sup +}{pi}{sup -}) = (1.32 {sub -0.27}{sup +0.28}(stat) {+-} 0.09(syst)) x 10{sup -6} and {Beta}(B{sup {+-}} {yields} {chi}{sub c0}K{sup {+-}}) x {Beta}({chi}{sub c0} {yields} K{sup +}K{sup -}) = (1.49{sub -0.34}{sup +0.36}(stat) {+-} 0.11(syst)) x 10{sup -6}. Using the known values for the {chi}{sub c0} decays branching fractions, they combine these results to obtain {Beta}(B{sup {+-}} {yields} {chi}{sub c0} K{sup {+-}}) = (2.7 {+-} 0.7) x 10{sup -4}.

  5. Effect-independent measures of tissue responses to fractionated irradiation

    International Nuclear Information System (INIS)

    Thames, H.D. Jr.

    1984-01-01

    Tissue repair factors measure the sparing that can be achieved from dose fractionation in the absence of proliferation. Four repair factors are analysed in these terms: Fsub(R),Fsub(rec), the ratio of linear-quadratic survival model parameters β/α and the half-time Tsub(1/2) for intracellular repair processes. Theoretically, Fsub(R) and Fsub(rec) are increasing functions of D 1 , and thus depend on level of effect. This is confirmed by analysis of skin reactions after multifractionated radiation. By contrast, β/α is effect-independent as a measure of repair capacity in skin, gut, and bone marrow, tissues for which it is reasonable to assume that survival of identifiable target cells is the primary determinant of the endpoint. For a functional endpoint not clearly connected with the depletion of a specific target-cell population (late fibrotic reactions in the kidney), there was an increase in β/α with increased levels of injury, but this was statistically insignificant. Tsub(1/2) is independent of fraction size in skin, gut, and spinal cord, and is longer (1.5 hours) in the late-reacting tissues (lung and spinal cord) than in those that react acutely (Tsub(1/2) less than 1 hour), with skin as the exception (Tsub(1/2) approx. 1.3 hours). (author)

  6. Technical aspects and limitations of fractional flow reserve measurement.

    Science.gov (United States)

    Jerabek, Stepan; Kovarnik, Tomas

    2018-02-27

    The only indication for coronary revascularization is elimination of ischaemia. Invasive hemodynamic methods (fractional flow reserve - FFR and instantaneous wave-free ratio (iFR) are superior to coronary angiography in detection of lesions causing myocardial ischaemia. Current European guidelines for myocardial revascularization recommend using of FFR for detection of functional assessment of lesions severity in category IA and number of these procedures increases. However, routine usage of these methods requires knowledge of technical requirements and limitations. The aim of the study is to summarise good clinical practice for FFR and iFR measurements with explanation of possible technical challenges, that are necessary for increasing of measurement accuracy. Authors describe frequent technical mistakes and malpractice during invasive assessment of lesion severity in coronary arteries.

  7. Peculiarities of void fraction measurement applied to physical installation channels cooled by forced helium flow

    International Nuclear Information System (INIS)

    Danilov, V.V.; Filippov, Yu.P.; Mamedov, I.S.

    1989-01-01

    The methods of optimizing the transducers designed for measurements of the void fraction of two-phase flows in the channels of round and annular cross section are presented. On the basis of the analysis performed concrete solution of relatively high technical characteristics are proposed. Rated and actual characteristics of signal ranges and measurement errors are given for both sensors. Influence of the mass velocity on the void fraction of adiabatic two-phase flows is theoretically analyzed. Effects of friction and of liquid-into-vapour entrainment are shown. Calculation results are compared with the obtained experimental data for helium. Special attention is given to the specific features of the processes in channels with different cross section. 17 refs.; 5 figs.; 1 tab

  8. RF measurements I: signal receiving techniques

    CERN Document Server

    Caspers, F

    2011-01-01

    For the characterization of components, systems and signals in the RF and microwave range, several dedicated instruments are in use. In this paper the fundamentals of the RF-signal sampling technique, which has found widespread applications in 'digital' oscilloscopes and sampling scopes, are discussed. The key element in these front-ends is the Schottky diode which can be used either as an RF mixer or as a single sampler. The spectrum analyser has become an absolutely indispensable tool for RF signal analysis. Here the front-end is the RF mixer as the RF section of modern spectrum analysers has a rather complex architecture. The reasons for this complexity and certain working principles as well as limitations are discussed. In addition, an overview of the development of scalar and vector signal analysers is given. For the determination of the noise temperature of a one-port and the noise figure of a two-port, basic concepts and relations are shown. A brief discussion of commonly used noise measurement techniq...

  9. Measurement of local void fraction at elevated temperature and pressure

    International Nuclear Information System (INIS)

    Duncan, D.; Trabold, T.A.

    1993-03-01

    Significant advances have recently been made in analytical and computational methods for the prediction of local thermal-hydraulic conditions in gas/liquid two-phase flows. There is, however, a need for extensive experimental data, for the dual purposes of constitutive relation development and code qualification. There is especially true of systems involving complicated geometries and/or extreme flow conditions for which little, if any, applicable information exists in the open literature. For the tests described in the present paper, a novel electrical probe has been applied to measure the void fraction in atmospheric pressure air/water flows, and steam/water mixtures at high temperature and pressure. The data acquired in the latter experiments are compared with the results of a one-dimensional two-fluid computational analysis

  10. Signal quality measures for unsupervised blood pressure measurement

    International Nuclear Information System (INIS)

    Abdul Sukor, J; Redmond, S J; Lovell, N H; Chan, G S H

    2012-01-01

    Accurate systolic and diastolic pressure estimation, using automated blood pressure measurement, is difficult to achieve when the transduced signals are contaminated with noise or interference, such as movement artifact. This study presents an algorithm for automated signal quality assessment in blood pressure measurement by determining the feasibility of accurately detecting systolic and diastolic pressures when corrupted with various levels of movement artifact. The performance of the proposed algorithm is compared to a manually annotated reference scoring (RS). Based on visual representations and audible playback of Korotkoff sounds, the creation of the RS involved two experts identifying sections of the recorded sounds and annotating sections of noise contamination. The experts determined the systolic and diastolic pressure in 100 recorded Korotkoff sound recordings, using a simultaneous electrocardiograph as a reference signal. The recorded Korotkoff sounds were acquired from 25 healthy subjects (16 men and 9 women) with a total of four measurements per subject. Two of these measurements contained purposely induced noise artifact caused by subject movement. Morphological changes in the cuff pressure signal and the width of the Korotkoff pulse were extracted features which were believed to be correlated with the noise presence in the recorded Korotkoff sounds. Verification of reliable Korotkoff pulses was also performed using extracted features from the oscillometric waveform as recorded from the inflatable cuff. The time between an identified noise section and a verified Korotkoff pulse was the key feature used to determine the validity of possible systolic and diastolic pressures in noise contaminated Korotkoff sounds. The performance of the algorithm was assessed based on the ability to: verify if a signal was contaminated with any noise; the accuracy, sensitivity and specificity of this noise classification, and the systolic and diastolic pressure

  11. Fractional order analysis of Sephadex gel structures: NMR measurements reflecting anomalous diffusion

    Science.gov (United States)

    Magin, Richard L.; Akpa, Belinda S.; Neuberger, Thomas; Webb, Andrew G.

    2011-12-01

    We report the appearance of anomalous water diffusion in hydrophilic Sephadex gels observed using pulse field gradient (PFG) nuclear magnetic resonance (NMR). The NMR diffusion data was collected using a Varian 14.1 Tesla imaging system with a home-built RF saddle coil. A fractional order analysis of the data was used to characterize heterogeneity in the gels for the dynamics of water diffusion in this restricted environment. Several recent studies of anomalous diffusion have used the stretched exponential function to model the decay of the NMR signal, i.e., exp[-( bD) α], where D is the apparent diffusion constant, b is determined the experimental conditions (gradient pulse separation, durations and strength), and α is a measure of structural complexity. In this work, we consider a different case where the spatial Laplacian in the Bloch-Torrey equation is generalized to a fractional order model of diffusivity via a complexity parameter, β, a space constant, μ, and a diffusion coefficient, D. This treatment reverts to the classical result for the integer order case. The fractional order decay model was fit to the diffusion-weighted signal attenuation for a range of b-values (0 < b < 4000 s mm -2). Throughout this range of b values, the parameters β, μ and D, were found to correlate with the porosity and tortuosity of the gel structure.

  12. Measurement of effective left ventricular ejection fraction by radiocardiography associated with cardiac chamber scanning

    Energy Technology Data Exchange (ETDEWEB)

    de Vernejoul, P; Fauchet, M; Rimbert, J -N; Gambini, D; Agnely, J [Hopital Necker-Enfants-Malades, 75 - Paris (France)

    1976-03-01

    Left ventricular ejection fraction is usually measured by cineangiocardiography. When radiocardiography and cardiac chamber scanning are associated, it allows an effective left ventricular ejection fraction assessment. Ejection fractions calculated by both methods are the same in normal subjects. They are different in the case of left valvular heart disease with insufficiency. The whole regurgitation fraction can be calculated from this difference.

  13. Measurement of effective left ventricular ejection fraction by radiocardiography associated with cardiac chamber scanning

    International Nuclear Information System (INIS)

    Vernejoul, Pierre de; Fauchet, Michel; Rimbert, J.-N.; Gambini, Denis; Agnely, Jacqueline

    1976-01-01

    Left ventricular ejection fraction is usually measured by cineangiocardiography. When radiocardiography and cardiac chamber scanning are associated, it allows an effective left ventricular ejection fraction assessment. Ejection fractions calculated by both methods are the same in normal subjects. They are different in the case of left valvular heart disease with insufficiency. The whole regurgitation fraction can be calculated from this difference [fr

  14. Measurement of the Tau Branching Fractions into Leptons

    CERN Document Server

    Acciarri, M.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Ambrosi, G.; Anderhub, H.; Andreev, Valery P.; Angelescu, T.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, L.; Balandras, A.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Bhattacharya, S.; Biasini, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buffini, A.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.M.; Casaus, J.; Castellini, G.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chang, Y.H.; Chaturvedi, U.K.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Coignet, G.; Colijn, A.P.; Colino, N.; Costantini, S.; Cotorobai, F.; de la Cruz, B.; Csilling, A.; Cucciarelli, S.; Dai, T.S.; van Dalen, J.A.; D'Alessandro, R.; de Asmundis, R.; Deglon, P.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dova, M.T.; Duchesneau, D.; Dufournaud, D.; Duinker, P.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Erne, F.C.; Ewers, A.; Extermann, P.; Fabre, M.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gau, S.S.; Gentile, S.; Gheordanescu, N.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hasan, A.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hidas, P.; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hoorani, H.; Hou, S.R.; Hu, Y.; Iashvili, I.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Khan, R.A.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, D.; Kim, J.K.; Kirkby, Jasper; Kiss, D.; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Kopp, A.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Lacentre, P.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Lugnier, L.; Luminari, L.; Lustermann, W.; Ma, W.G.; Maity, M.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Marian, G.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; von der Mey, M.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Moore, R.; Moulik, T.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Oulianov, A.; Palomares, C.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Paramatti, R.; Park, H.K.; Park, I.H.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pieri, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Pothier, J.; Prokofev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Raven, G.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Rodin, J.; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Seganti, A.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Smith, B.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stone, A.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Sztaricskai, T.; Tang, X.W.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Uchida, Y.; Ulbricht, J.; Valente, E.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Vorvolakos, A.; Wadhwa, M.; Wallraff, W.; Wang, M.; Wang, X.L.; Wang, Z.M.; Weber, A.; Weber, M.; Wienemann, P.; Wilkens, H.; Wu, S.X.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Ye, J.B.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhu, G.Y.; Zhu, R.Y.; Zichichi, A.; Ziegler, F.; Zilizi, G.; Zimmermann, B.; Zoller, M.

    2001-01-01

    Using data collected with the L3 detector near the Z resonance, corresponding to an integrated luminosity of 150pb-1, the branching fractions of the tau lepton into electron and muon are measured to be B(tau->e nu nu) = (17.806 +- 0.104 (stat.) +- 0.076 (syst.)) %, B(tau->mu nu nu) = (17.342 +- 0.110 (stat.) +- 0.067 (syst.)) %. From these results the ratio of the charged current coupling constants of the muon and the electron is determined to be g_mu/g_e = 1.0007 +- 0.0051. Assuming electron-muon universality, the Fermi constant is measured in tau lepton decays as G_F = (1.1616 +- 0.0058) 10^{-5} GeV^{-2}. Furthermore, the coupling constant of the strong interaction at the tau mass scale is obtained as alpha_s(m_tau^2) = 0.322 +- 0.009 (exp.) +- 0.015 (theory).

  15. Reproducibility of gallbladder ejection fraction measured by fatty meal cholescintigraphy

    International Nuclear Information System (INIS)

    Al-Muqbel, Kusai M.; Hani, M. N. Hani; Elheis, M. A.; Al-Omari, M. H.

    2010-01-01

    There are conflicting data in the literature regarding the reproducibility of the gallbladder ejection fraction (GBEF) measured by fatty meal cholescintigraphy (CS). We aimed to test the reproducibility of GBEF measured by fatty meal CS. Thirty-five subjects (25 healthy volunteers and 10 patients with chronic abdominal pain) underwent fatty meal CS twice in order to measure GBEF1 and GBEF2. The healthy volunteers underwent a repeat scan within 1-13 months from the first scan. The patients underwent a repeat scan within 1-4 years from the first scan and were not found to have chronic acalculous cholecystitis (CAC). Our standard fatty meal was composed of a 60-g Snickers chocolate bar and 200 ml full-fat yogurt. The mean ± SD values for GBEF1 and GBEF2 were 52±17% and 52±16%, respectively. There was a direct linear correlation between the values of GBEF1 and GBEF2 for the subjects, with a correlation coefficient of 0.509 (p=0.002). Subgroup data analysis of the volunteer group showed that there was significant linear correlation between volunteer values of GBEF1 and GBEF2, with a correlation coefficient of 0.473 (p=0.017). Subgroup data analysis of the non-CAC patient group showed no significant correlation between patient values of GBEF1 and GBEF2, likely due to limited sample size. This study showed that fatty meal CS is a reliable test in gallbladder motility evaluation and that GBEF measured by fatty meal CS is reproducible

  16. Reproducibility of gallbladder ejection fraction measured by fatty meal cholescintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Al-Muqbel, Kusai M.; Hani, M. N. Hani; Elheis, M. A.; Al-Omari, M. H. [School of Medicine, Jordan University of Science and Technology, Irbid (Jordan)

    2010-12-15

    There are conflicting data in the literature regarding the reproducibility of the gallbladder ejection fraction (GBEF) measured by fatty meal cholescintigraphy (CS). We aimed to test the reproducibility of GBEF measured by fatty meal CS. Thirty-five subjects (25 healthy volunteers and 10 patients with chronic abdominal pain) underwent fatty meal CS twice in order to measure GBEF1 and GBEF2. The healthy volunteers underwent a repeat scan within 1-13 months from the first scan. The patients underwent a repeat scan within 1-4 years from the first scan and were not found to have chronic acalculous cholecystitis (CAC). Our standard fatty meal was composed of a 60-g Snickers chocolate bar and 200 ml full-fat yogurt. The mean {+-} SD values for GBEF1 and GBEF2 were 52{+-}17% and 52{+-}16%, respectively. There was a direct linear correlation between the values of GBEF1 and GBEF2 for the subjects, with a correlation coefficient of 0.509 (p=0.002). Subgroup data analysis of the volunteer group showed that there was significant linear correlation between volunteer values of GBEF1 and GBEF2, with a correlation coefficient of 0.473 (p=0.017). Subgroup data analysis of the non-CAC patient group showed no significant correlation between patient values of GBEF1 and GBEF2, likely due to limited sample size. This study showed that fatty meal CS is a reliable test in gallbladder motility evaluation and that GBEF measured by fatty meal CS is reproducible

  17. Volume fraction dependence of transient absorption signal and nonlinearities in metal nanocolloids

    International Nuclear Information System (INIS)

    Jayabalan, J; Singh, Asha; Khan, Salahuddin; Chari, Rama

    2013-01-01

    Electron–lattice thermalization dynamics in metal nanoparticles or in bulk metal is usually estimated by measuring the decay time of the change in transmission following an optical excitation. Such measurements can be performed in transient absorption geometry using a femtosecond laser. We find that for silver nanoplatelet/water colloids, the decay time of the transient absorption depends on the volume fraction of silver in water. By estimating the volume fraction dependence of nonlinearities in the same samples, we show that the variation in the measured decay time is due to pump-depletion effects present in the sample. The correct correction factor for taking into account pump-depletion effects in fifth- and higher-order nonlinearities is also presented. (paper)

  18. Fractional Poincaré inequalities for general measures

    KAUST Repository

    Mouhot, Clé ment; Russ, Emmanuel; Sire, Yannick

    2011-01-01

    on the fractional derivative in terms of a weight growing at infinity. The proof goes through the introduction of the generator of the Ornstein-Uhlenbeck semigroup and some careful estimates of its powers. To our knowledge this is the first proof of fractional

  19. Measuring memory with the order of fractional derivative

    Science.gov (United States)

    Du, Maolin; Wang, Zaihua; Hu, Haiyan

    2013-12-01

    Fractional derivative has a history as long as that of classical calculus, but it is much less popular than it should be. What is the physical meaning of fractional derivative? This is still an open problem. In modeling various memory phenomena, we observe that a memory process usually consists of two stages. One is short with permanent retention, and the other is governed by a simple model of fractional derivative. With the numerical least square method, we show that the fractional model perfectly fits the test data of memory phenomena in different disciplines, not only in mechanics, but also in biology and psychology. Based on this model, we find that a physical meaning of the fractional order is an index of memory.

  20. Incremental first pass technique to measure left ventricular ejection fraction

    International Nuclear Information System (INIS)

    Kocak, R.; Gulliford, P.; Hoggard, C.; Critchley, M.

    1980-01-01

    An incremental first pass technique was devised to assess the acute effects of any drug on left ventricular ejection fraction (LVEF) with or without a physiological stress. In particular, the effects of the vasodilater isosorbide dinitrate on LVEF before and after exercise were studied in 11 patients who had suffered cardiac failure. This was achieved by recording the passage of sup(99m)Tc pertechnetate through the heart at each stage of the study using a gamma camera computer system. Consistent values for four consecutive first pass values without exercise or drug in normal subjects illustrated the reproducibility of the technique. There was no significant difference between LVEF values obtained at rest and exercise before or after oral isosorbide dinitrate with the exception of one patient with gross mitral regurgitation. The advantages of the incremental first pass technique are that the patient need not be in sinus rhythm, the effects of physiological intervention may be studied and tests may also be repeated at various intervals during long term follow-up of patients. A disadvantage of the method is the limitation in the number of sequential measurements which can be carried out due to the amount of radioactivity injected. (U.K.)

  1. 40 CFR Table 34 to Subpart G of... - Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Fraction Measured (Fm) and Fraction... Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 34 Table 34 to Subpart G of Part 63—Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams Chemical name CAS...

  2. Short-term measurement of carbon isotope fractionation in plants

    International Nuclear Information System (INIS)

    O'Leary, M.H.; Treichel, I.; Rooney, M.

    1986-01-01

    Combustion-based studies of the carbon-13 content of plants give only an integrated, long-term value for the isotope fractionation associated with photosynthesis. A method is described here which permits determination of this isotope fractionation in 2 to 3 hours. To accomplish this, the plant is enclosed in a glass chamber, and the quantity and isotopic content of the CO 2 remaining in the atmosphere are monitored during photosynthesis. Isotope fractionation studies by this method give results consistent with what is expected from combustion studies of C 3 , C 4 , and Crassulacean acid metabolism plants. This method will make possible a variety of new studies of environmental and species effects in carbon isotope fractionation

  3. A comparison of analytic procedures for measurement of fractional dextran clearances

    NARCIS (Netherlands)

    Hemmelder, MH; de Jong, PE; de Zeeuw, D

    Fractional dextran clearances have been extensively used to study glomerular size selectivity. We report on an analysis of different laboratory procedures involved in measuring fractional dextran clearances. The deproteinization of plasma samples by 20% trichloroacetic acid (TCA) revealed a protein

  4. Development of an electrical sensor for measurement of void fraction and identification of flow regime in a horizontal pipe

    International Nuclear Information System (INIS)

    Won, Woo Yeon; Lee, Yeon Gun; Lee, Bo An; Ko, Min Seok; Kim, Sin

    2015-01-01

    The electrical signals of the electrical impedance sensor depend on the flow structure as well as the void fraction. For this reason, the electrical responses to a given void fraction differ according to the flow pattern. For reliable void fraction measurement, hence, information on the flow pattern should be given. Based on this idea, a new improved conductance sensor is proposed in this study to measure the void fraction and simultaneously determine the flow pattern of the air-water two-phase mixture in a horizontal pipe. The proposed sensor is composed of a 3-electrode set of adjacent and opposite electrodes. The opposite electrodes measures the void fraction, the adjacent electrode serves to determine the flow patterns. Prior to the real applications of the proposed approach, several numerical calculations based on the FEM are performed to optimize the electrode and insulator sizes in terms of the sensor linearity. The numerical results are assessed in comparison with the data from static experiments. The sensor system is applied for a horizontal flow loop with 40 mm in inner diameter and 5 m in length and its measurement performance for the void fraction is compared with that of a wire-mesh sensor system. In this study, an electrical sensor for measuring the void fraction and identifying flow pattern in horizontal pipes has been designed. For optimization of the sensor, numerical analysis have been performed in order to determine the geometry and verified it through static experiments. Also, the loop experiments were conducted for several flow rate conditions covering stratified and intermittent flow regimes and the experimental results for the void fractions measured by the proposed sensor were compared with those of a wire-mesh sensor. The comparison results are in overall good agreements

  5. Meanings for Fraction as Number-Measure by Exploring the Number Line

    Science.gov (United States)

    Psycharis, Giorgos; Latsi, Maria; Kynigos, Chronis

    2009-01-01

    This paper reports on a case-study design experiment in the domain of fraction as number-measure. We designed and implemented a set of exploratory tasks concerning comparison and ordering of fractions as well as operations with fractions. Two groups of 12-year-old students worked collaboratively using paper and pencil as well as a specially…

  6. Real-time particle volume fraction measurement in centrifuges by wireless electrical resistance detector

    International Nuclear Information System (INIS)

    Nagae, Fumiya; Okawa, Kazuya; Matsuno, Shinsuke; Takei, Masahiro; Zhao Tong; Ichijo, Noriaki

    2015-01-01

    In this study, wireless electrical resistance detector is developed as first step in order to develop electrical resistance tomography (ERT) that are attached wireless communication, and miniaturized. And the particle volume fraction measurement results appropriateness is qualitatively examined. The real-time particle volume fraction measurement is essential for centrifuges, because rotational velocity and supply should be controlled based on the results in order to obtain the effective separation, shorten process time and save energy. However, a technique for the particle volume fraction measurement in centrifuges has not existed yet. In other words, the real-time particle volume fraction measurement in centrifuges becomes innovative technologies. The experiment device reproduces centrifugation in two-phase using particle and salt solution as measuring object. The particle concentration is measured changing rotational velocity, supply and measurement section position. The measured concentration changes coincide with anticipated tendency of concentration changes. Therefore the particle volume fraction measurement results appropriateness are qualitatively indicated. (author)

  7. Analysis of acoustic sound signal for ONB measurement

    International Nuclear Information System (INIS)

    Park, S. J.; Kim, H. I.; Han, K. Y.; Chai, H. T.; Park, C.

    2003-01-01

    The onset of nucleate boiling (ONB) was measured in a test fuel bundle composed of several fuel element simulators (FES) by analysing the aquatic sound signals. In order measure ONBs, a hydrophone, a pre-amplifier, and a data acquisition system to acquire/process the aquatic signal was prepared. The acoustic signal generated in the coolant is converted to the current signal through the microphone. When the signal is analyzed in the frequency domain, each sound signal can be identified according to its origin of sound source. As the power is increased to a certain degree, a nucleate boiling is started. The frequent formation and collapse of the void bubbles produce sound signal. By measuring this sound signal one can pinpoint the ONB. Since the signal characteristics is identical for different mass flow rates, this method can be applicable for ascertaining ONB

  8. Application of gamma densitometer for void fraction measurement in the downcomer of DVI experimental apparatus

    International Nuclear Information System (INIS)

    Chu, In Cheol; Kim, Y. K.; Yun, B. J.; Kwon, T. S.; Chung, M. K.; Song, C. H.

    2000-11-01

    KNGR which adopts the DVI type of ECCS is expected to show different thermal hydraulic aspects from existing NPPs which use the CLI type of ECCS. Therefore, it is necessary to examine whether existing safety analysis codes could correctly predict major thermal hydraulic phenomena which are inherent in SIS operation of DVI type. Among several thermal hydraulic phenomena, it is of particular importance to examine and improve the analyzing capability of existing codes for the void fraction and flow pattern in the downcomer. In the present study, the design of gamma densitometer to measure the void fraction and flow pattern in the downcomer of DVI test apparatus has been performed. In addition, provided are the requirements of gamma source, source activity, scintillation detector, and signal processing system. Also, the design of the shielding facilities has been carried out to ensure the safety of operator from the danger of radiation exposure. And finally the applicability of gamma densitometer to the density measurement of two-phase flow has been investigated throughout the preliminary tests

  9. Design aspects of gamma densitometers for void fraction measurements in small scale two-phase flows

    International Nuclear Information System (INIS)

    Chan, A.M.C.; Banerjee, S.

    1981-01-01

    Design procedure for a single-beam gamma densitometer operated in the count mode is described. The design is simple, compact and is particularly suited for small scale two-phase flow experiments with thin-metal walled or non-metallic test sections. The choice of gamma sources, scintillators and signal processing systems is discussed. The procedure has been applied by the authors in the design of densitometers for two transient experiments: refilling and rewetting experiments and flow boiling experiments. Good average void measurements were obtained for relatively fast transients. It has also been shown that some useful flow parameters other than void fractions can be obtained if two or more densitometers are used, eg, the average rewetting and entrained liquid velocities in the refilling and rewetting experiments, and the average void velocity in the flow boiling experiments. (orig.)

  10. Feedback-stabilized fractional fringe laser interferometer for plasma density measurements

    International Nuclear Information System (INIS)

    Schneider, J.; Robertson, S.

    1979-01-01

    A feedback stabilization technique is described for a fractional fringe interferometer measuring plasma electron densities. Using this technique, a CO 2 laser Michelson interferometer with a pyroelectric detector exhibited a sensitivity of 3.4 x 10 -4 fringe on a 1-ms time scale and, due to acoustic pickup, 1.8 x 10 -2 fringe on a 10-ms time scale. The rise time is 45 μs. Stabilization against slow drifts in mirror distances is achieved by an electromechanically translated mirror driven by a servo system having a 0.2-s response time. A mechanical chopper in one of the two beam paths generates the signal which drives the servo system

  11. Quantitative mixture fraction measurements in combustion system via laser induced breakdown spectroscopy

    KAUST Repository

    Mansour, Mohy S.

    2015-01-01

    Laser induced breakdown spectroscopy (LIBS) technique has been applied to quantitative mixture fraction measurements in flames. The measured spectra of different mixtures of natural gas and air are used to obtain the calibration parameters for local elemental mass fraction measurements and hence calculate the mixture fraction. The results are compared with the mixture fraction calculations based on the ratios of the spectral lines of H/N elements, H/O elements and C/(N+O) and they show good agreement within the reaction zone of the flames. Some deviations are observed outside the reaction zone. The ability of LIBS technique as a tool for quantitative mixture fraction as well as elemental fraction measurements in reacting and non-reacting of turbulent flames is feasible. © 2014 Elsevier Ltd. All rights reserved.

  12. Void Fraction Measurement in Subcooled-Boiling Flow Using High-Frame-Rate Neutron Radiography

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Akimoto, Hajime; Hibiki, Takashi; Mishima, Kaichiro

    2001-01-01

    A high-frame-rate neutron radiography (NR) technique was applied to measure the void fraction distribution in forced-convective subcooled-boiling flow. The focus was experimental technique and error estimation of the high-frame-rate NR. The results of void fraction measurement in the boiling flow were described. Measurement errors on instantaneous and time-averaged void fractions were evaluated experimentally and analytically. Measurement errors were within 18 and 2% for instantaneous void fraction (measurement time is 0.89 ms), and time-averaged void fraction, respectively. The void fraction distribution of subcooled boiling was measured using atmospheric-pressure water in rectangular channels with channel width 30 mm, heated length 100 mm, channel gap 3 and 5 mm, inlet water subcooling from 10 to 30 K, and mass velocity ranging from 240 to 2000 kg/(m 2 .s). One side of the channel was heated homogeneously. Instantaneous void fraction and time-averaged void fraction distribution were measured parametrically. The effects of flow parameters on void fraction were investigated

  13. Design and analysis of fractional order seismic transducer for displacement and acceleration measurements

    Science.gov (United States)

    Veeraian, Parthasarathi; Gandhi, Uma; Mangalanathan, Umapathy

    2018-04-01

    Seismic transducers are widely used for measurement of displacement, velocity, and acceleration. This paper presents the design of seismic transducer in the fractional domain for the measurement of displacement and acceleration. The fractional order transfer function for seismic displacement and acceleration transducer are derived using Grünwald-Letnikov derivative. Frequency response analysis of fractional order seismic displacement transducer (FOSDT) and fractional order seismic acceleration transducer (FOSAT) are carried out for different damping ratio with the different fractional order, and the maximum dynamic measurement range is identified. The results demonstrate that fractional order seismic transducer has increased dynamic measurement range and less phase distortion as compared to the conventional seismic transducer even with a lower damping ratio. Time response of FOSDT and FOSAT are derived analytically in terms of Mittag-Leffler function, the effect of fractional behavior in the time domain is evaluated from the impulse and step response. The fractional order system is found to have significantly reduced overshoot as compared to the conventional transducer. The fractional order seismic transducer design proposed in this paper is illustrated with a design example for FOSDT and FOSAT. Finally, an electrical equivalent of FOSDT and FOSAT is considered, and its frequency response is found to be in close agreement with the proposed fractional order seismic transducer.

  14. Measurements on wireless transmission of ECG signals

    International Nuclear Information System (INIS)

    Gabrielli, A.; Lax, I.

    2016-01-01

    The scope of this research is to design an electronic prototype, an operative system as a proof of concept, to transmit and receive biological parameters, in particular electrocardiogram signals, through dedicated wireless circuits. The apparatus features microelectronics chips that were developed for more general biomedical applications, here adapted to deal with cardiac signals. The paper mainly focuses on the electronic aspects, as in this study we do not face medical or clinical aspects of the system. The transmitter circuit uses a commercial instrumentation amplifier and the receiver has been equipped with wide-band amplifiers along with made-in-the-lab band-pass filters centered at the carrier. We have been able to mount the entire system prototype into a preliminary data acquisition chain that reads out the electrocardiogram signal. The prototype allows acquiring the waveform, converting it to a digital pattern and open the transmission through a series of high-frequency packets exploiting the Ultra Wide Band protocol. The sensor value is embedded in the transmission through the rate of the digital packets. In fact, these are sent wireless at a specific packet-frequency that depends on the sensor amplitude and are detected into a receiver circuit that recovers the information.

  15. Measurements on wireless transmission of ECG signals

    Science.gov (United States)

    Gabrielli, A.; Lax, I.

    2016-12-01

    The scope of this research is to design an electronic prototype, an operative system as a proof of concept, to transmit and receive biological parameters, in particular electrocardiogram signals, through dedicated wireless circuits. The apparatus features microelectronics chips that were developed for more general biomedical applications, here adapted to deal with cardiac signals. The paper mainly focuses on the electronic aspects, as in this study we do not face medical or clinical aspects of the system. The transmitter circuit uses a commercial instrumentation amplifier and the receiver has been equipped with wide-band amplifiers along with made-in-the-lab band-pass filters centered at the carrier. We have been able to mount the entire system prototype into a preliminary data acquisition chain that reads out the electrocardiogram signal. The prototype allows acquiring the waveform, converting it to a digital pattern and open the transmission through a series of high-frequency packets exploiting the Ultra Wide Band protocol. The sensor value is embedded in the transmission through the rate of the digital packets. In fact, these are sent wireless at a specific packet-frequency that depends on the sensor amplitude and are detected into a receiver circuit that recovers the information.

  16. Performance of a fully automated program for measurement of left ventricular ejection fraction

    International Nuclear Information System (INIS)

    Douglass, K.H.; Tibbits, P.; Kasecamp, W.; Han, S.T.; Koller, D.; Links, J.M.; Wagner, H.H. Jr.

    1982-01-01

    A fully automated program developed by us for measurement of left ventricular ejection fraction from equilibrium gated blood studies was evaluated in 130 additional patients. Both of 6-min (130 studies) and 2-min (142 studies in 31 patients) gated blood pool studies were acquired and processed. The program successfully generated ejection fractions in 86% of the studies. These automatically generated ejection fractions were compared with ejection fractions derived from manually drawn regions the interest. When studies were acquired for 6-min with the patient at rest, the correlation between automated and manual ejection fractions was 0.92. When studies were acquired for 2-min, both at rest and during bicycle exercise, the correlation was 0.81. In 25 studies from patients who also underwent contrast ventriculography, the program successfully generated regions of interest in 22 (88%). The correlation between the ejection fraction determined by contrast ventriculography and the automatically generated radionuclide ejection fraction was 0.79. (orig.)

  17. Quantitative mixture fraction measurements in combustion system via laser induced breakdown spectroscopy

    KAUST Repository

    Mansour, Mohy S.; Imam, Hisham; Elsayed, Khaled A.; Elbaz, Ayman M.; Abbass, Wafaa

    2015-01-01

    Laser induced breakdown spectroscopy (LIBS) technique has been applied to quantitative mixture fraction measurements in flames. The measured spectra of different mixtures of natural gas and air are used to obtain the calibration parameters for local

  18. Measurements of void fraction in a heated tube in the rewetting conditions

    International Nuclear Information System (INIS)

    Freitas, R.L.

    1983-01-01

    The methods of void fraction measurements by transmission and diffusion of cold, thermal and epithermal neutrons were studied with cylindrical alluminium pieces simulating the steam. A great set of void fraction found in a wet zone was examined and a particulsar attention was given to the sensitivity effects of the method, mainly for high void fraction. Several aspects of the measurement techniques were analyzed, such as the effect of the phase radial distribution, neutron energy, water tempeture, effect of the void axial gradient. The technique of thermal neutron diffusion measurement was used to measure the axial profile of void fraction in a steady two-phase flow, where the pressure, mass velocity and heat flux are representative of the wet conditions. Experimental results are presented and compared with different void fraction models. (E.G.) [pt

  19. Should direct measurements of tumor oxygenation relate to the radiobiological hypoxic fraction of a tumor?

    International Nuclear Information System (INIS)

    Fenton, Bruce M.; Kiani, Mohammad F.; Siemann, Dietmar W.

    1995-01-01

    Purpose: Numerous previous studies have attempted to relate the radiobiological hypoxic fraction (HF) to direct measures of tumor oxygenation such as HbO 2 saturations, tumor pO 2 levels, or hypoxic cell labeling. Although correlations have been found within tumor lines, no overall relationships were seen across tumor lines. The current objective was to examine the effect on HF of changes in the fractions of the oxygenated and anoxic tumor cells that remain clonogenic. Methods and Materials: A mathematical model was developed that relates the HF to direct measures of tumor oxygenation. The primary assumptions were that: (a) the tumor is divided into distinct compartments of either fully oxygenated or fully anoxic cells, and (b) the survival of the oxygenated cells is negligible compared to that of the anoxic cells. Based on these assumptions, the HF is plotted as a function of the fractions of clonogenic or nonclonogenic, and oxygenated or anoxic cells. Results: If all cells are clonogenic, then the HF equals the fraction of anoxic cells. If a higher fraction of anoxic than oxygenated cells are nonclonogenic, then the HF will be overestimated by the fraction of the tumor measured to be anoxic using direct measuring techniques. If a higher fraction of the oxygenated than anoxic cells are nonclonogenic, the HF will be underestimated by the fraction of anoxic cells. Conclusion: Correlations between the HF and direct measures of tumor oxygenation have been described within tumor lines evaluated under different physiological condition. However, such relationships can be totally unpredictable between different tumors if the fraction of the anoxic cells that is clonogenic varies substantially. Clearly, if tumor anoxia cannot be detected using direct measures, this is an accurate indication that the tumor is well oxygenated. When tumor anoxia is present, however, the conclusions are ambiguous. Even when a small fraction of the tumor is measured as anoxic, direct measures

  20. Measurement System for Playout Delay of TV Signals

    NARCIS (Netherlands)

    Kooij, W.J.; Stokking, H.M.; Brandenburg, R. van; Boer, P.T. de

    2014-01-01

    TV signals are carried towards end-users using different (broadcast) technologies and by different providers. This is causing differences in the playout timing of the TV signal at different locations and devices. Authors have developed a measurement system for measuring the relative playout delay of

  1. Hydrogen solubility measurements of analyzed tall oil fractions and a solubility model

    International Nuclear Information System (INIS)

    Uusi-Kyyny, Petri; Pakkanen, Minna; Linnekoski, Juha; Alopaeus, Ville

    2017-01-01

    Highlights: • Hydrogen solubility was measured in four tall oil fractions between 373 and 597 K. • Continuous flow synthetic isothermal and isobaric method was used. • A Henry’s law model was developed for the distilled tall oil fractions. • The complex composition of the samples was analyzed and is presented. - Abstract: Knowledge of hydrogen solubility in tall oil fractions is important for designing hydrotreatment processes of these complex nonedible biobased materials. Unfortunately measurements of hydrogen solubility into these fractions are missing in the literature. This work reports hydrogen solubility measured in four tall oil fractions between 373 and 597 K and at pressures from 5 to 10 MPa. Three of the fractions were distilled tall oil fractions their resin acids contents are respectively 2, 20 and 23 in mass-%. Additionally one fraction was a crude tall oil (CTO) sample containing sterols as the main neutral fraction. Measurements were performed using a continuous flow synthetic isothermal and isobaric method based on the visual observation of the bubble point. Composition of the flow was changed step-wise for the bubble point composition determination. We assume that the tall oil fractions did not react during measurements, based on the composition analysis performed before and after the measurements. Additionally the densities of the fractions were measured at atmospheric pressure from 293.15 to 323.15 K. A Henry’s law model was developed for the distilled tall oil fractions describing the solubility with an absolute average deviation of 2.1%. Inputs of the solubility model are temperature, total pressure and the density of the oil at 323.15 K. The solubility of hydrogen in the CTO sample can be described with the developed model with an absolute average deviation of 3.4%. The solubility of hydrogen increases both with increasing pressure and/or increasing temperature. The more dense fractions of the tall oil exhibit lower hydrogen

  2. Influence of Signal Stationarity on Digital Stochastic Measurement Implementation

    Directory of Open Access Journals (Sweden)

    Ivan Župunski

    2013-06-01

    Full Text Available The paper presents the influence of signal stationarity on digital stochastic measurement method implementation. The implementation method is based on stochastic voltage generators, analog adders, low resolution A/D converter, and multipliers and accumulators implemented by Field-Programmable Gate Array (FPGA. The characteristic of first implementations of digital stochastic measurement was the measurement of stationary signal harmonics over the constant measurement period. Later, digital stochastic measurement was extended and used also when it was necessary to measure timeseries of non-stationary signal over the variable measurement time. The result of measurement is the set of harmonics, which is, in the case of non-stationary signals, the input for calculating digital values of signal in time domain. A theoretical approach to determine measurement uncertainty is presented and the accuracy trends with varying signal-to-noise ratio (SNR are analyzed. Noisy brain potentials (spontaneous and nonspontaneous are selected as an example of real non-stationary signal and its digital stochastic measurement is tested by simulations and experiments. Tests were performed without noise and with adding noise with SNR values of 10dB, 0dB and - 10dB. The results of simulations and experiments are compared versus theory calculations, and comparasion confirms the theory.

  3. [A novel biologic electricity signal measurement based on neuron chip].

    Science.gov (United States)

    Lei, Yinsheng; Wang, Mingshi; Sun, Tongjing; Zhu, Qiang; Qin, Ran

    2006-06-01

    Neuron chip is a multiprocessor with three pipeline CPU; its communication protocol and control processor are integrated in effect to carry out the function of communication, control, attemper, I/O, etc. A novel biologic electronic signal measurement network system is composed of intelligent measurement nodes with neuron chip at the core. In this study, the electronic signals such as ECG, EEG, EMG and BOS can be synthetically measured by those intelligent nodes, and some valuable diagnostic messages are found. Wavelet transform is employed in this system to analyze various biologic electronic signals due to its strong time-frequency ability of decomposing signal local character. Better effect is gained. This paper introduces the hardware structure of network and intelligent measurement node, the measurement theory and the signal figure of data acquisition and processing.

  4. Study of signal discrimination for timing measurements

    CERN Document Server

    Krepelkova, Marta

    2017-01-01

    The timing detectors of the CMS-TOTEM Precision Proton Spectrometer (CT-PPS) are currently read out using discrete components, separated into three boards; the first board hosts the sensors and the amplifiers, the second one hosts the discriminators and the third is dedicated to the Time to Digital Converter (TDC) and to the interface with the data acquisition system (DAQ). This work proposes a new front-end electronics for the timing detector, with sensors, amplifiers and discriminators integrated on the same board. We simulated an updated version of the amplifier together with a discriminator designed using commercial components. We decided to use an LVDS buffer as a discriminator, because of its cost, availability, speed and lo w power consumption. As a proof of concept, we used the LVDS input of an FPGA to discriminate signals produced by a detector prototype, using a radioactive source.

  5. Measurement of the neutron fraction event-by-event in DREAM

    International Nuclear Information System (INIS)

    Hauptman, John; Akchurin, N; Bedeschi, F; Carosi, R; Incagli, M; Cardini, A; Ciapetti, G; Lacava, F; Pinci, D; Ferrari, R; Gaudio, G; Franchino, S; Fraternali, M; Livan, M; Negri, A; Hauptman, J; Lee, S; La Rotonda, L; Meoni, E; Policicchio, A

    2011-01-01

    We have measured the neutron fraction event-by-event in beam test data taken at CERN by the DREAM collaboration. I will review these measurements in the context of the importance of neutrons to future high-precision calorimetry, and bring together the data from SPACAL, the GLD compensating calorimeter, and DREAM to estimate the impact neutron fraction measurements will make on hadronic energy resolution in dual-readout calorimeters.

  6. On the measurement of Wigner distribution moments in the fractional Fourier transform domain

    NARCIS (Netherlands)

    Bastiaans, M.J.; Alieva, T.

    2002-01-01

    It is shown how all global Wigner distribution moments of arbitrary order can be measured as intensity moments in the output plane of an appropriate number of fractional Fourier transform systems (generally anamorphic ones). The minimum number of (anamorphic) fractional power spectra that are needed

  7. Development of measurement method of void fraction distribution on subcooled flow boiling using neutron radiography

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Matsubayashi, Masahito; Akimoto, Hajime

    1999-03-01

    In relation to the development of a solid target of high intensity neutron source, plasma-facing components of fusion reactor and so forth, it is indispensable to estimate the void fraction for high-heat-load subcooled flow boiling of water. Since the existing prediction method of void fraction is based on the database for tubes, it is necessary to investigate extendibility of the existing prediction method to narrow-gap rectangular channels that is used in the high-heat-load devices. However, measurement method of void fraction in the narrow-gap rectangular channel has not been established yet because of the difficulty of measurement. The objectives of this investigation are development of a new system for bubble visualization and void fraction measurement on subcooled flow boiling in narrow-gap rectangular channels using the neutron radiography, and establishment of void fraction database by using this measurement system. This report describes the void fraction measurement method by the neutron radiography technique, and summarizes the measured void fraction data in one-side heated narrow-gap rectangular channels at subcooled boiling condition. (author)

  8. Homogenization versus homogenization-free method to measure muscle glycogen fractions.

    Science.gov (United States)

    Mojibi, N; Rasouli, M

    2016-12-01

    The glycogen is extracted from animal tissues with or without homogenization using cold perchloric acid. Three methods were compared for determination of glycogen in rat muscle at different physiological states. Two groups of five rats were kept at rest or 45 minutes muscular activity. The glycogen fractions were extracted and measured by using three methods. The data of homogenization method shows that total glycogen decreased following 45 min physical activity and the change occurred entirely in acid soluble glycogen (ASG), while AIG did not change significantly. Similar results were obtained by using "total-glycogen-fractionation methods". The findings of "homogenization-free method" indicate that the acid insoluble fraction (AIG) was the main portion of muscle glycogen and the majority of changes occurred in AIG fraction. The results of "homogenization method" are identical with "total glycogen fractionation", but differ with "homogenization-free" protocol. The ASG fraction is the major portion of muscle glycogen and is more metabolically active form.

  9. Measurement of void fraction distribution in two-phase flow by impedance CT with neural network

    International Nuclear Information System (INIS)

    Hayashi, Hideaki; Sumida, Isao; Sakai, Sinji; Wakai, Kazunori

    1996-01-01

    This paper describes a new method for measurement of void distribution using impedance CT with a hierarchical neural network. The present method consists of four processes. First, output electric currents are calculated by simulation of various distributions of void fraction. The relationship between distribution of void fraction and electric current is called 'teaching data'. Second, the neural network learns the teaching data by the back propagation method. Third, output electric currents are measured about actual two-phase flow. Finally, distribution of void fraction is calculated by the taught neural network using the measured electric currents. In this paper, measurement and learning parameters are adjusted, experimental results obtained using the impedance CT method are compared with data obtained by the impedance probe method. The results show that our method is effective for measurement of void fraction distribution. (author)

  10. Fractional Langevin Equation Model for Characterization of Anomalous Brownian Motion from NMR Signals

    Science.gov (United States)

    Lisý, Vladimír; Tóthová, Jana

    2018-02-01

    Nuclear magnetic resonance is often used to study random motion of spins in different systems. In the long-time limit the current mathematical description of the experiments allows proper interpretation of measurements of normal and anomalous diffusion. The shorter-time dynamics is however correctly considered only in a few works that do not go beyond the standard Langevin theory of the Brownian motion (BM). In the present work, the attenuation function S (t) for an ensemble of spins in a magnetic-field gradient, expressed in a form applicable for any kind of stationary stochastic dynamics of spins with or without a memory, is calculated in the frame of the model of fractional BM. The solution of the model for particles trapped in a harmonic potential is obtained in a simple way and used for the calculation of S (t). In the limit of free particles coupled to a fractal heat bath, the results compare favorably with experiments acquired in human neuronal tissues.

  11. NMR signals within the generalized Langevin model for fractional Brownian motion

    Science.gov (United States)

    Lisý, Vladimír; Tóthová, Jana

    2018-03-01

    The methods of Nuclear Magnetic Resonance belong to the best developed and often used tools for studying random motion of particles in different systems, including soft biological tissues. In the long-time limit the current mathematical description of the experiments allows proper interpretation of measurements of normal and anomalous diffusion. The shorter-time dynamics is however correctly considered only in a few works that do not go beyond the standard memoryless Langevin description of the Brownian motion (BM). In the present work, the attenuation function S (t) for an ensemble of spin-bearing particles in a magnetic-field gradient, expressed in a form applicable for any kind of stationary stochastic dynamics of spins with or without a memory, is calculated in the frame of the model of fractional BM. The solution of the model for particles trapped in a harmonic potential is obtained in an exceedingly simple way and used for the calculation of S (t). In the limit of free particles coupled to a fractal heat bath, the results compare favorably with experiments acquired in human neuronal tissues. The effect of the trap is demonstrated by introducing a simple model for the generalized diffusion coefficient of the particle.

  12. Role of Rad52 in fractionated irradiation induced signaling in A549 lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Ghosh, Somnath; Krishna, Malini

    2012-01-01

    The effect of fractionated doses of γ-irradiation (2 Gy per fraction over 5 days), as delivered in cancer radiotherapy, was compared with acute doses of 10 and 2 Gy, in A549 cells. A549 cells were found to be relatively more radioresistant if the 10 Gy dose was delivered as a fractionated regimen. Microarray analysis showed upregulation of DNA repair and cell cycle arrest genes in the cells exposed to fractionated irradiation. There was intense activation of DNA repair pathway-associated genes (DNA-PK, ATM, Rad52, MLH1 and BRCA1), efficient DNA repair and phospho-p53 was found to be translocated to the nucleus of A549 cells exposed to fractionated irradiation. MCF-7 cells responded differently in fractionated regimen. Silencing of the Rad52 gene in fractionated group of A549 cells made the cells radiosensitive. The above result indicated increased radioresistance in A549 cells due to the activation of Rad52 gene.

  13. A Preliminary Design of a Wire Mesh Sensor for Measurement of Void Fraction

    International Nuclear Information System (INIS)

    Hong, Seong Ho; Kim, Jong Hwan; Song, Jin Ho; Hong, Seok Boong

    2006-01-01

    Steam explosion phenomena are accompanied with a multi-dimensional and multi-phase fluid flow and heat transfer phenomena. Void fraction is one of the major parameters, which governs the premixing behavior of melt particles in water and the explosion behavior of the pre-mixed fuel. However, efforts for the development of a reliable measurement technique for void fraction are still underway, as it deals with an interaction between a melt at a very high temperature and water in a short time scale. Hundreds of conductivity type probes installed in a test section enabled monitoring of the evolution of a melt-water interaction zone in the ECO test. A technique using a dual energy X-ray system was developed to measure gas fraction, liquid fraction, and melt fraction simultaneously for a small-scale steam explosion experiment. A high-energy X-ray system for monitoring multi-phase fractions is now being developed at CEA. Recently a measurement of multi-phase fractions by using a wire mesh system has been introduced. It has an advantage that the speed of the measurement is fast and a direct measurement is possible. As a part of a feasibility study on a wire mesh technique for a steam explosion experiment, this paper discusses the design of the wire mesh and the results of the preliminary calibration tests

  14. Two-phase flow void fraction measurement using gamma ray attenuation technique

    International Nuclear Information System (INIS)

    Silva, R.D. da.

    1985-01-01

    The present work deals with experimental void fraction measurements in two-phase water-nitrogen flow, by using a gamma ray attenuation technique. Several upward two-phase flow regimes in a vertical tube were simulated. The water flow was varied from 0.13 to 0.44 m 3 /h while the nitrogen flow was varied between 0.01 and 0.1 m 3 /h. The mean volumetric void fraction was determined based on the measured linear void fraction for each flow condition. The results were compared with other authors data and showed a good agreement. (author) [pt

  15. Proton-density fat fraction measurement: A viable quantitative biomarker for differentiating adrenal adenomas from nonadenomas

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiaoyan; Chen, Xiao; Shen, Yaqi; Hu, Xuemei; Tang, Hao; Hu, Daoyu [Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Li, Zhen, E-mail: zhenli@hust.edu.cn [Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Kamel, Ihab R. [Russell H. Morgan Department of Radiology and Radiological Science, the Johns Hopkins Medical Institutions, Baltimore, Maryland (United States)

    2017-01-15

    Highlights: • PDFF differentiated adenomas from nonadenomas with high sensitivity and specificity. • PDFF measurements are simple and can be readily applicable in clinical practice. • Oil-saline phantom study demonstarted good correlation between PDFF and SII. - Abstract: Purpose: This study aims to compare the accuracy of proton-density fat fraction (PDFF) measurements with chemical shift magnetic resonance imaging (CSI) for quantifying the fat content of adrenal nodules and for differentiating adenomas from nonadenomas. Materials and methods: Oil-saline phantom measurements was performed to compare the correlation between PDFF and CSI in detecting and quantifying fat content. 43 consecutive patients who had known adrenal nodules were imaged on a 3.0-T MR scanner. PDFF was measured, and the signal intensity (SI) index (SII), SI adrenal-to-liver ratio (ALR) and SI adrenal-to-spleen ratio (ASR) of the adrenal nodules were calculated. Results: In the phantom study, PDFF ranged from 12.6% to 99.1% and the SII was between 0.72 and 1.23. There was good correlation between these two methods (R square = 0.972, p < 0.0001). The PDFF of adrenal adenoma was significantly increased compared with that of nonadenoma (p < 0.001). PDFF was an effective tool for distinguishing adenoma from nonadenoma, with an area under the curve (AUC) of 0.98. In comparing SII, ALR and ASR the AUC was 0.94, 0.95 and 0.93, respectively. No significant difference was noted between these two methods (p > 0.05). Conclusion: PDFF measurements provide an accurate estimation of fat content in discriminating adenomas from nonadenomas compared with CSI, avoiding complicated data calculations and offering a simpler technique using 3T.

  16. Measuring Workload Weak Resilience Signals at a Rail Control Post

    NARCIS (Netherlands)

    Siegel, A.W.; Schraagen, J.M.C.

    2014-01-01

    OCCUPATIONAL APPLICATIONS This article describes an observational study at a rail control post to measure workload weak resilience signals. A weak resilience signal indicates a possible degradation of a system's resilience, which is defined as the ability of a complex socio-technical system to cope

  17. Measurement of the contribution of neutrons to hadron calorimeter signals

    International Nuclear Information System (INIS)

    Akchurin, N.; Berntzon, L.; Cardini, A.; Ferrari, R.; Gaudio, G.; Hauptman, J.; Kim, H.; La Rotonda, L.; Livan, M.; Meoni, E.; Paar, H.; Penzo, A.; Pinci, D.; Policicchio, A.; Popescu, S.; Susinno, G.; Roh, Y.; Vandelli, W.; Wigmans, R.

    2007-01-01

    The contributions of neutrons to hadronic signals from the DREAM calorimeter are measured by analyzing the time structure of these signals. The neutrons, which mainly originate from the evaporation stage of nuclear breakup in the hadronic shower development process, contribute through elastic scattering off protons in the plastic scintillating fibers which provide the dE/dx information in this calorimeter. This contribution is characterized by an exponential tail in the pulse shape, with a time constant of ∼25ns. The relative contribution of neutrons to the signals increases with the distance from the shower axis. As expected, the neutrons do not contribute to the DREAM Cherenkov signals

  18. Measuring methods, registration and signal processing for magnetic field research

    International Nuclear Information System (INIS)

    Nagiello, Z.

    1981-01-01

    Some measuring methods and signal processing systems based on analogue and digital technics, which have been applied in magnetic field research using magnetometers with ferromagnetic transducers, are presented. (author)

  19. Quantitative measurement of intervertebral disc signal using MRI

    International Nuclear Information System (INIS)

    Niemelaeinen, R.; Videman, T.; Dhillon, S.S.; Battie, M.C.

    2008-01-01

    Aim: To investigate the spinal cord as an alternative intra-body reference to cerebrospinal fluid (CSF) in evaluating thoracic disc signal intensity. Materials and methods: T2-weighted magnetic resonance imaging (MRI) images of T6-T12 were obtained using 1.5 T machines for a population-based sample of 523 men aged 35-70 years. Quantitative data on the signal intensities were acquired using an image analysis program (SpEx (copy right) ). A random sample of 30 subjects and intraclass correlation coeffcients (ICC) were used to examine the repeatability of the spinal cord measurements. The validity of using the spinal cord as a reference was examined by correlating cord and CSF samples. Finally, thoracic disc signal was validated by correlating it with age without adjustment and adjusting for either cord or CSF. Pearson's r was used for correlational analyses. Results: The repeatability of the spinal cord signal measurements was extremely high (≥0.99). The correlations between the signals of spinal cord and CSF by level were all above 0.9. The spinal cord-adjusted disc signal and age correlated similarly with CSF-adjusted disc signal and age (r = -0.30 to -0.40 versus r = -0.26 to -0.36). Conclusion: Adjacent spinal cord is a good alternative reference to the current reference standard, CSF, for quantitative measurements of disc signal intensity. Clearly fewer levels were excluded when using spinal cord as compared to CSF due to missing reference samples

  20. Measurement of the Branching Fraction for the Decay B{sup 0}-->D{sup *+}D{sup *-}

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Doug

    2001-07-30

    Decays of the type B {yields} D{sup (*)} {bar D}(*) can be used to provide a measurement of the parameter sin2{beta} of the Unitarity Triangle that is complementary to the measurement derived from the mode B{sup 0} {yields}/K{sub S}{sup 0}. In this document we report a measurement of the branching fraction for the decay B{sup 0} {yields} D*{sup +}D*{sup -} with the BABAR detector. With data corresponding to an integrated luminosity of 20.7 fb{sup -1} collected at the {Upsilon}(4S) resonance during 1999-2000, we have reconstructed 38 candidate signal events in the mode B{sup 0} {yields} D*{sup +}D*{sup -} with an estimated background of 6.2 {+-} 0.5 events. From these events, we determine the branching fraction to be {Beta}(B{sup 0} {yields} D*{sup +}D*{sup -}) = (8.0 {+-} 1.6(stat) {+-} 1.2(syst)) x 10{sup -4} (preliminary). The measured fraction of the component with odd CP parity is 0.27{+-} 0.17(stat) {+-} 0.02(syst).

  1. Measurement of MOSFET LF Noise Under Large Signal RF Excitation

    NARCIS (Netherlands)

    van der Wel, A.P.; Klumperink, Eric A.M.; Nauta, Bram

    A new measurement technique is presented that allows measurement of MOSFET LF noise under large signal RF excitation. Measurements indicate that MOSFETS exhibit a reduction in LF noise when they are cycled from inversion to accummulation and that this reduction does not depend on the frequency of

  2. Branching fraction measurement of J /ψ →KSKL and search for J /ψ →KSKS

    Science.gov (United States)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Alekseev, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bai, Y.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chen, Z. X.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dorjkhaidav, O.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garillon, B.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, S.; Gu, Y. T.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, S. H.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jin, Y.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Khoukaz, A.; Kiese, P.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuhlmann, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, K. J.; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J. B.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Morello, G.; Muchnoi, N. Yu.; Muramatsu, H.; Mustafa, A.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Pitka, A.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qi, T. Y.; Qian, S.; Qiao, C. F.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rolo, M.; Rong, G.; Rosner, Ch.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B. T.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, B. Q.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Zongyuan; Weber, T.; Wei, D. H.; Wei, J. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Y. J.; Xiao, Z. J.; Xie, X. H.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. H.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2017-12-01

    Using a sample of 1.31 ×109 J /ψ events collected with the BESIII detector at the BEPCII collider, we study the decays of J /ψ →KSKL and KSKS . The branching fraction of J /ψ →KSKL is determined to be B (J /ψ →KSKL)=(1.93 ±0.01 (stat )±0.05 (syst ))×10-4 , which significantly improves on previous measurements. No clear signal is observed for the J /ψ →KSKS process, and the upper limit at the 95% confidence level for its branching fraction is determined to be B (J /ψ →KSKS)<1.4 ×10-8 , which improves on the previous searches by 2 orders in magnitude and reaches the order of the Einstein-Podolsky-Rosen expectation.

  3. Evaluation of void fraction measurements from DADINE experience using RELAP4/MOD5 code

    International Nuclear Information System (INIS)

    Borges, R.C.; Freitas, R.L.

    1989-01-01

    The DADINE experiment measures the axial evolution of the void fraction by neutronic diffusion in two-phase flow in the wet regions of a pressurized water reactor in accident conditions. Since the theoretical/experimental confrontation is important for code evaluation, this paper presents the simulation with the RELAP4/MOD5 Code of the void fractions results obtained in the DADINE Experiment, that showed some deviation probably associated with the existing models in Code, special attention in the way of stablishing the two-phase flow and the no characterization of the differents flow regimes related with the void fractions. (author) [pt

  4. Accuracy of cancellous bone volume fraction measured by micro-CT scanning

    DEFF Research Database (Denmark)

    Ding, Ming; Odgaard, A; Hvid, I

    1999-01-01

    Volume fraction, the single most important parameter in describing trabecular microstructure, can easily be calculated from three-dimensional reconstructions of micro-CT images. This study sought to quantify the accuracy of this measurement. One hundred and sixty human cancellous bone specimens...... which covered a large range of volume fraction (9.8-39.8%) were produced. The specimens were micro-CT scanned, and the volume fraction based on Archimedes' principle was determined as a reference. After scanning, all micro-CT data were segmented using individual thresholds determined by the scanner...

  5. Measurement of the differential branching fraction of the decay $\\Lambda_b^0 \\rightarrow \\Lambda\\mu^+\\mu^-$

    CERN Document Server

    Aaij, R; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Andrews, J E; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Castillo Garcia, L; Cattaneo, M; Cauet, Ch; Cenci, R; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Déléage, N; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Di Ruscio, F; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Durante, P; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Giubega, L; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Griffith, P; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hamilton, B; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Head, T; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicheur, A; Hicks, E; Hill, D; Hoballah, M; Holtrop, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jawahery, A; Jing, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Kaballo, M; Kandybei, S; Kanso, W; Karacson, M; Karbach, T M; Kenyon, I R; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Maratas, J; Marconi, U; Marino, P; Märki, R; Marks, J; Martellotti, G; Martens, A; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; Mc Skelly, B; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mordà, A; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neubert, S; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pescatore, L; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, A; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pritchard, A; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Roberts, D A; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salustino Guimaraes, V; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Sirendi, M; Skwarnicki, T; Smith, N A; Smith, E; Smith, J; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Sun, L; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Ustyuzhanin, A; Uwer, U; Vagnoni, V; Valenti, G; Vallier, A; Van Dijk, M; Vazquez Gomez, R; Vazquez Regueiro, P; Vázquez Sierra, C; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, C; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wimberley, J; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-01-01

    The differential branching fraction of the decay $\\Lambda_b^0\\rightarrow\\Lambda\\mu^+\\mu^-$ is measured as a function of the square of the dimuon invariant mass, $q^2$. A yield of $78\\pm12$ $\\Lambda_b^0\\rightarrow\\Lambda\\mu^+\\mu^-$ decays is observed using data, corresponding to an integrated luminosity of 1.0,fb$^{-1}$, collected by the LHCb experiment at a centre-of-mass energy of 7\\,TeV. A significant signal is found in the $q^2$ region above the square of the $J/\\psi$ mass, while at lower-$q^2$ values upper limits are set on the differential branching fraction. Integrating the differential branching fraction over $q^2$, while excluding the $J/\\psi$ and $\\psi(2S)$ regions, gives a branching fraction of $B(\\Lambda_b^0\\rightarrow\\Lambda\\mu^+\\mu^-)=(0.96\\pm 0.16(stat)\\pm 0.13(syst)\\pm 0.21 (\\mathrm{norm}))\\times 10^{-6}$, where the uncertainties are statistical, systematic and due to the normalisation mode, $\\Lambda_b^0\\rightarrow J/\\psi\\Lambda$, respectively.

  6. Average void fraction measurement in a two-phase vertical flow

    International Nuclear Information System (INIS)

    Mello, R.E.F. de; Behar, M.R.; Martines, E.W.

    1975-01-01

    The utilization of the radioactive tracer technique to measure the void fraction in a two phase flow air-water is presented. The radioactive tracer used was a salt of Br-82. The water flow rate varied between 0,4 and 2,0 m 3 /h, and the air flow rate between 0,2 and 1,0 m 3 /h. The resulting measured void fraction were between 0,05 and 0,32. These void fraction values were compared with those ones calculated with the measured flow rates and by use of empirical formulas, using different methods. After a convenient choice of the radioactive isotope, the measurements didn't present any special problem. The results have shown a good accordance with the values calculated by the formulas of R. Roumy, but was not possible yet to conclude, about the convenience of application and the grade of confidence of this method

  7. Measurement of the local void fraction at high pressures in a heating channel

    International Nuclear Information System (INIS)

    Martin, R.

    1969-01-01

    Void fraction measurements were made in two phase flow boiling systems at high pressures in a uniformly heated, rectangular channel with a high aspect ratio. The local void fraction values were calculated from measurements of the absorption of a thin collimated X-ray beam (2 mm x 0.05 mm). The mean void fraction in a horizontal section results from integration of the local values across the section. At a fixed measuring station the quality and- void fraction were varied by changing the heat flux, flow rate and pressure systematically. Two channels were used differing in length and thickness (150.8 cm x 5.3 cm x 0.2 cm and the significant features of this study are: -1) The void fraction measurements are among the first obtained at such high pressure (80 to 140 kg/cm 2 ); -2) In the experimental region under consideration the measurements are systematic and numerous enough to allow accurate interpolations: mass velocity from 50 to 220 g/cm 2 .s, heat flux from 40 to 170 W/cm 2 and calculated steam quality from -0.2 to 0.2; -3) Many tests were performed under local boiling conditions with the mean temperature of the fluid below the saturation temperature; and -4) These results were compared to the predictions of certain models presented in the literature and simple empirical formulae were developed to fit the experimental results. (author) [fr

  8. Acoustic Monitor for Liquid-Solid Slurries Measurements at Low Weight Fractions

    International Nuclear Information System (INIS)

    Tavlarides, L. L.; Sangani, A.; Shcherbakov, A.; Lee, J. S.; Dievendorf, E.

    2003-01-01

    The principal objective of the project is to develop an acoustic probe for determining the weight fraction of particles in a flowing suspension. The suspension can be solid-liquid (S-L) or solid-gas-liquid (S-G-L). The work will include testing the theory of acoustic wave propagation in suspensions and demonstrating the application of the probe by installing it on a flow loop through which a suspension is flowing and determining the particle weight fraction. The signal from the probe must be processed such that the noise arising from the presence of gas bubbles is removed to yield an accurate estimate of the particle weight fraction. Particular attention will be given to testing suspensions with low particle weight fractions since slurries to be transported in nuclear waste processing will have low particle weight fractions. Originally, the probe was to be developed and tested at Syracuse University (SU) then installed and tested at Oak Ridge National Laboratories (ORNL) for surrogate slurries from the Hanford Nuclear site. However, after discussions between SU and ORNL in June 2002 it was agreed that all tests would be conducted at SU

  9. Acoustic Monitor for Liquid-Solid Slurries Measurements at Low Weight Fractions

    International Nuclear Information System (INIS)

    Tavlarides, L. L.; Sangani, A.; Shcherbakov, A.; Lee, J. S.; Dievendorf, E.

    2002-01-01

    The principal objective of the project is to develop an acoustic probe for determining the weight fraction of particles in a flowing suspension. The suspension can be solid-liquid (S-L) or solid-gas-liquid (S-G-L). The work will include testing the theory of acoustic wave propagation in suspensions and demonstrating the application of the probe by installing it on a flow loop through which a suspension is flowing and determining the particle weight fraction. The signal from the probe must be processed such that the noise arising from the presence of gas bubbles is removed to yield an accurate estimate of the particle weight fraction. Particular attention will be given to testing suspensions with low particle weight fractions since slurries to be transported in nuclear waste processing will have low particle weight fractions. Originally, the probe was to be developed and tested at Syracuse University (SU) then installed and tested at Oak Ridge National Laboratories (ORNL) for surrogate slurries from the Hanford Nuclear site. However, after discussions between SU and ORNL in June 2002 it was agreed that all tests would be conducted at SU

  10. Measurements of the S-wave fraction in B-0 -> K+ pi(-) mu(+) mu(-) decays and the B-0 -> K*(892)(0) mu(+) mu(-) differential branching fraction

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Dufour, L.; Onderwater, C. J. G.; Pellegrino, A.; Tolk, S.

    2016-01-01

    A measurement of the differential branching fraction of the decay B-0 -> K* (892)(0) mu(+)mu(-) is presented together with a determination of the S-wave fraction of the K+ pi(-) system in the decay B-0 -> K+ pi-mu(+)mu(-). The analysis is based on pp-collision data corresponding to an integrated

  11. Measurement of the absolute branching fraction for Lambda(+)(c) -> Lambda mu(+)nu(mu)

    NARCIS (Netherlands)

    Haddadi, Z.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Löhner, H.; Messchendorp, J. G.; Tiemens, M.

    2017-01-01

    We report the first measurement of the absolute branching fraction for Lambda(+)(c) -> Lambda mu(+)nu(mu).This measurement is based on a sample of e+e(-) annihilation data produced at a center-of-mass energy root s = 4.6 GeV, collected with the BESIII detector at the BEPCII storage rings. The sample

  12. Measurement of the Absolute Branching Fraction for Lambda(+)(c) -> Lambda e(+)nu(e)

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M.N.; Ai, X.C.; Albayrak, O.; Albrecht, M.; Ambrose, D.J.; Amorose, A.; Haddadi, Z.; Kalantar-Nayestanaki, Nasser; Kavatsyuk, M.; Messchendorp, J.G; Tiemens, M.

    2015-01-01

    We report the first measurement of the absolute branching fraction for Lambda(+)(c) -> Lambda e(+)nu(e). This measurement is based on 567 pb(-1) of e(+)e(-) annihilation data produced at root s = 4.599 GeV, which is just above the Lambda(+)(c)Lambda(-)(c) threshold. The data were collected with the

  13. Dynamic damping of the aortic pressure trace during hyperemia: the impact on fractional flow reserve measurement

    NARCIS (Netherlands)

    Lockie, Tim; Rolandi, M. Cristina; Piek, Jan J.

    2013-01-01

    We report on two cases that illustrate an important caveat in the measurement of fractional flow reserve (FFR) in coronary arteries. To obtain accurate FFR measurements, two fundamental requirements must be fulfilled. One is to minimize microvascular resistance; the other is that there is no damping

  14. Development of signal acquisition device of rotating coil measurement system

    International Nuclear Information System (INIS)

    Zhou Jianxin; Li Li; Kang Wen; Deng Chengdong; Yin Baogui; Fu Shinian

    2013-01-01

    A new rotating coil magnetic measurement system using the technical solution of the combination of a dynamic signal acquisition card and software with specific functions was developed. The acquisition device of the system successfully implemented the function of the PDI-5025 integrator. The sampling rate, the range, the accuracy and the flexibility of the system were improved. The development program of signal acquisition equipment, the realization of the acquisition function and the reliability and stability of the system were introduced. (authors)

  15. Impact of shelf life on measured prompt fraction of spare Inconel in-core flux detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mohindra, VK; Sadeghi, S. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Crouse, B. [Darlington Nuclear Generating Station, Bowmanville, Ontario (Canada)

    2008-07-01

    Prompt fraction measurements associated with spare self-powered Inconel In-Core Flux Detectors (ICFDs) carried out a few years after installation on Shut Down System number 1 (SDS1) and Reactor Regulating System (RRS) at Darlington Nuclear Generating Station (DNGS), were found to be lower than those of the original detectors. These detectors, spares and originals, were manufactured in the late 80s, however, the former were kept at manufacturer's warehouse and latter were installed in the reactor core within a few years after manufacturing. Although the prompt fractions of the spare detectors were relatively low, the electronic/electrical behavior of the spare detectors was intact. The first batch of the original detectors performed as per the design requirements. Therefore, it is suspected that during shelf life, spare Inconel in-core flux detectors underwent changes that lowered their measured values of prompt fraction, which were taken within a few years after installation in the reactor. Detailed study of detectors' material composition and impurity concentrations revealed no association with the lower prompt fraction measurements. The evaluation of the limited data of the original and spare Inconel ICFDs installed at Darlington showed: 1. The reduction in prompt fraction was roughly proportional to the shelf life of the detectors; and 2. The rate of reduction in prompt fraction during storage was about double the rate of reduction during operation in the reactor. Above observations were based on the data provided by DNGS for a few detectors. The purpose of this paper is two fold, firstly to present the results of the complete study carried out to investigate the cause of relatively low prompt fractions measured on spare SDS1 and RRS Inconel ICFDs at DNGS, and secondly to generate interest/awareness within other CANDU utilities to add to the database of prompt fractions of spare Inconel ICFDs measured after installation. The data will help to improve

  16. Quantitative measurement of intervertebral disc signal using MRI

    Energy Technology Data Exchange (ETDEWEB)

    Niemelaeinen, R. [Faculty of Rehabilitation Medicine, University of Alberta, Edmonton (Canada)], E-mail: riikka.niemelainen@ualberta.ca; Videman, T. [Faculty of Rehabilitation Medicine, University of Alberta, Edmonton (Canada); Dhillon, S.S. [Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton (Canada); Battie, M.C. [Faculty of Rehabilitation Medicine, University of Alberta, Edmonton (Canada)

    2008-03-15

    Aim: To investigate the spinal cord as an alternative intra-body reference to cerebrospinal fluid (CSF) in evaluating thoracic disc signal intensity. Materials and methods: T2-weighted magnetic resonance imaging (MRI) images of T6-T12 were obtained using 1.5 T machines for a population-based sample of 523 men aged 35-70 years. Quantitative data on the signal intensities were acquired using an image analysis program (SpEx (copy right) ). A random sample of 30 subjects and intraclass correlation coeffcients (ICC) were used to examine the repeatability of the spinal cord measurements. The validity of using the spinal cord as a reference was examined by correlating cord and CSF samples. Finally, thoracic disc signal was validated by correlating it with age without adjustment and adjusting for either cord or CSF. Pearson's r was used for correlational analyses. Results: The repeatability of the spinal cord signal measurements was extremely high ({>=}0.99). The correlations between the signals of spinal cord and CSF by level were all above 0.9. The spinal cord-adjusted disc signal and age correlated similarly with CSF-adjusted disc signal and age (r = -0.30 to -0.40 versus r = -0.26 to -0.36). Conclusion: Adjacent spinal cord is a good alternative reference to the current reference standard, CSF, for quantitative measurements of disc signal intensity. Clearly fewer levels were excluded when using spinal cord as compared to CSF due to missing reference samples.

  17. Compressed Sensing with Linear Correlation Between Signal and Measurement Noise

    DEFF Research Database (Denmark)

    Arildsen, Thomas; Larsen, Torben

    2014-01-01

    reconstruction algorithms, but is not known in existing literature. The proposed technique reduces reconstruction error considerably in the case of linearly correlated measurements and noise. Numerical experiments confirm the efficacy of the technique. The technique is demonstrated with application to low......Existing convex relaxation-based approaches to reconstruction in compressed sensing assume that noise in the measurements is independent of the signal of interest. We consider the case of noise being linearly correlated with the signal and introduce a simple technique for improving compressed...... sensing reconstruction from such measurements. The technique is based on a linear model of the correlation of additive noise with the signal. The modification of the reconstruction algorithm based on this model is very simple and has negligible additional computational cost compared to standard...

  18. Measurements of void fraction in transparent two-phase flows by light extinction

    International Nuclear Information System (INIS)

    Shamoun, B.; El Beshbeeshy, M.; Bonazza, R.

    1998-01-01

    We report a technique for the measurement of the 2-D distribution of the line average void fraction in a two-phase flow with transparent gas and liquid components based on the Mie scattering induced by the gas bubbles on a collimated laser beam. The 2-D distribution of the line average of the interfacial area density is measured directly; the void fraction is deduced from it through an image processing algorithm. The technique is demonstrated with experiments in a pool of water injected with air and illuminated with a CW argon ion laser. (author)

  19. Measurement of void fractions by nuclear techniques; Medicion de fracciones de vacio por tecnicas nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez G, A.; Vazquez G, J.; Diaz H, C.; Salinas R, G.A. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    In this work it is done a general analysis of those techniques used to determine void fractions and it is chosen a nuclear technique to be used in the heat transfer circuit of the Physics Department of the Basic Sciences Management. The used methods for the determination of void fractions are: radioactive absorption, acoustic techniques, average velocity measurement, electromagnetic flow measurement, optical methods, oscillating absorption, nuclear magnetic resonance, relation between pressure and flow oscillation, infrared absorption methods, sound neutron analysis. For the case of this work it will be treated about the radioactive absorption method which is based in the gamma rays absorption. (Author)

  20. Measured Early Lateral Energy Fractions in Concert Halls and Opera Houses

    Science.gov (United States)

    BARRON, M.

    2000-04-01

    In the 30 years since early lateral reflections were first suggested as important for concert halls, spatial impression and source broadening have become almost universally accepted as essential characteristics of halls with good acoustics. Two objective measures of source broadening have been proposed. Measured values of the best defined of these measures, the early lateral energy fraction (LF), are considered here. Results from two independent measurement surveys are discussed. Comparisons of LF values by hall show a significant link between hall mean LF and hall width. There is however considerable overlap between measured LF values in different halls so the relevance of describing halls by their mean early lateral energy fraction values is questionable. The behaviour of LF values within auditoria is discussed for different concert hall plan forms and within opera houses. A measure of source broadening including sound level is proposed and results considered in the context of auditorium design.

  1. A Measurement System of Electric Signals on Standing Trees

    Directory of Open Access Journals (Sweden)

    Hao TIAN

    2014-01-01

    Full Text Available The standing tree electric signal (STES, defined as the electric potential difference between standing trees and the surrounding soil, can be utilized to reflect the biological nature of the trees. This signal should be measured precisely because it can also be collected and used as the electric power energy. In this paper, the automatic measurement system of standing tree biological electric signal based on MSP430 MCU. First of all, the basic structure of the presented system is introduced and it includes three modules: amplification module of the standing tree electric signal, the acquisition and processing of the signal module and the serial communication module. Then, the performances of the built system are respectively validated by the Poplar, Planetree, and Platanus in Beijing Forestry University. The result indicated that the relative error of this system is less than 2 %. The presented system can be considered as the foundation of the subsequent study on the mechanism of the biological electric signal and the application of the biological electric energy on standing trees.

  2. Measurement of the $B_{s}^{0} \\rightarrow D_{s}^{(*)+}D_{s}^{(*)-}$ branching fractions

    CERN Document Server

    Aaij, Roel; Adeva, Bernardo; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dungs, Kevin; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusardi, Nicola; Lusiani, Alberto; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Pappenheimer, Cheryl; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Ruf, Thomas; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefkova, Slavomira; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Volkov, Vladimir; Vollhardt, Achim; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zhukov, Valery; Zucchelli, Stefano

    2016-05-20

    The branching fraction of the decay $B_{s}^{0} \\rightarrow D_{s}^{(*)+}D_{s}^{(*)-}$ is measured using $pp$ collision data corresponding to an integrated luminosity of $1.0fb^{-1}$, collected using the LHCb detector at a centre-of-mass energy of $7$TeV. It is found to be \\begin{align*} {\\mathcal{B}}(B_{s}^{0}\\rightarrow~D_{s}^{(*)+}D_{s}^{(*)-}) = (3.05 \\pm 0.10 \\pm 0.20 \\pm 0.34)\\%, \\end{align*} where the uncertainties are statistical, systematic, and due to the normalisation channel, respectively. The branching fractions of the individual decays corresponding to the presence of one or two $D^{*\\pm}_{s}$ are also measured. The individual branching fractions are found to be \\begin{align*} {\\mathcal{B}}(B_{s}^{0}\\rightarrow~D_{s}^{*\\pm}D_{s}^{\\mp}) = (1.35 \\pm 0.06 \\pm 0.09 \\pm 0.15)\\%, \

  3. Wire-Mesh Tomography Measurements of Void Fraction in Rectangular Bubble Columns

    International Nuclear Information System (INIS)

    Reddy Vanga, B.N.; Lopez de Bertodano, M.A.; Zaruba, A.; Prasser, H.M.; Krepper, E.

    2004-01-01

    Bubble Columns are widely used in the process industry and their scale-up from laboratory scale units to industrial units have been a subject of extensive study. The void fraction distribution in the bubble column is affected by the column size, superficial velocity of the dispersed phase, height of the liquid column, size of the gas bubbles, flow regime, sparger design and geometry of the bubble column. The void fraction distribution in turn affects the interfacial momentum transfer in the bubble column. The void fraction distribution in a rectangular bubble column 10 cm wide and 2 cm deep has been measured using Wire-Mesh Tomography. Experiments were performed in an air-water system with the column operating in the dispersed bubbly flow regime. The experiments also serve the purpose of studying the performance of wire-mesh sensors in batch flows. A 'wall peak' has been observed in the measured void fraction profiles, for the higher gas flow rates. This 'wall peak' seems to be unique, as this distribution has not been previously reported in bubble column literature. Low gas flow rates yielded the conventional 'center peak' void profile. The effect of column height and superficial gas velocity on the void distribution has been investigated. Wire-mesh Tomography also facilitates the measurement of bubble size distribution in the column. This paper presents the measurement principle and the experimental results for a wide range of superficial gas velocities. (authors)

  4. Identification of ultrasound-contrast-agent dilution systems for ejection fraction measurements

    NARCIS (Netherlands)

    Mischi, M.; Jansen, A.H.M.; Kalker, A.A.C.M.; Korsten, H.H.M.

    2005-01-01

    Left ventricular ejection fraction is an important cardiac-efficiency measure. Standard estimations are based on geometric analysis and modeling; they require time and experienced cardiologists. Alternative methods make use of indicator dilutions, but they are invasive due to the need for

  5. Testing the Application of Terrestrial Laser Scanning to Measure Forest Canopy Gap Fraction

    Directory of Open Access Journals (Sweden)

    F. Mark Danson

    2013-06-01

    Full Text Available Terrestrial laser scanners (TLS have the potential to revolutionise measurement of the three-dimensional structure of vegetation canopies for applications in ecology, hydrology and climate change. This potential has been the subject of recent research that has attempted to measure forest biophysical variables from TLS data, and make comparisons with two-dimensional data from hemispherical photography. This research presents a systematic comparison between forest canopy gap fraction estimates derived from TLS measurements and hemispherical photography. The TLS datasets used in the research were obtained between April 2008 and March 2009 at Delamere Forest, Cheshire, UK. The analysis of canopy gap fraction estimates derived from TLS data highlighted the repeatability and consistency of the measurements in comparison with those from coincident hemispherical photographs. The comparison also showed that estimates computed considering only the number of hits and misses registered in the TLS datasets were consistently lower than those estimated from hemispherical photographs. To examine this difference, the potential information available in the intensity values recorded by TLS was investigated and a new method developed to estimate canopy gap fraction proposed. The new approach produced gap fractions closer to those estimated from hemispherical photography, but the research also highlighted the limitations of single return TLS data for this application.

  6. Measurement of the $B^0_s \\rightarrow J/\\psi \\bar{K}^{*0}$ branching fraction and angular amplitudes

    CERN Document Server

    Aaij, R; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Craik, D; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hoballah, M; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li, Y; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Mazurov, A; McCarthy, J; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Romero Vidal, A; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2012-01-01

    A sample of 114±11 $B_s^0 → J/ψK^-π^+$ signal events obtained with 0.37  fb$^{-1}$ of pp collisions at √s=7  TeV collected by the LHCb experiment is used to measure the branching fraction and polarization amplitudes of the $B_s^0 → J/ψK̅ ^{*0}$ decay, with $K̅ ^{*0} → K^-π^+$. The $K^-π^+$ mass spectrum of the candidates in the $B_s^0$ peak is dominated by the $K̅ ^{*0}$ contribution. Subtracting the nonresonant $K^-π^+$ component, the branching fraction of $B_s^0 → J/ψK̅ ^{*0}$ is $(4.4_{-0.4}^{+0.5}±0.8)×10^{-5}$, where the first uncertainty is statistical and the second is systematic. A fit to the angular distribution of the decay products yields the $K^{*0}$ polarization fractions $f_L=0.50±0.08±0.02$ and $f_{∥}=0.19_{-0.08}^{+0.10}±0.02$.

  7. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    Science.gov (United States)

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  8. Measurement of the absolute branching fraction of Ds0 *(2317 )±→π0Ds±

    Science.gov (United States)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bai, Y.; Bakina, O.; Baldini Ferroli, R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, P. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, S.; Gu, Y. T.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y. P.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Ikegami Andersson, W.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jin, Y.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Khoukaz, A.; Kiese, P.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuessner, M.; Kuhlmann, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leiber, S.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, J. Q.; Li, K. J.; Li, Kang; Li, Ke; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. M.; Liu, Huanhuan; Liu, Huihui; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Morello, G.; Muchnoi, N. Yu.; Muramatsu, H.; Musiol, P.; Mustafa, A.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Pitka, A.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rolo, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, Meng; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Zongyuan; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, X.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Y. J.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. H.; Yang, Y. X.; Yang, Yifan; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yang; Zhang, Yao; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhou, Y. X.; Zhu, J.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2018-03-01

    The process e+e-→Ds*+Ds0 *(2317 )-+c .c . is observed for the first time with the data sample of 567 pb-1 collected with the BESIII detector operating at the BEPCII collider at a center-of-mass energy √{s }=4.6 GeV . The statistical significance of the Ds0 *(2317 )± signal is 5.8 σ and the mass is measured to be (2318.3 ±1.2 ±1.2 ) MeV /c2 . The absolute branching fraction B (Ds0 *(2317 )±→π0Ds±) is measured as 1.00-0.14+0.00(stat)-0.14+0.00(syst) for the first time. The uncertainties are statistical and systematic, respectively.

  9. Measurement of the branching fraction for D+→K-π+π+

    International Nuclear Information System (INIS)

    Balest, R.; Cho, K.; Daoudi, M.; Ford, W.T.; Johnson, D.R.; Lingel, K.; Lohner, M.; Rankin, P.; Smith, J.G.; Alexander, J.P.; Bebek, C.; Berkelman, K.; Bloom, K.; Browder, T.E.; Cassel, D.G.; Cho, H.A.; Coffman, D.M.; Drell, P.S.; Ehrlich, R.; Gaiderev, P.; Garcia-Sciveres, M.; Geiser, B.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Jones, C.D.; Jones, S.L.; Kandaswamy, J.; Katayama, N.; Kim, P.C.; Kreinick, D.L.; Ludwig, G.S.; Masui, J.; Mevissen, J.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Patterson, J.R.; Peterson, D.; Riley, D.; Salman, S.; Sapper, M.; Wuerthwein, F.; Avery, P.; Freyberger, A.; Rodriguez, J.; Stephens, R.; Yang, S.; Yelton, J.; Cinabro, D.; Henderson, S.; Liu, T.; Saulnier, M.; Wilson, R.; Yamamoto, H.; Bergfeld, T.; Eisenstein, B.I.; Gollin, G.; Ong, B.; Palmer, M.; Selen, M.; Thaler, J.J.; Sadoff, A.J.; Ammar, R.; Ball, S.; Baringer, P.; Bean, A.; Besson, D.; Coppage, D.; Copty, N.; Davis, R.; Hancock, N.; Kelly, M.; Kwak, N.; Lam, H.; Kubota, Y.; Lattery, M.; Nelson, J.K.; Patton, S.; Perticone, D.; Poling, R.; Savinov, V.; Schrenk, S.; Wang, R.; Alam, M.S.; Kim, I.J.; Nemati, B.; O'Neill, J.J.; Severini, H.; Sun, C.R.; Zoeller, M.M.; Crawford, G.; Daubenmier, C.M.; Fulton, R.; Fujino, D.; Gan, K.K.; Honscheid, K.; Kagan, H.; Kass, R.; Lee, J.; Malchow, R.; Skovpen, Y.; Sung, M.; White, C.; Butler, F.; Fu, X.; Kalbfleisch, G.; Ross, W.R.; Skubic, P.; Snow, J.; Wang, P.L.; Wood, M.; Brown, D.N.; Fast, J.; McIlwain, R.L.; Miao, T.; Miller, D.H.; Modesitt, M.; Payne, D.; Shibata, E.I.; Shipsey, I.P.J.; Wang, P.N.; Battle, M.; Ernst, J.; Kwon, Y.; Roberts, S.; Thorndike, E.H.; Wang, C.H.; Dominick, J.; Lambrecht, M.; Sanghera, S.; Shelkov, V.; Skwarnicki, T.; Stroynowski, R.; Volobouev, I.; Wei, G.; Zadorozhny, P.; Artuso, M.; Goldberg, M.; He, D.; Horwitz, N.; Kennett, R.; Mountain, R.; Moneti, G.C.; Muheim, F.; Mukhin, Y.; Playfer, S.; Rozen, Y.; Stone, S.; Thulasidas, M.; Vasseur, G.; Zhu, G.; Bartelt, J.; Csorna, S.E.

    1994-01-01

    Using the CLEO II detector at the Cornell Electron Storage Ring we have measured the ratio of branching fractions, B(D + →K - π + π + )/(D 0 →K - π + )=2.35±0.16±0.16. Our recent measurement of scrB(D 0 →K - π + ) then gives scrB(D + →K - π + π + )=(9.3±0.6±0.8)%

  10. Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01

    CERN Document Server

    Aguilar, M; Allaby, James V; Alpat, B; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Bene, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Blasko, S; Bölla, G; Boschini, M; Bourquin, M; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Cardano, F; Casadei, D; Casaus, J; Castellini, G; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Cho, K; Choi, M J; Choi, Y Y; Cindolo, F; Commichau, V; Contin, A; Cortina, E; Cristinziani, M; Dai, T S; Delgado, C; Difalco, S; Djambazov, L; D'Antone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, P; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gast, H; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Hungerford, W; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kim, D H; Kim, G N; Kim, K S; Kim, M Y; Klimentov, A; Kossakowski, R; Kounine, A; Koutsenko, V F; Kraeber, M; Laborie, G; Laitinen, T; Lamanna, G; Lanciotti, E; Laurenti, G; Lebedev, A; Lechanoine-Leluc, C; Lee, M W; Lee, S C; Levi, G; Liu, C L; Liu, H T; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Mujunen, A; Oliva, A; Olzem, J; Palmonari, F; Park, H B; Park, W H; Pauluzzi, M; Pauss, F; Perrin, E; Pesci, A; Pevsner, A; Pilo, F; Pimenta, M; Plyaskin, V; Pozhidaev, V; Pohl, M; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Ro, S; Röser, U; Rossin, C; Sagdeev, R; Santos, D; Sartorelli, G; Sbarra, C; Schael, S; Schultzvon Dratzig, A; Schwering, G; Seo, E S; Shin, J W; Shoumilov, E; Shoutko, V; Siedenburg, T; Siedling, R; Son, D; Song, T; Spinella, F; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Trumper, J; Ulbricht, J; Urpo, S; Valtonen, E; Vandenhirtz, J; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, G; Vite, D; Von Gunten, H; Waldmeier-Wicki, S; Wallraff, W; Wang, B C; Wang, J Z; Wiik, K; Williams, C; Wu, S X; Xia, P C; Xu, S; Yan, J L; Yan, L G; Yang, C G; Yang, J; Yang, M; Ye, S W; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhou, Y; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B; Zuccon, P

    2007-01-01

    A measurement of the cosmic ray positron fraction e+/(e+ + e-) in the energy range of 1-30 GeV is presented. The measurement is based on data taken by the AMS-01 experiment during its 10 day Space Shuttle flight in June 1998. A proton background suppression on the order of 10^6 is reached by identifying converted bremsstrahlung photons emitted from positrons.

  11. Cosmic-ray positron fraction measurement from 1 to 30 GeV with AMS-01

    International Nuclear Information System (INIS)

    Aguilar, M.; Alcaraz, J.; Allaby, J.

    2007-01-01

    A measurement of the cosmic ray positron fraction e + /(e + +e - ) in the energy range of 1-30 GeV is presented. The measurement is based on data taken by the AMS-01 experiment during its 10 day Space Shuttle flight in June 1998. A proton background suppression on the order of 10 6 is reached by identifying converted bremsstrahlung photons emitted from positrons

  12. Measurement of void fraction and bubble size distribution in two-phase flow system

    International Nuclear Information System (INIS)

    Huahun, G.

    1987-01-01

    The importance of study two phase flow parameter and microstructure has appeared increasingly, with the development of two-phase flow discipline. In the paper, the measurement methods of several important microstructure parameter in a two phase flow vertical channel have been studied. Using conductance probe the two phase flow pattern and the average void fraction have been measured previously by the authors. This paper concerns microstructure of the bubble size distribution and local void fraction. The authors studied the methods of measuring bubble velocity, size distribution and local void fraction using double conductance probes and a set of apparatus. Based on our experiments and Yoshihiro work, a formula of calculated local void fraction has been deduced by using the statistical characteristics of bubbles in two phase flow and the relation between calculated bubble size and voltage has been determined. Finally the authors checked by using photograph and fast valve, which is classical but reliable. The results are the same with what has been studied before

  13. Measurements of Void Fractions for Flow of Boiling Heavy Water in a Vertical Round Duct

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Z; Becker, K M

    1963-09-15

    The present report deals with measurements of void fractions for flow of boiling heavy water in a vertical round duct with 6.10 mm inner diameter and a heated length of 2500 mm. The following ranges of variables were studied and 149 void fraction measurements were obtained. Pressure 7 < p < 60 bars; Steam quality 0 < x < 0.38; Surface heat flux 38 < q/A < 120 W/cm{sup 2}; Mass velocity 650 < m'/F < 2050 kg/m/s; Void fraction 0. 24 < {alpha} < 0.88. The measurements were performed by means of a method, which is based on the ({gamma}, n) reaction, occurring when heavy water is irradiated by gamma rays. The results are presented in diagrams, where the void fractions and the slip ratios are plotted against the steam quality with the pressure as a parameter. The data have been correlated by curves, and the scatter of the data around the curves is less than {+-} 5 per cent.

  14. Doppler-shift proton fraction measurement on a CW proton injector

    International Nuclear Information System (INIS)

    Kamperschroer, J.H.; Sherman, J.D.; Zaugg, T.J.; Arvin, A.H.; Bolt, A.S.; Richards, M.C.

    1998-01-01

    A spectrometer/Optical Multi-channel Analyzer has been used to measure the proton fraction of the cw proton injector developed for the Accelerator Production of Tritium (APT) and the Low Energy Demonstration Accelerator (LEDA) at Los Alamos. This technique, pioneered by the Lawrence Berkeley National Laboratory (LBNL), was subsequently adopted by the international fusion community as the standard for determining the extracted ion fractions of neutral beam injectors. Proton fractions up to 95 ± 3% have been measured on the LEDA injector. These values are in good agreement with results obtained by magnetically sweeping the ion beam, collimated by a slit, across a Faraday cup. Since the velocity distribution of each beam species is measured, it also can be used to determine beam divergence. While divergence has not yet been ascertained due to the wide slit widths in use, non-Gaussian distributions have been observed during operation above the design-matched perveance. An additional feature is that the presence of extracted water ions can be observed. During ion source conditioning at 75 kV, an extracted water fraction > 30% was briefly observed

  15. Quantum Measurement Backaction and Upconverting Microwave Signals with Mechanical Resonators

    Science.gov (United States)

    Peterson, R. W.

    The limits of optical measurement and control of mechanical motion are set by the quantum nature of light. The familiar shot noise limit can be avoided by increasing the optical power, but at high enough powers, the backaction of the randomly-arriving photons' radiation pressure can grow to become the dominant force on the system. This thesis will describe an experiment showing how backaction limits the laser cooling of macroscopic drumhead membranes, as well as work on how these membranes can be used to upconvert microwave signals to optical frequencies, potentially preserving the fragile quantum state of the upconverted signal.

  16. Measuring Radiofrequency and Microwave Radiation from Varying Signal Strengths

    Science.gov (United States)

    Davis, Bette; Gaul, W. C.

    2007-01-01

    This viewgraph presentation discusses the process of measuring radiofrequency and microwave radiation from various signal strengths. The topics include: 1) Limits and Guidelines; 2) Typical Variable Standard (IEEE) Frequency Dependent; 3) FCC Standard 47 CFR 1.1310; 4) Compliance Follows Unity Rule; 5) Multiple Sources Contribute; 6) Types of RF Signals; 7) Interfering Radiations; 8) Different Frequencies Different Powers; 9) Power Summing - Peak Power; 10) Contribution from Various Single Sources; 11) Total Power from Multiple Sources; 12) Are You Out of Compliance?; and 13) In Compliance.

  17. Mass spectrometric measurement of hydrogen isotope fractionation for the reactions of chloromethane with OH and Cl

    Directory of Open Access Journals (Sweden)

    F. Keppler

    2018-05-01

    Full Text Available Chloromethane (CH3Cl is an important provider of chlorine to the stratosphere but detailed knowledge of its budget is missing. Stable isotope analysis is a potentially powerful tool to constrain CH3Cl flux estimates. The largest degree of isotope fractionation is expected to occur for deuterium in CH3Cl in the hydrogen abstraction reactions with its main sink reactant tropospheric OH and its minor sink reactant Cl atoms. We determined the isotope fractionation by stable hydrogen isotope analysis of the fraction of CH3Cl remaining after reaction with hydroxyl and chlorine radicals in a 3.5 m3 Teflon smog chamber at 293 ± 1 K. We measured the stable hydrogen isotope values of the unreacted CH3Cl using compound-specific thermal conversion isotope ratio mass spectrometry. The isotope fractionations of CH3Cl for the reactions with hydroxyl and chlorine radicals were found to be −264±45 and −280±11 ‰, respectively. For comparison, we performed similar experiments using methane (CH4 as the target compound with OH and obtained a fractionation constant of −205±6 ‰ which is in good agreement with values previously reported. The observed large kinetic isotope effects are helpful when employing isotopic analyses of CH3Cl in the atmosphere to improve our knowledge of its atmospheric budget.

  18. Local Void Fractions and Bubble Velocity in Vertical Air-Water Two-Phase Flows Measured by Needle-Contact Capacitance Probe

    Directory of Open Access Journals (Sweden)

    Shanfang Huang

    2018-01-01

    Full Text Available Multiphase flow measurements have become increasingly important in a wide range of industrial fields. In the present study, a dual needle-contact capacitance probe was newly designed to measure local void fractions and bubble velocity in a vertical channel, which was verified by digital high-speed camera system. The theoretical analyses and experiments show that the needle-contact capacitance probe can reliably measure void fractions with the readings almost independent of temperature and salinity for the experimental conditions. In addition, the trigger-level method was chosen as the signal processing method for the void fraction measurement, with a minimum relative error of −4.59%. The bubble velocity was accurately measured within a relative error of 10%. Meanwhile, dynamic response of the dual needle-contact capacitance probe was analyzed in detail. The probe was then used to obtain raw signals for vertical pipe flow regimes, including plug flow, slug flow, churn flow, and bubbly flow. Further experiments indicate that the time series of the output signals vary as the different flow regimes and are consistent with each flow structure.

  19. Measurement of transient two-phase flow velocity using statistical signal analysis of impedance probe signals

    International Nuclear Information System (INIS)

    Leavell, W.H.; Mullens, J.A.

    1981-01-01

    A computational algorithm has been developed to measure transient, phase-interface velocity in two-phase, steam-water systems. The algorithm will be used to measure the transient velocity of steam-water mixture during simulated PWR reflood experiments. By utilizing signals produced by two, spatially separated impedance probes immersed in a two-phase mixture, the algorithm computes the average transit time of mixture fluctuations moving between the two probes. This transit time is computed by first, measuring the phase shift between the two probe signals after transformation to the frequency domain and then computing the phase shift slope by a weighted least-squares fitting technique. Our algorithm, which has been tested with both simulated and real data, is able to accurately track velocity transients as fast as 4 m/s/s

  20. Atomic force microscopy imaging to measure precipitate volume fraction in nickel-based superalloys

    International Nuclear Information System (INIS)

    Bourhettar, A.; Troyon, M.; Hazotte, A.

    1995-01-01

    In nickel-based superalloys, quantitative analysis of scanning electron microscopy images fails in providing accurate microstructural data, whereas more efficient techniques are very time-consuming. As an alternative approach, the authors propose to perform quantitative analysis of atomic force microscopy images of polished/etched surfaces (quantitative microprofilometry). This permits the measurement of microstructural parameters and the depth of etching, which is the main source of measurement bias. Thus, nonbiased estimations can be obtained by extrapolation of the measurements up to zero etching depth. In this article, the authors used this approach to estimate the volume fraction of γ' precipitates in a nickel-based superalloy single crystal. Atomic force microscopy images of samples etched for different times show definition, homogeneity, and contrast high enough to perform image analysis. The result after extrapolation is in very good agreement with volume fraction values available from published reports

  1. Measurement of branching fractions, isospin asymmetries and angular observables in exclusive electroweak penguin decays

    CERN Document Server

    Owen, Patrick Haworth

    This thesis describes measurements of rare electroweak penguin decays performed with data collected by the Large Hadron Collider beauty experiment corresponding to 3 $\\rm{fb}^{-1}$ of integrated luminosity. The purpose of these measurements is to search for physics beyond the theoretical framework known as the Standard Model (SM). Electroweak penguin decays are sensitive to virtual particles in extensions to the SM whose influence on the decay amplitude can be of similar strength to the SM contribution. The particular measurements that are described in this thesis are the differential branching fractions and isospin asymmetries of $B\\to K^{(*)}\\mu^{+}\\mu^{-}$ decays as well as the angular observables in $B\\to K\\mu^{+}\\mu^{-}$ decays. Although results are consistent with the SM, all the branching fractions of $B\\to K^{(*)}\\mu^{+}\\mu^{-}$ decays tend to favour a lower value than theoretical predictions.

  2. Cloud fraction and cloud base measurements from scanning Doppler lidar during WFIP-2

    Science.gov (United States)

    Bonin, T.; Long, C.; Lantz, K. O.; Choukulkar, A.; Pichugina, Y. L.; McCarty, B.; Banta, R. M.; Brewer, A.; Marquis, M.

    2017-12-01

    The second Wind Forecast Improvement Project (WFIP-2) consisted of an 18-month field deployment of a variety of instrumentation with the principle objective of validating and improving NWP forecasts for wind energy applications in complex terrain. As a part of the set of instrumentation, several scanning Doppler lidars were installed across the study domain to primarily measure profiles of the mean wind and turbulence at high-resolution within the planetary boundary layer. In addition to these measurements, Doppler lidar observations can be used to directly quantify the cloud fraction and cloud base, since clouds appear as a high backscatter return. These supplementary measurements of clouds can then be used to validate cloud cover and other properties in NWP output. Herein, statistics of the cloud fraction and cloud base height from the duration of WFIP-2 are presented. Additionally, these cloud fraction estimates from Doppler lidar are compared with similar measurements from a Total Sky Imager and Radiative Flux Analysis (RadFlux) retrievals at the Wasco site. During mostly cloudy to overcast conditions, estimates of the cloud radiating temperature from the RadFlux methodology are also compared with Doppler lidar measured cloud base height.

  3. ENHANCING NETWORK SECURITY USING 'LEARNING-FROM-SIGNALS' AND FRACTIONAL FOURIER TRANSFORM BASED RF-DNA FINGERPRINTS

    Energy Technology Data Exchange (ETDEWEB)

    Buckner, Mark A [ORNL; Bobrek, Miljko [ORNL; Farquhar, Ethan [ORNL; Harmer, Paul K [Air Force Institute of Technology; Temple, Michael A [Air Force Institute of Technology

    2011-01-01

    Wireless Access Points (WAP) remain one of the top 10 network security threats. This research is part of an effort to develop a physical (PHY) layer aware Radio Frequency (RF) air monitoring system with multi-factor authentication to provide a first-line of defense for network security--stopping attackers before they can gain access to critical infrastructure networks through vulnerable WAPs. This paper presents early results on the identification of OFDM-based 802.11a WiFi devices using RF Distinct Native Attribute (RF-DNA) fingerprints produced by the Fractional Fourier Transform (FRFT). These fingerprints are input to a "Learning from Signals" (LFS) classifier which uses hybrid Differential Evolution/Conjugate Gradient (DECG) optimization to determine the optimal features for a low-rank model to be used for future predictions. Results are presented for devices under the most challenging conditions of intra-manufacturer classification, i.e., same-manufacturer, same-model, differing only in serial number. The results of Fractional Fourier Domain (FRFD) RF-DNA fingerprints demonstrate significant improvement over results based on Time Domain (TD), Spectral Domain (SD) and even Wavelet Domain (WD) fingerprints.

  4. A framework to measure myocardial extracellular volume fraction using dual-phase low dose CT images

    International Nuclear Information System (INIS)

    Liu, Yixun; Summers, Ronald M.; Yao, Jianhua; Liu, Songtao; Sibley, Christopher T.; Bluemke, David A.; Nacif, Marcelo S.

    2013-01-01

    Purpose: Myocardial extracellular volume fraction (ECVF) is a surrogate imaging biomarker of diffuse myocardial fibrosis, a hallmark of pathologic ventricular remodeling. Low dose cardiac CT is emerging as a promising modality to detect diffuse interstitial myocardial fibrosis due to its fast acquisition and low radiation; however, the insufficient contrast in the low dose CT images poses great challenge to measure ECVF from the image. Methods: To deal with this difficulty, the authors present a complete ECVF measurement framework including a point-guided myocardial modeling, a deformable model-based myocardium segmentation, nonrigid registration of pre- and post-CT, and ECVF calculation. Results: The proposed method was evaluated on 20 patients by two observers. Compared to the manually delineated reference segmentations, the accuracy of our segmentation in terms of true positive volume fraction (TPVF), false positive volume fraction (FPVF), and average surface distance (ASD), were 92.18% ± 3.52%, 0.31% ± 0.10%, 0.69 ± 0.14 mm, respectively. The interobserver variability measured by concordance correlation coefficient regarding TPVF, FPVF, and ASD were 0.95, 0.90, 0.94, respectively, demonstrating excellent agreement. Bland-Altman method showed 95% limits of agreement between ECVF at CT and ECVF at MR. Conclusions: The proposed framework demonstrates its efficiency, accuracy, and noninvasiveness in ECVF measurement and dramatically advances the ECVF at cardiac CT toward its clinical use

  5. A framework to measure myocardial extracellular volume fraction using dual-phase low dose CT images

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yixun; Summers, Ronald M.; Yao, Jianhua, E-mail: JYao@cc.nih.gov [Clinical Image Processing Service, Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland 20892 (United States); Liu, Songtao; Sibley, Christopher T.; Bluemke, David A. [Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland 20892-1182 and Molecular Biomedical Imaging Laboratory, National Institute of Biomedical Imaging and Bioengineering, NIH Clinical Center, Bethesda, Maryland 20892 (United States); Nacif, Marcelo S. [Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland 20892-1182 (United States)

    2013-10-15

    Purpose: Myocardial extracellular volume fraction (ECVF) is a surrogate imaging biomarker of diffuse myocardial fibrosis, a hallmark of pathologic ventricular remodeling. Low dose cardiac CT is emerging as a promising modality to detect diffuse interstitial myocardial fibrosis due to its fast acquisition and low radiation; however, the insufficient contrast in the low dose CT images poses great challenge to measure ECVF from the image. Methods: To deal with this difficulty, the authors present a complete ECVF measurement framework including a point-guided myocardial modeling, a deformable model-based myocardium segmentation, nonrigid registration of pre- and post-CT, and ECVF calculation. Results: The proposed method was evaluated on 20 patients by two observers. Compared to the manually delineated reference segmentations, the accuracy of our segmentation in terms of true positive volume fraction (TPVF), false positive volume fraction (FPVF), and average surface distance (ASD), were 92.18% ± 3.52%, 0.31% ± 0.10%, 0.69 ± 0.14 mm, respectively. The interobserver variability measured by concordance correlation coefficient regarding TPVF, FPVF, and ASD were 0.95, 0.90, 0.94, respectively, demonstrating excellent agreement. Bland-Altman method showed 95% limits of agreement between ECVF at CT and ECVF at MR. Conclusions: The proposed framework demonstrates its efficiency, accuracy, and noninvasiveness in ECVF measurement and dramatically advances the ECVF at cardiac CT toward its clinical use.

  6. arXiv Measurement of the ratio of branching fractions $\\mathcal{B}(B_c^+\\,\\to\\,J/\\psi\\tau^+\

    CERN Document Server

    Aaij, Roel; LHCb Collaboration; Adinolfi, Marco; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Alfonso Albero, Alejandro; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Archilli, Flavio; d'Argent, Philippe; Arnau Romeu, Joan; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Atzeni, Michele; Auriemma, Giulio; Baalouch, Marouen; Babuschkin, Igor; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baker, Sophie; Balagura, Vladislav; Baldini, Wander; Baranov, Alexander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Baryshnikov, Fedor; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Beiter, Andrew; Bel, Lennaert; Beliy, Nikita; Bellee, Violaine; Belloli, Nicoletta; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Beranek, Sarah; Berezhnoy, Alexander; Bernet, Roland; Berninghoff, Daniel; Bertholet, Emilie; Bertolin, Alessandro; Betancourt, Christopher; Betti, Federico; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bezshyiko, Iaroslava; Bifani, Simone; Billoir, Pierre; Birnkraut, Alex; Bizzeti, Andrea; Bjørn, Mikkel; Blake, Thomas; Blanc, Frederic; Blusk, Steven; Bocci, Valerio; Boettcher, Thomas; Bondar, Alexander; Bondar, Nikolay; Bordyuzhin, Igor; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bossu, Francesco; Boubdir, Meriem; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britton, Thomas; Brodzicka, Jolanta; Brundu, Davide; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Byczynski, Wiktor; Cadeddu, Sandro; Cai, Hao; Calabrese, Roberto; Calladine, Ryan; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel Hugo; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Cattaneo, Marco; Cavallero, Giovanni; Cenci, Riccardo; Chamont, David; Chapman, Matthew George; Charles, Matthew; Charpentier, Philippe; Chatzikonstantinidis, Georgios; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu Faye; Chitic, Stefan-Gabriel; Chobanova, Veronika; Chrzaszcz, Marcin; Chubykin, Alexsei; Ciambrone, Paolo; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collins, Paula; Colombo, Tommaso; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombs, George; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Costa Sobral, Cayo Mar; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Currie, Robert; D'Ambrosio, Carmelo; Da Cunha Marinho, Franciole; Dall'Occo, Elena; Dalseno, Jeremy; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Serio, Marilisa; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Del Buono, Luigi; Dembinski, Hans Peter; Demmer, Moritz; Dendek, Adam; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Nezza, Pasquale; Dijkstra, Hans; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Douglas, Lauren; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Durante, Paolo; Dzhelyadin, Rustem; Dziewiecki, Michal; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Ebert, Marcus; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Farley, Nathanael; Farry, Stephen; Fazzini, Davide; Federici, Luca; Ferguson, Dianne; Fernandez, Gerard; Fernandez Declara, Placido; Fernandez Prieto, Antonio; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fini, Rosa Anna; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fleuret, Frederic; Fohl, Klaus; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Franco Lima, Vinicius; Frank, Markus; Frei, Christoph; Fu, Jinlin; Funk, Wolfgang; Furfaro, Emiliano; Färber, Christian; Gabriel, Emmy; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garcia Martin, Luis Miguel; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Garsed, Philip John; Gascon, David; Gaspar, Clara; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gizdov, Konstantin; Gligorov, Vladimir; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gorelov, Igor Vladimirovich; Gotti, Claudio; Govorkova, Ekaterina; Grabowski, Jascha Peter; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greim, Roman; Griffith, Peter; Grillo, Lucia; Gruber, Lukas; Gruberg Cazon, Barak Raimond; Grünberg, Oliver; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Göbel, Carla; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hamilton, Brian; Han, Xiaoxue; Hancock, Thomas Henry; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Hasse, Christoph; Hatch, Mark; He, Jibo; Hecker, Malte; Heinicke, Kevin; Heister, Arno; Hennessy, Karol; Henrard, Pierre; Henry, Louis; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hombach, Christoph; Hopchev, Plamen Hristov; Hu, Wenhua; Huard, Zachary; Hulsbergen, Wouter; Humair, Thibaud; Hushchyn, Mikhail; Hutchcroft, David; Ibis, Philipp; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jiang, Feng; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Karacson, Matthias; Kariuki, James Mwangi; Karodia, Sarah; Kazeev, Nikita; Kecke, Matthieu; Keizer, Floris; Kelsey, Matthew; Kenzie, Matthew; Ketel, Tjeerd; Khairullin, Egor; Khanji, Basem; Khurewathanakul, Chitsanu; Kirn, Thomas; Klaver, Suzanne; Klimaszewski, Konrad; Klimkovich, Tatsiana; Koliiev, Serhii; Kolpin, Michael; Kopecna, Renata; Koppenburg, Patrick; Kosmyntseva, Alena; Kotriakhova, Sofia; Kozeiha, Mohamad; Kravchuk, Leonid; Kreps, Michal; Kress, Felix Johannes; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; Leflat, Alexander; Lefrançois, Jacques; Lefèvre, Regis; Lemaitre, Florian; Lemos Cid, Edgar; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Pei-Rong; Li, Tenglin; Li, Yiming; Li, Zhuoming; Likhomanenko, Tatiana; Lindner, Rolf; Lionetto, Federica; Lisovskyi, Vitalii; Liu, Xuesong; Loh, David; Loi, Angelo; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Lyu, Xiao-Rui; Machefert, Frederic; Maciuc, Florin; Macko, Vladimir; Mackowiak, Patrick; Maddrell-Mander, Samuel; Maev, Oleg; Maguire, Kevin; Maisuzenko, Dmitrii; Majewski, Maciej Witold; Malde, Sneha; Malecki, Bartosz; Malinin, Alexander; Maltsev, Timofei; Manca, Giulia; Mancinelli, Giampiero; Marangotto, Daniele; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marinangeli, Matthieu; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Massacrier, Laure Marie; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurice, Emilie; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McNab, Andrew; McNulty, Ronan; Mead, James Vincent; Meadows, Brian; Meaux, Cedric; Meier, Frank; Meinert, Nis; Melnychuk, Dmytro; Merk, Marcel; Merli, Andrea; Michielin, Emanuele; Milanes, Diego Alejandro; Millard, Edward James; Minard, Marie-Noelle; Minzoni, Luca; Mitzel, Dominik Stefan; Mogini, Andrea; Molina Rodriguez, Josue; Mombächer, Titus; Monroy, Igancio Alberto; Monteil, Stephane; Morandin, Mauro; Morello, Michael Joseph; Morgunova, Olga; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Mulder, Mick; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Thi Dung; Nguyen-Mau, Chung; Nieswand, Simon; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Nogay, Alla; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Oldeman, Rudolf; Onderwater, Gerco; Ossowska, Anna; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Aranzazu; Pais, Preema Rennee; Palano, Antimo; Palutan, Matteo; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parker, William; Parkes, Christopher; Passaleva, Giovanni; Pastore, Alessandra; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petrov, Aleksandr; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pikies, Malgorzata; Pinci, Davide; Pisani, Flavio; Pistone, Alessandro; Piucci, Alessio; Placinta, Vlad-Mihai; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poli Lener, Marco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Pomery, Gabriela Johanna; Ponce, Sebastien; Popov, Alexander; Popov, Dmitry; Poslavskii, Stanislav; Potterat, Cédric; Price, Eugenia; Prisciandaro, Jessica; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Pullen, Hannah Louise; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Quintana, Boris; Rachwal, Bartlomiej; Rademacker, Jonas; Rama, Matteo; Ramos Pernas, Miguel; Rangel, Murilo; Raniuk, Iurii; Ratnikov, Fedor; Raven, Gerhard; Ravonel Salzgeber, Melody; Reboud, Meril; Redi, Federico; Reichert, Stefanie; dos Reis, Alberto; Remon Alepuz, Clara; Renaudin, Victor; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vicente; Robbe, Patrick; Robert, Arnaud; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rogozhnikov, Alexey; Roiser, Stefan; Rollings, Alexandra Paige; Romanovskiy, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rudolph, Matthew Scott; Ruf, Thomas; Ruiz Valls, Pablo; Ruiz Vidal, Joan; Saborido Silva, Juan Jose; Sadykhov, Elnur; Sagidova, Naylya; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarpis, Gediminas; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schael, Stefan; Schellenberg, Margarete; Schiller, Manuel; Schindler, Heinrich; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schreiner, HF; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepulveda, Eduardo Enrique; Sergi, Antonino; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Simone, Saverio; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Soares Lavra, Lais; Sokoloff, Michael; Soler, Paul; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefko, Pavol; Stefkova, Slavomira; Steinkamp, Olaf; Stemmle, Simon; Stenyakin, Oleg; Stepanova, Margarita; Stevens, Holger; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Stramaglia, Maria Elena; Straticiuc, Mihai; Straumann, Ulrich; Sun, Jiayin; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Syropoulos, Vasileios; Szumlak, Tomasz; Szymanski, Maciej Pawel; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Tellarini, Giulia; Teubert, Frederic; Thomas, Eric; van Tilburg, Jeroen; Tilley, Matthew James; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Toriello, Francis; Tourinho Jadallah Aoude, Rafael; Tournefier, Edwige; Traill, Murdo; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tully, Alison; Tuning, Niels; Ukleja, Artur; Usachov, Andrii; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagner, Alexander; Vagnoni, Vincenzo; Valassi, Andrea; Valat, Sebastien; Valenti, Giovanni; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vecchi, Stefania; van Veghel, Maarten; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Venkateswaran, Aravindhan; Verlage, Tobias Anton; Vernet, Maxime; Vesterinen, Mika; Viana Barbosa, Joao Vitor; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Viemann, Harald; Vilasis-Cardona, Xavier; Vitti, Marcela; Volkov, Vladimir; Vollhardt, Achim; Voneki, Balazs; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Vázquez Sierra, Carlos; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wang, Jianchun; Ward, David; Wark, Heather Mckenzie; Watson, Nigel; Websdale, David; Weiden, Andreas; Weisser, Constantin; Whitehead, Mark; Wicht, Jean; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Winn, Michael Andreas; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wraight, Kenneth; Wyllie, Kenneth; Xie, Yuehong; Xu, Menglin; Xu, Zhirui; Yang, Zhenwei; Yang, Zishuo; Yao, Yuezhe; Yin, Hang; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zarebski, Kristian Alexander; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zheng, Yangheng; Zhu, Xianglei; Zhukov, Valery; Zonneveld, Jennifer Brigitta; Zucchelli, Stefano

    2018-03-27

    A measurement is reported of the ratio of branching fractions R(J/ψ)=B(Bc+→J/ψτ+ντ)/B(Bc+→J/ψμ+νμ), where the τ+ lepton is identified in the decay mode τ+→μ+νμν¯τ. This analysis uses a sample of proton-proton collision data corresponding to 3.0  fb-1 of integrated luminosity recorded with the LHCb experiment at center-of-mass energies of 7 and 8 TeV. A signal is found for the decay Bc+→J/ψτ+ντ at a significance of 3 standard deviations corrected for systematic uncertainty, and the ratio of the branching fractions is measured to be R(J/ψ)=0.71±0.17(stat)±0.18(syst). This result lies within 2 standard deviations above the range of central values currently predicted by the standard model.

  7. Measurement of the Branching Fraction of the Exclusive Decay B0 --> K*0gamma

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Barbara

    2000-10-16

    The b {yields} s{gamma} transition proceeds by a loop penguin diagram. It may be used to measure precisely the couplings of the top quark and to search for the effects of any new particles appearing in the loop. We present a preliminary measurement of the branching fraction of the exclusive decay, B{sup 0} {yields} K*{sup 0}{gamma}. They use 8.6 x 10{sup 6} B{bar B} decays to measure B(B{sup 0} {yields} K*{sup 0}{gamma}) = (5.4 {+-} 0.8 {+-} 0.5) x 10{sup -5}.

  8. The reproducibility and variability of sequential left ventricular ejection fraction measurements by the nuclear stethoscope

    International Nuclear Information System (INIS)

    Kurata, Chinori; Hayashi, Hideharu; Kobayashi, Akira; Yamazaki, Noboru

    1986-01-01

    We evaluated the reproducibility and variability of sequential left ventricular ejection fraction (LVEF) measurements by the nuclear stethoscope in 72 patients. The group as a whole demonstrated excellent reproducibility (r = 0.96). However, repeat LVEF measurements by the nuclear stethoscope at 5-minute interval showed around 9 % absolute difference, at 95 % confidence levels, from one measurement to the next. The finding indicates that a change in LVEF greater than 9 % is necessary for determining an acute effect of an intervention in individual cases. (author)

  9. Optical Measurement of Radiocarbon below Unity Fraction Modern by Linear Absorption Spectroscopy.

    Science.gov (United States)

    Fleisher, Adam J; Long, David A; Liu, Qingnan; Gameson, Lyn; Hodges, Joseph T

    2017-09-21

    High-precision measurements of radiocarbon ( 14 C) near or below a fraction modern 14 C of 1 (F 14 C ≤ 1) are challenging and costly. An accurate, ultrasensitive linear absorption approach to detecting 14 C would provide a simple and robust benchtop alternative to off-site accelerator mass spectrometry facilities. Here we report the quantitative measurement of 14 C in gas-phase samples of CO 2 with F 14 C radiocarbon measurement science including the study of biofuels and bioplastics, illicitly traded specimens, bomb dating, and atmospheric transport.

  10. Measurement of the absolute branching fraction for Λc+→Λμ+νμ

    Directory of Open Access Journals (Sweden)

    M. Ablikim

    2017-04-01

    Full Text Available We report the first measurement of the absolute branching fraction for Λc+→Λμ+νμ. This measurement is based on a sample of e+e− annihilation data produced at a center-of-mass energy s=4.6 GeV, collected with the BESIII detector at the BEPCII storage rings. The sample corresponds to an integrated luminosity of 567 pb−1. The branching fraction is determined to be B(Λc+→Λμ+νμ=(3.49±0.46(stat±0.27(syst%. In addition, we calculate the ratio B(Λc+→Λμ+νμ/B(Λc+→Λe+νe to be 0.96±0.16(stat±0.04(syst.

  11. A Measurement of the Exclusive Branching Fraction for B → π K at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Aspinwall, Marie Louise [Imperial College, London (United Kingdom)

    2002-02-01

    This thesis presents an exclusive measurement of the branching fraction B for the rare charmless hadronic B decays to πK final states. A sample of 22.57±0.36 million BB pairs was collected with the BaBar detector at the Stanford Linear Accelerator Center's PEP-II B Factory, during the Run 1 data taking period (1999-2000).

  12. Improved measurements of branching fractions for eta(c) -> phi phi and omega phi

    NARCIS (Netherlands)

    Haddadi, Z.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Löhner, H.; Messchendorp, J.; Tiemens, M.

    2017-01-01

    Using (223.7 +/- 1.4) x 10(6) J / Psi events accumulated with the BESIII detector, we study eta(c) decays to phi phi and omega phi final states. The branching fraction of n(c) -> phi phi is measured to be Br(eta(c) -> phi phi) = (2.5 +/- 0(-0.7)(+0.3) +/- 0.6) X 10(-3,) where the first uncertainty

  13. Measurement of the Bs0 → Ds (∗)+ Ds (∗)- branching fractions

    NARCIS (Netherlands)

    Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; Everse, LA; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J.E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Carvalho Akiba, K.; Coco, V.; David, P. N.Y.; De Bruyn, K.; Ferro-Luzzi, M.; Heijne, V.; Ketel, T.; Koopman, R. F.; Van Leerdam, J.; Merk, M.; Onderwater, C. J.G.; Raven, G.; Schiller, M.; Serra, N.; Snoek, H.; Storaci, B.; Syropoulos, V.; Van Tilburg, J.; Tolk, S.; Tsopelas, P.; Tuning, N.

    2016-01-01

    The branching fraction of the decay Bs0→Ds(∗)+Ds(∗)- is measured using pp collision data corresponding to an integrated luminosity of 1.0 fb-1, collected using the LHCb detector at a center-of-mass energy of 7 TeV. It is found to be B(Bs0→Ds(∗)+Ds(∗)-)=(3.05±0.10±0.20±0.34)%, where the uncertainties

  14. Measurement of the branching fraction for $D^{0} \\rightarrow K^{-}\\pi^{+}$

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Miquel, R; Mir, L M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Becker, U; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Coyle, P; Diaconu, C A; Etienne, F; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Simion, S; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y S; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1997-01-01

    The branching fraction for D0 -> K- pi+ is measured with the statistics collected by ALEPH from 1991 to 1994. The method is based on the comparison between the rate for the reconstructed D*+ -> D0 pi+, D0 -> K- pi+ decay chain and the rate for inclusive soft pion production at low transverse momentum with respect to the nearest jet. The result found is B(D0 -> K- pi+) = (3.90 +- 0.09 +- 0.12)%

  15. Measurement of the Ds l(+)ve branching fractions and the decay constant fDs+

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bakina, O.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Farinelli, R.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, R. P.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Y.; Huang, Z. L.; Hussain, T.; Andersson, W. Ikegami; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kupsc, A.; Koehn, W.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, Q. Y.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Y. B.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Sarantsev, A.; Savrie, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shi, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. N.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.

    2016-01-01

    Using 482 pb(-1) of e(+) e(-) collision data collected at a center-of-mass energy of root s = 4.009 GeV with the BESIII detector, we measure the branching fractions of the decays D-s(+) -> u(+)v(u) and D-s(+) -> tau(+)v(tau). By constraining the ratio of decay rates of Ds(+) to tau(+)v(u) and to

  16. From Fractals to Fractional Vector Calculus: Measurement in the Correct Metric

    Science.gov (United States)

    Wheatcraft, S. W.; Meerschaert, M. M.; Mortensen, J.

    2005-12-01

    Traditional (stationary) stochastic theories have been fairly successful in reproducing transport behavior at relatively homogeneous field sites such as the Borden and Cape Code sites. However, the highly heterogeneous MADE site has produced tracer data that can not be adequately explained with traditional stochastic theories. In recent years, considerable attention has been focused on developing more sophisticated theories that can predict or reproduce the behavior of complex sites such as the MADE site. People began to realize that the model for geologic complexity may in many cases be very different than the model required for stochastic theory. Fractal approaches were useful in conceptualizing scale-invariant heterogeneity by demonstrating that scale dependant transport was just an artifact of our measurement system. Fractal media have dimensions larger than the dimension that measurement is taking place in, thus assuring the scale-dependence of parameters such as dispersivity. What was needed was a rigorous way to develop a theory that was consistent with the fractal dimension of the heterogeneity. The fractional advection-dispersion equation (FADE) was developed with this idea in mind. The second derivative in the dispersion term of the advection-dispersion equation is replaced with a fractional derivative. The order of differentiation, α, is fractional. Values of α in the range: 1 equation is recovered. The 1-D version of the FADE has been used successfully to back-predict tracer test behavior at several heterogeneous field sites, including the MADE site. It has been hypothesized that the order of differentiation in the FADE is equivalent to (or at least related to) the fractal dimension of the particle tracks (or geologic heterogeneity). With this way of thinking, one can think of the FADE as a governing equation written for the correct dimension, thus eliminating scale-dependent behavior. Before a generalized multi-dimensional form of the FADE can be

  17. Measurement of wetted area fraction in subcooled pool boiling of water using infrared thermography

    International Nuclear Information System (INIS)

    Kim, Hyungdae; Park, Youngjae; Buongiorno, Jacopo

    2013-01-01

    The wetted area fraction in subcooled pool boiling of water at atmospheric pressure is measured using the DEPIcT (DEtection of Phase by Infrared Thermography) technique. DEPIcT exploits the contrast in infrared (IR) light emissions between wet and dry areas on the surface of an IR-transparent heater to visualize the instantaneous distribution of the liquid and gas phases in contact with the heater surface. In this paper time-averaged wetted area fraction data in nucleate boiling are reported as functions of heat flux (from 30% up to 100% of the Critical Heat Flux) and subcooling (ΔT sub = 0, 5, 10, 30 and 50 °C). The results show that the wetted area fraction monotonically decreases with increasing heat flux and increases with increasing subcooling: both trends are expected. The range of time-averaged wetted area fractions is from 90%, at low heat flux and high subcooling, to 50% at high heat flux (right before CHF) and low subcooling. It is also shown that the dry areas are periodically rewetted by liquid sloshing on the surface at any subcooling and heat flux; however, the dry areas expand irreversibly at CHF

  18. The measurement of the chemically mobile fraction of lead in soil using isotopic dilution analysis

    International Nuclear Information System (INIS)

    Kirchhoff, J.; Brand, J.; Schuettelkopf, H.

    1992-12-01

    The chemically available fraction of lead in eight soils measured by isotopic dilution analysis using 212 Pb ranged from 7 to 16% of the total content of lead in soil. The soluble fractions achieved values up to 63% of the total content in 1 M NH 4 NO 3 , 1 M MgCl 2 and 0.05 M DTPA solutions. Increasing the contact time between water and soil, the water-soil ratio from 1:1 to 5:1 and increasing the temperature of the soil-water suspension raised the chemically available fraction in soil. Comparing various soil parameters and the mobile fraction of lead, only pH shows a significant correlation. The amphoteric character of lead causes a minimum of mobility about pH 6; pH-values below are responsible for the higher mobility of lead as Pb 2+ , at pH-values above 6 soluble hydroxy and humic acid complexes are formed. (orig.) [de

  19. A Novel Method for Control Performance Assessment with Fractional Order Signal Processing and Its Application to Semiconductor Manufacturing

    Directory of Open Access Journals (Sweden)

    Kai Liu

    2018-06-01

    Full Text Available The significant task for control performance assessment (CPA is to review and evaluate the performance of the control system. The control system in the semiconductor industry exhibits a complex dynamic behavior, which is hard to analyze. This paper investigates the interesting crossover properties of Hurst exponent estimations and proposes a novel method for feature extraction of the nonlinear multi-input multi-output (MIMO systems. At first, coupled data from real industry are analyzed by multifractal detrended fluctuation analysis (MFDFA and the resultant multifractal spectrum is obtained. Secondly, the crossover points with spline fit in the scale-law curve are located and then employed to segment the entire scale-law curve into several different scaling regions, in which a single Hurst exponent can be estimated. Thirdly, to further ascertain the origin of the multifractality of control signals, the generalized Hurst exponents of the original series are compared with shuffled data. At last, non-Gaussian statistical properties, multifractal properties and Hurst exponents of the process control variables are derived and compared with different sets of tuning parameters. The results have shown that CPA of the MIMO system can be better employed with the help of fractional order signal processing (FOSP.

  20. Analysis of blood pressure signal in patients with different ventricular ejection fraction using linear and non-linear methods.

    Science.gov (United States)

    Arcentales, Andres; Rivera, Patricio; Caminal, Pere; Voss, Andreas; Bayes-Genis, Antonio; Giraldo, Beatriz F

    2016-08-01

    Changes in the left ventricle function produce alternans in the hemodynamic and electric behavior of the cardiovascular system. A total of 49 cardiomyopathy patients have been studied based on the blood pressure signal (BP), and were classified according to the left ventricular ejection fraction (LVEF) in low risk (LR: LVEF>35%, 17 patients) and high risk (HR: LVEF≤35, 32 patients) groups. We propose to characterize these patients using a linear and a nonlinear methods, based on the spectral estimation and the recurrence plot, respectively. From BP signal, we extracted each systolic time interval (STI), upward systolic slope (BPsl), and the difference between systolic and diastolic BP, defined as pulse pressure (PP). After, the best subset of parameters were obtained through the sequential feature selection (SFS) method. According to the results, the best classification was obtained using a combination of linear and nonlinear features from STI and PP parameters. For STI, the best combination was obtained considering the frequency peak and the diagonal structures of RP, with an area under the curve (AUC) of 79%. The same results were obtained when comparing PP values. Consequently, the use of combined linear and nonlinear parameters could improve the risk stratification of cardiomyopathy patients.

  1. An advanced ultrasonic technique for slow and void fraction measurements of two-phase flow

    International Nuclear Information System (INIS)

    Faccini, J.L.H.; Su, J.; Harvel, G.D.; Chang, J.S.

    2004-01-01

    In this paper, we present a hybrid type counterpropagating transmission ultrasonic technique (CPTU) for flow and time averaging ultrasonic transmission intensity void fraction measurements (TATIU) of air-water two-phase flow, which is tested in the new two-phase flow test section mounted recently onto an existing single phase flow rig. The circular pipe test section is made of 51.2 mm stainless steel, followed by a transparent extruded acrylic pipe aimed at flow visualization. The two-phase flow rig operates in several flow regimes: bubbly, smooth stratified, wavy stratified and slug flow. The observed flow patterns are compared with previous experimental and numerical flow regime map for horizontal two phase flows. These flow patterns will be identified by time averaging transmission intensity ultrasonic techniques which have been developed to meet this particular application. A counterpropagating transmission ultrasonic flowmeter is used to measure the flow rate of liquid phase. A pulse-echo TATIU ultrasonic technique used to measure the void fraction of the horizontal test section is presented. We can draw the following conclusions: 1) the ultrasonic system was able to characterize the 2 flow patterns simulated (stratified and plug flow); 2) the results obtained for water volumetric fraction require more experimental work to determine exactly the technique uncertainties but, a priori, they are consistent with earlier work; and 3) the experimental uncertainties can be reduced by improving the data acquisition system, changing the acquisition time interval from seconds to milliseconds

  2. Debuncher Momentum Cooling Systems Signal to Noise Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, Ralph J.; /Fermilab

    2001-12-18

    The Debuncher Momentum cooling systems were carefully measured for signal to noise. It was observed that cooling performance was not optimum. Closer inspection shows that the installed front-end bandpass filters are wider than the pickup response. (The original filters were specified to be wider so that none of the available bandwidth would be clipped.) The end result is excess noise is amplified and passed onto the kickers unimpeded, hence, reducing the achievable system gain. From this data, new filters should be designed to improve performance. New system bandwidths are specified on the data figures. Also included are the transfer function measurements that clearly show adjacent band response. In band 4 upper, the adjacent lobes are strong and out of phase. This is also degrading the system performance. The correlation between spectrum analyzer signal to noise and network analyzer system transfer functions is very strong. The table below has a calculation of expected improvement of front noise reduction by means of building new front-end bandpass filters. The calculation is based on a flat input noise spectrum and is a linear estimation of improvement. The listed 3dB bandwidths of the original filters are from measured data. The expected bandwidth is taken from the linear spectrum analyzer plots and is closer to a 10 dB bandwidth making the percentage improvement conservative. The signal to noise measurements are taken with circulating pbars in the Debuncher. One cooling system was measured at a time with all others off. Beam currents are below ten microamperes.

  3. Debuncher Momentum Cooling Systems Signal to Noise Measurements

    International Nuclear Information System (INIS)

    Pasquinelli, Ralph J.

    2001-01-01

    The Debuncher Momentum cooling systems were carefully measured for signal to noise. It was observed that cooling performance was not optimum. Closer inspection shows that the installed front-end bandpass filters are wider than the pickup response. (The original filters were specified to be wider so that none of the available bandwidth would be clipped.) The end result is excess noise is amplified and passed onto the kickers unimpeded, hence, reducing the achievable system gain. From this data, new filters should be designed to improve performance. New system bandwidths are specified on the data figures. Also included are the transfer function measurements that clearly show adjacent band response. In band 4 upper, the adjacent lobes are strong and out of phase. This is also degrading the system performance. The correlation between spectrum analyzer signal to noise and network analyzer system transfer functions is very strong. The table below has a calculation of expected improvement of front noise reduction by means of building new front-end bandpass filters. The calculation is based on a flat input noise spectrum and is a linear estimation of improvement. The listed 3dB bandwidths of the original filters are from measured data. The expected bandwidth is taken from the linear spectrum analyzer plots and is closer to a 10 dB bandwidth making the percentage improvement conservative. The signal to noise measurements are taken with circulating pbars in the Debuncher. One cooling system was measured at a time with all others off. Beam currents are below ten microamperes.

  4. Mutual information measures applied to EEG signals for sleepiness characterization.

    Science.gov (United States)

    Melia, Umberto; Guaita, Marc; Vallverdú, Montserrat; Embid, Cristina; Vilaseca, Isabel; Salamero, Manel; Santamaria, Joan

    2015-03-01

    Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders with a great impact on the patient lives. While many studies have been carried out in order to assess daytime sleepiness, the automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on non-linear dynamical analysis of EEG signal was proposed. Multichannel EEG signals were recorded during five maintenance of wakefulness (MWT) and multiple sleep latency (MSLT) tests alternated throughout the day from patients suffering from sleep disordered breathing. A group of 20 patients with excessive daytime sleepiness (EDS) was compared with a group of 20 patients without daytime sleepiness (WDS), by analyzing 60-s EEG windows in waking state. Measures obtained from cross-mutual information function (CMIF) and auto-mutual-information function (AMIF) were calculated in the EEG. These functions permitted a quantification of the complexity properties of the EEG signal and the non-linear couplings between different zones of the scalp. Statistical differences between EDS and WDS groups were found in β band during MSLT events (p-value CMIF measures yielded sensitivity and specificity above 80% and AUC of ROC above 0.85 in classifying EDS and WDS patients. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Measurement of gas phase characteristics using new monofiber optical probes and real time signal processing

    International Nuclear Information System (INIS)

    Cartellier, A.

    1998-01-01

    Single optical or impedance phase detection probes are able to measure gas velocities provided that their sensitive length L is accurately known. In this paper, it is shown that L can be controlled during the manufacture of optical probes. Beside, for a probe geometry in the form of a cone + a cylinder + a cone, the corresponding rise time / velocity correlation becomes weakly sensitive to uncontrollable parameter such as the angle of impact on the interface. A real time signal processing performing phase detection as well as velocity measurements is described. Since its sensitivity to the operator inputs is less than the reproducibility of measurements, it is a fairly objective tool. Qualifications achieved in air/water flows with various optical probes demonstrate that the void fraction is detected with a relative error less than 10 %. For bubbly flows, the gas flux is accurate within ±10%, but this uncertainty increases when large bubbles are present in the flow. (author)

  6. Anomalous diffusion measured by a twice-refocused spin echo pulse sequence: analysis using fractional order calculus.

    Science.gov (United States)

    Gao, Qing; Srinivasan, Girish; Magin, Richard L; Zhou, Xiaohong Joe

    2011-05-01

    To theoretically develop and experimentally validate a formulism based on a fractional order calculus (FC) diffusion model to characterize anomalous diffusion in brain tissues measured with a twice-refocused spin-echo (TRSE) pulse sequence. The FC diffusion model is the fractional order generalization of the Bloch-Torrey equation. Using this model, an analytical expression was derived to describe the diffusion-induced signal attenuation in a TRSE pulse sequence. To experimentally validate this expression, a set of diffusion-weighted (DW) images was acquired at 3 Tesla from healthy human brains using a TRSE sequence with twelve b-values ranging from 0 to 2600 s/mm(2). For comparison, DW images were also acquired using a Stejskal-Tanner diffusion gradient in a single-shot spin-echo echo planar sequence. For both datasets, a Levenberg-Marquardt fitting algorithm was used to extract three parameters: diffusion coefficient D, fractional order derivative in space β, and a spatial parameter μ (in units of μm). Using adjusted R-squared values and standard deviations, D, β, and μ values and the goodness-of-fit in three specific regions of interest (ROIs) in white matter, gray matter, and cerebrospinal fluid, respectively, were evaluated for each of the two datasets. In addition, spatially resolved parametric maps were assessed qualitatively. The analytical expression for the TRSE sequence, derived from the FC diffusion model, accurately characterized the diffusion-induced signal loss in brain tissues at high b-values. In the selected ROIs, the goodness-of-fit and standard deviations for the TRSE dataset were comparable with the results obtained from the Stejskal-Tanner dataset, demonstrating the robustness of the FC model across multiple data acquisition strategies. Qualitatively, the D, β, and μ maps from the TRSE dataset exhibited fewer artifacts, reflecting the improved immunity to eddy currents. The diffusion-induced signal attenuation in a TRSE pulse sequence

  7. Fractional intestinal absorption and retention of calcium measured by whole-body counting. Application of a power function model

    International Nuclear Information System (INIS)

    Pors Nielsen, S.; Baerenholdt, O.; Munck, O.

    1975-01-01

    By application of a power function model, fractional intestinal calcium absorption was investigated with a new technique involving whole-body counting after successive oral and intravenous administration of standard doses of 47 Ca. The fractional calcium retention 7 days after the oral load of 47 Ca was also measured. Fractional calcium retention averaged 30.3% in normal subjects and 11.5% in 11 patients with intestinal malabsorption. In the same groups fractional calcium absorption averaged 46.6% and 16.4%, respectively. Fractional calcium retention and intestinal calcium absorption were significantly correlated to body surface area, and there was a well-defined relation between fractional retention and absorption of calcium. These studies demonstrate that measurements of fractional retention and fractional intestinal absorption of calcium can be combined by the use of a whole-body counter, that fractional retention and intestinal absorption are proportional to total body surface area and therefore probably also to the total bone mass, and that fractional retention and absorption are so closely interrelated that frational absorption can be estimated from fractional retention with reasonable accuracy in normal subjects. (auth.)

  8. Measurements of void fraction in a water-molten tin system by X-ray absorption

    International Nuclear Information System (INIS)

    Baker, Michael C.; Bonazza, Riccardo; Corradini, Michael L.

    1998-01-01

    A facility has been developed to study the explosive interactions of gas-water injection into a molten tin pool. The experimental apparatus allows for variable nitrogen gas and water injection into the base of a steel tank containing up to 25 kg of molten tin. Due to the opaque nature of the molten metal-gas-water mixture and steel tank, a visualization and measurement technique using continuous high energy x-rays had to be developed. Visualization of the multiphase mixture can be done at 220 Hz with 256x256 pixel resolution or at 30 Hz with 480x1128 pixel resolution. These images are stored digitally and subsequently processed to obtain two dimensional mappings of the chordal average void fraction in the mixture. The image processing method has been used to measure void fraction in experiments that did not include water in the injection mixture. This work includes a comparison to previous studies of integral void fraction data in pools of molten metal with gas injection. (author)

  9. Visualization and void fraction measurement of decompressed boiling flow in a capillary tube

    International Nuclear Information System (INIS)

    Asano, H.; Murakawa, H.; Takenaka, N.; Takiguchi, K.; Okamoto, M.; Tsuchiya, T.; Kitaide, Y.; Maruyama, N.

    2011-01-01

    A capillary tube is often used as a throttle for a refrigerating cycle. Subcooled refrigerant usually flows from a condenser into the capillary tube. Then, the refrigerant is decompressed along the capillary tube. When the static pressure falls below the saturation pressure for the liquid temperature, spontaneous boiling occurs. A vapor-liquid two-phase mixture is discharged from the tube. In designing a capillary tube, it is necessary to calculate the flow rate for given boundary conditions on pressure and temperature at the inlet and exit. Since total pressure loss is dominated by frictional and acceleration losses during two-phase flow, it is first necessary to specify the boiling inception point. However, there will be a delay in boiling inception during decompressed flow. This study aimed to clarify the boiling inception point and two-phase flow characteristics of refrigerant in a capillary tube. Refrigerant flows in a coiled copper capillary tube were visualized by neutron radiography. The one-dimensional distribution of volumetric average void fraction was measured from radiographs through image processing. From the void fraction distribution, the boiling inception point was determined. Moreover, a simplified CT method was successfully applied to a radiograph for cross-sectional measurements. The experimental results show the flow pattern transition from intermittent flow to annular flow that occurred at a void fraction of about 0.45.

  10. Measurement of the branching fraction of Ds inclusive semileptonic decay Ds+→e+X

    International Nuclear Information System (INIS)

    Bai, J.Z.; Bian, J.G.; Chai, Z.W.; Chen, G.P.; Chen, J.C.; Chen, S.M.; Chen, Y.; Chen, Y.B.; Chen, Y.Q.; Cheng, B.S.; Cui, X.Z.; Ding, H.L.; Du, Z.Z.; Fan, X.L.; Fang, J.; Gao, C.S.; Gao, M.L.; Gao, S.Q.; Gu, J.H.; Gu, S.D.; Gu, W.X.; Gu, Y.F.; Guo, Y.N.; Han, S.W.; Han, Y.; He, J.; He, J.T.; Hu, G.Y.; Hu, J.L.; Hu, Q.H.; Hu, T.; Hu, X.Q.; Huang, X.P.; Huang, Y.Z.; Jiang, C.H.; Jin, S.; Jin, Y.; Kang, S.H.; Ke, Z.J.; Lai, Y.F.; Lan, H.B.; Lang, P.F.; Li, J.; Li, P.Q.; Li, R.B.; Li, W.; Li, W.D.; Li, W.G.; Li, X.H.; Li, X.N.; Lin, S.Z.; Lu, F.; Liu, H.M.; Liu, J.; Liu, J.H.; Liu, Q.; Liu, R.G.; Liu, Y.; Liu, Z.A.; Lu, J.G.; Lu, J.Y.; Luo, S.Q.; Luo, Y.; Ma, A.M.; Ma, E.C.; Ma, J.M.; Mao, H.S.; Mao, Z.P.; Meng, X.C.; Ni, H.L.; Nie, J.; Qi, N.D.; Qiu, J.F.; Qu, Y.H.; Que, Y.K.; Rong, G.; Shao, Y.Y.; Shen, B.W.; Shen, D.L.; Shen, H.; Shen, X.Y.; Sheng, H.Y.; Shi, H.Z.; Song, X.F.; Sun, F.; Sun, H.S.; Sun, S.J.; Tan, Y.P.; Tang, S.Q.; Tong, G.L.; Wang, F.; Wang, J.F.; Wang, L.S.; Wang, L.Z.; Wang, M.; Wang, M.; Wang, P.; Wang, P.L.; Wang, S.M.; Wang, T.J.; Wang, Y.Y.; Wei, C.L.; Wu, Y.G.; Xi, D.M.; Xia, X.M.; Xie, P.P.; Xiong, W.J.; Xu, D.Z.; Xu, G.F.; Xu, R.S.; Xu, Z.Q.; Xue, S.T.; Yan, J.; Yan, W.G.; Yang, C.M.; Yang, C.Y.; Yang, W.; Yang, X.F.; Ye, M.H.; Ye, S.Z.; Yi, K.; Yu, C.S.; Yu, C.X.; Yu, Z.Q.; Yu, Z.T.; Yuan, C.Z.; Zhang, B.Y.; Zhang, C.C.; Zhang, D.H.; Zhang, D.; Zhang, H.L.; Zhang, J.; Zhang, J.W.; Zhang, L.S.; Zhang, L.; Zhang, Q.J.; Zhang, S.Q.; Zhang, X.Y.; Zhang, Y.; Zhang, Y.Y.; Zhao, D.X.; Zhao, J.W.; Zhao, M.; Zhao, W.R.; Zheng, J.P.; Zheng, L.S.; Zheng, Z.P.; Zhou, G.P.; Zhou, H.S.; Zhou, L.; Zhou, Y.H.; Zhu, Q.M.; Zhu, Y.C.; Zhu, Y.S.; Zhuang, B.A.; Bardon, O.; Cowan, R.F.; Fero, M.; Blum, I.; Gratton, P.; Izen, J.M.; Kim, B.K.; Lou, X.C.; Lowery, B.; Standifird, J.

    1997-01-01

    The absolute inclusive semileptonic branching fraction of the D s meson has been measured based on 22.3 pb -1 of e + e - collision data collected with the Beijing Spectrometer at √ (s) =4.03GeV. At this energy, the D s are produced in pairs: e + e - →D s + D s - . We reconstructed 171±21±15 D s events in five hadronic decay modes. In the recoil system of these events, several D s inclusive semileptonic decays were observed and the branching fraction is estimated to be B(D s + →e + X)=(7.7 -4.3-2.1 +5.7+2.4 )%. copyright 1997 The American Physical Society

  11. Effects of morphology and wavelength on the measurement accuracy of soot volume fraction by laser extinction

    Science.gov (United States)

    Wang, Ya-fei; Huang, Qun-xing; Wang, Fei; Chi, Yong; Yan, Jian-hua

    2018-01-01

    A novel method to evaluate the quantitative effects of soot morphology and incident wavelength on the measurement accuracy of soot volume fraction, by the laser extinction (LE) technique is proposed in this paper. The results indicate that the traditional LE technique would overestimate soot volume fraction if the effects of morphology and wavelength are not considered. Before the agglomeration of isolated soot primary particles, the overestimation of the LE technique is in the range of 2-20%, and rises with increasing primary particle diameter and with decreasing incident wavelength. When isolated primary particles are agglomerated into fractal soot aggregates, the overestimation would exceed 30%, and rise with increasing primary particle number per soot aggregate, fractal dimension and fractal prefactor and with decreasing incident wavelength to a maximum value of 55%. Finally, based on these results above, the existing formula of the LE technique gets modified, and the modification factor is 0.65-0.77.

  12. Dietary fibre fractions in cereal foods measured by a new integrated AOAC method.

    Science.gov (United States)

    Hollmann, Juergen; Themeier, Heinz; Neese, Ursula; Lindhauer, Meinolf G

    2013-10-01

    The reliable determination of soluble, insoluble and total dietary fibre in baked goods and cereal flours is an important issue for research, nutritional labelling and marketing. We compared total dietary fibre (TDF) contents of selected cereal based foods determined by AOAC Method 991.43 and the new AOAC Method 2009.01. Fifteen bread and bakery products were included in the study. Our results showed that TDF values of cereal products determined by AOAC Method 2009.01 were always significantly higher than those determined by AOAC Method 991.43. This was explained by the inclusion of low molecular weight soluble fibre fractions and resistant starch fractions in the TDF measurement by AOAC 2009.01. This documents that nutritional labelling of cereal products poses the challenge how to update TDF data in nutrient databases in a reasonable time with an acceptable expenditure. Copyright © 2013. Published by Elsevier Ltd.

  13. Measurement of the B -> X sub s (ell) sup + (ell) sup - Branching Fraction Using a Sum Over Exclusive Modes

    CERN Document Server

    Willocq, S

    2003-01-01

    We present a measurement of the branching fraction for the flavor-changing neutral current process B -> X sub s (ell) sup + (ell) sup - based on a sample of 88.9 x 10 sup 6 UPSILON(4S) -> B(bar B) events recorded with the BABAR detector at the PEP-II e sup + e sup - storage ring. The final state is reconstructed from pairs of electrons or muons and a hadronic system consisting of one K sup+- or K sub s sup 0 and up to two pions, with at most one pi sup 0. Summing over both lepton flavors, we observe a signal of 41 +- 10(stat) +- 2(syst) events with a statistical significance of 4.6 sigma. The inclusive branching fraction is determined to be BETA(B -> X sub s (ell) sup + (ell) sup -) = (6.3 +- 1.6(stat) sub - sub 1 sub . sub 5 sup + sup 1 sup . sup 8 (syst)) x 10 sup - sup 6 for m((ell) sup + (ell) sup -) > 0.2 GeV/c sup 2. All results are preliminary.

  14. A time-to-amplitude converter with constant fraction timing discriminators for short time interval measurements

    International Nuclear Information System (INIS)

    Kostamovaara, J.; Myllylae, R.

    1985-01-01

    The construction and the performance of a time-to-amplitude converter equipped with constant fraction discriminators is described. The TAC consists of digital and analog parts which are constructed on two printed circuit boards, both of which are located in a single width NIM module. The dead time of the TAC for a start pulse which is not followed by a stop pulse within the time range of the device (proportional100 ns) is only proportional100 ns, which enables one to avoid counting rate saturation even with a high random input signal rate. The differential and integral nonlinearities of the TAC are better than +-1.5% and 0.05%, respectively. The resolution for input timing pulses of constant shape is 20 ps (fwhm), and less than 10 ps (fwhm) with a modification in the digital part. The walk error of the constant fraction timing discriminators is presented and various parameters affecting it are discussed. The effect of the various disturbances in linearity caused by the fast ECL logic and their minimization are also discussed. The time-to-amplitude converter has been used in positron lifetime studies and for laser range finding. (orig.)

  15. Signal validation in nuclear power plants using redundant measurements

    International Nuclear Information System (INIS)

    Glockler, O.; Upadhyaya, B.R.; Morgenstern, V.M.

    1989-01-01

    This paper discusses the basic principles of a multivariable signal validation software system utilizing redundant sensor readings of process variables in nuclear power plants (NPPs). The technique has been tested in numerical experiments, and was applied to actual data from a pressurized water reactor (PWR). The simultaneous checking within one redundant measurement set, and the cross-checking among redundant measurement sets of dissimilar process variables, results in an algorithm capable of detecting and isolating bias-type errors. A case in point occurs when a majority of the direct redundant measurements of more than one process variable has failed simultaneously by a common-mode or correlated failures can be detected by the developed approach. 5 refs

  16. Use of glycolytic pathways for inhibiting or measuring oncogenic signaling

    Science.gov (United States)

    Onodera, Yasuhito; Bissell, Mina

    2017-06-27

    Disclosed are methods in which glucose metabolism is correlated to oncogenesis through certain specific pathways; inhibition of certain enzymes is shown to interfere with oncogenic signaling, and measurement of certain enzyme levels is correlated with patient survival. The present methods comprise measuring level of expression of at least one of the enzymes involved in glucose uptake or metabolism, wherein increased expression of the at least one of the enzymes relative to expression in a normal cell correlates with poor prognosis of disease in a patient. Preferably the genes whose expression level is measured include GLUT3, PFKP, GAPDH, ALDOC, LDHA and GFPT2. Also disclosed are embodiments directed towards downregulating the expression of some genes in glucose uptake and metabolism.

  17. Thickness measurement by using cepstrum ultrasonic signal processing

    International Nuclear Information System (INIS)

    Choi, Young Chul; Yoon, Chan Hoon; Choi, Heui Joo; Park, Jong Sun

    2014-01-01

    Ultrasonic thickness measurement is a non-destructive method to measure the local thickness of a solid element, based on the time taken for an ultrasound wave to return to the surface. When an element is very thin, it is difficult to measure thickness with the conventional ultrasonic thickness method. This is because the method measures the time delay by using the peak of a pulse, and the pulses overlap. To solve this problem, we propose a method for measuring thickness by using the power cepstrum and the minimum variance cepstrum. Because the cepstrums processing can divides the ultrasound into an impulse train and transfer function, where the period of the impulse train is the traversal time, the thickness can be measured exactly. To verify the proposed method, we performed experiments with steel and, acrylic plates of variable thickness. The conventional method is not able to estimate the thickness, because of the overlapping pulses. However, the cepstrum ultrasonic signal processing that divides a pulse into an impulse and a transfer function can measure the thickness exactly.

  18. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    Directory of Open Access Journals (Sweden)

    Huajun Li

    2016-01-01

    Full Text Available Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA. Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works.

  19. Relationships between Personal Measurements of 'Total' Dust, Respirable, Thoracic, and Inhalable Aerosol Fractions in the Cement Production Industry.

    Science.gov (United States)

    Notø, Hilde P; Nordby, Karl-Christian; Eduard, Wijnand

    2016-05-01

    The aims of this study were to examine the relationships and establish conversion factors between 'total' dust, respirable, thoracic, and inhalable aerosol fractions measured by parallel personal sampling on workers from the production departments of cement plants. 'Total' dust in this study refers to aerosol sampled by the closed face 37-mm Millipore filter cassette. Side-by-side personal measurements of 'total' dust and respirable, thoracic, and inhalable aerosol fractions were performed on workers in 17 European and Turkish cement plants. Simple linear and mixed model regressions were used to model the associations between the samplers. The total number of personal samples collected on 141 workers was 512. Of these 8.4% were excluded leaving 469 for statistical analysis. The different aerosol fractions contained from 90 to 130 measurements and-side-by side measurements of all four aerosol fractions were collected on 72 workers.The median ratios between observed results of the respirable, 'total' dust, and inhalable fractions relative to the thoracic aerosol fractions were 0.51, 2.4, and 5.9 respectively. The ratios between the samplers were not constant over the measured concentration range and were best described by regression models. Job type, position of samplers on left or right shoulder and plant had no substantial effect on the ratios. The ratios between aerosol fractions changed with different air concentrations. Conversion models for estimation of the fractions were established. These models explained a high proportion of the variance (74-91%) indicating that they are useful for the estimation of concentrations based on measurements of a different aerosol fraction. The calculated uncertainties at most observed concentrations were below 30% which is acceptable for comparison with limit values (EN 482, 2012). The cement industry will therefore be able to predict the health related aerosol fractions from their former or future measurements of one of the

  20. Low frequency phase signal measurement with high frequency squeezing

    OpenAIRE

    Zhai, Zehui; Gao, Jiangrui

    2011-01-01

    We calculate the utility of high-frequency squeezed-state enhanced two-frequency interferometry for low-frequency phase measurement. To use the high-frequency sidebands of the squeezed light, a two-frequency intense laser is used in the interferometry instead of a single-frequency laser as usual. We find that the readout signal can be contaminated by the high-frequency phase vibration, but this is easy to check and avoid. A proof-of-principle experiment is in the reach of modern quantum optic...

  1. Correction for dynamic bias error in transmission measurements of void fraction

    International Nuclear Information System (INIS)

    Andersson, P.; Sundén, E. Andersson; Svärd, S. Jacobsson; Sjöstrand, H.

    2012-01-01

    Dynamic bias errors occur in transmission measurements, such as X-ray, gamma, or neutron radiography or tomography. This is observed when the properties of the object are not stationary in time and its average properties are assessed. The nonlinear measurement response to changes in transmission within the time scale of the measurement implies a bias, which can be difficult to correct for. A typical example is the tomographic or radiographic mapping of void content in dynamic two-phase flow systems. In this work, the dynamic bias error is described and a method to make a first-order correction is derived. A prerequisite for this method is variance estimates of the system dynamics, which can be obtained using high-speed, time-resolved data acquisition. However, in the absence of such acquisition, a priori knowledge might be used to substitute the time resolved data. Using synthetic data, a void fraction measurement case study has been simulated to demonstrate the performance of the suggested method. The transmission length of the radiation in the object under study and the type of fluctuation of the void fraction have been varied. Significant decreases in the dynamic bias error were achieved to the expense of marginal decreases in precision.

  2. High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air

    Directory of Open Access Journals (Sweden)

    C. W. Rella

    2013-03-01

    Full Text Available Traditional techniques for measuring the mole fractions of greenhouse gases in the well-mixed atmosphere have required dry sample gas streams (dew point inter-laboratory compatibility goals (WMO, 2011a without drying the sample gas. In this paper, we present laboratory methodology for empirically deriving the water vapour correction factors, and we summarise a series of in-situ validation experiments comparing the measurements in humid gas streams to well-characterised dry-gas measurements. By using the manufacturer-supplied correction factors, the dry-mole fraction measurements have been demonstrated to be well within the GAW compatibility goals up to a water vapour concentration of at least 1%. By determining the correction factors for individual instruments once at the start of life, this water vapour concentration range can be extended to at least 2% over the life of the instrument, and if the correction factors are determined periodically over time, the evidence suggests that this range can be extended up to and even above 4% water vapour concentrations.

  3. Measurements of the branching fractions of $B^{+} \\to p \\bar{p} K^{+}$ decays

    CERN Document Server

    INSPIRE-00258707; Abellan Beteta, C; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dickens, J; Dijkstra, H; Dogaru, M; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jansen, F; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Mazurov, A; McCarthy, J; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nisar, S; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2013-01-01

    The branching fractions of the decay $B^{+} \\to p \\bar p K^{+}$ for different intermediate states are measured using data, corresponding to an integrated luminosity of 1.0 fb$^{-1}$, collected by the LHCb experiment. The total branching fraction, its charmless component $(M_{p\\bar p} <2.85 $ $ GeV/c^{2})$ and the branching fractions via the resonant $c\\bar c$ states $\\eta_{c}(1S)$ and $\\psi(2S)$ relative to the decay via a $J/\\psi$ intermediate state are \\begin{align*} \\frac{{\\mathcal B}(B^{+} \\to p \\bar p K^{+})_{total}}{{\\mathcal B}(B^{+} \\to J/\\psi K^{+} \\to p \\bar p K^{+})}=& \\, 4.91 \\pm 0.19 \\, {(\\rm stat)} \\pm 0.14 \\, {(\\rm syst)},\\\\ \\frac{{\\mathcal B}(B^{+} \\to p \\bar p K^{+})_{M_{p\\bar p} <2.85 {GeV/}c^{2}}}{{\\mathcal B}(B^{+} \\to J/\\psi K^{+} \\to p \\bar p K^{+})}=& \\, 2.02 \\pm 0.10 \\, {(\\rm stat)}\\pm 0.08 \\, {(\\rm syst)},\\\\ \\frac{{\\mathcal B} (B^{+} \\to \\eta_{c}(1S) K^{+} \\to p \\bar p K^{+})}{{\\mathcal B}(B^{+} \\to J/\\psi K^{+} \\to p \\bar p K^{+})} = & \\, 0.578 \\pm 0.03...

  4. Assessment of nanoparticle surface area by measuring unattached fraction of radon progeny

    Energy Technology Data Exchange (ETDEWEB)

    Ruzer, Lev S. [Ernest Orlando Lawrence Berkeley National Laboratory, Indoor Environment Department (United States)], E-mail: LSRuzer@lbl.gov

    2008-05-15

    A number of studies on the exposure of nanometer aerosols have indicated that health effects associated with low-solubility inhaled particles in the range of 1-100 nm may be more appropriately associated with particulate surface area than mass concentration. Such data on correlation between number, surface area and mass concentration are needed for exposure investigations, but the means for measuring aerosol surface area are not readily available. In this paper we propose a method for particle surface area assessment based on a new approach, deposition of the 'unattached fraction of radon progeny' onto nanometer aerosols.The proposed approach represents a synthesis of:(1) Derived direct analytical correlation between the 'unattached fraction' of radon progeny and surface area particle concentration in the range of 1-100 nm particle diameter;(2) Experimental data on correlation between the unattached fraction of radon progeny and particle surface area for particles with diameter in the range of 44 nm-2.1 {mu}m.

  5. Rapid exchange ultra-thin microcatheter using fibre-optic sensing technology for measurement of intracoronary fractional flow reserve.

    Science.gov (United States)

    Diletti, Roberto; Van Mieghem, Nicolas M; Valgimigli, Marco; Karanasos, Antonis; Everaert, Bert R C; Daemen, Joost; van Geuns, Robert-Jan; de Jaegere, Peter P; Zijlstra, Felix; Regar, Evelyn

    2015-08-01

    The present report describes a novel coronary fractional flow reserve (FFR) system which allows FFR assessment using a rapid exchange microcatheter (RXi). The RXi microcatheter is compatible with standard 0.014" coronary guidewires facilitating lesion negotiation and FFR assessment in a wide range of coronary anatomies. In case of serial lesions, a microcatheter would have the important advantage of allowing multiple pullbacks while maintaining wire access to the vessel. The RXi is a fibre-optic sensor technology-based device. This technology might allow reduction in signal drift. The RXi microcatheter's fibre-optic sensor is located 5 mm from the distal tip. The microcatheter profile at the sensor site is 0.027"0.036". The segment of the catheter which is intended to reside within the target lesion is proximal to the sensor and has dimensions decreased to 0.020"0.025"; these dimensions are comparable to a 0.022" circular-shaped wire. The RXi microcatheter FFR system represents a novel technology that could allow easier lesion negotiation, maintaining guidewire position, facilitating pullbacks for assessment of serial lesions and simplifying the obtainment of post-intervention FFR measurements. The optical sensing technology could additionally result in less signal drift. Further investigations are required to evaluate the clinical value of this technology fully.

  6. High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air

    Science.gov (United States)

    Rella, C. W.; Chen, H.; Andrews, A. E.; Filges, A.; Gerbig, C.; Hatakka, J.; Karion, A.; Miles, N. L.; Richardson, S. J.; Steinbacher, M.; Sweeney, C.; Wastine, B.; Zellweger, C.

    2013-03-01

    Traditional techniques for measuring the mole fractions of greenhouse gases in the well-mixed atmosphere have required dry sample gas streams (dew point < -25 °C) to achieve the inter-laboratory compatibility goals set forth by the Global Atmosphere Watch programme of the World Meteorological Organisation (WMO/GAW) for carbon dioxide (±0.1 ppm in the Northern Hemisphere and ±0.05 ppm in the Southern Hemisphere) and methane (±2 ppb). Drying the sample gas to low levels of water vapour can be expensive, time-consuming, and/or problematic, especially at remote sites where access is difficult. Recent advances in optical measurement techniques, in particular cavity ring down spectroscopy, have led to the development of greenhouse gas analysers capable of simultaneous measurements of carbon dioxide, methane and water vapour. Unlike many older technologies, which can suffer from significant uncorrected interference from water vapour, these instruments permit accurate and precise greenhouse gas measurements that can meet the WMO/GAW inter-laboratory compatibility goals (WMO, 2011a) without drying the sample gas. In this paper, we present laboratory methodology for empirically deriving the water vapour correction factors, and we summarise a series of in-situ validation experiments comparing the measurements in humid gas streams to well-characterised dry-gas measurements. By using the manufacturer-supplied correction factors, the dry-mole fraction measurements have been demonstrated to be well within the GAW compatibility goals up to a water vapour concentration of at least 1%. By determining the correction factors for individual instruments once at the start of life, this water vapour concentration range can be extended to at least 2% over the life of the instrument, and if the correction factors are determined periodically over time, the evidence suggests that this range can be extended up to and even above 4% water vapour concentrations.

  7. Flow measurements using noise signals of axially displaced thermocouples

    Energy Technology Data Exchange (ETDEWEB)

    Kozma, R.; Hoogenboom, J.E. (Interuniversitair Reactor Inst., Delft (Netherlands))

    1990-01-01

    Determination of the flow rate of the coolant in the cooling channels of nuclear reactors is an important aspect of core monitoring. It is usually impossible to measure the flow by flowmeters in the individual channels due to the lack of space and safety reasons. An alternative method is based on the analysis of noise signals of the available in-core detectors. In such a noise method, a transit time which characterises the propagation of thermohydraulic fluctuations (density or temperature fluctuations) in the coolant is determined from the correlation between the noise signals of axially displaced detectors. In this paper, the results of flow measurements using axially displaced thermocouples in the channel wall will be presented. The experiments have been performed in a simulated MRT-type fuel assembly located in the research reactor HOR of the Interfaculty Reactor Institute, Delft. It was found that the velocities obtained via temperature noise correlation methods are significantly larger than the area-averaged velocity in the single-phase coolant flow. Model calculations show that the observed phenomenon can be explained by effects due to the radial velocity distribution in the channel. (author).

  8. Direct measurement of the Ds branching fraction to φπ

    International Nuclear Information System (INIS)

    Bai, J.Z.; Bardon, O.; Blum, I.; Breakstone, A.; Burnett, T.; Chen, G.P.; Chen, H.F.; Chen, J.; Chen, S.J.; Chen, S.M.; Chen, Y.; Chen, Y.B.; Chen, Y.Q.; Cheng, B.S.; Cowan, R.F.; Cui, H.C.; Cui, X.Z.; Ding, H.L.; Du, Z.Z.; Dunwoodie, W.; Fan, X.L.; Fang, J.; Fero, M.; Gao, C.S.; Gao, M.L.; Gao, S.Q.; Gao, W.X.; Gratton, P.; Gu, J.H.; Gu, S.D.; Gu, W.X.; Gu, Y.F.; Guo, Y.N.; Han, S.W.; Han, Y.; Harris, F.A.; Hatanaka, M.; He, J.; He, K.R.; He, M.; Hitlin, D.G.; Hu, G.Y.; Hu, H.B.; Hu, T.; Hu, X.Q.; Huang, D.Q.; Huang, Y.Z.; Izen, J.M.; Jia, Q.P.; Jiang, C.H.; Jin, Y.; Jones, L.; Kang, S.H.; Kelsey, M.H.; Kim, B.K.; Lai, Y.F.; Lan, H.B.; Lang, P.F.; Lankford, A.; Li, F.; Li, J.; Li, P.Q.; Li, Q.; Li, R.B.; Li, W.; Li, W.D.; Li, W.G.; Li, X.; Li, X.N.; Lin, S.Z.; Liu, H.M.; Liu, J.H.; Liu, Q.; Liu, R.G.; Liu, Y.; Liu, Z.A.; Lou, X.C.; Lowery, B.; Lu, J.G.; Ma, A.M.; Ma, E.C.; Ma, J.M.; Mao, H.S.; Mao, Z.P.; Malchow, R.; Mandelkern, M.; Meng, X.C.; Ni, H.L.; Nie, J.; Olsen, S.L.; Oyang, J.; Paluselli, D.; Pan, L.J.; Panetta, J.; Porter, F.; Prabhakar, E.; Qi, N.D.; Que, Y.K.; Quigley, J.; Rong, G.; Schernau, M.; Schmid, B.; Schultz, J.; Shao, Y.Y.; Shen, D.L.; Shen, H.; Shen, X.Y.; Sheng, H.Y.; Shi, H.Z.; Shi, X.R.; Smith, A.; Soderstrom, E.; Song, X.F.; Standifird, J.; Stoker, D.; Sun, F.; Sun, H.S.; Sun, S.J.; Synodinos, J.; Tan, Y.P.; Tang, S.Q.; Toki, W.; Tong, G.L.; Torrence, E.; Wang, F.; Wang, L.S.; Wang, L.Z.; Wang, M.; Wang, P.; Wang, P.L.; Wang, S.M.; Wang, T.J.; Wang, W.; Wang, Y.Y.; Whittaker, S.; Wilson, R.; Wisniewski, W.J.; Xi, D.M.; Xia, X.M.; Xie, P.P.; Xu, D.Z.; Xu, R.S.; Xu, Z.Q.; Xue, S.T.; Yamamoto, R.; Yan, J.; Yan, W.G.; Yang, C.M.; Yang, C.Y.; Yang, W.; Yao, H.B.; Ye, M.H.; Ye, S.Z.; Yu, C.S.; Yu, C.X.; Yu, Z.Q.; Yuan, C.Z.; Zhang, B.Y.; Zhang, C.C.; Zhang, D.H.; Zhang, H.L.; Zhang, J.; Zhang, J.W.; Zhang, L.S.; Zhang, S.Q.; Zhang, Y.; Zhang, Y.Y.; Zhao, D.X.; Zhao, J.W.; Zhao, M.; Zhao, P.D.; Zhao, W.R.; Zhao, W.X.; Zheng, J.H.

    1995-01-01

    The Beijing Spectrometer (BES) Collaboration has observed exclusive pair production of D s mesons at the Beijing Electron-Positron Collider (BEPC) at a center-of-mass energy of 4.03 GeV. The D s mesons are detected in the φπ + , bar K *0 K + , and bar K 0 K + decay modes; two fully reconstructed events yield the value (3.9 -1.9-1.1 +5.1+1.8 )% for the D s branching fraction to φπ. This is the first direct, model-independent measurement of this quantity

  9. Measurement of Branching Fractions for Exclusive B Decays to Charmonium Final States

    Energy Technology Data Exchange (ETDEWEB)

    Varnes, Erich

    2002-05-13

    We report branching fraction measurements for exclusive decays of charged and neutral B mesons into two-body final states containing a charmonium meson. We use a sample of 22.72 {+-} 0.36 million B{bar B} events collected between October 1999 and October 2000 with the BABAR detector at the PEP-II storage rings at the Stanford Linear Accelerator Center. The charmonium mesons considered here are J/{psi}, {psi}(2S), {chi}{sub c1}, and the light meson in the decay is either a K, K*, or {pi}{sup 0}.

  10. Measuring the Higgs branching fraction into two photons at future linear e+e- colliders

    International Nuclear Information System (INIS)

    Boos, E.; Schreiber, H.J.; Shanidze, R.

    2001-01-01

    We examine the prospects for a measurement of the branching fraction of the γγ decay mode of a Standard Model-like Higgs boson with a mass of 120 GeV/c 2 at the future TESLA linear e + e - collider, assuming an integrated luminosity of 1 ab -1 and centre-of-mass energies of 350 GeV and 500 GeV. A relative uncertainty on BF(H→γγ) of 16% can be achieved in unpolarised e + e - collisions at √(s) = 500 GeV, while for √(s) = 350 GeV the expected precision is slightly poorer. With appropriate initial state polarisations the uncertainty can be improved to 10%. If this measurement is combined with a measurement of the total Higgs width, a precision of 10% on the Higgs boson partial width for the γγ decay mode appears feasible. (orig.)

  11. Fractional Flow Reserve Measurement by Coronary Computed Tomography Angiography: A Review with Future Directions

    Directory of Open Access Journals (Sweden)

    Asim Rizvi

    2016-12-01

    Full Text Available Invasive fractional flow reserve (FFR measurement is currently the gold standard for coronary intervention. FFR measurement by coronary computed tomography angiography (FFRCT is a novel and promising imaging technology that permits noninvasive assessment of physiologically significant coronary lesions. FFRCT is capable of combining the anatomic information provided by coronary computed tomography angiography with computational fluid dynamics to compute FFR. To date, several studies have reported the diagnostic performance of FFRCT compared with invasive FFR measurement as the reference standard. Further studies are now being implemented to determine the clinical feasibility and economic implications of FFRCT techniques. This article provides an overview and discusses the available evidence as well as potential future directions of FFRCT.

  12. Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements

    Directory of Open Access Journals (Sweden)

    A. Fraser

    2013-06-01

    Full Text Available We use an ensemble Kalman filter (EnKF, together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH4 fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH4 from GOSAT (Greenhouse gases Observing SATellite and/or NOAA ESRL (Earth System Research Laboratory and CSIRO GASLAB (Global Atmospheric Sampling Laboratory CH4 surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510–516 Tg yr−1, which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr−1. We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr−1 occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45% than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO2 model output to investigate model error on quantifying proxy GOSAT XCH4 (involving model XCO2 and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our

  13. Validity of automated measurement of left ventricular ejection fraction and volume using the Philips EPIQ system.

    Science.gov (United States)

    Hovnanians, Ninel; Win, Theresa; Makkiya, Mohammed; Zheng, Qi; Taub, Cynthia

    2017-11-01

    To assess the efficiency and reproducibility of automated measurements of left ventricular (LV) volumes and LV ejection fraction (LVEF) in comparison to manually traced biplane Simpson's method. This is a single-center prospective study. Apical four- and two-chamber views were acquired in patients in sinus rhythm. Two operators independently measured LV volumes and LVEF using biplane Simpson's method. In addition, the image analysis software a2DQ on the Philips EPIQ system was applied to automatically assess the LV volumes and LVEF. Time spent on each analysis, using both methods, was documented. Concordance of echocardiographic measures was evaluated using intraclass correlation (ICC) and Bland-Altman analysis. Manual tracing and automated measurement of LV volumes and LVEF were performed in 184 patients with a mean age of 67.3 ± 17.3 years and BMI 28.0 ± 6.8 kg/m 2 . ICC and Bland-Altman analysis showed good agreements between manual and automated methods measuring LVEF, end-systolic, and end-diastolic volumes. The average analysis time was significantly less using the automated method than manual tracing (116 vs 217 seconds/patient, P Automated measurement using the novel image analysis software a2DQ on the Philips EPIQ system produced accurate, efficient, and reproducible assessment of LV volumes and LVEF compared with manual measurement. © 2017, Wiley Periodicals, Inc.

  14. An improved electrical sensor for simultaneous measurement of the void fraction and two phase flow velocity in the inclined pipe

    International Nuclear Information System (INIS)

    Won, Woo Yeon; Lee, Yeon Gun; Lee, Bo An; Koc, Min Seok; Kim, Sin

    2016-01-01

    The information for the flow pattern is also required to measure the void fraction. In order to solve this problems, Ko et al. proposed the void fraction measurement sensor according to the flow pattern using a three-electrode. The sensor system applied for a horizontal flow loop, and its measured performance for the void fraction was evaluated. In this study, a dual sensor was suggested to improve the measurement accuracy of the void fraction and the velocity. We applied the sensor to the inclined pipe simulating the PAFS heat exchanger. In order to verify the void fraction and velocity measurements, we used the wire-mesh sensor and the high-speed camera. In this study, an improved electrical conductance sensor for void fraction and velocity in inclined pipes has been designed. For minimizing between the sensor electrode interference, the numerical analysis has been performed. The loop experiments were conducted for several flow conditions and the experimental results for the void fractions and velocity measured by the proposed sensor were compared with those of a wiremesh sensor and high-speed camera.

  15. Discrepancies between measured changes of radiobiological hypoxic fraction and oxygen tension monitoring using two assay systems

    International Nuclear Information System (INIS)

    Sasai, K.; Brown, J.M.

    1994-01-01

    This study was conducted to assess the ability of computerized pO 2 histography to measure changes in tumor oxygenation produced by low oxygen breathing. Female syngeneic C3H/Km mice bearing SCC VII/St carcinomas were used in these experiments. Changes in tumor oxygenation produced by the mice breathing 10% oxygen were assessed with computerized pO2 histography, 3 H-misonidazole binding, and the paired survival curve assay of radiosensitivity. The hypoxic cell fraction of the tumors in mice breathing 10% oxygen was 3.1 times higher than that of tumors in mice breathing normal air determined by an in vivo-in vitro clonogenic assay. Binding of radiolabeled misonidazole to the tumors in mice breathing 10% oxygen was also significantly higher than that to tumors in mice breathing normal air (p 2 value for the tumor. The number of pO 2 readings lower than 5 mmHg in the tumor was not affected by the 10% oxygen breathing. These findings indicate that increases in radiobiological hypoxic fraction produced by lower blood oxygen levels may not correlate well with the results of polarographic measurements of tumor pO 2 levels. 29 refs., 4 figs., 1 tab

  16. Measurements of inclusive semileptonic branching fractions of b hadrons in $Z^{0}$ decays

    CERN Document Server

    Abbiendi, G.; Alexander, G.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Feld, L.; Fiedler, F.; Fierro, M.; Fleck, I.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lauber, J.; Lawson, I.; Layter, J.G.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Polok, J.; Przybycien, M.; Quadt, A.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    2000-01-01

    A measurement of inclusive semileptonic branching fractions of b hadrons produced in Z decays is presented. An enriched Z -> bbbar sample is obtained with a lifetime flavour-tagging technique. The leptonic events are then selected from this sample, and classified according to their origin, which is determined by comparing the distribution of several kinematic variables using artificial neural network techniques. Using 3.6 million multihadronic events collected with the OPAL detector at energies near the Z resonance, the values BR(b->lX) =(10.83 +- 0.10(stat.) +- 0.20(syst.) +0.20 -0.13(model)) % BR(b->c->lX) = (8.40 +- 0.16(stat.) +- 0.21(syst.) +0.33 -0.29 (model)) % are measured, where b denotes all weakly decaying b hadrons and l represents either e or mu. The second error includes all experimental systematic uncertainties whereas the last error is due to uncertainties in modelling of the lepton momentum spectrum in semileptonic decays and b quark fragmentation. The average fraction of the beam energy carr...

  17. Measurements of Bismuth (214Bi) in Indoor Air and Evaluation of Deposition Fraction

    International Nuclear Information System (INIS)

    Mohamed, A.; Ahmed, A.A.; Yuness, M.

    2010-01-01

    The activity size distribution of unattached as well as attached 214 Bi to aerosol particles was measured in indoor air of physics department at Minia University, Minia City, Egypt. The samples were collected using a wire screen diffusion battery technique and a low pressure Berner cascade impactor. The mean Activity Median Thermodynamic Diameter (AMTD) of unattached 214 Bi was determined to be 1.25 nm with a relative mean Geometric Standard Deviation (GSD) of 1.29. A mean unattached fraction (fun) of 0.08±0.05 was obtained. The average activity concentration of 214 Bi was found to be 4.9±0.42 Bq m -3 . Most of the attached activities of progeny were associated with aerosol particles of the accumulation mode. The GSD of the accumulation mode of 214 Bi was determined to be 3 with an Active Median Aerodynamic Diameter (AMAD) of 350 nm. Based on the obtained measured data values, deposition fraction of 214 Bi has been evaluated by using a stochastic deposition model. The bronchial deposition efficiencies of particles in the size range of attached 214 Bi were found to be lower than those of unattached progeny

  18. Measurement of Branching Fractions and CP-Violating Asymmetries in B -> rho+/-h-/+

    CERN Document Server

    Höcker, A

    2003-01-01

    We present measurements of branching fractions and CP-violating asymmetries in B sup 0 -> rho sup+- pi sup+- and B sup 0 -> rho sup - K sup + decays. The results are obtained from a data sample of 88.9 x 10 sup 6 UPSILON(4S) -> B(bar B) decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. From a time-dependent maximum likelihood fit we measure the charge-averaged branching fractions BETA(B sup 0 -> rho sup+- pi sup+-) = (22.6 +- 1.8 (stat) +- 2.2 (syst)) x 10 sup - sup 6 and BETA(B sup 0 -> rho sup - K sup +) = (7.3 sub - sub 1 sub . sub 2 sup + sup 1 sup . sup 3 +- 1.3) x 10 sup - sup 6; and the CP-violating charge asymmetries A sub C sub P suprho suppi = -0.18 +- 0.08 +- 0.03 and A sub C sub P suprho sup K = 0.28 +- 0.17 +- 0.08; the direct CP violation parameter C subrho subpi = 0.36 +- 0.18 +- 0.04 and the mixing-induced CP violation parameter S subrho subpi = 0.19 +- 0.24 +- 0.03; and the dilution parameters DELTA C subrho subpi = 0.28 sub - sub 0 sub . sub 1 sub 9 ...

  19. Measurements of absolute branching fractions for D mesons decays into two pseudoscalar mesons

    Science.gov (United States)

    Ablikim, M.; Achasov, M. N.; Ahmed, S.; Albrecht, M.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Bai, Y.; Bakina, O.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Berger, N.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chai, J.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, P. L.; Chen, S. J.; Chen, X. R.; Chen, Y. B.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; de Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Dou, Z. L.; Du, S. X.; Duan, P. F.; Fang, J.; Fang, S. S.; Fang, Y.; Farinelli, R.; Fava, L.; Fegan, S.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, Y.; Gao, Y. G.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, L.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guo, A. Q.; Guo, R. P.; Guo, Y. P.; Haddadi, Z.; Han, S.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, X. Q.; Heinsius, F. H.; Held, T.; Heng, Y. K.; Holtmann, T.; Hou, Z. L.; Hu, H. M.; Hu, T.; Hu, Y.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang, X. Z.; Huang, Z. L.; Hussain, T.; Andersson, W. Ikegami; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jin, Y.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Khan, T.; Khoukaz, A.; Kiese, P.; Kliemt, R.; Koch, L.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuemmel, M.; Kuessner, M.; Kuhlmann, M.; Kupsc, A.; Kühn, W.; Lange, J. S.; Lara, M.; Larin, P.; Lavezzi, L.; Leithoff, H.; Leng, C.; Li, C.; Li, Cheng; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, H. J.; Li, J. C.; Li, Jin; Li, K. J.; Li, Kang; Li, Ke; Li, Lei; Li, P. L.; Li, P. R.; Li, Q. Y.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. M.; Liu, Huanhuan; Liu, Huihui; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, Ke; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Long, Y. F.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, M. M.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Ma, Y. M.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Meng, Z. X.; Messchendorp, J. G.; Mezzadri, G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales, C. Morales; Muchnoi, N. Yu.; Muramatsu, H.; Mustafa, A.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Papenbrock, M.; Patteri, P.; Pelizaeus, M.; Pellegrino, J.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Pitka, A.; Poling, R.; Prasad, V.; Qi, H. R.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Richter, M.; Ripka, M.; Rolo, M.; Rong, G.; Rosner, Ch.; Sarantsev, A.; Savrié, M.; Schnier, C.; Schoenning, K.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, J. J.; Song, W. M.; Song, X. Y.; Sosio, S.; Sowa, C.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, L.; Sun, S. S.; Sun, X. H.; Sun, Y. J.; Sun, Y. K.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, G. Y.; Tang, X.; Tapan, I.; Tiemens, M.; Tsednee, B.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, Dan; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, Meng; Wang, P.; Wang, P. L.; Wang, W. P.; Wang, X. F.; Wang, Y.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wang, Zongyuan; Weber, T.; Wei, D. H.; Wei, J. H.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, L. J.; Wu, Z.; Xia, L.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Y. J.; Xiao, Z. J.; Xie, Y. G.; Xie, Y. H.; Xiong, X. A.; Xiu, Q. L.; Xu, G. F.; Xu, J. J.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y. H.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; You, Z. Y.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zeng, Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. Q.; Zhang, X. Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yang; Zhang, Yao; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, J.; Zhu, J.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Besiii Collaboration

    2018-04-01

    Using a data sample of e+e- collision data with an integrated luminosity of 2.93 fb-1 taken at the center-of-mass energy √{s }=3.773 GeV with the BESIII detector operating at the BEPCII storage rings, we measure the absolute branching fractions of the two-body hadronic decays D+→π+π0 , K+π0, π+η , K+η , π+η', K+η', KS0π+, KS0K+, and D0→π+π-, K+K-, K∓π±, KS0π0, KS0η , KS0η'. Our results are consistent with previous measurements within uncertainties. Among them, the branching fractions for D+→π+π0, K+π0, π+η , π+η', KS0π+, KS0K+ and D0→KS0π0, KS0η , KS0η' are determined with improved precision compared to the world average values.

  20. Measurement of left ventricular ejection fraction in pediatric patients using the nuclear stethoscope

    International Nuclear Information System (INIS)

    Spicer, R.L.; Rabinovitch, M.; Rosenthal, A.; Pitt, B.

    1984-01-01

    Left ventricular (LV) ejection fraction (EF) was measured in 25 patients, aged 2 weeks to 20 years (mean 8.6 years), using a portable nonimaging scintillation stethoscope. Technically satisfactory studies were obtained in 23 patients. LVEF was validated by cineangiography in 19 patients and by standard gated blood pool scintigraphy in 4. EF measured by the nuclear stethoscope correlated well with values obtained by cineangiography or scintigraphy over a wide range of EF values (18 to 79%). In children younger than 5 years (n . 11), the correlation was less satisfactory than in those older than 5 years. Although modifications in the instrument and further clinical trials with the stethoscope are needed before the device becomes clinically useful to pediatric cardiologists, our data indicate that the nuclear stethoscope can provide reliable assessment of LVEF in pediatric patients

  1. Measurement of the branching fraction for ψ(3770→γχc0

    Directory of Open Access Journals (Sweden)

    M. Ablikim

    2016-02-01

    Full Text Available By analyzing a data set of 2.92 fb−1 of e+e− collision data taken at s=3.773 GeV and 106.41×106 ψ(3686 decays taken at s=3.686 GeV with the BESIII detector at the BEPCII collider, we measure the branching fraction and the partial decay width for ψ(3770→γχc0 to be B(ψ(3770→γχc0=(6.88±0.28±0.67×10−3 and Γ[ψ(3770→γχc0]=(187±8±19 keV, respectively. These are the most precise measurements to date.

  2. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography.

    Science.gov (United States)

    Saito, Y; Mishima, K; Matsubayashi, M

    2004-10-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile.

  3. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Matsubayashi, M.

    2004-01-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile

  4. Signal Morphing techniques and possible application to Higgs properties measurements

    CERN Document Server

    Ecker, Katharina Maria; The ATLAS collaboration

    2016-01-01

    One way of describing deviations from the Standard Model is via Effective Field Theories or pseudo-observables, where higher order operators modify the couplings and the kinematics of the interaction of the Standard Model particles. Generating Monte Carlo events for every testable set of parameters for such a theory would require computing resources beyond the ones currently available in ATLAS. Up to now, Matrix-Element based reweighting techniques have been often used to model Beyond Standard Model process starting from Standard Model simulated events. In this talk, we review the advantages and the limitations of morphing techniques to construct continuous probability model for signal parameters, interpolating between a finite number of distributions obtained from the simulation chain. The technique will be exemplified by searching for deviations from the Standard Model predictions in Higgs properties measurements.

  5. The unbalanced signal measuring of automotive brake drum

    Science.gov (United States)

    Wang, Xiao-Dong; Ye, Sheng-Hua; Zhang, Bang-Cheng

    2005-04-01

    For the purpose of the research and development of automatic balancing system by mass removing, the dissertation deals with the measuring method of the unbalance signal, the design the automatic balance equipment and the software. This paper emphases the testing system of the balancer of automotive brake drum. The paper designs the band-pass filter product with favorable automatic follow of electronic product, and with favorable automatic follow capability, filtration effect and stability. The system of automatic balancing system by mass removing based on virtual instrument is designed in this paper. A lab system has been constructed. The results of contrast experiments indicate the notable effect of 1-plane automatic balance and the high precision of dynamic balance, and demonstrate the application value of the system.

  6. Measurement of renal function by calculation of fractional uptake of technetium-99m dimercaptosuccinic acid

    International Nuclear Information System (INIS)

    Beatovic, S.Lj.; Jaksic, E. D.; Hari, R. S.

    2004-01-01

    The purpose of this study was to set up normal values of the fractional uptake (FU) of technetium-99m dimercaptosuccinic acid in adults and in the pediatric population, as well as to evaluate the validity of this parameter at different levels of renal function. A total of 86 subjects was divided into seven groups. In group A there were 23 potential kidney donors and in group B, 18 children in remission after a first urinary tract infection. Another three groups consisted of patients with diabetes i.e. group C, seven patients with normal values of albuminuria, group D, 16 patients with microalbuminuria and group E, five patients with macroalbuminuria. In group F, there were ten patients with a well-functioning transplanted kidney and in group G, seven patients with suspected acute rejection. The procedure began with the quantification of the doses of 99m Tc-DMSA to be injected and the measurement of the empty syringe lying on the gamma camera collimator. Thereafter, four planar views of the kidneys were acquired three hours after the injection. The counts from the posterior and anterior views were subtracted for background and corrected for radioactive decay time and patient thickness. The FU was calculated by the geometric mean of counts per second from the posterior and anterior view. It was expressed as a fraction of the injected dose. The mean values of FU in healthy adults were 0.227 ± 0.077 for one kidney and 0.454 ± 0.146 for both kidneys. The mean values of FU for the left and right kidney were 0.225± 0.071 and 0.229 ± 0.079, respectively. In children, the mean values were 0.220 ± 0.092 for one kidney and 0.432 ± 0.094 for both kidneys. The highest values of FU of 0.322 ± 0.078 (0.644 ± 0.138 for both kidneys) were measured in group C. In group D, FU was 0.185 ± 0.065 (0.361 ± 0.125 for both kidneys) and in group E 0.082 ± 0.040 (0.163 ± 0.080 total). In patients with a transplanted kidney, fractional uptake was 0.162 ± 0.039 in group F and 0

  7. Novel ultra-wideband photonic signal generation and transmission featuring digital signal processing bit error rate measurements

    DEFF Research Database (Denmark)

    Gibbon, Timothy Braidwood; Yu, Xianbin; Tafur Monroy, Idelfonso

    2009-01-01

    We propose the novel generation of photonic ultra-wideband signals using an uncooled DFB laser. For the first time we experimentally demonstrate bit-for-bit DSP BER measurements for transmission of a 781.25 Mbit/s photonic UWB signal.......We propose the novel generation of photonic ultra-wideband signals using an uncooled DFB laser. For the first time we experimentally demonstrate bit-for-bit DSP BER measurements for transmission of a 781.25 Mbit/s photonic UWB signal....

  8. Mathematical basis for the measurement of absolute and fractional cardiac output with diffusible tracers by compartmental analysis methods

    International Nuclear Information System (INIS)

    Charkes, N.D.

    1984-01-01

    Using compartmental analysis methods, a mathematical basis is given for the measurement of absolute and fractional cardiac output with diffusible tracers. Cardiac output is shown to be the product of the blood volume and the sum of the rate constants of tracer egress from blood, modified by a factor reflecting transcapillary diffusibility, the transfer fraction. The return of tracer to the blood and distant (intracellular) events are shown to play no role in the solution. Fractional cardiac output is the ratio of the rate constant of tracer egress from blood to an organ, divided by the sum of the egress constants from blood. Predominantly extracellular ions such as sodium or bromide are best suited for this technique, although theoretically any diffusible tracer whose compartmental model can be solved may be used. It is shown that fractional cardiac output is independent of the transfer fraction, and therefore can be measured accurately by tracers which are not freely diffusible

  9. Snow measurement Using P-Band Signals of Opportunity Reflectometry

    Science.gov (United States)

    Shah, R.; Yueh, S. H.; Xu, X.; Elder, K.

    2017-12-01

    Snow water storage in land is a critical parameter of the water cycle. In this study, we develop methods for estimating reflectance from bistatic scattering of digital communication Signals of Opportunity (SoOp) across the available microwave spectrum from VHF to Ka band and show results from proof-of-concept experiments at the Fraser Experimental Forest, Colorado to acquire measurements to relate the SoOp phase and reflectivity to a snow-covered soil surface. The forward modeling of this scenario will be presented and multiple sensitivities were conducted. Available SoOp receiver data along with a network of in situ sensor measurements collected since January 2016 will be used to validate theoretical modeling results. In the winter season of 2016 and 2017, we conducted a field experiment using VHF/UHF-band illuminating sources to detect SWE and surface reflectivity. The amplitude of the reflectivity showed sensitivity to the wetness of snow pack and ground reflectivity while the phase showed sensitivity to SWE. This use of this concept can be helpful to measure the snow water storage in land globally.

  10. Correntropy measures to detect daytime sleepiness from EEG signals

    International Nuclear Information System (INIS)

    Melia, Umberto; Vallverdú, Montserrat; Caminal, Pere; Guaita, Marc; Montserrat, Josep M; Vilaseca, Isabel; Salamero, Manel; Gaig, Carles; Santamaria, Joan

    2014-01-01

    Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders and has a great impact on patients’ lives. While many studies have been carried out in order to assess daytime sleepiness, automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on correntropy function analysis of EEG signals was proposed in order to detect patients suffering from EDS. Multichannel EEG signals were recorded during five Maintenance of Wakefulness Tests (MWT) and Multiple Sleep Latency Tests (MSLT) alternated throughout the day for patients suffering from sleep disordered breathing (SDB). A group of 20 patients with EDS was compared with a group of 20 patients without daytime sleepiness (WDS), by analyzing 60 s EEG windows in a waking state. Measures obtained from the cross-correntropy function (CCORR) and auto-correntropy function (ACORR) were calculated in the EEG frequency bands: δ, 0.1–4 Hz; θ, 4–8 Hz; α, 8–12 Hz; β, 12–30 Hz; total band TB, 0.1–45 Hz. These functions permitted the quantification of complex signal properties and the non-linear couplings between different areas of the scalp. Statistical differences between EDS and WDS groups were mainly found in the β band during MSLT events (p-value < 0.0001). The WDS group presented more complexity in the occipital zone than the EDS group, while a stronger nonlinear coupling between the occipital and frontal regions was detected in EDS patients than in the WDS group. At best, ACORR and CCORR measures yielded sensitivity and specificity above 80% and the area under ROC curve (AUC) was above 0.85 in classifying EDS and WDS patients. These performances represent an improvement with respect to classical EEG indices applied in the same database (sensitivity and specificity were never above 80% and AUC was under 0.75). (paper)

  11. Quantitative MRI for hepatic fat fraction and T2* measurement in pediatric patients with non-alcoholic fatty liver disease.

    Science.gov (United States)

    Deng, Jie; Fishbein, Mark H; Rigsby, Cynthia K; Zhang, Gang; Schoeneman, Samantha E; Donaldson, James S

    2014-11-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children. The gold standard for diagnosis is liver biopsy. MRI is a non-invasive imaging method to provide quantitative measurement of hepatic fat content. The methodology is particularly appealing for the pediatric population because of its rapidity and radiation-free imaging techniques. To develop a multi-point Dixon MRI method with multi-interference models (multi-fat-peak modeling and bi-exponential T2* correction) for accurate hepatic fat fraction (FF) and T2* measurements in pediatric patients with NAFLD. A phantom study was first performed to validate the accuracy of the MRI fat fraction measurement by comparing it with the chemical fat composition of the ex-vivo pork liver-fat homogenate. The most accurate model determined from the phantom study was used for fat fraction and T2* measurements in 52 children and young adults referred from the pediatric hepatology clinic with suspected or identified NAFLD. Separate T2* values of water (T2*W) and fat (T2*F) components derived from the bi-exponential fitting were evaluated and plotted as a function of fat fraction. In ten patients undergoing liver biopsy, we compared histological analysis of liver fat fraction with MRI fat fraction. In the phantom study the 6-point Dixon with 5-fat-peak, bi-exponential T2* modeling demonstrated the best precision and accuracy in fat fraction measurements compared with other methods. This model was further calibrated with chemical fat fraction and applied in patients, where similar patterns were observed as in the phantom study that conventional 2-point and 3-point Dixon methods underestimated fat fraction compared to the calibrated 6-point 5-fat-peak bi-exponential model (P fat fraction, T2*W (27.9 ± 3.5 ms) decreased, whereas T2*F (20.3 ± 5.5 ms) increased; and T2*W and T2*F became increasingly more similar when fat fraction was higher than 15-20%. Histological fat

  12. Quantitative MRI for hepatic fat fraction and T2* measurement in pediatric patients with non-alcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jie; Rigsby, Cynthia K.; Donaldson, James S. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States); Northwestern University, Department of Radiology, Feinberg School of Medicine, Chicago, IL (United States); Fishbein, Mark H. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Division of Gastroenterology, Hepatology, and Nutrition, Chicago, IL (United States); Zhang, Gang [Ann and Robert H. Lurie Children' s Hospital of Chicago, Biostatistics Research Core, Chicago, IL (United States); Schoeneman, Samantha E. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging, Chicago, IL (United States)

    2014-11-15

    Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children. The gold standard for diagnosis is liver biopsy. MRI is a non-invasive imaging method to provide quantitative measurement of hepatic fat content. The methodology is particularly appealing for the pediatric population because of its rapidity and radiation-free imaging techniques. To develop a multi-point Dixon MRI method with multi-interference models (multi-fat-peak modeling and bi-exponential T2* correction) for accurate hepatic fat fraction (FF) and T2* measurements in pediatric patients with NAFLD. A phantom study was first performed to validate the accuracy of the MRI fat fraction measurement by comparing it with the chemical fat composition of the ex-vivo pork liver-fat homogenate. The most accurate model determined from the phantom study was used for fat fraction and T2* measurements in 52 children and young adults referred from the pediatric hepatology clinic with suspected or identified NAFLD. Separate T2* values of water (T2*{sub W}) and fat (T2*{sub F}) components derived from the bi-exponential fitting were evaluated and plotted as a function of fat fraction. In ten patients undergoing liver biopsy, we compared histological analysis of liver fat fraction with MRI fat fraction. In the phantom study the 6-point Dixon with 5-fat-peak, bi-exponential T2* modeling demonstrated the best precision and accuracy in fat fraction measurements compared with other methods. This model was further calibrated with chemical fat fraction and applied in patients, where similar patterns were observed as in the phantom study that conventional 2-point and 3-point Dixon methods underestimated fat fraction compared to the calibrated 6-point 5-fat-peak bi-exponential model (P < 0.0001). With increasing fat fraction, T2*{sub W} (27.9 ± 3.5 ms) decreased, whereas T2*{sub F} (20.3 ± 5.5 ms) increased; and T2*{sub W} and T2*{sub F} became increasingly more similar when fat

  13. Measurement of the ejection fraction of the left ventricle with the isotope stethoscope

    Energy Technology Data Exchange (ETDEWEB)

    Marving, J.; Hoeilund-Carlsen, P.F.; Jensen, G. (Koebenhavns Amts Sygehus, Glostrup (Denmark))

    1982-01-01

    Non-invasive measurements of left ventricular ejection fraction was performed in 21 patients by two observers with the Nuclear Stethoscope, a new, mobile, non-imaging single probe equipment. sup 99mTc was used for erythrocyte-labelling. Measurements were carried out in two different ways: beat-to-beat mode (i.e. for individual beats or a few beats at a time) and by ventricular function mode (i.e. for a composite beat, registered over a preselected period of time). There was good correlation between the two Nuclear Stethoscope modes (r=0.97) and between these and a simultaneous measurement made by gammacamera (r=0.90 and r=0.88). Despite uncertainties in the determination of correct background-level and centering over the left ventricle, there was no difference between the accuracy of the results of the two observers, compared with gammacamera measurements. The Nuclear Stethoscope is considerably cheaper than a gammacamera with computer-system, it is simple to operate, and can easily be used at the bedside, even in severely ill patients. A special feature is its capability of measuring sudden alterations in heart contractility on a beat-to-beat basis. Clinically it can be employed for both diagnostic purposes and for the monitoring of spontaneous courses and the effect of therapeutic interventions.

  14. Measurement of the ejection fraction of the left ventricle with the isotope stethoscope

    International Nuclear Information System (INIS)

    Marving, J.; Hoeilund-Carlsen, P.F.; Jensen, G.

    1982-01-01

    Non-invasive measurements of left ventricular ejection fraction was performed in 21 patients by two observers with the Nuclear Stethoscope, a new, mobile, non-imaging single probe equipment. sup 99mTc was used for erythrocyte-labelling. Measurements were carried out in two different ways: beat-to-beat mode (i.e. for individual beats or a few beats at a time) and by ventricular function mode (i.e. for a composite beat, registered over a preselected period of time). There was good correlation between the two Nuclear Stethoscope modes (r=0.97) and between these and a simultaneous measurement made by gammacamera (r=0.90 and r=0.88). Despite uncertainties in the determination of correct background-level and centering over the left ventricle, there was no difference between the accuracy of the results of the two observers, compared with gammacamera measurements. The Nuclear Stethoscope is considerably cheaper than a gammacamera with computer-system, it is simple to operate, and can easily be used at the bedside, even in severely ill patients. A special feature is its capability of measuring sudden alterations in heart contractility on a beat-to-beat basis. Clinically it can be employed for both diagnostic purposes and for the monitoring of spontaneous courses and the effect of therapeutic interventions. (authors)

  15. Measurement of the tritium concentration in the fractionated distillate from environmental water samples.

    Science.gov (United States)

    Atkinson, Robert; Eddy, Teresa; Kuhne, Wendy; Jannik, Tim; Brandl, Alexander

    2014-09-01

    Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The current study investigates the relative change in vapor pressure isotope effect in the course of the distillation process, distinguishing it from and extending previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.04 ± 0.036, 1.05 ± 0.026, and 1.07 ± 0.038, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples where the first 5 mL are discarded, the tritium concentration could be underestimated by 4-7%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Measurement of inter and intra fraction organ motion in radiotherapy using cone beam CT projection images

    International Nuclear Information System (INIS)

    Marchant, T E; Amer, A M; Moore, C J

    2008-01-01

    A method is presented for extraction of intra and inter fraction motion of seeds/markers within the patient from cone beam CT (CBCT) projection images. The position of the marker is determined on each projection image and fitted to a function describing the projection of a fixed point onto the imaging panel at different gantry angles. The fitted parameters provide the mean marker position with respect to the isocentre. Differences between the theoretical function and the actual projected marker positions are used to estimate the range of intra fraction motion and the principal motion axis in the transverse plane. The method was validated using CBCT projection images of a static marker at known locations and of a marker moving with known amplitude. The mean difference between actual and measured motion range was less than 1 mm in all directions, although errors of up to 5 mm were observed when large amplitude motion was present in an orthogonal direction. In these cases it was possible to calculate the range of motion magnitudes consistent with the observed marker trajectory. The method was shown to be feasible using clinical CBCT projections of a pancreas cancer patient

  17. Application of gamma densitometer for measurement of void fraction in liquid hydrogen moderator of HANARO cold neutron source

    International Nuclear Information System (INIS)

    Kim, Myong-Seop; Choi, Jungwoon; Sun, Gwang-Min; Lee, Kye-Hong

    2009-01-01

    The void fraction in the liquid hydrogen used for the moderator of the HANARO cold neutron source (CNS) was measured by using a gamma densitometer technique. A mock-up of the HANARO CNS facility with an electric heating system as the heat source instead of radiations was constructed. The photon transmissions through the hydrogen moderator were simulated to search for an optimum experimental condition. From the simulation, it was confirmed that Am-241 was suitable for the measurement of the void fraction in the liquid hydrogen medium. A gamma densitometer using the Am-241 gamma-ray source was designed and installed at the mock-up of the CNS. The attenuation of 59.5 keV gamma-rays from the Am-241 through the hydrogen medium was measured by using an HPGe detector. The void fraction was determined using the amount of the gamma-ray attenuation. The void fractions in the hydrogen moderator were measured for stable thermo-siphon loops with several electric heat loads applied to the moderator cell of the CNS mock-up. The longitudinal distribution of the void fraction inside the moderator cell was also determined. The void fraction measured at a heat load of 720 W had values of 8-41% depending on the height from the bottom of the moderator cell. The overall void fraction was obtained by volume-weighted averaging of its longitudinal distribution. The void fraction at the nuclear heating power expected at the normal operation condition of the HANARO CNS facility was determined to be about 20%. The large uncertainty was expected in the void fraction determination by a gamma densitometer for the liquid hydrogen medium with the void fraction less than 10%. When the void fraction of the liquid hydrogen was near 20%, the uncertainty in the void fraction determination by using a gamma densitometer became relatively small, and it was regarded as an acceptable level. The measurements for the void fraction will be very useful for the design and operation of the HANARO CNS.

  18. Quantitative assessment of myocardial blood flow by measurement of fractional myocardial uptake of 201Tl

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Ishii, Yasushi; Torizuka, Kanji; Kadota, Kazunori; Kambara, Hirofumi

    1980-01-01

    Fractional Myocardial uptake of 201 Tl was measured for the quantitative assessment of myocardial blood flow in coronary artery disease (CAD). 10 normals and 28 CAD, 7 of which have less than 50% stenosis (CAD I) and 21 of which have more than 50% stenosis (CAD II) in the proximal portion of coronary arteries, were studied at rest and with submaximal exercise loading by bicycle ergometer. After intravenous injection of 201 Tl, its rapid transport process was recorded during the initial 5 minutes by a scintillation camera and a minicomputer. Total injected dosage (T) was obtained from the counts of the entire chest region during the initial passage of the tracer through the heart and lung. Myocardial uptake (M) was counted with the same geometry from the subsequent accumulation within the myocardial region with subtraction of the background activities in the upper mediastinal region (B). The fractional myocardial uptake of 201 Tl ((M-B)/T) is assumed to be proportional to the fractional myocardial blood flow to cardiac output (MBF/CO) according to the indicator fractionation principle. The average value of MBF/CO at rest in CAD (4.11 +- 1.12%) was significantly greater than in normals (3.36 +- 0.49%), which may be caused by an increased left ventricular mass in CAD. Change rate of MBF/CO on the exercise loading was significantly less in CAD I (1.36 +- 0.14) and in CAD II (1.11 +- 0.21) than in normals (1.75 +- 0.11). MBF/CO increased proportionally to the increment of the double product of heart rate and systolic blood pressure by exercise loading in normals, whereas it didn't in CAD. The sensitivity of this method was superior to the stress electrocardiogram and the stress myocardial perfusion imaging, not only in CAD II but also in CAD I. This result indicated that this type of global assessment of the myocardial reserve capacity is valuable in addition to the simple stress myocardial perfusion imaging. (author)

  19. Measurement of relative branching fractions of B decays to ψ(2S) and J/ψ mesons.

    Science.gov (United States)

    Aaij, R; Abellan Beteta, C; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li, Y; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Miglioranzi, S; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; Dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    The relative rates of B -meson decays into J / ψ and ψ (2 S ) mesons are measured for the three decay modes in pp collisions recorded with the LHCb detector. The ratios of branching fractions ([Formula: see text]) are measured to be [Formula: see text] where the third uncertainty is from the ratio of the ψ (2 S ) and J / ψ branching fractions to μ + μ - .

  20. Extracellular Electrophysiological Measurements of Cooperative Signals in Astrocytes Populations

    Science.gov (United States)

    Mestre, Ana L. G.; Inácio, Pedro M. C.; Elamine, Youssef; Asgarifar, Sanaz; Lourenço, Ana S.; Cristiano, Maria L. S.; Aguiar, Paulo; Medeiros, Maria C. R.; Araújo, Inês M.; Ventura, João; Gomes, Henrique L.

    2017-01-01

    Astrocytes are neuroglial cells that exhibit functional electrical properties sensitive to neuronal activity and capable of modulating neurotransmission. Thus, electrophysiological recordings of astroglial activity are very attractive to study the dynamics of glial signaling. This contribution reports on the use of ultra-sensitive planar electrodes combined with low noise and low frequency amplifiers that enable the detection of extracellular signals produced by primary cultures of astrocytes isolated from mouse cerebral cortex. Recorded activity is characterized by spontaneous bursts comprised of discrete signals with pronounced changes on the signal rate and amplitude. Weak and sporadic signals become synchronized and evolve with time to higher amplitude signals with a quasi-periodic behavior, revealing a cooperative signaling process. The methodology presented herewith enables the study of ionic fluctuations of population of cells, complementing the single cells observation by calcium imaging as well as by patch-clamp techniques. PMID:29109679

  1. Delayed neutron fraction and prompt decay constant measurement in the MINERVE reactor using the PSI instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Gregory [Paul Scherrer Institute, Villigen, 5232, (Switzerland)

    2015-07-01

    The critical decay constant (B/A), delayed neutron fraction (B) and generation time (A) of the Minerve reactor were measured by the Paul Scherrer Institut (PSI) and the Commissariat a l'Energie Atomique (CEA) in September 2014 using the Feynman-alpha and Power Spectral Density neutron noise measurement techniques. Three slightly subcritical configuration were measured using two 1-g {sup 235}U fission chambers. This paper reports on the results obtained by PSI in the near critical configuration (-2g). The most reliable and precise results were obtained with the Cross-Power Spectral Density technique: B = 708.4±9.2 pcm, B/A = 79.0±0.6 s{sup -1} and A 89.7±1.4 micros. Predictions of the same kinetic parameters were obtained with MCNP5-v1.6 and the JEFF-3.1 and ENDF/B-VII.1 nuclear data libraries. On average the predictions for B and B/A overestimate the experimental results by 5% and 11%, respectively. The discrepancy is suspected to come from either a corruption of the data or from the inadequacy of the point kinetic equations to interpret the measurements in the Minerve driven system. (authors)

  2. Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, Ole; Ludewigt, Bernhard [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2011-11-15

    A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm{sup 2} have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material.

  3. Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source.

    Science.gov (United States)

    Waldmann, Ole; Ludewigt, Bernhard

    2011-11-01

    A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm(2) have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material. © 2011 American Institute of Physics

  4. Determining noncondensible gas fractions at elevated temperatures and pressures using wet and dry bulb temperature measurements

    International Nuclear Information System (INIS)

    Griffith, P.; Bowman, J.

    1987-01-01

    The work reported in this note was undertaken to provide a method of determining the noncondensible gas fractions in a steam-gas mixture such as might be found in large reactor safety experiment like LOFT. In essence, the method used involves measuring the wet and dry bulb temperatures and using an algorithm, in place of the psychometric chart, to determine the partial pressure of the noncondensible gas in the mixture. In accomplishing this, the authors did the following: (1) extended the use of wet and dry-bulb temperature readings to determine mixture composition up to a temperature of 589 K and a pressure of 4.13 x 10 6 Pa. (2) developed an algorithm to reduce the data (3) found which materials would survive those temperatures

  5. Void fraction measurement in two-phase flow with X-rays

    International Nuclear Information System (INIS)

    Hufschmidt, W.; Clercq, E. de.

    1984-01-01

    The exact knowledge of the void fraction in two-phase flow systems with water and vapour is of great importance for water-reactors. A mesurement method not disturbing the fluid flow is the absorption technique X-rays. This method has been tested for the present case of small absorption lengths (about 16mm). In collaboration with the 'Lehrstuhl fuer elektronische Schaltungen' of the Ruhruniversitaet, Bochum (FRG), a rapid measurement device has been developed using ionization chambers. At present steady-state fluid in vertical tubes with homogeneous distribution of the two-phases water-vapour are tested at pressures in the range from 70 to 150 bars and rather good agreements with calculated values are found

  6. Non-condensible gas fraction predictions using wet and dry bulb temperature measurements

    International Nuclear Information System (INIS)

    Bowman, J.; Griffith, P.

    1983-03-01

    A technique is presented whereby non-condensible gas mass fractions in a closed system can be determined using wet bulb and dry bulb temperature and system pressure measurements. This technique would have application in situations where sampling techniques could not be used. Using an energy balance about the wet bulb wick, and expression is obtained which relates the vapor concentration difference between the wet bulb wick and the free stream to the wet and dry bulb temperature difference and a heat to mass transfer coefficient ratio. This coefficient ratio was examined for forced and natural convection flows. This analysis was verified with forced and natural convection tests over the range of pressure and temperature from 50 to 557 psig and 415 to 576 0 F. All the data could best be fit by the natural convection analysis. This is useful when no information about the flow field is known

  7. Measurement of the Effective Delayed Neutron Fraction in Three Different FR0-cores

    Energy Technology Data Exchange (ETDEWEB)

    Moberg, L; Kockum, J

    1972-06-15

    The effective delayed neutron fraction, beta{sub eff}, has been measured in the three cores 3, 5 and 8 of the fast zero-power reactor FR0. The variance-to-mean method, in which the statistical fluctuations of the neutron density in the reactor is studied, was used. A 3He-gas scintillator was placed in the reflector and used as a neutron detector. It was made more sensitive to fast neutrons by surrounding it with polythene. Its efficiency, expressed as the number of counts per fission in the reactor, was determined using fission chambers with known efficiency placed in the core. The space distribution of the fission rate in the core was determined by foil activation technique. The experimental results were compared with theoretical beta{sub eff}-values calculated with perturbation theory. The difference was about 3 % which is of the same order as the accuracy in the experimental values

  8. Measurements of the branching fractions of exclusive charmless B meson decays with eta(') or omega mesons.

    Science.gov (United States)

    Aubert, B; Boutigny, D; Gaillard, J M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Palano, A; Chen, G P; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Reinertsen, P L; Stugu, B; Abbott, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Clark, A R; Gill, M S; Gritsan, A; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kluth, S; Kolomensky, Y G; Kral, J F; LeClerc, C; Levi, M E; Liu, T; Lynch, G; Meyer, A B; Momayezi, M; Oddone, P J; Perazzo, A; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Bright-Thomas, P G; Harrison, T J; Hawkes, C M; Knowles, D J; O'Neale, S W; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Krug, J; Kunze, M; Lewandowski, B; Peters, K; Schmuecker, H; Steinke, M; Andress, J C; Barlow, N R; Bhimji, W; Chevalier, N; Clark, P J; Cottingham, W N; De Groot, N; Dyce, N; Foster, B; McFall, J D; Wallom, D; Wilson, F F; Abe, K; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Jolly, S; McKemey, A K; Tinslay, J; Blinov, V E; Bukin, A D; Bukin, D A; Buzykaev, A R; Golubev, V B; Ivanchenko, V N; Korol, A A; Kravchenko, E A; Onuchin, A P; Salnikov, A A; Serednyakov, S I; Skovpen, Y I; Telnov, V I; Yushkov, A N; Best, D; Lankford, A J; Mandelkern, M; McMahon, S; Stoker, D P; Ahsan, A; Arisaka, K; Buchanan, C; Chun, S; Branson, J G; MacFarlane, D B; Prell, S; Rahatlou, S; Raven, G; Sharma, V; Campagnari, C; Dahmes, B; Hart, P A; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Richman, J D; Verkerke, W; Witherell, M; Yellin, S; Beringer, J; Dorfan, D E; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Heusch, C A; Johnson, R P; Kroeger, W; Lockman, W S; Pulliam, T; Sadrozinski, H; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Metzler, S; Oyang, J; Porter, F C; Ryd, A; Samuel, A; Weaver, M; Yang, S; Zhu, R Y; Devmal, S; Geld, T L; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Barillari, T; Bloom, P; Dima, M O; Fahey, S; Ford, W T; Hall, T L; Johnson, D R; Nauenberg, U; Olivas, A; Park, H; Rankin, P; Roy, J; Sen, S; Smith, J G; van Hoek, W C; Wagner, D L; Blouw, J; Harton, J L; Krishnamurthy, M; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Brandt, T; Brose, J; Colberg, T; Dahlinger, G; Dickopp, M; Dubitzky, R S; Maly, E; Müller-Pfefferkorn, R; Otto, S; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Behr, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Ferrag, S; Roussot, E; T'Jampens, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Anjomshoaa, A; Bernet, R; Khan, A; Muheim, F; Playfer, S; Swain, J E; Falbo, M; Borean, C; Bozzi, C; Dittongo, S; Folegani, M; Piemontese, L; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Xie, Y; Zallo, A; Bagnasco, S; Buzzo, A; Contri, R; Crosetti, G; Fabbricatore, P; Farinon, S; Lo Vetere, M; Macri, M; Monge, M R; Musenich, R; Pallavicini, M; Parodi, R; Passaggio, S; Pastore, F C; Patrignani, C; Pia, M G; Priano, C; Robutti, E; Santroni, A; Morii, M; Bartoldus, R; Dignan, T; Hamilton, R; Mallik, U; Cochran, J; Crawley, H B; Fischer, P A; Lamsa, J; Meyer, W T; Rosenberg, E I; Benkebil, M; Grosdidier, G; Hast, C; Höcker, A; Lacker, H M; LePeltier, V; Lutz, A M; Plaszczynski, S; Schune, M H; Trincaz-Duvoid, S; Valassi, A; Wormser, G; Bionta, R M; Brigljević, V; Lange, D J; Mugge, M; Shi, X; van Bibber, K; Wenaus, T J; Wright, D M; Wuest, C R; Carroll, M; Fry, J R; Gabathuler, E; Gamet, R; George, M; Kay, M; Payne, D J; Sloane, R J; Touramanis, C; Aspinwall, M L; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gunawardane, N J; Nash, J A; Sanders, P; Smith, D; Azzopardi, D E; Back, J J; Dixon, P; Harrison, P F; Potter, R J; Shorthouse, H W; Strother, P; Vidal, P B; Williams, M I; Cowan, G; George, S; Green, M G; Kurup, A; Marker, C E; McGrath, P; McMahon, T R; Ricciardi, S; Salvatore, F; Scott, I; Vaitsas, G; Brown, D; Davis, C L; Allison, J; Barlow, R J; Boyd, J T; Forti, A C; Fullwood, J; Jackson, F; Lafferty, G D; Savvas, N; Simopoulos, E T; Weatherall, J H; Farbin, A; Jawahery, A; Lillard, V; Olsen, J; Roberts, D A; Schieck, J R; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Moore, T B; Staengle, H; Willocq, S; Brau, B; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Milek, M; Patel, P M; Trischuk, J; Lanni, F; Palombo, F; Bauer, J M; Booke, M; Cremaldi, L; Eschenburg, V; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Martin, J P; Nief, J Y; Seitz, R; Taras, P; Zacek, V; Nicholson, H; Sutton, C S; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; LoSecco, J M; Alsmiller, J R; Gabriel, T A; Handler, T; Brau, J; Frey, R; Iwasaki, M; Sinev, N B; Strom, D; Colecchia, F; Dal Corso, F; Dorigo, A; Galeazzi, F; Margoni, M; Michelon, G; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Torassa, E; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; De la Vaissière, C; Del Buono, L; Hamon, O; Le Diberder, F; Leruste, P; Lory, J; Roos, L; Stark, J; Versillé, S; Manfredi, P F; Re, V; Speziali, V; Frank, E D; Gladney, L; Guo, Q H; Panetta, J H; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Haire, M; Judd, D; Paick, K; Turnbull, L; Wagoner, D E; Albert, J; Bula, C; Elmer, P; Lu, C; McDonald, K T; Miftakov, V; Schaffner, S F; Smith, A J; Tumanov, A; Varnes, E W; Cavoto, G; del Re, D; Faccini, R; Ferrarotto, F; Ferroni, F; Fratini, K; Lamanna, E; Leonardi, E; Mazzoni, M A; Morganti, S; Piredda, G; Safai Tehrani, F; Serra, M; Voena, C; Christ, S; Waldi, R; Adye, T; Franek, B; Geddes, N I; Gopal, G P; Xella, S M; Aleksan, R; De Domenico, G; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; London, G W; Mayer, B; Serfass, B; Vasseur, G; Yeche, C; Zito, M; Copty, N; Purohit, M V; Singh, H; Yumiceva, F X; Adam, I; Anthony, P L; Aston, D; Baird, K; Bloom, E; Boyarski, A M; Bulos, F; Calderini, G; Claus, R; Convery, M R; Coupal, D P; Coward, D H; Dorfan, J; Doser, M; Dunwoodie, W; Field, R C; Glanzman, T; Godfrey, G L; Gowdy, S J; Grosso, P; Himel, T; Huffner, M E; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocain, M L; Langenegger, U; Leith, D W; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Menke, S; Messner, R; Moffeit, K C; Mount, R; Muller, D R; O'Grady, C P; Perl, M; Petrak, S; Quinn, H; Ratcliff, B N; Robertson, S H; Rochester, L S; Roodman, A; Schietinger, T; Schindler, R H; Schwiening, J; Serbo, V V; Snyder, A; Soha, A; Spanier, S M; Stelzer, J; Su, D; Sullivan, M K; Tanaka, H A; Va'vra, J; Wagner, S R; Weinstein, A J; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Cheng, C H; Kirkby, D; Meyer, T I; Roat, C; Henderson, R; Bugg, W; Cohn, H; Weidemann, A W; Izen, J M; Kitayama, I; Lou, X C; Turcotte, M; Bianchi, F; Bona, M; Di Girolamo, B; Gamba, D; Smol, A; Zanin, D; Lanceri, L; Pompili, A; Vaugnin, G; Panvini, R S; Brown, C M; De Silva, A; Kowalewski, R; Roney, J M; Band, H R; Charles, E; Dasu, S; Di Lodovico, F; Eichenbaum, A M; Hu, H; Johnson, J R; Liu, R; Nielsen, J; Pan, Y; Prepost, R; Scott, I J; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, S L; Yu, Z; Zobernig, H; Kordich, T M; Neal, H

    2001-11-26

    We present the results of searches for B decays to charmless two-body final states containing eta(') or omega mesons, based on 20.7 fb(-1) of data collected with the BABAR detector. We find the branching fractions Beta(B(+)-->eta(')K(+)) = (70+/-8+/-5) x 10(-6), Beta(B(0)-->eta(')K(0)) = (42(+13)(-11) +/- 4) x 10(-6), and Beta(B(+)-->omega pi(+)) = (6.6(+2.1)(-1.8) +/- 0.7) x 10(-6), where the first error quoted is statistical and the second is systematic. We give measurements of four additional modes for which the 90% confidence level upper limits are Beta(B(+)-->eta(')pi(+)) omega K(+)) omega K(0)) omega pi(0)) < 3 x 10(-6).

  9. An angiographic technique for coronary fractional flow reserve measurement: in vivo validation.

    Science.gov (United States)

    Takarada, Shigeho; Zhang, Zhang; Molloi, Sabee

    2013-03-01

    Fractional flow reserve (FFR) is an important prognostic determinant in a clinical setting. However, its measurement currently requires the use of invasive pressure wire, while an angiographic technique based on first-pass distribution analysis and scaling laws can be used to measure FFR using only image data. Eight anesthetized swine were instrumented with flow probe on the proximal segment of the left anterior descending (LAD) coronary arteries. Volumetric blood flow from the flow probe (Qp), coronary pressure (Pa) and right atrium pressure (Pv) were continuously recorded. Flow probe-based FFR (FFRq) was measured from the ratio of flow with and without stenosis. To determine the angiography-based FFR (FFRa), the ratio of blood flow in the presence of a stenosis (QS) to theoretically normal blood flow (QN) was calculated. A region of interest in the LAD arterial bed was drawn to generate time-density curves using angiographic images. QS was measured using a time-density curve and the assumption that blood was momentarily replaced with contrast agent during the injection. QN was estimated from the total coronary arterial volume using scaling laws. Pressure-wire measurements of FFR (FFRp), which was calculated from the ratio of distal coronary pressure (Pd) divided by proximal pressure (Pa), were continuously obtained during the study. A total of 54 measurements of FFRa, FFRp, and FFRq were taken. FFRa showed a good correlation with FFRq (FFRa = 0.97 FFRq +0.06, r(2) = 0.80, p < 0.001), although FFRp overestimated the FFRq (FFRp = 0.657 FFRq + 0.313, r(2) = 0.710, p < 0.0001). Additionally, the Bland-Altman analysis showed a close agreement between FFRa and FFRq. This angiographic technique to measure FFR can potentially be used to evaluate both anatomical and physiological assessments of a coronary stenosis during routine diagnostic cardiac catheterization that requires no pressure wires.

  10. Void fraction measurements in two-phase flow by transmission and scattering of a neutrons beam

    International Nuclear Information System (INIS)

    Souza, M.C.L.

    1984-01-01

    Calibration curves have been obtained which supply average values of void fraction (α) of water-steam two-phase mixtures for bubble, slug, annular and invert annular flow states. The measurements were carried out in simulated models of lucite-air for the steady-state, using the techniques of transmission and diffusion of a thermal neutrons beam. The calibration curves obtained were used for measurements of void fraction in a circuit containing two-phase water-air mixtures, in upward concurrent flow, for slug flow (P sub(max) = 1,06 bar) and annular flow (P sub(max) = 1,33 bar), using the same techniques. In both of the systems, a test section made up of an aluminium (99,9%) tube was used with internal diameter of 25,25 mm and 2,0 mm wall thichness. The beam of neutrons was obtained from a 5 Ci isotopic Am-Be source, thermalised in a cylindrical moderator of paraffin of 500 mm diameter (with H/D=1) which was covered by 2 mm thick cadmium sheets and having in its centre a parallepeliped made from high density polyethilene with the dimensions 240 x 240 x 144 mm. The neutrons escape through a rectangular collimator of 53,0 x 25,25 mm, with a length of 273 mm cut out of a single block of borated paraffin (32% of H 3 BO 3 ). The experimental results are in good agreement with theorical models in published literature. (Author) [pt

  11. Possibilities of delayed neutron fraction (βeff) calculation and measurement

    International Nuclear Information System (INIS)

    Michalek, S.; Hascik, J.; Farkas, G.

    2008-01-01

    The influence of the delayed neutrons on the reactor dynamics can be understood through their impact on the reactor power change rate. In spite of the fact that delayed neutrons constitute only a very small fraction of the total number of neutrons generated from fission, they play a dominant role in the fission chain reaction control. If only the prompt neutrons existed, the reactor operation would become impossible due to the fast reactor power changes. The exact determination of delayed neutrons main parameter, the delayed neutron fraction (β eff ), is very important in the field of reactor physics. The interest in the delayed neutron data accuracy improvement started to increase at the end of 80-ties and the beginning of 90-ties, after discrepancies among the results of calculations and experiments. In consequence of difficulties in β eff experimental measurement, this value in exact state use to be determined by calculations. Subsequently, its reliability depends on the calculation method and the delayed neutron data used. Determination of β eff requires criticality calculations. In the past, k eff used to be traditionally calculated by taking the ratio of the adjoint- and spectrum-weighted delayed neutron production rate to the adjoint- and spectrum- weighted total neutron production rate. An alternative method has also been used in which β eff is calculated from simple k-eigenvalue solutions. In this work, a summary of possible β eff calculation methods can be found and a calculation of β eff for VR-1 training reactor in one operation state is made using the prompt method, by MCNP5 code. Also a method of β eff kinetic measurement on VR-1 training reactor at Czech Technical University in Prague using in-pile kinetic technique is outlined (authors)

  12. Visualization and void-fraction measurements in a molten metal bath

    Science.gov (United States)

    Baker, Michael Charles

    In the experimental study of multiphase flow phenomena, including intense multiphase interactions, such as vapor explosions, the fluids are often opaque. To obtain images, suitable for quantitative analysis, of such phenomena requires the use of something other than visible light, such as x-rays or neutrons. In this study a unique flow visualization technique using a continuous high energy x-ray source to measure void fraction with good spatial and temporal resolution in pools of liquid metal has been developed. In the present experiments, 11 to 21 kg of molten tin at 360sp° C to 425sp° C is collected in a pre-heated stainless steel test section of rectangular cross section (18 x 10 cm). In the base of the test section are two injection ports for the introduction of nitrogen gas and water. Each port is composed of two coaxial tubes. Nitrogen gas flows through the annular region and either nitrogen gas or water flows through the central tube. The test section is imaged using a high energy x-ray source (Varian Linatron 3000A) with a peak energy of 9 MeV and a maximum on axis dose rate of 30 Gy/min. The transmitted x-rays are viewed with an imaging system composed of a high density silicate glass screen, a mirror, a lens coupled image intensifier, and a CCD camera. Two interchangeable CCD cameras allow for either high resolution imaging (1128 x 480 pixels) at a frame rate of 30 Hz or low resolution imaging (256 x 256 pixels) at a frame rate of 220 Hz. The collected images are digitally processed to obtain the chordal averaged local and volume integral void fractions. At the experimental conditions examined, estimated relative uncertainty using this measurement technique is 10% for worst case conditions. The upper bound on the relative systematic error due to void dynamics is estimated to be 20%. Reasonable agreement has been demonstrated between the data generated from the processed images, past integral void fraction experimental data, and a semi-empirical drift

  13. Measurement of fractionated plasma metanephrines for exclusion of pheochromocytoma: Can specificity be improved by adjustment for age?

    Directory of Open Access Journals (Sweden)

    Gafni Amiram

    2005-02-01

    Full Text Available Abstract Background Biochemical testing for pheochromocytoma by measurement of fractionated plasma metanephrines is limited by false positive rates of up to 18% in people without known genetic predisposition to the disease. The plasma normetanephrine fraction is responsible for most false positives and plasma normetanephrine increases with age. The objective of this study was to determine if we could improve the specificity of fractionated plasma measurements, by statistically adjusting for age. Methods An age-adjusted metanephrine score was derived using logistic regression from 343 subjects (including 33 people with pheochromocytoma who underwent fractionated plasma metanephrine measurements as part of investigations for suspected pheochromocytoma at Mayo Clinic Rochester (derivation set. The performance of the age-adjusted score was validated in a dataset of 158 subjects (including patients 23 with pheochromocytoma that underwent measurements of fractionated plasma metanephrines at Mayo Clinic the following year (validation dataset. None of the participants in the validation dataset had known genetic predisposition to pheochromocytoma. Results The sensitivity of the age-adjusted metanephrine score was the same as that of traditional interpretation of fractionated plasma metanephrine measurements, yielding a sensitivity of 100% (23/23, 95% confidence interval [CI] 85.7%, 100%. However, the false positive rate with traditional interpretation of fractionated plasma metanephrine measurements was 16.3% (22/135, 95% CI, 11.0%, 23.4% and that of the age-adjusted score was significantly lower at 3.0% (4/135, 95% CI, 1.2%, 7.4% (p Conclusion An adjustment for age in the interpretation of results of fractionated plasma metanephrines may significantly decrease false positives when using this test to exclude sporadic pheochromocytoma. Such improvements in false positive rate may result in savings of expenditures related to confirmatory imaging.

  14. Enhancing ejection fraction measurement through 4D respiratory motion compensation in cardiac PET imaging

    Science.gov (United States)

    Tang, Jing; Wang, Xinhui; Gao, Xiangzhen; Segars, W. Paul; Lodge, Martin A.; Rahmim, Arman

    2017-06-01

    ECG gated cardiac PET imaging measures functional parameters such as left ventricle (LV) ejection fraction (EF), providing diagnostic and prognostic information for management of patients with coronary artery disease (CAD). Respiratory motion degrades spatial resolution and affects the accuracy in measuring the LV volumes for EF calculation. The goal of this study is to systematically investigate the effect of respiratory motion correction on the estimation of end-diastolic volume (EDV), end-systolic volume (ESV), and EF, especially on the separation of normal and abnormal EFs. We developed a respiratory motion incorporated 4D PET image reconstruction technique which uses all gated-frame data to acquire a motion-suppressed image. Using the standard XCAT phantom and two individual-specific volunteer XCAT phantoms, we simulated dual-gated myocardial perfusion imaging data for normally and abnormally beating hearts. With and without respiratory motion correction, we measured the EDV, ESV, and EF from the cardiac-gated reconstructed images. For all the phantoms, the estimated volumes increased and the biases significantly reduced with motion correction compared with those without. Furthermore, the improvement of ESV measurement in the abnormally beating heart led to better separation of normal and abnormal EFs. The simulation study demonstrated the significant effect of respiratory motion correction on cardiac imaging data with motion amplitude as small as 0.7 cm. The larger the motion amplitude the more improvement respiratory motion correction brought about on the EF measurement. Using data-driven respiratory gating, we also demonstrated the effect of respiratory motion correction on estimating the above functional parameters from list mode patient data. Respiratory motion correction has been shown to improve the accuracy of EF measurement in clinical cardiac PET imaging.

  15. Measurement of the b baryon lifetime and branching fractions in Z decays

    CERN Document Server

    Barate, R; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Pietrzyk, B; Casado, M P; Chmeissani, M; Comas, P; Crespo, J M; Delfino, M C; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Alemany, R; Becker, U; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Cerutti, F; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Hansen, J B; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Mato, P; Minten, Adolf G; Moneta, L; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rizzo, G; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Tejessy, W; Teubert, F; Tomalin, I R; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Zachariadou, K; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, E; Thomson, F; Turnbull, R M; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Moutoussi, A; Nash, J; Sedgbeer, J K; Spagnolo, P; Stacey, A M; Williams, M D; Ghete, V M; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Buck, P G; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Sloan, Terence; Williams, M I; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Bujosa, G; Carr, J; Coyle, P; Diaconu, C A; Etienne, F; Konstantinidis, N P; Leroy, O; Motsch, F; Payre, P; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Antonelli, M; Ragusa, F; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Chen, S; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Schune, M H; Simion, S; Tournefier, E; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Bryant, L M; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Lutters, G; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Yamartino, J M; Zobernig, G

    1998-01-01

    Using approximately 4 million hadronic Z decays recorded with the Aleph detector from 1991 through 1995, the lifetime of the b baryon is measured with three independent methods. From the impact parameter distribution of candidate leptons in 1063 events with Lambda-lepton combinations, the average b baryon lifetime is measured to be 1.20 +-0.08 +-0.06 ps. From a sample of 193 fully reconstructed Lambda_c candidates correlated with a lepton and a sample of 46 Lambda-lepton-lepton combinations, the Lambda_b lifetime is measured to be 1.21 +-0.11 ps. The product branching fractions to these final states are Br(b->Lambda_b).Br(Lambda_b->Lambda l nu X) = 0.326 +-0.016 +-0.039 % for the first sample and Br(b->Lambda_b).Br(Lambda_b->Lambda_c l nu X) = 0.86 +-0.07 +-0.14 % for the second and third samples combined.

  16. Noninvasive measurement of lower extremity muscle oxygen extraction fraction under cuff compression paradigm.

    Science.gov (United States)

    Wang, Chengyan; Zhang, Rui; Zhang, Xiaodong; Wang, He; Zhao, Kai; Jin, Lixin; Zhang, Jue; Wang, Xiaoying; Fang, Jing

    2016-05-01

    To demonstrate the feasibility of using a susceptibility-based MRI technique with asymmetric spin-echo (ASE) sequence to assess the lower extremity muscle oxygen extraction fraction (OEF) alternations under cuff compression paradigm. Approved by the local institutional human study committee, nine healthy young volunteers participated in this study. All the ASE scans were conducted using a 3 Tesla clinical MRI scanner during resting state (pre), 1-3 min (post1) and 3-5 min (post2) after a pressure of 50 mmHg above individual systolic blood pressure imposed on the thigh. Moreover, near-infrared spectroscopy (NIRS) measurements were performed on the same day under the same cuff compression protocol to verify the accuracy of this susceptibility-based method. In all volunteers, the mean MRI based OEF in gastrocnemius (GAS) muscle increased significantly from 0.28 ± 0.02 (pre) to 0.31 ± 0.03 (post1, P measured 1-%HbO2 (percentage of deoxyhemoglobin concentration within total hemoglobin) in GAS rose significantly from 0.29 ± 0.03 (pre) to 0.31 ± 0.04 (post1, P measuring skeletal muscle oxygenation. © 2015 Wiley Periodicals, Inc.

  17. Measurement of the $B_s^0\\to J/\\psi K_S^0$ branching fraction

    CERN Document Server

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Miglioranzi, S; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voss, H; Waldi, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2012-01-01

    The $B_s^0\\to J/\\psi K_S^0$ branching fraction is measured in a data sample corresponding to 0.41$fb^{-1}$ of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2$\\beta$ measurement from $B^0\\to J/\\psi K_S^0$ The time-integrated branching fraction is measured to be $BF(B_s^0\\to J/\\psi K_S^0)=(1.83\\pm0.28)\\times10^{-5}$. This is the most precise measurement to date.

  18. Clinical implications of carcinoembryonic antigen distribution in serum exosomal fraction-Measurement by ELISA.

    Directory of Open Access Journals (Sweden)

    Shozo Yokoyama

    Full Text Available Serum exosomal proteins have great potential as indicators of disease status in cancer, inflammatory or metabolic diseases. The association of a fraction of various serum proteins such as carcinoembryonic antigen (CEA with circulating exosomes has been debated. The establishment of a method to measure the exosomal fraction of such proteins might help resolve this controversy. The use of enzyme-linked immunosorbent assays (ELISAs to measure serum exosomal molecules, for example CEA, is rare in research laboratories and totally absent in clinical biology. In this study, we optimized a method for assessment of serum exosomal molecules combining a treatment by volume-excluding polymers to isolate the exosomes, their subsequent solubilization in an assay buffer and ELISA.One hundred sixteen consecutive patients with colorectal cancer were enrolled for this study between June 2015 and June 2016 at Wakayama Medical University Hospital (WMUH. Whole blood samples were collected from patients during surgery. Exosomes were isolated using the ExoQuick reagent, solubilized in an assay buffer and subjected to CEA detection by ELISA. The procedure of serum exosome isolation and the formulation of the assay buffer used for the ELISA were optimized in order to improve the sensitivity and specificity of the assay.A five-fold increase in the concentration of the exosomes in the assay buffer (using initial serum volume as a reference and the addition of bovine serum albumin (BSA resulted in more accurate measurements of the serum exosomal CEA. The thawing temperature of frozen serum samples before exosome extraction was also optimized. A validation study that included one hundred sixteen patients with colorectal cancer demonstrated that serum exosomal CEA from samples thawed at 25°C exhibited a better AUC value, sensitivity, and specificity as well as a more correct classification than serum CEA.We optimized an easy and rapid detection method for assessment of

  19. Measurement of Branching Fractions for Two-Body Charmless B Decays to Charged Pions and Kaons at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Barbara

    2000-08-28

    The authors present preliminary results of a search for charmless two-body B decays to charged pions and kaons using data collected by the BaBar detector at the Stanford Linear Accelerator Center's PEP-II Storage ring. In a sample of 8.8 million produced B anti-B pairs the authors measure the branching fractions beta(B{sup 0} --> pi{sup +}pi{sup {minus}}) = (9.3{sub {minus}2.3{minus}1.4}{sup +2.6+1.2}) x 10{sup {minus}6} and beta(B{sup 0} --> K{sup +}pi{sup {minus}}) = (12.5{sub {minus}2.6{minus}1.7}{sup +3.0+1.3}) x 10{sup {minus}6}, where the first uncertainty is statistical and the second is systematic. For the decay B{sup 0} --> K{sup +}K{sup {minus}} they find no significant signal and set an upper limit of beta(B{sup 0} --> K{sup +}K{sup {minus}}) < 6.6 x 10{sup {minus}6} at the 90% confidence level.

  20. Automated Measurement and Signaling Systems for the Transactional Network

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Brown, Richard; Price, Phillip; Page, Janie; Granderson, Jessica; Riess, David; Czarnecki, Stephen; Ghatikar, Girish; Lanzisera, Steven

    2013-12-31

    The Transactional Network Project is a multi-lab activity funded by the US Department of Energy?s Building Technologies Office. The project team included staff from Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory and Oak Ridge National Laboratory. The team designed, prototyped and tested a transactional network (TN) platform to support energy, operational and financial transactions between any networked entities (equipment, organizations, buildings, grid, etc.). PNNL was responsible for the development of the TN platform, with agents for this platform developed by each of the three labs. LBNL contributed applications to measure the whole-building electric load response to various changes in building operations, particularly energy efficiency improvements and demand response events. We also provide a demand response signaling agent and an agent for cost savings analysis. LBNL and PNNL demonstrated actual transactions between packaged rooftop units and the electric grid using the platform and selected agents. This document describes the agents and applications developed by the LBNL team, and associated tests of the applications.

  1. LHCb: Measurement of the ratio of branching fractions $\\mathcal{B}(B \\to \\gamma)/\\mathcal{B}(B_s \\to \\phi\\gamma)$ at LHCb

    CERN Multimedia

    Savrina, Daria

    2011-01-01

    Rare radiative decays of the B-mesons may provide a good test for the Standard Model. Being forbidden at tree level, such processes may only occur due to loop diagrams involving FCNC and thus become very sensitive to the impact of new non-standard particles. This impact may be discovered through different observables, like branching fractions, isospin asymmetries, photon polarization etc., and the accuracy of the theoretical predictions for such decays makes them attractive from the experimental point of view. Having started to take data at an energy of $\\sqrt{s}$ = 7 Tev since 2010, by mid-summer of 2011 LHCb has collected 340 pb$^{-1}$ of integrated luminosity. With these data clear signals for $B_d \\to K^*\\gamma$ and $B_s \\to \\phi\\gamma$ have been observed. The ratio of branching fractions of these decays has been measured with good accuracy and it is consistent with the theoretical predictions and previous experimental results.

  2. Looking for the diffractive exclusive signal in the dijet mass fraction measurement

    Czech Academy of Sciences Publication Activity Database

    Kepka, Oldřich; Royon, C.

    2008-01-01

    Roč. 39, č. 9 (2008), s. 2533-2538 ISSN 0587-4254. [ School on QCD, Low-x Physics, Saturation and Diffraction. Copanello, Calabria, 01.07.2007-14.07.2007] R&D Projects: GA MŠk LC527 Institutional research plan: CEZ:AV0Z10100502 Keywords : exclusive diffractive production * diffraction Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.767, year: 2008

  3. Measures of metacognition on signal-detection theoretic models.

    Science.gov (United States)

    Barrett, Adam B; Dienes, Zoltan; Seth, Anil K

    2013-12-01

    Analyzing metacognition, specifically knowledge of accuracy of internal perceptual, memorial, or other knowledge states, is vital for many strands of psychology, including determining the accuracy of feelings of knowing and discriminating conscious from unconscious cognition. Quantifying metacognitive sensitivity is however more challenging than quantifying basic stimulus sensitivity. Under popular signal-detection theory (SDT) models for stimulus classification tasks, approaches based on Type II receiver-operating characteristic (ROC) curves or Type II d-prime risk confounding metacognition with response biases in either the Type I (classification) or Type II (metacognitive) tasks. A new approach introduces meta-d': The Type I d-prime that would have led to the observed Type II data had the subject used all the Type I information. Here, we (a) further establish the inconsistency of the Type II d-prime and ROC approaches with new explicit analyses of the standard SDT model and (b) analyze, for the first time, the behavior of meta-d' under nontrivial scenarios, such as when metacognitive judgments utilize enhanced or degraded versions of the Type I evidence. Analytically, meta-d' values typically reflect the underlying model well and are stable under changes in decision criteria; however, in relatively extreme cases, meta-d' can become unstable. We explore bias and variance of in-sample measurements of meta-d' and supply MATLAB code for estimation in general cases. Our results support meta-d' as a useful measure of metacognition and provide rigorous methodology for its application. Our recommendations are useful for any researchers interested in assessing metacognitive accuracy. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  4. Measurement of the Relative Fragmentation Fractions of B-bar Hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Karen Ruth [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2006-06-09

    This thesis describes the first Run II measurement of b quark fragmentation into $\\bar{B}$0, B-, and B$0\\atop{s}$ mesons and Λ$0\\atop{b}$ baryons using semileptonic B decays. The result is based on 360 pb-1 of data collected with the CDF detector in p$\\bar{p}$ collisions at √s = 1,960 GeV at the Tevatron Collider at Fermilab. The fragmentation fractions are measured for an effective $\\bar{B}$ hadron pT threshold of 7 GeV/c to be fu/fd = 1.054 ± 0.018(stat)$+0.025\\atop{-0.045}$(syst) ± 0.058(BR), fs/(fu + fd) = 0.160 ± 0.005(stat)$+0.011\\atop{-0.010}$(syst)Λ$+0.057\\atop{-0.034}$(BR), and fΛb/(fu + fd) = 0.281 ± 0.012(stat)$+0.058\\atop{-0.056}$(syst)$+0.128\\atop{-0.086}$(BR). fs/(fu + fd) agrees both with previous CDF measurements and the world averages, dominated by the LEP measurements, with ~ 1σ. However, fΛb/(fu + fd) is approximately twice the value which has been measured at LEP and in CDF Run I and disagrees with the LEP results by approximately 2 σ.

  5. Iodide-assisted total lead measurement and determination of different lead fractions in drinking water samples.

    Science.gov (United States)

    Zhang, Yuanyuan; Ng, Ding-Quan; Lin, Yi-Pin

    2012-07-01

    Lead and its compounds are toxic and can harm human health, especially the intelligence development in children. Accurate measurement of total lead present in drinking water is crucial in determining the extent of lead contamination and human exposure due to drinking water consumption. The USEPA method for total lead measurement (no. 200.8) is often used to analyze lead levels in drinking water. However, in the presence of high concentration of the tetravalent lead corrosion product PbO(2), the USEPA method was not able to fully recover particulate lead due to incomplete dissolution of PbO(2) particles during strong acid digestion. In this study, a new procedure that integrates membrane separation, iodometric PbO(2) measurement, strong acid digestion and ICP-MS measurement was proposed and evaluated for accurate total lead measurement and quantification of different lead fractions including soluble Pb(2+), particulate Pb(II) carbonate and PbO(2) in drinking water samples. The proposed procedure was evaluated using drinking water reconstituted with spiked Pb(2+), spiked particulate Pb(II) carbonate and in situ formed or spiked PbO(2). Recovery tests showed that the proposed procedure and the USEPA method can achieve 93-112% and 86-103% recoveries respectively for samples containing low PbO(2) concentrations (0.018-0.076 mg Pb per L). For samples containing higher concentrations of PbO(2) (0.089-1.316 mg Pb per L), the USEPA method failed to meet the recovery requirement for total lead (85-115%) while the proposed method can achieve satisfactory recoveries (91-111%) and differentiate the soluble Pb(2+), particulate Pb(II) carbonate and PbO(2).

  6. Ocean tidal signals in observatory and satellite magnetic measurements

    DEFF Research Database (Denmark)

    Maus, S.; Kuvshinov, A.

    2004-01-01

    , and P1 periods turn out to be dominated by unrelated external fields. In contrast, observed lunar M2 and N2 tidal signals are in fair agreement with predictions from motional induction. The lunar diurnal O1 signal, visible at some observatories, could be caused by ocean flow but disagrees in amplitude...

  7. Measurement of the inclusive branching fraction tau- → nu/sub tau/π-π0 + neutral meson(s)

    International Nuclear Information System (INIS)

    Moses, W.W.

    1986-12-01

    This dissertation measures an inclusive branching fraction of (13.9 +- 2.0/sub -2.4//sup +2.1/)% for the decay tau - → nu/sub tau/π - π 0 + nh 0 where h 0 is a π 0 or an eta and n ≥ 1. The data sample, obtained with the TPC detector facility at PEP, corresponds to an integrated luminosity of 72 pb -1 at 29 GeV center of mass energy. The measured value for this branching fraction is somewhat greater than the theoretical prediction and, taking errors into account, resolves the present difference between the inclusive and the sum of the exclusive tau - branching fractions into one charged prong. In addition, a lower limit of 8.3% (95% CL) is placed on the branching fraction B(tau - → nu/sub tau/π - π 0 π 0 )

  8. Isotopic distributions, element ratios, and element mass fractions from enrichment-meter-type gamma-ray measurements of MOX

    International Nuclear Information System (INIS)

    Close, D.A.; Parker, J.L.; Haycock, D.L.; Dragnev, T.

    1991-01-01

    The gamma-ray spectra from ''infinitely'' thick mixed oxide samples have been measured. The plutonium isotopics, the U/Pu ratio, the high-Z mass fractions (assuming only plutonium, uranium, and americium), and the low-Z mass fraction (assuming the matrix is only oxygen) can be determined by carefully analyzing the data. The results agree well with the chemical determination of these parameters. 8 refs., 3 figs., 3 tabs

  9. Measurement of the differential branching fraction of the decay Λ{sub b}{sup 0}→Λμ{sup +}μ{sup −}

    Energy Technology Data Exchange (ETDEWEB)

    Aaij, R. [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands); Adeva, B. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Adinolfi, M. [H.H. Wills Physics Laboratory, University of Bristol, Bristol (United Kingdom); Adrover, C. [CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille (France); Affolder, A. [Oliver Lodge Laboratory, University of Liverpool, Liverpool (United Kingdom); Ajaltouni, Z. [Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand (France); Albrecht, J. [Fakultät Physik, Technische Universität Dortmund, Dortmund (Germany); Alessio, F. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Alexander, M. [School of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Ali, S. [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands); Alkhazov, G. [Petersburg Nuclear Physics Institute (PNPI), Gatchina (Russian Federation); Alvarez Cartelle, P. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Alves, A.A. [Sezione INFN di Roma La Sapienza, Roma (Italy); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Amato, S. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro (Brazil); Amerio, S. [Sezione INFN di Padova, Padova (Italy); Amhis, Y. [LAL, Université Paris-Sud, CNRS/IN2P3, Orsay (France); Anderlini, L. [Sezione INFN di Firenze, Firenze (Italy); Anderson, J. [Physik-Institut, Universität Zürich, Zürich (Switzerland); Andreassen, R. [University of Cincinnati, Cincinnati, OH (United States); Andrews, J.E. [University of Maryland, College Park, MD (United States); and others

    2013-08-09

    The differential branching fraction of the decay Λ{sub b}{sup 0}→Λμ{sup +}μ{sup −} is measured as a function of the square of the dimuon invariant mass, q{sup 2}. A yield of 78±12Λ{sub b}{sup 0}→Λμ{sup +}μ{sup −} decays is observed using data, corresponding to an integrated luminosity of 1.0 fb{sup −1}, collected by the LHCb experiment at a centre-of-mass energy of 7 TeV. A significant signal is found in the q{sup 2} region above the square of the J/ψ mass, while at lower-q{sup 2} values upper limits are set on the differential branching fraction. Integrating the differential branching fraction over q{sup 2}, while excluding the J/ψ and ψ(2S) regions, gives a branching fraction of B(Λ{sub b}{sup 0}→Λμ{sup +}μ{sup −})=(0.96±0.16(stat)±0.13(syst)±0.21(norm))×10{sup −6}, where the uncertainties are statistical, systematic and due to the normalisation mode, Λ{sub b}{sup 0}→J/ψΛ, respectively.

  10. Measured and calculated effective delayed neutron fraction of the IPR-R1 Triga reactor

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Rose Mary G.P.; Dalle, Hugo M.; Campolina, Daniel A.M., E-mail: souzarm@cdtn.b, E-mail: dallehm@cdtn.b, E-mail: campolina@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The effective delayed neutron fraction, {beta}{sub eff}, one of the most important parameter in reactor kinetics, was measured for the 100 kW IPR-R1 TRIGA Mark I research reactor, located at the Nuclear Technology Development Center - CDTN, Belo Horizonte, Brazil. The current reactor core has 63 fuel elements, containing about 8.5% and 8% by weight of uranium enriched to 20% in U{sup 235}. The core has cylindrical configuration with an annular graphite reflector. Since the first criticality of the reactor in November 1960, the core configuration and the number of fuel elements have been changed several times. At that time, the reactor power was 30 kW, there were 56 fuel elements in the core, and the {beta}{sub eff} value for the reactor recommended by General Atomic (manufacturer of TRIGA) was 790 pcm. The current {beta}{sub eff} parameter was determined from experimental methods based on inhour equation and on the control rod drops. The estimated values obtained were (774 {+-} 38) pcm and (744 {+-} 20) pcm, respectively. The {beta}{sub eff} was calculated by Monte Carlo transport code MCNP5 and it was obtained 747 pcm. The calculated and measured values are in good agreement, and the relative percentage error is -3.6% for the first case, and 0.4% for the second one. (author)

  11. Sensitivity of Emissions to Uncertainties in Residual Gas Fraction Measurements in Automotive Engines: A Numerical Study

    Directory of Open Access Journals (Sweden)

    S. M. Aithal

    2018-01-01

    Full Text Available Initial conditions of the working fluid (air-fuel mixture within an engine cylinder, namely, mixture composition and temperature, greatly affect the combustion characteristics and emissions of an engine. In particular, the percentage of residual gas fraction (RGF in the engine cylinder can significantly alter the temperature and composition of the working fluid as compared with the air-fuel mixture inducted into the engine, thus affecting engine-out emissions. Accurate measurement of the RGF is cumbersome and expensive, thus making it hard to accurately characterize the initial mixture composition and temperature in any given engine cycle. This uncertainty can lead to challenges in accurately interpreting experimental emissions data and in implementing real-time control strategies. Quantifying the effects of the RGF can have important implications for the diagnostics and control of internal combustion engines. This paper reports on the use of a well-validated, two-zone quasi-dimensional model to compute the engine-out NO and CO emission in a gasoline engine. The effect of varying the RGF on the emissions under lean, near-stoichiometric, and rich engine conditions was investigated. Numerical results show that small uncertainties (~2–4% in the measured/computed values of the RGF can significantly affect the engine-out NO/CO emissions.

  12. Measurement of the Z-boson branching fraction into hadrons containing bottom quarks

    International Nuclear Information System (INIS)

    Kral, J.F.

    1990-09-01

    We use the Mark II detector to study Z decays into bottom quark-anti-quark pairs, leading to the production of bottom hadrons. The Z bosons are formed in e + e - annihilation at the SLC at center-of-mass energies between 89 and 93 GeV. We identify events containing semileptonic decays of bottom hadrons by detecting isolated leptons, i.e leptons with high transverse momenta relative to the nearest hadronic jet. Using isolated electrons and muons, we measure the B-hadron semileptonic branching ratio times the fraction of hadronic Z decays which contain bottom hadrons, B(B → X ell ν)·Γ(Z → b bar b)/Γ(Z → had) = 0.025 -0.009 +0.100 ± 0.005, where we have listed the statistical errors followed by the systematic error. Assuming B(B → X(ell)ν) = 11% ± 1%, we measure Γ(Z → b bar b)/Γ(Z → had) = 0.23 -0.09 +0.11 , in good agreement with the standard-model prediction of 0.22. We find Γ(Z → b bar b) = 0.40 -0.16 +0.19 GeV. 83 refs., 34 figs., 19 tabs

  13. Heat Load Measurements on a Large Superconducting Magnet An Application of a Void Fraction Meter

    CERN Document Server

    Pengo, R; Junker, S; Passardi, Giorgio; ten Kate, H H J

    2004-01-01

    ATLAS is one of the two major experiments of the LHC project at CERN using cryogenics. The superconducting magnet system of ATLAS is composed of the Barrel Toroid (BT), two End Caps Toroids and the Central Solenoid. The BT is formed of 8 race-track superconducting dipoles, each one 25 m long and 5 m wide. A reduced scale prototype (named B0) of one of the 8 dipoles, about one third of the length, has been constructed and tested in a dedicated cryogenic facility at CERN. To simulate the final thermal and hydraulic operating conditions, the B0 was cooled by a forced flow of 4.5 K saturated liquid helium provided by a centrifugal pump of 80 g/s nominal capacity. Both static and dynamic heat loads, generated by the induced currents on the B0 casing during a slow dump or a ramp up, have been measured to verify the expected thermal budget of the entire BT. The instrument used for the heat load measurements was a Void Fraction Meter (VFM) installed on the magnet return line. The instrument constructed at CERN was ca...

  14. Modeling ramp-hold indentation measurements based on Kelvin-Voigt fractional derivative model

    Science.gov (United States)

    Zhang, Hongmei; zhe Zhang, Qing; Ruan, Litao; Duan, Junbo; Wan, Mingxi; Insana, Michael F.

    2018-03-01

    Interpretation of experimental data from micro- and nano-scale indentation testing is highly dependent on the constitutive model selected to relate measurements to mechanical properties. The Kelvin-Voigt fractional derivative model (KVFD) offers a compact set of viscoelastic features appropriate for characterizing soft biological materials. This paper provides a set of KVFD solutions for converting indentation testing data acquired for different geometries and scales into viscoelastic properties of soft materials. These solutions, which are mostly in closed-form, apply to ramp-hold relaxation, load-unload and ramp-load creep-testing protocols. We report on applications of these model solutions to macro- and nano-indentation testing of hydrogels, gastric cancer cells and ex vivo breast tissue samples using an atomic force microscope (AFM). We also applied KVFD models to clinical ultrasonic breast data using a compression plate as required for elasticity imaging. Together the results show that KVFD models fit a broad range of experimental data with a correlation coefficient typically R 2  >  0.99. For hydrogel samples, estimation of KVFD model parameters from test data using spherical indentation versus plate compression as well as ramp relaxation versus load-unload compression all agree within one standard deviation. Results from measurements made using macro- and nano-scale indentation agree in trend. For gastric cell and ex vivo breast tissue measurements, KVFD moduli are, respectively, 1/3-1/2 and 1/6 of the elasticity modulus found from the Sneddon model. In vivo breast tissue measurements yield model parameters consistent with literature results. The consistency of results found for a broad range of experimental parameters suggest the KVFD model is a reliable tool for exploring intrinsic features of the cell/tissue microenvironments.

  15. Measurement of the $B_s^0 \\to \\phi \\phi$ branching fraction and search for the decay $B^0 \\to \\phi \\phi$

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Buchanan, Emma; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fohl, Klaus; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadavizadeh, Thomas; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kecke, Matthieu; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Kozeiha, Mohamad; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Krzemien, Wojciech; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kuonen, Axel Kevin; Kurek, Krzysztof; Kvaratskheliya, Tengiz; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lanfranchi, Gaia; Langenbruch, Christoph; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Xuesong; Loh, David; Longstaff, Iain; Lopes, Jose; Lucchesi, Donatella; Lucio Martinez, Miriam; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Lusiani, Alberto; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Marks, Jörg; Martellotti, Giuseppe; Martin, Morgan; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Melnychuk, Dmytro; Merk, Marcel; Michielin, Emanuele; Milanes, Diego Alejandro; Minard, Marie-Noelle; Mitzel, Dominik Stefan; Molina Rodriguez, Josue; Monroy, Ignacio Alberto; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Dominik; Müller, Janine; Müller, Katharina; Müller, Vanessa; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nandi, Anita; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Ninci, Daniele; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Aranzazu; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Pappenheimer, Cheryl; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Petridis, Konstantinos; Petrolini, Alessandro; Petruzzo, Marco; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Piucci, Alessio; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Ronayne, John William; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santimaria, Marco; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmelzer, Timon; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Siddi, Benedetto Gianluca; Silva Coutinho, Rafael; Silva de Oliveira, Luiz Gustavo; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Edmund; Smith, Eluned; Smith, Iwan Thomas; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Stefkova, Slavorima; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Tayduganov, Andrey; Tekampe, Tobias; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Williams, Timothy; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yu, Jiesheng; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zucchelli, Stefano

    2015-10-08

    Using a dataset corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected in $pp$ collisions at centre-of-mass energies of 7 and 8 TeV, the $B_s^0 \\to \\phi \\phi$ branching fraction is measured to be \\[ \\mathcal{B}(B_s^0 \\to \\phi \\phi) = ( 1.84 \\pm 0.05 (\\text{stat}) \\pm 0.07 (\\text{syst}) \\pm 0.11 (f_s/f_d) \\pm 0.12 (\\text{norm}) ) \\times 10^{-5}, \\] where $f_s/f_d$ represents the ratio of the $B_s^0$ to $B^0$ production cross-sections, and the $B^0 \\to \\phi K^*(892)^0$ decay mode is used for normalization. This is the most precise measurement of this branching fraction to date, representing a factor five reduction in the statistical uncertainty compared with the previous best measurement. A search for the decay $B^0 \\to \\phi \\phi$ is also made. No signal is observed, and an upper limit on the branching fraction is set as \\[ \\mathcal{B}(B^0 \\to \\phi \\phi) < 2.8 \\times 10^{-8} \\] at 90% confidence level. This is a factor of seven improvement compared to the previous best limit.

  16. Measurement of the $B^0_s\\to\\phi\\phi$ branching fraction and search for the decay $B^0\\to\\phi\\phi$

    CERN Multimedia

    Morris, Adam

    2015-01-01

    Using a dataset corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected in $pp$ collisions at centre-of-mass energies of 7 and 8 TeV, the $B_s^0 \\to \\phi \\phi$ branching fraction is measured to be \\[ \\mathcal{B}(B_s^0 \\to \\phi \\phi) = ( 1.84 \\pm 0.05 (\\text{stat}) \\pm 0.07 (\\text{syst}) \\pm 0.11 (f_s/f_d) \\pm 0.12 (\\text{norm}) ) \\times 10^{-5}, \\] where $f_s/f_d$ represents the ratio of the $B_s^0$ to $B^0$ production cross-sections, and the $B^0 \\to \\phi K^*(892)^0$ decay mode is used for normalization. This is the most precise measurement of this branching fraction to date, representing a factor five reduction in the statistical uncertainty compared with the previous best measurement. A search for the decay $B^0 \\to \\phi \\phi$ is also made. No signal is observed, and an upper limit on the branching fraction is set as \\[ \\mathcal{B}(B^0 \\to \\phi \\phi) < 2.8 \\times 10^{-8} \\] at 90% confidence level. This is a factor of seven improvement compared to the previous best limit.

  17. Mutual information measures applied to EEG signals for sleepiness characterization

    OpenAIRE

    Melia, Umberto Sergio Pio; Guaita, Marc; Vallverdú Ferrer, Montserrat; Embid, Cristina; Vilaseca, I; Salamero, Manuel; Santamaria, Joan

    2015-01-01

    Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders with a great impact on the patient lives. While many studies have been carried out in order to assess daytime sleepiness, the automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on non-linear dynamical analysis of EEG signal was proposed. Multichannel EEG signals were recorded during five maintenance of wakefulness (MWT) and multiple sleep lat...

  18. Fraction of exhaled nitric oxide measurements in the diagnoses of asthma in elderly patients

    Directory of Open Access Journals (Sweden)

    Godinho Netto AC

    2016-05-01

    Full Text Available Antonio Carlos Maneira Godinho Netto,1,2 Túlio Gonçalves dos Reis,1,2 Cássia Franco Matheus,1,2 Beatriz Julião Vieira Aarestrup,3,4 Fernando Monteiro Aarestrup1,2,4 1School of Medical and Health Sciences – SUPREMA, 2Maternity Hospital Terezinha de Jesus, 3Morphology Department, Federal University of Juiz de Fora, Institute of Biological Sciences, 4Laboratory of Immunopathology and Experimental Pathology, Federal University of Juiz de Fora, Reproductive Biology Center (CBR, Juiz de Fora, Brazil Objective: To assess the value of fraction of exhaled nitric oxide (FeNO measurements in the diagnosis of asthma in elderly patients. Methods: The clinical symptoms of 202 elderly patients were assessed with the asthma module of the International Study of Asthma and Allergies in Childhood test, which had been modified for the elderly patients, and the diagnostic routine for chronic obstructive pulmonary disease (COPD, which was based on the Global initiative for chronic Obstructive Lung Disease criteria. Of the 202 patients assessed, 43 were subjected to pulmonary function evaluations (spirometry and FeNO measurements. Results: Of the 202 elderly patients, 34 had asthma (23 definite and eleven probable, 20 met COPD criteria, 13 presented with an overlap of asthma and COPD, and 135 did not fit the criteria for obstructive pulmonary disease. Among the 43 elderly patients who were subjected to FeNO measurements, ten showed altered results (23.2% and 33 had normal results (76.7%. The average value of FeNO in patients with definite and probable asthma undergoing this procedure was 29.2 parts per billion whereas that in nonasthmatic patients was 17.5 parts per billion (P=0.0002. Conclusion: We show a clear relationship between FeNO levels and asthma symptoms and previous asthma diagnoses in elderly patients. Keywords: asthma, chronic obstructive pulmonary disease, elderly patients, nitric oxide

  19. Effects of caffeine on fractional flow reserve values measured using intravenous adenosine triphosphate.

    Science.gov (United States)

    Nakayama, Masafumi; Chikamori, Taishiro; Uchiyama, Takashi; Kimura, Yo; Hijikata, Nobuhiro; Ito, Ryosuke; Yuhara, Mikio; Sato, Hideaki; Kobori, Yuichi; Yamashina, Akira

    2018-04-01

    We investigated the effects of caffeine intake on fractional flow reserve (FFR) values measured using intravenous adenosine triphosphate (ATP) before cardiac catheterization. Caffeine is a competitive antagonist for adenosine receptors; however, it is unclear whether this antagonism affects FFR values. Patients were evenly randomized into 2 groups preceding the FFR study. In the caffeine group (n = 15), participants were given coffee containing 222 mg of caffeine 2 h before the catheterization. In the non-caffeine group (n = 15), participants were instructed not to take any caffeine-containing drinks or foods for at least 12 h before the catheterization. FFR was performed in patients with more than intermediate coronary stenosis using the intravenous infusion of ATP at 140 μg/kg/min (normal dose) and 170 μg/kg/min (high dose), and the intracoronary infusion of papaverine. FFR was followed for 30 s after maximal hyperemia. In the non-caffeine group, the FFR values measured with ATP infusion were not significantly different from those measured with papaverine infusion. However, in the caffeine group, the FFR values were significantly higher after ATP infusion than after papaverine infusion (P = 0.002 and P = 0.007, at normal and high dose ATP vs. papaverine, respectively). FFR values with ATP infusion were significantly increased 30 s after maximal hyperemia (P = 0.001 and P < 0.001 for normal and high dose ATP, respectively). The stability of the FFR values using papaverine showed no significant difference between the 2 groups. Caffeine intake before the FFR study affected FFR values and their stability. These effects could not be reversed by an increased ATP dose.

  20. Left ventricular ejection fraction and volumes as measured by 3D echocardiography and ultrafast computed tomography

    International Nuclear Information System (INIS)

    Vieira, Marcelo Luiz Campos; Nomura, Cesar H.; Tranchesi Junior, Bernardino; Oliveira, Wercules A. de; Naccarato, Gustavo; Serpa, Bruna S.; Passos, Rodrigo B.D.; Funari, Marcelo B. G.; Fischer, Claudio H.; Morhy, Samira S.

    2009-01-01

    Background: Real-time three-dimensional echocardiography (RT-3D-Echo) and ultrafast computed tomography (CT) are two novel methods for the analysis of LV ejection fraction and volumes. Objective: To compare LVEF and volume measurements as obtained using RT-3D-Echo and ultrafast CT. Methods: Thirty nine consecutive patients (27 men, mean age of 57+- 12 years) were studied using RT-3D-Echo and 64-slice ultrafast CT. LVEF and LV volumes were analyzed. Statistical analysis: coefficient of correlation (r: Pearson), Bland-Altman analysis, linear regression analysis, 95% CI, p 5 .58)%; end-diastolic volume ranged from 49.6 to 178.2 (87+-27.8) ml; end-systolic volume ranged from 11.4 to 78 (33.1+-13.6) ml. CT scan measurements: LVEF ranged from 53 to 86% (67.8+-7.78); end-diastolic volume ranged from 51 to 186 (106.5+-30.3) ml; end-systolic volume ranged from 7 to 72 (35.5+-13.4)ml. Correlations between RT-3D-Echo and CT were: LVEF (r: 0.7888, p<0.0001, 95% CI 0.6301 to 0.8843); end-diastolic volume (r: 0.7695, p<0.0001, 95% CI 0.5995 to 0.8730); end-systolic volume (r: 0.8119, p<0.0001, 95% CI 0.6673 to 0.8975). Conclusion: Good correlation between LVEF and ventricular volume parameters as measured by RT-3D-Echo and 64-slice ultrafast CT was found in the present case series. (author)

  1. Estimation of optimal biomass fraction measuring cycle formunicipal solid waste incineration facilities in Korea.

    Science.gov (United States)

    Kang, Seongmin; Cha, Jae Hyung; Hong, Yoon-Jung; Lee, Daekyeom; Kim, Ki-Hyun; Jeon, Eui-Chan

    2018-01-01

    This study estimates the optimum sampling cycle using a statistical method for biomass fraction. More than ten samples were collected from each of the three municipal solid waste (MSW) facilities between June 2013 and March 2015 and the biomass fraction was analyzed. The analysis data were grouped into monthly, quarterly, semi-annual, and annual intervals and the optimum sampling cycle for the detection of the biomass fraction was estimated. Biomass fraction data did not show a normal distribution. Therefore, the non-parametric Kruskal-Wallis test was applied to compare the average values for each sample group. The Kruskal-Wallis test results showed that the average monthly, quarterly, semi-annual, and annual values for all three MSW incineration facilities were equal. Therefore, the biomass fraction at the MSW incineration facilities should be calculated on a yearly cycle which is the longest period of the temporal cycles tested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Measurement of the local void fraction in two-phase air-water flow with a hot-film anemometer

    International Nuclear Information System (INIS)

    Delhaye, J.

    1968-01-01

    The experimental knowledge of the local void-fraction is basic for the derivation of the constitutive equations of two-phase flows. This report deals with measurements of the local void-fraction based on the use of a constant temperature hot-film anemometer associated with a multichannel analyser. After determining the void-fraction profile along a diameter of a vertical pipe (40 mm I.D.), in which air and water flow upwards, we compare the void-fraction averaged over the diameter with the average value measured directly by a γ-ray method. Two runs were made in bubble flow and a third in slug flow. The two methods give results in a good agreement especially for bubble flow. The void-fraction averaged over the cross-section was also calculated from the different profiles and compared in a good manner with the experimental results of R. ROUMY. For bubble flow we verified the theory of S.G. BANKOFF about the shape of the void-fraction profiles. (author) [fr

  3. Shortened screening method for phosphorus fractionation in sediments A complementary approach to the standards, measurements and testing harmonised protocol

    International Nuclear Information System (INIS)

    Pardo, Patricia; Rauret, Gemma; Lopez-Sanchez, Jose Fermin

    2004-01-01

    The SMT protocol, a sediment phosphorus fractionation method harmonised and validated in the frame of the standards, measurements and testing (SMT) programme (European Commission), establishes five fractions of phosphorus according to their extractability. The determination of phosphate extracted is carried out spectrophotometrically. This protocol has been applied to 11 sediments of different origin and characteristics and the phosphorus extracted in each fraction was determined not only by UV-Vis spectrophotometry, but also by inductively coupled plasma-atomic emission spectrometry. The use of these two determination techniques allowed the differentiation between phosphorus that was present in the extracts as soluble reactive phosphorus and as total phosphorus. From the comparison of data obtained with both determination techniques a shortened screening method, for a quick evaluation of the magnitude and importance of the fractions given by the SMT protocol, is proposed and validated using two certified reference materials

  4. Measurement of Inclusive b Semileptonic Branching Fractions at the Z Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Trandafir, Aurel

    2000-05-23

    This document presents a new measurement of inclusive b semileptonic branching fractions B(b-->l) and B(b-->c-->l). The b-->l and b-->c-->l are separated by a means that uses correlation between the final state lepton charge and that of its parent b quark as a constraint. Monte Carlo counts of electrons and muons are calibrated to the data using a newly developed technique based on pairs of mutually independent tests for each particle hypothesis separately. The data sample consists of about 550,000 hadronic Z decays collected at the SLD between 1993 and 1998. Upon analysis of electron and muon counts in 61602 hadronic event hemispheres tagged as containing either a b or a b-bar, the author reports: B(b-->e) = 0.0949{+-}0.0049{+-}0.0050, B(b-->mu) = 0.1066{+-}0.0038{+-}0.0049, combined B(b-->l) = 0.1015{+-}0.0030{+-}0.0035; and B(b-->c-->e) = 0.0811{+-}0.0053{+-}0.0030, B(-->b-->c-->mu) = 0.0717{+-}0.0045{+-}0.0024, combined B(b-->c-->l) = 0.0756{+-}0.0034{+-}0.0019.

  5. Measurement of $b$-hadron branching fractions for two-body decays into charmless charged hadrons

    CERN Document Server

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Miglioranzi, S; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voss, H; Waldi, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2012-01-01

    Based on data corresponding to an integrated luminosity of 0.37 $\\mathrm{fb}^{-1}$ collected by the LHCb experiment in 2011, the following ratios of branching fractions are measured: \\begin{eqnarray*} \\mathcal{B}\\left(B^{0}\\rightarrow\\pi^{+}\\pi^{-}\\right) /\\,\\mathcal{B}\\left(B^{0}\\rightarrow K^+\\pi^-\\right) & = & 0.262\\pm 0.009\\pm 0.017,\\\\ (f_{s} / f_{d}) \\cdot \\mathcal{B}\\left(B^{0}_{s}\\rightarrow K^{+}K^{-}\\right) /\\, \\mathcal{B}\\left(B^{0}\\rightarrow K^+\\pi^-\\right) & = & 0.316\\pm 0.009\\pm 0.019,\\\\ (f_{s} / f_{d}) \\cdot \\mathcal{B}\\left(B^0_{s}\\rightarrow\\pi^+ K^-\\right) /\\, \\mathcal{B}\\left(B^{0}\\rightarrow K^+\\pi^-\\right) & = & 0.074 \\pm 0.006\\pm 0.006,\\\\ (f_{d} / f_{s}) \\cdot \\mathcal{B}\\left(B^{0} \\rightarrow K^{+}K^{-}\\right) /\\, \\mathcal{B}\\left(B^{0}_s\\rightarrow K^+K^-\\right) & = & 0.018 \\,^{+\\,0.008}_{-\\,0.007} \\pm 0.009,\\\\ (f_{s} / f_{d}) \\cdot \\mathcal{B}\\left(B^{0}_{s}\\rightarrow \\pi^{+}\\pi^{-}\\right) /\\, \\mathcal{B}\\left(B^{0}\\rightarrow \\pi^+\\pi^-\\right) & ...

  6. Fractional type Marcinkiewicz integrals over non-homogeneous metric measure spaces

    Directory of Open Access Journals (Sweden)

    Guanghui Lu

    2016-10-01

    Full Text Available Abstract The main goal of the paper is to establish the boundedness of the fractional type Marcinkiewicz integral M β , ρ , q $\\mathcal{M}_{\\beta,\\rho,q}$ on non-homogeneous metric measure space which includes the upper doubling and the geometrically doubling conditions. Under the assumption that the kernel satisfies a certain Hörmander-type condition, the authors prove that M β , ρ , q $\\mathcal{M}_{\\beta,\\rho,q}$ is bounded from Lebesgue space L 1 ( μ $L^{1}(\\mu$ into the weak Lebesgue space L 1 , ∞ ( μ $L^{1,\\infty}(\\mu$ , from the Lebesgue space L ∞ ( μ $L^{\\infty}(\\mu$ into the space RBLO ( μ $\\operatorname{RBLO}(\\mu$ , and from the atomic Hardy space H 1 ( μ $H^{1}(\\mu$ into the Lebesgue space L 1 ( μ $L^{1}(\\mu$ . Moreover, the authors also get a corollary, that is, M β , ρ , q $\\mathcal{M}_{\\beta,\\rho,q}$ is bounded on L p ( μ $L^{p}(\\mu$ with 1 < p < ∞ $1< p<\\infty$ .

  7. Measurement of liquid turbulent structure in bubbly flow at low void fraction using ultrasonic doppler method

    International Nuclear Information System (INIS)

    Murakawa, Hideki; Kikura, Hiroshige; Aritomi, Masanori

    2003-01-01

    Microscopic structure in bubbly flows has been a topic of interest in the study of fluid dynamics. In the present paper, the ultrasonic Doppler method was applied to the measurement of bubbly. The experiments were carried out for an air-water dispersed bubbly flow in a 20 mm x 100 mm vertical rectangular channel having a void fraction smaller than 3%. Two ultrasonic transducers were installed on the outer surface of the test section with a contact angle of 45deg off the vertical axis, one facing upward and the other facing downward. By applying statistical methods to the two directional velocity profiles. Reynolds stress profiles were calculated. Furthermore, to clarify the wake effect induced by the leading bubbles, the velocity profiles were divided into two types of data. The first one is for all of the liquid data and the other is the data which did not include the wake effect. For Re m ≥ 1,593, it was observed that the bubbles suppressed the liquid turbulence. Furthermore, comparing with the Reynolds stress profiles in bubbly flow, it was found that Reynolds stress profiles varied with the amount of bubbles present in the flow and the effect of wake causes turbulence in the liquid. (author)

  8. A Dual Conductance Sensor for Simultaneous Measurement of Void Fraction and Structure Velocity of Downward Two-Phase Flow in a Slightly Inclined Pipe.

    Science.gov (United States)

    Lee, Yeon-Gun; Won, Woo-Youn; Lee, Bo-An; Kim, Sin

    2017-05-08

    In this study, a new and improved electrical conductance sensor is proposed for application not only to a horizontal pipe, but also an inclined one. The conductance sensor was designed to have a dual layer, each consisting of a three-electrode set to obtain two instantaneous conductance signals in turns, so that the area-averaged void fraction and structure velocity could be measured simultaneously. The optimum configuration of the electrodes was determined through numerical analysis, and the calibration curves for stratified and annular flow were obtained through a series of static experiments. The fabricated conductance sensor was applied to a 45 mm inner diameter U-shaped downward inclined pipe with an inclination angle of 3° under adiabatic air-water flow conditions. In the tests, the superficial velocities ranged from 0.1 to 3.0 m/s for water and from 0.1 to 18 m/s for air. The obtained mean void fraction and the structure velocity from the conductance sensor were validated against the measurement by the wire-mesh sensor and the cross-correlation technique for the visualized images, respectively. The results of the flow regime classification and the corresponding time series of the void fraction at a variety of flow velocities were also discussed.

  9. Measurement of the ${B^0_s \\to \\phi \\phi}$ branching fraction and angular analysis of ${B^0_{(s)} \\to \\phi \\pi^{+}\\pi^{-}}$.

    CERN Multimedia

    Morris, Adam

    2016-01-01

    Using 3~fb$^{-1}$ of $pp$ collisions collected by the LHCb detector at $\\sqrt{s} = 7$ and 8~TeV, the $B_s^0 \\to \\phi \\phi$ branching fraction is measured to be \\[ \\mathcal{B}(B^0_s \\to \\phi \\phi) = \\left[ 1.84 \\pm 0.05 (\\mathrm{stat}) \\pm 0.07 (\\mathrm{syst}) \\pm 0.11 (f_s/f_d) \\pm 0.12 (\\mathrm{norm}) \\right] \\times 10^{-5}. \\] A search for the decay $B^0 \\to \\phi \\phi$ is also made. No signal is observed, and an upper limit on the branching fraction is set as \\[ \\mathcal{B}(B^0 \\to \\phi \\phi) < 2.8 \\times 10^{-8}. \\] The rare decays $B_s^0 \\to \\phi \\pi^+ \\pi^-$ and $B^0 \\to \\phi \\pi^+ \\pi^-$ are observed for the first time. The branching fractions in the range $400measured to be \\[ \\mathcal{B}(B_s^0 \\to \\phi \\pi^+ \\pi^-) = \\left[ 3.37 \\pm 0.20 (\\mathrm{stat}) \\pm 0.16 (\\mathrm{syst}) \\pm 0.34 (\\mathrm{norm}) \\right] \\times 10^{-6} \\] \\[\\mathcal{B}(B^0 \\to \\phi \\pi^+ \\pi^-) = \\left[ 1.58 \\pm 0.18 (\\mathrm{stat}) \\pm 0.35 (\\mathrm{syst}) \\pm 0.13 (\\mathrm{norm})...

  10. Measurement of the branching fraction ratio ${\\cal B}(B_{c}^{+} \\to \\psi(2S)\\pi^+)/{\\cal B}(B_{c}^{+} \\to J/\\psi\\pi^+)$

    CERN Multimedia

    An, Liupan

    2016-01-01

    Using the $pp$ collision data collected by LHCb at center-of-mass energies $\\sqrt{s} \\, = 7 \\, {\\rm TeV} \\,$ and $8 \\, {\\rm TeV} \\,$, corresponding to an integrated luminosity of $3 \\, \\mathrm{fb}^{-1} \\,$, the ratio of the branching fraction of the $B_{c}^{+} \\to \\psi(2S)\\pi^+$ decay relative to that of the $B_{c}^{+} \\to J/\\psi\\pi^+$ decay is measured to be ${0.268 \\pm 0.032\\mathrm{\\,(stat)} \\pm 0.007\\mathrm{\\,(syst)} \\pm 0.006\\,(\\mathrm{BF}) }$. The first uncertainty is statistical, the second is systematic, and the third is due to the uncertainties on the branching fractions of the $J/\\psi \\to \\mu^{+}\\mu^{-}$ and $\\psi(2S) \\to \\mu^{+}\\mu^{-}$ decays. To enhance the signal significance with limited $B_{c}^{+}$ statistics, the boosted decision tree selection is used to separate the signal and background effectively. The systematic uncertainties are discussed extensively. This measurement is consistent with the previous LHCb result, and the statistical uncertainty is halved.

  11. Schizophrenia symptomatic associations with diffusion tensor imaging measured fractional anisotropy of brain: a meta-analysis.

    Science.gov (United States)

    Yang, Xu; Cao, Ding; Liang, Xiumei; Zhao, Jiannong

    2017-07-01

    Several studies have examined the relationships between diffusion tensor imaging (DTI)-measured fractional anisotropy (FA) and the symptoms of schizophrenia, but results vary across the studies. The aim of this study was to carry out a meta-analysis of correlation coefficients reported by relevant studies to evaluate the correlative relationships between FA of various parts of the brain and schizophrenia symptomatic assessments. Literature was searched in several electronic databases, and study selection was based on précised eligibility criteria. Correlation coefficients between FA of a part of the brain and schizophrenia symptom were first converted into Fisher's z-scores for meta-analyses, and then overall effect sizes were back transformed to correlation coefficients. Thirty-three studies (1121 schizophrenia patients; age 32.66 years [95% confidence interval (CI) 30.19, 35.13]; 65.95 % [57.63, 74.28] males) were included in this meta-analysis. Age was inversely associated with brain FA (z-scores [95% CI] -0.23 [-0.14, -0.32]; p ˂ 0.00001). Brain FA of various areas was inversely associated with negative symptoms of schizophrenia (z-score -0.30 [-0.23, -0.36]; p ˂ 0.00001) but was positively associated with positive symptoms of schizophrenia (z-score 0.16 [0.04, 0.27]; p = 0.007) and general psychopathology of schizophrenia (z-score 0.26 [0.15, 0.37]; p = 0.00001). Although, DTI-measured brain FA is found to be inversely associated with negative symptoms and positively associated with positive symptoms and general psychopathology of schizophrenia, the effect sizes of these correlations are low and may not be clinically significant. Moreover, brain FA was also negatively associated with age of patients.

  12. Schizophrenia symptomatic associations with diffusion tensor imaging measured fractional anisotropy of brain: a meta-analysis

    International Nuclear Information System (INIS)

    Yang, Xu; Cao, Ding; Liang, Xiumei; Zhao, Jiannong

    2017-01-01

    Several studies have examined the relationships between diffusion tensor imaging (DTI)-measured fractional anisotropy (FA) and the symptoms of schizophrenia, but results vary across the studies. The aim of this study was to carry out a meta-analysis of correlation coefficients reported by relevant studies to evaluate the correlative relationships between FA of various parts of the brain and schizophrenia symptomatic assessments. Literature was searched in several electronic databases, and study selection was based on precised eligibility criteria. Correlation coefficients between FA of a part of the brain and schizophrenia symptom were first converted into Fisher's z-scores for meta-analyses, and then overall effect sizes were back transformed to correlation coefficients. Thirty-three studies (1121 schizophrenia patients; age 32.66 years [95% confidence interval (CI) 30.19, 35.13]; 65.95 % [57.63, 74.28] males) were included in this meta-analysis. Age was inversely associated with brain FA (z-scores [95% CI] -0.23 [-0.14, -0.32]; p %<0.00001). Brain FA of various areas was inversely associated with negative symptoms of schizophrenia (z-score -0.30 [-0.23, -0.36]; p %<0.00001) but was positively associated with positive symptoms of schizophrenia (z-score 0.16 [0.04, 0.27]; p = 0.007) and general psychopathology of schizophrenia (z-score 0.26 [0.15, 0.37]; p = 0.00001). Although, DTI-measured brain FA is found to be inversely associated with negative symptoms and positively associated with positive symptoms and general psychopathology of schizophrenia, the effect sizes of these correlations are low and may not be clinically significant. Moreover, brain FA was also negatively associated with age of patients. (orig.)

  13. Assessment of the background count to measure the left ventricular ejection fraction with a nuclear stethoscope

    International Nuclear Information System (INIS)

    Doi, Mayumi; Hiroe, Michiaki; Marumo, Fumiaki; Itoh, Haruki; Taniguchi, Koichi.

    1993-01-01

    The nuclear stethoscope is a newly developed device for monitoring left ventricular ejection fraction (EF) with a pair of cadmium telluride detector for both left ventricular count (first channel) and background count (second channel). Although it is useful for evaluating the cardiac function during exercise, the methodology of the calculation for distinguishing the net ventricular blood count from the background count has not been established yet. In order to establish a reasonable method to calculate EF, we measured EF using a nuclear stethoscope and conventional gated blood pool scintigraphy in 20 healthy volunteers. All subjects underwent two supine ergometer exercise tests consisting of the 3 stages for the nuclear stethoscope and blood pool scintigraphy. The EF was determined with the following three methods for the nuclear stethoscope: 1) Cut-off level was fixed at 70% of first channel, 2) Cut-off level at 75%, and 3) Cut-off level was determined by the background count obtained from second channel. There was a poor relationship between the EFs obtained from gated blood scintigraphy and the EFs from the nuclear stethoscope calculated by any of these methods. Regarding the EF calculated using the background count, however, the delta values of EF between rest and any of the 3 stages during exercise correlated closely to those EF from blood scintigraphy. When we apply the EF-at-rest value obtained from blood pool scintigraphy to analysis with the nuclear stethoscope, the EFs of 3 stages indicated good correlation (Stage I r=0.91, Stage II r=0.82, Stage III r=0.69). These results suggest that detecting the background count is useful in order to measure the left ventricular EF with the nuclear stethoscope. Since the absolute value of EF does not necessarily correlate to that from blood pool scintigraphy in this mehod, it is recommended to evaluate only the changing values of the EF. (author)

  14. Assessment of the background count to measure the left ventricular ejection fraction with a nuclear stethoscope

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Mayumi; Hiroe, Michiaki; Marumo, Fumiaki (Tokyo Medical and Dental Univ. (Japan). School of Medicine); Itoh, Haruki; Taniguchi, Koichi

    1993-06-01

    The nuclear stethoscope is a newly developed device for monitoring left ventricular ejection fraction (EF) with a pair of cadmium telluride detector for both left ventricular count (first channel) and background count (second channel). Although it is useful for evaluating the cardiac function during exercise, the methodology of the calculation for distinguishing the net ventricular blood count from the background count has not been established yet. In order to establish a reasonable method to calculate EF, we measured EF using a nuclear stethoscope and conventional gated blood pool scintigraphy in 20 healthy volunteers. All subjects underwent two supine ergometer exercise tests consisting of the 3 stages for the nuclear stethoscope and blood pool scintigraphy. The EF was determined with the following three methods for the nuclear stethoscope: (1) Cut-off level was fixed at 70% of first channel, (2) Cut-off level at 75%, and (3) Cut-off level was determined by the background count obtained from second channel. There was a poor relationship between the EFs obtained from gated blood scintigraphy and the EFs from the nuclear stethoscope calculated by any of these methods. Regarding the EF calculated using the background count, however, the delta values of EF between rest and any of the 3 stages during exercise correlated closely to those EF from blood scintigraphy. When we apply the EF-at-rest value obtained from blood pool scintigraphy to analysis with the nuclear stethoscope, the EFs of 3 stages indicated good correlation (Stage I r=0.91, Stage II r=0.82, Stage III r=0.69). These results suggest that detecting the background count is useful in order to measure the left ventricular EF with the nuclear stethoscope. Since the absolute value of EF does not necessarily correlate to that from blood pool scintigraphy in this mehod, it is recommended to evaluate only the changing values of the EF. (author).

  15. Schizophrenia symptomatic associations with diffusion tensor imaging measured fractional anisotropy of brain: a meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xu [Chongqing Medical University, Department of Medical Imaging, Second Affiliated Hospital, Chongqing (China); Fifth People' s Hospital of Chongqing, Department of Medical Imaging, Chongqing (China); Cao, Ding [Chongqing Medical University, Department of Hepatobiliary Surgery, Second Affiliated Hospital, Chongqing (China); Liang, Xiumei [Fifth People' s Hospital of Chongqing, Department of Medical Imaging, Chongqing (China); Zhao, Jiannong [Chongqing Medical University, Department of Medical Imaging, Second Affiliated Hospital, Chongqing (China)

    2017-07-15

    Several studies have examined the relationships between diffusion tensor imaging (DTI)-measured fractional anisotropy (FA) and the symptoms of schizophrenia, but results vary across the studies. The aim of this study was to carry out a meta-analysis of correlation coefficients reported by relevant studies to evaluate the correlative relationships between FA of various parts of the brain and schizophrenia symptomatic assessments. Literature was searched in several electronic databases, and study selection was based on precised eligibility criteria. Correlation coefficients between FA of a part of the brain and schizophrenia symptom were first converted into Fisher's z-scores for meta-analyses, and then overall effect sizes were back transformed to correlation coefficients. Thirty-three studies (1121 schizophrenia patients; age 32.66 years [95% confidence interval (CI) 30.19, 35.13]; 65.95 % [57.63, 74.28] males) were included in this meta-analysis. Age was inversely associated with brain FA (z-scores [95% CI] -0.23 [-0.14, -0.32]; p %<0.00001). Brain FA of various areas was inversely associated with negative symptoms of schizophrenia (z-score -0.30 [-0.23, -0.36]; p %<0.00001) but was positively associated with positive symptoms of schizophrenia (z-score 0.16 [0.04, 0.27]; p = 0.007) and general psychopathology of schizophrenia (z-score 0.26 [0.15, 0.37]; p = 0.00001). Although, DTI-measured brain FA is found to be inversely associated with negative symptoms and positively associated with positive symptoms and general psychopathology of schizophrenia, the effect sizes of these correlations are low and may not be clinically significant. Moreover, brain FA was also negatively associated with age of patients. (orig.)

  16. Development of gamma-ray densitometer and measurement of void fraction in instantaneous pipe rupture under BWR LOCA condition

    International Nuclear Information System (INIS)

    Yano, Toshikazu

    1983-11-01

    In order to clarify the transient mass flow rate under the instantaneous pipe rupture condition, it is necessary to use a highly sensitive void meter. Therefore, a high-response gamma-ray densitometer was developed for the measurement of void fraction variation caused by flashing vaporization of the high-pressure and -temperature water under the instantaneous pipe rupture accident. The measurement of void fraction was performed in the pipe rupture test under the BWR LOCA condition with a 6-inch diameter pipe. Initial conditions of the water were 6.86 MPa in pressure and the saturation temperature. To prove the reliability and accuracy, a calibration test by falling acrylic void simulators and an air injection test into cold water filled in the pipe were also conducted. The following results are obtained in the pipe rupture test. (1) The cone slit method is very useful to increase the measuring accuracy. (2) It is clearly observed that the apparent increase of void fraction occurs after the rarefaction wave passes. (3) The first maximum of void fraction occurs with some delay time after break. The following minimum void fraction concurs with the maximum pressure in the pressure recovering phenomena and with the maximum blowdown thrust force. (author)

  17. Using gravimetric measurement for determination of the mass fraction PM10

    Directory of Open Access Journals (Sweden)

    Nicolae Chirilă

    2011-12-01

    Full Text Available In this paper, we tried to determinate the air pollution level with mass fraction PM10 from Targu Mures area. For this purpose, determinations were made in University Petru Maior’s laboratory, using ADR 1200 S device and in Targu Mures Environmental Department’s laboratory. The results that we obtained show a low level of air pollution with mass fraction PM10 in Targu Mures area.

  18. Measurement of Muscle Protein Fractional Synthetic Rate by Capillary Gas Chromatography/Combustion Isotope Ratio Mass Spectrometry

    OpenAIRE

    Yarasheski, Kevin E.; Smith, Kenneth; Rennie, Michael J.; Bier, Dennis M.

    1992-01-01

    The measurement of skeletal muscle protein fractional synthetic rate using an infusion of (1-13C)leucine and measuring the isotopic abundance of the tracer in skeletal muscle protein by preparative gas chromatography (GC)/ninhydrin isotope ratio mass spectrometry (IRMS) is laborious and subject to errors owing to contamination by 12C. The purpose of this study was to compare muscle (13C)leucine enrichment measured with the conventional preparative GC/ninhydrin IRMS approach to a new, continuo...

  19. Measurement of acoustic emission signal energy. Calibration and tests

    International Nuclear Information System (INIS)

    Chretien, N.; Bernard, P.; Fayolle, J.

    1975-01-01

    The possibility of using an Audimat W device for analyzing the electric energy of signals delivered by a piezo-electric sensor for acoustic emission was investigated. The characteristics of the prototype device could be improved. The tests performed revealed that the 7075-T651 aluminium alloy can be used as a reference material [fr

  20. Measurements of SIP Signaling over 802.11b Links

    NARCIS (Netherlands)

    Hesselman, C.E.W.; Eertink, Henk; Eertink, E.H.; Widya, I.A.; Huizer, E.

    The Session Initiation Protocol (SIP) is a popular application-level signaling protocol that is used for a wide variety of applications such as session control and mobility handling. In some of these applications, the exchange of SIP messages is time-critical, for instance when SIP is used to handle

  1. A measurement of the branching fractions of the b-quark into charged and neutral b-hadrons

    International Nuclear Information System (INIS)

    Abdallah, J.; Abreu, P.; Adam, W.

    2003-01-01

    The production fractions of charged and neutral b-hadrons in b-quark events from Z 0 decays have been measured with the DELPHI detector at LEP. An algorithm has been developed, based on a neural network, to estimate the charge of the weakly-decaying b-hadron by distinguishing its decay products from particles produced at the primary vertex. From the data taken in the years 1994 and 1995, the fraction of b-quarks fragmenting into positively charged weakly-decaying b-hadrons has been measured to be: f + =42.09+/-0.82(stat)+/-0.89(syst)%. Subtracting the rates for charged Ξ b + and Ω b + baryons gives the production fraction of B + mesons: f Bu =40.99+/-0.82(stat)+/-1.11(syst)%

  2. The use of waveguide acoustic probes for void fraction measurement in the evaporator of BN-350-Type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Melnikov, V.I.; Nigmatulin, B.I.

    1995-09-01

    The present paper deals with some results of the experimental studies which have been carried out to investigate the steam generation dynamics in the Field tubes of sodium-water evaporators used in the BN-350 reactors. The void fraction measurements have been taken with the aid of waveguide acoustic transducers manufactured in accordance with a specially designed technology (waveguide acoustic transducers-WAT technology). Presented in this paper also the transducer design and calibration methods, as well as the diagram showing transducers arrengment in the evaporator. The transducers under test featured a waveguide of about 4 m in length and a 200-mm long sensitive element (probe). Besides, this paper specifies the void fraction data obtained through measurements in diverse points of the evaporator. The studies revealed that the period of observed fluctuations in the void fraction amounted to few seconds and was largely dependent on the level of water in the evaporator.

  3. Effects of dose fractionation on the response of alanine dosimetry

    International Nuclear Information System (INIS)

    Lundahl, Brad; Logar, John; Desrosiers, Marc; Puhl, James

    2014-01-01

    Alanine dosimetry is well established as a transfer standard and is becoming more prevalently used in routine dosimetry systems for radiation processing. Many routine measurement applications in radiation processing involve absorbed dose measurements resulting from fractioned exposures to ionizing radiation. Fractioning of absorbed dose is identified as an influence quantity (ISO/ASTM, 2013). This paper reports on study results of absorbed dose fractioning characteristics of alanine for gamma and high energy electron beam radiation sources. The results of this study indicate a radiation response difference due to absorbed dose fractioning in response can be observed after four fractionations for high-energy electron beams and no difference up to seven fractions for gamma rays using an ANOVA evaluation method. - Highlights: • Fractioning effects signaled in electron beam using an ANOVA at 6 equal increments. • Fractioning effects not signaled in gamma using an ANOVA up to 7 equal increments. • Insensitivity of alanine to dose fractioning indicates nominal impact on calibration

  4. Application of Electromagnetic Induction Technique to Measure the Void Fraction in Oil/Gas Two Phase Flow

    Science.gov (United States)

    Wahhab, H. A. Abdul; Aziz, A. R. A.; Al-Kayiem, H. H.; Nasif, M. S.; Reda, M. N.

    2018-03-01

    In this work, electromagnetic induction technique of measuring void fraction in liquid/gas fuel flow was utilized. In order to improve the electric properties of liquid fuel, an iron oxide Fe3O4 nanoparticles at 3% was blended to enhance the liquid fuel magnetization. Experiments have been conducted for a wide range of liquid and gas superficial velocities. From the experimental results, it was realized that there is an existing linear relationship between the void fraction and the measured electromotive force, when induction coils were connected in series for excitation coils, regardless of increase or decrease CNG bubbles distribution in liquid fuel flow. Therefore, it was revealed that the utilized method yielded quite reasonable account for measuring the void fraction, showing good agreement with the other available measurement techniques in the two-phase flow, and also with the published literature of the bubbly flow pattern. From the results of the present investigation, it has been proven that the electromagnetic induction is a feasible technique for the actual measurement of void fraction in a Diesel/CNG fuel flow.

  5. Extracranial doses during stereotactic radiosurgery and fractionated stereotactic radiotherapy measured with thermoluminescent dosimeter in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.H.; Lim, D.H.; Kim, S.; Hong, S.; Kim, B.K.; Kang, W-S.; Wu, H.G.; Ha, S.W.; Park, C.I. [Seoul National University College of Medicine, Department of Therapeutic Radiology (Korea)

    2000-05-01

    Recently the usage of 3-dimensional non-coplanar radiotherapy technique is increasing. We measured the extracranial dose and its distribution g the above medical procedures to estimate effect of exit doses of stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (FSRT) of the intracranial target lesions using a linac system developed in our hospital. Among over hundred patients who were treated with SRS or FSRT from 1995 to 1998, radiation dosimetry data of 15 cases with SRS and 20 cases with FSRT were analyzed. All patients were adults. Of SRS cases, 11 were male and 4 were female. Vascular malformation cases were 9, benign tumors were 3, and malignant tumors were 3. Of FSRT cases, males were 12 and females were 8. Primary malignant brain tumors were 5, benign tumors were 6, and metastatic brain tumors were 10. Doses were measured with lithium fluoride TLD chips (7.5% Li-6 and 92.5% Li-7; TLD-100, Harshaw/Filtrol, USA). The chips were attached patient's skin at the various extracranial locations during SRS or FSRT. For SRS, 14-25 Gy were delivered with 1-2 isocenters using 12-38 mm circular tertiary collimators with reference to 50-80% isodose line conforming at the periphery of the target lesions. For FSRT, 5-28 fractions were used to deliver 9-56 Gy to periphery with dose maximum of 10-66 Gy. Both procedures used 6 MV X-ray generated from Clinac-18 (Varian, USA). For SRS procedures, extracranial surface doses (relative doses) were 8.07{+-}4.27 Gy (0.31{+-}0.16% Mean{+-}S.D.) at the upper eyelids, 6.13{+-}4.32 Gy (0.24{+-}0.16%) at the submental jaw, 7.80{+-}5.44 Gy (0.33{+-}0.26%) at thyroid, 1.78{+-}0.64 Gy (0.07{+-}0.02%) at breast, 0.75{+-}0.38 Gy (0.03{+-}0.02%) at umbilicus, 0.40{+-}0.07 Gy (0.02{+-}0.01%) at perineum, and 0.46{+-}0.39 Gy (0.02{+-}0.01%) at scrotum. Thus the farther the distance from the brain, the less the dose to the location. In overall the doses were less than 0.3% and thus less detrimental. For FSRT procedures

  6. Quantitative measurement of cerebral oxygen extraction fraction using MRI in patients with MELAS.

    Directory of Open Access Journals (Sweden)

    Lei Yu

    Full Text Available OBJECTIVE: To quantify the cerebral OEF at different phases of stroke-like episodes in patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS by using MRI. METHODS: We recruited 32 patients with MELAS confirmed by gene analysis. Conventional MRI scanning, as well as functional MRI including arterial spin labeling and oxygen extraction fraction imaging, was undertaken to obtain the pathological and metabolic information of the brains at different stages of stroke-like episodes in patients. A total of 16 MRI examinations at the acute and subacute phase and 19 examinations at the interictal phase were performed. In addition, 24 healthy volunteers were recruited for control subjects. Six regions of interest were placed in the anterior, middle, and posterior parts of the bilateral hemispheres to measure the OEF of the brain or the lesions. RESULTS: OEF was reduced significantly in brains of patients at both the acute and subacute phase (0.266 ± 0.026 and at the interictal phase (0.295 ± 0.009, compared with normal controls (0.316 ± 0.025. In the brains at the acute and subacute phase of the episode, 13 ROIs were prescribed on the stroke-like lesions, which showed decreased OEF compared with the contralateral spared brain regions. Increased blood flow was revealed in the stroke-like lesions at the acute and subacute phase, which was confined to the lesions. CONCLUSION: MRI can quantitatively show changes in OEF at different phases of stroke-like episodes. The utilization of oxygen in the brain seems to be reduced more severely after the onset of episodes in MELAS, especially for those brain tissues involved in the episodes.

  7. Confidence Measurement in the Light of Signal Detection Theory

    Directory of Open Access Journals (Sweden)

    Sébastien eMassoni

    2014-12-01

    Full Text Available We compare three alternative methods for eliciting retrospective confidence in the context of a simple perceptual task: the Simple Confidence Rating (a direct report on a numerical scale, the Quadratic Scoring Rule (a post-wagering procedure and the Matching Probability (a generalization of the no-loss gambling method. We systematically compare the results obtained with these three rules to the theoretical confidence levels that can be inferred from performance in the perceptual task using Signal Detection Theory. We find that the Matching Probability provides better results in that respect. We conclude that Matching Probability is particularly well suited for studies of confidence that use Signal Detection Theory as a theoretical framework.

  8. Reconstruction and measurement of cosmogenic signals in the neutrino experiment Borexino

    International Nuclear Information System (INIS)

    Meindl, Johannes Quirin

    2013-01-01

    Underground laboratories around the globe provide low-count rate experiments with the necessary shielding against the large flux of cosmic muons present at the Earth's surface. Depending on the depth of the underground site, the muon flux is reduced by up to eight orders of magnitude. Hower, the residual muons, and the neutrons and radioisotopes they produce in nuclear spallation processes, still pose a significant background for many of these experiments. This thesis focusses on cosmogenic background signals in the neutrino experiment Borexino, which is located at the Laboratori Nazionali del Gran Sasso underground site at a depth of 3800 meters of water equivalent. The work encompasses the identification, spatial reconstruction, and measurement of rates and production yields of these cosmogenic events. For the efficient tagging of long-lived cosmogenic radioisotopes of lifetimes in the order of seconds and longer, the spatial reconstruction of the parent muon is essential. Based on the characteristic light emission profile of muons crossing the inner detector of Borexino, a new muon track reconstruction algorithm was developed. Furthermore, to increase the performance of the existing muon track reconstruction of Borexino's outer detector, a routine was programmed to automatically calibrate the photomultiplier tubes in timing and charge response. Muons entering the experiment can cause fast secondary signals from decays and captures of stopped muons, and the captures of muon-induced neutrons. To identify these events in the high noise environment after the muon, dedicated search algorithms were developed. Based on the detected signals, these fast muon-correlated events are studied. The fraction and lifetime of stopped muons are found to be in agreement with expectations. The production yield of cosmogenic neutrons is measured to (3.10±0.07 stat ±0.08 syst ) . 10 -4 n/(μ . (g/cm 2 )). The corresponding capture time in the Borexino scintillator pseudocumene is

  9. Reconstruction and measurement of cosmogenic signals in the neutrino experiment Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Meindl, Johannes Quirin

    2013-06-14

    Underground laboratories around the globe provide low-count rate experiments with the necessary shielding against the large flux of cosmic muons present at the Earth's surface. Depending on the depth of the underground site, the muon flux is reduced by up to eight orders of magnitude. Hower, the residual muons, and the neutrons and radioisotopes they produce in nuclear spallation processes, still pose a significant background for many of these experiments. This thesis focusses on cosmogenic background signals in the neutrino experiment Borexino, which is located at the Laboratori Nazionali del Gran Sasso underground site at a depth of 3800 meters of water equivalent. The work encompasses the identification, spatial reconstruction, and measurement of rates and production yields of these cosmogenic events. For the efficient tagging of long-lived cosmogenic radioisotopes of lifetimes in the order of seconds and longer, the spatial reconstruction of the parent muon is essential. Based on the characteristic light emission profile of muons crossing the inner detector of Borexino, a new muon track reconstruction algorithm was developed. Furthermore, to increase the performance of the existing muon track reconstruction of Borexino's outer detector, a routine was programmed to automatically calibrate the photomultiplier tubes in timing and charge response. Muons entering the experiment can cause fast secondary signals from decays and captures of stopped muons, and the captures of muon-induced neutrons. To identify these events in the high noise environment after the muon, dedicated search algorithms were developed. Based on the detected signals, these fast muon-correlated events are studied. The fraction and lifetime of stopped muons are found to be in agreement with expectations. The production yield of cosmogenic neutrons is measured to (3.10{+-}0.07{sub stat}{+-}0.08{sub syst}) . 10{sup -4} n/({mu} . (g/cm{sup 2})). The corresponding capture time in the

  10. Developing a Scale to Measure Content Knowledge and Pedagogy Content Knowledge of In-Service Elementary Teachers on Fractions

    Science.gov (United States)

    Kazemi, Farhad; Rafiepour, Abolfazl

    2018-01-01

    The main purpose of this study was to develop a scale for measuring content knowledge (CK) and pedagogy content knowledge (PCK) of in-service elementary teachers on mathematical fractions. Another aim of this study was to consider whether CK and PCK are separate from each other, or are in a single body. Therefore, a scale containing 22 items about…

  11. Myocardial oxygen extraction fraction measured using bolus inhalation of 15O-oxygen gas and dynamic PET

    NARCIS (Netherlands)

    Lubberink, Mark; Wong, YY; Raijmakers, P. G.; Huisman, Marc C.; Schuit, Robert C.; Luurtsema, Geert; Boellaard, Ronald; Knaapen, P; Vonk-Noordegraaf, Anton; Lammertsma, Adriaan A.

    Abstract The aim of this study was to determine the accuracy of oxygen extraction fraction (OEF) measurements using a dynamic scan protocol after bolus inhalation of 15O2. The method of analysis was optimized by investigating potential reuse of myocardial blood flow (MBF), perfusable tissue

  12. Inert gases in a terra sample - Measurements in six grain-size fractions and two single particles from Lunar 20.

    Science.gov (United States)

    Heymann, D.; Lakatos, S.; Walton, J. R.

    1973-01-01

    Review of the results of inert gas measurements performed on six grain-size fractions and two single particles from four samples of Luna 20 material. Presented and discussed data include the inert gas contents, element and isotope systematics, radiation ages, and Ar-36/Ar-40 systematics.

  13. Measurement of fractional flow reserve to guide decisions for percutaneous coronary intervention.

    Science.gov (United States)

    Siebert, Uwe; Bornschein, Bernhard; Schnell-Inderst, Petra; Rieber, Johannes; Pijls, Nico; Wasem, Jürgen; Klauss, Volker

    2008-08-27

    Coronary artery disease (CAD) is one of the leading causes of premature death in Germany. Percutaneous coronary interventions (PCI) are frequently performed in patients with angiographically intermediate stenoses. However, the necessity of PCI has not been proven for all patients. Pressure-based fractional flow reserve (FFR) is an invasive test that can be used to assess the functional significance of intermediate coronary stenoses in order to guide decisions on PCI. This health technology assessment (HTA) aims to evaluate (1) the diagnostic accuracy, (2) the risk-benefit trade-off and (3) the long-term cost-effectiveness of FFR measurement to guide the decision on PCI in patients with stable angina pectoris and intermediate coronary stenoses. We performed a literature search in medical and HTA databases. We used the DIMDI instruments (DIMDI = Deutsches Institut für Medizinische Dokumentation und Information/German Institute for Medical Information and Documentation) to assess study quality and to extract and summarize the information in evidence tables. We performed a meta-analysis to calculate the pooled overall estimate for sensitivity and specificity of FFR with 95% confidence intervals (95% CI). Individual studies' case numbers were used as weights. The influence of single studies and important covariates on the results was tested in sensitivity analyses. We developed the German Coronary Artery Disease Outcome Model (German CADOM), a decision-analytic Markov model, to estimate the long-term effectiveness and cost-effectiveness of FFR measurement in the context of the German healthcare system. Our literature search identified twelve studies relevant to this HTA-report including ten diagnostic accuracy studies of FFR measurement, one randomized clinical trial (RCT) investigating the clinical benefits of this technique as well as one economic evaluation. Pooled estimates for sensitivity and specificity were 81.7% (95% CI: 77.0-85.7%) and 78.7% (95% CI: 74

  14. Measurement of fractional flow reserve to guide decisions for percutaneous coronary intervention

    Directory of Open Access Journals (Sweden)

    Wasem, Jürgen

    2008-08-01

    Full Text Available Background: Coronary artery disease (CAD is one of the leading causes of premature death in Germany. Percutaneous coronary interventions (PCI are frequently performed in patients with angiographically intermediate stenoses. However, the necessity of PCI has not been proven for all patients. Pressure-based fractional flow reserve (FFR is an invasive test that can be used to assess the functional significance of intermediate coronary stenoses in order to guide decisions on PCI. Objectives: This health technology assessment (HTA aims to evaluate (1 the diagnostic accuracy, (2 the risk-benefit trade-off and (3 the long-term cost-effectiveness of FFR measurement to guide the decision on PCI in patients with stable angina pectoris and intermediate coronary stenoses. Methods: We performed a literature search in medical and HTA databases. We used the DIMDI instruments (DIMDI = Deutsches Institut für Medizinische Dokumentation und Information/German Institute for Medical Information and Documentation to assess study quality and to extract and summarize the information in evidence tables. We performed a meta-analysis to calculate the pooled overall estimate for sensitivity and specificity of FFR with 95% confidence intervals (95% CI. Individual studies’ case numbers were used as weights. The influence of single studies and important covariates on the results was tested in sensitivity analyses. We developed the German Coronary Artery Disease Outcome Model (German CADOM, a decision-analytic Markov model, to estimate the long-term effectiveness and cost-effectiveness of FFR measurement in the context of the German healthcare system. Results: Our literature search identified twelve studies relevant to this HTA-report including ten diagnostic accuracy studies of FFR measurement, one randomized clinical trial (RCT investigating the clinical benefits of this technique as well as one economic evaluation. Pooled estimates for sensitivity and specificity were 81

  15. Measuring long impulse responses with pseudorandom sequences and sweep signals

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Jacobsen, Finn

    2010-01-01

    In architectural acoustics, background noise, loudspeaker nonlinearities, and time variances are the most common disturbances that can compromise a measurement. The effects of such disturbances on measurement of long impulse responses with pseudorandom sequences (maximum-length sequences (MLS) an...

  16. An offset tone based gain stabilization technique for mixed-signal RF measurement systems

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Gopal, E-mail: gjos@barc.gov.in [BARC, Mumbai 400085 (India); Motiwala, Paresh D.; Randale, G.D.; Singh, Pitamber [BARC, Mumbai 400085 (India); Agarwal, Vivek; Kumar, Girish [IIT Bombay, Powai, Mumbai 400076 (India)

    2015-09-21

    This paper describes a gain stabilization technique for a RF signal measurement system. A sinusoidal signal of known amplitude, phase and close enough in frequency is added to the main, to be measured RF signal at the input of the analog section. The system stabilizes this offset tone in the digital domain, as it is sampled at the output of the analog section. This process generates a correction factor needed to stabilize the magnitude of the gain of the analog section for the main RF signal. With the help of a simple calibration procedure, the absolute amplitude of the main RF signal can be measured. The technique is especially suited for a system that processes signals around a single frequency, employs direct signal conversion into the digital domain, and processes subsequent steps in an FPGA. The inherent parallel signal processing in an FPGA-based implementation allows a real time stabilization of the gain. The effectiveness of the technique is derived from the fact, that the gain stabilization stamped to the main RF signal measurement branch requires only a few components in the system to be inherently stable. A test setup, along with experimental results is presented from the field of RF instrumentation for particle accelerators. Due to the availability of a phase synchronized RF reference signal in these systems, the measured phase difference between the main RF and the RF reference is also stabilized using this technique. A scheme of the signal processing is presented, where a moving average filter has been used to filter out not only the unwanted frequencies, but also to separate the main RF signal from the offset tone signal. This is achieved by a suitable choice of sampling and offset tone frequencies. The presented signal processing scheme is suitable to a variety of RF measurement applications.

  17. Measurement of the Branching Fraction and Polarization for the Decay B sup - -> D* sup 0 K* sup -

    CERN Document Server

    Verkerke, W

    2003-01-01

    The present a study of the decay B sup - -> D* sup 0 K* sup - based on a sample of 86 million UPSILON(4S) -> B(bar B) decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factor at SLAC. The measure the branching fraction BETA(B sup - -> D* sup 0 K* sup -) = (8.3 +- 1.1(stat) +- 1.0(syst)) x 10 sup - sup 4 , and the fraction of longitudinal polarization in this decay to be LAMBDA sub L /LAMBDA = 0.86 +- 0.06(stat) +- 0.03(syst).

  18. Electrocardiogram signal quality measures for unsupervised telehealth environments

    International Nuclear Information System (INIS)

    Redmond, S J; Xie, Y; Chang, D; Lovell, N H; Basilakis, J

    2012-01-01

    The use of telehealth paradigms for the remote management of patients suffering from chronic conditions has become more commonplace with the advancement of Internet connectivity and enterprise software systems. To facilitate clinicians in managing large numbers of telehealth patients, and in digesting the vast array of data returned from the remote monitoring environment, decision support systems in various guises are often utilized. The success of decision support systems in interpreting patient conditions from physiological data is dependent largely on the quality of these recorded data. This paper outlines an algorithm to determine the quality of single-lead electrocardiogram (ECG) recordings obtained from telehealth patients. Three hundred short ECG recordings were manually annotated to identify movement artifact, QRS locations and signal quality (discrete quality levels) by a panel of three experts, who then reconciled the annotation as a group to resolve any discrepancies. After applying a published algorithm to remove gross movement artifact, the proposed method was then applied to estimate the remaining ECG signal quality, using a Parzen window supervised statistical classifier model. The three-class classifier model, using a number of time-domain features and evaluated using cross validation, gave an accuracy in classifying signal quality of 78.7% (κ = 0.67) when using fully automated preprocessing algorithms to remove gross motion artifact and detect QRS locations. This is a similar level of accuracy to the reported human inter-scorer agreement when generating the gold standard annotation (accuracy = 70–89.3%, κ = 0.54–0.84). These results indicate that the assessment of the quality of single-lead ECG recordings, acquired in unsupervised telehealth environments, is entirely feasible and may help to promote the acceptance and utility of future decision support systems for remotely managing chronic disease conditions. (paper)

  19. Measurement of the ratio of $B_c^+$ branching fractions to $J/\\psi\\pi^+$ and $J/\\psi\\mu^+\

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Balagura, Vladislav; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gavrilov, Gennadii; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Giani', Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gordon, Hamish; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Guoming; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Manca, Giulia; Mancinelli, Giampiero; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2014-01-01

    The first measurement that relates semileptonic and hadronic decay rates of the $B_c^+$ meson is performed using proton-proton collision data corresponding to 1.0 fb$^{-1}$ of integrated luminosity collected with the LHCb detector. The measured value of the ratio of branching fractions, ${\\cal B}(B_c^+ \\to J/\\psi \\pi^+)/{\\cal B}(B_c^+\\to J/\\psi\\mu^+\

  20. A neutron scattering device for void fraction measurement in channels of the RD-14M thermalhydraulics test facility

    Energy Technology Data Exchange (ETDEWEB)

    Han, P; Hussein, E M.A. [New Brunswick Univ., Fredericton (Canada). Dept. of Mechanical Engineering; Ingham, P J [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs.

    1996-12-31

    This paper presents a neutron scattering device designed for measuring the void fraction of two-phase flow in the channels or heated sections of the RD-14M Thermalhydraulics Test Facility, located at the AECL Whiteshell Laboratories. The results of an on-line test of the device are presented. The performance of the scatterometer is assessed and is shown to be in agreement with the results inferred from other independent process-parameter measurements. (author). 2 refs., 7 figs.

  1. Determination of hepatic fractional clearance of radioactive gold colloids for a measure of effective hepatic blood flow

    International Nuclear Information System (INIS)

    Fujii, Masahiro

    1979-01-01

    For a measure of effective blood flow, a hepatic fractional clearance of 198 Au-colloids was determined, which was obtained from the disappearance rate multiplied by the fraction of injected dose taken up by the liver. The hepatic uptake was determined with a gamma camera. The counts over the liver was corrected for body weight and height. The method was considered sufficiently simple for routine use. 198 Au-colloids were obtained from Dainabot Lab. and CIS. The former gave 64% higher values of disappearance rate than the latter, without any change in the organ distribution. A quality control tests were applied over a six-year period to the disappearance rates. Reproducibility within 95 to confidence limits was found for both groups. In 28 normal control subjects, hepatic fractional clearance of the colloids from Dainabot Lab. was 18.5 +- 3.4%/min. In patients with progressed hepatic disease, both hepatic fractional clearance and final hepatic uptake were decreased, showing that the determination of hepatic uptake is necessary in measuring effective hepatic blood flow by the colloidal clearance method. The influence of splenic uptake is discussed in relation to hepatic blood flow measurement. (author)

  2. Propagation of void fraction uncertainty measures in the RETRAN-3D simulation of the Peach Bottom turbine trip

    International Nuclear Information System (INIS)

    Vinai, Paolo; Macian-Juan, Rafael; Chawla, Rakesh

    2011-01-01

    The paper describes the propagation of void fraction uncertainty, as quantified by employing a novel methodology developed at Paul Scherrer Institut, in the RETRAN-3D simulation of the Peach Bottom turbine trip test. Since the transient considered is characterized by a strong coupling between thermal-hydraulics and neutronics, the accuracy in the void fraction model has a very important influence on the prediction of the power history and, in particular, of the maximum power reached. It has been shown that the objective measures used for the void fraction uncertainty, based on the direct comparison between experimental and predicted values extracted from a database of appropriate separate-effect tests, provides power uncertainty bands that are narrower and more realistic than those based, for example, on expert opinion. The applicability of such an approach to best estimate, nuclear power plant transient analysis has thus been demonstrated.

  3. Measurement of left ventricular ejection fraction using gated 99mTc-sestamibi myocardial planar images: Comparison to contrast ventriculography

    International Nuclear Information System (INIS)

    Parker, D.A.; Lloret, R.L.; Barilla, F.; Douthat, L.; Gheorghiade, M.

    1991-01-01

    Using the new myocardial perfusion agent 99mTc-sestamibi and multigated acquisition on a nuclear medicine gamma camera, the left ventricular ejection fraction (LVEF) was derived in 13 patients with coronary artery disease (CAD). Cross-sectional activity profiles were used to measure the left ventricle from end-diastolic and end-systolic images. Several different geometric methods were then utilized to derive ejection fractions from the nuclear data. Comparison of the resultant ejection fractions to those obtained from contrast ventriculography showed significant correlation for all geometric methods (P less than 0.01, Sy X x = 6.2 to 9.6). The authors conclude that in patients with CAD one or more of these simple geometric methods can provide a useful estimate of the LVEF when performing 99mTc-sestamibi multigated myocardial perfusion imaging

  4. Precise Void Fraction Measurement in Two-phase Flows Independent of the Flow Regime Using Gamma-ray Attenuation

    Directory of Open Access Journals (Sweden)

    E. Nazemi

    2016-02-01

    Full Text Available Void fraction is an important parameter in the oil industry. This quantity is necessary for volume rate measurement in multiphase flows. In this study, the void fraction percentage was estimated precisely, independent of the flow regime in gas–liquid two-phase flows by using γ-ray attenuation and a multilayer perceptron neural network. In all previous studies that implemented a multibeam γ-ray attenuation technique to determine void fraction independent of the flow regime in two-phase flows, three or more detectors were used while in this study just two NaI detectors were used. Using fewer detectors is of advantage in industrial nuclear gauges because of reduced expense and improved simplicity. In this work, an artificial neural network is also implemented to predict the void fraction percentage independent of the flow regime. To do this, a multilayer perceptron neural network is used for developing the artificial neural network model in MATLAB. The required data for training and testing the network in three different regimes (annular, stratified, and bubbly were obtained using an experimental setup. Using the technique developed in this work, void fraction percentages were predicted with mean relative error of <1.4%.

  5. Void fraction measurements by means of flash x-ray radiography

    International Nuclear Information System (INIS)

    Angelini, S.; Theofanous, T.G.

    1998-01-01

    In this paper we discuss X-ray radiography as a means of obtaining quantitative space distributions of void fractions in highly-transient, multiphase flows. The technique and the calibration of the instrument are discussed in detail, and its application in the MAGICO-2000 experiments is used to illustrate its potential in providing unique information about the interactions. (author)

  6. Measurement of weak low frequency pressure signal using stretchable polyurethane fiber sensor for application in wearables

    DEFF Research Database (Denmark)

    Kaysir, Md Rejvi; Stefani, Alessio; Lwin, Richard

    2017-01-01

    .e. a capillary) to measure a weak low frequency signal comparable to respiration/heart rate. We characterized the fiber and measured the sensitivity of a PU capillary using a speaker connected to a function generator. The frequency of the modulated signal was recovered using Fourier Transform (FT). This bodes...

  7. Simulating soil C stability with mechanistic systems models: a multisite comparison of measured fractions and modelled pools

    Science.gov (United States)

    Robertson, Andy; Schipanski, Meagan; Sherrod, Lucretia; Ma, Liwang; Ahuja, Lajpat; McNamara, Niall; Smith, Pete; Davies, Christian

    2016-04-01

    Agriculture, covering more than 30% of global land area, has an exciting opportunity to help combat climate change by effectively managing its soil to promote increased C sequestration. Further, newly sequestered soil carbon (C) through agriculture needs to be stored in more stable forms in order to have a lasting impact on reducing atmospheric CO2 concentrations. While land uses in different climates and soils require different management strategies, the fundamental mechanisms that regulate C sequestration and stabilisation remain the same. These mechanisms are used by a number of different systems models to simulate C dynamics, and thus assess the impacts of change in management or climate. To evaluate the accuracy of these model simulations, our research uses a multidirectional approach to compare C stocks of physicochemical soil fractions collected at two long-term agricultural sites. Carbon stocks for a number of soil fractions were measured at two sites (Lincoln, UK; Colorado, USA) over 8 and 12 years, respectively. Both sites represent managed agricultural land but have notably different climates and levels of disturbance. The measured soil fractions act as proxies for varying degrees of stability, with C contained within these fractions relatable to the C simulated within the soil pools of mechanistic systems models1. Using stable isotope techniques at the UK site, specific turnover times of C within the different fractions were determined and compared with those simulated in the pools of 3 different models of varying complexity (RothC, DayCent and RZWQM2). Further, C dynamics and N-mineralisation rates of the measured fractions at the US site were assessed and compared to results of the same three models. The UK site saw a significant increase in C stocks within the most stable fractions, with topsoil (0-30cm) sequestration rates of just over 0.3 tC ha-1 yr-1 after only 8 years. Further, the sum of all fractions reported C sequestration rates of nearly 1

  8. Measuring velocity by differentiation of analog encoder signals

    NARCIS (Netherlands)

    Winarto, R.F.; Steinbuch, M.; Molengraft, van de M.J.G.

    2013-01-01

    In this report a new method for measuring velocities has been introduced. During the research in literature an overview has been made of the existing methods of measuring velocities. From this research, it can be concluded that a lot of existing approaches only work in specific settings. Besides

  9. A Survey on Wireless Transmitter Localization Using Signal Strength Measurements

    Directory of Open Access Journals (Sweden)

    Henri Nurminen

    2017-01-01

    Full Text Available Knowledge of deployed transmitters’ (Tx locations in a wireless network improves many aspects of network management. Operators and building administrators are interested in locating unknown Txs for optimizing new Tx placement, detecting and removing unauthorized Txs, selecting the nearest Tx to offload traffic onto it, and constructing radio maps for indoor and outdoor navigation. This survey provides a comprehensive review of existing algorithms that estimate the location of a wireless Tx given a set of observations with the received signal strength indication. Algorithms that require the observations to be location-tagged are suitable for outdoor mapping or small-scale indoor mapping, while algorithms that allow most observations to be unlocated trade off some accuracy to enable large-scale crowdsourcing. This article presents empirical evaluation of the algorithms using numerical simulations and real-world Bluetooth Low Energy data.

  10. Chaos weak signal detecting algorithm and its application in the ultrasonic Doppler bloodstream speed measuring

    International Nuclear Information System (INIS)

    Chen, H Y; Lv, J T; Zhang, S Q; Zhang, L G; Li, J

    2005-01-01

    At the present time, the ultrasonic Doppler measuring means has been extensively used in the human body's bloodstream speed measuring. The ultrasonic Doppler measuring means can achieve the measuring of liquid flux by detecting Doppler frequency shift of ultrasonic in the process of liquid spread. However, the detected sound wave is a weak signal that is flooded in the strong noise signal. The traditional measuring method depends on signal-to-noise ratio. Under the very low signal-to-noise ratio or the strong noise signal background, the signal frequency is not measured. This article studied on chaotic movement of Duffing oscillator and intermittent chaotic characteristic on chaotic oscillator of Duffing equation. In the light of the range of the bloodstream speed of human body and the principle of Doppler shift, the paper determines the frequency shift range. An oscillator array including many oscillators is designed according to it. The reflected ultrasonic frequency information can be ascertained accurately by the intermittent chaos quality of the oscillator. The signal-to-noise ratio of -26.5 dB is obtained by the result of the experiment. Compared with the tradition the frequency method compare, the dependence to signal-to-noise ratio is lowered consumedly. The measuring precision of the bloodstream speed is heightened

  11. Statistical measures of Planck scale signal correlations in interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Craig J. [Univ. of Chicago, Chicago, IL (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Kwon, Ohkyung [Univ. of Chicago, Chicago, IL (United States)

    2015-06-22

    A model-independent statistical framework is presented to interpret data from systems where the mean time derivative of positional cross correlation between world lines, a measure of spreading in a quantum geometrical wave function, is measured with a precision smaller than the Planck time. The framework provides a general way to constrain possible departures from perfect independence of classical world lines, associated with Planck scale bounds on positional information. A parametrized candidate set of possible correlation functions is shown to be consistent with the known causal structure of the classical geometry measured by an apparatus, and the holographic scaling of information suggested by gravity. Frequency-domain power spectra are derived that can be compared with interferometer data. As a result, simple projections of sensitivity for specific experimental set-ups suggests that measurements will directly yield constraints on a universal time derivative of the correlation function, and thereby confirm or rule out a class of Planck scale departures from classical geometry.

  12. Telemetry Measurement of Selected Biological Signal Using Bluetooth Technology

    Directory of Open Access Journals (Sweden)

    Martin Cerny

    2005-01-01

    Full Text Available This work treats of using the Bluetooth technology in biomedical engineering. The Bluetooth is used for transmission of measured data from pulse oximeter, ECG and monitor of blood pressure. OEM modules realize the devices for pulse oximetry and ECG. Both these realized devices can communicate with computer by Bluetooth technology and standard serial link too. The realized system of measuring devices is very flexible and mobile, because the Bluetooth technology is used and accumulators can supply the realized devices. It is possible to measure other physical values converted to voltage, because the used OEM module for pulse oximetry include A/D converter. The part of this work is software visualisation of measured values to.

  13. Targeting the AKT/GSK3β/Cyclin D1/Cdk4 Survival Signaling Pathway for Eradication of Tumor Radioresistance Acquired by Fractionated Radiotherapy

    International Nuclear Information System (INIS)

    Shimura, Tsutomu; Kakuda, Satoshi; Ochiai, Yasushi; Kuwahara, Yoshikazu; Takai, Yoshihiro; Fukumoto, Manabu

    2011-01-01

    Purpose: Radioresistance is a major cause of treatment failure of radiotherapy (RT) in human cancer. We have recently revealed that acquired radioresistance of tumor cells induced by fractionated radiation is attributable to cyclin D1 overexpression as a consequence of the downregulation of GSK3β-dependent cyclin D1 proteolysis mediated by a constitutively activated serine-threonine kinase, AKT. This prompted us to hypothesize that targeting the AKT/GSK3β/cyclin D1 pathway may improve fractionated RT by suppressing acquired radioresistance of tumor cells. Methods and Materials: Two human tumor cell lines with acquired radioresistance were exposed to X-rays after incubation with either an AKT inhibitor, AKT/PKB signaling inhibitor-2 (API-2), or a Cdk4 inhibitor (Cdk4-I). Cells were then subjected to immunoblotting, clonogenic survival assay, cell growth analysis, and cell death analysis with TUNEL and annexin V staining. In vivo radiosensitivity was assessed by growth of human tumors xenografted into nude mice. Results: Treatment with API-2 resulted in downregulation of cyclin D1 expression in cells with acquired radioresistance. Cellular radioresistance disappeared completely both in vitro and in vivo with accompanying apoptosis when treated with API-2. Furthermore, inhibition of cyclin D1/Cdk4 by Cdk4-I was sufficient for abolishing radioresistance. Treatment with either API-2 or Cdk4-I was also effective in suppressing resistance to cis-platinum (II)-diamine-dichloride in the cells with acquired radioresistance. Interestingly, the radiosensitizing effect of API-2 was canceled by overexpression of cyclin D1 whereas Cdk4-I was still able to sensitize cells with cyclin D1 overexpression. Conclusion: Cyclin D1/Cdk4 is a critical target of the AKT survival signaling pathway responsible for tumor radioresistance. Targeting the AKT/GSK3β/cyclin D1/Cdk4 pathway would provide a novel approach to improve fractionated RT and would have an impact on tumor eradication in

  14. Precautionary measures in determining volatile matter in natural coke washability fractions

    Energy Technology Data Exchange (ETDEWEB)

    Ashok K. Singh; N.K. Shukla; S.K. Srivastava; D.D. Haldar; B.N. Roy; Mamta Sharma [Central Institute of Mining and Fuel Research, Dhanbad (India)

    2009-01-15

    Industrial utilization of heat-altered coal, especially natural coke derived from coking coal, has become a challenge. As such approximately 3,500 million tones (Mt) reserves of baked coals are available in different coalfields of India. In the present investigation, a natural coke sample (03 tone) was collected from a huge dump of seam XIV of Burragarh colliery under leasehold of Bharat Coking Coal Ltd., a subsidiary of Coal India Ltd., situated in Dhanbad district of Jharkhand state. It was observed that the volatile matter in the washability fractions of different size ranges (50 to 0.5 mm) at specific gravity 1.40 to 1.80 showed erratic distribution with respect to ash. To check the abnormality, the subsamples were subjected to microscopic (petrographic) study and chemical analysis including CO{sub 2} determination. The high concentration of CO{sub 2} is related to high concentration of carbonate minerals generated due to igneous intrusions in coal seams. Based on above observations, it was concluded that the volatile matter can be corrected through determined CO{sub 2} content in each fraction. Since efforts are being made to use natural coke in different industries such as steel, power, cement, carbon artifacts, etc., a careful investigation of volatile matter distribution in natural coke washability fractions would be of immense help in planning its bulk use.

  15. Measurement and investigation of effects of coal tar pitch fractions in nuclear graphite properties

    International Nuclear Information System (INIS)

    Fatemi, K.; Fatoorehchian, S.; Ahari Hashemi, F.; Ahmadi, Sh.

    2003-01-01

    Coal tar pitch has a complex chemical structure. Determination of α, β, γ fractions, is one of the methods to get information about its properties. In graphite fabrication it plays a role as a binder for coke particles. During the thermal treatment it carbonizes and changes to a secondary coke. This has considerable affects on the graphite properties. In this paper, determination of α, β, γ-1 fraction in three different types of pitches have been carried out. Graphite specimens have been fabricated by using these pitches and anisotropy coke in laboratory scale. The graphite properties have been compared with the nuclear graphite prototype. The comparison of the results showed that the density and compression strength are appreciable while the anisotropy factor of properties is about one. The linear thermal expansion in graphite from Iranian pitch had a better, result, where it stands in the nuclear range of usage. As a result, our studies showed that the graphite properties are affected by properties of pitch fractions, where it can be used as a proper sample for the graphite fabrication

  16. Measurement of the Ratio of Branching Fractions B(B_{c}^{+}→J/ψτ^{+}ν_{τ})/B(B_{c}^{+}→J/ψμ^{+}ν_{μ}).

    Science.gov (United States)

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Alfonso Albero, A; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Atzeni, M; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Beliy, N; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Berninghoff, D; Bertholet, E; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Birnkraut, A; Bizzeti, A; Bjørn, M; Blake, T; Blanc, F; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bordyuzhin, I; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britton, T; Brodzicka, J; Brundu, D; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Byczynski, W; Cadeddu, S; Cai, H; Calabrese, R; Calladine, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Chapman, M G; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chitic, S-G; Chobanova, V; Chrzaszcz, M; Chubykin, A; Ciambrone, P; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Colombo, T; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; Davis, A; De Aguiar Francisco, O; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Del Buono, L; Dembinski, H-P; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Nezza, P; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Douglas, L; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Durante, P; Dzhelyadin, R; Dziewiecki, M; Dziurda, A; Dzyuba, A; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fazzini, D; Federici, L; Ferguson, D; Fernandez, G; Fernandez Declara, P; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gabriel, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Grabowski, J P; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruber, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hancock, T H; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Hasse, C; Hatch, M; He, J; Hecker, M; Heinicke, K; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Hu, W; Huard, Z C; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Ibis, P; Idzik, M; Ilten, P; Jacobsson, R; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kazeev, N; Kecke, M; Keizer, F; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Kopecna, R; Koppenburg, P; Kosmyntseva, A; Kotriakhova, S; Kozeiha, M; Kravchuk, L; Kreps, M; Kress, F; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, P-R; Li, T; Li, Y; Li, Z; Likhomanenko, T; Lindner, R; Lionetto, F; Lisovskyi, V; Liu, X; Loh, D; Loi, A; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Macko, V; Mackowiak, P; Maddrell-Mander, S; Maev, O; Maguire, K; Maisuzenko, D; Majewski, M W; Malde, S; Malecki, B; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Marangotto, D; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Mead, J V; Meadows, B; Meaux, C; Meier, F; Meinert, N; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Millard, E; Minard, M-N; Minzoni, L; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Mombächer, T; Monroy, I A; Monteil, S; Morandin, M; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Ossowska, A; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pisani, F; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Polci, F; Poli Lener, M; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Poslavskii, S; Potterat, C; Price, E; Prisciandaro, J; Prouve, C; Pugatch, V; Puig Navarro, A; Pullen, H; Punzi, G; Qian, W; Quagliani, R; Quintana, B; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Ravonel Salzgeber, M; Reboud, M; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Robert, A; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Ruiz Vidal, J; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarpis, G; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sepulveda, E S; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stepanova, M; Stevens, H; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, J; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szumlak, T; Szymanski, M; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Toriello, F; Tourinho Jadallah Aoude, R; Tournefier, E; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Usachov, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagner, A; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Verlage, T A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Weisser, C; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Winn, M; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, M; Xu, Z; Yang, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zonneveld, J B; Zucchelli, S

    2018-03-23

    A measurement is reported of the ratio of branching fractions R(J/ψ)=B(B_{c}^{+}→J/ψτ^{+}ν_{τ})/B(B_{c}^{+}→J/ψμ^{+}ν_{μ}), where the τ^{+} lepton is identified in the decay mode τ^{+}→μ^{+}ν_{μ}ν[over ¯]_{τ}. This analysis uses a sample of proton-proton collision data corresponding to 3.0  fb^{-1} of integrated luminosity recorded with the LHCb experiment at center-of-mass energies of 7 and 8 TeV. A signal is found for the decay B_{c}^{+}→J/ψτ^{+}ν_{τ} at a significance of 3 standard deviations corrected for systematic uncertainty, and the ratio of the branching fractions is measured to be R(J/ψ)=0.71±0.17(stat)±0.18(syst). This result lies within 2 standard deviations above the range of central values currently predicted by the standard model.

  17. Coronary CT angiography-derived fractional flow reserve correlated with invasive fractional flow reserve measurements - initial experience with a novel physician-driven algorithm

    International Nuclear Information System (INIS)

    Baumann, Stefan; Wang, Rui; Schoepf, U.J.; Steinberg, Daniel H.; Spearman, James V.; Bayer, Richard R.; Hamm, Christian W.; Renker, Matthias

    2015-01-01

    The present study aimed to determine the feasibility of a novel fractional flow reserve (FFR) algorithm based on coronary CT angiography (cCTA) that permits point-of-care assessment, without data transfer to core laboratories, for the evaluation of potentially ischemia-causing stenoses. To obtain CT-based FFR, anatomical coronary information and ventricular mass extracted from cCTA datasets were integrated with haemodynamic parameters. CT-based FFR was assessed for 36 coronary artery stenoses in 28 patients in a blinded fashion and compared to catheter-based FFR. Haemodynamically relevant stenoses were defined by an invasive FFR ≤0.80. Time was measured for the processing of each cCTA dataset and CT-based FFR computation. Assessment of cCTA image quality was performed using a 5-point scale. Mean total time for CT-based FFR determination was 51.9 ± 9.0 min. Per-vessel analysis for the identification of lesion-specific myocardial ischemia demonstrated good correlation (Pearson's product-moment r = 0.74, p < 0.0001) between the prototype CT-based FFR algorithm and invasive FFR. Subjective image quality analysis resulted in a median score of 4 (interquartile ranges, 3-4). Our initial data suggest that the CT-based FFR method for the detection of haemodynamically significant stenoses evaluated in the selected population correlates well with invasive FFR and renders time-efficient point-of-care assessment possible. (orig.)

  18. A simple 5-DoF MR-compatible motion signal measurement system.

    Science.gov (United States)

    Chung, Soon-Cheol; Kim, Hyung-Sik; Yang, Jae-Woong; Lee, Su-Jeong; Choi, Mi-Hyun; Kim, Ji-Hye; Yeon, Hong-Won; Park, Jang-Yeon; Yi, Jeong-Han; Tack, Gye-Rae

    2011-09-01

    The purpose of this study was to develop a simple motion measurement system with magnetic resonance (MR) compatibility and safety. The motion measurement system proposed here can measure 5-DoF motion signals without deteriorating the MR images, and it has no effect on the intense and homogeneous main magnetic field, the temporal-gradient magnetic field (which varies rapidly with time), the transceiver radio frequency (RF) coil, and the RF pulse during MR data acquisition. A three-axis accelerometer and a two-axis gyroscope were used to measure 5-DoF motion signals, and Velcro was used to attach a sensor module to a finger or wrist. To minimize the interference between the MR imaging system and the motion measurement system, nonmagnetic materials were used for all electric circuit components in an MR shield room. To remove the effect of RF pulse, an amplifier, modulation circuit, and power supply were located in a shielded case, which was made of copper and aluminum. The motion signal was modulated to an optic signal using pulse width modulation, and the modulated optic signal was transmitted outside the MR shield room using a high-intensity light-emitting diode and an optic cable. The motion signal was recorded on a PC by demodulating the transmitted optic signal into an electric signal. Various kinematic variables, such as angle, acceleration, velocity, and jerk, can be measured or calculated by using the motion measurement system developed here. This system also enables motion tracking by extracting the position information from the motion signals. It was verified that MR images and motion signals could reliably be measured simultaneously.

  19. Signal Processing for the Impedance Measurement on an Electrochemical Generator

    Directory of Open Access Journals (Sweden)

    El-Hassane AGLZIM

    2008-04-01

    Full Text Available Improving the life time of batteries or fuel cells requires the optimization of components such as membranes and electrodes and enhancement of the flow of gases [1], [2]. These goals could be reached by using a real time measurement on loaded generator. The impedance spectroscopy is a new way that was recently investigated. In this paper, we present an electronic measurement instrumentation developed in our laboratory to measure and plot the impedance of a loaded electrochemical generator like batteries and fuel cells. Impedance measures were done according to variations of the frequency in a larger band than what is usually used. The electronic instrumentation is controlled by Hpvee® software which allows us to plot the Nyquist graph of the electrochemical generator impedance. The theoretical results obtained in simulation under Pspice® confirm the choice of the method and its advantage. For safety reasons, the experimental preliminary tests were done on a 12 V vehicle battery, having an input current of 330 A and a capacity of 40 Ah and are now extended to a fuel cell. The results were plotted at various nominal voltages of the battery (12.7 V, 10 V, 8 V and 5 V and with two imposed currents (0.6 A and 4 A. The Nyquist diagram resulting from the experimental data enable us to show an influence of the load of the battery on its internal impedance. The similitude in the graph form and in order of magnitude of the values obtained (both theoretical and practical enables us to validate our electronic measurement instrumentation. Different sensors (temperature, pressure were placed around the device under test (DUT. These influence parameters were permanently recorded. Results presented here concern a classic loaded 12 V vehicle battery. The Nyquist diagram resulting from the experimental data confirms the influence of the load of the DUT on its internal impedance.

  20. Development and validation of a technique of measurement of the void fraction by X-ray tomography

    International Nuclear Information System (INIS)

    Jouet, Emmanuel

    2001-01-01

    The aim of this study is to develop an instrumentation to measure the local void fraction map in an air - water flow by X-ray tomography. After an exhaustive literature survey, the selected reconstruction algorithms are compared to choose the most effective. Several improvements are added and tested to enhance the reconstruction accuracy in the vicinity of the pipe walls. An experimental parallel beam tomographic bench has been developed and its operating parameters have been optimized. The acquisition system and the reconstruction algorithm are used to map phantoms, homogeneous or non - homogeneous air - water bubbly flows and bundle flows with regular or interlaced sampling scheme. The method is validated by comparing with the void fraction maps measured with an optical probe. At the end, the method is extended to the fan-beam geometry. (author) [fr

  1. Correcting orbital drift signal in the time series of AVHRR derived convective cloud fraction using rotated empirical orthogonal function

    Directory of Open Access Journals (Sweden)

    A. Devasthale

    2012-02-01

    Full Text Available The Advanced Very High Resolution Radiometer (AVHRR instruments onboard the series of National Oceanic and Atmospheric Administration (NOAA satellites offer the longest available meteorological data records from space. These satellites have drifted in orbit resulting in shifts in the local time sampling during the life span of the sensors onboard. Depending upon the amplitude of the diurnal cycle of the geophysical parameters derived, orbital drift may cause spurious trends in their time series. We investigate tropical deep convective clouds, which show pronounced diurnal cycle amplitude, to estimate an upper bound of the impact of orbital drift on their time series. We carry out a rotated empirical orthogonal function analysis (REOF and show that the REOFs are useful in delineating orbital drift signal and, more importantly, in subtracting this signal in the time series of convective cloud amount. These results will help facilitate the derivation of homogenized data series of cloud amount from NOAA satellite sensors and ultimately analyzing trends from them. However, we suggest detailed comparison of various methods and rigorous testing thereof applying final orbital drift corrections.

  2. HiggsSignals. Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, Philip [Bonn Univ. (Germany). Physikalisches Inst.; Heinemeyer, Sven [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Staal, Oscar [Stockholm Univ. (Sweden). The Oskar Klein Centre; Stefaniak, Tim [Bonn Univ. (Germany). Physikalisches Inst.; Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-05-15

    HiggsSignals is a Fortran90 computer code that allows to test the compatibility of Higgs sector predictions against Higgs rates and masses measured at the LHC or the Tevatron. Arbitrary models with any number of Higgs bosons can be investigated using a model-independent input scheme based on HiggsBounds. The test is based on the calculation of a {chi}{sup 2} measure from the predictions and the measured Higgs rates and masses, with the ability of fully taking into account systematics and correlations for the signal rate predictions, luminosity and Higgs mass predictions. It features two complementary methods for the test. First, the peak-centered method, in which each observable is defined by a Higgs signal rate measured at a specific hypothetical Higgs mass, corresponding to a tentative Higgs signal. Second, the mass-centered method, where the test is evaluated by comparing the signal rate measurement to the theory prediction at the Higgs mass predicted by the model. The program allows for the simultaneous use of both methods, which is useful in testing models with multiple Higgs bosons. The code automatically combines the signal rates of multiple Higgs bosons if their signals cannot be resolved by the experimental analysis. We compare results obtained with HiggsSignals to official ATLAS and CMS results for various examples of Higgs property determinations and find very good agreement. A few examples of HiggsSignals applications are provided, going beyond the scenarios investigated by the LHC collaborations. For models with more than one Higgs boson we recommend to use HiggsSignals and HiggsBounds in parallel to exploit the full constraining power of Higgs search exclusion limits and the measurements of the signal seen at m{sub H} {approx} 125.5 GeV.

  3. Measurement and comparison of left ventricular ejection fraction utilizing first transit and gated scintiangiography

    International Nuclear Information System (INIS)

    Fletcher, J.W.; Herbig, F.K.; Daly, J.L.; Walter, K.E.

    1975-01-01

    Paired serial radionuclide scans were used for determinations of left ventricular ejection fraction (LVEF) in open chest dogs with constant cardiac output and varying ventricular rates following the left atrial injection of 99m-Tc human serum albumin. Values of LVEF obtained by first transit (high frequency) data analysis and ECG-gated scintiphotography were obtained over a wide range of ventricular rate and stroke volume. The results of this study show no significant difference in LVEF as determined by both of these methods of data acquisition and analysis and demonstrate the feasibility of rapid serial determination of LVEF by radioisotope techniques

  4. Measurement of the Topological Branching Fractions of the $\\tau$ lepton at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Baarmand, M.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colijn, A.P.; Colino, N.; Costantini, S.; De la Cruz, B.; Cucciarelli, S.; Dai, T.S.; Van Dalen, J.A.; De Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duinker, P.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Ewers, A.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Lacentre, P.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Moore, R.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Pothier, J.; Prokofev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Uchida, Y.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wallraff, W.; Wang, M.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wu, S.X.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Ziegler, F.; Zilizi, G.; Zimmermann, B.; Zoller, M.

    2001-01-01

    Using data collected with the L3 detector at LEP from 1992 to 1995 on the Z peak, we determine the branching fractions of the $\\tau$ lepton into one, three and five charged particles to be: \\begin{eqnarray*} & {\\cal{B}}(\\tau\\rightarrow (1-prong)) & = 85.274 \\pm 0.105 \\pm 0.073 \\% , \\\\ & {\\cal{B}}(\\tau\\rightarrow (3-prong)) & = 14.556 \\pm 0.105 \\pm 0.076 \\%, \\\\ & {\\cal{B}}(\\tau\\rightarrow (5-prong)) & = \\phantom{0} 0.170 \\pm 0.022 \\pm 0.026 \\%. \\end{eqnarray*} \

  5. The influence of laser pulse duration and energy on ICP-MS signal intensity, elemental fractionation, and particle size distribution in NIR fs-LA-ICP-MS

    Science.gov (United States)

    Diwakar, Prasoon K.; Harilal, Sivanandan S.; LaHaye, Nicole L.; Hassanein, Ahmed; Kulkarni, Pramod

    2015-01-01

    Laser parameters, typically wavelength, pulse width, irradiance, repetition rate, and pulse energy, are critical parameters which influence the laser ablation process and thereby influence the LA-ICP-MS signal. In recent times, femtosecond laser ablation has gained popularity owing to the reduction in fractionation related issues and improved analytical performance which can provide matrix-independent sampling. The advantage offered by fs-LA is due to shorter pulse duration of the laser as compared to the phonon relaxation time and heat diffusion time. Hence the thermal effects are minimized in fs-LA. Recently, fs-LA-ICP-MS demonstrated improved analytical performance as compared to ns-LA-ICP-MS, but detailed mechanisms and processes are still not clearly understood. Improvement of fs-LA-ICP-MS over ns-LA-ICP-MS elucidates the importance of laser pulse duration and related effects on the ablation process. In this study, we have investigated the influence of laser pulse width (40 fs to 0.3 ns) and energy on LA-ICP-MS signal intensity and repeatability using a brass sample. Experiments were performed in single spot ablation mode as well as rastering ablation mode to monitor the Cu/Zn ratio. The recorded ICP-MS signal was correlated with total particle counts generated during laser ablation as well as particle size distribution. Our results show the importance of pulse width effects in the fs regime that becomes more pronounced when moving from femtosecond to picosecond and nanosecond regimes. PMID:26664120

  6. Measurements of CP asymmetries and branching fractions of two-body charmless decays of B0 and Bs0 mesons

    International Nuclear Information System (INIS)

    Morello, Michael Joseph; Pisa, Scuola Normale Superiore

    2007-01-01

    (prime) - sample. This kinematics-PID combined fit has been developed and performed for the first time at CDF in the analysis presented in this thesis and this methodology was later inherited by several other analyses. Chapter 7 is devoted to the study of the isolation variable, which is a crucial handle to enhance the signal-to-background ratio in the off-line selection. It exploits the property that the b-hadrons tend to carry a larger fraction of the transverse momentum of the particles produced in the fragmentation, with respect to lighter hadrons. Since the simulators do not accurately reproduce the fragmentation processes, this chapter is devoted to the study of the control data sample of B (s) 0 → J/ψX decays to probe the characteristics of this variable. Chapter 8 describes an innovative procedure used to optimize the selection to minimize the statistical uncertainty on the quantities one wishes to measure. The procedure is based on the fit of composition described in chap. 6. Chapter 9 reports the results of the fit of composition described in chap. 6 and the cross-checks performed to verify the goodness of the fit of composition. In order to translate the parameters returned from the fit into physics measurements the relative efficiency corrections between the various decay modes need to be applied. Chapter 10 is devoted to the description of these corrections. Chapter 11 describes the measurement of the detector-induced charge asymmetry between positively and negatively charged kaons and pions, due to their different probability of strong interaction in the tracker material using the real data. This allows to extract the acceptance correction factor for the CP asymmetries measurement without any external inputs from the simulation, and to perform a powerful check of whole analysis. Chapter 12 describes the main sources of systematic uncertainties and the method used to evaluate the significance of the results on rare modes. The final results of the measurements and

  7. Response of left ventricular ejection fraction to recovery from general anesthesia: measurement by gated radionuclide angiography

    International Nuclear Information System (INIS)

    Coriat, P.; Mundler, O.; Bousseau, D.; Fauchet, M.; Rous, A.C.; Echter, E.; Viars, P.

    1986-01-01

    To test the hypothesis that, after anesthesia for noncardiac surgical procedures, the increased cardiac work during recovery induces wall motion and ejection fraction (EF) abnormalities in patients with mild angina pectoris, gated radionuclide angiography was performed in patients undergoing simple cholecystectomy under narcotic-relaxant general anesthesia. The ejection fraction was determined during anesthesia at the end of surgery, and then determined 3 min and 3 hr after extubation. A new angiography was performed 24 hr later, and a myocardial scintigraphy (Thallium 201) was performed during infusion of the coronary vasodilator, dipyridamole. In the first part of the investigation, eight patients without coronary artery disease (CAD) (group 1) and 20 patients with mild angina (group 2) were studied. In the second part of the study, seven patients (group 3) with mild angina pectoris received an intravenous infusion of 0.4 microgram X kg-1 X min-1 of nitroglycerin started before surgery and gradually decreased 4 hr after extubation. In group 1, EF remained unchanged at recovery. In contrast in group 2, EF responded abnormally to recovery: EF decreased from 55% during anesthesia to 45% 3 min after extubation (P less than 0.001). Patients in group 3, who received intravenous nitroglycerin, showed no change of EF at recovery. This study demonstrates that recovery from general anesthesia causes abnormalities in left ventricular function in patients suffering from CAD. These abnormalities are prevented by prophylactic intravenous nitroglycerin

  8. Measurement of signal-to-noise ratio performance of TV fluoroscopy systems

    International Nuclear Information System (INIS)

    Geluk, R.J.

    1985-01-01

    A method has been developed for direct measurement of Signal-to-Noise ratio performance on X-ray TV systems. To this end the TV signal resulting from a calibrated test object, is compared with the noise level in the image. The method is objective and produces instantaneous readout, which makes it very suitable for system evaluation under dynamic conditions. (author)

  9. Magnetic Resonance Signal Intensity Ratio Measurement Before Uterine Artery Embolization

    DEFF Research Database (Denmark)

    Duvnjak, Stevo; Ravn, Pernille; Green, Anders

    2017-01-01

    , 52 patients were included in this prospective study. The SI ratio before UFE was calculated using circular region of interests placed on the dominant fibroid and the iliac muscle. The SI fibroid-to-iliac muscle ratio was calculated as SI of the dominant fibroid/SI of the iliac muscle on T1-, T2......-, and T1 post-contrast-weighted sequences. The dominant fibroid volume was measured and analyzed before and after UFE. RESULTS: In all, 46 patients who completed the three-month follow-up MRI were available for analysis. The correlation between SI fibroid-to-muscle ratio at the T2-weighted sequence...... positive correlation (r = 0.439, p T2-weighted sequence. The area under curve (AUC) for SI fibroid-to-muscle ratio on T2-weighted sequence was 0.776. For the other parameters, the AUC values were 0.512, 0.671, and 0.578, respectively. CONCLUSION: SI...

  10. Measurement of Soot Volume Fraction and Temperature for Oxygen-Enriched Ethylene Combustion Based on Flame Image Processing

    Directory of Open Access Journals (Sweden)

    Weijie Yan

    2017-05-01

    Full Text Available A method for simultaneously visualizing the two-dimensional distributions of temperature and soot volume fraction in an ethylene flame was presented. A single-color charge-coupled device (CCD camera was used to capture the flame image in the visible spectrum considering the broad-response spectrum of the R and G bands of the camera. The directional emissive power of the R and G bands were calibrated and used for measurement. Slightly increased temperatures and reduced soot concentration were predicted in the central flame without self-absorption effects considered, an iterative algorithm was used for eliminating the effect of self-absorption. Nine different cases were presented in the experiment to demonstrate the effects of fuel mass flow rate and oxygen concentration on temperature and soot concentration in three different atmospheres. For ethylene combustion in pure-air atmosphere, as the fuel mass flow rate increased, the maximum temperature slightly decreased, and the maximum soot volume fraction slightly increased. For oxygen fractions of 30%, 40%, and 50% combustion in O2/N2 oxygen-enhanced atmospheres, the maximum flame temperatures were 2276, 2451, and 2678 K, whereas combustion in O2/CO2 atmospheres were 1916, 2322, and 2535 K. The maximum soot volume fractions were 4.5, 7.0, and 9.5 ppm in oxygen-enriched O2/N2 atmosphere and 13.6, 15.3, and 14.8 ppm in oxygen-enriched O2/CO2 atmosphere. Compared with the O2/CO2 atmosphere, combustion in the oxygen-enriched O2/N2 atmosphere produced higher flame temperature and larger soot volume fraction. Preliminary results indicated that this technique is reliable and can be used for combustion diagnosis.

  11. Theory and Measurement of Signal-to-Noise Ratio in Continuous-Wave Noise Radar.

    Science.gov (United States)

    Stec, Bronisław; Susek, Waldemar

    2018-05-06

    Determination of the signal power-to-noise power ratio on the input and output of reception systems is essential to the estimation of their quality and signal reception capability. This issue is especially important in the case when both signal and noise have the same characteristic as Gaussian white noise. This article considers the problem of how a signal-to-noise ratio is changed as a result of signal processing in the correlation receiver of a noise radar in order to determine the ability to detect weak features in the presence of strong clutter-type interference. These studies concern both theoretical analysis and practical measurements of a noise radar with a digital correlation receiver for 9.2 GHz bandwidth. Firstly, signals participating individually in the correlation process are defined and the terms signal and interference are ascribed to them. Further studies show that it is possible to distinguish a signal and a noise on the input and output of a correlation receiver, respectively, when all the considered noises are in the form of white noise. Considering the above, a measurement system is designed in which it is possible to represent the actual conditions of noise radar operation and power measurement of a useful noise signal and interference noise signals—in particular the power of an internal leakage signal between a transmitter and a receiver of the noise radar. The proposed measurement stands and the obtained results show that it is possible to optimize with the use of the equipment and not with the complex processing of a noise signal. The radar parameters depend on its prospective application, such as short- and medium-range radar, ground-penetrating radar, and through-the-wall detection radar.

  12. Signals and noise in measurements of low-frequency geomagnetic fields

    International Nuclear Information System (INIS)

    Nichols, E.A.; Morrison, H.F.; Clarke, J.

    1988-01-01

    The apparent magnetic noise, obtained from the coherency function for two parallel magnetic sensors, generally overstimates sensor noise because the sensors do not measure the same signal. The different signals result from the nonparallel alignment of the sensors and from the additional magnetic signal induced in each sensor by its motion in the Earth's magnetic field. A magnetometer array experiment was completed in Grass Valley, Nevada, to determine the minimum magnetic signal that could be detected in the presence of background natural field variations and motion of the sensor. Superconducting quantum interference device (SQUID) magnetometers with interval biaxial tiltmeters were used to record the magnetic fields and the motion of the sensors

  13. Measurement of the $B^0 \\to K^{*0}e^+e^-$ branching fraction at low dilepton mass

    CERN Document Server

    INSPIRE-00258707; Abellan Beteta, C; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dickens, J; Dijkstra, H; Dogaru, M; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jansen, F; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Mazurov, A; McCarthy, J; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nisar, S; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2013-01-01

    The branching fraction of the rate decay $B^0 \\rightarrow K^{*0}e^+e^-$ in the dilepton mass region from 30 to 1000 MeV$/c^2$ has been measured by the LHCb experiment, using $pp$ collision data, corresponding to an integrated luminosity of 1.0 fb$^{-1}$, at a centre-of-mass energy of 7 TeV. The decay mode $B^0 \\rightarrow J/\\psi(e^+e^-) K^{*0}$ is utilized as a normalization channel. The branching fraction $B^0 \\rightarrow K^{*0}e^+e^-$ is measured to be $$ B(B^0 \\rightarrow K^{*0}e^+e^-)^{30-1000 MeV/c^2}= (3.1\\, ^{+0.9\\mbox{} +0.2}_{-0.8\\mbox{}-0.3} \\pm 0.2)\\times 10^{-7}, $$ where the first error is statistical, the second is systematic, and the third comes from the uncertainties on the $B^0 \\rightarrow J/\\psi K^{*0}$ and $J/\\psi \\rightarrow e^+e^- $ branching fractions.

  14. Unconstrained and Noninvasive Measurement of Swimming Behavior of Small Fish Based on Ventilatory Signals

    Science.gov (United States)

    Kitayama, Shigehisa; Soh, Zu; Hirano, Akira; Tsuji, Toshio; Takiguchi, Noboru; Ohtake, Hisao

    Ventilatory signal is a kind of bioelectric signals reflecting the ventilatory conditions of fish, and has received recent attention as an indicator for assessment of water quality, since breathing is adjusted by the respiratory center according to changes in the underwater environment surrounding the fish. The signals are thus beginning to be used in bioassay systems for water examination. Other than ventilatory conditions, swimming behavior also contains important information for water examination. The conventional bioassay systems, however, only measure either ventilatory signals or swimming behavior. This paper proposes a new unconstrained and noninvasive measurement method that is capable of conducting ventilatory signal measurement and behavioral analysis of fish at the same time. The proposed method estimates the position and the velocity of a fish in free-swimming conditions using power spectrum distribution of measured ventilatory signals from multiple electrodes. This allowed the system to avoid using a camera system which requires light sources. In order to validate estimation accuracy, the position and the velocity estimated by the proposed method were compared to those obtained from video analysis. The results confirmed that the estimated error of the fish positions was within the size of fish, and the correlation coefficient between the velocities was 0.906. The proposed method thus not only can measure the ventilatory signals, but also performs behavioral analysis as accurate as using a video camera.

  15. Differentiation between focal malignant marrow-replacing lesions and benign red marrow deposition of the spine with T2*-corrected fat-signal fraction map using a three -echo volume interpolated breath-hold gradient echo dixon sequence

    International Nuclear Information System (INIS)

    Kim, Yong Pyo; Kim, Sung Jun; Chung, Tae Sub; Yoo, Yeon Hwa; Yoon, Choon Sik; Kanneengiesser, Stephan; Paek, Moon Young; Song, Ho Taek; Lee, Young Han; Suh, Jin Suck

    2014-01-01

    To assess the feasibility of T2 * -corrected fat-signal fraction (FF) map by using the three-echo volume interpolated breath-hold gradient echo (VIBE) Dixon sequence to differentiate between malignant marrow-replacing lesions and benign red marrow deposition of vertebrae. We assessed 32 lesions from 32 patients who underwent magnetic resonance imaging after being referred for assessment of a known or possible vertebral marrow abnormality. The lesions were divided into 21 malignant marrow-replacing lesions and 11 benign red marrow depositions. Three sequences for the parameter measurements were obtained by using a 1.5-T MR imaging scanner as follows: three-echo VIBE Dixon sequence for FF; conventional T1-weighted imaging for the lesion-disc ratio (LDR); pre- and post-gadolinium enhanced fat-suppressed T1-weighted images for the contrast-enhancement ratio (CER). A region of interest was drawn for each lesion for parameter measurements. The areas under the curve (AUC) of the parameters and their sensitivities and specificities at the most ideal cutoff values from receiver operating characteristic curve analysis were obtained. AUC, sensitivity, and specificity were respectively compared between FF and CER. The AUCs of FF, LDR, and CER were 0.96, 0.80, and 0.72, respectively. In the comparison of diagnostic performance between the FF and CER, the FF showed a significantly larger AUC as compared to the CER (p = 0.030), although the difference of sensitivity (p = 0.157) and specificity (p = 0.157) were not significant. Fat-signal fraction measurement using T2 * -corrected three-echo VIBE Dixon sequence is feasible and has a more accurate diagnostic performance, than the CER, in distinguishing benign red marrow deposition from malignant bone marrow-replacing lesions.

  16. Measurement of the Branching Fractions for B+ --> K*{sup 0}pi{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2004-02-10

    We present a preliminary result of the branching fraction for the B meson decay to the final state K{sup +}{pi}{sup -}{pi}{sup +} via an intermediate K*{sup 0} resonance using the sample of approximately 23 million B{bar B} mesons produced at the {Upsilon}(4S) resonance with the BABAR detector at the PEP II e{sup +}e{sup -} collider. The K*{sup 0} was detected through the decay to the final state K{sup +}{pi}{sup -}. The result of this analysis is {Beta}(B{sup +} {yields} K*{sup 0}{pi}{sup +}) = (15.5 {+-} 3.4 {+-} 1.8) x 10{sup -6} where the first error is statistical and the second is systematic.

  17. Fractional Absorption of Active Absorbable Algal Calcium (AAACa and Calcium Carbonate Measured by a Dual Stable-Isotope Method

    Directory of Open Access Journals (Sweden)

    Steven A. Abrams

    2010-07-01

    Full Text Available With the use of stable isotopes, this study aimed to compare the bioavailability of active absorbable algal calcium (AAACa, obtained from oyster shell powder heated to a high temperature, with an additional heated seaweed component (Heated Algal Ingredient, HAI, with that of calcium carbonate. In 10 postmenopausal women volunteers aged 59 to 77 years (mean ± S.D., 67 ± 5.3, the fractional calcium absorption of AAACa and CaCO3 was measured by a dual stable isotope method. 44Ca-enriched CaCO3 and AAACa were administered in all subjects one month apart. After a fixed-menu breakfast and pre-test urine collection (Urine 0, 42Ca-enriched CaCl2 was intravenously injected, followed by oral administration of 44Ca-enriched CaCO3 without carrier 15 minutes later, and complete urine collection for the next 24 hours (Urine 24. The fractional calcium absorption was calculated as the ratio of Augmentation of 44Ca from Urine 0 to Urine 24/ augmentation of 42Ca from Urine 0 to Urine 24. Differences and changes of 44Ca and 42Ca were corrected by comparing each with 43Ca. Fractional absorption of AAACa (mean ± S.D., 23.1 ± 6.4, was distinctly and significantly higher than that of CaCO3 (14.7 ± 6.4; p = 0.0060 by paired t-test. The mean fractional absorption was approximately 1.57-times higher for AAACa than for CaCO3. The serum 25(OH vitamin D level was low (mean ± S.D., 14.2 ± 4.95 ng/ml, as is common in this age group in Japan. Among the parameters of the bone and mineral metabolism measured, none displayed a significant correlation with the fractional absorption of CaCO3 and AAACa. Higher fractional absorption of AAACa compared with CaCO3 supports previous reports on the more beneficial effect of AAACa than CaCO3 for osteoporosis.

  18. Design of a Continuous Blood Pressure Measurement System Based on Pulse Wave and ECG Signals.

    Science.gov (United States)

    Li, Jian-Qiang; Li, Rui; Chen, Zhuang-Zhuang; Deng, Gen-Qiang; Wang, Huihui; Mavromoustakis, Constandinos X; Song, Houbing; Ming, Zhong

    2018-01-01

    With increasingly fierce competition for jobs, the pressures on people have risen in recent years, leading to lifestyle and diet disorders that result in significantly higher risks of cardiovascular disease. Hypertension is one of the common chronic cardiovascular diseases; however, mainstream blood pressure measurement devices are relatively heavy. When multiple measurements are required, the user experience and the measurement results may be unsatisfactory. In this paper, we describe the design of a signal collection module that collects pulse waves and electrocardiograph (ECG) signals. The collected signals are input into a signal processing module to filter the noise and amplify the useful physiological signals. Then, we use a wavelet transform to eliminate baseline drift noise and detect the feature points of the pulse waves and ECG signals. We propose the concept of detecting the wave shape associated with an instance, an approach that minimizes the impact of atypical pulse waves on blood pressure measurements. Finally, we propose an improved method for measuring blood pressure based on pulse wave velocity that improves the accuracy of blood pressure measurements by 58%. Moreover, the results meet the american medical instrument promotion association standards, which demonstrate the feasibility of our measurement system.

  19. Influence of Wilbraham-Gibbs Phenomenon on Digital Stochastic Measurement of EEG Signal Over an Interval

    Directory of Open Access Journals (Sweden)

    Sovilj P.

    2014-10-01

    Full Text Available Measurement methods, based on the approach named Digital Stochastic Measurement, have been introduced, and several prototype and small-series commercial instruments have been developed based on these methods. These methods have been mostly investigated for various types of stationary signals, but also for non-stationary signals. This paper presents, analyzes and discusses digital stochastic measurement of electroencephalography (EEG signal in the time domain, emphasizing the problem of influence of the Wilbraham-Gibbs phenomenon. The increase of measurement error, related to the Wilbraham-Gibbs phenomenon, is found. If the EEG signal is measured and measurement interval is 20 ms wide, the average maximal error relative to the range of input signal is 16.84 %. If the measurement interval is extended to 2s, the average maximal error relative to the range of input signal is significantly lowered - down to 1.37 %. Absolute errors are compared with the error limit recommended by Organisation Internationale de Métrologie Légale (OIML and with the quantization steps of the advanced EEG instruments with 24-bit A/D conversion

  20. Accurate measurement of imaging photoplethysmographic signals based camera using weighted average

    Science.gov (United States)

    Pang, Zongguang; Kong, Lingqin; Zhao, Yuejin; Sun, Huijuan; Dong, Liquan; Hui, Mei; Liu, Ming; Liu, Xiaohua; Liu, Lingling; Li, Xiaohui; Li, Rongji

    2018-01-01

    Imaging Photoplethysmography (IPPG) is an emerging technique for the extraction of vital signs of human being using video recordings. IPPG technology with its advantages like non-contact measurement, low cost and easy operation has become one research hot spot in the field of biomedicine. However, the noise disturbance caused by non-microarterial area cannot be removed because of the uneven distribution of micro-arterial, different signal strength of each region, which results in a low signal noise ratio of IPPG signals and low accuracy of heart rate. In this paper, we propose a method of improving the signal noise ratio of camera-based IPPG signals of each sub-region of the face using a weighted average. Firstly, we obtain the region of interest (ROI) of a subject's face based camera. Secondly, each region of interest is tracked and feature-based matched in each frame of the video. Each tracked region of face is divided into 60x60 pixel block. Thirdly, the weights of PPG signal of each sub-region are calculated, based on the signal-to-noise ratio of each sub-region. Finally, we combine the IPPG signal from all the tracked ROI using weighted average. Compared with the existing approaches, the result shows that the proposed method takes modest but significant effects on improvement of signal noise ratio of camera-based PPG estimated and accuracy of heart rate measurement.

  1. 2 H-fractionations during the biosynthesis of carbohydrates and lipids imprint a metabolic signal on the δ2 H values of plant organic compounds.

    Science.gov (United States)

    Cormier, Marc-André; Werner, Roland A; Sauer, Peter E; Gröcke, Darren R; Leuenberger, Markus C; Wieloch, Thomas; Schleucher, Jürgen; Kahmen, Ansgar

    2018-04-01

    Hydrogen (H) isotope ratio (δ 2 H) analyses of plant organic compounds have been applied to assess ecohydrological processes in the environment despite a large part of the δ 2 H variability observed in plant compounds not being fully elucidated. We present a conceptual biochemical model based on empirical H isotope data that we generated in two complementary experiments that clarifies a large part of the unexplained variability in the δ 2 H values of plant organic compounds. The experiments demonstrate that information recorded in the δ 2 H values of plant organic compounds goes beyond hydrological signals and can also contain important information on the carbon and energy metabolism of plants. Our model explains where 2 H-fractionations occur in the biosynthesis of plant organic compounds and how these 2 H-fractionations are tightly coupled to a plant's carbon and energy metabolism. Our model also provides a mechanistic basis to introduce H isotopes in plant organic compounds as a new metabolic proxy for the carbon and energy metabolism of plants and ecosystems. Such a new metabolic proxy has the potential to be applied in a broad range of disciplines, including plant and ecosystem physiology, biogeochemistry and palaeoecology. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  2. Measurement of the branching fraction of to D{sup +} {yields} K{sup -} K{sup +}K{sup +} in the LHCb experiment

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Sandra; Cavalcante, Ana Barbara Rodrigues [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2012-07-01

    Full text: The world's most powerful particle accelerator, Large Hadron Collider (LHC), is located near Geneva built around 100 m underground. For 2010 and 2011 it has collided opposing beams of 3.5 TeV protons and now the beam energy has increased to 4 TeV per beam. The LHCb experiment, one of the four main detectors in the LHC, is devoted to study CP violation and rare decays in the b and c-quark sectors. CP violation is one of the necessary ingredients to explain the difference between matter and anti-matter observed in the Universe, since they were created in equal amounts during the Big-Bang. According to the Standard Model, the CP violation in the charm sector is very small compared to the s and b systems. LHCb has the appropriate conditions to collect charm data with an outstanding statistics. So if it finds any asymmetry larger than the expected from the SM, it will open door to New Physics. We report a measurement of the branching fraction of the doubly Cabibbo suppressed mode D{sup +} {yields} K{sup -} K{sup +}K{sup +} relative to the Cabibbo-favored mode D{sup +} {yields} K{sup -} {pi}{sup +}{pi}- as a first step of a Dalitz plot analysis and CP violation measurement. Based on the signal signature, we choose the discriminating variables which distinguish between signal and background. We then select values (cuts) which allow us to not only select the signal but also maximize the statistical significance, so that, performing mass fits, we determine the yields. The efficiency was sub-divided into specific contributions, for instance, trigger and particle identification, because this way some of the contributions can be directly obtained from data and do not depend on the simulations. In this analysis we made use of 2011 LHCb data of about 1fb{sup -1} and due to the excellent performance of the LHC and LHCb we can improve the measurement of the branching fraction with respect to the previous experiments. (author)

  3. Effect of Hadron Contamination on Dielectron Signal Reconstruction in Heavy Flavor Production Measurements

    International Nuclear Information System (INIS)

    Kikoła, Daniel

    2015-01-01

    Dielectron signal reconstruction is an important tool for heavy flavor measurements because of its trigger feasibility and its relatively straightforward particle identification process. However, in the case of time projection chamber detectors, some hadron contamination is unavoidable, even if additional means are used to improve the particle identification process. In this paper, we investigate the effects of hadron (protons, pions, and kaons) contamination on the dielectron signal reconstruction process in the measurement of J/ψ and electrons from heavy flavor hadron decays

  4. Approximation of Measurement Results of “Emergency” Signal Reception Probability

    Directory of Open Access Journals (Sweden)

    Gajda Stanisław

    2017-08-01

    Full Text Available The intended aim of this article is to present approximation results of the exemplary measurements of EMERGENCY signal reception probability. The probability is under-stood as a distance function between the aircraft and a ground-based system under established conditions. The measurements were approximated using the properties of logistic functions. This probability, as a distance function, enables to determine the range of the EMERGENCY signal for a pre-set confidence level.

  5. Validation of Nonlinear Bipolar Transistor Model by Small-Signal Measurements

    DEFF Research Database (Denmark)

    Vidkjær, Jens; Porra, V.; Zhu, J.

    1992-01-01

    A new method for the validity analysis of nonlinear transistor models is presented based on DC-and small-signal S-parameter measurements and realistic consideration of the measurement and de-embedding errors and singularities of the small-signal equivalent circuit. As an example, some analysis...... results for an extended Gummel Poon model are presented in the case of a UHF bipolar power transistor....

  6. Measurement of the Low Frequency Noise of MOSFETs under Large Signal RF Excitation

    NARCIS (Netherlands)

    van der Wel, A.P.; Klumperink, Eric A.M.; Nauta, Bram

    2002-01-01

    A measurement technique [1] is presented that allows measurement of MOSFET low frequency (LF) noise under large signal RF (Radio Frequency) excitation. Measurements indicate that MOSFETS exhibit a reduction in LF noise when they are cycled from inversion to accummulation and that this reduction does

  7. Features of measurement and processing of vibration signals registered on the moving parts of electrical machines

    OpenAIRE

    Gyzhko, Yuri

    2011-01-01

    Measurement and processing of vibration signals registered on the moving parts of the electrical machines using the diagnostic information-measuring system that uses Bluetooth wireless standard for the transmission of the measured data from moving parts of electrical machine is discussed.

  8. Spectral composition of a measuring signal during measurements of vibration rates of a moving body

    Science.gov (United States)

    Daynauskas, I. A. I.; Slepov, N. N.

    1973-01-01

    Cybernetics diagnostics of machines and mechanisms using the spectral approach is discussed. The problem of establishing the accuracy of determination of the spectral composition is investigated. In systems with rectilinear or rotary movement, the vibrations appear in the form of movement rate vibrations, which are equivalent to frequency modulation of the signal, in proportion to the mean movement rate of the body. The case of a harmonic signal which reproduces and analyzes the characteristics of the frequency modulated signal is discussed. Mathematical models are developed to show the relationships of the parameters.

  9. Grey signal processing and data reconstruction in the non-diffracting beam triangulation measurement system

    Science.gov (United States)

    Meng, Hao; Wang, Zhongyu; Fu, Jihua

    2008-12-01

    The non-diffracting beam triangulation measurement system possesses the advantages of longer measurement range, higher theoretical measurement accuracy and higher resolution over the traditional laser triangulation measurement system. Unfortunately the measurement accuracy of the system is greatly degraded due to the speckle noise, the CCD photoelectric noise and the background light noise in practical applications. Hence, some effective signal processing methods must be applied to improve the measurement accuracy. In this paper a novel effective method for removing the noises in the non-diffracting beam triangulation measurement system is proposed. In the method the grey system theory is used to process and reconstruct the measurement signal. Through implementing the grey dynamic filtering based on the dynamic GM(1,1), the noises can be effectively removed from the primary measurement data and the measurement accuracy of the system can be improved as a result.

  10. Development of NPP control room operators's mental workload measurement system using bioelectric signals

    International Nuclear Information System (INIS)

    Shim, Bong Sik; Oh, In Seok; Lee, Hyun Cheol; Cha, Kyung Ho; Lee, Dong Ha

    1996-09-01

    This study developed mentalload measurement system based on the relations between mentalload and physiological responses of the human operators. The measurement system was composed of the telemetry system for EEG, EOG, ECG and respiration pattern of the subjects, A/D converter, the physiological signal processing programs (compiled by the Labview). The signal processing programs transformed the physiological signal into the scores indicating mentalload status of the subjects and recorded the mentalload scores in the form of the table of a database. The acqknowledge and the labview programs additionally transformed the mentalload score database and the operator behavior database so that both database were consolidated into one. 94 figs., 57 refs. (Author)

  11. Development of NPP control room operators`s mental workload measurement system using bioelectric signals

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Bong Sik; Oh, In Seok; Lee, Hyun Cheol; Cha, Kyung Ho [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Lee, Dong Ha [Suwon Univ., Suwon (Korea, Republic of)

    1996-09-01

    This study developed mentalload measurement system based on the relations between mentalload and physiological responses of the human operators. The measurement system was composed of the telemetry system for EEG, EOG, ECG and respiration pattern of the subjects, A/D converter, the physiological signal processing programs (compiled by the Labview). The signal processing programs transformed the physiological signal into the scores indicating mentalload status of the subjects and recorded the mentalload scores in the form of the table of a database. The acqknowledge and the labview programs additionally transformed the mentalload score database and the operator behavior database so that both database were consolidated into one. 94 figs., 57 refs. (Author).

  12. Measurement of the Branching Fraction and CP-violating Asymmetries in Neutral B Decays to D* sup+-D sup+-

    CERN Document Server

    Albert, J E

    2003-01-01

    The present measurements of the branching fraction and CP-violating asymmetries for neutral B decays to D* sup+- D sup+-. The measurement uses a data sample for approximately 88 million UPSILON(4S) -> B(bar B) decays collected with the BABAR detector at the SLAC PEP-II asymmetric-energy B factory. They measure the branching fraction to be (8.8 +- 1.0 +- 1.3) x 10 sup - sup 4 and the time-integrated CP-violating asymmetry between the rates to D* sup - D sup + and D* sup + D sup - to be ALPHA = -0.03 +- 0.11 +- 0.05. They also measure the time-dependent CP-violating asymmetry parameters to be S sub - sub + = -0.24 +- 0.69 +- 0.12, C sub - sub + = -0.22 +- 0.37 +- 0.10 for B -> D* sup - D sup + and S sub + sub - = -0.82 +- 0.75 +- 0.14, C sub + sub - = -0.47 +- 0.40 +- 0.12 for B -> D* sup + D sup -. In each case the first error is statistical and the second error is systematic.

  13. Measurement of the B → D scr(l)ν Branching Fractions and Form Factor

    International Nuclear Information System (INIS)

    Bartelt, J.; Csorna, S.E.; McLean, K.W.; Marka, S.; Xu, Z.; Godang, R.; Kinoshita, K.; Lai, I.C.; Pomianowski, P.; Schrenk, S.; Bonvicini, G.; Cinabro, D.; Greene, R.; Perera, L.P.; Zhou, G.J.; Chan, S.; Eigen, G.; Lipeles, E.; Miller, J.S.; Schmidtler, M.; Shapiro, A.; Sun, W.M.; Urheim, J.; Weinstein, A.J.; Wuerthwein, F.; Jaffe, D.E.; Masek, G.; Paar, H.P.; Potter, E.M.; Prell, S.; Sharma, V.; Asner, D.M.; Gronberg, J.; Hill, T.S.; Lange, D.J.; Morrison, R.J.; Nelson, H.N.; Nelson, T.K.; Roberts, D.; Behrens, B.H.; Ford, W.T.; Gritsan, A.; Krieg, H.; Roy, J.; Smith, J.G.; Alexander, J.P.; Baker, R.; Bebek, C.; Berger, B.E.; Berkelman, K.; Boisvert, V.; Cassel, D.G.; Crowcroft, D.S.; Dickson, M.; Dombrowski, S. von; Drell, P.S.; Ecklund, K.M.; Ehrlich, R.; Foland, A.D.; Gaidarev, P.; Gibbons, L.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Hopman, P.I.; Kandaswamy, J.; Kreinick, D.L.; Lee, T.; Liu, Y.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Ogg, M.; Patterson, J.R.; Peterson, D.; Riley, D.; Soffer, A.; Valant-Spaight, B.; Warburton, A.; Ward, C.; Athanas, M.; Avery, P.; Jones, C.D.; Lohner, M.; Prescott, C.; Rubiera, A.I.; Yelton, J.; Zheng, J.; Brandenburg, G.; Briere, R.A.; Ershov, A.; Gao, Y.S.; Kim, D.Y.; Wilson, R.; Yamamoto, H.

    1999-01-01

    Using a sample of 3.3x10 6 B -meson decays collected with the CLEO detector at the Cornell Electron Storage Ring, we have studied B - →D 0 ell - bar ν and bar B 0 →D + ell - bar ν decays, where ell - can be either e - or μ - . We distinguish B→D ell ν from other B semileptonic decays by examining the net momentum and energy of the particles recoiling against D-ell pairs. We find Γ(B→D ell ν)=(14.1± 1.0±1.2) ns -1 and derive branching fractions for B - →D 0 ell - bar ν and bar B 0 →D + ell - bar ν of (2.32±0.17±0.20)% and (2.20±0.16±0.19)% , respectively, where the uncertainties are statistical and systematic. We also investigate the B→D ell ν form factor and the implication of the result for |V cb | . copyright 1999 The American Physical Society

  14. Laser-induced breakdown spectroscopy measurement of a small fraction of rhenium in bulk tungsten

    Science.gov (United States)

    Nishijima, D.; Ueda, Y.; Doerner, R. P.; Baldwin, M. J.; Ibano, K.

    2018-03-01

    Laser-induced breakdown spectroscopy (LIBS) of bulk rhenium (Re) and tungsten (W)-Re alloy has been performed using a Q-switched Nd:YAG laser (wavelength = 1064 nm, pulse width ∼4-6 ns, laser energy = 115 mJ). It is found that the electron temperature, Te, of laser-induced Re plasma is lower than that of W plasma, and that Te of W-Re plasma is in between Re and W plasmas. This indicates that material properties affect Te in a laser-induced plasma. For analysis of W-3.3%Re alloy, only the strongest visible Re I 488.9 nm line is found to be used because of the strong enough intensity without contamination with W lines. Using the calibration-free LIBS method, the atomic fraction of Re, cRe, is evaluated as a function of the ambient Ar gas pressure, PAr. At PAr 10 Torr due to spectral overlapping of the Re I 488.9 nm line by an Ar II 488.9 nm line.

  15. Review of robust measurement of phosphorus in river water: sampling, storage, fractionation and sensitivity

    Directory of Open Access Journals (Sweden)

    H. P. Jarvie

    2002-01-01

    Full Text Available This paper reviews current knowledge on sampling, storage and analysis of phosphorus (P in river waters. Potential sensitivity of rivers with different physical, chemical and biological characteristics (trophic status, turbidity, flow regime, matrix chemistry is examined in terms of errors associated with sampling, sample preparation, storage, contamination, interference and analytical errors. Key issues identified include: The need to tailor analytical reagents and concentrations to take into account the characteristics of the sample matrix. The effects of matrix interference on the colorimetric analysis. The influence of variable rates of phospho-molybdenum blue colour formation. The differing responses of river waters to physical and chemical conditions of storage. The higher sensitivities of samples with low P concentrations to storage and analytical errors. Given high variability of river water characteristics in space and time, no single standardised methodology for sampling, storage and analysis of P in rivers can be offered. ‘Good Practice’ guidelines are suggested, which recommend that protocols for sampling, storage and analysis of river water for P is based on thorough site-specific method testing and assessment of P stability on storage. For wider sampling programmes at the regional/national scale where intensive site-specific method and stability testing are not feasible, ‘Precautionary Practice’ guidelines are suggested. The study highlights key areas requiring further investigation for improving methodological rigour. Keywords: phosphorus, orthophosphate, soluble reactive, particulate, colorimetry, stability, sensitivity, analytical error, storage, sampling, filtration, preservative, fractionation, digestion

  16. Effect of uncompensated SPN detector cables on neutron noise signals measured in VVER-440 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, S. E-mail: kisss@sunserv.kfki.hu; Lipcsei, S. E-mail: lipcsei@sunserv.kfki.hu; Hazi, G. E-mail: gah@sunserv.kfki.hu

    2003-03-01

    The Self Powered Neutron Detector (SPND) noise measurements of an operating VVER-440 nuclear reactor are described and characterised. Signal characteristics may be radically influenced by the geometrical properties of the detector and the cable, and by the measuring arrangement. Simulator is used as a means of studying the structure of those phase spectra that show propagating perturbations measured on uncompensated SPN detectors. The paper presents measurements with detectors of very different sizes (i.e. 20 cm length SPNDs and the 200 cm length compensation cables), where the ratios of the global and local component differ significantly for the different detector sizes. This phenomenon is used up for signal compensation.

  17. Aqueous fraction from Cuscuta japonica seed suppresses melanin synthesis through inhibition of the p38 mitogen-activated protein kinase signaling pathway in B16F10 cells.

    Science.gov (United States)

    Jang, Ji Yeon; Kim, Ha Neui; Kim, Yu Ri; Choi, Yung Hyun; Kim, Byung Woo; Shin, Hwa Kyoung; Choi, Byung Tae

    2012-05-07

    Semen cuscutae has been used traditionally to treat pimples and alleviate freckles and melasma in Korea. The present study aimed to investigate the inhibitory effect of Cuscuta japonica Choisy seeds on alpha-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis. The aqueous fraction from Semen cuscutae (AFSC) was used to determine anti-melanogenic effects by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay and Western blot analysis for melanin synthesis-related signaling proteins in B16F10 mouse melanoma cells. AFSC markedly inhibited α-MSH-induced melanin synthesis and tyrosinase activity, and also decreased α-MSH-induced expression of microphthalmia-associated transcription factor (MITF) and tyrosinase-related proteins (TRPs). Moreover, AFSC significantly decreased the level of phosphorylated p38 mitogen-activated protein kinase (MAPK) signaling through the down-regulation of α-MSH-induced cAMP. Furthermore, we confirmed that the specific inhibitor of p38 MAPK (SB203580)-mediated suppressed melanin synthesis and tyrosinase activity was further attenuated by AFSC. AFSC also further decreased SB203580-mediated suppression of MITF and TRP expression. These results indicate that AFSC inhibits p38 MAPK phosphorylation with suppressed cAMP levels and subsequently down-regulate MITF and TRP expression, which results in a marked reduction of melanin synthesis and tyrosinase activity in α-MSH-stimulated B16F10 cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Investigating the temporal fluctuations in geoelectrical and geochemical signals Jointly measured in a seismic area of Southern Apennine chain (Italy

    Directory of Open Access Journals (Sweden)

    S. Piscitelli

    2001-06-01

    Full Text Available We analyse geoelectrical and geochemical time series jointly measured by means of a multiparametric automatic station close to an anomalous fluid emission in Val d'Agri (Basilicata, Southern Italy. In the investigated are some destructive seismic events occurred in past and recent years. We analysed the temporal fluctuations of the signals by spectral tools. We detected scaling behaviours in the power spectra of the time series recorded, that are typical fingerprints of fractional Brownian motions. The estimated values of the spectral indices reveal the presence of antipersistent behaviour in the time dynamics of all geoelectrical and geochemical data recorded. This work intends to improve our knowledge of the inner time dynamics of geophysical non-seismometric parameters.

  19. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals.

    Science.gov (United States)

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Tzallas, Paraskevas; Loppinet, Benoit; Rakitzis, T Peter

    2015-09-14

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces.

  20. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals

    International Nuclear Information System (INIS)

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E.; Spiliotis, Alexandros K.; Rakitzis, T. Peter; Tzallas, Paraskevas; Loppinet, Benoit

    2015-01-01

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces

  1. Measurement of CP asymmetries and branching fractions in charmless two-body B-meson decays to pions and kaons

    NARCIS (Netherlands)

    Lees, J. P.; Poireau, V.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D. N.; Kerth, T.; Kolomensky, Yu. G.; Lynch, G.; Schroeder, T.; Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Bondioli, M.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.; Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schumm, B. A.; Seiden, A.; Chao, D. S.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Rakitin, A. Y.; Andreassen, R.; Huard, Z.; Meadows, B. T.; Sokoloff, M. D.; Sun, L.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Schubert, K. R.; Schwierz, R.; Bernard, D.; Verderi, M.; Clark, P. J.; Playfer, S.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Lee, C. L.; Morii, M.; Edwards, A. J.; Adametz, A.; Uwer, U.; Lacker, H. M.; Lueck, T.; Dauncey, P. D.; Behera, P. K.; Mallik, U.; Cochran, J.; Meyer, W. T.; Prell, S.; Rubin, A. E.; Gritsan, A. V.; Guo, Z. J.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.; Cowan, G.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.; Behn, E.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Dallapiccola, C.; Cowan, R.; Dujmic, D.; Sciolla, G.; Cheaib, R.; Lindemann, D.; Patel, P. M.; Robertson, S. H.; Biassoni, P.; Neri, N.; Palombo, F.; Stracka, S.; Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.; Nguyen, X.; Simard, M.; Taras, P.; De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Martinelli, M.; Raven, G.; Jessop, C. P.; LoSecco, J. M.; Honscheid, K.; Kass, R.; Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.; Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.; Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.; Pegna, D. Lopes; Olsen, J.; Smith, A. J. S.; Telnov, A. V.; Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.; Buenger, C.; Gruenberg, O.; Leddig, T.; Schroeder, H.; Voss, C.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.; Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Young, C. C.; Ziegler, V.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Lund, P.; Spanier, S. M.; Ritchie, J. L.; Ruland, A. M.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Ahmed, H.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Choi, H. H. F.; Kowalewski, R.; Lewczuk, M. J.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.; Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.

    2013-01-01

    We present improved measurements of CP-violation parameters in the decays B0→π+π−, B0→K+π−, and B0→π0π0, and of the branching fractions for B0→π0π0 and B0→K0π0. The results are obtained with the full data set collected at the Υ(4S) resonance by the BABAR experiment at the PEP-II asymmetric-energy B

  2. A Measurement of the B ---> Eta/C K Branching Fraction Using the BaBar Detector

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Frank; /Manchester U.

    2006-04-26

    The branching fraction is measured for the decay channels B{sup 0} {yields} {eta}{sub c}K{sub S}{sup 0} and B{sup +} {yields} {eta}{sub c}K{sup +} where {eta}{sub c} {yields} K{bar K}{pi}, using the BABAR detector. The {eta}{sub c} {yields} K{sub S}{sup 0}K{sup +}{pi}{sup -} and {eta}{sub c} {yields} K{sup +}K{sup -}{pi}{sup 0} decay channels are used, including non-resonant decays and possibly those through intermediate resonances.

  3. Experimental measurement of the scatter fraction in skull and body CT for teams 64- slice computed tomography

    International Nuclear Information System (INIS)

    Sanchez, G.; Haro, G.; Herrador, M.

    2011-01-01

    Different formalisms for the calculation of shielding in Cf equipment, the proposed document 147 of NCRP are widely accepted. Of the three methods mentioned in the protocol, two involve the use of two independent factor a of equipment, called scatter fraction CT in skull and body. Interestingly, the experimental measurement of the same, especially in those models following the publication of the document, which are also coincides with the highest number of detector channels and overall a greater radiation beam in the z axis.

  4. Measurement of the Branching Fractions of $B \\to D_s^{(*)+}D_s^{(*)-}$ Meson Decays at CDF II

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Dominik Emmanuel [Karlsruhe Inst. of Technology (Germany)

    2008-08-01

    The variety of phenomena occurring in the world surrounding us always has been stirring up curiosity of men. Based on empirical observations of nature and on experiments becoming more and more complex in the course of time, a variety of models concerning the structure of matter have been conceived. In this analysis Br[Bs→D$+\\atop{s}$D$-\\atop{s}$] is determined by measuring the relative branching fraction Br[Bs→D$+\\atop{s}$D$-\\atop{s}$]/Br[B0→D$+\\atop{s}$D$-\\atop{s}$].

  5. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinquan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: sun.200@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA 24061 (United States)

    2016-12-15

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  6. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    International Nuclear Information System (INIS)

    Zhou, Xinquan; Sun, Xiaodong; Liu, Yang

    2016-01-01

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  7. Measurement of the B0 -> Lambda-bar p pi Branching Fraction andStudy of the Decay Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bondioli, M

    2006-08-16

    We present a measurement of the B{sup 0} {center_dot} {bar {Lambda}}p{pi}{sup -} branching fraction performed using the BABAR detector at the PEP-II asymmetric energy e{sup +}e{sup -} collider. Based on a 232 million B{bar B} pairs data sample we measure: {center_dot} (B{sup 0} {center_dot} {bar {Lambda}}p{pi}{sup -}) = [3.30 {center_dot} 0.53(stat.) {center_dot} 0.31 (syst.)] {center_dot} 10{sup -6}. A measurement of the differential spectrum as a function of the di-baryon invariant mass m({Lambda}p) is also presented; this shows a near-threshold enhancement similar to that observed in other baryonic B decays.

  8. Measurement of the Branching Fraction and Lambda-bar Polarization in B0 -> Lambda-par p pi-

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Battaglia, M.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2009-08-03

    We present a measurement of the B{sup 0} {yields} {bar {Lambda}}p{pi}{sup -} branching fraction performed using the BABAR detector at the PEP-II asymmetric e{sup +}e{sup -} collider. Based on a sample of 467 x 10{sup 6} B{bar B} pairs we measure {Beta}(B{sup 0} {yields} {bar {Lambda}}p{pi}{sup -}) [3.07 {+-} 0.31(stat.) {+-} 0.23(syst.)] x 10{sup -6}. The measured differential spectrum as a function of the dibaryon invariant mass m({bar {Lambda}}p) shows a near-threshold enhancement similar to that observed in other baryonic B decays. We study the {bar {Lambda}} polarization as a function of {bar {Lambda}} energy in the B{sup 0} rest frame (E*{sub {bar {Lambda}}}) and compare it with theoretical expectations of fully longitudinally right-polarized {bar {Lambda}} at large E*{sub {bar {Lambda}}}.

  9. Measurement of Muscle Protein Fractional Synthetic Rate by Capillary Gas Chromatography/Combustion Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Yarasheski, Kevin E.; Smith, Kenneth; Rennie, Michael J.; Bier, Dennis M.

    2014-01-01

    The measurement of skeletal muscle protein fractional synthetic rate using an infusion of (1-13C)leucine and measuring the isotopic abundance of the tracer in skeletal muscle protein by preparative gas chromatography (GC)/ninhydrin isotope ratio mass spectrometry (IRMS) is laborious and subject to errors owing to contamination by 12C. The purpose of this study was to compare muscle (13C)leucine enrichment measured with the conventional preparative GC/ninhydrin IRMS approach to a new, continuous-flow technique using capillary GC/combustion IRMS. Quadriceps muscles were removed from four Sprague–Dawley rats after each was infused at a different rate with (1-13C)leucine for 6–8 h. Muscle leucine enrichment (at.% excess) measured by both methods differed by less than 4%, except at low (13C)leucine enrichments (IRMS was used to assess muscle (13C)leucine enrichment and fractional muscle protein synthesis rate in ten normal young men and women infused with (1,2-13C2)leucine for 12–14 h. This approach reduced the variability of the isotope abundance measure and gave estimates of muscle protein synthesis rate (0.050 ± 0.011% h−1 (mean ± SEM); range = 0.023–0.147% h−1) that agree with published values determined using the standard analytical approach. The measurement of (13C)leucine enrichment from skeletal muscle protein by capillary GC/combustion IRMS provides a simple, acceptable and practical alternative to preparative GC/ninhydrin IRMS. PMID:1420371

  10. Design and measurement of signal processing system for cavity beam position monitor

    International Nuclear Information System (INIS)

    Wang Baopeng; Leng Yongbin; Yu Luyang; Zhou Weimin; Yuan Renxian; Chen Zhichu

    2013-01-01

    In this paper, in order to achieve the output signal processing of cavity beam position monitor (CBPM), we develop a digital intermediate frequency receiver architecture based signal processing system, which consists of radio frequency (RF) front end and high speed data acquisition board. The beam position resolution in the CBPM signal processing system is superior to 1 μm. Two signal processing algorithms, fast Fourier transform (FFT) and digital down converter (DDC), are evaluated offline using MATLAB platform, and both can be used to achieve, the CW input signal, position resolutions of 0.31 μm and 0.10 μm at -16 dBm. The DDC algorithm for its good compatibility is downloaded into the FPGA to realize online measurement, reaching the position resolution of 0.49 μm due to truncation error. The whole system works well and the performance meets design target. (authors)

  11. Application of near-infrared spectroscopy to measurement of hemodynamic signals accompanying stimulated saliva secretion.

    Science.gov (United States)

    Sato, Hiroki; Obata, Akiko N; Moda, Ichiro; Ozaki, Kazutaka; Yasuhara, Takaomi; Yamamoto, Yukari; Kiguchi, Masashi; Maki, Atsushi; Kubota, Kisou; Koizumi, Hideaki

    2011-04-01

    We aim to test the feasibility of using near-infrared spectroscopy (NIRS) for indirect measurement of human saliva secretion in response to taste stimuli for potential application to organoleptic testing. We use an NIRS system to measure extracranial hemodynamics (Hb-signals around the temples) of healthy participants when taste stimuli are taken in their mouths. First, the Hb-signals and volume of expelled saliva (stimulated by distilled-water or sucrose-solution intake) are simultaneously measured and large Hb-signal changes in response to the taste stimuli (Hb-responses) are found. Statistical analysis show that both the Hb response and saliva volume are larger for the sucrose solution than for the distilled water with a significant correlation between them (r = 0.81). The effects of swallowing on the Hb-signals are investigated. Similar Hb responses, differing from the sucrose solution and distilled water, are obtained even though the participants swallow the mouth contents. Finally, functional magnetic resonance imaging is used to identify possible sources of the Hb signals corresponding to salivation. Statistical analysis indicates similar responses in the extracranial regions, mainly around the middle meningeal artery. In conclusion, the identified correlation between extracranial hemodynamics and the saliva volume suggests that NIRS is applicable to the measurement of hemodynamic signals accompanying stimulated saliva secretion.

  12. Test results of the signal processing and amplifier unit for the emittance measurement system

    International Nuclear Information System (INIS)

    Stawiszynski, L.; Schneider, S.

    1984-01-01

    The signal processing and amplifier unit for the emittance measurement system is the unit with which the beam current on the harp-wires and the slit is measured and converted to a digital output. Temperature effects are very critical at low currents and the purpose of the test measurements described in this report was mainly to establish the accuracy and repeatability of the measurements under the influence of temperature variations

  13. Precision measurement of the branching fractions of J/psi -> pi(+)pi(-)pi(0) and psi ' -> pi(+)pi(-)pi(0)

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; Albertoa, D.; Ambrose, D. J.; An, F. F.; An, Q.; An, Z. H.; Bai, J. Z.; Ferroli, R. B. F. Baldini; Ban, Y.; Becker, J.; Berger, N.; Bertani, M. B.; Bian, J. M.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Bytev, V.; Cai, X.; Calcaterra, A. C.; Cao, G. F.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, Y.; Chen, Y. B.; Cheng, H. P.; Chu, Y. P.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denysenko, I.; Destefanis, M.; Ding, W. M.; Ding, Y.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Fang, J.; Fang, S. S.; Feng, C. Q.; Fu, C. D.; Fu, J. L.; Gao, Y.; Geng, C.; Goetzen, K.; Gong, W. X.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y. R.; Han, Y. L.; Hao, X. Q.; Harris, F. A.; He, K. L.; He, M.; He, Z. Y.; Heng, Y. K.; Hou, Z. L.; Hu, H. M.; Hu, J. F.; Hu, T.; Huang, B.; Huang, G. M.; Huang, J. S.; Huang, X. T.; Huang, Y. P.; Hussain, T.; Ji, C. S.; Ji, Q.; Ji, X. B.; Ji, X. L.; Jia, L. K.; Jiang, L. L.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Jing, F. F.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Kuehn, W.; Lai, W.; Lange, J. S.; Leung, J. K. C.; Li, C. H.; Li, Cheng; Li, Cui; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, K.; Li, Lei; Li, N. B.; Li, Q. J.; Li, S. L.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. N.; Li, X. Q.; Li, X. R.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Liao, X. T.; Liu, B. J.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, C. Y.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H.; Liu, H. B.; Liu, H. H.; Liu, H. M.; Liu, H. W.; Liu, J. P.; Liu, K.; Liu, K.; Liu, K. Y.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. H.; Liu, Y. B.; Liu, Yong; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lu, G. R.; Lu, H. J.; Lu, J. G.; Lu, Q. W.; Lu, X. R.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Ma, C. L.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. Y.; Maggiora, M.; Malik, Q. A.; Mao, H.; Mao, Y. J.; Mao, Z. P.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Muchnoi, N. Yu.; Nefedov, Y.; Nikolaev, I. B.; Ning, Z.; Olsen, S. L.; Ouyang, Q.; Pacetti, S. P.; Park, J. W.; Pelizaeus, M.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pun, C. S. J.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Rong, G.; Ruan, X. D.; Sarantsev, A.; Schulze, J.; Shao, M.; Shen, C. P.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, X. Y.; Spataro, S.; Spruck, B.; Sun, D. H.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, X. D.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Thorndike, E. H.; Tian, H. L.; Toth, D.; Ulrich, M. U.; Varner, G. S.; Wang, B.; Wang, B. Q.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q.; Wang, Q. J.; Wang, S. G.; Wang, X. F.; Wang, X. L.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. Y.; Wei, D. H.; Wen, Q. G.; Wen, S. P.; Werner, M. W.; Wiedner, U.; Wu, L. H.; Wu, N.; Wu, W.; Wu, Z.; Xia, L. G.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, G. M.; Xu, H.; Xu, Q. J.; Xu, X. P.; Xu, Y.; Xu, Z. R.; Xue, F.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, Y. H.; Yang, H. X.; Yang, T.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yu, B. X.; Yu, C. X.; Yu, S. P.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Zafar, A. A.; Zallo, A. Z.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, L.; Zhang, S. H.; Zhang, T. R.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. S.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, H. S.; Zhao, Jingwei; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, S. J.; Zhao, T. C.; Zhao, X. H.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zheng, Z. P.; Zhong, B.; Zhong, J.; Zhou, L.; Zhou, X. K.; Zhou, X. R.; Zhua, C.; Zhu, K.; Zhu, K. J.; Zhu, S. H.; Zhu, X. L.; Zhu, X. W.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; Zuo, J. X.

    2012-01-01

    We study the decays of the J/psi and psi' mesons to pi(+)pi(-)pi(0) using data samples at both resonances collected with the BES III detector in 2009. We measure the corresponding branching fractions with unprecedented precision and provide mass spectra and Dalitz plots. The branching fraction for

  14. Correlation techniques for the improvement of signal-to-noise ratio in measurements with stochastic processes

    CERN Document Server

    Reddy, V R; Reddy, T G; Reddy, P Y; Reddy, K R

    2003-01-01

    An AC modulation technique is described to convert stochastic signal variations into an amplitude variation and its retrieval through Fourier analysis. It is shown that this AC detection of signals of stochastic processes when processed through auto- and cross-correlation techniques improve the signal-to-noise ratio; the correlation techniques serve a similar purpose of frequency and phase filtering as that of phase-sensitive detection. A few model calculations applied to nuclear spectroscopy measurements such as Angular Correlations, Mossbauer spectroscopy and Pulse Height Analysis reveal considerable improvement in the sensitivity of signal detection. Experimental implementation of the technique is presented in terms of amplitude variations of harmonics representing the derivatives of normal spectra. Improved detection sensitivity to spectral variations is shown to be significant. These correlation techniques are general and can be made applicable to all the fields of particle counting where measurements ar...

  15. A direct measurement of the baryonic mass function of galaxies & implications for the galactic baryon fraction

    NARCIS (Netherlands)

    Papastergis, Emmanouil; Cattaneo, Andrea; Huang, Shan; Giovanelli, Riccardo; Haynes, Martha P.

    2012-01-01

    We use both an HI-selected and an optically-selected galaxy sample to directly measure the abundance of galaxies as a function of their "baryonic" mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey (SDSS) and atomic gas masses are

  16. A method for measuring power signal background and source strength in a fission reactor

    International Nuclear Information System (INIS)

    Baers, B.; Kall, L.; Visuri, P.

    1977-01-01

    Theory and experimental verification of a novel method for measuring power signal bias and source strength in a fission reactor are reported. A minicomputer was applied in the measurements. The method is an extension of the inverse kinetics method presented by Mogilner et al. (Auth.)

  17. Diagnostic value of tolerance-related gene expression measured in the recipient alloantigen-reactive T cell fraction.

    Science.gov (United States)

    Lim, Dong-Gyun; Park, Youn-Hee; Kim, Sung-Eun; Jeong, Seong-Hee; Kim, Song-Cheol

    2013-08-01

    The efficient development of tolerance-inducing therapies and safe reduction of immunosuppression should be supported by early diagnosis and prediction of tolerance in transplantation. Using mouse models of donor-specific tolerance to allogeneic skin and islet grafts we tested whether measurement of tolerance-related gene expression in their alloantigen-reactive peripheral T cell fraction efficiently reflected the tolerance status of recipients. We found that Foxp3, Nrn1, and Klrg1 were preferentially expressed in conditions of tolerance compared with rejection or unmanipulated controls if their expression is measured in CD69(+) T cells prepared from coculture of recipient peripheral T cells and donor antigen-presenting cells. The same pattern of gene expression was observed in recipients grafted with either skin or islets, recipients of different genetic origins, and even those taking immunosuppressive drugs. These findings suggest that the expression of tolerance-related genes in the alloantigen-reactive T cell fraction could be used to detect tolerance in the clinic. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Measurement of relative branching fractions of B decays to $\\psi(2S)$ and $J/\\psi$ mesons

    CERN Document Server

    Aaij, R; Adametz, A; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Beddow, J; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Corti, G; Couturier, B; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauld, R; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li, Y; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Miglioranzi, S; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polyakov, I; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vieira, D; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zvyagin, A

    2012-01-01

    The relative rates of B-meson decays into $J/\\psi$ and $\\psi(2S)$ mesons are measured for the three decay modes in pp collisions recorded with the LHCb detector. The ratios of branching fractions ($\\mathcal{B}$) are measured to be \\begin{equation*} \\begin{array}{lll} \\frac{\\mathcal{B}( B^+ \\to \\psi(2S) K^+)}{\\mathcal{B}( B^+ \\to J/\\psi K^+ )} &=& 0.594 \\pm 0.006 (stat) \\pm 0.016 (syst) \\pm 0.015\\,(R_{\\psi}), \\\\ \\frac{\\mathcal{B}( B^0 \\to \\psi(2S) K^{*0})}{\\mathcal{B}( B^0 \\to J/\\psi K^{*0})} &=& 0.476 \\pm 0.014 (stat) \\pm 0.010 (syst) \\pm 0.012\\,(R_{\\psi}), \\\\ \\frac{\\mathcal{B}^{0}_{s}( B^0_s \\to \\psi(2S)\\phi)}{\\mathcal{B}( B^0_s \\to J/\\psi\\phi)} &=& 0.489 \\pm 0.026 (stat) \\pm 0.021 (syst) \\pm 0.012\\,(R_{\\psi}), \\end{array} \\end{equation*} where the third uncertainty is from the ratio of the $\\psi(2S)$ and $J/\\psi$ branching fractions to $\\mu\\mu$.

  19. Measurement of the branching fractions and forward-backward asymmetries of the Z0 into light quarks

    CERN Document Server

    Grandi, Claudio

    1997-01-01

    Using approximately 4.3 million hadronic Z0 decays collected with the OPAL detector at LEP between 1990 and 1995, we measure the branching fractions of the zo into up-type and down-type light quarks, Rq, and the forward-backward asymmetries, AFB (q) . High-momentum stable particles are used to tag parton flavours and double tagged events are used to determine the flavour tagging efficiencies. Assuming flavour independence of strong interactions and SU (2) isospin symmetry, we measure: Rd,s/(Rd + Ru+ R,) = 0.371 ± 0.016(stat.) ± 0.016 (syst.) and AE-e(d, s) = 0.068 ± 0.035(stat.)± O.Oll(syst.), when the branching fractions and forward-backward asymmetries of down and strange quarks are set to be equal. The results are essentially free of assumptions based on hadronisation models. These results are in agreement with the Standard Model expectations and are used to infer the left and right handed couplings of strange/down quarks to the Zo , yielding gf" = -0.44�g b� and g�' = +0.13�g ;�.

  20. Measurement of the branching fractions and forward-backward asymmetries of the $Z^0$ into light quarks

    CERN Document Server

    Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Beeston, C; Behnke, T; Bell, A N; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Berlich, P; Bethke, Siegfried; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bloomer, J E; Bobinski, M; Bock, P; Bonacorsi, D; Boutemeur, M; Bouwens, B T; Braibant, S; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Clarke, P E L; Cohen, I; Conboy, J E; Cooke, O C; Cuffiani, M; Dado, S; Dallapiccola, C; Dallavalle, G M; De Jong, S; del Pozo, L A; Desch, Klaus; Dixit, M S; do Couto e Silva, E; Doucet, M; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Edwards, J E G; Estabrooks, P G; Evans, H G; Evans, M; Fabbri, Franco Luigi; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fong, D G; Foucher, M; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geddes, N I; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Giacomelli, R; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Goodrick, M J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hajdu, C; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hart, P A; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hilse, T; Hobson, P R; Homer, R James; Honma, A K; Horváth, D; Howard, R; Hutchcroft, D E; Igo-Kemenes, P; Imrie, D C; Ingram, M R; Ishii, K; Jawahery, A; Jeffreys, P W; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jones, G; Jones, M; Jost, U; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kirk, J; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lahmann, R; Lai, W P; Lanske, D; Lauber, J; Lautenschlager, S R; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markus, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mikenberg, G; Miller, D J; Mincer, A; Mir, R; Mohr, W; Montanari, A; Mori, T; Morii, M; Müller, U; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oldershaw, N J; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pearce, M J; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Poli, B; Posthaus, A; Przysiezniak, H; Rees, D L; Rigby, D; Robertson, S; Robins, S A; Rodning, N L; Roney,