WorldWideScience

Sample records for signal dependent noise

  1. Image restoration by Wiener filtering in the presence of signal-dependent noise.

    Science.gov (United States)

    Kondo, K; Ichioka, Y; Suzuki, T

    1977-09-01

    An optimum filter to restore the degraded image due to blurring and the signal-dependent noise is obtained on the basis of the theory of Wiener filtering. Computer simulations of image restoration using signal-dependent noise models are carried out. It becomes clear that the optimum filter, which makes use of a priori information on the signal-dependent nature of the noise and the spectral density of the signal and the noise showing significant spatial correlation, is potentially advantageous.

  2. Attention-dependent modulation of cortical taste circuits revealed by Granger causality with signal-dependent noise.

    Directory of Open Access Journals (Sweden)

    Qiang Luo

    2013-10-01

    Full Text Available We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention.

  3. Light field reconstruction robust to signal dependent noise

    Science.gov (United States)

    Ren, Kun; Bian, Liheng; Suo, Jinli; Dai, Qionghai

    2014-11-01

    Capturing four dimensional light field data sequentially using a coded aperture camera is an effective approach but suffers from low signal noise ratio. Although multiplexing can help raise the acquisition quality, noise is still a big issue especially for fast acquisition. To address this problem, this paper proposes a noise robust light field reconstruction method. Firstly, scene dependent noise model is studied and incorporated into the light field reconstruction framework. Then, we derive an optimization algorithm for the final reconstruction. We build a prototype by hacking an off-the-shelf camera for data capturing and prove the concept. The effectiveness of this method is validated with experiments on the real captured data.

  4. The dependence of signal-to-noise ratio on number of scans in covariance spectroscopy.

    Science.gov (United States)

    Qian, Yi; Shen, Ming; Amoureux, Jean-Paul; Noda, Isao; Hu, Bingwen

    2014-01-01

    The dependence of signal-to-noise ratio on the number of scans in covariance spectroscopy has been systematically analyzed for the first time with the intriguing relationship of SNRcov∝n/2, which is different from that in FT2D spectrum with SNRFT∝n. This relationship guarantees the signal-to-noise ratio when increasing the number of scans. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Indirect estimation of signal-dependent noise with nonadaptive heterogeneous samples.

    Science.gov (United States)

    Azzari, Lucio; Foi, Alessandro

    2014-08-01

    We consider the estimation of signal-dependent noise from a single image. Unlike conventional algorithms that build a scatterplot of local mean-variance pairs from either small or adaptively selected homogeneous data samples, our proposed approach relies on arbitrarily large patches of heterogeneous data extracted at random from the image. We demonstrate the feasibility of our approach through an extensive theoretical analysis based on mixture of Gaussian distributions. A prototype algorithm is also developed in order to validate the approach on simulated data as well as on real camera raw images.

  6. Electron dose dependence of signal-to-noise ratio, atom contrast and resolution in transmission electron microscope images

    International Nuclear Information System (INIS)

    Lee, Z.; Rose, H.; Lehtinen, O.; Biskupek, J.; Kaiser, U.

    2014-01-01

    In order to achieve the highest resolution in aberration-corrected (AC) high-resolution transmission electron microscopy (HRTEM) images, high electron doses are required which only a few samples can withstand. In this paper we perform dose-dependent AC-HRTEM image calculations, and study the dependence of the signal-to-noise ratio, atom contrast and resolution on electron dose and sampling. We introduce dose-dependent contrast, which can be used to evaluate the visibility of objects under different dose conditions. Based on our calculations, we determine optimum samplings for high and low electron dose imaging conditions. - Highlights: • The definition of dose-dependent atom contrast is introduced. • The dependence of the signal-to-noise ratio, atom contrast and specimen resolution on electron dose and sampling is explored. • The optimum sampling can be determined according to different dose conditions

  7. Theory and Measurement of Signal-to-Noise Ratio in Continuous-Wave Noise Radar.

    Science.gov (United States)

    Stec, Bronisław; Susek, Waldemar

    2018-05-06

    Determination of the signal power-to-noise power ratio on the input and output of reception systems is essential to the estimation of their quality and signal reception capability. This issue is especially important in the case when both signal and noise have the same characteristic as Gaussian white noise. This article considers the problem of how a signal-to-noise ratio is changed as a result of signal processing in the correlation receiver of a noise radar in order to determine the ability to detect weak features in the presence of strong clutter-type interference. These studies concern both theoretical analysis and practical measurements of a noise radar with a digital correlation receiver for 9.2 GHz bandwidth. Firstly, signals participating individually in the correlation process are defined and the terms signal and interference are ascribed to them. Further studies show that it is possible to distinguish a signal and a noise on the input and output of a correlation receiver, respectively, when all the considered noises are in the form of white noise. Considering the above, a measurement system is designed in which it is possible to represent the actual conditions of noise radar operation and power measurement of a useful noise signal and interference noise signals—in particular the power of an internal leakage signal between a transmitter and a receiver of the noise radar. The proposed measurement stands and the obtained results show that it is possible to optimize with the use of the equipment and not with the complex processing of a noise signal. The radar parameters depend on its prospective application, such as short- and medium-range radar, ground-penetrating radar, and through-the-wall detection radar.

  8. Determination of noise sources and space-dependent reactor transfer functions from measured output signals only

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J.E.; van Dam, H.; Kleiss, E.B.J.; van Uitert, G.C.; Veldhuis, D.

    1982-01-01

    The measured cross power spectral densities of the signals from three neutron detectors and the displacement of the control rod of the 2 MW research reactor HOR at Delft have been used to determine the space-dependent reactor transfer function, the transfer function of the automatic reactor control system and the noise sources influencing the measured signals. From a block diagram of the reactor with control system and noise sources expressions were derived for the measured cross power spectral densities, which were adjusted to satisfy the requirements following from the adopted model. Then for each frequency point the required transfer functions and noise sources could be derived. The results are in agreement with those of autoregressive modelling of the reactor control feed-back loop. A method has been developed to determine the non-linear characteristics of the automatic reactor control system by analysing the non-gaussian probability density function of the power fluctuations.

  9. Determination of noise sources and space-dependent reactor transfer functions from measured output signals only

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1982-01-01

    The measured cross power spectral densities of the signals from three neutron detectors and the displacement of the control rod of the 2 MW research reactor HOR at Delft have been used to determine the space-dependent reactor transfer function, the transfer function of the automatic reactor control system and the noise sources influencing the measured signals. From a block diagram of the reactor with control system and noise sources expressions were derived for the measured cross power spectral densities, which were adjusted to satisfy the requirements following from the adopted model. Then for each frequency point the required transfer functions and noise sources could be derived. The results are in agreement with those of autoregressive modelling of the reactor control feed-back loop. A method has been developed to determine the non-linear characteristics of the automatic reactor control system by analysing the non-gaussian probability density function of the power fluctuations. (author)

  10. Real-time photonic sampling with improved signal-to-noise and distortion ratio using polarization-dependent modulators

    Science.gov (United States)

    Liang, Dong; Zhang, Zhiyao; Liu, Yong; Li, Xiaojun; Jiang, Wei; Tan, Qinggui

    2018-04-01

    A real-time photonic sampling structure with effective nonlinearity suppression and excellent signal-to-noise ratio (SNR) performance is proposed. The key points of this scheme are the polarization-dependent modulators (P-DMZMs) and the sagnac loop structure. Thanks to the polarization sensitive characteristic of P-DMZMs, the differences between transfer functions of the fundamental signal and the distortion become visible. Meanwhile, the selection of specific biases in P-DMZMs is helpful to achieve a preferable linearized performance with a low noise level for real-time photonic sampling. Compared with the quadrature-biased scheme, the proposed scheme is capable of valid nonlinearity suppression and is able to provide a better SNR performance even in a large frequency range. The proposed scheme is proved to be effective and easily implemented for real time photonic applications.

  11. Adaptive EMG noise reduction in ECG signals using noise level approximation

    Science.gov (United States)

    Marouf, Mohamed; Saranovac, Lazar

    2017-12-01

    In this paper the usage of noise level approximation for adaptive Electromyogram (EMG) noise reduction in the Electrocardiogram (ECG) signals is introduced. To achieve the adequate adaptiveness, a translation-invariant noise level approximation is employed. The approximation is done in the form of a guiding signal extracted as an estimation of the signal quality vs. EMG noise. The noise reduction framework is based on a bank of low pass filters. So, the adaptive noise reduction is achieved by selecting the appropriate filter with respect to the guiding signal aiming to obtain the best trade-off between the signal distortion caused by filtering and the signal readability. For the evaluation purposes; both real EMG and artificial noises are used. The tested ECG signals are from the MIT-BIH Arrhythmia Database Directory, while both real and artificial records of EMG noise are added and used in the evaluation process. Firstly, comparison with state of the art methods is conducted to verify the performance of the proposed approach in terms of noise cancellation while preserving the QRS complex waves. Additionally, the signal to noise ratio improvement after the adaptive noise reduction is computed and presented for the proposed method. Finally, the impact of adaptive noise reduction method on QRS complexes detection was studied. The tested signals are delineated using a state of the art method, and the QRS detection improvement for different SNR is presented.

  12. Measurement of MOSFET LF Noise Under Large Signal RF Excitation

    NARCIS (Netherlands)

    van der Wel, A.P.; Klumperink, Eric A.M.; Nauta, Bram

    A new measurement technique is presented that allows measurement of MOSFET LF noise under large signal RF excitation. Measurements indicate that MOSFETS exhibit a reduction in LF noise when they are cycled from inversion to accummulation and that this reduction does not depend on the frequency of

  13. Investigation on phase noise of the signal from a singly resonant optical parametric oscillator

    Science.gov (United States)

    Jinxia, Feng; Yuanji, Li; Kuanshou, Zhang

    2018-04-01

    The phase noise of the signal from a singly resonant optical parametric oscillator (SRO) is investigated theoretically and experimentally. An SRO based on periodically poled lithium niobate is built up that generates the signal with a maximum power of 5.2 W at 1.5 µm. The intensity noise of the signal reaches the shot noise level for frequencies above 5 MHz. The phase noise of the signal oscillates depending on the analysis frequency, and there are phase noise peaks above the shot noise level at the peak frequencies. To explain the phase noise feature of the signal, a semi-classical theoretical model of SROs including the guided acoustic wave Brillouin scattering effect within the nonlinear crystal is developed. The theoretical predictions are in good agreement with the experimental results.

  14. THE NOISE IMMUNITY OF THE DIGITAL DEMODULATOR MFM-AM SIGNAL USED IN DATA COMMUNICATIONS SYSTEMS OF AIR TRAFFIC CONTROL WITH AUTOMATIC DEPENDENT SURVEILLANCE AGAINST A NON-GAUSSIAN NOISE

    Directory of Open Access Journals (Sweden)

    A. L. Senyavskiy

    2015-01-01

    Full Text Available The article analyzes the robustness of the digital demodulator of the signal with the lowest frequency shift keying at a subcarrier frequency with respect to non-Gaussian interference type of atmospheric, industrial noise and interfering frequency -and phase-shift keyed signals. This type of demodulator is used for the transmission of navigation data in the systems of air traffic control with automatic dependent surveillance.

  15. Audibility of modulation noise in stationary signals

    NARCIS (Netherlands)

    Neelen, J.J.M.

    1970-01-01

    Recordings of an acoustic signal on magnetic tape often show noise, which may be divided into two main classes: additive noise and multiplicative noise. A characteristic of the latter is that it is weak with weak signals and strong with strong signals. This modulation noise has been subjected to a

  16. Detection of signals in noise

    CERN Document Server

    Whalen, Anthony D; Declaris, Nicholas

    1971-01-01

    Detection of Signals in Noise serves as an introduction to the principles and applications of the statistical theory of signal detection. The book discusses probability and random processes; narrowband signals, their complex representation, and their properties described with the aid of the Hilbert transform; and Gaussian-derived processes. The text also describes the application of hypothesis testing for the detection of signals and the fundamentals required for statistical detection of signals in noise. Problem exercises, references, and a supplementary bibliography are included after each c

  17. Signal processing in noise waveform radar

    CERN Document Server

    Kulpa, Krzysztof

    2013-01-01

    This book is devoted to the emerging technology of noise waveform radar and its signal processing aspects. It is a new kind of radar, which use noise-like waveform to illuminate the target. The book includes an introduction to basic radar theory, starting from classical pulse radar, signal compression, and wave radar. The book then discusses the properties, difficulties and potential of noise radar systems, primarily for low-power and short-range civil applications. The contribution of modern signal processing techniques to making noise radar practical are emphasized, and application examples

  18. Correlated and uncorrelated invisible temporal white noise alters mesopic rod signaling.

    Science.gov (United States)

    Hathibelagal, Amithavikram R; Feigl, Beatrix; Kremers, Jan; Zele, Andrew J

    2016-03-01

    We determined how rod signaling at mesopic light levels is altered by extrinsic temporal white noise that is correlated or uncorrelated with the activity of one (magnocellular, parvocellular, or koniocellular) postreceptoral pathway. Rod and cone photoreceptor excitations were independently controlled using a four-primary photostimulator. Psychometric (Weibull) functions were measured for incremental rod pulses (50 to 250 ms) in the presence (or absence; control) of perceptually invisible subthreshold extrinsic noise. Uncorrelated (rod) noise facilitates rod detection. Correlated postreceptoral pathway noise produces differential changes in rod detection thresholds and decreases the slope of the psychometric functions. We demonstrate that invisible extrinsic noise changes rod-signaling characteristics within the three retinogeniculate pathways at mesopic illumination depending on the temporal profile of the rod stimulus and the extrinsic noise type.

  19. Detection of Noise in Composite Step Signal Pattern by Visualizing Signal Waveforms

    Directory of Open Access Journals (Sweden)

    Chaman Verma

    2018-03-01

    Full Text Available The Step Composite Signals is the combination of vital informative signals that are compressed and coded to produce a predefined test image on a display device. It carries the desired sequence of information from source to destination. This information may be transmitted as digital signal, video information or data signal required as an input for the destination module. For testing of display panels, Composite Test Signals are the most important attribute of test signal transmission system. In the current research paper we present an approach for the noise detection in Composite Step Signal by analysing Composite Step Signal waveforms. The analysis of the signal waveforms reveals that the noise affected components of the signal and subsequently noise reduction process is initiated which targets noisy signal component only. Thus the quality of signal is not compromised during noise reduction process.

  20. Ultrasonic correlator versus signal averager as a signal to noise enhancement instrument

    Science.gov (United States)

    Kishoni, Doron; Pietsch, Benjamin E.

    1989-01-01

    Ultrasonic inspection of thick and attenuating materials is hampered by the reduced amplitudes of the propagated waves to a degree that the noise is too high to enable meaningful interpretation of the data. In order to overcome the low Signal to Noise (S/N) ratio, a correlation technique has been developed. In this method, a continuous pseudo-random pattern generated digitally is transmitted and detected by piezoelectric transducers. A correlation is performed in the instrument between the received signal and a variable delayed image of the transmitted one. The result is shown to be proportional to the impulse response of the investigated material, analogous to a signal received from a pulsed system, with an improved S/N ratio. The degree of S/N enhancement depends on the sweep rate. This paper describes the correlator, and compares it to the method of enhancing S/N ratio by averaging the signals. The similarities and differences between the two are highlighted and the potential advantage of the correlator system is explained.

  1. Muon Signals at a Low Signal-to-Noise Ratio Environment

    CERN Document Server

    Zakareishvili, Tamar; The ATLAS collaboration

    2017-01-01

    Calorimeters provide high-resolution energy measurements for particle detection. Muon signals are important for evaluating electronics performance, since they produce a signal that is close to electronic noise values. This work provides a noise RMS analysis for the Demonstrator drawer of the 2016 Tile Calorimeter (TileCal) Test Beam in order to help reconstruct events in a low signal-to-noise environment. Muon signals were then found for a beam penetrating through all three layers of the drawer. The Demonstrator drawer is an electronic candidate for TileCal, part of the ATLAS experiment for the Large Hadron Collider that operates at the European Organization for Nuclear Research (CERN).

  2. Stochastic resonance in a gain-noise model of a single-mode laser driven by pump noise and quantum noise with cross-correlation between real and imaginary parts under direct signal modulation

    Institute of Scientific and Technical Information of China (English)

    Chen Li-Mei; Cao Li; Wu Da-Jin

    2007-01-01

    Stochastic resonance (SR) is studied in a gain-noise model of a single-mode laser driven by a coloured pump noise and a quantum noise with cross-correlation between real and imaginary parts under a direct signal modulation. By using a linear approximation method, we find that the SR appears during the variation of signal-to-noise ratio (SNR)separately with the pump noise self-correlation time τ, the noise correlation coefficient between the real part and the imaginary part of the quantum noise λq, the attenuation coefficient γ and the deterministic steady-state intensity I0.In addition, it is found that the SR can be characterized not only by the dependence of SNR on the noise variables of τand λq, but also by the dependence of SNR on the laser system variables of γ and I0. Thus our investigation extends the characteristic quantity of SR proposed before.

  3. Complexity in neuronal noise depends on network interconnectivity.

    Science.gov (United States)

    Serletis, Demitre; Zalay, Osbert C; Valiante, Taufik A; Bardakjian, Berj L; Carlen, Peter L

    2011-06-01

    "Noise," or noise-like activity (NLA), defines background electrical membrane potential fluctuations at the cellular level of the nervous system, comprising an important aspect of brain dynamics. Using whole-cell voltage recordings from fast-spiking stratum oriens interneurons and stratum pyramidale neurons located in the CA3 region of the intact mouse hippocampus, we applied complexity measures from dynamical systems theory (i.e., 1/f(γ) noise and correlation dimension) and found evidence for complexity in neuronal NLA, ranging from high- to low-complexity dynamics. Importantly, these high- and low-complexity signal features were largely dependent on gap junction and chemical synaptic transmission. Progressive neuronal isolation from the surrounding local network via gap junction blockade (abolishing gap junction-dependent spikelets) and then chemical synaptic blockade (abolishing excitatory and inhibitory post-synaptic potentials), or the reverse order of these treatments, resulted in emergence of high-complexity NLA dynamics. Restoring local network interconnectivity via blockade washout resulted in resolution to low-complexity behavior. These results suggest that the observed increase in background NLA complexity is the result of reduced network interconnectivity, thereby highlighting the potential importance of the NLA signal to the study of network state transitions arising in normal and abnormal brain dynamics (such as in epilepsy, for example).

  4. Orbiter CCTV video signal noise analysis

    Science.gov (United States)

    Lawton, R. M.; Blanke, L. R.; Pannett, R. F.

    1977-01-01

    The amount of steady state and transient noise which will couple to orbiter CCTV video signal wiring is predicted. The primary emphasis is on the interim system, however, some predictions are made concerning the operational system wiring in the cabin area. Noise sources considered are RF fields from on board transmitters, precipitation static, induced lightning currents, and induced noise from adjacent wiring. The most significant source is noise coupled to video circuits from associated circuits in common connectors. Video signal crosstalk is the primary cause of steady state interference, and mechanically switched control functions cause the largest induced transients.

  5. Signal noise/interferer combiner unit programmable (SINCUP)

    Science.gov (United States)

    Martinezdepison, Emilio

    1988-12-01

    The Signal Noise Interferer Combiner Unit Programmable (SINCUP) has been developed to facilitate laboratory performance testing of Very Low Frequency (VLF/Low Frequency (LF) receivers. To accomplish this, the unit allows the combining in controlled amounts of various real-world environmental and manmade interference with an information carrying signal. The externally modulated signal is combined with internally/externally generated Gaussian noise and/or with an internally/externally generated interferer. In order to test modern digital processing techniques, such as Adaptive Null Steering, Eigenvector Sorting, and Widrow-Hoff adaptive filters, SINCUP is capable of generating and meeting much higher signal-to-noise plus interference ratios than earlier channel simulators. The present software has been written to accommodate a dynamic signal-to-noise ratio (SNR) range from -60 to +60 dB. Higher dynamic range units could be implemented.

  6. The position dependent influence that sensitivity correction processing gives the signal-to-noise ratio measurement in parallel imaging

    International Nuclear Information System (INIS)

    Murakami, Koichi; Yoshida, Koji; Yanagimoto, Shinichi

    2012-01-01

    We studied the position dependent influence that sensitivity correction processing gave the signal-to-noise ratio (SNR) measurement of parallel imaging (PI). Sensitivity correction processing that referred to the sensitivity distribution of the body coil improved regional uniformity more than the sensitivity uniformity correction filter with a fixed correction factor. In addition, the position dependent influence to give the SNR measurement in PI was different from the sensitivity correction processing. Therefore, if we divide SNR of the sensitivity correction processing image by SNR of the original image in each pixel and calculate SNR ratio, we can show the position dependent influence that sensitivity correction processing gives the SNR measurement in PI. It is with an index of the sensitivity correction processing precision. (author)

  7. Signal processing method for Johnson noise thermometry

    International Nuclear Information System (INIS)

    Hwang, I. G.; Moon, B. S.; Kinser, Rpger

    2003-01-01

    The development of Johnson Noise Thermometry requires a high sensitive preamplifier circuit to pick up the temperature-related noise on the sensing element. However, the random noise generated in this amplification circuit causes a significant erroneous influence to the measurement. This paper describes signal processing mechanism of the Johnson Noise Thermometry system which is underway of development in collaboration between KAERI and ORNL. It adopts two identical amplifier channels and utilizes a digital signal processing technique to remove the independent noise of each channel. The CPSD(Cross Power Spectral Density) function is used to cancel the independent noise and the differentiation of narrow or single frequency peak from the CPSD data separates the common mode electromagnetic interference noise

  8. Advanced digital signal processing and noise reduction

    CERN Document Server

    Vaseghi, Saeed V

    2008-01-01

    Digital signal processing plays a central role in the development of modern communication and information processing systems. The theory and application of signal processing is concerned with the identification, modelling and utilisation of patterns and structures in a signal process. The observation signals are often distorted, incomplete and noisy and therefore noise reduction, the removal of channel distortion, and replacement of lost samples are important parts of a signal processing system. The fourth edition of Advanced Digital Signal Processing and Noise Reduction updates an

  9. Age-dependent complex noise fluctuations in the brain

    International Nuclear Information System (INIS)

    Mareš, Jan; Vyšata, Oldřich; Procházka, Aleš; Vališ, Martin

    2013-01-01

    We investigated the parameters of colored noise in EEG data of 17 722 professional drivers aged 18–70. The whole study is based upon experiments showing that biological neural networks may operate in the vicinity of the critical point and that the balance between excitation and inhibition in the human brain is important for the transfer of information. This paper is devoted to the study of EEG power spectrum which can be described best by a power function with 1/f λ distribution and colored noise corresponding to the critical point in the EEG signal has the value of λ = 1 (purple noise). The slow accumulation of energy and its quick release is a universal property of the 1/f distribution. The physiological mechanism causing energy dissipation in the brain seems to depend on the number and strength of the connections between clusters of neurons. With ageing, the number of connections between the neurons decreases. Learning ability and intellectual performance also decrease. Therefore, age-related changes in the λ coefficient can be anticipated. We found that absolute values of λ coefficients decrease significantly with increasing age. Deviations from this rule are related to age-dependent slowing of the dominant frequency in the alpha band. Age-dependent change in the parameter and colored noise may be indicative of age-related changes in the self-organization of brain activity. Results obtained include (i) the age-dependent decrease of the absolute values of the average λ coefficient with the regression coefficient 0.005 1/year, (ii) distribution of λ value changes related to EEG frequency bands and to localization of electrodes on the scalp, and (iii) relation of age-dependent changes of colored noise and EEG energy in separate frequency bands. (paper)

  10. Fractal characterization for noise signal validation in power reactors

    International Nuclear Information System (INIS)

    Aguilar Martinez, Omar

    2003-01-01

    Up to now, a great variety of methods is used for the dynamical characterization of different components of Nuclear Power Plants (NPPs). With this aim, time and spectral analysis are usually considered, and different tools of non-stationary and non-gaussian analysis are also presented. When applying non-lineal dynamics theory for noise signal validation purposes in power reactors, the extraction of fractal echoes plays a main role. Fractal characterization for noise signal validation purposes can be integrated to the task of processing and acquisition of time signals in noise (fluctuation parameters) analysis systems. The possibility of discrimination between deterministic chaotic signals and pure noise signals has been incorporated, as a complement; to noise signals analysis in normal and anomalous operational conditions in NPPs using a fractal approach. In this work the detailed analysis of a neutronic sensor response is considered and the fractal characterization of its dynamics state (i.e. sensor line) for noise signal classification, it is presented. The experiment from where the time series (signals) were obtained, was carried out at the Research Reactor of the Technical University of Budapest, Hungary, during a model experiment for ageing process study of in-core neutron detectors (author)

  11. A noise reconfigurable current-reuse resistive feedback amplifier with signal-dependent power consumption for fetal ECG monitoring

    NARCIS (Netherlands)

    Song, Shuang; Rooijakkers, M.J.; Harpe, P.; Rabotti, C.; Mischi, M.; Van Roermund, A.H.M.; Cantatore, E.

    2016-01-01

    This paper presents a noise-reconfigurable resistive feedback amplifier with current-reuse technique for fetal ECG monitoring. The proposed amplifier allows for both tuning of the noise level and changing the power consumption according to the signal properties, minimizing the total power

  12. Voltage fluctuations in neurons: signal or noise?

    DEFF Research Database (Denmark)

    Yarom, Yosef; Hounsgaard, Jorn

    2011-01-01

    , we discuss noise-free neuronal signaling and detrimental and beneficial forms of noise in large-scale functional neural networks. Evidence that noise and variability in some cases go hand in hand with behavioral variability and increase behavioral choice, richness, and adaptability opens new avenues......Noise and variability are fundamental companions to ion channels and synapses and thus inescapable elements of brain function. The overriding unresolved issue is to what extent noise distorts and limits signaling on one hand and at the same time constitutes a crucial and fundamental enrichment...... that allows and facilitates complex adaptive behavior in an unpredictable world. Here we review the growing experimental evidence that functional network activity is associated with intense fluctuations in membrane potential and spike timing. We trace origins and consequences of noise and variability. Finally...

  13. Feasibility of Johnson Noise Thermometry based on Digital Signal Processing Techniques

    International Nuclear Information System (INIS)

    Hwang, In Koo; Kim, Yang Mo

    2014-01-01

    This paper presents an implementation strategy of noise thermometry based on a digital signal processing technique and demonstrates its feasibilities. A key factor in its development is how to extract the small thermal noise signal from other noises, for example, random noise from amplifiers and continuous electromagnetic interference from the environment. The proposed system consists of two identical amplifiers and uses a cross correlation function to cancel the random noise of the amplifiers. Then, the external interference noises are eliminated by discriminating the difference in the peaks between the thermal signal and external noise. The gain of the amplifiers is estimated by injecting an already known pilot signal. The experimental simulation results of signal processing methods have demonstrated that the proposed approach is an effective method in eliminating an external noise signal and performing gain correction for development of the thermometry

  14. Fractional Gaussian noise-enhanced information capacity of a nonlinear neuron model with binary signal input

    Science.gov (United States)

    Gao, Feng-Yin; Kang, Yan-Mei; Chen, Xi; Chen, Guanrong

    2018-05-01

    This paper reveals the effect of fractional Gaussian noise with Hurst exponent H ∈(1 /2 ,1 ) on the information capacity of a general nonlinear neuron model with binary signal input. The fGn and its corresponding fractional Brownian motion exhibit long-range, strong-dependent increments. It extends standard Brownian motion to many types of fractional processes found in nature, such as the synaptic noise. In the paper, for the subthreshold binary signal, sufficient conditions are given based on the "forbidden interval" theorem to guarantee the occurrence of stochastic resonance, while for the suprathreshold binary signal, the simulated results show that additive fGn with Hurst exponent H ∈(1 /2 ,1 ) could increase the mutual information or bits count. The investigation indicated that the synaptic noise with the characters of long-range dependence and self-similarity might be the driving factor for the efficient encoding and decoding of the nervous system.

  15. Signal and noise modeling in confocal laser scanning fluorescence microscopy.

    Science.gov (United States)

    Herberich, Gerlind; Windoffer, Reinhard; Leube, Rudolf E; Aach, Til

    2012-01-01

    Fluorescence confocal laser scanning microscopy (CLSM) has revolutionized imaging of subcellular structures in biomedical research by enabling the acquisition of 3D time-series of fluorescently-tagged proteins in living cells, hence forming the basis for an automated quantification of their morphological and dynamic characteristics. Due to the inherently weak fluorescence, CLSM images exhibit a low SNR. We present a novel model for the transfer of signal and noise in CLSM that is both theoretically sound as well as corroborated by a rigorous analysis of the pixel intensity statistics via measurement of the 3D noise power spectra, signal-dependence and distribution. Our model provides a better fit to the data than previously proposed models. Further, it forms the basis for (i) the simulation of the CLSM imaging process indispensable for the quantitative evaluation of CLSM image analysis algorithms, (ii) the application of Poisson denoising algorithms and (iii) the reconstruction of the fluorescence signal.

  16. a Universal De-Noising Algorithm for Ground-Based LIDAR Signal

    Science.gov (United States)

    Ma, Xin; Xiang, Chengzhi; Gong, Wei

    2016-06-01

    Ground-based lidar, working as an effective remote sensing tool, plays an irreplaceable role in the study of atmosphere, since it has the ability to provide the atmospheric vertical profile. However, the appearance of noise in a lidar signal is unavoidable, which leads to difficulties and complexities when searching for more information. Every de-noising method has its own characteristic but with a certain limitation, since the lidar signal will vary with the atmosphere changes. In this paper, a universal de-noising algorithm is proposed to enhance the SNR of a ground-based lidar signal, which is based on signal segmentation and reconstruction. The signal segmentation serving as the keystone of the algorithm, segments the lidar signal into three different parts, which are processed by different de-noising method according to their own characteristics. The signal reconstruction is a relatively simple procedure that is to splice the signal sections end to end. Finally, a series of simulation signal tests and real dual field-of-view lidar signal shows the feasibility of the universal de-noising algorithm.

  17. Removing Background Noise with Phased Array Signal Processing

    Science.gov (United States)

    Podboy, Gary; Stephens, David

    2015-01-01

    Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.

  18. Signal-to-noise limitations in white light holography.

    Science.gov (United States)

    Ribak, E; Roddier, C; Roddier, F; Breckinridge, J B

    1988-03-15

    A simple derivation is given for the signal-to-noise ratio (SNR) in images reconstructed from incoherent holograms. Dependence is shown to be on the hologram SNR, object complexity, and the number of pixels in the detector. Reconstruction of involved objects becomes possible with high dynamic range detectors such as charge coupled devices. We have produced such white light holograms by means of a rotational shear interferometer combined with a chromatic corrector. A digital inverse transform recreated the object.

  19. Empirical mode decomposition of the ECG signal for noise removal

    Science.gov (United States)

    Khan, Jesmin; Bhuiyan, Sharif; Murphy, Gregory; Alam, Mohammad

    2011-04-01

    Electrocardiography is a diagnostic procedure for the detection and diagnosis of heart abnormalities. The electrocardiogram (ECG) signal contains important information that is utilized by physicians for the diagnosis and analysis of heart diseases. So good quality ECG signal plays a vital role for the interpretation and identification of pathological, anatomical and physiological aspects of the whole cardiac muscle. However, the ECG signals are corrupted by noise which severely limit the utility of the recorded ECG signal for medical evaluation. The most common noise presents in the ECG signal is the high frequency noise caused by the forces acting on the electrodes. In this paper, we propose a new ECG denoising method based on the empirical mode decomposition (EMD). The proposed method is able to enhance the ECG signal upon removing the noise with minimum signal distortion. Simulation is done on the MIT-BIH database to verify the efficacy of the proposed algorithm. Experiments show that the presented method offers very good results to remove noise from the ECG signal.

  20. Signal-to-noise ratios of multiplexing spectrometers in high backgrounds

    Science.gov (United States)

    Knacke, R. F.

    1978-01-01

    Signal-to-noise ratios and the amount of multiplexing gain achieved with a Michelson spectrometer during detector and background noise are studied. Noise caused by the warm background is found in 10 and 20-micron atmospheric windows in high resolution Fourier spectroscopy. An equation is derived for the signal-to-noise ratio based on the number of channels, total time to obtain the complete spectrum, the signal power in one spectral element, and the detector noise equivalent power in the presence of negligible background. Similar expressions are derived for backgrounds yielding a noise equivalent power to a spectral element, and backgrounds having flat spectra in the frequency range under investigation.

  1. Nonlinear Bayesian Estimation of BOLD Signal under Non-Gaussian Noise

    Directory of Open Access Journals (Sweden)

    Ali Fahim Khan

    2015-01-01

    Full Text Available Modeling the blood oxygenation level dependent (BOLD signal has been a subject of study for over a decade in the neuroimaging community. Inspired from fluid dynamics, the hemodynamic model provides a plausible yet convincing interpretation of the BOLD signal by amalgamating effects of dynamic physiological changes in blood oxygenation, cerebral blood flow and volume. The nonautonomous, nonlinear set of differential equations of the hemodynamic model constitutes the process model while the weighted nonlinear sum of the physiological variables forms the measurement model. Plagued by various noise sources, the time series fMRI measurement data is mostly assumed to be affected by additive Gaussian noise. Though more feasible, the assumption may cause the designed filter to perform poorly if made to work under non-Gaussian environment. In this paper, we present a data assimilation scheme that assumes additive non-Gaussian noise, namely, the e-mixture noise, affecting the measurements. The proposed filter MAGSF and the celebrated EKF are put to test by performing joint optimal Bayesian filtering to estimate both the states and parameters governing the hemodynamic model under non-Gaussian environment. Analyses using both the synthetic and real data reveal superior performance of the MAGSF as compared to EKF.

  2. Photoacoustic signal and noise analysis for Si thin plate: signal correction in frequency domain.

    Science.gov (United States)

    Markushev, D D; Rabasović, M D; Todorović, D M; Galović, S; Bialkowski, S E

    2015-03-01

    Methods for photoacoustic signal measurement, rectification, and analysis for 85 μm thin Si samples in the 20-20 000 Hz modulation frequency range are presented. Methods for frequency-dependent amplitude and phase signal rectification in the presence of coherent and incoherent noise as well as distortion due to microphone characteristics are presented. Signal correction is accomplished using inverse system response functions deduced by comparing real to ideal signals for a sample with well-known bulk parameters and dimensions. The system response is a piece-wise construction, each component being due to a particular effect of the measurement system. Heat transfer and elastic effects are modeled using standard Rosencweig-Gersho and elastic-bending theories. Thermal diffusion, thermoelastic, and plasmaelastic signal components are calculated and compared to measurements. The differences between theory and experiment are used to detect and correct signal distortion and to determine detector and sound-card characteristics. Corrected signal analysis is found to faithfully reflect known sample parameters.

  3. Elimination of noise peak for signal processing in Johnson noise thermometry development

    International Nuclear Information System (INIS)

    Hwang, I. G.; Moon, B. S.; Jeong, J. E.; Jeo, Y. H.; Kisner, Roger A.

    2003-01-01

    The internal and external noise is the most considering obstacle in development of Johnson Noise Thermometry system. This paper addresses an external noise elimination issue of the Johnson Noise Thermometry system which is underway of development in collaboration between KAERI and ORNL. Although internal random noise is canceled by Cross Power Spectral Density function, a continuous wave penetrating into the electronic circuit is eliminated by the difference of peaks between Johnson signal and external noise. The elimination logic using standard deviation of CPSD and energy leakage problem in discrete CPSD function are discussed in this paper

  4. Digital signal processing for the Johnson noise thermometry: a time series analysis of the Johnson noise

    International Nuclear Information System (INIS)

    Moon, Byung Soo; Hwang, In Koo; Chung, Chong Eun; Kwon, Kee Choon; David, E. H.; Kisner, R.A.

    2004-06-01

    In this report, we first proved that a random signal obtained by taking the sum of a set of signal frequency signals generates a continuous Markov process. We used this random signal to simulate the Johnson noise and verified that the Johnson noise thermometry can be used to improve the measurements of the reactor coolant temperature within an accuracy of below 0.14%. Secondly, by using this random signal we determined the optimal sampling rate when the frequency band of the Johnson noise signal is given. Also the results of our examination on how good the linearity of the Johnson noise is and how large the relative error of the temperature could become when the temperature increases are described. Thirdly, the results of our analysis on a set of the Johnson noise signal blocks taken from a simple electric circuit are described. We showed that the properties of the continuous Markov process are satisfied even when some channel noises are present. Finally, we describe the algorithm we devised to handle the problem of the time lag in the long-term average or the moving average in a transient state. The algorithm is based on the Haar wavelet and is to estimate the transient temperature that has much smaller time delay. We have shown that the algorithm can track the transient temperature successfully

  5. Phase noise mitigation of QPSK signal utilizing phase-locked multiplexing of signal harmonics and amplitude saturation.

    Science.gov (United States)

    Mohajerin-Ariaei, Amirhossein; Ziyadi, Morteza; Chitgarha, Mohammad Reza; Almaiman, Ahmed; Cao, Yinwen; Shamee, Bishara; Yang, Jeng-Yuan; Akasaka, Youichi; Sekiya, Motoyoshi; Takasaka, Shigehiro; Sugizaki, Ryuichi; Touch, Joseph D; Tur, Moshe; Langrock, Carsten; Fejer, Martin M; Willner, Alan E

    2015-07-15

    We demonstrate an all-optical phase noise mitigation scheme based on the generation, delay, and coherent summation of higher order signal harmonics. The signal, its third-order harmonic, and their corresponding delayed variant conjugates create a staircase phase-transfer function that quantizes the phase of quadrature-phase-shift-keying (QPSK) signal to mitigate phase noise. The signal and the harmonics are automatically phase-locked multiplexed, avoiding the need for phase-based feedback loop and injection locking to maintain coherency. The residual phase noise converts to amplitude noise in the quantizer stage, which is suppressed by parametric amplification in the saturation regime. Phase noise reduction of ∼40% and OSNR-gain of ∼3  dB at BER 10(-3) are experimentally demonstrated for 20- and 30-Gbaud QPSK input signals.

  6. Signal-to-noise ratio of FT-IR CO gas spectra

    DEFF Research Database (Denmark)

    Bak, J.; Clausen, Sønnik

    1999-01-01

    in emission and transmission spectrometry, an investigation of the SNR in CO gas spectra as a function of spectral resolution has been carried out. We present a method to (1) determine experimentally the SNR at constant throughput, (2) determine the SNR on the basis of measured noise levels and Hitran......The minimum amount of a gaseous compound which can be detected and quantified with Fourier transform infrared (FT-IR) spectrometers depends on the signal-to-noise ratio (SNR) of the measured gas spectra. In order to use low-resolution FT-IR spectrometers to measure combustion gases like CO and CO2...... simulated signals, and (3) determine the SNR of CO from high to low spectral resolutions related to the molecular linewidth and vibrational-rotational lines spacing. In addition, SNR values representing different spectral resolutions but scaled to equal measurement times were compared. It was found...

  7. Delay-distribution-dependent H∞ state estimation for delayed neural networks with (x,v)-dependent noises and fading channels.

    Science.gov (United States)

    Sheng, Li; Wang, Zidong; Tian, Engang; Alsaadi, Fuad E

    2016-12-01

    This paper deals with the H ∞ state estimation problem for a class of discrete-time neural networks with stochastic delays subject to state- and disturbance-dependent noises (also called (x,v)-dependent noises) and fading channels. The time-varying stochastic delay takes values on certain intervals with known probability distributions. The system measurement is transmitted through fading channels described by the Rice fading model. The aim of the addressed problem is to design a state estimator such that the estimation performance is guaranteed in the mean-square sense against admissible stochastic time-delays, stochastic noises as well as stochastic fading signals. By employing the stochastic analysis approach combined with the Kronecker product, several delay-distribution-dependent conditions are derived to ensure that the error dynamics of the neuron states is stochastically stable with prescribed H ∞ performance. Finally, a numerical example is provided to illustrate the effectiveness of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Novel Signal Noise Reduction Method through Cluster Analysis, Applied to Photoplethysmography.

    Science.gov (United States)

    Waugh, William; Allen, John; Wightman, James; Sims, Andrew J; Beale, Thomas A W

    2018-01-01

    Physiological signals can often become contaminated by noise from a variety of origins. In this paper, an algorithm is described for the reduction of sporadic noise from a continuous periodic signal. The design can be used where a sample of a periodic signal is required, for example, when an average pulse is needed for pulse wave analysis and characterization. The algorithm is based on cluster analysis for selecting similar repetitions or pulses from a periodic single. This method selects individual pulses without noise, returns a clean pulse signal, and terminates when a sufficiently clean and representative signal is received. The algorithm is designed to be sufficiently compact to be implemented on a microcontroller embedded within a medical device. It has been validated through the removal of noise from an exemplar photoplethysmography (PPG) signal, showing increasing benefit as the noise contamination of the signal increases. The algorithm design is generalised to be applicable for a wide range of physiological (physical) signals.

  9. Structural Parameters of Star Clusters: Signal to Noise Effects

    Directory of Open Access Journals (Sweden)

    Narbutis D.

    2015-09-01

    Full Text Available We study the impact of photometric signal to noise on the accuracy of derived structural parameters of unresolved star clusters using MCMC model fitting techniques. Star cluster images were simulated as a smooth surface brightness distribution following a King profile convolved with a point spread function. The simulation grid was constructed by varying the levels of sky background and adjusting the cluster’s flux to a specified signal to noise. Poisson noise was introduced to a set of cluster images with the same input parameters at each node of the grid. Model fitting was performed using “emcee” algorithm. The presented posterior distributions of the parameters illustrate their uncertainty and degeneracies as a function of signal to noise. By defining the photometric aperture containing 80% of the cluster’s flux, we find that in all realistic sky background level conditions a signal to noise ratio of ~50 is necessary to constrain the cluster’s half-light radius to an accuracy better than ~20%. The presented technique can be applied to synthetic images simulating various observations of extragalactic star clusters.

  10. Signal and noise analysis in TRION-Time-Resolved Integrative Optical Fast Neutron detector

    International Nuclear Information System (INIS)

    Vartsky, D; Feldman, G; Mor, I; Goldberg, M B; Bar, D; Dangendorf, V

    2009-01-01

    TRION is a sub-mm spatial resolution fast neutron imaging detector, which employs an integrative optical time-of-flight technique. The detector was developed for fast neutron resonance radiography, a method capable of detecting a broad range of conventional and improvised explosives. In this study we have analyzed in detail, using Monte-Carlo calculations and experimentally determined parameters, all the processes that influence the signal and noise in the TRION detector. In contrast to event-counting detectors where the signal-to-noise ratio is dependent only on the number of detected events (quantum noise), in an energy-integrating detector additional factors, such as the fluctuations in imparted energy, number of photoelectrons, system gain and other factors will contribute to the noise. The excess noise factor (over the quantum noise) due to these processes was 4.3, 2.7, 2.1, 1.9 and 1.9 for incident neutron energies of 2, 4, 7.5, 10 and 14 MeV, respectively. It is shown that, even under ideal light collection conditions, a fast neutron detection system operating in an integrative mode cannot be quantum-noise-limited due to the relatively large variance in the imparted proton energy and the resulting scintillation light distributions.

  11. A study on the method for cancelling the background noise of the impact signal

    International Nuclear Information System (INIS)

    Kim, J. S.; Ham, C. S.; Park, J. H.

    1998-01-01

    In this paper, we compared the noise canceller (time domain analysis method) to the spectral subtraction (frequency domain analysis method) for cancelling background noise when the Loose Part Monitoring System's accelerometers combined the noise signal with the impact signal if the impact signal exists. In the operation of a nuclear power plant monitoring, alarm triggering occurs due to a peak signal in the background noise, an amplitude increase by component operation such as control rod movement or abrupt pump operation. This operation causes the background noise in LPMS. Thus this noise inputs to LPMS together with the impact signal. In case that this noise amplitude is very large comparing to that of the impact signal, we may not analyze the impact position and mass estimation. We analyzed two methods for cancelling background noise. First, we evaluate the signal to noise ratio utilizing the noise canceller. Second, we evaluate the signal to noise ratio utilizing the spectral subtraction. The evaluation resulted superior the noise canceller to the spectral subtraction on the signal to noise ratio

  12. Robustness of digitally modulated signal features against variation in HF noise model

    Directory of Open Access Journals (Sweden)

    Shoaib Mobien

    2011-01-01

    Full Text Available Abstract High frequency (HF band has both military and civilian uses. It can be used either as a primary or backup communication link. Automatic modulation classification (AMC is of an utmost importance in this band for the purpose of communications monitoring; e.g., signal intelligence and spectrum management. A widely used method for AMC is based on pattern recognition (PR. Such a method has two main steps: feature extraction and classification. The first step is generally performed in the presence of channel noise. Recent studies show that HF noise could be modeled by Gaussian or bi-kappa distributions, depending on day-time. Therefore, it is anticipated that change in noise model will have impact on features extraction stage. In this article, we investigate the robustness of well known digitally modulated signal features against variation in HF noise. Specifically, we consider temporal time domain (TTD features, higher order cumulants (HOC, and wavelet based features. In addition, we propose new features extracted from the constellation diagram and evaluate their robustness against the change in noise model. This study is targeting 2PSK, 4PSK, 8PSK, 16QAM, 32QAM, and 64QAM modulations, as they are commonly used in HF communications.

  13. Explicit signal to noise ratio in reproducing kernel Hilbert spaces

    DEFF Research Database (Denmark)

    Gomez-Chova, Luis; Nielsen, Allan Aasbjerg; Camps-Valls, Gustavo

    2011-01-01

    This paper introduces a nonlinear feature extraction method based on kernels for remote sensing data analysis. The proposed approach is based on the minimum noise fraction (MNF) transform, which maximizes the signal variance while also minimizing the estimated noise variance. We here propose...... an alternative kernel MNF (KMNF) in which the noise is explicitly estimated in the reproducing kernel Hilbert space. This enables KMNF dealing with non-linear relations between the noise and the signal features jointly. Results show that the proposed KMNF provides the most noise-free features when confronted...

  14. Noise-aware dictionary-learning-based sparse representation framework for detection and removal of single and combined noises from ECG signal.

    Science.gov (United States)

    Satija, Udit; Ramkumar, Barathram; Sabarimalai Manikandan, M

    2017-02-01

    Automatic electrocardiogram (ECG) signal enhancement has become a crucial pre-processing step in most ECG signal analysis applications. In this Letter, the authors propose an automated noise-aware dictionary learning-based generalised ECG signal enhancement framework which can automatically learn the dictionaries based on the ECG noise type for effective representation of ECG signal and noises, and can reduce the computational load of sparse representation-based ECG enhancement system. The proposed framework consists of noise detection and identification, noise-aware dictionary learning, sparse signal decomposition and reconstruction. The noise detection and identification is performed based on the moving average filter, first-order difference, and temporal features such as number of turning points, maximum absolute amplitude, zerocrossings, and autocorrelation features. The representation dictionary is learned based on the type of noise identified in the previous stage. The proposed framework is evaluated using noise-free and noisy ECG signals. Results demonstrate that the proposed method can significantly reduce computational load as compared with conventional dictionary learning-based ECG denoising approaches. Further, comparative results show that the method outperforms existing methods in automatically removing noises such as baseline wanders, power-line interference, muscle artefacts and their combinations without distorting the morphological content of local waves of ECG signal.

  15. Investigation of a glottal related harmonics-to-noise ratio and spectral tilt as indicators of glottal noise in synthesized and human voice signals.

    LENUS (Irish Health Repository)

    Murphy, Peter J

    2008-03-01

    The harmonics-to-noise ratio (HNR) of the voiced speech signal has implicitly been used to infer information regarding the turbulent noise level at the glottis. However, two problems exist for inferring glottal noise attributes from the HNR of the speech wave form: (i) the measure is fundamental frequency (f0) dependent for equal levels of glottal noise, and (ii) any deviation from signal periodicity affects the ratio, not just turbulent noise. An alternative harmonics-to-noise ratio formulation [glottal related HNR (GHNR\\')] is proposed to overcome the former problem. In GHNR\\' a mean over the spectral range of interest of the HNRs at specific harmonic\\/between-harmonic frequencies (expressed in linear scale) is calculated. For the latter issue [(ii)] two spectral tilt measures are shown, using synthesis data, to be sensitive to glottal noise while at the same time being comparatively insensitive to other glottal aperiodicities. The theoretical development predicts that the spectral tilt measures reduce as noise levels increase. A conventional HNR estimator, GHNR\\' and two spectral tilt measures are applied to a data set of 13 pathological and 12 normal voice samples. One of the tilt measures and GHNR\\' are shown to provide statistically significant differentiating power over a conventional HNR estimator.

  16. Filtering Performance Comparison of Kernel and Wavelet Filters for Reactivity Signal Noise

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Shin, Ho Cheol; Lee, Yong Kwan; You, Skin

    2006-01-01

    Nuclear reactor power deviation from the critical state is a parameter of specific interest defined by the reactivity measuring neutron population. Reactivity is an extremely important quantity used to define many of the reactor startup physics parameters. The time dependent reactivity is normally determined by solving the using inverse neutron kinetics equation. The reactivity computer is a device to provide an on-line solution of the inverse kinetics equation. The measurement signal of the neutron density is normally noise corrupted and the control rods movement typically gives reactivity variation with edge signals like saw teeth. Those edge regions should be precisely preserved since the measured signal is used to estimate the reactivity wroth which is a crucial parameter to assure the safety of the nuclear reactors. In this paper, three kind of edge preserving noise filters are proposed and their performance is demonstrated using stepwise signals. The tested filters are based on the unilateral, bilateral kernel and wavelet filters which are known to be effective in edge preservation. The bilateral filter shows a remarkable improvement compared with unilateral kernel and wavelet filters

  17. Intelligent Noise Removal from EMG Signal Using Focused Time-Lagged Recurrent Neural Network

    Directory of Open Access Journals (Sweden)

    S. N. Kale

    2009-01-01

    Full Text Available Electromyography (EMG signals can be used for clinical/biomedical application and modern human computer interaction. EMG signals acquire noise while traveling through tissue, inherent noise in electronics equipment, ambient noise, and so forth. ANN approach is studied for reduction of noise in EMG signal. In this paper, it is shown that Focused Time-Lagged Recurrent Neural Network (FTLRNN can elegantly solve to reduce the noise from EMG signal. After rigorous computer simulations, authors developed an optimal FTLRNN model, which removes the noise from the EMG signal. Results show that the proposed optimal FTLRNN model has an MSE (Mean Square Error as low as 0.000067 and 0.000048, correlation coefficient as high as 0.99950 and 0.99939 for noise signal and EMG signal, respectively, when validated on the test dataset. It is also noticed that the output of the estimated FTLRNN model closely follows the real one. This network is indeed robust as EMG signal tolerates the noise variance from 0.1 to 0.4 for uniform noise and 0.30 for Gaussian noise. It is clear that the training of the network is independent of specific partitioning of dataset. It is seen that the performance of the proposed FTLRNN model clearly outperforms the best Multilayer perceptron (MLP and Radial Basis Function NN (RBF models. The simple NN model such as the FTLRNN with single-hidden layer can be employed to remove noise from EMG signal.

  18. Phase-dependent noise in Josephson junctions

    Science.gov (United States)

    Sheldon, Forrest; Peotta, Sebastiano; Di Ventra, Massimiliano

    2018-03-01

    In addition to the usual superconducting current, Josephson junctions (JJs) support a phase-dependent conductance related to the retardation effect of tunneling quasi-particles. This introduces a dissipative current with a memory-resistive (memristive) character that should also affect the current noise. By means of the microscopic theory of tunnel junctions we compute the complete current autocorrelation function of a Josephson tunnel junction and show that this memristive component gives rise to both a previously noted phase-dependent thermal noise, and an undescribed non-stationary, phase-dependent dynamic noise. As experiments are approaching ranges in which these effects may be observed, we examine the form and magnitude of these processes. Their phase dependence can be realized experimentally as a hysteresis effect and may be used to probe defects present in JJ based qubits and in other superconducting electronics applications.

  19. Detecting impact signal in mechanical fault diagnosis under chaotic and Gaussian background noise

    Science.gov (United States)

    Hu, Jinfeng; Duan, Jie; Chen, Zhuo; Li, Huiyong; Xie, Julan; Chen, Hanwen

    2018-01-01

    In actual fault diagnosis, useful information is often submerged in heavy noise, and the feature information is difficult to extract. Traditional methods, such like stochastic resonance (SR), which using noise to enhance weak signals instead of suppressing noise, failed in chaotic background. Neural network, which use reference sequence to estimate and reconstruct the background noise, failed in white Gaussian noise. To solve these problems, a novel weak signal detection method aimed at the problem of detecting impact signal buried under heavy chaotic and Gaussian background noise is proposed. First, the proposed method obtains the virtual reference sequence by constructing the Hankel data matrix. Then an M-order optimal FIR filter is designed, which can minimize the output power of background noise and pass the weak periodic signal undistorted. Finally, detection and reconstruction of the weak periodic signal are achieved from the output SBNR (signal to background noise ratio). The simulation shows, compared with the stochastic resonance (SR) method, the proposed method can detect the weak periodic signal in chaotic noise background while stochastic resonance (SR) method cannot. Compared with the neural network method, (a) the proposed method does not need a reference sequence while neural network method needs one; (b) the proposed method can detect the weak periodic signal in white Gaussian noise background while the neural network method fails, in chaotic noise background, the proposed method can detect the weak periodic signal under a lower SBNR (about 8-17 dB lower) than the neural network method; (c) the proposed method can reconstruct the weak periodic signal precisely.

  20. Comparison of methods for removing electromagnetic noise from electromyographic signals.

    Science.gov (United States)

    Defreitas, Jason M; Beck, Travis W; Stock, Matt S

    2012-02-01

    The purpose of this investigation was to compare three different methods of removing noise from monopolar electromyographic (EMG) signals: (a) electrical shielding with a Faraday cage, (b) denoising with a digital notch-filter and (c) applying a bipolar differentiation with another monopolar EMG signal. Ten men and ten women (mean age = 24.0 years) performed isometric muscle actions of the leg extensors at 10-100% of their maximal voluntary contraction on two separate occasions. One trial was performed inside a Faraday tent (a flexible Faraday cage made from conductive material), and the other was performed outside the Faraday tent. The EMG signals collected outside the Faraday tent were analyzed three separate ways: as a raw signal, as a bipolar signal, and as a signal digitally notch filtered to remove 60 Hz noise and its harmonics. The signal-to-noise ratios were greatest after notch-filtering (range: 3.0-33.8), and lowest for the bipolar arrangement (1.6-10.2). Linear slope coefficients for the EMG amplitude versus force relationship were also used to compare the methods of noise removal. The results showed that a bipolar arrangement had a significantly lower linear slope coefficient when compared to the three other conditions (raw, notch and tent). These results suggested that an appropriately filtered monopolar EMG signal can be useful in situations that require a large pick-up area. Furthermore, although it is helpful, a Faraday tent (or cage) is not required to achieve an appropriate signal-to-noise ratio, as long as the correct filters are applied.

  1. Comparison of methods for removing electromagnetic noise from electromyographic signals

    International Nuclear Information System (INIS)

    DeFreitas, Jason M; Beck, Travis W; Stock, Matt S

    2012-01-01

    The purpose of this investigation was to compare three different methods of removing noise from monopolar electromyographic (EMG) signals: (a) electrical shielding with a Faraday cage, (b) denoising with a digital notch-filter and (c) applying a bipolar differentiation with another monopolar EMG signal. Ten men and ten women (mean age = 24.0 years) performed isometric muscle actions of the leg extensors at 10–100% of their maximal voluntary contraction on two separate occasions. One trial was performed inside a Faraday tent (a flexible Faraday cage made from conductive material), and the other was performed outside the Faraday tent. The EMG signals collected outside the Faraday tent were analyzed three separate ways: as a raw signal, as a bipolar signal, and as a signal digitally notch filtered to remove 60 Hz noise and its harmonics. The signal-to-noise ratios were greatest after notch-filtering (range: 3.0–33.8), and lowest for the bipolar arrangement (1.6–10.2). Linear slope coefficients for the EMG amplitude versus force relationship were also used to compare the methods of noise removal. The results showed that a bipolar arrangement had a significantly lower linear slope coefficient when compared to the three other conditions (raw, notch and tent). These results suggested that an appropriately filtered monopolar EMG signal can be useful in situations that require a large pick-up area. Furthermore, although it is helpful, a Faraday tent (or cage) is not required to achieve an appropriate signal-to-noise ratio, as long as the correct filters are applied. (paper)

  2. Discrimination of acoustic communication signals by grasshoppers (Chorthippus biguttulus): temporal resolution, temporal integration, and the impact of intrinsic noise.

    Science.gov (United States)

    Ronacher, Bernhard; Wohlgemuth, Sandra; Vogel, Astrid; Krahe, Rüdiger

    2008-08-01

    A characteristic feature of hearing systems is their ability to resolve both fast and subtle amplitude modulations of acoustic signals. This applies also to grasshoppers, which for mate identification rely mainly on the characteristic temporal patterns of their communication signals. Usually the signals arriving at a receiver are contaminated by various kinds of noise. In addition to extrinsic noise, intrinsic noise caused by stochastic processes within the nervous system contributes to making signal recognition a difficult task. The authors asked to what degree intrinsic noise affects temporal resolution and, particularly, the discrimination of similar acoustic signals. This study aims at exploring the neuronal basis for sexual selection, which depends on exploiting subtle differences between basically similar signals. Applying a metric, by which the similarities of spike trains can be assessed, the authors investigated how well the communication signals of different individuals of the same species could be discriminated and correctly classified based on the responses of auditory neurons. This spike train metric yields clues to the optimal temporal resolution with which spike trains should be evaluated. (c) 2008 APA, all rights reserved

  3. Low noise constant current source for bias dependent noise measurements

    International Nuclear Information System (INIS)

    Talukdar, D.; Bose, Suvendu; Bardhan, K. K.; Chakraborty, R. K.

    2011-01-01

    A low noise constant current source used for measuring the 1/f noise in disordered systems in ohmic as well as nonohmic regime is described. The source can supply low noise constant current starting from as low as 1 μA to a few tens of milliampere with a high voltage compliance limit of around 20 V. The constant current source has several stages, which can work in a standalone manner or together to supply the desired value of load current. The noise contributed by the current source is very low in the entire current range. The fabrication of a low noise voltage preamplifier modified for bias dependent noise measurements and based on the existing design available in the MAT04 data sheet is also described.

  4. Seismic signal and noise on Europa

    Science.gov (United States)

    Panning, Mark; Stähler, Simon; Bills, Bruce; Castillo Castellanos, Jorge; Huang, Hsin-Hua; Husker, Allen; Kedar, Sharon; Lorenz, Ralph; Pike, William T.; Schmerr, Nicholas; Tsai, Victor; Vance, Steven

    2017-10-01

    Seismology is one of our best tools for detailing interior structure of planetary bodies, and a seismometer is included in the baseline and threshold mission design for the upcoming Europa Lander mission. Guiding mission design and planning for adequate science return, though, requires modeling of both the anticipated signal and noise. Assuming ice seismicity on Europa behaves according to statistical properties observed in Earth catalogs and scaling cumulative seismic moment release to the moon, we can simulate long seismic records and estimate background noise and peak signal amplitudes (Panning et al., 2017). This suggests a sensitive instrument comparable to many broadband terrestrial instruments or the SP instrument from the InSight mission to Mars will be able to record signals, while high frequency geophones are likely inadequate. We extend this analysis to also begin incorporation of spatial and temporal variation due to the tidal cycle, which can help inform landing site selection. We also begin exploration of how chaotic terrane at the bottom of the ice shell and inter-ice heterogeneities (i.e. internal melt structures) may affect anticipated seismic observations using 2D numerical seismic simulations.M. P. Panning, S. C. Stähler, H.-H. Huang, S. D. Vance, S. Kedar, V. C. Tsai, W. T. Pike, R. D. Lorenz, “Expected seismicity and the seismic noise environment of Europa,” J. Geophys. Res., in revision, 2017.

  5. CORTICAL ENCODING OF SIGNALS IN NOISE: EFFECTS OF STIMULUS TYPE AND RECORDING PARADIGM

    Science.gov (United States)

    Billings, Curtis J.; Bennett, Keri O.; Molis, Michelle R.; Leek, Marjorie R.

    2010-01-01

    Objectives Perception-in-noise deficits have been demonstrated across many populations and listening conditions. Many factors contribute to successful perception of auditory stimuli in noise, including neural encoding in the central auditory system. Physiological measures such as cortical auditory evoked potentials can provide a view of neural encoding at the level of the cortex that may inform our understanding of listeners’ abilities to perceive signals in the presence of background noise. In order to understand signal-in-noise neural encoding better, we set out to determine the effect of signal type, noise type, and evoking paradigm on the P1-N1-P2 complex. Design Tones and speech stimuli were presented to nine individuals in quiet, and in three background noise types: continuous speech spectrum noise, interrupted speech spectrum noise, and four-talker babble at a signal-to-noise ratio of −3 dB. In separate sessions, cortical auditory evoked potentials were evoked by a passive homogenous paradigm (single repeating stimulus) and an active oddball paradigm. Results The results for the N1 component indicated significant effects of signal type, noise type, and evoking paradigm. While components P1 and P2 also had significant main effects of these variables, only P2 demonstrated significant interactions among these variables. Conclusions Signal type, noise type, and evoking paradigm all must be carefully considered when interpreting signal-in-noise evoked potentials. Furthermore, these data confirm the possible usefulness of CAEPs as an aid to understanding perception-in-noise deficits. PMID:20890206

  6. Stochastic resonance for signal-modulated pump noise in a single-mode laser

    Institute of Scientific and Technical Information of China (English)

    Liangying Zhang; Li Cao; Fahui Zhu

    2006-01-01

    By adopting the gain-noise model of the single-mode laser in which with bias and periodical signals serve as inputs, combining with the effect of coloured pump noise, we use the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity under the condition of pump noise and quantum noise cross-related in the form of δ function. It is found that with the change of pump noise correlation time, both SNR and the output power will occur stochastic resonance (SR). If the bias signal α is very small, changing the intensities of pump noise and quantum noise respectively does not lead to the appearance of SR in the SNR; while α increases to a certain number, SR appears.

  7. Noise annoys: effects of noise on breeding great tits depend on personality but not on noise characteristics

    NARCIS (Netherlands)

    Naguib, M.; Van Oers, K.; Braakhuis, A.; Griffioen, M.; De Goede, P.; Waas, J.R.

    2013-01-01

    Anthropogenic noise can have serious implications for animals, especially when they communicate acoustically. Yet, the impacts of noise may depend not only on noise characteristics but also on an individual's coping style or personality. We tested whether noise is more disturbing if it masks

  8. Debuncher Momentum Cooling Systems Signal to Noise Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, Ralph J.; /Fermilab

    2001-12-18

    The Debuncher Momentum cooling systems were carefully measured for signal to noise. It was observed that cooling performance was not optimum. Closer inspection shows that the installed front-end bandpass filters are wider than the pickup response. (The original filters were specified to be wider so that none of the available bandwidth would be clipped.) The end result is excess noise is amplified and passed onto the kickers unimpeded, hence, reducing the achievable system gain. From this data, new filters should be designed to improve performance. New system bandwidths are specified on the data figures. Also included are the transfer function measurements that clearly show adjacent band response. In band 4 upper, the adjacent lobes are strong and out of phase. This is also degrading the system performance. The correlation between spectrum analyzer signal to noise and network analyzer system transfer functions is very strong. The table below has a calculation of expected improvement of front noise reduction by means of building new front-end bandpass filters. The calculation is based on a flat input noise spectrum and is a linear estimation of improvement. The listed 3dB bandwidths of the original filters are from measured data. The expected bandwidth is taken from the linear spectrum analyzer plots and is closer to a 10 dB bandwidth making the percentage improvement conservative. The signal to noise measurements are taken with circulating pbars in the Debuncher. One cooling system was measured at a time with all others off. Beam currents are below ten microamperes.

  9. Debuncher Momentum Cooling Systems Signal to Noise Measurements

    International Nuclear Information System (INIS)

    Pasquinelli, Ralph J.

    2001-01-01

    The Debuncher Momentum cooling systems were carefully measured for signal to noise. It was observed that cooling performance was not optimum. Closer inspection shows that the installed front-end bandpass filters are wider than the pickup response. (The original filters were specified to be wider so that none of the available bandwidth would be clipped.) The end result is excess noise is amplified and passed onto the kickers unimpeded, hence, reducing the achievable system gain. From this data, new filters should be designed to improve performance. New system bandwidths are specified on the data figures. Also included are the transfer function measurements that clearly show adjacent band response. In band 4 upper, the adjacent lobes are strong and out of phase. This is also degrading the system performance. The correlation between spectrum analyzer signal to noise and network analyzer system transfer functions is very strong. The table below has a calculation of expected improvement of front noise reduction by means of building new front-end bandpass filters. The calculation is based on a flat input noise spectrum and is a linear estimation of improvement. The listed 3dB bandwidths of the original filters are from measured data. The expected bandwidth is taken from the linear spectrum analyzer plots and is closer to a 10 dB bandwidth making the percentage improvement conservative. The signal to noise measurements are taken with circulating pbars in the Debuncher. One cooling system was measured at a time with all others off. Beam currents are below ten microamperes.

  10. Downhole microseismic signal-to-noise ratio enhancement via strip matching shearlet transform

    Science.gov (United States)

    Li, Juan; Ji, Shuo; Li, Yue; Qian, Zhihong; Lu, Weili

    2018-04-01

    Shearlet transform has been proved effective in noise attenuation. However, because of the low magnitude and high frequency of downhole microseismic signals, the coefficient values of valid signals and noise are similar in the shearlet domain. As a result, it is hard to suppress the noise. In this paper, we present a novel signal-to-noise ratio enhancement scheme called strip matching shearlet transform. The method takes into account the directivity of microseismic events and shearlets. Through strip matching, the matching degree in direction between them has been promoted. Then the coefficient values of valid signals are much larger than those of the noise. Consequently, we can separate them well with the help of thresholding. The experimental results on both synthetic records and field data illustrate that our proposed method preserves the useful components and attenuates the noise well.

  11. Compressed Sensing with Linear Correlation Between Signal and Measurement Noise

    DEFF Research Database (Denmark)

    Arildsen, Thomas; Larsen, Torben

    2014-01-01

    reconstruction algorithms, but is not known in existing literature. The proposed technique reduces reconstruction error considerably in the case of linearly correlated measurements and noise. Numerical experiments confirm the efficacy of the technique. The technique is demonstrated with application to low......Existing convex relaxation-based approaches to reconstruction in compressed sensing assume that noise in the measurements is independent of the signal of interest. We consider the case of noise being linearly correlated with the signal and introduce a simple technique for improving compressed...... sensing reconstruction from such measurements. The technique is based on a linear model of the correlation of additive noise with the signal. The modification of the reconstruction algorithm based on this model is very simple and has negligible additional computational cost compared to standard...

  12. Noise in Neural Networks: Thresholds, Hysteresis, and Neuromodulation of Signal-To-Noise

    Science.gov (United States)

    Keeler, James D.; Pichler, Elgar E.; Ross, John

    1989-03-01

    We study a neural-network model including Gaussian noise, higher-order neuronal interactions, and neuromodulation. For a first-order network, there is a threshold in the noise level (phase transition) above which the network displays only disorganized behavior and critical slowing down near the noise threshold. The network can tolerate more noise if it has higher-order feedback interactions, which also lead to hysteresis and multistability in the network dynamics. The signal-to-noise ratio can be adjusted in a biological neural network by neuromodulators such as norepinephrine. Comparisons are made to experimental results and further investigations are suggested to test the effects of hysteresis and neuromodulation in pattern recognition and learning. We propose that norepinephrine may ``quench'' the neural patterns of activity to enhance the ability to learn details.

  13. Stochastic resonance in a stochastic bistable system with additive noises and square–wave signal

    International Nuclear Information System (INIS)

    Feng, Guo; Xiang-Dong, Luo; Shao-Fu, Li; Yu-Rong, Zhou

    2010-01-01

    This paper considers the stochastic resonance in a stochastic bistable system driven by a periodic square-wave signal and a static force as well as by additive white noise and dichotomous noise from the viewpoint of signal-to-noise ratio. It finds that the signal-to-noise ratio appears as stochastic resonance behaviour when it is plotted as a function of the noise strength of the white noise and dichotomous noise, as a function of the system parameters, or as a function of the static force. Moreover, the influence of the strength of the stochastic potential force and the correlation rate of the dichotomous noise on the signal-to-noise ratio is investigated. (general)

  14. On common noise-induced synchronization in complex networks with state-dependent noise diffusion processes

    Science.gov (United States)

    Russo, Giovanni; Shorten, Robert

    2018-04-01

    This paper is concerned with the study of common noise-induced synchronization phenomena in complex networks of diffusively coupled nonlinear systems. We consider the case where common noise propagation depends on the network state and, as a result, the noise diffusion process at the nodes depends on the state of the network. For such networks, we present an algebraic sufficient condition for the onset of synchronization, which depends on the network topology, the dynamics at the nodes, the coupling strength and the noise diffusion. Our result explicitly shows that certain noise diffusion processes can drive an unsynchronized network towards synchronization. In order to illustrate the effectiveness of our result, we consider two applications: collective decision processes and synchronization of chaotic systems. We explicitly show that, in the former application, a sufficiently large noise can drive a population towards a common decision, while, in the latter, we show how common noise can synchronize a network of Lorentz chaotic systems.

  15. Comparison of angular dependence of magnetic Barkhausen noise of hysteresis and initial magnetization curve in API5L steel

    Science.gov (United States)

    Chávez-Gonzalez, A. F.; Martínez-Ortiz, P.; Pérez-Benítez, J. A.; Espina-Hernández, J. H.; Caleyo, F.

    2018-01-01

    This work analyzes the differences between the magnetic Barkhausen noise corresponding to the initial magnetization curve and Barkhausen noise corresponding to one branch of the hysteresis loop in API-5L steel. The outcomes show that the Barkhausen noise signal corresponding to the initial magnetization curve and that corresponding to the hysteresis are significantly different. This difference is due to the presence of different processes of the domain wall dynamics in both phenomena. To study the processes present in magnetization dynamics for an applied field of H > 0, research into the angular dependence of a Barkhausen signal using applied field bands has revealed that a Barkhausen signal corresponding to the initial magnetization curve is more suitable than a Barkhausen signal corresponding to the hysteresis loop.

  16. Background noise of acoustic emission signals in sodium piping loop

    International Nuclear Information System (INIS)

    Mori, Y.; Aoki, K.; Kuribayashi, K.; Kishi, T.; Sakakibara, Y.

    1985-01-01

    Background noise measurement in the frequency range of acoustic emission (AE) signals was made on the sodium piping loops of a 50 MW steam generator test facility in the Power Reactor and Nuclear Fuel Development Corporation (PNC). During the dynamic characteristics test of the steam generator over a wide range of operating conditions, the background noise generated on the pipe surface was measured using wideband AE sensor externally mounted with waveguide. Data were obtained for the effect of power loads of steam generator on both amplitude and frequency spectra of background noise signals. Source and nature of background noise were established

  17. Communication system with adaptive noise suppression

    Science.gov (United States)

    Kozel, David (Inventor); Devault, James A. (Inventor); Birr, Richard B. (Inventor)

    2007-01-01

    A signal-to-noise ratio dependent adaptive spectral subtraction process eliminates noise from noise-corrupted speech signals. The process first pre-emphasizes the frequency components of the input sound signal which contain the consonant information in human speech. Next, a signal-to-noise ratio is determined and a spectral subtraction proportion adjusted appropriately. After spectral subtraction, low amplitude signals can be squelched. A single microphone is used to obtain both the noise-corrupted speech and the average noise estimate. This is done by determining if the frame of data being sampled is a voiced or unvoiced frame. During unvoiced frames an estimate of the noise is obtained. A running average of the noise is used to approximate the expected value of the noise. Spectral subtraction may be performed on a composite noise-corrupted signal, or upon individual sub-bands of the noise-corrupted signal. Pre-averaging of the input signal's magnitude spectrum over multiple time frames may be performed to reduce musical noise.

  18. Noise Reduction Effect of Multiple-Sampling-Based Signal-Readout Circuits for Ultra-Low Noise CMOS Image Sensors

    Directory of Open Access Journals (Sweden)

    Shoji Kawahito

    2016-11-01

    Full Text Available This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs. This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC. The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median: 0.29 e−rms when compared with the CMS gain of two (2.4 e−rms, or 16 (1.1 e−rms.

  19. Mitigating Wind Induced Noise in Outdoor Microphone Signals Using a Singular Spectral Subspace Method

    Directory of Open Access Journals (Sweden)

    Omar Eldwaik

    2018-01-01

    Full Text Available Wind induced noise is one of the major concerns of outdoor acoustic signal acquisition. It affects many field measurement and audio recording scenarios. Filtering such noise is known to be difficult due to its broadband and time varying nature. In this paper, a new method to mitigate wind induced noise in microphone signals is developed. Instead of applying filtering techniques, wind induced noise is statistically separated from wanted signals in a singular spectral subspace. The paper is presented in the context of handling microphone signals acquired outdoor for acoustic sensing and environmental noise monitoring or soundscapes sampling. The method includes two complementary stages, namely decomposition and reconstruction. The first stage decomposes mixed signals in eigen-subspaces, selects and groups the principal components according to their contributions to wind noise and wanted signals in the singular spectrum domain. The second stage reconstructs the signals in the time domain, resulting in the separation of wind noise and wanted signals. Results show that microphone wind noise is separable in the singular spectrum domain evidenced by the weighted correlation. The new method might be generalized to other outdoor sound acquisition applications.

  20. Photonic microwave signals with zeptosecond-level absolute timing noise

    Science.gov (United States)

    Xie, Xiaopeng; Bouchand, Romain; Nicolodi, Daniele; Giunta, Michele; Hänsel, Wolfgang; Lezius, Matthias; Joshi, Abhay; Datta, Shubhashish; Alexandre, Christophe; Lours, Michel; Tremblin, Pierre-Alain; Santarelli, Giorgio; Holzwarth, Ronald; Le Coq, Yann

    2017-01-01

    Photonic synthesis of radiofrequency (RF) waveforms revived the quest for unrivalled microwave purity because of its ability to convey the benefits of optics to the microwave world. In this work, we perform a high-fidelity transfer of frequency stability between an optical reference and a microwave signal via a low-noise fibre-based frequency comb and cutting-edge photodetection techniques. We demonstrate the generation of the purest microwave signal with a fractional frequency stability below 6.5 × 10-16 at 1 s and a timing noise floor below 41 zs Hz-1/2 (phase noise below -173 dBc Hz-1 for a 12 GHz carrier). This outperforms existing sources and promises a new era for state-of-the-art microwave generation. The characterization is achieved through a heterodyne cross-correlation scheme with the lowermost detection noise. This unprecedented level of purity can impact domains such as radar systems, telecommunications and time-frequency metrology. The measurement methods developed here can benefit the characterization of a broad range of signals.

  1. Semi-automated identification of artefact and noise signals in MEG sensors

    International Nuclear Information System (INIS)

    Rettich, E.

    2006-09-01

    Magnetic encephalography (MEG) is a noninvasive method of measuring cerebral activity. It is based on the registration of magnetic fields that are induced by synaptic ion currents as the brain processes information. These magnetic fields are of a very small magnitude, ranging from a few femto Tesla (1 fT = 10 15 T) to several thousand fT (1 pT). This is equivalent to a ten thousandth to a billionth of the Earth's magnetic field. When applied with a time resolution in the range of milliseconds this technique permits research on time-critical neurophysiological processes. A meaningful analysis of MEG data presupposes that signals have been measured at low noise levels. This in turn requires magnetic shielding, normally in the form of a shielded cabin, and low-noise detectors. Data input from high-noise channels impairs the result of the measurement, possibly rendering it useless. To prevent this it is necessary to identify high-noise channels and remove them from the measurement data. At Juelich Research Center, like at most MEG laboratories, this is done by visual inspection. However, being dependent on the individual observer, this method does not yield objective results. Furthermore, visual inspection presupposes a high degree of experience and is time-consuming. This situation could be significantly improved by automated identification of high-noise channels. The purpose of the present study was to develop an algorithm that analyses measurement signals in a given time and frequency interval on the basis of statistical traits. Using a suitably designed user interface this permits searching MEG data for high-noise channel data below or above statistical threshold values on the basis of predetermined decision criteria. The identified high-noise channels are then output in a selection list, and the measurement data and results of the statistical analysis are displayed. This information enables the user to make changes and decide which high-noise channels to extract

  2. Agatha: Disentangling period signals from correlated noise in a periodogram framework

    Science.gov (United States)

    Feng, F.; Tuomi, M.; Jones, H. R. A.

    2018-04-01

    Agatha is a framework of periodograms to disentangle periodic signals from correlated noise and to solve the two-dimensional model selection problem: signal dimension and noise model dimension. These periodograms are calculated by applying likelihood maximization and marginalization and combined in a self-consistent way. Agatha can be used to select the optimal noise model and to test the consistency of signals in time and can be applied to time series analyses in other astronomical and scientific disciplines. An interactive web implementation of the software is also available at http://agatha.herts.ac.uk/.

  3. Linear signal noise summer accurately determines and controls S/N ratio

    Science.gov (United States)

    Sundry, J. L.

    1966-01-01

    Linear signal noise summer precisely controls the relative power levels of signal and noise, and mixes them linearly in accurately known ratios. The S/N ratio accuracy and stability are greatly improved by this technique and are attained simultaneously.

  4. Determination of signal intensity affected by Gaussian noise

    International Nuclear Information System (INIS)

    Blostein, Jeronimo J.; Bennun, Leonardo

    1999-01-01

    A methodology based on maximum likelihood criteria, to identify and quantify an arbitrary signal affected by Gaussian noise is shown. To use this methodology it is necessary to know the position in the spectrum where the signal of interest should appear, and the shape of the signal when the background is null or unappreciable. (author)

  5. Noise analysis of grating-based x-ray differential phase-contrast imaging with angular signal radiography

    International Nuclear Information System (INIS)

    Faiz, Wali; Gao Kun; Wu Zhao; Wei Chen-Xi; Zan Gui-Bin; Tian Yang-Chao; Bao Yuan; Zhu Pei-Ping

    2017-01-01

    X-ray phase-contrast imaging is one of the novel techniques, and has potential to enhance image quality and provide the details of inner structures nondestructively. In this work, we investigate quantitatively signal-to-noise ratio (SNR) of grating-based x-ray phase contrast imaging (GBPCI) system by employing angular signal radiography (ASR). Moreover, photon statistics and mechanical error that is a major source of noise are investigated in detail. Results show the dependence of SNR on the system parameters and the effects on the extracted absorption, refraction and scattering images. Our conclusions can be used to optimize the system design for upcoming practical applications in the areas such as material science and biomedical imaging. (paper)

  6. Low noise signal-to-noise ratio enhancing readout circuit for current-mediated active pixel sensors

    International Nuclear Information System (INIS)

    Ottaviani, Tony; Karim, Karim S.; Nathan, Arokia; Rowlands, John A.

    2006-01-01

    Diagnostic digital fluoroscopic applications continuously expose patients to low doses of x-ray radiation, posing a challenge to both the digital imaging pixel and readout electronics when amplifying small signal x-ray inputs. Traditional switch-based amorphous silicon imaging solutions, for instance, have produced poor signal-to-noise ratios (SNRs) at low exposure levels owing to noise sources from the pixel readout circuitry. Current-mediated amorphous silicon pixels are an improvement over conventional pixel amplifiers with an enhanced SNR across the same low-exposure range, but whose output also becomes nonlinear with increasing dosage. A low-noise SNR enhancing readout circuit has been developed that enhances the charge gain of the current-mediated active pixel sensor (C-APS). The solution takes advantage of the current-mediated approach, primarily integrating the signal input at the desired frequency necessary for large-area imaging, while adding minimal noise to the signal readout. Experimental data indicates that the readout circuit can detect pixel outputs over a large bandwidth suitable for real-time digital diagnostic x-ray fluoroscopy. Results from hardware testing indicate that the minimum achievable C-APS output current that can be discerned at the digital fluoroscopic output from the enhanced SNR readout circuit is 0.341 nA. The results serve to highlight the applicability of amorphous silicon current-mediated pixel amplifiers for large-area flat panel x-ray imagers

  7. Balanced detection for self-mixing interferometry to improve signal-to-noise ratio

    Science.gov (United States)

    Zhao, Changming; Norgia, Michele; Li, Kun

    2018-01-01

    We apply balanced detection to self-mixing interferometry for displacement and vibration measurement, using two photodiodes for implementing a differential acquisition. The method is based on the phase opposition of the self-mixing signal measured between the two laser diode facet outputs. The balanced signal obtained by enlarging the self-mixing signal, also by canceling of the common-due noises mainly due to disturbances on laser supply and transimpedance amplifier. Experimental results demonstrate the signal-to-noise ratio significantly improves, with almost twice signals enhancement and more than half noise decreasing. This method allows for more robust, longer-distance measurement systems, especially using fringe-counting.

  8. Noise exposure immediately activates cochlear mitogen-activated protein kinase signaling

    Directory of Open Access Journals (Sweden)

    Kumar N Alagramam

    2014-01-01

    Full Text Available Noise-induced hearing loss (NIHL is a major public health issue worldwide. Uncovering the early molecular events associated with NIHL would reveal mechanisms leading to the hearing loss. Our aim is to investigate the immediate molecular responses after different levels of noise exposure and identify the common and distinct pathways that mediate NIHL. Previous work showed mice exposed to 116 decibels sound pressure level (dB SPL broadband noise for 1 h had greater threshold shifts than the mice exposed to 110 dB SPL broadband noise, hence we used these two noise levels in this study. Groups of 4-8-week-old CBA/CaJ mice were exposed to no noise (control or to broadband noise for 1 h, followed by transcriptome analysis of total cochlear RNA isolated immediately after noise exposure. Previously identified and novel genes were found in all data sets. Following exposure to noise at 116 dB SPL, the earliest responses included up-regulation of 243 genes and down-regulation of 61 genes, while a similar exposure at 110 dB SPL up-regulated 155 genes and down-regulated 221 genes. Bioinformatics analysis indicated that mitogen-activated protein kinase (MAPK signaling was the major pathway in both levels of noise exposure. Nevertheless, both qualitative and quantitative differences were noticed in some MAPK signaling genes, after exposure to different noise levels. Cacna1b , Cacna1g , and Pla2g6 , related to calcium signaling were down-regulated after 110 dB SPL exposure, while the fold increase in the expression of Fos was relatively lower than what was observed after 116 dB SPL exposure. These subtle variations provide insight on the factors that may contribute to the differences in NIHL despite the activation of a common pathway.

  9. Time-frequency peak filtering for random noise attenuation of magnetic resonance sounding signal

    Science.gov (United States)

    Lin, Tingting; Zhang, Yang; Yi, Xiaofeng; Fan, Tiehu; Wan, Ling

    2018-05-01

    When measuring in a geomagnetic field, the method of magnetic resonance sounding (MRS) is often limited because of the notably low signal-to-noise ratio (SNR). Most current studies focus on discarding spiky noise and power-line harmonic noise cancellation. However, the effects of random noise should not be underestimated. The common method for random noise attenuation is stacking, but collecting multiple recordings merely to suppress random noise is time-consuming. Moreover, stacking is insufficient to suppress high-level random noise. Here, we propose the use of time-frequency peak filtering for random noise attenuation, which is performed after the traditional de-spiking and power-line harmonic removal method. By encoding the noisy signal with frequency modulation and estimating the instantaneous frequency using the peak of the time-frequency representation of the encoded signal, the desired MRS signal can be acquired from only one stack. The performance of the proposed method is tested on synthetic envelope signals and field data from different surveys. Good estimations of the signal parameters are obtained at different SNRs. Moreover, an attempt to use the proposed method to handle a single recording provides better results compared to 16 stacks. Our results suggest that the number of stacks can be appropriately reduced to shorten the measurement time and improve the measurement efficiency.

  10. Traffic background level and signal duration effects on aircraft noise judgment

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, G W; Haasz, A A

    1977-04-22

    The effects of background traffic noise level and signal duration on perceived aircraft noise levels during a flyover event are investigated. Tapes of traffic noise at different levels on which aircraft flyover noise events of different durations were superimposed were played to groups of observers in a room simulating indoor conditions. It is found that the presence of steady background traffic noise reduces the perceived noisiness of aircraft flyovers provided that the duration of the flyover event is sufficiently short in relation to flyover time. For a given event level, a reduction of 21 dB(A) in background noise level leads to the perception of a 5.5 dB(A) increase in peak event level. Regressions of observer response with the noise pollution index show a lower correlation than those with variables based on background noise level and peak signal level, although the data are found to exhibit a number of significant trends associated with noise pollution index variations.

  11. Coupling of relative intensity noise and pathlength noise to the length measurement in the optical metrology system of LISA Pathfinder

    Science.gov (United States)

    Wittchen, Andreas; the LPF Collaboration

    2017-05-01

    LISA Pathfinder is a technology demonstration mission for the space-based gravitational wave observatory, LISA. It demonstrated that the performance requirements for the interferometric measurement of two test masses in free fall can be met. An important part of the data analysis is to identify the limiting noise sources. [1] This measurement is performed with heterodyne interferometry. The performance of this optical metrology system (OMS) at high frequencies is limited by sensing noise. One such noise source is Relative Intensity Noise (RIN). RIN is a property of the laser, and the photodiode current generated by the interferometer signal contains frequency dependant RIN. From this electric signal the phasemeter calculates the phase change and laser power, and the coupling of RIN into the measurement signal depends on the noise frequency. RIN at DC, at the heterodyne frequency and at two times the heterodyne frequency couples into the phase. Another important noise at high frequencies is path length noise. To reduce the impact this noise is suppressed with a control loop. Path length noise not suppressed will couple directly into the length measurement. The subtraction techniques of both noise sources depend on the phase difference between the reference signal and the measurement signal, and thus on the test mass position. During normal operations we position the test mass at the interferometric zero, which is optimal for noise subtraction purposes. This paper will show results from an in-flight experiment where the test mass position was changed to make the position dependant noise visible.

  12. Detection of oscillatory components in noise signals and its application to fast detection of sodium boiling in LMFBR's

    International Nuclear Information System (INIS)

    Ehrhardt, J.

    1975-09-01

    In general, the surveillance of technical plants is performed by observating the mean value of measured signals. In this method not all information included in these signals is used. On the other hand - for example in a reactor - disturbances are possible which generate small oscillatory components in the measured signals. In general, these oscillatory components do not influence the mean value of the signals and consequently do not activate the conventional control system; however they can be found by analysis of the signal's noise component. For the detection of these oscillatory signals the observation of the frequency spectra of the noise signals is particularly advantageous because they produce peaks at the oscillation frequencies. In this paper a new detection system for the fast detection of suddenly appearing peaks in the frequency spectra of noise signals is presented. The prototype of a compact detection unit was developed which continuously computes the power spectral density (PSD) of noise signals and simultaneously supervises the PSD for peaks in the relevant frequency range. The detection method is not affected by the frequency dependance of the PSD and is applicable to any noise signal. General criteria were developed to enable the determination of the optimal detection system and its sensitivity. The upper limits of false alarm rate and detection time were taken into account. The detection criteria are applicable to all noise signals with approximately normally distributed amplitudes. Theoretical results were confirmed in a number of experiments; special experimental and theoretical parameter studies were done for the optimal detection of sodium boiling in LMFBR's. Computations based on these results showed that local and integral sodium boiling can be detected in a wide core range of SNR 300 by observing fluctuations of the neutron flux. In this connection it is important to point out that no additional core instrumentation is necessary because the

  13. Pump to signal noise transfer in parametric fiber amplifiers

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Rottwitt, Karsten; Peucheret, Christophe

    2010-01-01

    Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal.......Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal....

  14. Removal of Stationary Sinusoidal Noise from Random Vibration Signals.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian; Cap, Jerome S.

    2018-02-01

    In random vibration environments, sinusoidal line noise may appear in the vibration signal and can affect analysis of the resulting data. We studied two methods which remove stationary sine tones from random noise: a matrix inversion algorithm and a chirp-z transform algorithm. In addition, we developed new methods to determine the frequency of the tonal noise. The results show that both of the removal methods can eliminate sine tones in prefabricated random vibration data when the sine-to-random ratio is at least 0.25. For smaller ratios down to 0.02 only the matrix inversion technique can remove the tones, but the metrics to evaluate its effectiveness also degrade. We also found that using fast Fourier transforms best identified the tonal noise, and determined that band-pass-filtering the signals prior to the process improved sine removal. When applied to actual vibration test data, the methods were not as effective at removing harmonic tones, which we believe to be a result of mixed-phase sinusoidal noise.

  15. Direction dependent Love and Rayleigh wave noise characteristics using multiple arrays across Europe

    Science.gov (United States)

    Juretzek, Carina; Perleth, Magdalena; Hadziioannou, Celine

    2016-04-01

    Seismic noise has become an important signal source for tomography and monitoring purposes. Better understanding of the noise field characteristics is crucial to further improve noise applications. Our knowledge about common and different origins of Love and Rayleigh waves in the microseism band is still limited. This applies in particular for constraints on source locations and source mechanisms of Love waves. Here, 3-component beamforming is used to distinguish between the different polarized wave types in the primary and secondary microseism noise field recorded at several arrays across Europe. We compare characteristics of Love and Rayleigh wave noise, such as source directions and frequency content. Further, Love to Rayleigh wave ratios are measured and a dependence on direction is found, especially in the primary microseism band. Estimates of the kinetic energy density ratios propose a dominance of coherent Love waves in the primary, but not in the secondary microseism band. The seasonality of the noise field characteristics is examined by using a full year of data in 2013 and is found to be stable.

  16. Cascaded analysis of signal and noise propagation through a heterogeneous breast model

    International Nuclear Information System (INIS)

    Mainprize, James G.; Yaffe, Martin J.

    2010-01-01

    Purpose: The detectability of lesions in radiographic images can be impaired by patterns caused by the surrounding anatomic structures. The presence of such patterns is often referred to as anatomic noise. Others have previously extended signal and noise propagation theory to include variable background structure as an additional noise term and used in simulations for analysis by human and ideal observers. Here, the analytic forms of the signal and noise transfer are derived to obtain an exact expression for any input random distribution and the ''power law'' filter used to generate the texture of the tissue distribution. Methods: A cascaded analysis of propagation through a heterogeneous model is derived for x-ray projection through simulated heterogeneous backgrounds. This is achieved by considering transmission through the breast as a correlated amplification point process. The analytic forms of the cascaded analysis were compared to monoenergetic Monte Carlo simulations of x-ray propagation through power law structured backgrounds. Results: As expected, it was found that although the quantum noise power component scales linearly with the x-ray signal, the anatomic noise will scale with the square of the x-ray signal. There was a good agreement between results obtained using analytic expressions for the noise power and those from Monte Carlo simulations for different background textures, random input functions, and x-ray fluence. Conclusions: Analytic equations for the signal and noise properties of heterogeneous backgrounds were derived. These may be used in direct analysis or as a tool to validate simulations in evaluating detectability.

  17. Reducing Noise by Repetition: Introduction to Signal Averaging

    Science.gov (United States)

    Hassan, Umer; Anwar, Muhammad Sabieh

    2010-01-01

    This paper describes theory and experiments, taken from biophysics and physiological measurements, to illustrate the technique of signal averaging. In the process, students are introduced to the basic concepts of signal processing, such as digital filtering, Fourier transformation, baseline correction, pink and Gaussian noise, and the cross- and…

  18. Signal processing techniques for sodium boiling noise detection

    International Nuclear Information System (INIS)

    1989-05-01

    At the Specialists' Meeting on Sodium Boiling Detection organized by the International Working Group on Fast Reactors (IWGFR) of the International Atomic Energy Agency at Chester in the United Kingdom in 1981 various methods of detecting sodium boiling were reported. But, it was not possible to make a comparative assessment of these methods because the signal condition in each experiment was different from others. That is why participants of this meeting recommended that a benchmark test should be carried out in order to evaluate and compare signal processing methods for boiling detection. Organization of the Co-ordinated Research Programme (CRP) on signal processing techniques for sodium boiling noise detection was also recommended at the 16th meeting of the IWGFR. The CRP on Signal Processing Techniques for Sodium Boiling Noise Detection was set up in 1984. Eight laboratories from six countries have agreed to participate in this CRP. The overall objective of the programme was the development of reliable on-line signal processing techniques which could be used for the detection of sodium boiling in an LMFBR core. During the first stage of the programme a number of existing processing techniques used by different countries have been compared and evaluated. In the course of further work, an algorithm for implementation of this sodium boiling detection system in the nuclear reactor will be developed. It was also considered that the acoustic signal processing techniques developed for boiling detection could well make a useful contribution to other acoustic applications in the reactor. This publication consists of two parts. Part I is the final report of the co-ordinated research programme on signal processing techniques for sodium boiling noise detection. Part II contains two introductory papers and 20 papers presented at four research co-ordination meetings since 1985. A separate abstract was prepared for each of these 22 papers. Refs, figs and tabs

  19. Measuring multielectron beam imaging fidelity with a signal-to-noise ratio analysis

    Science.gov (United States)

    Mukhtar, Maseeh; Bunday, Benjamin D.; Quoi, Kathy; Malloy, Matt; Thiel, Brad

    2016-07-01

    Java Monte Carlo Simulator for Secondary Electrons (JMONSEL) simulations are used to generate expected imaging responses of chosen test cases of patterns and defects with the ability to vary parameters for beam energy, spot size, pixel size, and/or defect material and form factor. The patterns are representative of the design rules for an aggressively scaled FinFET-type design. With these simulated images and resulting shot noise, a signal-to-noise framework is developed, which relates to defect detection probabilities. Additionally, with this infrastructure, the effect of detection chain noise and frequency-dependent system response can be made, allowing for targeting of best recipe parameters for multielectron beam inspection validation experiments. Ultimately, these results should lead to insights into how such parameters will impact tool design, including necessary doses for defect detection and estimations of scanning speeds for achieving high throughput for high-volume manufacturing.

  20. Approximations to camera sensor noise

    Science.gov (United States)

    Jin, Xiaodan; Hirakawa, Keigo

    2013-02-01

    Noise is present in all image sensor data. Poisson distribution is said to model the stochastic nature of the photon arrival process, while it is common to approximate readout/thermal noise by additive white Gaussian noise (AWGN). Other sources of signal-dependent noise such as Fano and quantization also contribute to the overall noise profile. Question remains, however, about how best to model the combined sensor noise. Though additive Gaussian noise with signal-dependent noise variance (SD-AWGN) and Poisson corruption are two widely used models to approximate the actual sensor noise distribution, the justification given to these types of models are based on limited evidence. The goal of this paper is to provide a more comprehensive characterization of random noise. We concluded by presenting concrete evidence that Poisson model is a better approximation to real camera model than SD-AWGN. We suggest further modification to Poisson that may improve the noise model.

  1. Influence of Signal and Noise on Statistical Fluctuation of Single-Mode Laser System

    International Nuclear Information System (INIS)

    Xu Dahai; Cheng Qinghua; Cao Li; Wu Dajin

    2006-01-01

    On the basis of calculating the steady-state mean normalized intensity fluctuation of a signal-mode laser system driven by both colored pump noise with signal modulation and the quantum noise with cross-correlation between its real and imaginary parts, we analyze the influence of modulation signal, noise, and its correlation form on the statistical fluctuation of the laser system. We have found that when the amplitude of modulation signal weakens and its frequency quickens, the statistical fluctuation will reduce rapidly. The statistical fluctuation of the laser system can be restrained by reducing the intensity of pump noise and quantum noise. Moreover, with prolonging of colored cross-correlation time, the statistical fluctuation of laser system experiences a repeated changing process, that is, from decreasing to augmenting, then to decreasing, and finally to augmenting again. With the decreasing of the value of cross-correlation coefficient, the statistical fluctuation will decrease too. When the cross-correlation form between the real part and imaginary part of quantum noise is zero correlation, the statistical fluctuation of laser system has a minimum. Compared with the influence of intensity of pump noise, the influence of intensity of quantum noise on the statistical fluctuation is smaller.

  2. Exponential signaling gain at the receptor level enhances signal-to-noise ratio in bacterial chemotaxis.

    Directory of Open Access Journals (Sweden)

    Silke Neumann

    Full Text Available Cellular signaling systems show astonishing precision in their response to external stimuli despite strong fluctuations in the molecular components that determine pathway activity. To control the effects of noise on signaling most efficiently, living cells employ compensatory mechanisms that reach from simple negative feedback loops to robustly designed signaling architectures. Here, we report on a novel control mechanism that allows living cells to keep precision in their signaling characteristics - stationary pathway output, response amplitude, and relaxation time - in the presence of strong intracellular perturbations. The concept relies on the surprising fact that for systems showing perfect adaptation an exponential signal amplification at the receptor level suffices to eliminate slowly varying multiplicative noise. To show this mechanism at work in living systems, we quantified the response dynamics of the E. coli chemotaxis network after genetically perturbing the information flux between upstream and downstream signaling components. We give strong evidence that this signaling system results in dynamic invariance of the activated response regulator against multiplicative intracellular noise. We further demonstrate that for environmental conditions, for which precision in chemosensing is crucial, the invariant response behavior results in highest chemotactic efficiency. Our results resolve several puzzling features of the chemotaxis pathway that are widely conserved across prokaryotes but so far could not be attributed any functional role.

  3. Stochastic resonance in a single-mode laser driven by frequency modulated signal and coloured noises

    Institute of Scientific and Technical Information of China (English)

    Jin Guo-Xiang; Zhang Liang-Ying; Cao Li

    2009-01-01

    By adding frequency modulated signals to the intensity equation of gain-noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.

  4. Signals and noise in measurements of low-frequency geomagnetic fields

    International Nuclear Information System (INIS)

    Nichols, E.A.; Morrison, H.F.; Clarke, J.

    1988-01-01

    The apparent magnetic noise, obtained from the coherency function for two parallel magnetic sensors, generally overstimates sensor noise because the sensors do not measure the same signal. The different signals result from the nonparallel alignment of the sensors and from the additional magnetic signal induced in each sensor by its motion in the Earth's magnetic field. A magnetometer array experiment was completed in Grass Valley, Nevada, to determine the minimum magnetic signal that could be detected in the presence of background natural field variations and motion of the sensor. Superconducting quantum interference device (SQUID) magnetometers with interval biaxial tiltmeters were used to record the magnetic fields and the motion of the sensors

  5. Noise frame duration, masking potency and whiteness of temporal noise.

    Science.gov (United States)

    Kukkonen, Heljä; Rovamo, Jyrki; Donner, Kristian; Tammikallio, Marja; Raninen, Antti

    2002-09-01

    Because of the limited contrast range, increasing the duration of the noise frame is often the only option for increasing the masking potency of external, white temporal noise. This, however, reduces the high-frequency cutoff beyond which noise is no longer white. This study was conducted to determine the longest noise frame duration that produces the strongest masking effect and still mimics white noise on the detection of sinusoidal flicker. Contrast energy thresholds (E(th)) were measured for flicker at 1.25 to 20 Hz in strong, purely temporal (spatially uniform), additive, external noise. The masking power of white external noise, characterized by its spectral density at zero frequency N0, increases with the duration of the noise frame. For short noise frame durations, E(th) increased in direct proportion to N0, keeping the nominal signal-to-noise ratio [SNR = (E(th)/N0)(0.5)] constant at threshold. The masking effect thus increased with the duration of the noise frame and the noise mimicked white noise. When noise frame duration and N0 increased further, the nominal SNR at threshold started to decrease, indicating that noise no longer mimicked white noise. The minimum number of noise frames per flicker cycle needed to mimic white noise decreased with increasing flicker frequency from 8.3 at 1.25 Hz to 1.6 at 20 Hz. The critical high-frequency cutoff of detection-limiting temporal noise in terms of noise frames per signal cycle depends on the temporal frequency of the signal. This is opposite to the situation in the spatial domain and must be taken into consideration when temporal signals are masked with temporal noise.

  6. ECG signal performance de-noising assessment based on threshold tuning of dual-tree wavelet transform.

    Science.gov (United States)

    El B'charri, Oussama; Latif, Rachid; Elmansouri, Khalifa; Abenaou, Abdenbi; Jenkal, Wissam

    2017-02-07

    Since the electrocardiogram (ECG) signal has a low frequency and a weak amplitude, it is sensitive to miscellaneous mixed noises, which may reduce the diagnostic accuracy and hinder the physician's correct decision on patients. The dual tree wavelet transform (DT-WT) is one of the most recent enhanced versions of discrete wavelet transform. However, threshold tuning on this method for noise removal from ECG signal has not been investigated yet. In this work, we shall provide a comprehensive study on the impact of the choice of threshold algorithm, threshold value, and the appropriate wavelet decomposition level to evaluate the ECG signal de-noising performance. A set of simulations is performed on both synthetic and real ECG signals to achieve the promised results. First, the synthetic ECG signal is used to observe the algorithm response. The evaluation results of synthetic ECG signal corrupted by various types of noise has showed that the modified unified threshold and wavelet hyperbolic threshold de-noising method is better in realistic and colored noises. The tuned threshold is then used on real ECG signals from the MIT-BIH database. The results has shown that the proposed method achieves higher performance than the ordinary dual tree wavelet transform into all kinds of noise removal from ECG signal. The simulation results indicate that the algorithm is robust for all kinds of noises with varying degrees of input noise, providing a high quality clean signal. Moreover, the algorithm is quite simple and can be used in real time ECG monitoring.

  7. Signal and noise analysis of a-Si:H radiation detector-amplifier system

    International Nuclear Information System (INIS)

    Cho, Gyuseong.

    1992-03-01

    Hydrogenated amorphous silicon (a-Si:H) has potential advantages in making radiation detectors for many applications because of its deposition capability on a large-area substrate and its high radiation resistance. Position-sensitive radiation detectors can be made out of a 1d strip or a 2-d pixel array of a Si:H pin diodes. In addition, signal processing electronics can be made by thin-film transistors on the same substrate. The calculated radiation signal, based on a simple charge collection model agreed well with results from various wave length light sources and 1 MeV beta particles on sample diodes. The total noise of the detection system was analyzed into (a) shot noise and (b) 1/f noise from a detector diode, and (c) thermal noise and (d) 1/f noise from the frontend TFT of a charge-sensitive preamplifier. the effective noise charge calculated by convoluting these noise power spectra with the transfer function of a CR-RC shaping amplifier showed a good agreement with the direct measurements of noise charge. The derived equations of signal and noise charge can be used to design an a-Si:H pixel detector amplifier system optimally. Signals from a pixel can be readout using switching TFTs, or diodes. Prototype tests of a double-diode readout scheme showed that the storage time and the readout time are limited by the resistances of the reverse-biased pixel diode and the forward biased switching diodes respectively. A prototype charge-sensitive amplifier was made using poly-Si TFTs to test the feasibility of making pixel-level amplifiers which would be required in small-signal detection. The measured overall gain-bandwidth product was ∼400 MHz and the noise charge ∼1000 electrons at a 1 μsec shaping time. When the amplifier is connected to a pixel detector of capacitance 0.2 pF, it would give a charge-to-voltage gain of ∼0.02 mV/electron with a pulse rise time less than 100 nsec and a dynamic range of 48 dB

  8. Signal and noise analysis of a-Si:H radiation detector-amplifier system

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gyuseong [Univ. of California, Berkeley, CA (United States)

    1992-03-01

    Hydrogenated amorphous silicon (a-Si:H) has potential advantages in making radiation detectors for many applications because of its deposition capability on a large-area substrate and its high radiation resistance. Position-sensitive radiation detectors can be made out of a 1d strip or a 2-d pixel array of a Si:H pin diodes. In addition, signal processing electronics can be made by thin-film transistors on the same substrate. The calculated radiation signal, based on a simple charge collection model agreed well with results from various wave length light sources and 1 MeV beta particles on sample diodes. The total noise of the detection system was analyzed into (a) shot noise and (b) 1/f noise from a detector diode, and (c) thermal noise and (d) 1/f noise from the frontend TFT of a charge-sensitive preamplifier. the effective noise charge calculated by convoluting these noise power spectra with the transfer function of a CR-RC shaping amplifier showed a good agreement with the direct measurements of noise charge. The derived equations of signal and noise charge can be used to design an a-Si:H pixel detector amplifier system optimally. Signals from a pixel can be readout using switching TFTs, or diodes. Prototype tests of a double-diode readout scheme showed that the storage time and the readout time are limited by the resistances of the reverse-biased pixel diode and the forward biased switching diodes respectively. A prototype charge-sensitive amplifier was made using poly-Si TFTs to test the feasibility of making pixel-level amplifiers which would be required in small-signal detection. The measured overall gain-bandwidth product was ~400 MHz and the noise charge ~1000 electrons at a 1 μsec shaping time. When the amplifier is connected to a pixel detector of capacitance 0.2 pF, it would give a charge-to-voltage gain of ~0.02 mV/electron with a pulse rise time less than 100 nsec and a dynamic range of 48 dB.

  9. Signal and noise analysis of a-Si:H radiation detector-amplifier system

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gyuseong.

    1992-03-01

    Hydrogenated amorphous silicon (a-Si:H) has potential advantages in making radiation detectors for many applications because of its deposition capability on a large-area substrate and its high radiation resistance. Position-sensitive radiation detectors can be made out of a 1d strip or a 2-d pixel array of a Si:H pin diodes. In addition, signal processing electronics can be made by thin-film transistors on the same substrate. The calculated radiation signal, based on a simple charge collection model agreed well with results from various wave length light sources and 1 MeV beta particles on sample diodes. The total noise of the detection system was analyzed into (a) shot noise and (b) 1/f noise from a detector diode, and (c) thermal noise and (d) 1/f noise from the frontend TFT of a charge-sensitive preamplifier. the effective noise charge calculated by convoluting these noise power spectra with the transfer function of a CR-RC shaping amplifier showed a good agreement with the direct measurements of noise charge. The derived equations of signal and noise charge can be used to design an a-Si:H pixel detector amplifier system optimally. Signals from a pixel can be readout using switching TFTs, or diodes. Prototype tests of a double-diode readout scheme showed that the storage time and the readout time are limited by the resistances of the reverse-biased pixel diode and the forward biased switching diodes respectively. A prototype charge-sensitive amplifier was made using poly-Si TFTs to test the feasibility of making pixel-level amplifiers which would be required in small-signal detection. The measured overall gain-bandwidth product was {approximately}400 MHz and the noise charge {approximately}1000 electrons at a 1 {mu}sec shaping time. When the amplifier is connected to a pixel detector of capacitance 0.2 pF, it would give a charge-to-voltage gain of {approximately}0.02 mV/electron with a pulse rise time less than 100 nsec and a dynamic range of 48 dB.

  10. The Signal and Noise Analysis of Direct Conversion EHM Transceivers

    Directory of Open Access Journals (Sweden)

    Shayegh

    2006-01-01

    Full Text Available A direct conversion modulator-demodulator with even harmonic mixers with emphasis on noise analysis is presented. The circuits consist of even harmonic mixers (EHMs realized with antiparallel diode pairs (APDPs. We evaluate the different levels of I/Q imbalances and DC offsets and use signal space concepts to analyze the bit error rate (BER of the proposed transceiver using M-ary QAM schemes. Moreover, the simultaneous analysis of the signal and noise has been presented.

  11. Measurement of signal-to-noise ratio performance of TV fluoroscopy systems

    International Nuclear Information System (INIS)

    Geluk, R.J.

    1985-01-01

    A method has been developed for direct measurement of Signal-to-Noise ratio performance on X-ray TV systems. To this end the TV signal resulting from a calibrated test object, is compared with the noise level in the image. The method is objective and produces instantaneous readout, which makes it very suitable for system evaluation under dynamic conditions. (author)

  12. Frequency-dependent effects of background noise on subcortical response timing.

    Science.gov (United States)

    Tierney, A; Parbery-Clark, A; Skoe, E; Kraus, N

    2011-12-01

    The addition of background noise to an auditory signal delays brainstem response timing. This effect has been extensively documented using manual peak selection. Peak picking, however, is impractical for large-scale studies of spectrotemporally complex stimuli, and leaves open the question of whether noise-induced delays are frequency-dependent or occur across the frequency spectrum. Here we use an automated, objective method to examine phase shifts between auditory brainstem responses to a speech sound (/da/) presented with and without background noise. We predicted that shifts in neural response timing would also be reflected in frequency-specific phase shifts. Our results indicate that the addition of background noise causes phase shifts across the subcortical response spectrum (70-1000 Hz). However, this noise-induced delay is not uniform such that some frequency bands show greater shifts than others: low-frequency phase shifts (300-500 Hz) are largest during the response to the consonant-vowel formant transition (/d/), while high-frequency shifts (720-1000 Hz) predominate during the response to the steady-state vowel (/a/). Most importantly, phase shifts occurring in specific frequency bands correlate strongly with shifts in the latencies of the predominant peaks in the auditory brainstem response, while phase shifts in other frequency bands do not. This finding confirms the validity of phase shift detection as an objective measure of timing differences and reveals that this method detects noise-induced shifts in timing that may not be captured by traditional peak latency measurements. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Representation of acoustic signals in the eighth nerve of the Tokay gecko. II. Masking of pure tones with noise.

    Science.gov (United States)

    Sams-Dodd, F; Capranica, R R

    1996-10-01

    Acoustic signals are generally encoded in the peripheral auditory system of vertebrates by a duality scheme. For frequency components that fall within the excitatory tuning curve, individual eighth nerve fibers can encode the effective spectral energy by a spike-rate code, while simultaneously preserving the signal waveform periodicity of lower frequency components by phase-locked spike-train discharges. To explore how robust this duality of representation may be in the presence of noise, we recorded the responses of auditory fibers in the eighth nerve of the Tokay gecko to tonal stimuli when masking noise was added simultaneously. We found that their spike-rate functions reached plateau levels fairly rapidly in the presence of noise, so the ability to signal the presence of a tone by a concomitant change in firing rate was quickly lost. On the other hand, their synchronization functions maintained a high degree of phase-locked firings to the tone even in the presence of high-intensity masking noise, thus enabling a robust detection of the tonal signal. Critical ratios (CR) and critical bandwidths showed that in the frequency range where units are able to phaselock to the tonal periodicity, the CR bands were relatively narrow and the bandwidths were independent of noise level. However, to higher frequency tones where phaselocking fails and only spike-rate codes apply, the CR bands were much wider and depended upon noise level, so that their ability to filter tones out of a noisy background degraded with increasing noise levels. The greater robustness of phase-locked temporal encoding contrasted with spike-rate coding verifies a important advantage in using lower frequency signals for communication in noisy environments.

  14. Masking potency and whiteness of noise at various noise check sizes.

    Science.gov (United States)

    Kukkonen, H; Rovamo, J; Näsänen, R

    1995-02-01

    The masking effect of spatial noise can be increased by increasing either the rms contrast or check size of noise. In this study, the authors investigated the largest noise check size that still mimics the effect of white noise in grating detection and how it depends on the bandwidth and spatial frequency of a grating. The authors measured contrast energy thresholds, E, for vertical cosine gratings at various spatial frequencies and bandwidths. Gratings were embedded in two-dimensional spatial noise. The side length of the square noise checks was varied in the experiments. The spectral density, N(0,0), of white spatial noise at zero frequency was calculated by multiplying the noise check area by the rms contrast of noise squared. The physical signal-to-noise ratio at threshold [E/N(0,0)]0.5 was initially constant but then started to decrease. The largest noise check that still produced a constant physical signal-to-noise ratio at threshold was directly proportional to the spatial frequency. When expressed as a fraction of grating cycle, the largest noise check size depended only on stimulus bandwidth. The smallest number of noise checks per grating cycle needed to mimic the effect of white noise decreased from 4.2 to 2.6 when the number of grating cycles increased from 1 to 64. Spatial noise can be regarded as white in grating detection if there are at least four square noise checks per grating cycle at all spatial frequencies.

  15. Autonomous data acquisition system for Paks NPP process noise signals

    International Nuclear Information System (INIS)

    Lipcsei, S.; Kiss, S.; Czibok, T.; Dezso, Z.; Horvath, Cs.

    2005-01-01

    A prototype of a new concept noise diagnostics data acquisition system has been developed recently to renew the aged present system. This new system is capable of collecting the whole available noise signal set simultaneously. Signal plugging and data acquisition are performed by autonomous systems (installed at each reactor unit) that are controlled through the standard plant network from a central computer installed at a suitable location. Experts can use this central unit to process and archive data series downloaded from the reactor units. This central unit also provides selected noise diagnostics information for other departments. The paper describes the hardware and software architecture of the new system in detail, emphasising the potential benefits of the new approach. (author)

  16. Noise-dependent optimal strategies for quantum metrology

    Science.gov (United States)

    Huang, Zixin; Macchiavello, Chiara; Maccone, Lorenzo

    2018-03-01

    For phase estimation using qubits, we show that for some noise channels, the optimal entanglement-assisted strategy depends on the noise level. We note that there is a nontrivial crossover between the parallel-entangled strategy and the ancilla-assisted strategy: in the former the probes are all entangled; in the latter the probes are entangled with a noiseless ancilla but not among themselves. The transition can be explained by the fact that separable states are more robust against noise and therefore are optimal in the high-noise limit, but they are in turn outperformed by ancilla-assisted ones.

  17. Electronic noise of superconducting tunnel junction detectors

    International Nuclear Information System (INIS)

    Jochum, J.; Kraus, H.; Gutsche, M.; Kemmather, B.; Feilitzsch, F. v.; Moessbauer, R.L.

    1994-01-01

    The optimal signal to noise ratio for detectors based on superconducting tunnel junctions is calculated and compared for the cases of a detector consisting of one single tunnel junction, as well as of series and of parallel connections of such tunnel junctions. The influence of 1 / f noise and its dependence on the dynamical resistance of tunnel junctions is discussed quantitatively. A single tunnel junction yields the minimum equivalent noise charge. Such a tunnel junction exhibits the best signal to noise ratio if the signal charge is independent of detector size. In case, signal charge increases with detector size, a parallel or a series connection of tunnel junctions would provide the optimum signal to noise ratio. The equivalent noise charge and the respective signal to noise ratio are deduced as functions of tunnel junction parameters such as tunneling time, quasiparticle lifetime, etc. (orig.)

  18. The effects of noise-bandwidth, noise-fringe duration, and temporal signal location on the binaural masking-level difference.

    Science.gov (United States)

    Yasin, Ifat; Henning, G Bruce

    2012-07-01

    The effects of forward and backward noise fringes on binaural signal detectability were investigated. Masked thresholds for a 12-ms, 250-Hz, sinusoidal signal masked by Gaussian noise, centered at 250 Hz, with bandwidths from 3 to 201 Hz, were obtained in N(0)S(0) and N(0)S(π) configurations. The signal was (a) temporally centered in a 12-ms noise burst (no fringe), (b) presented at the start of a 600-ms noise burst (backward fringe), or (c) temporally centered in a 600-ms noise burst (forward-plus-backward fringe). For noise bandwidths between 3 and 75 Hz, detection in N(0)S(0) improved with the addition of a backward fringe, improving further with an additional forward fringe; there was little improvement in N(0)S(π). The binaural masking-level difference (BMLD) increased from 0 to 8 dB with a forward-plus-backward fringe as noise bandwidths increased to 100 Hz, increasing slightly to 10 dB at 201 Hz. This two-stage increase was less pronounced with a backward fringe. With no fringe, the BMLD was about 10-14 dB at all bandwidths. Performance appears to result from the interaction of across-time and across-frequency listening strategies and the possible effects of gain reduction and suppression, which combine in complex ways. Current binaural models are, as yet, unable to account fully for these effects.

  19. Benchmarking the Algorithms to Detect Seasonal Signals Under Different Noise Conditions

    Science.gov (United States)

    Klos, A.; Bogusz, J.; Bos, M. S.

    2017-12-01

    Global Positioning System (GPS) position time series contain seasonal signals. Among the others, annual and semi-annual are the most powerful. Widely, these oscillations are modelled as curves with constant amplitudes, using the Weighted Least-Squares (WLS) algorithm. However, in reality, the seasonal signatures vary over time, as their geophysical causes are not constant. Different algorithms have been already used to cover this time-variability, as Wavelet Decomposition (WD), Singular Spectrum Analysis (SSA), Chebyshev Polynomial (CP) or Kalman Filter (KF). In this research, we employed 376 globally distributed GPS stations which time series contributed to the newest International Terrestrial Reference Frame (ITRF2014). We show that for c.a. 20% of stations the amplitudes of seasonal signal varies over time of more than 1.0 mm. Then, we compare the WD, SSA, CP and KF algorithms for a set of synthetic time series to quantify them under different noise conditions. We show that when variations of seasonal signals are ignored, the power-law character is biased towards flicker noise. The most reliable estimates of the variations were found to be given by SSA and KF. These methods also perform the best for other noise levels while WD, and to a lesser extend also CP, have trouble in separating the seasonal signal from the noise which leads to an underestimation in the spectral index of power-law noise of around 0.1. For real ITRF2014 GPS data we discovered, that SSA and KF are capable to model 49-84% and 77-90% of the variance of the true varying seasonal signals, respectively.

  20. Full-Scale Turbofan Engine Noise-Source Separation Using a Four-Signal Method

    Science.gov (United States)

    Hultgren, Lennart S.; Arechiga, Rene O.

    2016-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and expected advances in mitigation of other noise sources. During on-ground, static-engine acoustic tests, combustor noise is generally sub-dominant to other engine noise sources because of the absence of in-flight effects. Consequently, noise-source separation techniques are needed to extract combustor-noise information from the total noise signature in order to further progress. A novel four-signal source-separation method is applied to data from a static, full-scale engine test and compared to previous methods. The new method is, in a sense, a combination of two- and three-signal techniques and represents an attempt to alleviate some of the weaknesses of each of those approaches. This work is supported by the NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject and the NASA Glenn Faculty Fellowship Program.

  1. A comparative study of chaotic and white noise signals in digital watermarking

    International Nuclear Information System (INIS)

    Mooney, Aidan; Keating, John G.; Pitas, Ioannis

    2008-01-01

    Digital watermarking is an ever increasing and important discipline, especially in the modern electronically-driven world. Watermarking aims to embed a piece of information into digital documents which their owner can use to prove that the document is theirs, at a later stage. In this paper, performance analysis of watermarking schemes is performed on white noise sequences and chaotic sequences for the purpose of watermark generation. Pseudorandom sequences are compared with chaotic sequences generated from the chaotic skew tent map. In particular, analysis is performed on highpass signals generated from both these watermark generation schemes, along with analysis on lowpass watermarks and white noise watermarks. This analysis focuses on the watermarked images after they have been subjected to common image distortion attacks. It is shown that signals generated from highpass chaotic signals have superior performance than highpass noise signals, in the presence of such attacks. It is also shown that watermarks generated from lowpass chaotic signals have superior performance over the other signal types analysed

  2. Noise and signal interference in optical fiber transmission systems an optimum design approach

    CERN Document Server

    Bottacchi, Stefano

    2008-01-01

    A comprehensive reference to noise and signal interference in optical fiber communications Noise and Signal Interference in Optical Fiber Transmission Systems is a compendium on specific topics within optical fiber transmission and the optimization process of the system design. It offers comprehensive treatment of noise and intersymbol interference (ISI) components affecting optical fiber communications systems, containing coverage on noise from the light source, the fiber and the receiver. The ISI is modeled with a statistical approach, leading to new useful computational m

  3. Electrocardiogram (ECG Signal Modeling and Noise Reduction Using Hopfield Neural Networks

    Directory of Open Access Journals (Sweden)

    F. Bagheri

    2013-02-01

    Full Text Available The Electrocardiogram (ECG signal is one of the diagnosing approaches to detect heart disease. In this study the Hopfield Neural Network (HNN is applied and proposed for ECG signal modeling and noise reduction. The Hopfield Neural Network (HNN is a recurrent neural network that stores the information in a dynamic stable pattern. This algorithm retrieves a pattern stored in memory in response to the presentation of an incomplete or noisy version of that pattern. Computer simulation results show that this method can successfully model the ECG signal and remove high-frequency noise.

  4. Comparative analysis of chosen transforms in the context of de-noising harmonic signals

    Directory of Open Access Journals (Sweden)

    Artur Zacniewski

    2015-09-01

    Full Text Available In the article, comparison of popular transforms used i.a. in denoising harmonical signals was presented. The division of signals submitted to mathematical analysis was shown and chosen transforms such as Short Time Fourier Transform, Wigner-Ville Distribution, Wavelet Transform and Discrete Cosine Transform were presented. Harmonic signal with white noise added was submitted for research. During research, the parameters of noise were changed to analyze the effects of using particular transform on noised signal. The importance of right choice for transform and its parameters (different for particular kind of transform was shown. Small changes in parameters or different functions used in transform can lead to considerably different results.[b]Keywords[/b]: denoising of harmonical signals, wavelet transform, discrete cosine transform, DCT

  5. Detecting modulated signals in modulated noise: (II) neural thresholds in the songbird forebrain.

    Science.gov (United States)

    Bee, Mark A; Buschermöhle, Michael; Klump, Georg M

    2007-10-01

    Sounds in the real world fluctuate in amplitude. The vertebrate auditory system exploits patterns of amplitude fluctuations to improve signal detection in noise. One experimental paradigm demonstrating these general effects has been used in psychophysical studies of 'comodulation detection difference' (CDD). The CDD effect refers to the fact that thresholds for detecting a modulated, narrowband noise signal are lower when the envelopes of flanking bands of modulated noise are comodulated with each other, but fluctuate independently of the signal compared with conditions in which the envelopes of the signal and flanking bands are all comodulated. Here, we report results from a study of the neural correlates of CDD in European starlings (Sturnus vulgaris). We manipulated: (i) the envelope correlations between a narrowband noise signal and a masker comprised of six flanking bands of noise; (ii) the signal onset delay relative to masker onset; (iii) signal duration; and (iv) masker spectrum level. Masked detection thresholds were determined from neural responses using signal detection theory. Across conditions, the magnitude of neural CDD ranged between 2 and 8 dB, which is similar to that reported in a companion psychophysical study of starlings [U. Langemann & G.M. Klump (2007) Eur. J. Neurosci., 26, 1969-1978]. We found little evidence to suggest that neural CDD resulted from the across-channel processing of auditory grouping cues related to common envelope fluctuations and synchronous onsets between the signal and flanking bands. We discuss a within-channel model of peripheral processing that explains many of our results.

  6. Study on the ratio of signal to noise for single photon resolution time spectrometer

    International Nuclear Information System (INIS)

    Wang Zhaomin; Huang Shengli; Xu Zizong; Wu Chong

    2001-01-01

    The ratio of signal to noise for single photon resolution time spectrometer and their influence factors were studied. A method to depress the background, to shorten the measurement time and to increase the ratio of signal to noise was discussed. Results show that ratio of signal to noise is proportional to solid angle of detector to source and detection efficiency, and inverse proportional to electronics noise. Choose the activity of the source was important for decreasing of random coincidence counting. To use a coincidence gate and a discriminator of single photon were an effective way of increasing measurement accuracy and detection efficiency

  7. Noise texture and signal detectability in propagation-based x-ray phase-contrast tomography

    International Nuclear Information System (INIS)

    Chou, Cheng-Ying; Anastasio, Mark A.

    2010-01-01

    Purpose: X-ray phase-contrast tomography (PCT) is a rapidly emerging imaging modality for reconstructing estimates of an object's three-dimensional x-ray refractive index distribution. Unlike conventional x-ray computed tomography methods, the statistical properties of the reconstructed images in PCT remain unexplored. The purpose of this work is to quantitatively investigate noise propagation in PCT image reconstruction. Methods: The authors derived explicit expressions for the autocovariance of the reconstructed absorption and refractive index images to characterize noise texture and understand how the noise properties are influenced by the imaging geometry. Concepts from statistical detection theory were employed to understand how the imaging geometry-dependent statistical properties affect the signal detection performance in a signal-known-exactly/background-known-exactly task. Results: The analytical formulas for the phase and absorption autocovariance functions were implemented numerically and compared to the corresponding empirical values, and excellent agreement was found. They observed that the reconstructed refractive images are highly spatially correlated, while the absorption images are not. The numerical results confirm that the strength of the covariance is scaled by the detector spacing. Signal detection studies were conducted, employing a numerical observer. The detection performance was found to monotonically increase as the detector-plane spacing was increased. Conclusions: The authors have conducted the first quantitative investigation of noise propagation in PCT image reconstruction. The reconstructed refractive images were found to be highly spatially correlated, while absorption images were not. This is due to the presence of a Fourier space singularity in the reconstruction formula for the refraction images. The statistical analysis may facilitate the use of task-based image quality measures to further develop and optimize this emerging

  8. Noise texture and signal detectability in propagation-based x-ray phase-contrast tomography

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Cheng-Ying; Anastasio, Mark A. [Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei, Taiwan 106, Taiwan (China); Department of Biomedical Engineering, Medical Imaging Research Center, Illinois Institute of Technology, 3440 S. Dearborn Street, E1-116, Chicago, Illinois 60616 (United States)

    2010-01-15

    Purpose: X-ray phase-contrast tomography (PCT) is a rapidly emerging imaging modality for reconstructing estimates of an object's three-dimensional x-ray refractive index distribution. Unlike conventional x-ray computed tomography methods, the statistical properties of the reconstructed images in PCT remain unexplored. The purpose of this work is to quantitatively investigate noise propagation in PCT image reconstruction. Methods: The authors derived explicit expressions for the autocovariance of the reconstructed absorption and refractive index images to characterize noise texture and understand how the noise properties are influenced by the imaging geometry. Concepts from statistical detection theory were employed to understand how the imaging geometry-dependent statistical properties affect the signal detection performance in a signal-known-exactly/background-known-exactly task. Results: The analytical formulas for the phase and absorption autocovariance functions were implemented numerically and compared to the corresponding empirical values, and excellent agreement was found. They observed that the reconstructed refractive images are highly spatially correlated, while the absorption images are not. The numerical results confirm that the strength of the covariance is scaled by the detector spacing. Signal detection studies were conducted, employing a numerical observer. The detection performance was found to monotonically increase as the detector-plane spacing was increased. Conclusions: The authors have conducted the first quantitative investigation of noise propagation in PCT image reconstruction. The reconstructed refractive images were found to be highly spatially correlated, while absorption images were not. This is due to the presence of a Fourier space singularity in the reconstruction formula for the refraction images. The statistical analysis may facilitate the use of task-based image quality measures to further develop and optimize this emerging

  9. Computational study of noise in a large signal transduction network

    Directory of Open Access Journals (Sweden)

    Ruohonen Keijo

    2011-06-01

    Full Text Available Abstract Background Biochemical systems are inherently noisy due to the discrete reaction events that occur in a random manner. Although noise is often perceived as a disturbing factor, the system might actually benefit from it. In order to understand the role of noise better, its quality must be studied in a quantitative manner. Computational analysis and modeling play an essential role in this demanding endeavor. Results We implemented a large nonlinear signal transduction network combining protein kinase C, mitogen-activated protein kinase, phospholipase A2, and β isoform of phospholipase C networks. We simulated the network in 300 different cellular volumes using the exact Gillespie stochastic simulation algorithm and analyzed the results in both the time and frequency domain. In order to perform simulations in a reasonable time, we used modern parallel computing techniques. The analysis revealed that time and frequency domain characteristics depend on the system volume. The simulation results also indicated that there are several kinds of noise processes in the network, all of them representing different kinds of low-frequency fluctuations. In the simulations, the power of noise decreased on all frequencies when the system volume was increased. Conclusions We concluded that basic frequency domain techniques can be applied to the analysis of simulation results produced by the Gillespie stochastic simulation algorithm. This approach is suited not only to the study of fluctuations but also to the study of pure noise processes. Noise seems to have an important role in biochemical systems and its properties can be numerically studied by simulating the reacting system in different cellular volumes. Parallel computing techniques make it possible to run massive simulations in hundreds of volumes and, as a result, accurate statistics can be obtained from computational studies.

  10. Signal Detection with Criterion Noise: Applications to Recognition Memory

    Science.gov (United States)

    Benjamin, Aaron S.; Diaz, Michael; Wee, Serena

    2009-01-01

    A tacit but fundamental assumption of the theory of signal detection is that criterion placement is a noise-free process. This article challenges that assumption on theoretical and empirical grounds and presents the noisy decision theory of signal detection (ND-TSD). Generalized equations for the isosensitivity function and for measures of…

  11. Flow measurements using noise signals of axially displaced thermocouples

    Energy Technology Data Exchange (ETDEWEB)

    Kozma, R.; Hoogenboom, J.E. (Interuniversitair Reactor Inst., Delft (Netherlands))

    1990-01-01

    Determination of the flow rate of the coolant in the cooling channels of nuclear reactors is an important aspect of core monitoring. It is usually impossible to measure the flow by flowmeters in the individual channels due to the lack of space and safety reasons. An alternative method is based on the analysis of noise signals of the available in-core detectors. In such a noise method, a transit time which characterises the propagation of thermohydraulic fluctuations (density or temperature fluctuations) in the coolant is determined from the correlation between the noise signals of axially displaced detectors. In this paper, the results of flow measurements using axially displaced thermocouples in the channel wall will be presented. The experiments have been performed in a simulated MRT-type fuel assembly located in the research reactor HOR of the Interfaculty Reactor Institute, Delft. It was found that the velocities obtained via temperature noise correlation methods are significantly larger than the area-averaged velocity in the single-phase coolant flow. Model calculations show that the observed phenomenon can be explained by effects due to the radial velocity distribution in the channel. (author).

  12. Performance Analysis of Recurrence Matrix Statistics for the Detection of Deterministic Signals in Noise

    National Research Council Canada - National Science Library

    Michalowicz, Joseph V; Nichols, Jonathan M; Bucholtz, Frank

    2008-01-01

    Understanding the limitations to detecting deterministic signals in the presence of noise, especially additive, white Gaussian noise, is of importance for the design of LPI systems and anti-LPI signal defense...

  13. The deterioration of signal to noise ratio due to baseline restoration

    International Nuclear Information System (INIS)

    Henein, K.L.

    1976-02-01

    The deterioration of signal to noise ratio due to baseline restoration is theoretically studied. This study brings to the conclusion that a restorer has negligible influence on the signal to noise ratio when its time constant is ten times greater than that of the main amplifier filter, and that the rapid restorers prevail over the slow ones when the time constant of the filter is increased by at least 50% of its optimal value [fr

  14. Operating regimes of signaling cycles: statics, dynamics, and noise filtering.

    Directory of Open Access Journals (Sweden)

    Carlos Gomez-Uribe

    2007-12-01

    Full Text Available A ubiquitous building block of signaling pathways is a cycle of covalent modification (e.g., phosphorylation and dephosphorylation in MAPK cascades. Our paper explores the kind of information processing and filtering that can be accomplished by this simple biochemical circuit. Signaling cycles are particularly known for exhibiting a highly sigmoidal (ultrasensitive input-output characteristic in a certain steady-state regime. Here, we systematically study the cycle's steady-state behavior and its response to time-varying stimuli. We demonstrate that the cycle can actually operate in four different regimes, each with its specific input-output characteristics. These results are obtained using the total quasi-steady-state approximation, which is more generally valid than the typically used Michaelis-Menten approximation for enzymatic reactions. We invoke experimental data that suggest the possibility of signaling cycles operating in one of the new regimes. We then consider the cycle's dynamic behavior, which has so far been relatively neglected. We demonstrate that the intrinsic architecture of the cycles makes them act--in all four regimes--as tunable low-pass filters, filtering out high-frequency fluctuations or noise in signals and environmental cues. Moreover, the cutoff frequency can be adjusted by the cell. Numerical simulations show that our analytical results hold well even for noise of large amplitude. We suggest that noise filtering and tunability make signaling cycles versatile components of more elaborate cell-signaling pathways.

  15. Noise Reduction in the Time Domain using Joint Diagonalization

    DEFF Research Database (Denmark)

    Nørholm, Sidsel Marie; Benesty, Jacob; Jensen, Jesper Rindom

    2014-01-01

    , an estimate of the desired signal is found by subtraction of the noise estimate from the observed signal. The filter can be designed to obtain a desired trade-off between noise reduction and signal distortion, depending on the number of eigenvectors included in the filter design. This is explored through...... simulations using a speech signal corrupted by car noise, and the results confirm that the output signal-to-noise ratio and speech distortion index both increase when more eigenvectors are included in the filter design....

  16. An adaptive segment method for smoothing lidar signal based on noise estimation

    Science.gov (United States)

    Wang, Yuzhao; Luo, Pingping

    2014-10-01

    An adaptive segmentation smoothing method (ASSM) is introduced in the paper to smooth the signal and suppress the noise. In the ASSM, the noise is defined as the 3σ of the background signal. An integer number N is defined for finding the changing positions in the signal curve. If the difference of adjacent two points is greater than 3Nσ, the position is recorded as an end point of the smoothing segment. All the end points detected as above are recorded and the curves between them will be smoothed separately. In the traditional method, the end points of the smoothing windows in the signals are fixed. The ASSM creates changing end points in different signals and the smoothing windows could be set adaptively. The windows are always set as the half of the segmentations and then the average smoothing method will be applied in the segmentations. The Iterative process is required for reducing the end-point aberration effect in the average smoothing method and two or three times are enough. In ASSM, the signals are smoothed in the spacial area nor frequent area, that means the frequent disturbance will be avoided. A lidar echo was simulated in the experimental work. The echo was supposed to be created by a space-born lidar (e.g. CALIOP). And white Gaussian noise was added to the echo to act as the random noise resulted from environment and the detector. The novel method, ASSM, was applied to the noisy echo to filter the noise. In the test, N was set to 3 and the Iteration time is two. The results show that, the signal could be smoothed adaptively by the ASSM, but the N and the Iteration time might be optimized when the ASSM is applied in a different lidar.

  17. Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals

    Directory of Open Access Journals (Sweden)

    Sebastián Pantoja

    2009-08-01

    Full Text Available The calibration of correlation radiometers, and particularly aperture synthesis interferometric radiometers, is a critical issue to ensure their performance. Current calibration techniques are based on the measurement of the cross-correlation of receivers’ outputs when injecting noise from a common noise source requiring a very stable distribution network. For large interferometric radiometers this centralized noise injection approach is very complex from the point of view of mass, volume and phase/amplitude equalization. Distributed noise injection techniques have been proposed as a feasible alternative, but are unable to correct for the so-called “baseline errors” associated with the particular pair of receivers forming the baseline. In this work it is proposed the use of centralized Pseudo-Random Noise (PRN signals to calibrate correlation radiometers. PRNs are sequences of symbols with a long repetition period that have a flat spectrum over a bandwidth which is determined by the symbol rate. Since their spectrum resembles that of thermal noise, they can be used to calibrate correlation radiometers. At the same time, since these sequences are deterministic, new calibration schemes can be envisaged, such as the correlation of each receiver’s output with a baseband local replica of the PRN sequence, as well as new distribution schemes of calibration signals. This work analyzes the general requirements and performance of using PRN sequences for the calibration of microwave correlation radiometers, and particularizes the study to a potential implementation in a large aperture synthesis radiometer using an optical distribution network.

  18. Radiometric and signal-to-noise ratio properties of multiplex dispersive spectrometry

    International Nuclear Information System (INIS)

    Barducci, Alessandro; Guzzi, Donatella; Lastri, Cinzia; Nardino, Vanni; Marcoionni, Paolo; Pippi, Ivan

    2010-01-01

    Recent theoretical investigations have shown important radiometric disadvantages of interferential multiplexing in Fourier transform spectrometry that apparently can be applied even to coded aperture spectrometers. We have reexamined the methods of noninterferential multiplexing in order to assess their signal-to-noise ratio (SNR) performance, relying on a theoretical modeling of the multiplexed signals. We are able to show that quite similar SNR and radiometric disadvantages affect multiplex dispersive spectrometry. The effect of noise on spectral estimations is discussed.

  19. Hybrid colored noise process with space-dependent switching rates

    Science.gov (United States)

    Bressloff, Paul C.; Lawley, Sean D.

    2017-07-01

    A fundamental issue in the theory of continuous stochastic process is the interpretation of multiplicative white noise, which is often referred to as the Itô-Stratonovich dilemma. From a physical perspective, this reflects the need to introduce additional constraints in order to specify the nature of the noise, whereas from a mathematical perspective it reflects an ambiguity in the formulation of stochastic differential equations (SDEs). Recently, we have identified a mechanism for obtaining an Itô SDE based on a form of temporal disorder. Motivated by switching processes in molecular biology, we considered a Brownian particle that randomly switches between two distinct conformational states with different diffusivities. In each state, the particle undergoes normal diffusion (additive noise) so there is no ambiguity in the interpretation of the noise. However, if the switching rates depend on position, then in the fast switching limit one obtains Brownian motion with a space-dependent diffusivity of the Itô form. In this paper, we extend our theory to include colored additive noise. We show that the nature of the effective multiplicative noise process obtained by taking both the white-noise limit (κ →0 ) and fast switching limit (ɛ →0 ) depends on the order the two limits are taken. If the white-noise limit is taken first, then we obtain Itô, and if the fast switching limit is taken first, then we obtain Stratonovich. Moreover, the form of the effective diffusion coefficient differs in the two cases. The latter result holds even in the case of space-independent transition rates, where one obtains additive noise processes with different diffusion coefficients. Finally, we show that yet another form of multiplicative noise is obtained in the simultaneous limit ɛ ,κ →0 with ɛ /κ2 fixed.

  20. Analytical evaluation of the signal and noise propagation in x-ray differential phase-contrast computed tomography

    International Nuclear Information System (INIS)

    Raupach, Rainer; Flohr, Thomas G

    2011-01-01

    We analyze the signal and noise propagation of differential phase-contrast computed tomography (PCT) compared with conventional attenuation-based computed tomography (CT) from a theoretical point of view. This work focuses on grating-based differential phase-contrast imaging. A mathematical framework is derived that is able to analytically predict the relative performance of both imaging techniques in the sense of the relative contrast-to-noise ratio for the contrast of any two materials. Two fundamentally different properties of PCT compared with CT are identified. First, the noise power spectra show qualitatively different characteristics implying a resolution-dependent performance ratio. The break-even point is derived analytically as a function of system parameters such as geometry and visibility. A superior performance of PCT compared with CT can only be achieved at a sufficiently high spatial resolution. Second, due to periodicity of phase information which is non-ambiguous only in a bounded interval statistical phase wrapping can occur. This effect causes a collapse of information propagation for low signals which limits the applicability of phase-contrast imaging at low dose.

  1. Frequency-domain method for separating signal and noise

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new method for separation of signal and noise (SSN) is put forward. Frequency is redefined according to the features of signal and its derivative in the sampl ing time interval, thus double orthogonal basis (DOB) is constructed so that a signal can be precisely signified with a linear combination of low-frequency DOB . Under joint consideration in time domain (TD) and frequency domain (FD), a method on SSN with high accuracy is derived and a matched algorithm is designed and analyzed. This method is applicable to SSN in multiple frequency bands, and convenient in applying signal characteristics in TD and FD synthetically with highe raccuracy.

  2. Frequency-domain method for separating signal and noise

    Institute of Scientific and Technical Information of China (English)

    王正明; 段晓君

    2000-01-01

    A new method for separation of signal and noise (SSN) is put forward. Frequency is redefined according to the features of signal and its derivative in the sampling time interval, thus double orthogonal basis (DOB) is constructed so that a signal can be precisely signified with a linear combination of low-frequency DOB. Under joint consideration in time domain (TD) and frequency domain (FD), a method on SSN with high accuracy is derived and a matched algorithm is designed and analyzed. This method is applicable to SSN in multiple frequency bands, and convenient in applying signal characteristics in TD and FD synthetically with higher accuracy.

  3. An Application of Reassigned Time-Frequency Representations for Seismic Noise/Signal Decomposition

    Science.gov (United States)

    Mousavi, S. M.; Langston, C. A.

    2016-12-01

    Seismic data recorded by surface arrays are often strongly contaminated by unwanted noise. This background noise makes the detection of small magnitude events difficult. An automatic method for seismic noise/signal decomposition is presented based upon an enhanced time-frequency representation. Synchrosqueezing is a time-frequency reassignment method aimed at sharpening a time-frequency picture. Noise can be distinguished from the signal and suppressed more easily in this reassigned domain. The threshold level is estimated using a general cross validation approach that does not rely on any prior knowledge about the noise level. Efficiency of thresholding has been improved by adding a pre-processing step based on higher order statistics and a post-processing step based on adaptive hard-thresholding. In doing so, both accuracy and speed of the denoising have been improved compared to our previous algorithms (Mousavi and Langston, 2016a, 2016b; Mousavi et al., 2016). The proposed algorithm can either kill the noise (either white or colored) and keep the signal or kill the signal and keep the noise. Hence, It can be used in either normal denoising applications or in ambient noise studies. Application of the proposed method on synthetic and real seismic data shows the effectiveness of the method for denoising/designaling of local microseismic, and ocean bottom seismic data. References: Mousavi, S.M., C. A. Langston., and S. P. Horton (2016), Automatic Microseismic Denoising and Onset Detection Using the Synchrosqueezed-Continuous Wavelet Transform. Geophysics. 81, V341-V355, doi: 10.1190/GEO2015-0598.1. Mousavi, S.M., and C. A. Langston (2016a), Hybrid Seismic Denoising Using Higher-Order Statistics and Improved Wavelet Block Thresholding. Bull. Seismol. Soc. Am., 106, doi: 10.1785/0120150345. Mousavi, S.M., and C.A. Langston (2016b), Adaptive noise estimation and suppression for improving microseismic event detection, Journal of Applied Geophysics., doi: http

  4. Real Time Phase Noise Meter Based on a Digital Signal Processor

    Science.gov (United States)

    Angrisani, Leopoldo; D'Arco, Mauro; Greenhall, Charles A.; Schiano Lo Morille, Rosario

    2006-01-01

    A digital signal-processing meter for phase noise measurement on sinusoidal signals is dealt with. It enlists a special hardware architecture, made up of a core digital signal processor connected to a data acquisition board, and takes advantage of a quadrature demodulation-based measurement scheme, already proposed by the authors. Thanks to an efficient measurement process and an optimized implementation of its fundamental stages, the proposed meter succeeds in exploiting all hardware resources in such an effective way as to gain high performance and real-time operation. For input frequencies up to some hundreds of kilohertz, the meter is capable both of updating phase noise power spectrum while seamlessly capturing the analyzed signal into its memory, and granting as good frequency resolution as few units of hertz.

  5. Core Noise Diagnostics of Turbofan Engine Noise Using Correlation and Coherence Functions

    Science.gov (United States)

    Miles, Jeffrey H.

    2009-01-01

    Cross-correlation and coherence functions are used to look for periodic acoustic components in turbofan engine combustor time histories, to investigate direct and indirect combustion noise source separation based on signal propagation time delays, and to provide information on combustor acoustics. Using the cross-correlation function, time delays were identified in all cases, clearly indicating the combustor is the source of the noise. In addition, unfiltered and low-pass filtered at 400 Hz signals had a cross-correlation time delay near 90 ms, while the low-pass filtered at less than 400 Hz signals had a cross-correlation time delay longer than 90 ms. Low-pass filtering at frequencies less than 400 Hz partially removes the direct combustion noise signals. The remainder includes the indirect combustion noise signal, which travels more slowly because of the dependence on the entropy convection velocity in the combustor. Source separation of direct and indirect combustion noise is demonstrated by proper use of low-pass filters with the cross-correlation function for a range of operating conditions. The results may lead to a better idea about the acoustics in the combustor and may help develop and validate improved reduced-order physics-based methods for predicting direct and indirect combustion noise.

  6. Effects of signal salience and noise on performance and stress in an abbreviated vigil

    Science.gov (United States)

    Helton, William Stokely

    Vigilance or sustained attention tasks traditionally require observers to detect predetermined signals that occur unpredictably over periods of 30 min to several hours (Warm, 1984). These tasks are taxing and have been useful in revealing the effects of stress agents, such as infectious disease and drugs, on human performance (Alluisi, 1969; Damos & Parker, 1994; Warm, 1993). However, their long duration has been an inconvenience. Recently, Temple and his associates (Temple et al., 2000) developed an abbreviated 12-min vigilance task that duplicates many of the findings with longer duration vigils. The present study was designed to explore further the similarity of the abbreviated task to long-duration vigils by investigating the effects of signal salience and jet-aircraft engine noise on performance, operator stress, and coping strategies. Forty-eight observers (24 males and 24 females) were assigned at random to each of four conditions resulting from the factorial combination of signal salience (high and low contrast signals) and background noise (quiet and jet-aircraft noise). As is the case with long-duration vigils (Warm, 1993), signal detection in the abbreviated task was poorer for low salience than for high salience signals. In addition, stress scores, as indexed by the Dundee Stress State Questionnaire (Matthews, Joiner, Gilliland, Campbell, & Falconer, 1999), were elevated in the low as compared to the high salience condition. Unlike longer vigils, however, (Becker, Warm, Dember, & Hancock, 1996), signal detection in the abbreviated task was superior in the presence of aircraft noise than in quiet. Noise also attenuated the stress of the vigil, a result that is counter to previous findings regarding the effects of noise in a variety of other scenarios (Clark, 1984). Examination of observers' coping responses, as assessed by the Coping Inventory for Task Situations (Matthews & Campbell, 1998), indicated that problem-focused coping was the overwhelming

  7. Stochastic model for detection of signals in noise

    OpenAIRE

    Klein, Stanley A.; Levi, Dennis M.

    2009-01-01

    Fifty years ago Birdsall, Tanner, and colleagues made rapid progress in developing signal detection theory into a powerful psychophysical tool. One of their major insights was the utility of adding external noise to the signals of interest. These methods have been enhanced in recent years by the addition of multipass and classification-image methods for opening up the black box. There remain a number of as yet unresolved issues. In particular, Birdsall developed a theorem that large amounts o...

  8. Yesterday's noise - today's signal

    International Nuclear Information System (INIS)

    Serdula, K.J.

    1978-01-01

    Plant performance can be improved by noise analysis. This paper describes noise characteristics, imposed noise and response functions, a case history of cost benefits derived from application of noise analysis techniques, areas for application of noise analysis techniques with special reference to the Gentilly-1 nuclear generating station, and the validity of noise measurement results. (E.C.B.)

  9. Theory of signal and noise in double-gated nanoscale electronic pH sensors

    Energy Technology Data Exchange (ETDEWEB)

    Go, Jonghyun; Nair, Pradeep R.; Alam, Muhammad A. [School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2012-08-01

    The maximum sensitivity of classical nanowire (NW)-based pH sensors is defined by the Nernst limit of 59 mV/pH. For typical noise levels in ultra-small single-gated nanowire sensors, the signal-to-noise ratio is often not sufficient to resolve pH changes necessary for a broad range of applications. Recently, a new class of double-gated devices was demonstrated to offer apparent 'super-Nernstian' response (>59 mV/pH) by amplifying the original pH signal through innovative biasing schemes. However, the pH-sensitivity of these nanoscale devices as a function of biasing configurations, number of electrodes, and signal-to-noise ratio (SNR) remains poorly understood. Even the basic question such as 'Do double-gated sensors actually resolve smaller changes in pH compared to conventional single-gated sensors in the presence of various sources of noise?' remains unanswered. In this article, we provide a comprehensive numerical and analytical theory of signal and noise of double-gated pH sensors to conclude that, while the theoretical lower limit of pH-resolution does not improve for double-gated sensors, this new class of sensors does improve the (instrument-limited) pH resolution.

  10. Preliminary study of acoustic emission (ae) noise signal identification for crude oil storage tank

    International Nuclear Information System (INIS)

    Nurul Ain Ahmad Latif; Shukri Mohd

    2008-08-01

    This preliminary work was carried out to simulate the Acoustic Emission (AE) signal contributed by pitting corrosion, and noise signal from environment during crude oil storage tanks monitoring. The purpose of this study is to prove that acoustic emission (AE) could be used to detect the formation of pitting corrosion in the crude oil storage tank and differentiated it from other sources of noise signal. In this study, the pitting corrosion was simulated by inducing low voltage and low amperage current onto the crude oil storage tank material (ASTM 516 G 70). Water drop, air blow and surface rubbing were applied onto the specimen surface. To simulate the noise signal produce by rain fall, wind blow and other sources of noise during AE crude oil storage tanks monitoring. AE sensor was attached onto the other surface of specimen to acquire all of these AE signals which then has send to AE DiSP 24 data acquisition system for signal conditioning. AE win software has been used to analyse this entire signal. It is found that, simulated pitting corrosion could be detected by AE system and differentiated from other sources of noise by using amplitude analysis. From the amplitude analysis is shown that 20-30 dB is the range amplitude for the blow test, 50-60 dB for surface rubbing test and over than 60 dB for water drop test. (Author)

  11. Dependence of the colored frequency noise in spin torque oscillators on current and magnetic field

    Science.gov (United States)

    Eklund, Anders; Bonetti, Stefano; Sani, Sohrab R.; Majid Mohseni, S.; Persson, Johan; Chung, Sunjae; Amir Hossein Banuazizi, S.; Iacocca, Ezio; Östling, Mikael; Åkerman, Johan; Gunnar Malm, B.

    2014-03-01

    The nano-scale spin torque oscillator (STO) is a compelling device for on-chip, highly tunable microwave frequency signal generation. Currently, one of the most important challenges for the STO is to increase its longer-time frequency stability by decreasing the 1/f frequency noise, but its high level makes even its measurement impossible using the phase noise mode of spectrum analyzers. Here, we present a custom made time-domain measurement system with 150 MHz measurement bandwidth making possible the investigation of the variation of the 1/f as well as the white frequency noise in a STO over a large set of operating points covering 18-25 GHz. The 1/f level is found to be highly dependent on the oscillation amplitude-frequency non-linearity and the vicinity of unexcited oscillation modes. These findings elucidate the need for a quantitative theoretical treatment of the low-frequency, colored frequency noise in STOs. Based on the results, we suggest that the 1/f frequency noise possibly can be decreased by improving the microstructural quality of the metallic thin films.

  12. Dependence of the colored frequency noise in spin torque oscillators on current and magnetic field

    International Nuclear Information System (INIS)

    Eklund, Anders; Sani, Sohrab R.; Chung, Sunjae; Amir Hossein Banuazizi, S.; Östling, Mikael; Gunnar Malm, B.; Bonetti, Stefano; Majid Mohseni, S.; Persson, Johan; Iacocca, Ezio; Åkerman, Johan

    2014-01-01

    The nano-scale spin torque oscillator (STO) is a compelling device for on-chip, highly tunable microwave frequency signal generation. Currently, one of the most important challenges for the STO is to increase its longer-time frequency stability by decreasing the 1/f frequency noise, but its high level makes even its measurement impossible using the phase noise mode of spectrum analyzers. Here, we present a custom made time-domain measurement system with 150 MHz measurement bandwidth making possible the investigation of the variation of the 1/f as well as the white frequency noise in a STO over a large set of operating points covering 18–25 GHz. The 1/f level is found to be highly dependent on the oscillation amplitude-frequency non-linearity and the vicinity of unexcited oscillation modes. These findings elucidate the need for a quantitative theoretical treatment of the low-frequency, colored frequency noise in STOs. Based on the results, we suggest that the 1/f frequency noise possibly can be decreased by improving the microstructural quality of the metallic thin films

  13. Imaging resolution signal-to-noise ratio in transverse phase amplification from classical information theory

    International Nuclear Information System (INIS)

    French, Doug; Huang Zun; Pao, H.-Y.; Jovanovic, Igor

    2009-01-01

    A quantum phase amplifier operated in the spatial domain can improve the signal-to-noise ratio in imaging beyond the classical limit. The scaling of the signal-to-noise ratio with the gain of the quantum phase amplifier is derived from classical information theory

  14. Hardware design and implementation of a wavelet de-noising procedure for medical signal preprocessing.

    Science.gov (United States)

    Chen, Szi-Wen; Chen, Yuan-Ho

    2015-10-16

    In this paper, a discrete wavelet transform (DWT) based de-noising with its applications into the noise reduction for medical signal preprocessing is introduced. This work focuses on the hardware realization of a real-time wavelet de-noising procedure. The proposed de-noising circuit mainly consists of three modules: a DWT, a thresholding, and an inverse DWT (IDWT) modular circuits. We also proposed a novel adaptive thresholding scheme and incorporated it into our wavelet de-noising procedure. Performance was then evaluated on both the architectural designs of the software and. In addition, the de-noising circuit was also implemented by downloading the Verilog codes to a field programmable gate array (FPGA) based platform so that its ability in noise reduction may be further validated in actual practice. Simulation experiment results produced by applying a set of simulated noise-contaminated electrocardiogram (ECG) signals into the de-noising circuit showed that the circuit could not only desirably meet the requirement of real-time processing, but also achieve satisfactory performance for noise reduction, while the sharp features of the ECG signals can be well preserved. The proposed de-noising circuit was further synthesized using the Synopsys Design Compiler with an Artisan Taiwan Semiconductor Manufacturing Company (TSMC, Hsinchu, Taiwan) 40 nm standard cell library. The integrated circuit (IC) synthesis simulation results showed that the proposed design can achieve a clock frequency of 200 MHz and the power consumption was only 17.4 mW, when operated at 200 MHz.

  15. Evaluation of diagnostic thresholds dependability for tribologic signals received in the environment disturbed by vibroacoustic and functional signals

    Directory of Open Access Journals (Sweden)

    Lindstedt Paweł

    2015-12-01

    Full Text Available Determination of dependable diagnostic thresholds for tribologic signals received e.g. from antifriction bearings (in particular for insufficient number of measurements, only 4÷5 is a really difficult task due to complexity of working environment where such bearings are operated. Typical working environment for such objects must take account for operation time under various working conditions and accompanying (and disturbing signals, e.g. vibroacoustic ones. The sought assessment of the relationship between diagnostic signals and environmental noise can be determined from convolution of both diagnostic and environments signals that make up the complete set of received information. The convolution of these two series of signals can be obtained from an algorithm based on the Cauchy product. Then one has to find the coherence factor and the square of amplitude gain for the set of diagnostic signals with reference to various sets of signals received from environment, which makes it possible to evaluate cohesion of the investigated series of signals, thus their suitability to determine diagnostic threshold for tribologic signals intended for the analysis.

  16. Noise Reduction of Steel Cord Conveyor Belt Defect Electromagnetic Signal by Combined Use of Improved Wavelet and EMD

    Directory of Open Access Journals (Sweden)

    Hong-Wei Ma

    2016-09-01

    Full Text Available In order to reduce the noise of a defect electromagnetic signal of the steel cord conveyor belt used in coal mines, a new signal noise reduction method by combined use of the improved threshold wavelet and Empirical Mode Decomposition (EMD is proposed. Firstly, the denoising method based on the improved threshold wavelet is applied to reduce the noise of a defect electromagnetic signal obtained by an electromagnetic testing system. Then, the EMD is used to decompose the denoised signal and then the effective Intrinsic Mode Function (IMF is extracted by the dominant eigenvalue strategy. Finally, the signal reconstruction is carried out by utilizing the obtained IMF. In order to verify the proposed noise reduction method, the experiments are carried out in two cases including the defective joint and steel wire rope break. The experimental results show that the proposed method in this paper obtains the higher Signal to Noise Ratio (SNR for the defect electromagnetic signal noise reduction of steel cord conveyor belts.

  17. A Novel Partial Discharge Ultra-High Frequency Signal De-Noising Method Based on a Single-Channel Blind Source Separation Algorithm

    Directory of Open Access Journals (Sweden)

    Liangliang Wei

    2018-02-01

    Full Text Available To effectively de-noise the Gaussian white noise and periodic narrow-band interference in the background noise of partial discharge ultra-high frequency (PD UHF signals in field tests, a novel de-noising method, based on a single-channel blind source separation algorithm, is proposed. Compared with traditional methods, the proposed method can effectively de-noise the noise interference, and the distortion of the de-noising PD signal is smaller. Firstly, the PD UHF signal is time-frequency analyzed by S-transform to obtain the number of source signals. Then, the single-channel detected PD signal is converted into multi-channel signals by singular value decomposition (SVD, and background noise is separated from multi-channel PD UHF signals by the joint approximate diagonalization of eigen-matrix method. At last, the source PD signal is estimated and recovered by the l1-norm minimization method. The proposed de-noising method was applied on the simulation test and field test detected signals, and the de-noising performance of the different methods was compared. The simulation and field test results demonstrate the effectiveness and correctness of the proposed method.

  18. State dependent pseudo-resonances and excess noise

    OpenAIRE

    Papoff, F.; D'Alessandro, G.; Oppo, G.Luca

    2008-01-01

    We show that strong response to nonresonant modulations and excess noise are state dependent in generic nonlinear systems; i.e., they affect some output states but are absent from others. This is demonstrated in complex Swift-Hohenberg models relevant to optics, where it is caused by the non-normality of the linearized stability operators around selected output states, even though the cavity modes are orthogonal. In particular, we find the effective parameters that control excess noise and th...

  19. IIR digital filter design for powerline noise cancellation of ECG signal using arduino platform

    Science.gov (United States)

    Rahmatillah, Akif; Ataulkarim

    2017-05-01

    Powerline noise has been one of significant noises of Electrocardiogram (ECG) signal measurement. This noise is characterized by a sinusoidal signal which has 50 Hz of noise and 0.3 mV of maximum amplitude. This paper describes the design of IIR Notch filter design to reject a 50 Hz power line noise. IIR filter coefficients were calculated using pole placement method with three variations of band stop cut off frequencies of (49-51)Hz, (48 - 52)Hz, and (47 - 53)Hz. The algorithm and coefficients of filter were embedded to Arduino DUE (ARM 32 bit microcontroller). IIR notch filter designed has been able to reject power line noise with average square of error value of 0.225 on (49-51) Hz filter design and 0.2831 on (48 - 52)Hz filter design.

  20. Hardware Design and Implementation of a Wavelet De-Noising Procedure for Medical Signal Preprocessing

    Directory of Open Access Journals (Sweden)

    Szi-Wen Chen

    2015-10-01

    Full Text Available In this paper, a discrete wavelet transform (DWT based de-noising with its applications into the noise reduction for medical signal preprocessing is introduced. This work focuses on the hardware realization of a real-time wavelet de-noising procedure. The proposed de-noising circuit mainly consists of three modules: a DWT, a thresholding, and an inverse DWT (IDWT modular circuits. We also proposed a novel adaptive thresholding scheme and incorporated it into our wavelet de-noising procedure. Performance was then evaluated on both the architectural designs of the software and. In addition, the de-noising circuit was also implemented by downloading the Verilog codes to a field programmable gate array (FPGA based platform so that its ability in noise reduction may be further validated in actual practice. Simulation experiment results produced by applying a set of simulated noise-contaminated electrocardiogram (ECG signals into the de-noising circuit showed that the circuit could not only desirably meet the requirement of real-time processing, but also achieve satisfactory performance for noise reduction, while the sharp features of the ECG signals can be well preserved. The proposed de-noising circuit was further synthesized using the Synopsys Design Compiler with an Artisan Taiwan Semiconductor Manufacturing Company (TSMC, Hsinchu, Taiwan 40 nm standard cell library. The integrated circuit (IC synthesis simulation results showed that the proposed design can achieve a clock frequency of 200 MHz and the power consumption was only 17.4 mW, when operated at 200 MHz.

  1. Using hyperentanglement to enhance resolution, signal-to-noise ratio, and measurement time

    Science.gov (United States)

    Smith, James F.

    2017-03-01

    A hyperentanglement-based atmospheric imaging/detection system involving only a signal and an ancilla photon will be considered for optical and infrared frequencies. Only the signal photon will propagate in the atmosphere and its loss will be classical. The ancilla photon will remain within the sensor experiencing low loss. Closed form expressions for the wave function, normalization, density operator, reduced density operator, symmetrized logarithmic derivative, quantum Fisher information, quantum Cramer-Rao lower bound, coincidence probabilities, probability of detection, probability of false alarm, probability of error after M measurements, signal-to-noise ratio, quantum Chernoff bound, time-on-target expressions related to probability of error, and resolution will be provided. The effect of noise in every mode will be included as well as loss. The system will provide the basic design for an imaging/detection system functioning at optical or infrared frequencies that offers better than classical angular and range resolution. Optimization for enhanced resolution will be included. The signal-to-noise ratio will be increased by a factor equal to the number of modes employed during the hyperentanglement process. Likewise, the measurement time can be reduced by the same factor. The hyperentanglement generator will typically make use of entanglement in polarization, energy-time, orbital angular momentum and so on. Mathematical results will be provided describing the system's performance as a function of loss mechanisms and noise.

  2. A high signal-to-noise ratio composite quasar spectrum

    International Nuclear Information System (INIS)

    Francis, P.J.; Hewett, P.C.; Foltz, C.B.; Chaffee, F.H.; Weymann, R.J.

    1991-01-01

    A very high signal-to-noise ratio (S/N of about 400) composite spectrum of the rest-frame ultraviolet and optical region of high luminosity quasars is presented. The spectrum is derived from 718 individual spectra obtained as part of the Large Bright Quasar Survey. The moderate resolution, 4A or less, and high signal-to-noise ratio allow numerous weak emission features to be identified. Of particular note is the large equivalent-width of the Fe II emission in the rest-frame ultraviolet and the blue continuum slope of the composite. The primary aim of this paper is to provide a reference spectrum for use in line identifications, and a series of large-scale representations of the composite spectrum are shown. A measure of the standard deviation of the individual quasar spectra from the composite spectrum is also presented. 12 refs

  3. Modeling signal-to-noise ratio of otoacoustic emissions in workers exposed to different industrial noise levels

    Directory of Open Access Journals (Sweden)

    Parvin Nassiri

    2016-01-01

    Full Text Available Introduction: Noise is considered as the most common cause of harmful physical effects in the workplace. A sound that is generated from within the inner ear is known as an otoacoustic emission (OAE. Distortion-product otoacoustic emissions (DPOAEs assess evoked emission and hearing capacity. The aim of this study was to assess the signal-to-noise ratio in different frequencies and at different times of the shift work in workers exposed to various levels of noise. It was also aimed to provide a statistical model for signal-to-noise ratio (SNR of OAEs in different frequencies based on the two variables of sound pressure level (SPL and exposure time. Materials and Methods: This case–control study was conducted on 45 workers during autumn 2014. The workers were divided into three groups based on the level of noise exposure. The SNR was measured in frequencies of 1000, 2000, 3000, 4000, and 6000 Hz in both ears, and in three different time intervals during the shift work. According to the inclusion criterion, SNR of 6 dB or greater was included in the study. The analysis was performed using repeated measurements of analysis of variance, spearman correlation coefficient, and paired samples t-test. Results: The results showed that there was no statistically significant difference between the three exposed groups in terms of the mean values of SNR (P > 0.05. Only in signal pressure levels of 88 dBA with an interval time of 10:30–11:00 AM, there was a statistically significant difference between the right and left ears with the mean SNR values of 3000 frequency (P = 0.038. The SPL had a significant effect on the SNR in both the right and left ears (P = 0.023, P = 0.041. The effect of the duration of measurement on the SNR was statistically significant in both the right and left ears (P = 0.027, P < 0.001. Conclusion: The findings of this study demonstrated that after noise exposure during the shift, SNR of OAEs reduced from the

  4. Signal-noise separation based on self-similarity testing in 1D-timeseries data

    Science.gov (United States)

    Bourdin, Philippe A.

    2015-08-01

    The continuous improvement of the resolution delivered by modern instrumentation is a cost-intensive part of any new space- or ground-based observatory. Typically, scientists later reduce the resolution of the obtained raw-data, for example in the spatial, spectral, or temporal domain, in order to suppress the effects of noise in the measurements. In practice, only simple methods are used that just smear out the noise, instead of trying to remove it, so that the noise can nomore be seen. In high-precision 1D-timeseries data, this usually results in an unwanted quality-loss and corruption of power spectra at selected frequency ranges. Novel methods exist that are based on non-local averaging, which would conserve much of the initial resolution, but these methods are so far focusing on 2D or 3D data. We present here a method specialized for 1D-timeseries, e.g. as obtained by magnetic field measurements from the recently launched MMS satellites. To identify the noise, we use a self-similarity testing and non-local averaging method in order to separate different types of noise and signals, like the instrument noise, non-correlated fluctuations in the signal from heliospheric sources, and correlated fluctuations such as harmonic waves or shock fronts. In power spectra of test data, we are able to restore significant parts of a previously know signal from a noisy measurement. This method also works for high frequencies, where the background noise may have a larger contribution to the spectral power than the signal itself. We offer an easy-to-use software tools set, which enables scientists to use this novel technique on their own noisy data. This allows to use the maximum possible capacity of the instrumental hardware and helps to enhance the quality of the obtained scientific results.

  5. Blind signal processing algorithms under DC biased Gaussian noise

    Science.gov (United States)

    Kim, Namyong; Byun, Hyung-Gi; Lim, Jeong-Ok

    2013-05-01

    Distortions caused by the DC-biased laser input can be modeled as DC biased Gaussian noise and removing DC bias is important in the demodulation process of the electrical signal in most optical communications. In this paper, a new performance criterion and a related algorithm for unsupervised equalization are proposed for communication systems in the environment of channel distortions and DC biased Gaussian noise. The proposed criterion utilizes the Euclidean distance between the Dirac-delta function located at zero on the error axis and a probability density function of biased constant modulus errors, where constant modulus error is defined by the difference between the system out and a constant modulus calculated from the transmitted symbol points. From the results obtained from the simulation under channel models with fading and DC bias noise abruptly added to background Gaussian noise, the proposed algorithm converges rapidly even after the interruption of DC bias proving that the proposed criterion can be effectively applied to optical communication systems corrupted by channel distortions and DC bias noise.

  6. Increasing signal-to-noise ratio of swept-source optical coherence tomography by oversampling in k-space

    Science.gov (United States)

    Nagib, Karim; Mezgebo, Biniyam; Thakur, Rahul; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-03-01

    Optical coherence tomography systems suffer from noise that could reduce ability to interpret reconstructed images correctly. We describe a method to increase the signal-to-noise ratio of swept-source optical coherence tomography (SSOCT) using oversampling in k-space. Due to this oversampling, information redundancy would be introduced in the measured interferogram that could be used to reduce white noise in the reconstructed A-scan. We applied our novel scaled nonuniform discrete Fourier transform to oversampled SS-OCT interferograms to reconstruct images of a salamander egg. The peak-signal-to-noise (PSNR) between the reconstructed images using interferograms sampled at 250MS/s andz50MS/s demonstrate that this oversampling increased the signal-to-noise ratio by 25.22 dB.

  7. Symbol signal-to-noise ratio loss in square-wave subcarrier downconversion

    Science.gov (United States)

    Feria, Y.; Statman, J.

    1993-01-01

    This article presents the simulated results of the signal-to-noise ratio (SNR) loss in the process of a square-wave subcarrier down conversion. In a previous article, the SNR degradation was evaluated at the output of the down converter based on the signal and noise power change. Unlike in the previous article, the SNR loss is defined here as the difference between the actual and theoretical symbol SNR's for the same symbol-error rate at the output of the symbol matched filter. The results show that an average SNR loss of 0.3 dB can be achieved with tenth-order infinite impulse response (IIR) filters. This loss is a 0.2-dB increase over the SNR degradation in the previous analysis where neither the signal distortion nor the symbol detector was considered.

  8. Parallel feedback active noise control of MRI acoustic noise with signal decomposition using hybrid RLS-NLMS adaptive algorithms.

    Science.gov (United States)

    Ganguly, Anshuman; Krishna Vemuri, Sri Hari; Panahi, Issa

    2014-01-01

    This paper presents a cost-effective adaptive feedback Active Noise Control (FANC) method for controlling functional Magnetic Resonance Imaging (fMRI) acoustic noise by decomposing it into dominant periodic components and residual random components. Periodicity of fMRI acoustic noise is exploited by using linear prediction (LP) filtering to achieve signal decomposition. A hybrid combination of adaptive filters-Recursive Least Squares (RLS) and Normalized Least Mean Squares (NLMS) are then used to effectively control each component separately. Performance of the proposed FANC system is analyzed and Noise attenuation levels (NAL) up to 32.27 dB obtained by simulation are presented which confirm the effectiveness of the proposed FANC method.

  9. MMSE-based algorithm for joint signal detection, channel and noise variance estimation for OFDM systems

    CERN Document Server

    Savaux, Vincent

    2014-01-01

    This book presents an algorithm for the detection of an orthogonal frequency division multiplexing (OFDM) signal in a cognitive radio context by means of a joint and iterative channel and noise estimation technique. Based on the minimum mean square criterion, it performs an accurate detection of a user in a frequency band, by achieving a quasi-optimal channel and noise variance estimation if the signal is present, and by estimating the noise level in the band if the signal is absent. Organized into three chapters, the first chapter provides the background against which the system model is pr

  10. Influence of the maximum applied magnetic field on the angular dependence of Magnetic Barkhausen Noise in API5L steels

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Ortiz, P. [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F. (Mexico); Pérez-Benítez, J.A., E-mail: japerezb@ipn.mx [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F. (Mexico); Espina-Hernández, J.H. [Laboratorio de Evaluación No Destructiva Electromagnética (LENDE), ESIME-SEPI, Edif. Z-4, Instituto Politécnico Nacional, Zacatenco, México D.F. (Mexico); Caleyo, F. [Departamento de Ingeniería Metalúrgica, ESIQIE, UPALM Edif. 7, Instituto Politécnico Nacional, Zacatenco, C.P. 07738 México D.F. (Mexico); Mehboob, N.; Grössinger, R. [Institute of Solid State Physics, Vienna University of Technology, Vienna A-1040 (Austria); Hallen, J.M. [Departamento de Ingeniería Metalúrgica, ESIQIE, UPALM Edif. 7, Instituto Politécnico Nacional, Zacatenco, C.P. 07738 México D.F. (Mexico)

    2016-03-01

    This work studies the influence of the maximum applied magnetic field on the angular dependence of the energy of the Magnetic Barkhausen Noise signal in three different API5L pipeline steels. The results show that the shape of the angular dependence of the Magnetic Barkhausen Noise energy changes with the increase of the amplitude of the applied magnetic field. This phenomenon is a consequence of the presence of unlike magnetization processes at different magnitudes of the applied magnetic field. The outcomes reveal the importance of controlling the value of the maximum applied field as parameter for the improvement of the MBN angular dependence measurements. - Highlights: • Study the angular dependence of MBN with applied field in three pipeline steels. • Reveals the change of this angular dependence with the increase applied field. • Explains this dependence based on the domain wall dynamics theory.

  11. Influence of the maximum applied magnetic field on the angular dependence of Magnetic Barkhausen Noise in API5L steels

    International Nuclear Information System (INIS)

    Martínez-Ortiz, P.; Pérez-Benítez, J.A.; Espina-Hernández, J.H.; Caleyo, F.; Mehboob, N.; Grössinger, R.; Hallen, J.M.

    2016-01-01

    This work studies the influence of the maximum applied magnetic field on the angular dependence of the energy of the Magnetic Barkhausen Noise signal in three different API5L pipeline steels. The results show that the shape of the angular dependence of the Magnetic Barkhausen Noise energy changes with the increase of the amplitude of the applied magnetic field. This phenomenon is a consequence of the presence of unlike magnetization processes at different magnitudes of the applied magnetic field. The outcomes reveal the importance of controlling the value of the maximum applied field as parameter for the improvement of the MBN angular dependence measurements. - Highlights: • Study the angular dependence of MBN with applied field in three pipeline steels. • Reveals the change of this angular dependence with the increase applied field. • Explains this dependence based on the domain wall dynamics theory.

  12. Broadband squeezing of quantum noise in a Michelson interferometer with Twin-Signal-Recycling.

    Science.gov (United States)

    Thüring, André; Gräf, Christian; Vahlbruch, Henning; Mehmet, Moritz; Danzmann, Karsten; Schnabel, Roman

    2009-03-15

    Twin-Signal-Recycling (TSR) builds on the resonance doublet of two optically coupled cavities and efficiently enhances the sensitivity of an interferometer at a dedicated signal frequency. We report on what we believe to be the first experimental realization of a TSR Michelson interferometer and also its broadband enhancement by squeezed light injection. The complete setup was stably locked, and a broadband quantum noise reduction of the interferometers shot noise by a factor of up to 4 dB was demonstrated. The system was characterized by measuring its quantum noise spectra for several tunings of the TSR cavities. We found good agreement between the experimental results and numerical simulations.

  13. Time dependent auto-correlation, autospectrum and decay ratio estimation of transient signals in JET soft X-ray records

    International Nuclear Information System (INIS)

    Por, G.

    1999-08-01

    A program package was developed to estimate the time dependent auto-correlation function (ACF) from the time signals of soft X-ray records taken along the various lines-of-sights in JET-SHOTS, and also to estimate the time dependent Decay Ratio (DR) from that. On the basis of ACF the time dependent auto-power spectral density (APSD) was also calculated. The steps and objectives of this work were: eliminating the white detection noise, trends and slow variation from the time signals, since ordinary methods can give good estimate of the time dependent ACF and DR only for 'nearly' stationary signals, developing an automatic algorithm for finding the maxima and minima of ACF, since they are the basis for DR estimation, evaluating and testing different DR estimators for JET-SHOT, with the aim of finding parts of the signals, where the oscillating character is strong, estimating time dependent ACF and APSD that can follow the relatively fast variation in the time signal. The methods that we have developed for data processing of transient signals are: White detection noise removal and preparation for trend removal - weak components, white detection noise and high frequency components are filtered from the signal using the so-called soft-threshold wavelet filter. Removal of trends and slow variation - Three-point differentiation of the pre-filtered signal is used to remove trends and slow variation. Here we made use of the DERIV function of IDL program language. This leads to a filtered signal that has zero mean value in each time step. Calculation of the time dependent ACF - The signal treated by the two previous steps is used as the input. Calculated ACF value is added in each new time step, but the previously accumulated ACF value is multiplied by a weighting factor. Thus the new sample has 100% contribution, while the contributions from the previous samples are forgotten quickly. DR calculation - DR is a measure of the decay of oscillating ACF. This parameter was shown

  14. Signal de-noising methods for fault diagnosis and troubleshooting at CANDU{sup ®} stations

    Energy Technology Data Exchange (ETDEWEB)

    Nasimi, Elnara; Gabbar, Hossam A., E-mail: hossam.gabbar@uoit.ca

    2014-12-15

    Highlights: • Fault modelling using a Fault Semantic Network (FSN). • Intelligent filtering techniques for signal de-noise in NPP. • Signal feature extraction is applied as integrated with FSN. • Increase signal-to-noise ratio (SNR). - Abstract: Over the past several years a number of domestic CANDU{sup ®} stations have experienced issues with neutron detection systems that challenged safety and operation. Intelligent troubleshooting methodology is required to aid in making risk-informed decisions related to design and operational activities, which can aid current stations and be used for the future generation of CANDU{sup ®} designs. Fault modelling approach using Fault Semantic Network (FSN) with risk estimation is proposed for this purpose. One major challenge in troubleshooting is the determination of accurate data. It is typical to have missing, incomplete or corrupted data points in large process data sets from dynamically changing systems. Therefore, it is expected that quality of obtained data will have a direct impact on the system's ability to recognize developing trends in the process upset situations. In order to enable fault detection process, intelligent filtering techniques are required to de-noise process data and extract valuable signal features in the presence of background noise. In this study, the impact of applying an optimized and intelligent filtering of process signals prior to data analysis is discussed. This is particularly important for neutronic signals in order to increase signal-to-noise ratio (SNR) which suffers the most during start-ups and low power operation. This work is complimentary to the previously published studies on FSN-based fault modelling in CANDU stations. The main objective of this work is to explore the potential research methods using a specific case study and, based on the results and outcomes from this work, to note the possible future improvements and innovation areas.

  15. Temperature dependence of shot noise in double barrier magnetic tunnel junctions

    Science.gov (United States)

    Niu, Jiasen; Liu, Liang; Feng, J. F.; Han, X. F.; Coey, J. M. D.; Zhang, X.-G.; Wei, Jian

    2018-03-01

    Shot noise reveals spin dependent transport properties in a magnetic tunnel junction. We report measurement of shot noise in CoFeB/MgO/CoFeB/MgO/CoFeB double barrier magnetic tunnel junctions, which shows a strong temperature dependence. The Fano factor used to characterize shot noise increases with decreasing temperature. A sequential tunneling model can be used to account for these results, in which a larger Fano factor results from larger spin relaxation length at lower temperatures.

  16. Kernel-based noise filtering of neutron detector signals

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Shin, Ho Cheol; Lee, Eun Ki

    2007-01-01

    This paper describes recently developed techniques for effective filtering of neutron detector signal noise. In this paper, three kinds of noise filters are proposed and their performance is demonstrated for the estimation of reactivity. The tested filters are based on the unilateral kernel filter, unilateral kernel filter with adaptive bandwidth and bilateral filter to show their effectiveness in edge preservation. Filtering performance is compared with conventional low-pass and wavelet filters. The bilateral filter shows a remarkable improvement compared with unilateral kernel and wavelet filters. The effectiveness and simplicity of the unilateral kernel filter with adaptive bandwidth is also demonstrated by applying it to the reactivity measurement performed during reactor start-up physics tests

  17. Limits of visual communication: the effect of signal-to-noise ratio on the intelligibility of American Sign Language.

    Science.gov (United States)

    Pavel, M; Sperling, G; Riedl, T; Vanderbeek, A

    1987-12-01

    To determine the limits of human observers' ability to identify visually presented American Sign Language (ASL), the contrast s and the amount of additive noise n in dynamic ASL images were varied independently. Contrast was tested over a 4:1 range; the rms signal-to-noise ratios (s/n) investigated were s/n = 1/4, 1/2, 1, and infinity (which is used to designate the original, uncontaminated images). Fourteen deaf subjects were tested with an intelligibility test composed of 85 isolated ASL signs, each 2-3 sec in length. For these ASL signs (64 x 96 pixels, 30 frames/sec), subjects' performance asymptotes between s/n = 0.5 and 1.0; further increases in s/n do not improve intelligibility. Intelligibility was found to depend only on s/n and not on contrast. A formulation in terms of logistic functions was proposed to derive intelligibility of ASL signs from s/n, sign familiarity, and sign difficulty. Familiarity (ignorance) is represented by additive signal-correlated noise; it represents the likelihood of a subject's knowing a particular ASL sign, and it adds to s/n. Difficulty is represented by a multiplicative difficulty coefficient; it represents the perceptual vulnerability of an ASL sign to noise and it adds to log(s/n).

  18. Spectrogram Image Analysis of Error Signals for Minimizing Impulse Noise

    Directory of Open Access Journals (Sweden)

    Jeakwan Kim

    2016-01-01

    Full Text Available This paper presents the theoretical and experimental study on the spectrogram image analysis of error signals for minimizing the impulse input noises in the active suppression of noise. Impulse inputs of some specific wave patterns as primary noises to a one-dimensional duct with the length of 1800 mm are shown. The convergence speed of the adaptive feedforward algorithm based on the least mean square approach was controlled by a normalized step size which was incorporated into the algorithm. The variations of the step size govern the stability as well as the convergence speed. Because of this reason, a normalized step size is introduced as a new method for the control of impulse noise. The spectrogram images which indicate the degree of the attenuation of the impulse input noises are considered to represent the attenuation with the new method. The algorithm is extensively investigated in both simulation and real-time control experiment. It is demonstrated that the suggested algorithm worked with a nice stability and performance against impulse noises. The results in this study can be used for practical active noise control systems.

  19. Statistical Angles on the Lattice QCD Signal-to-Noise Problem

    Science.gov (United States)

    Wagman, Michael L.

    The theory of quantum chromodynamics (QCD) encodes the strong interactions that bind quarks and gluons into nucleons and that bind nucleons into nuclei. Predictive control of QCD would allow nuclear structure and reactions as well as properties of supernovae and neutron stars to be theoretically studied from first principles. Lattice QCD (LQCD) can represent generic QCD predictions in terms of well-defined path integrals, but the sign and signal-to-noise problems have obstructed LQCD calculations of large nuclei and nuclear matter in practice. This thesis presents a statistical study of LQCD correlation functions, with a particular focus on characterizing the structure of the noise associated with quantum fluctuations. The signal-to-noise problem in baryon correlation functions is demonstrated to arise from a sign problem associated with Monte Carlo sampling of complex correlation functions. Properties of circular statistics are used to understand the emergence of a large time noise region where standard energy measurements are unreliable. Power-law tails associated with stable distributions and Levy flights are found to play a central role in the time evolution of baryon correlation functions. Building on these observations, a new statistical analysis technique called phase reweighting is introduced that allow energy levels to be extracted from large-time correlation functions with time-independent signal-to-noise ratios. Phase reweighting effectively includes dynamical refinement of source magnitudes but introduces a bias associated with the phase. This bias can be removed by performing an extrapolation, but at the expense of re-introducing a signal-to-noise problem. Lattice QCD calculations of the ρ+ and nucleon masses and of the ΞΞ(1S0) binding energy show consistency between standard results obtained using smaller-time correlation functions and phase-reweighted results using large-time correlation functions inaccessible to standard statistical analysis

  20. Defining Biological Networks for Noise Buffering and Signaling Sensitivity Using Approximate Bayesian Computation

    Directory of Open Access Journals (Sweden)

    Shuqiang Wang

    2014-01-01

    Full Text Available Reliable information processing in cells requires high sensitivity to changes in the input signal but low sensitivity to random fluctuations in the transmitted signal. There are often many alternative biological circuits qualifying for this biological function. Distinguishing theses biological models and finding the most suitable one are essential, as such model ranking, by experimental evidence, will help to judge the support of the working hypotheses forming each model. Here, we employ the approximate Bayesian computation (ABC method based on sequential Monte Carlo (SMC to search for biological circuits that can maintain signaling sensitivity while minimizing noise propagation, focusing on cases where the noise is characterized by rapid fluctuations. By systematically analyzing three-component circuits, we rank these biological circuits and identify three-basic-biological-motif buffering noise while maintaining sensitivity to long-term changes in input signals. We discuss in detail a particular implementation in control of nutrient homeostasis in yeast. The principal component analysis of the posterior provides insight into the nature of the reaction between nodes.

  1. Characterization of Transient Noise in Advanced LIGO Relevant to Gravitational Wave Signal GW150914

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adamo, M.; Adams, C.; Adams, T.; Camp, Jordan B.

    2016-01-01

    On 14 September 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of investigations into potential correlated or uncorrelated sources of transient noise in the detectors around the time of the event. The detectors were operating nominally at the time of GW150914. We have ruled out environmental influences and non-Gaussian instrument noise at either LIGO detector as the cause of the observed gravitational wave signal.

  2. Lidar signal-to-noise ratio improvements: Considerations and techniques

    Science.gov (United States)

    Hassebo, Yasser Y.

    The primary objective of this study is to improve lidar signal-to-noise ratio (SNR) and hence extend attainable lidar ranges through reduction of the sky background noise (BGP), which dominates other sources of noise in daytime operations. This is particularly important for Raman lidar techniques where the Raman backscattered signal of interest is relatively weak compared with the elastic backscatter lidars. Two approaches for reduction of sky background noise are considered: (1) Improvements in lidar SNR by optimization of the design of the lidar receiver were examined by a series of simulations. This part of the research concentrated on biaxial lidar systems, where overlap between laser beam and receiver field of view (FOV) is an important aspect of noise considerations. The first optimized design evolved is a wedge shaped aperture. While this design has the virtue of greatly reducing background light, it is difficult to implement practically, requiring both changes in area and position with lidar range. A second more practical approach, which preserves some of the advantages of the wedge design, was also evolved. This uses a smaller area circular aperture optimally located in the image plane for desired ranges. Simulated numerical results for a biaxial lidar have shown that the best receiver parameters selection is one using a small circular aperture (field stop) with a small telescope focal length f, to ensure the minimum FOV that accepts all return signals over the entire lidar range while at the same time minimizing detected BGP and hence maximizing lidar SNR and attainable lidar ranges. The improvement in lidar SNR was up to 18%. (2) A polarization selection technique was implemented to reduce sky background signal for linearly polarized monostatic elastic backscatter lidar measurements. The technique takes advantage of naturally occurring polarization properties in scattered sky light, and then ensures that both the lidar transmitter and receiver track and

  3. Effect of signal noise on the learning capability of an artificial neural network

    International Nuclear Information System (INIS)

    Vega, J.J.; Reynoso, R.; Calvet, H. Carrillo

    2009-01-01

    Digital Pulse Shape Analysis (DPSA) by artificial neural networks (ANN) is becoming an important tool to extract relevant information from digitized signals in different areas. In this paper, we present a systematic evidence of how the concomitant noise that distorts the signals or patterns to be identified by an ANN set limits to its learning capability. Also, we present evidence that explains overtraining as a competition between the relevant pattern features, on the one side, against the signal noise, on the other side, as the main cause defining the shape of the error surface in weight space and, consequently, determining the steepest descent path that controls the ANN adaptation process.

  4. High-frequency signal and noise estimates of CSR GRACE RL04

    Science.gov (United States)

    Bonin, Jennifer A.; Bettadpur, Srinivas; Tapley, Byron D.

    2012-12-01

    A sliding window technique is used to create daily-sampled Gravity Recovery and Climate Experiment (GRACE) solutions with the same background processing as the official CSR RL04 monthly series. By estimating over shorter time spans, more frequent solutions are made using uncorrelated data, allowing for higher frequency resolution in addition to daily sampling. Using these data sets, high-frequency GRACE errors are computed using two different techniques: assuming the GRACE high-frequency signal in a quiet area of the ocean is the true error, and computing the variance of differences between multiple high-frequency GRACE series from different centers. While the signal-to-noise ratios prove to be sufficiently high for confidence at annual and lower frequencies, at frequencies above 3 cycles/year the signal-to-noise ratios in the large hydrological basins looked at here are near 1.0. Comparisons with the GLDAS hydrological model and high frequency GRACE series developed at other centers confirm CSR GRACE RL04's poor ability to accurately and reliably measure hydrological signal above 3-9 cycles/year, due to the low power of the large-scale hydrological signal typical at those frequencies compared to the GRACE errors.

  5. Low-Noise CMOS Circuits for On-Chip Signal Processing in Focal-Plane Arrays

    Science.gov (United States)

    Pain, Bedabrata

    The performance of focal-plane arrays can be significantly enhanced through the use of on-chip signal processing. Novel, in-pixel, on-focal-plane, analog signal-processing circuits for high-performance imaging are presented in this thesis. The presence of a high background-radiation is a major impediment for infrared focal-plane array design. An in-pixel, background-suppression scheme, using dynamic analog current memory circuit, is described. The scheme also suppresses spatial noise that results from response non-uniformities of photo-detectors, leading to background limited infrared detector readout performance. Two new, low-power, compact, current memory circuits, optimized for operation at ultra-low current levels required in infrared-detection, are presented. The first one is a self-cascading current memory that increases the output impedance, and the second one is a novel, switch feed-through reducing current memory, implemented using error-current feedback. This circuit can operate with a residual absolute -error of less than 0.1%. The storage-time of the memory is long enough to also find applications in neural network circuits. In addition, a voltage-mode, accurate, low-offset, low-power, high-uniformity, random-access sample-and-hold cell, implemented using a CCD with feedback, is also presented for use in background-suppression and neural network applications. A new, low noise, ultra-low level signal readout technique, implemented by individually counting photo-electrons within the detection pixel, is presented. The output of each unit-cell is a digital word corresponding to the intensity of the photon flux, and the readout is noise free. This technique requires the use of unit-cell amplifiers that feature ultra-high-gain, low-power, self-biasing capability and noise in sub-electron levels. Both single-input and differential-input implementations of such amplifiers are investigated. A noise analysis technique is presented for analyzing sampled

  6. Noise and signal processing in a microstrip detector with a time variant readout system

    International Nuclear Information System (INIS)

    Cattaneo, P.W.

    1995-01-01

    This paper treats the noise and signal processing by a time variant filter in a microstrip detector. In particular, the noise sources in the detector-electronics chain and the signal losses that cause a substantial decrease of the original signal are thoroughly analyzed. This work has been motivated by the analysis of the data of the microstrip detectors designed for the ALEPH minivertex detector. Hence, even if the discussion will be kept as general as possible, concrete examples will be presented referring to the specific ALEPH design. (orig.)

  7. Study of improving signal-noise ratio for fluorescence channel

    Science.gov (United States)

    Wang, Guoqing; Li, Xin; Lou, Yue; Chen, Dong; Zhao, Xin; Wang, Ran; Yan, Debao; Zhao, Qi

    2017-10-01

    Laser-induced fluorescence(LIFS), which is one of most effective discrimination methods to identify the material at the molecular level by inducing fluorescence spectrum, has been popularized for its fast and accurate probe's results. According to the research, violet laser or ultraviolet laser is always used as excitation light source. While, There is no atmospheric window for violet laser and ultraviolet laser, causing laser attenuation along its propagation path. What's worse, as the laser reaching sample, part of the light is reflected. That is, excitation laser really react on sample to produce fluorescence is very poor, leading to weak fluorescence mingled with the background light collected by LIFS' processing unit, when it used outdoor. In order to spread LIFS to remote probing under the complex background, study of improving signal-noise ratio for fluorescence channel is a meaningful work. Enhancing the fluorescence intensity and inhibiting background light both can improve fluorescence' signal-noise ratio. In this article, three different approaches of inhibiting background light are discussed to improve the signal-noise ratio of LIFS. The first method is increasing fluorescence excitation area in the proportion of LIFS' collecting field by expanding laser beam, if the collecting filed is fixed. The second one is changing field angle base to accommodate laser divergence angle. The third one is setting a very narrow gating circuit to control acquisition circuit, which is shortly open only when fluorescence arriving. At some level, these methods all can reduce the background light. But after discussion, the third one is best with adding gating acquisition circuit to acquisition circuit instead of changing light path, which is effective and economic.

  8. Estimation of images degraded by film-grain noise.

    Science.gov (United States)

    Naderi, F; Sawchuk, A A

    1978-04-15

    Film-grain noise describes the intrinsic noise produced by a photographic emulsion during the process of image recording and reproduction. In this paper we consider the restoration of images degraded by film-grain noise. First a detailed model for the over-all photographic imaging system is presented. The model includes linear blurring effects and the signal-dependent effect of film-grain noise. The accuracy of this model is tested by simulating images according to it and comparing the results to images of similar targets that were actually recorded on film. The restoration of images degraded by film-grain noise is then considered in the context of estimation theory. A discrete Wiener filer is developed which explicitly allows for the signal dependence of the noise. The filter adaptively alters its characteristics based on the nonstationary first order statistics of an image and is shown to have advantages over the conventional Wiener filter. Experimental results for modeling and the adaptive estimation filter are presented.

  9. Noise Gating Solar Images

    Science.gov (United States)

    DeForest, Craig; Seaton, Daniel B.; Darnell, John A.

    2017-08-01

    I present and demonstrate a new, general purpose post-processing technique, "3D noise gating", that can reduce image noise by an order of magnitude or more without effective loss of spatial or temporal resolution in typical solar applications.Nearly all scientific images are, ultimately, limited by noise. Noise can be direct Poisson "shot noise" from photon counting effects, or introduced by other means such as detector read noise. Noise is typically represented as a random variable (perhaps with location- or image-dependent characteristics) that is sampled once per pixel or once per resolution element of an image sequence. Noise limits many aspects of image analysis, including photometry, spatiotemporal resolution, feature identification, morphology extraction, and background modeling and separation.Identifying and separating noise from image signal is difficult. The common practice of blurring in space and/or time works because most image "signal" is concentrated in the low Fourier components of an image, while noise is evenly distributed. Blurring in space and/or time attenuates the high spatial and temporal frequencies, reducing noise at the expense of also attenuating image detail. Noise-gating exploits the same property -- "coherence" -- that we use to identify features in images, to separate image features from noise.Processing image sequences through 3-D noise gating results in spectacular (more than 10x) improvements in signal-to-noise ratio, while not blurring bright, resolved features in either space or time. This improves most types of image analysis, including feature identification, time sequence extraction, absolute and relative photometry (including differential emission measure analysis), feature tracking, computer vision, correlation tracking, background modeling, cross-scale analysis, visual display/presentation, and image compression.I will introduce noise gating, describe the method, and show examples from several instruments (including SDO

  10. On signal design by the R/0/ criterion for non-white Gaussian noise channels

    Science.gov (United States)

    Bordelon, D. L.

    1977-01-01

    The use of the cut-off rate criterion for modulation system design is investigated for channels with non-white Gaussian noise. A signal space representation of the waveform channel is developed, and the cut-off rate for vector channels with additive non-white Gaussian noise and unquantized demodulation is derived. When the signal input to the channel is a continuous random vector, maximization of the cut-off rate with constrained average signal energy leads to a water-filling interpretation of optimal energy distribution in signal space. The necessary condition for a finite signal set to maximize the cut-off rate with constrained energy and an equally likely probability assignment of signal vectors is presented, and an algorithm is outlined for numerically computing the optimum signal set. As an example, the rectangular signal set which has the water-filling average energy distribution and the optimum rectangular set are compared.

  11. Noise reduction in Lidar signal using correlation-based EMD combined with soft thresholding and roughness penalty

    Science.gov (United States)

    Chang, Jianhua; Zhu, Lingyan; Li, Hongxu; Xu, Fan; Liu, Binggang; Yang, Zhenbo

    2018-01-01

    Empirical mode decomposition (EMD) is widely used to analyze the non-linear and non-stationary signals for noise reduction. In this study, a novel EMD-based denoising method, referred to as EMD with soft thresholding and roughness penalty (EMD-STRP), is proposed for the Lidar signal denoising. With the proposed method, the relevant and irrelevant intrinsic mode functions are first distinguished via a correlation coefficient. Then, the soft thresholding technique is applied to the irrelevant modes, and the roughness penalty technique is applied to the relevant modes to extract as much information as possible. The effectiveness of the proposed method was evaluated using three typical signals contaminated by white Gaussian noise. The denoising performance was then compared to the denoising capabilities of other techniques, such as correlation-based EMD partial reconstruction, correlation-based EMD hard thresholding, and wavelet transform. The use of EMD-STRP on the measured Lidar signal resulted in the noise being efficiently suppressed, with an improved signal to noise ratio of 22.25 dB and an extended detection range of 11 km.

  12. Measurement of the Low Frequency Noise of MOSFETs under Large Signal RF Excitation

    NARCIS (Netherlands)

    van der Wel, A.P.; Klumperink, Eric A.M.; Nauta, Bram

    2002-01-01

    A measurement technique [1] is presented that allows measurement of MOSFET low frequency (LF) noise under large signal RF (Radio Frequency) excitation. Measurements indicate that MOSFETS exhibit a reduction in LF noise when they are cycled from inversion to accummulation and that this reduction does

  13. Effects of signal modulation and coloured cross-correlation of coloured noises on the diffusion of a harmonic oscillator

    Institute of Scientific and Technical Information of China (English)

    Liu Li; Zhang Liang-Ying; Cao Li

    2009-01-01

    The diffusion in a harmonic oscillator driven by coloured noises ζ(t) and η(t) with coloured cross-correlation in which one of the noises is modulated by a biased periodic signal is investigated. The exact expression of diffusion coefficient d as a function of noise parameter, signal parameter, and oscillator frequency is derived. The findings in this paper are as follows. 1) The curves of d versus noise intensity D and d versus noises cross-correlation time τ_3 exist as two different phases. The transition between the two phases arises from the change of the cross-correlation coefficient λ of the two Orustein-Uhlenbeck (O-U) noises. 2) Changing the value of τ3, the curves of d versus Q, the intensity of colored noise that is modulated by the signal, can transform from a phase having a minimum to a monotonic phase. 3)Changing the value of signal amplitude A, d versus Q curves can transform from a phase having a minimum to a monotonic phase. The above-mentioned results demonstrate that a like noise-induced transition appears in the model.

  14. Effects of signal modulation and coloured cross-correlation of coloured noises on the diffusion of a harmonic oscillator

    International Nuclear Information System (INIS)

    Li, Liu; Li, Cao; Liang-Ying, Zhang

    2009-01-01

    The diffusion in a harmonic oscillator driven by coloured noises ζ(t) and η(t) with coloured cross-correlation in which one of the noises is modulated by a biased periodic signal is investigated. The exact expression of diffusion coefficient d as a function of noise parameter, signal parameter, and oscillator frequency is derived. The findings in this paper are as follows. 1) The curves of d versus noise intensity D and d versus noises cross-correlation time τ 3 exist as two different phases. The transition between the two phases arises from the change of the cross-correlation coefficient λ of the two Ornstein–Uhlenbeck (O-U) noises. 2) Changing the value of τ 3 , the curves of d versus Q, the intensity of colored noise that is modulated by the signal, can transform from a phase having a minimum to a monotonic phase. 3) Changing the value of signal amplitude A, d versus Q curves can transform from a phase having a minimum to a monotonic phase. The above-mentioned results demonstrate that a like noise-induced transition appears in the model. (general)

  15. The curious case of HD 41248. A pair of static signals buried behind red noise

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, J. S.; Tuomi, M., E-mail: jjenkins@das.uchile.cl [Departamento de Astronomia, Universidad de Chile, Camino el Observatorio 1515, Las Condes, Santiago, Casilla 36-D (Chile)

    2014-10-20

    Gaining a better understanding of the effects of stellar-induced radial velocity noise is critical for the future of exoplanet studies since the discovery of the lowest-mass planets using this method will require us to go below the intrinsic stellar noise limit. An interesting test case in this respect is that of the southern solar analog HD 41248. The radial velocity time series of this star has been proposed to contain either a pair of signals with periods of around 18 and 25 days, which could be due to a pair of resonant super-Earths, or a single and varying 25 day signal that could arise due to a complex interplay between differential rotation and modulated activity. In this work, we build up more evidence for the former scenario, showing that the signals are still clearly significant, even after more than 10 yr of observations, and they likely do not change in period, amplitude, or phase as a function of time, the hallmarks of static Doppler signals. We show that over the last two observing seasons, this star was more intrinsically active and the noise reddened, highlighting why better noise models are needed to find the lowest amplitude signals, in particular, models that consider noise correlations. This analysis shows that there is still sufficient evidence for the existence of two super-Earths on the edge of, or locked into, a 7:5 mean motion resonance orbiting HD 41248.

  16. Theoretical and experimental signal-to-noise ratio assessment in new direction sensing continuous-wave Doppler lidar

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Foroughi Abari, Farzad; Mann, Jakob

    2014-01-01

    A new direction sensing continuous-wave Doppler lidar based on an image-reject homodyne receiver has recently been demonstrated at DTU Wind Energy, Technical University of Denmark. In this contribution we analyse the signal-to-noise ratio resulting from two different data processing methods both...... leading to the direction sensing capability. It is found that using the auto spectrum of the complex signal to determine the wind speed leads to a signal-to-noise ratio equivalent to that of a standard self-heterodyne receiver. Using the imaginary part of the cross spectrum to estimate the Doppler shift...... has the benefit of a zero-mean background spectrum, but comes at the expense of a decrease in the signal-to noise ratio by a factor of √2....

  17. An experimental test of noise-dependent voice amplitude regulation in Cope's grey treefrog (Hyla chrysoscelis).

    Science.gov (United States)

    Love, Elliot K; Bee, Mark A

    2010-09-01

    One strategy for coping with the constraints on acoustic signal reception posed by ambient noise is to signal louder as noise levels increase. Termed the 'Lombard effect', this reflexive behaviour is widespread among birds and mammals and occurs with a diversity of signal types, leading to the hypothesis that voice amplitude regulation represents a general vertebrate mechanism for coping with environmental noise. Support for this evolutionary hypothesis, however, remains limited due to a lack of studies in taxa other than birds and mammals. Here, we report the results of an experimental test of the hypothesis that male grey treefrogs increase the amplitude of their advertisement calls in response to increasing levels of chorus-shaped noise. We recorded spontaneously produced calls in quiet and in the presence of noise broadcast at sound pressure levels ranging between 40 dB and 70 dB. While increasing noise levels induced predictable changes in call duration and rate, males did not regulate call amplitude. These results do not support the hypothesis that voice amplitude regulation is a generic vertebrate mechanism for coping with noise. We discuss the possibility that intense sexual selection and high levels of competition for mates in choruses place some frogs under strong selection to call consistently as loudly as possible.

  18. Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras

    Directory of Open Access Journals (Sweden)

    Alejandro Wolf

    2016-07-01

    Full Text Available Images rendered by uncooled microbolometer-based infrared (IR cameras are severely degraded by the spatial non-uniformity (NU noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘ C, when the array’s temperature varies by approximately 15 ∘ C.

  19. Noise-assisted data processing with empirical mode decomposition in biomedical signals.

    Science.gov (United States)

    Karagiannis, Alexandros; Constantinou, Philip

    2011-01-01

    In this paper, a methodology is described in order to investigate the performance of empirical mode decomposition (EMD) in biomedical signals, and especially in the case of electrocardiogram (ECG). Synthetic ECG signals corrupted with white Gaussian noise are employed and time series of various lengths are processed with EMD in order to extract the intrinsic mode functions (IMFs). A statistical significance test is implemented for the identification of IMFs with high-level noise components and their exclusion from denoising procedures. Simulation campaign results reveal that a decrease of processing time is accomplished with the introduction of preprocessing stage, prior to the application of EMD in biomedical time series. Furthermore, the variation in the number of IMFs according to the type of the preprocessing stage is studied as a function of SNR and time-series length. The application of the methodology in MIT-BIH ECG records is also presented in order to verify the findings in real ECG signals.

  20. Optimal Noise Enhanced Signal Detection in a Unified Framework

    Directory of Open Access Journals (Sweden)

    Ting Yang

    2016-06-01

    Full Text Available In this paper, a new framework for variable detectors is formulated in order to solve different noise enhanced signal detection optimal problems, where six different disjoint sets of detector and discrete vector pairs are defined according to the two inequality-constraints on detection and false-alarm probabilities. Then theorems and algorithms constructed based on the new framework are presented to search the optimal noise enhanced solutions to maximize the relative improvements of the detection and the false-alarm probabilities, respectively. Further, the optimal noise enhanced solution of the maximum overall improvement is obtained based on the new framework and the relationship among the three maximums is presented. In addition, the sufficient conditions for improvability or non-improvability under the two certain constraints are given. Finally, numerous examples are presented to illustrate the theoretical results and the proofs of the main theorems are given in the Appendix.

  1. Improved stochastic resonance algorithm for enhancement of signal-to-noise ratio of high-performance liquid chromatographic signal

    International Nuclear Information System (INIS)

    Xie Shaofei; Xiang Bingren; Deng Haishan; Xiang Suyun; Lu Jun

    2007-01-01

    Based on the theory of stochastic resonance, an improved stochastic resonance algorithm with a new criterion for optimizing system parameters to enhance signal-to-noise ratio (SNR) of HPLC/UV chromatographic signal for trace analysis was presented in this study. Compared with the conventional criterion in stochastic resonance, the proposed one can ensure satisfactory SNR as well as good peak shape of chromatographic peak in output signal. Application of the criterion to experimental weak signals of HPLC/UV was investigated and the results showed an excellent quantitative relationship between different concentrations and responses

  2. A method for discrimination of noise and EMG signal regions recorded during rhythmic behaviors.

    Science.gov (United States)

    Ying, Rex; Wall, Christine E

    2016-12-08

    Analyses of muscular activity during rhythmic behaviors provide critical data for biomechanical studies. Electrical potentials measured from muscles using electromyography (EMG) require discrimination of noise regions as the first step in analysis. An experienced analyst can accurately identify the onset and offset of EMG but this process takes hours to analyze a short (10-15s) record of rhythmic EMG bursts. Existing computational techniques reduce this time but have limitations. These include a universal threshold for delimiting noise regions (i.e., a single signal value for identifying the EMG signal onset and offset), pre-processing using wide time intervals that dampen sensitivity for EMG signal characteristics, poor performance when a low frequency component (e.g., DC offset) is present, and high computational complexity leading to lack of time efficiency. We present a new statistical method and MATLAB script (EMG-Extractor) that includes an adaptive algorithm to discriminate noise regions from EMG that avoids these limitations and allows for multi-channel datasets to be processed. We evaluate the EMG-Extractor with EMG data on mammalian jaw-adductor muscles during mastication, a rhythmic behavior typified by low amplitude onsets/offsets and complex signal pattern. The EMG-Extractor consistently and accurately distinguishes noise from EMG in a manner similar to that of an experienced analyst. It outputs the raw EMG signal region in a form ready for further analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Investigations of SPND noise signals in VVER-440 reactors

    International Nuclear Information System (INIS)

    Kiss, S.; Lipcsei, S.; Hazi, G.

    2001-01-01

    This paper describes and characterises SPND noise measurements of an operating VVER-440 nuclear reactor. Characteristics of the signal can be radically influenced by the geometrical properties of the detector and the cable and by the measuring arrangement. Structure of phase spectra showing propagating perturbations measured on uncompensated SPN detectors is studied through models.(author)

  4. Aircraft and background noise annoyance effects

    Science.gov (United States)

    Willshire, K. F.

    1984-01-01

    To investigate annoyance of multiple noise sources, two experiments were conducted. The first experiment, which used 48 subjects, was designed to establish annoyance-noise level functions for three community noise sources presented individually: jet aircraft flyovers, air conditioner, and traffic. The second experiment, which used 216 subjects, investigated the effects of background noise on aircraft annoyance as a function of noise level and spectrum shape; and the differences between overall, aircraft, and background noise annoyance. In both experiments, rated annoyance was the dependent measure. Results indicate that the slope of the linear relationship between annoyance and noise level for traffic is significantly different from that of flyover and air conditioner noise and that further research was justified to determine the influence of the two background noises on overall, aircraft, and background noise annoyance (e.g., experiment two). In experiment two, total noise exposure, signal-to-noise ratio, and background source type were found to have effects on all three types of annoyance. Thus, both signal-to-noise ratio, and the background source must be considered when trying to determine community response to combined noise sources.

  5. Measurements of noise immission from wind turbines at receptor locations: Use of a vertical microphone board to improve the signal-to-noise ratio

    International Nuclear Information System (INIS)

    Fegeant, Olivier

    1999-01-01

    The growing interest in wind energy has increased the need of accuracy in wind turbine noise immission measurements and thus, the need of new measurement techniques. This paper shows that mounting the microphone on a vertical board improves the signal-to-noise ratio over the whole frequency range compared to the free microphone technique. Indeed, the wind turbine is perceived two times noisier by the microphone due to the signal reflection by the board while, in addition, the wind noise is reduced. Furthermore, the board shielding effect allows the measurements to be carried out in the presence of reflecting surfaces such as building facades

  6. Comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging

    International Nuclear Information System (INIS)

    O'Sullivan, Malcolm N.; Chan, Kam Wai Clifford; Boyd, Robert W.

    2010-01-01

    We present a theoretical comparison of the signal-to-noise characteristics of quantum versus thermal ghost imaging. We first calculate the signal-to-noise ratio of each process in terms of its controllable experimental conditions. We show that a key distinction is that a thermal ghost image always resides on top of a large background; the fluctuations in this background constitutes an intrinsic noise source for thermal ghost imaging. In contrast, there is a negligible intrinsic background to a quantum ghost image. However, for practical reasons involving achievable illumination levels, acquisition times for thermal ghost images are often much shorter than those for quantum ghost images. We provide quantitative predictions for the conditions under which each process provides superior performance. Our conclusion is that each process can provide useful functionality, although under complementary conditions.

  7. Modeling speech intelligibility based on the signal-to-noise envelope power ratio

    DEFF Research Database (Denmark)

    Jørgensen, Søren

    of modulation frequency selectivity in the auditory processing of sound with a decision metric for intelligibility that is based on the signal-to-noise envelope power ratio (SNRenv). The proposed speech-based envelope power spectrum model (sEPSM) is demonstrated to account for the effects of stationary...... through three commercially available mobile phones. The model successfully accounts for the performance across the phones in conditions with a stationary speech-shaped background noise, whereas deviations were observed in conditions with “Traffic” and “Pub” noise. Overall, the results of this thesis...

  8. Validation of the dynamics of SDS and RRS flux, flow, pressure and temperature signals using noise analysis technique

    International Nuclear Information System (INIS)

    Glockler, O.; Cooke, D.F.; Tulett, M.V.

    1995-01-01

    In 1992, a program was initiated to establish reactor noise analysis as a practical tool for plant performance monitoring and system diagnostics in Ontario Hydro's CANDU reactors. Since then, various CANDU-specific noise analysis applications have been developed and validated. The noise-based statistical techniques are being successfully applied as powerful troubleshooting and diagnostic tools to a wide variety of actual operational I and C problems. Critical plant components, instrumentation and processes are monitored on a regular basis, and their dynamic characteristics are verified on-power. Recent applications of noise analysis include (1) validating the dynamics of in-core flux detectors (ICFDS) and ion chambers, (2) estimating the prompt fraction ICFDs in noise measurements at full power and in power rundown tests, (3) identifying the cause of excessive signal fluctuations in certain flux detectors, (4) validating the dynamic coupling between liquid zone control signals, (5) detecting and monitoring mechanical vibrations of detector tubes, reactivity devices and fuel channels induced by moderator/coolant flow, (6) estimating the dynamics and response time of RTD temperature signals, (7) isolating the cause of RTD signal anomalies, (8) investigating the source of abnormal flow signal behaviour, (9) estimating the overall response time of flow and pressure signals, (1 0) detecting coolant boiling in fully instrumented fuel channels, (1 1) monitoring moderator circulation via temperature noise, and (12) predicting the performance of shut-off rods. Some of these applications are performed on an as needed basis. The noise analysis program, in the Pickering-B station alone, has saved Ontario Hydro millions of dollars during its first three years. The results of the noise analysis program have been also reviewed by the regulator (Atomic Energy Control Board of Canada) with favorable results. The AECB have expressed interest in Ontario Hydro further exploiting the

  9. Robust frequency diversity based algorithm for clutter noise reduction of ultrasonic signals using multiple sub-spectrum phase coherence

    Energy Technology Data Exchange (ETDEWEB)

    Gongzhang, R.; Xiao, B.; Lardner, T.; Gachagan, A. [Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Li, M. [School of Engineering, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

    2014-02-18

    This paper presents a robust frequency diversity based algorithm for clutter reduction in ultrasonic A-scan waveforms. The performance of conventional spectral-temporal techniques like Split Spectrum Processing (SSP) is highly dependent on the parameter selection, especially when the signal to noise ratio (SNR) is low. Although spatial beamforming offers noise reduction with less sensitivity to parameter variation, phased array techniques are not always available. The proposed algorithm first selects an ascending series of frequency bands. A signal is reconstructed for each selected band in which a defect is present when all frequency components are in uniform sign. Combining all reconstructed signals through averaging gives a probability profile of potential defect position. To facilitate data collection and validate the proposed algorithm, Full Matrix Capture is applied on the austenitic steel and high nickel alloy (HNA) samples with 5MHz transducer arrays. When processing A-scan signals with unrefined parameters, the proposed algorithm enhances SNR by 20dB for both samples and consequently, defects are more visible in B-scan images created from the large amount of A-scan traces. Importantly, the proposed algorithm is considered robust, while SSP is shown to fail on the austenitic steel data and achieves less SNR enhancement on the HNA data.

  10. Emergence of a signal from background noise in the "memory of water" experiments: how to explain it?

    Science.gov (United States)

    Beauvais, Francis

    2012-01-01

    After more than 20 years, the case of the "memory of water" still has not been resolved satisfactorily. After the affair with the journal Nature, Benveniste extended his results on high dilutions to an "electromagnetic biology" and then to a "digital biology," where electromagnetic signals supposed to be emitted from biologically active solutions were said to be stored on magnetic memories. Although the results obtained by Benveniste and coworkers were obvious, the difficulties in reproducibility by other teams created doubt of the reality of the alleged phenomenon. In a first step, we analyzed a set of experiments obtained by Benveniste's team in the 1990s. We quantified the relationship between "expected" effects (ie, labels of the tested samples) and apparatus outcomes, and we defined the experimental conditions to observe significant correlations. We concluded that the results of these experiments were related to experimenter-dependent correlations, which did not support the initial "memory of water" hypothesis. The fact that a signal emerged from background noise, however, remained puzzling. Therefore, in a second step, we described Benveniste's experiments according to the relational interpretation of quantum physics of C. Rovelli. In this interpretation, the state of a system is observer-dependent and the collapse of the wave function appears only in the states relative to a given observer. This interpretation allowed us to elaborate a model describing Benveniste's experiments in which the emergence of a signal from background noise was described by the entanglement of the experimenter with the observed system. In conclusion, the pursuit of the experimental "proof" to support the "memory of water" hypothesis has prevented other interpretations. Although our hypothesis does not definitely dismiss the possibility of "memory of water," the experimenter-dependent entanglement could be an attractive alternative interpretation of Benveniste's experiments

  11. Noise Reduction, Atmospheric Pressure Admittance Estimation and Long-Period Component Extraction in Time-Varying Gravity Signals Using Ensemble Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Linsong Wang

    2015-01-01

    Full Text Available Time-varying gravity signals, with their nonlinear, non-stationary and multi-scale characteristics, record the physical responses of various geodynamic processes and consist of a blend of signals with various periods and amplitudes, corresponding to numerous phenomena. Superconducting gravimeter (SG records are processed in this study using a multi-scale analytical method and corrected for known effects to reduce noise, to study geodynamic phenomena using their gravimetric signatures. Continuous SG (GWR-C032 gravity and barometric data are decomposed into a series of intrinsic mode functions (IMFs using the ensemble empirical mode decomposition (EEMD method, which is proposed to alleviate some unresolved issues (the mode mixing problem and the end effect of the empirical mode decomposition (EMD. Further analysis of the variously scaled signals is based on a dyadic filter bank of the IMFs. The results indicate that removing the high-frequency IMFs can reduce the natural and man-made noise in the data, which are caused by electronic device noise, Earth background noise and the residual effects of pre-processing. The atmospheric admittances based on frequency changes are estimated from the gravity and the atmospheric pressure IMFs in various frequency bands. These time- and frequency-dependent admittance values can be used effectively to improve the atmospheric correction. Using the EEMD method as a filter, the long-period IMFs are extracted from the SG time-varying gravity signals spanning 7 years. The resulting gravity residuals are well correlated with the gravity effect caused by the _ polar motion after correcting for atmospheric effects.

  12. Signal discrimination of ULF electromagnetic data with using singular spectrum analysis – an attempt to detect train noise

    Directory of Open Access Journals (Sweden)

    S. Saito

    2011-07-01

    Full Text Available Electromagnetic phenomena associated with crustal activities have been reported in a wide frequency range (DC-HF. In particular, ULF electromagnetic phenomena are the most promising among them because of the deeper skin depth. However, ULF geoelctromagnetic data are a superposition of signals of different origins. They originated from interactions between the geomagnetic field and the solar wind, leak current by a DC-driven train (train noise, precipitation, and so on. In general, the intensity of electromagnetic signals associated with crustal activity is smaller than the above variations. Therefore, in order to detect a smaller signal, signal discrimination such as noise reduction or identification of noises is very important. In this paper, the singular spectrum analysis (SSA has been performed to detect the DC-driven train noise in geoelectric potential difference data. The aim of this paper is to develop an effective algorithm for the DC-driven train noise detection.

  13. Parametric Amplification Protocol for Frequency-Modulated Magnetic Resonance Force Microscopy Signals

    Science.gov (United States)

    Harrell, Lee; Moore, Eric; Lee, Sanggap; Hickman, Steven; Marohn, John

    2011-03-01

    We present data and theoretical signal and noise calculations for a protocol using parametric amplification to evade the inherent tradeoff between signal and detector frequency noise in force-gradient magnetic resonance force microscopy signals, which are manifested as a modulated frequency shift of a high- Q microcantilever. Substrate-induced frequency noise has a 1 / f frequency dependence, while detector noise exhibits an f2 dependence on modulation frequency f . Modulation of sample spins at a frequency that minimizes these two contributions typically results in a surface frequency noise power an order of magnitude or more above the thermal limit and may prove incompatible with sample spin relaxation times as well. We show that the frequency modulated force-gradient signal can be used to excite the fundamental resonant mode of the cantilever, resulting in an audio frequency amplitude signal that is readily detected with a low-noise fiber optic interferometer. This technique allows us to modulate the force-gradient signal at a sufficiently high frequency so that substrate-induced frequency noise is evaded without subjecting the signal to the normal f2 detector noise of conventional demodulation.

  14. On signal design by the R sub 0 criterion for non-white Gaussian noise channels

    Science.gov (United States)

    Bordelon, D. L.

    1976-01-01

    The use of the R sub 0 criterion for modulation system design is investigated for channels with non-white Gaussian noise. A signal space representation of the waveform channel is developed, and the cut-off rate R sub 0 for vector channels with additive nonwhite Gaussian noise and unquantized demodulation is derived. When the signal unput to the channel is a continuous random vector, maximization of R sub 0 with constrained average signal energy leads to a water-filling interpretation of optimal energy distribution in signal space. The necessary condition for a finite signal set to maximize R sub 0 with constrained energy and an equally likely probability assignment of signal vectors is presented, and an algorithm is outlined for numerically computing the optimum signal set. A necessary condition on a constrained energy, finite signal set is found which maximizes a Taylor series approximation of R sub 0. This signal set is compared with the finite signal set which has the water-filling average energy distribution.

  15. Modeling of pH Dependent Electrochemical Noise in Ion Sensitive Field Effect Transistors ISFET

    Directory of Open Access Journals (Sweden)

    M. P. Das

    2013-02-01

    Full Text Available pH ISFETs are very important sensor for in vivo continuous monitoring application of physiological and environmental system. The accuracy of Ion Sensitive Field Effect Transistor (ISFET output measurement is greatly affected by the presences of noise, drift and slow response of the device. Although the noise analysis of ISFET so far performed in different literature relates only to sources originated from Field Effect Transistor (FET structure which are almost constant for a particular device, the pH dependent electrochemical noise has not been substantially explored and analyzed. In this paper we have investigated the low frequency pH dependent electrochemical noise that originates from the ionic conductance of the electrode-electrolyte-Field Effect Transistor structure of the device and that the noise depends on the concentration of the electrolyte and 1/f in nature. The statistical and frequency analysis of this electrochemical noise of a commercial ISFET sensor, under room temperature has been performed for six different pH values ranging from pH2 to pH9.2. We have also proposed a concentration dependent a/f & b/f2 model of the noise with different values of the coefficients a, b.

  16. Assessing denoising strategies to increase signal to noise ratio in spinal cord and in brain cortical and subcortical regions

    Science.gov (United States)

    Maugeri, L.; Moraschi, M.; Summers, P.; Favilla, S.; Mascali, D.; Cedola, A.; Porro, C. A.; Giove, F.; Fratini, M.

    2018-02-01

    Functional Magnetic Resonance Imaging (fMRI) based on Blood Oxygenation Level Dependent (BOLD) contrast has become one of the most powerful tools in neuroscience research. On the other hand, fMRI approaches have seen limited use in the study of spinal cord and subcortical brain regions (such as the brainstem and portions of the diencephalon). Indeed obtaining good BOLD signal in these areas still represents a technical and scientific challenge, due to poor control of physiological noise and to a limited overall quality of the functional series. A solution can be found in the combination of optimized experimental procedures at acquisition stage, and well-adapted artifact mitigation procedures in the data processing. In this framework, we studied two different data processing strategies to reduce physiological noise in cortical and subcortical brain regions and in the spinal cord, based on the aCompCor and RETROICOR denoising tools respectively. The study, performed in healthy subjects, was carried out using an ad hoc isometric motor task. We observed an increased signal to noise ratio in the denoised functional time series in the spinal cord and in the subcortical brain region.

  17. Noise-driven diamagnetic susceptibility of impurity doped quantum dots: Role of anisotropy, position-dependent effective mass and position-dependent dielectric screening function

    International Nuclear Information System (INIS)

    Bera, Aindrila; Saha, Surajit; Ganguly, Jayanta; Ghosh, Manas

    2016-01-01

    Highlights: • Diamagnetic susceptibility (DMS) of doped quantum dot is studied. • The dot is subjected to Gaussian white noise. • Role of anisotropy, PDEM and PDDSF have been analyzed. • Noise amplifies and suppresses DMS depending on particular condition. • Findings bear significant technological importance. - Abstract: We explore Diamagnetic susceptibility (DMS) of impurity doped quantum dot (QD) in presence of Gaussian white noise introduced to the system additively and multiplicatively. In view of this profiles of DMS have been pursued with variations of geometrical anisotropy and dopant location. We have invoked position-dependent effective mass (PDEM) and position-dependent dielectric screening function (PDDSF) of the system. Presence of noise sometimes suppresses and sometimes amplifies DMS from that of noise-free condition and the extent of suppression/amplification depends on mode of application of noise. It is important to mention that the said suppression/amplification exhibits subtle dependence on use of PDEM, PDDSF and geometrical anisotropy. The study reveals that DMS, or more fundamentally, the effective confinement of LDSS, can be tuned by appropriate mingling of geometrical anisotropy/effective mass/dielectric constant of the system with noise and also on the pathway of application of latter.

  18. Signal-Noise Ratio Control Subsystem of Digital Equipment for Transmission of "Strela" Relay Protection Commands

    Directory of Open Access Journals (Sweden)

    I. I. Zabenkov

    2012-01-01

    Full Text Available Continuous measurement function of relative noise and interference level in the information transmission channel is considered as an important one for controlling parameters of high-frequency signal. The present paper simulates an algorithm for measuring signal-noise ratio in the transmission channel of high-voltage lines which is used in the digital equipment for transmission of relay protection and emergency automation commands of "Strela" complex.

  19. Visibility bound caused by a distinguishable noise particle

    International Nuclear Information System (INIS)

    Gavenda, Miroslav; Celechovska, Lucie; Dusek, Miloslav; Filip, Radim; Soubusta, Jan

    2011-01-01

    We investigate how the distinguishability of a 'noise' particle degrades interference of the 'signal' particle. The signal, represented by an equatorial state of a photonic qubit, is mixed with noise, represented by another photonic qubit, via linear coupling on a beam splitter. We report on the degradation of the signal photon interference depending on the degree of indistinguishability between the signal and noise photons. When the photons are completely distinguishable in principle but technically indistinguishable, the visibility drops to the value 1/√(2). As the photons become more indistinguishable, the maximal visibility increases and reaches the unit value for completely indistinguishable photons. We have examined this effect experimentally using a setup with a fiber-optics two-photon Mach-Zehnder interferometer.

  20. Increasing the Signal to Noise Ratio in a Chemistry Laboratory ...

    African Journals Online (AJOL)

    Increasing the Signal to Noise Ratio in a Chemistry Laboratory - Improving a Practical for Academic Development Students. ... Analysis of data collected in 2001 shows that the changes made a significant impact on the effectiveness of the laboratory session. South African Journal of Chemistry Vol.56 2003: 47-53 ...

  1. Understanding the amplitudes of noise correlation measurements

    Science.gov (United States)

    Tsai, Victor C.

    2011-01-01

    Cross correlation of ambient seismic noise is known to result in time series from which station-station travel-time measurements can be made. Part of the reason that these cross-correlation travel-time measurements are reliable is that there exists a theoretical framework that quantifies how these travel times depend on the features of the ambient noise. However, corresponding theoretical results do not currently exist to describe how the amplitudes of the cross correlation depend on such features. For example, currently it is not possible to take a given distribution of noise sources and calculate the cross correlation amplitudes one would expect from such a distribution. Here, we provide a ray-theoretical framework for calculating cross correlations. This framework differs from previous work in that it explicitly accounts for attenuation as well as the spatial distribution of sources and therefore can address the issue of quantifying amplitudes in noise correlation measurements. After introducing the general framework, we apply it to two specific problems. First, we show that we can quantify the amplitudes of coherency measurements, and find that the decay of coherency with station-station spacing depends crucially on the distribution of noise sources. We suggest that researchers interested in performing attenuation measurements from noise coherency should first determine how the dominant sources of noise are distributed. Second, we show that we can quantify the signal-to-noise ratio of noise correlations more precisely than previous work, and that these signal-to-noise ratios can be estimated for given situations prior to the deployment of seismometers. It is expected that there are applications of the theoretical framework beyond the two specific cases considered, but these applications await future work.

  2. Analysis on frequency response of trans-impedance amplifier (TIA) for signal-to-noise ratio (SNR) enhancement in optical signal detection system using lock-in amplifier (LIA)

    Science.gov (United States)

    Kim, Ji-Hoon; Jeon, Su-Jin; Ji, Myung-Gi; Park, Jun-Hee; Choi, Young-Wan

    2017-02-01

    Lock-in amplifier (LIA) has been widely used in optical signal detection systems because it can measure small signal under high noise level. Generally, The LIA used in optical signal detection system is composed of transimpedance amplifier (TIA), phase sensitive detector (PSD) and low pass filter (LPF). But commercial LIA using LPF is affected by flicker noise. To avoid flicker noise, there is 2ω detection LIA using BPF. To improve the dynamic reserve (DR) of the 2ω LIA, the signal to noise ratio (SNR) of the TIA should be improved. According to the analysis of frequency response of the TIA, the noise gain can be minimized by proper choices of input capacitor (Ci) and feed-back network in the TIA in a specific frequency range. In this work, we have studied how the SNR of the TIA can be improved by a proper choice of frequency range. We have analyzed the way to control this frequency range through the change of passive component in the TIA. The result shows that the variance of the passive component in the TIA can change the specific frequency range where the noise gain is minimized in the uniform gain region of the TIA.

  3. Signal-to-noise contribution of principal component loads in reconstructed near-infrared Raman tissue spectra.

    Science.gov (United States)

    Grimbergen, M C M; van Swol, C F P; Kendall, C; Verdaasdonk, R M; Stone, N; Bosch, J L H R

    2010-01-01

    The overall quality of Raman spectra in the near-infrared region, where biological samples are often studied, has benefited from various improvements to optical instrumentation over the past decade. However, obtaining ample spectral quality for analysis is still challenging due to device requirements and short integration times required for (in vivo) clinical applications of Raman spectroscopy. Multivariate analytical methods, such as principal component analysis (PCA) and linear discriminant analysis (LDA), are routinely applied to Raman spectral datasets to develop classification models. Data compression is necessary prior to discriminant analysis to prevent or decrease the degree of over-fitting. The logical threshold for the selection of principal components (PCs) to be used in discriminant analysis is likely to be at a point before the PCs begin to introduce equivalent signal and noise and, hence, include no additional value. Assessment of the signal-to-noise ratio (SNR) at a certain peak or over a specific spectral region will depend on the sample measured. Therefore, the mean SNR over the whole spectral region (SNR(msr)) is determined in the original spectrum as well as for spectra reconstructed from an increasing number of principal components. This paper introduces a method of assessing the influence of signal and noise from individual PC loads and indicates a method of selection of PCs for LDA. To evaluate this method, two data sets with different SNRs were used. The sets were obtained with the same Raman system and the same measurement parameters on bladder tissue collected during white light cystoscopy (set A) and fluorescence-guided cystoscopy (set B). This method shows that the mean SNR over the spectral range in the original Raman spectra of these two data sets is related to the signal and noise contribution of principal component loads. The difference in mean SNR over the spectral range can also be appreciated since fewer principal components can

  4. Speech perception at positive signal-to-noise ratios using adaptive adjustment of time compression.

    Science.gov (United States)

    Schlueter, Anne; Brand, Thomas; Lemke, Ulrike; Nitzschner, Stefan; Kollmeier, Birger; Holube, Inga

    2015-11-01

    Positive signal-to-noise ratios (SNRs) characterize listening situations most relevant for hearing-impaired listeners in daily life and should therefore be considered when evaluating hearing aid algorithms. For this, a speech-in-noise test was developed and evaluated, in which the background noise is presented at fixed positive SNRs and the speech rate (i.e., the time compression of the speech material) is adaptively adjusted. In total, 29 younger and 12 older normal-hearing, as well as 24 older hearing-impaired listeners took part in repeated measurements. Younger normal-hearing and older hearing-impaired listeners conducted one of two adaptive methods which differed in adaptive procedure and step size. Analysis of the measurements with regard to list length and estimation strategy for thresholds resulted in a practical method measuring the time compression for 50% recognition. This method uses time-compression adjustment and step sizes according to Versfeld and Dreschler [(2002). J. Acoust. Soc. Am. 111, 401-408], with sentence scoring, lists of 30 sentences, and a maximum likelihood method for threshold estimation. Evaluation of the procedure showed that older participants obtained higher test-retest reliability compared to younger participants. Depending on the group of listeners, one or two lists are required for training prior to data collection.

  5. Digital Generation of Noise-Signals with Arbitrary Constant or Time-Varying Spectra (A noise generation software package and its application)

    CERN Document Server

    Tückmantel, Joachim

    2008-01-01

    Artificial creation of arbitrary noise signals is used in accelerator physics to reproduce a measured perturbation spectrum for simulations but also to generate real-time shaped noise spectra for controlled emittance blow-up giving tailored properties to the final bunch shape. It is demonstrated here how one can produce numerically what is, for all practical purposes, an unlimited quantity of non-periodic noise data having any predefined spectral density. This spectral density may be constant or varying with time. The noise output never repeats and has excellent statistical properties, important for very long-term applications. It is difficult to obtain such flexibility and spectral cleanliness using analogue techniques. This algorithm was applied both in computer simulations of bunch behaviour in the presence of RF noise in the PS, SPS and LHC and also to generate real-time noise, tracking the synchrotron frequency change during the energy ramp of the SPS and producing controlled longitudinal emittance blow-...

  6. A Dynamical System Exhibits High Signal-to-noise Ratio Gain by Stochastic Resonance

    Science.gov (United States)

    Makra, Peter; Gingl, Zoltan

    2003-05-01

    On the basis of mixed-signal simulations, we demonstrate that signal-to-noise ratio (SNR) gains much greater than unity can be obtained in the double-well potential through stochastic resonance (SR) with a symmetric periodic pulse train as deterministic and Gaussian white noise as random excitation. We also show that significant SNR improvement is possible in this system even for a sub-threshold sinusoid input if, instead of the commonly used narrow-band SNR, we apply an equally simple but much more realistic wide-band SNR definition. Using the latter result as an argument, we draw attention to the fact that the choice of the measure to reflect signal quality is critical with regard to the extent of signal improvement observed, and urge reconsideration of the practice prevalent in SR studies that most often the narrow-band SNR is used to characterise SR. Finally, we pose some questions concerning the possibilities of applying SNR improvement in practical set-ups.

  7. Brain-computer interfaces increase whole-brain signal to noise.

    Science.gov (United States)

    Papageorgiou, T Dorina; Lisinski, Jonathan M; McHenry, Monica A; White, Jason P; LaConte, Stephen M

    2013-08-13

    Brain-computer interfaces (BCIs) can convert mental states into signals to drive real-world devices, but it is not known if a given covert task is the same when performed with and without BCI-based control. Using a BCI likely involves additional cognitive processes, such as multitasking, attention, and conflict monitoring. In addition, it is challenging to measure the quality of covert task performance. We used whole-brain classifier-based real-time functional MRI to address these issues, because the method provides both classifier-based maps to examine the neural requirements of BCI and classification accuracy to quantify the quality of task performance. Subjects performed a covert counting task at fast and slow rates to control a visual interface. Compared with the same task when viewing but not controlling the interface, we observed that being in control of a BCI improved task classification of fast and slow counting states. Additional BCI control increased subjects' whole-brain signal-to-noise ratio compared with the absence of control. The neural pattern for control consisted of a positive network comprised of dorsal parietal and frontal regions and the anterior insula of the right hemisphere as well as an expansive negative network of regions. These findings suggest that real-time functional MRI can serve as a platform for exploring information processing and frontoparietal and insula network-based regulation of whole-brain task signal-to-noise ratio.

  8. Skalabilitas Signal to Noise Ratio (SNR pada Pengkodean Video dengan Derau Gaussian

    Directory of Open Access Journals (Sweden)

    Agus Purwadi

    2015-04-01

    Full Text Available In video transmission, there is a possibility of packet lost an d a large load variation on the bandwidth. These are the source of network congestion, which can interfere the communication data rate. This study discusses a system to overcome the congestion with Signal-to-noise ratio (SNR scalability-based approach, for the video sequence encoding method into two layers, which is a solution to decrease encoding mode for each packet and channel coding rate. The goal is to minimize any distortion from the source to the destination. The coding system used is a video coding standards that is MPEG-2 or H.263 with SNR scalability. The algorithm used for motion compensation, temporal redundancy and spatial redundancy is the Discrete Cosine Transform (DCT and quantization. The transmission error is simulated by adding Gaussian noise (error on motion vectors. From the simulation results, the SNR and Peak Signal to Noise Ratio (PSNR in the noisy video frames decline with averages of 3dB and 4dB respectively.

  9. Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise

    Science.gov (United States)

    Eckstein, M. P.; Ahumada, A. J. Jr; Watson, A. B.

    1997-01-01

    Studies of visual detection of a signal superimposed on one of two identical backgrounds show performance degradation when the background has high contrast and is similar in spatial frequency and/or orientation to the signal. To account for this finding, models include a contrast gain control mechanism that pools activity across spatial frequency, orientation and space to inhibit (divisively) the response of the receptor sensitive to the signal. In tasks in which the observer has to detect a known signal added to one of M different backgrounds grounds due to added visual noise, the main sources of degradation are the stochastic noise in the image and the suboptimal visual processing. We investigate how these two sources of degradation (contrast gain control and variations in the background) interact in a task in which the signal is embedded in one of M locations in a complex spatially varying background (structured background). We use backgrounds extracted from patient digital medical images. To isolate effects of the fixed deterministic background (the contrast gain control) from the effects of the background variations, we conduct detection experiments with three different background conditions: (1) uniform background, (2) a repeated sample of structured background, and (3) different samples of structured background. Results show that human visual detection degrades from the uniform background condition to the repeated background condition and degrades even further in the different backgrounds condition. These results suggest that both the contrast gain control mechanism and the background random variations degrade human performance in detection of a signal in a complex, spatially varying background. A filter model and added white noise are used to generate estimates of sampling efficiencies, an equivalent internal noise, an equivalent contrast-gain-control-induced noise, and an equivalent noise due to the variations in the structured background.

  10. MEMS microphone innovations towards high signal to noise ratios (Conference Presentation) (Plenary Presentation)

    Science.gov (United States)

    Dehé, Alfons

    2017-06-01

    After decades of research and more than ten years of successful production in very high volumes Silicon MEMS microphones are mature and unbeatable in form factor and robustness. Audio applications such as video, noise cancellation and speech recognition are key differentiators in smart phones. Microphones with low self-noise enable those functions. Backplate-free microphones enter the signal to noise ratios above 70dB(A). This talk will describe state of the art MEMS technology of Infineon Technologies. An outlook on future technologies such as the comb sensor microphone will be given.

  11. Detection Performance of Signals in Dependent Noise From a Gaussian Mixture Uncertainty Class

    National Research Council Canada - National Science Library

    Gerlach, K

    1998-01-01

    ... (correlated) multivariate noise from a Gaussian mixture uncertainty class. This uncertainty class is defined using upper and lower bounding functions on the univariate Gaussian mixing distribution function...

  12. The signal-to-noise analysis of the Little-Hopfield model revisited

    International Nuclear Information System (INIS)

    Bolle, D; Blanco, J Busquets; Verbeiren, T

    2004-01-01

    Using the generating functional analysis an exact recursion relation is derived for the time evolution of the effective local field of the fully connected Little-Hopfield model. It is shown that, by leaving out the feedback correlations arising from earlier times in this effective dynamics, one precisely finds the recursion relations usually employed in the signal-to-noise approach. The consequences of this approximation as well as the physics behind it are discussed. In particular, it is pointed out why it is hard to notice the effects, especially for model parameters corresponding to retrieval. Numerical simulations confirm these findings. The signal-to-noise analysis is then extended to include all correlations, making it a full theory for dynamics at the level of the generating functional analysis. The results are applied to the frequently employed extremely diluted (a)symmetric architectures and to sequence processing networks

  13. Event-Based $H_\\infty $ State Estimation for Time-Varying Stochastic Dynamical Networks With State- and Disturbance-Dependent Noises.

    Science.gov (United States)

    Sheng, Li; Wang, Zidong; Zou, Lei; Alsaadi, Fuad E

    2017-10-01

    In this paper, the event-based finite-horizon H ∞ state estimation problem is investigated for a class of discrete time-varying stochastic dynamical networks with state- and disturbance-dependent noises [also called (x,v) -dependent noises]. An event-triggered scheme is proposed to decrease the frequency of the data transmission between the sensors and the estimator, where the signal is transmitted only when certain conditions are satisfied. The purpose of the problem addressed is to design a time-varying state estimator in order to estimate the network states through available output measurements. By employing the completing-the-square technique and the stochastic analysis approach, sufficient conditions are established to ensure that the error dynamics of the state estimation satisfies a prescribed H ∞ performance constraint over a finite horizon. The desired estimator parameters can be designed via solving coupled backward recursive Riccati difference equations. Finally, a numerical example is exploited to demonstrate the effectiveness of the developed state estimation scheme.

  14. An improved method based on wavelet coefficient correlation to filter noise in Doppler ultrasound blood flow signals

    Science.gov (United States)

    Wan, Renzhi; Zu, Yunxiao; Shao, Lin

    2018-04-01

    The blood echo signal maintained through Medical ultrasound Doppler devices would always include vascular wall pulsation signal .The traditional method to de-noise wall signal is using high-pass filter, which will also remove the lowfrequency part of the blood flow signal. Some scholars put forward a method based on region selective reduction, which at first estimates of the wall pulsation signals and then removes the wall signal from the mixed signal. Apparently, this method uses the correlation between wavelet coefficients to distinguish blood signal from wall signal, but in fact it is a kind of wavelet threshold de-noising method, whose effect is not so much ideal. In order to maintain a better effect, this paper proposes an improved method based on wavelet coefficient correlation to separate blood signal and wall signal, and simulates the algorithm by computer to verify its validity.

  15. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging

    International Nuclear Information System (INIS)

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Pernot, Mathieu; Tanter, Mickael; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan

    2015-01-01

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable.Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients.The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz −1 cm −1 ). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in

  16. Signal-to-Noise ratio and design complexity based on Unified Loss ...

    African Journals Online (AJOL)

    Taguchi's quality loss function for larger-the-better performance characteristics uses a reciprocal transformation to compute quality loss. This paper suggests that reciprocal transformation unnecessarily complicates and may distort results. Examples of this distortion include the signal-to-noise ratio based on mean squared ...

  17. Scaling model for a speed-dependent vehicle noise spectrum

    Directory of Open Access Journals (Sweden)

    Giovanni Zambon

    2017-06-01

    Full Text Available Considering the well-known features of the noise emitted by moving sources, a number of vehicle characteristics such as speed, unladen mass, engine size, year of registration, power and fuel were recorded in a dedicated monitoring campaign performed in three different places, each characterized by different number of lanes and the presence of nearby reflective surfaces. A full database of 144 vehicles (cars was used to identify statistically relevant features. In order to compare the vehicle transit noise in different environmental condition, all 1/3-octave band spectra were normalized and analysed. Unsupervised clustering algorithms were employed to group together spectrum levels with similar profiles. Our results corroborate the well-known fact that speed is the most relevant characteristic to discriminate between different vehicle noise spectrum. In keeping with this fact, we present a new approach to predict analytically noise spectra for a given vehicle speed. A set of speed-dependent analytical functions are suggested in order to fit the normalized average spectrum profile at different speeds. This approach can be useful for predicting vehicle speed based purely on its noise spectrum pattern. The present work is complementary to the accurate analysis of noise sources based on the beamforming technique.

  18. The effects of LIGO detector noise on a 15-dimensional Markov-chain Monte Carlo analysis of gravitational-wave signals

    International Nuclear Information System (INIS)

    Raymond, V; Mandel, I; Kalogera, V; Van der Sluys, M V; Roever, C; Christensen, N

    2010-01-01

    Gravitational-wave signals from inspirals of binary compact objects (black holes and neutron stars) are primary targets of the ongoing searches by ground-based gravitational-wave (GW) interferometers (LIGO, Virgo and GEO-600). We present parameter estimation results from our Markov-chain Monte Carlo code SPINspiral on signals from binaries with precessing spins. Two data sets are created by injecting simulated GW signals either into synthetic Gaussian noise or into LIGO detector data. We compute the 15-dimensional probability-density functions (PDFs) for both data sets, as well as for a data set containing LIGO data with a known, loud artefact ('glitch'). We show that the analysis of the signal in detector noise yields accuracies similar to those obtained using simulated Gaussian noise. We also find that while the Markov chains from the glitch do not converge, the PDFs would look consistent with a GW signal present in the data. While our parameter estimation results are encouraging, further investigations into how to differentiate an actual GW signal from noise are necessary.

  19. Subspace-Based Noise Reduction for Speech Signals via Diagonal and Triangular Matrix Decompositions

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Jensen, Søren Holdt

    2007-01-01

    We survey the definitions and use of rank-revealing matrix decompositions in single-channel noise reduction algorithms for speech signals. Our algorithms are based on the rank-reduction paradigm and, in particular, signal subspace techniques. The focus is on practical working algorithms, using both...... with working Matlab code and applications in speech processing....

  20. Reducing Brain Signal Noise in the Prediction of Economic Choices: A Case Study in Neuroeconomics

    Directory of Open Access Journals (Sweden)

    Raanju R. Sundararajan

    2017-12-01

    Full Text Available In order to reduce the noise of brain signals, neuroeconomic experiments typically aggregate data from hundreds of trials collected from a few individuals. This contrasts with the principle of simple and controlled designs in experimental and behavioral economics. We use a frequency domain variant of the stationary subspace analysis (SSA technique, denoted as DSSA, to filter out the noise (nonstationary sources in EEG brain signals. The nonstationary sources in the brain signal are associated with variations in the mental state that are unrelated to the experimental task. DSSA is a powerful tool for reducing the number of trials needed from each participant in neuroeconomic experiments and also for improving the prediction performance of an economic choice task. For a single trial, when DSSA is used as a noise reduction technique, the prediction model in a food snack choice experiment has an increase in overall accuracy by around 10% and in sensitivity and specificity by around 20% and in AUC by around 30%, respectively.

  1. Numerical modelling of the pump-to-signal relative intensity noise ...

    Indian Academy of Sciences (India)

    An accurate numerical model to investigate the pump-to-signal relative intensity noise (RIN) transfer in two-pump fibre optical parametric amplifiers (2-P FOPAs) for low modulation frequencies is presented. Compared to other models in the field, this model takes into account the fibre loss, pump depletion as well as the gain ...

  2. The Signal Importance of Noise

    Science.gov (United States)

    Macy, Michael; Tsvetkova, Milena

    2015-01-01

    Noise is widely regarded as a residual category--the unexplained variance in a linear model or the random disturbance of a predictable pattern. Accordingly, formal models often impose the simplifying assumption that the world is noise-free and social dynamics are deterministic. Where noise is assigned causal importance, it is often assumed to be a…

  3. Assessment of uniformity and signal-to-noise ratio in radiological image intensifier TV systems

    International Nuclear Information System (INIS)

    Malone, J.F.; O'Connor, M.K.; Maher, K.P.

    1985-01-01

    A method of measuring the uniformity of radiological Image Intensifier-TV systems is described. Large non-uniformities were observed in the systems tested. A method of estimating the Signal-to-Noise Ratio in such systems is also presented and applied to characterise the effectiveness of the noise reduction techniques used in digital fluoroscopy. (author)

  4. Adaptive noise cancellation

    International Nuclear Information System (INIS)

    Akram, N.

    1999-01-01

    In this report we describe the concept of adaptive noise canceling, an alternative method of estimating signals corrupted by additive noise of interference. The method uses 'primary' input containing the corrupted signal and a 'reference' input containing noise correlated in some unknown way with the primary noise, the reference input is adaptively filtered and subtracted from the primary input to obtain the signal estimate. Adaptive filtering before subtraction allows the treatment of inputs that are deterministic or stochastic, stationary or time variable. When the reference input is free of signal and certain other conditions are met then noise in the primary input can be essentially eliminated without signal distortion. It is further shown that the adaptive filter also acts as notch filter. Simulated results illustrate the usefulness of the adaptive noise canceling technique. (author)

  5. Effects of traffic noise on tree frog stress levels, immunity, and color signaling.

    Science.gov (United States)

    Troïanowski, Mathieu; Mondy, Nathalie; Dumet, Adeline; Arcanjo, Caroline; Lengagne, Thierry

    2017-10-01

    During the last decade, many studies have focused on the detrimental effects of noise pollution on acoustic communication. Surprisingly, although it is known that noise exposure strongly influences health in humans, studies on wildlife remain scarce. In order to gain insight into the consequences of traffic noise exposure, we experimentally manipulated traffic noise exposure as well as the endocrine status of animals to investigate physiological and phenotypic consequences of noise pollution in an anuran species. We showed that noise exposure increased stress hormone level and induced an immunosuppressive effect. In addition, both traffic noise exposure and stress hormone application negatively impacted H. arborea vocal sac coloration. Moreover, our results suggest profound changes in sexual selection processes because the best quality males with initial attractive vocal sac coloration were the most impacted by noise. Hence, our study suggests that the recent increases in anthropogenic noise worldwide might affect a broader range of animal species than previously thought, because of alteration of visual signals and immunity. Generalizing these results to other taxa is crucial for the conservation of biodiversity in an increasingly noisy world. © 2017 Society for Conservation Biology.

  6. Enhancement of Single-Channel Periodic Signals in the Time-Domain

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Benesty, Jacob; Christensen, Mads Græsbøll

    2012-01-01

    speech. That is, signal-dependent methods based on the signal statistics will introduce undesired distortion for some parts of speech compared to signal-independent methods based on the noise statistics. Since both the signal-independent and signal-dependent approaches to speech enhancement have...

  7. Efficient algorithm for baseline wander and powerline noise removal from ECG signals based on discrete Fourier series.

    Science.gov (United States)

    Bahaz, Mohamed; Benzid, Redha

    2018-03-01

    Electrocardiogram (ECG) signals are often contaminated with artefacts and noises which can lead to incorrect diagnosis when they are visually inspected by cardiologists. In this paper, the well-known discrete Fourier series (DFS) is re-explored and an efficient DFS-based method is proposed to reduce contribution of both baseline wander (BW) and powerline interference (PLI) noises in ECG records. In the first step, the determination of the exact number of low frequency harmonics contributing in BW is achieved. Next, the baseline drift is estimated by the sum of all associated Fourier sinusoids components. Then, the baseline shift is discarded efficiently by a subtraction of its approximated version from the original biased ECG signal. Concerning the PLI, the subtraction of the contributing harmonics calculated in the same manner reduces efficiently such type of noise. In addition of visual quality results, the proposed algorithm shows superior performance in terms of higher signal-to-noise ratio and smaller mean square error when faced to the DCT-based algorithm.

  8. Investigation of signal models and methods for evaluating structures of processing telecommunication information exchange systems under acoustic noise conditions

    Science.gov (United States)

    Kropotov, Y. A.; Belov, A. A.; Proskuryakov, A. Y.; Kolpakov, A. A.

    2018-05-01

    The paper considers models and methods for estimating signals during the transmission of information messages in telecommunication systems of audio exchange. One-dimensional probability distribution functions that can be used to isolate useful signals, and acoustic noise interference are presented. An approach to the estimation of the correlation and spectral functions of the parameters of acoustic signals is proposed, based on the parametric representation of acoustic signals and the components of the noise components. The paper suggests an approach to improving the efficiency of interference cancellation and highlighting the necessary information when processing signals from telecommunications systems. In this case, the suppression of acoustic noise is based on the methods of adaptive filtering and adaptive compensation. The work also describes the models of echo signals and the structure of subscriber devices in operational command telecommunications systems.

  9. Improving the signal-to-noise ratio in ultrasound-modulated optical tomography by a lock-in amplifier

    Science.gov (United States)

    Zhu, Lili; Wu, Jingping; Lin, Guimin; Hu, Liangjun; Li, Hui

    2016-10-01

    With high spatial resolution of ultrasonic location and high sensitivity of optical detection, ultrasound-modulated optical tomography (UOT) is a promising noninvasive biological tissue imaging technology. In biological tissue, the ultrasound-modulated light signals are very weak and are overwhelmed by the strong unmodulated light signals. It is a difficulty and key to efficiently pick out the weak modulated light from strong unmodulated light in UOT. Under the effect of an ultrasonic field, the scattering light intensity presents a periodic variation as the ultrasonic frequency changes. So the modulated light signals would be escape from the high unmodulated light signals, when the modulated light signals and the ultrasonic signal are processed cross correlation operation by a lock-in amplifier and without a chopper. Experimental results indicated that the signal-to-noise ratio of UOT is significantly improved by a lock-in amplifier, and the higher the repetition frequency of pulsed ultrasonic wave, the better the signal-to-noise ratio of UOT.

  10. Noise propagation in two-step series MAPK cascade.

    Directory of Open Access Journals (Sweden)

    Venkata Dhananjaneyulu

    Full Text Available Series MAPK enzymatic cascades, ubiquitously found in signaling networks, act as signal amplifiers and play a key role in processing information during signal transduction in cells. In activated cascades, cell-to-cell variability or noise is bound to occur and thereby strongly affects the cellular response. Commonly used linearization method (LM applied to Langevin type stochastic model of the MAPK cascade fails to accurately predict intrinsic noise propagation in the cascade. We prove this by using extensive stochastic simulations for various ranges of biochemical parameters. This failure is due to the fact that the LM ignores the nonlinear effects on the noise. However, LM provides a good estimate of the extrinsic noise propagation. We show that the correct estimate of intrinsic noise propagation in signaling networks that contain at least one enzymatic step can be obtained only through stochastic simulations. Noise propagation in the cascade depends on the underlying biochemical parameters which are often unavailable. Based on a combination of global sensitivity analysis (GSA and stochastic simulations, we developed a systematic methodology to characterize noise propagation in the cascade. GSA predicts that noise propagation in MAPK cascade is sensitive to the total number of upstream enzyme molecules and the total number of molecules of the two substrates involved in the cascade. We argue that the general systematic approach proposed and demonstrated on MAPK cascade must accompany noise propagation studies in biological networks.

  11. The impact of signal-to-noise ratio on contextual cueing in children and adults.

    Science.gov (United States)

    Yang, Yingying; Merrill, Edward C

    2015-04-01

    Contextual cueing refers to a form of implicit spatial learning where participants incidentally learn to associate a target location with its repeated spatial context. Successful contextual learning produces an efficient visual search through familiar environments. Despite the fact that children exhibit the basic ability of implicit spatial learning, their general effectiveness in this form of learning can be compromised by other development-dependent factors. Learning to extract useful information (signal) in the presence of various amounts of irrelevant or distracting information (noise) characterizes one of the most important changes that occur with cognitive development. This research investigated whether signal-to-noise ratio (S/N) affects contextual cueing differently in children and adults. S/N was operationally defined as the ratio of repeated versus new displays encountered over time. Three ratio conditions were created: high (100%), medium (67%), and low (33%) conditions. Results suggested no difference in the acquisition of contextual learning effects in the high and medium conditions across three age groups (6- to 8-year-olds, 10- to 12-year-olds, and young adults). However, a significant developmental difference emerged in the low S/N condition. As predicted, adults exhibited significant contextual cueing effects, whereas older children showed marginally significant contextual cueing and younger children did not show cueing effects. Group differences in the ability to exhibit implicit contextual learning under low S/N conditions and the implications of this difference are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Influence of Gaussian white noise on the frequency-dependent linear polarizability of doped quantum dot

    International Nuclear Information System (INIS)

    Ganguly, Jayanta; Ghosh, Manas

    2014-01-01

    Highlights: • Linear polarizability of quantum dot has been studied. • Quantum dot is doped with a repulsive impurity. • The polarizabilities are frequency-dependent. • Influence of Gaussian white noise has been monitored. • Noise exploited is of additive and multiplicative nature. - Abstract: We investigate the profiles of diagonal components of frequency-dependent linear (α xx and α yy ) optical response of repulsive impurity doped quantum dots. The dopant impurity potential chosen assumes Gaussian form. The study principally puts emphasis on investigating the role of noise on the polarizability components. In view of this we have exploited Gaussian white noise containing additive and multiplicative characteristics (in Stratonovich sense). The frequency-dependent polarizabilities are studied by exposing the doped dot to a periodically oscillating external electric field of given intensity. The oscillation frequency, confinement potentials, dopant location, and above all, the noise characteristics tune the linear polarizability components in a subtle manner. Whereas the additive noise fails to have any impact on the polarizabilities, the multiplicative noise influences them delicately and gives rise to additional interesting features

  13. Wind dependence of ambient noise in a biologically rich coastal area.

    Science.gov (United States)

    Mathias, Delphine; Gervaise, Cédric; Di Iorio, Lucia

    2016-02-01

    The wind dependence of acoustic spectrum between 100 Hz and 16 kHz is investigated for coastal biologically rich areas. The analysis of 5 months of continuous measurements run in a 10 m deep shallow water environment off Brittany (France) showed that wind dependence of spectral levels is subject to masking by biological sounds. When dealing with raw data, the wind dependence of spectral levels was not significant for frequencies where biological sounds were present (2 to 10 kHz). An algorithm developed by Kinda, Simard, Gervaise, Mars, and Fortier [J. Acoust. Soc. Am. 134(1), 77-87 (2013)] was used to automatically filter out the loud distinctive biological contribution and estimated the ambient noise spectrum. The wind dependence of ambient noise spectrum was always significant after application of this filter. A mixture model for ambient noise spectrum which accounts for the richness of the soundscape is proposed. This model revealed that wind dependence holds once the wind speed was strong enough to produce sounds higher in amplitude than the biological chorus (9 kn at 3 kHz, 11 kn at 8 kHz). For these higher wind speeds, a logarithmic affine law was adequate and its estimated parameters were compatible with previous studies (average slope 27.1 dB per decade of wind speed increase).

  14. The effect of hearing aid signal-processing schemes on acceptable noise levels: perception and prediction.

    Science.gov (United States)

    Wu, Yu-Hsiang; Stangl, Elizabeth

    2013-01-01

    The acceptable noise level (ANL) test determines the maximum noise level that an individual is willing to accept while listening to speech. The first objective of the present study was to systematically investigate the effect of wide dynamic range compression processing (WDRC), and its combined effect with digital noise reduction (DNR) and directional processing (DIR), on ANL. Because ANL represents the lowest signal-to-noise ratio (SNR) that a listener is willing to accept, the second objective was to examine whether the hearing aid output SNR could predict aided ANL across different combinations of hearing aid signal-processing schemes. Twenty-five adults with sensorineural hearing loss participated in the study. ANL was measured monaurally in two unaided and seven aided conditions, in which the status of the hearing aid processing schemes (enabled or disabled) and the location of noise (front or rear) were manipulated. The hearing aid output SNR was measured for each listener in each condition using a phase-inversion technique. The aided ANL was predicted by unaided ANL and hearing aid output SNR, under the assumption that the lowest acceptable SNR at the listener's eardrum is a constant across different ANL test conditions. Study results revealed that, on average, WDRC increased (worsened) ANL by 1.5 dB, while DNR and DIR decreased (improved) ANL by 1.1 and 2.8 dB, respectively. Because the effects of WDRC and DNR on ANL were opposite in direction but similar in magnitude, the ANL of linear/DNR-off was not significantly different from that of WDRC/DNR-on. The results further indicated that the pattern of ANL change across different aided conditions was consistent with the pattern of hearing aid output SNR change created by processing schemes. Compared with linear processing, WDRC creates a noisier sound image and makes listeners less willing to accept noise. However, this negative effect on noise acceptance can be offset by DNR, regardless of microphone mode

  15. Periodic rotation noise induced by the crosstalk between two beat-frequency signals in multi-oscillator ring laser gyros

    International Nuclear Information System (INIS)

    Lu, Guangfeng; Wang, Zhiguo; Fan, Zhenfang; Luo, Hui

    2014-01-01

    Periodic rotation noise in the outputs of multi-oscillator ring laser gyros (MRLGs) is investigated in this paper for the first time. It is proved theoretically and experimentally that noise is induced by the crosstalk between two beat-frequency signals, which are combined from the left and right circularly polarized counter-propagating beams in MRLGs. Theoretical analysis and experimental results also indicate that the fundamental frequency of this noise is equal to the frequency difference between the two beat-frequency signals and the amplitude of the fundamental component is proportional to the crosstalk ratio between the two beat-frequency signals. Further, the amplitude of the nth-order component is proportional to the nth power of the crosstalk ratio. (paper)

  16. Stochastic resonance and stability for a stochastic metapopulation system subjected to non-Gaussian noise and multiplicative periodic signal

    International Nuclear Information System (INIS)

    Kang-Kang, Wang; Xian-Bin, Liu; Yu, Zhou

    2015-01-01

    In this paper, the stability and stochastic resonance (SR) phenomenon induced by the multiplicative periodic signal for a metapopulation system driven by the additive Gaussian noise, multiplicative non-Gaussian noise and noise correlation time is investigated. By using the fast descent method, unified colored noise approximation and McNamara and Wiesenfeld’s SR theory, the analytical expressions of the stationary probability distribution function and signal-to-noise ratio (SNR) are derived in the adiabatic limit. Via numerical calculations, each effect of the addictive noise intensity, the multiplicative noise intensity and the correlation time upon the steady state probability distribution function and the SNR is discussed, respectively. It is shown that multiplicative, additive noises and the departure parameter from the Gaussian noise can all destroy the stability of the population system. However, the noise correlation time can consolidate the stability of the system. On the other hand, the correlation time always plays an important role in motivating the SR and enhancing the SNR. Under different parameter conditions of the system, the multiplicative, additive noises and the departure parameter can not only excite SR phenomenon, but also restrain the SR phenomenon, which demonstrates the complexity of different noises upon the nonlinear system. (paper)

  17. Accuracy of signal-to-noise ratio measurement method for magnetic resonance images

    International Nuclear Information System (INIS)

    Ogura, Akio; Miyai, Akira; Maeda, Fumie; Fukutake, Hiroyuki; Kikumoto, Rikiya

    2003-01-01

    The signal-to-noise ratio (SNR) of a magnetic resonance image is a common measure of imager performance. However, evaluations for the calculation of the SNR use various methods. A problem with measuring SNR is caused by the distortion of noise statistics in commonly used magnitude images. In this study, measurement accuracy was compared among four methods of evaluating SNR according to the size and position of regions of interest (ROIs). The results indicated that the method that used the difference between two images showed the best agreement with the theoretical value. In the method that used a single image, the SNR calculated by using a small size of ROI showed better agreement with the theoretical value because of noise bias and image artifacts. However, in the method that used the difference between two images, a large size of ROI was better in reducing statistical errors. In the same way, the methods that used air noise and air signal were better when applied to a large ROI. In addition, the image subtraction process used to calculate pixel-by-pixel differences in images may reach zero on a minus pixel value when using an image processor with the MRI system and apparatuses associated with it. A revised equation is presented for this case. It is important to understand the characteristics of each method and to choose a suitable method carefully according to the purpose of the study. (author)

  18. Low-frequency 1/f noise in graphene devices

    Science.gov (United States)

    Balandin, Alexander A.

    2013-08-01

    Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.

  19. Background Noise Reduction Using Adaptive Noise Cancellation Determined by the Cross-Correlation

    Science.gov (United States)

    Spalt, Taylor B.; Brooks, Thomas F.; Fuller, Christopher R.

    2012-01-01

    Background noise due to flow in wind tunnels contaminates desired data by decreasing the Signal-to-Noise Ratio. The use of Adaptive Noise Cancellation to remove background noise at measurement microphones is compromised when the reference sensor measures both background and desired noise. The technique proposed modifies the classical processing configuration based on the cross-correlation between the reference and primary microphone. Background noise attenuation is achieved using a cross-correlation sample width that encompasses only the background noise and a matched delay for the adaptive processing. A present limitation of the method is that a minimum time delay between the background noise and desired signal must exist in order for the correlated parts of the desired signal to be separated from the background noise in the crosscorrelation. A simulation yields primary signal recovery which can be predicted from the coherence of the background noise between the channels. Results are compared with two existing methods.

  20. Equilibrium finite-frequency noise of an interacting mesoscopic capacitor studied in time-dependent density functional theory

    Science.gov (United States)

    Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole

    2018-03-01

    We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.

  1. Signal-to-Noise Enhancement of a Nanospring Redox-Based Sensor by Lock-in Amplification

    Directory of Open Access Journals (Sweden)

    Pavel V. Bakharev

    2015-06-01

    Full Text Available A significant improvement of the response characteristics of a redox chemical gas sensor (chemiresistor constructed with a single ZnO coated silica nanospring has been achieved with the technique of lock-in signal amplification. The comparison of DC and analog lock-in amplifier (LIA AC measurements of the electrical sensor response to toluene vapor, at the ppm level, has been conducted. When operated in the DC detection mode, the sensor exhibits a relatively high sensitivity to the analyte vapor, as well as a low detection limit at the 10 ppm level. However, at 10 ppm the signal-to-noise ratio is 5 dB, which is less than desirable. When operated in the analog LIA mode, the signal-to-noise ratio at 10 ppm increases by 30 dB and extends the detection limit to the ppb range.

  2. Influence of Gaussian white noise on the frequency-dependent first nonlinear polarizability of doped quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Jayanta [Department of Chemistry, Brahmankhanda Basapara High School, Basapara, Birbhum 731215, West Bengal (India); Ghosh, Manas, E-mail: pcmg77@rediffmail.com [Department of Chemistry, Physical Chemistry Section, Visva Bharati University, Santiniketan, Birbhum 731 235, West Bengal (India)

    2014-05-07

    We investigate the profiles of diagonal components of frequency-dependent first nonlinear (β{sub xxx} and β{sub yyy}) optical response of repulsive impurity doped quantum dots. We have assumed a Gaussian function to represent the dopant impurity potential. This study primarily addresses the role of noise on the polarizability components. We have invoked Gaussian white noise consisting of additive and multiplicative characteristics (in Stratonovich sense). The doped system has been subjected to an oscillating electric field of given intensity, and the frequency-dependent first nonlinear polarizabilities are computed. The noise characteristics are manifested in an interesting way in the nonlinear polarizability components. In case of additive noise, the noise strength remains practically ineffective in influencing the optical responses. The situation completely changes with the replacement of additive noise by its multiplicative analog. The replacement enhances the nonlinear optical response dramatically and also causes their maximization at some typical value of noise strength that depends on oscillation frequency.

  3. Satellite single-axis attitude determination based on Automatic Dependent Surveillance - Broadcast signals

    Science.gov (United States)

    Zhou, Kaixing; Sun, Xiucong; Huang, Hai; Wang, Xinsheng; Ren, Guangwei

    2017-10-01

    The space-based Automatic Dependent Surveillance - Broadcast (ADS-B) is a new technology for air traffic management. The satellite equipped with spaceborne ADS-B system receives the broadcast signals from aircraft and transfers the message to ground stations, so as to extend the coverage area of terrestrial-based ADS-B. In this work, a novel satellite single-axis attitude determination solution based on the ADS-B receiving system is proposed. This solution utilizes the signal-to-noise ratio (SNR) measurement of the broadcast signals from aircraft to determine the boresight orientation of the ADS-B receiving antenna fixed on the satellite. The basic principle of this solution is described. The feasibility study of this new attitude determination solution is implemented, including the link budget and the access analysis. On this basis, the nonlinear least squares estimation based on the Levenberg-Marquardt method is applied to estimate the single-axis orientation. A full digital simulation has been carried out to verify the effectiveness and performance of this solution. Finally, the corresponding results are processed and presented minutely.

  4. Signal Amplification Technique (SAT): an approach for improving resolution and reducing image noise in computed tomography

    International Nuclear Information System (INIS)

    Phelps, M.E.; Huang, S.C.; Hoffman, E.J.; Plummer, D.; Carson, R.

    1981-01-01

    Spatial resolution improvements in computed tomography (CT) have been limited by the large and unique error propagation properties of this technique. The desire to provide maximum image resolution has resulted in the use of reconstruction filter functions designed to produce tomographic images with resolution as close as possible to the intrinsic detector resolution. Thus, many CT systems produce images with excessive noise with the system resolution determined by the detector resolution rather than the reconstruction algorithm. CT is a rigorous mathematical technique which applies an increasing amplification to increasing spatial frequencies in the measured data. This mathematical approach to spatial frequency amplification cannot distinguish between signal and noise and therefore both are amplified equally. We report here a method in which tomographic resolution is improved by using very small detectors to selectively amplify the signal and not noise. Thus, this approach is referred to as the signal amplification technique (SAT). SAT can provide dramatic improvements in image resolution without increases in statistical noise or dose because increases in the cutoff frequency of the reconstruction algorithm are not required to improve image resolution. Alternatively, in cases where image counts are low, such as in rapid dynamic or receptor studies, statistical noise can be reduced by lowering the cutoff frequency while still maintaining the best possible image resolution. A possible system design for a positron CT system with SAT is described

  5. Period analysis at high noise level

    International Nuclear Information System (INIS)

    Kovacs, G.

    1980-01-01

    Analytical expressions are derived for the variances of some types of the periodograms due to normal-distributed noise present in the data. The equivalence of the Jurkevich and the Warner and Robinson methods is proved. The optimum phase cell number of the Warner and Robinson method is given; this number depends on the data length, signal form and noise level. The results are illustrated by numerical examples. (orig.)

  6. Detection of weak optical signals with a laser amplifier

    International Nuclear Information System (INIS)

    Kozlovskii, A. V.

    2006-01-01

    Detection of weak and extremely weak light signals amplified by linear and four-wave mixing laser amplifiers is analyzed. Photoelectron distributions are found for different input photon statistics over a wide range of gain. Signal-to-noise ratios are calculated and analyzed for preamplification schemes using linear and four-wave mixing amplifiers. Calculations show that the high signal-to-noise ratio (much higher than unity), ensuring reliable detection of weak input signals, can be attained only with a four-wave mixing preamplification scheme. Qualitative dependence of the signal-to-noise ratio on the quantum statistical properties of both signal and idler waves is demonstrated

  7. Signal-to-noise based local decorrelation compensation for speckle interferometry applications

    International Nuclear Information System (INIS)

    Molimard, Jerome; Cordero, Raul; Vautrin, Alain

    2008-01-01

    Speckle-based interferometric techniques allow assessing the whole-field deformation induced on a specimen due to the application of load. These high sensitivity optical techniques yield fringe images generated by subtracting speckle patterns captured while the specimen undergoes deformation. The quality of the fringes, and in turn the accuracy of the deformation measurements, strongly depends on the speckle correlation. Specimen rigid body motion leads to speckle decorrelation that, in general, cannot be effectively counteracted by applying a global translation to the involved speckle patterns. In this paper, we propose a recorrelation procedure based on the application of locally evaluated translations. The proposed procedure implies dividing the field into several regions, applying a local translation, and calculating, in every region, the signal-to-noise ratio (SNR). Since the latter is a correlation indicator (the noise increases with the decorrelation) we argue that the proper translation is that which maximizes the locally evaluated SNR. The search of the proper local translations is, of course, an interactive process that can be facilitated by using a SNR optimization algorithm. The performance of the proposed recorrelation procedure was tested on two examples. First, the SNR optimization algorithm was applied to fringe images obtained by subtracting simulated speckle patterns. Next, it was applied to fringe images obtained by using a shearography optical setup from a specimen subjected to mechanical deformation. Our results show that the proposed SNR optimization method can significantly improve the reliability of measurements performed by using speckle-based techniques

  8. Neutron Signal and Noise Separation of the {sup 6}Li-ZnS(Ag) scintillator (BC702) Using Flash ADC

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S. G.; Kye, Y. U. [POSTECH, Pohang (Korea, Republic of); Cho, M. H.; Namkung, W. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Kim, G. N. [Kyungpook National Univ., Daegu (Korea, Republic of); Lee, M. W. [Dongnam Inst. of radiological and Medical Science, Daejeon (Korea, Republic of)

    2013-10-15

    This study will apply to nuclear data experiments and improve the quality of nuclear data measured at PNF. We also briefly discuss the future plan to apply our research to different kinds of neutron detectors. The parameters to separate the neutron signals and noises of the {sup 6}Li.ZnS(Ag) scintillator are determined through the upper processes. Three kinds of noise are determined by the parameters as shown in figure.5. The signals at the green (pedestal), red (gamma flash), and blue (gamma flash with big signal area) region are subtracted from the total amount of the counted signals. These algorithms will be applied to next neutron TOF experiments. Two additional neutron detectors will be introduced for neutron TOF experiment. These will measure the neutron flux to get the normalization factor. We will also conduct signal and noise separation of these neutron detectors. Neutron total cross-sections have been measured by using the time-of-flight (TOF) method at Pohang Neutron Facility (PNF). A {sup 6}Li.ZnS(Ag) scintillator BC702 from Bicron (Newbury, OH) with a diameter of 127 mm and a thickness of 6.35 mm mounted on an EMI-93090 photomultiplier was used as a detector for the neutron TOF spectrum measurement. This detector is sensitive to thermal and epithermal neutrons and insensitive to gamma radiation. However, it is required to more accurately separate neutron signal and noise. In the present work, we studied neutron signal and noise separation of the BC702 scintillator to measure the accurate neutron TOF data.

  9. Reactor sensor surveillance using noise analysis

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Thie, J.A.; Upadhyaya, B.R.

    1986-01-01

    Reactor noise signals, as measured by neutron detectors and process sensors, contain information about the dynamics of the process and sensor characteristics. The extent of sensor characteristics that can be determined from such measurements depends on the sensor type, the property of the process noise exciting the sensor and its location. This paper addresses degradation monitoring of temperature and pressure sensors, analysis methods and results of application to operating pressurized water reactors. In addition, the use of noise analysis for monitoring of pressure sensing lines in nuclear power plants is discussed

  10. Cancelation and its simulation using Matlab according to active noise control case study of automotive noise silencer

    Science.gov (United States)

    Alfisyahrin; Isranuri, I.

    2018-02-01

    Active Noise Control is a technique to overcome noisy with noise or sound countered with sound in scientific terminology i.e signal countered with signals. This technique can be used to dampen relevant noise in accordance with the wishes of the engineering task and reducing automotive muffler noise to a minimum. Objective of this study is to develop a Active Noise Control which should cancel the noise of automotive Exhaust (Silencer) through Signal Processing Simulation methods. Noise generator of Active Noise Control is to make the opponent signal amplitude and frequency of the automotive noise. The steps are: Firstly, the noise of automotive silencer was measured to characterize the automotive noise that its amplitude and frequency which intended to be expressed. The opposed sound which having similar character with the signal source should be generated by signal function. A comparison between the data which has been completed with simulation calculations Fourier transform field data is data that has been captured on the muffler (noise silencer) Toyota Kijang Capsule assembly 2009. MATLAB is used to simulate how the signal processing noise generated by exhaust (silencer) using FFT. This opponent is inverted phase signal from the signal source 180° conducted by Instruments of Signal Noise Generators. The process of noise cancelation examined through simulation using computer software simulation. The result is obtained that attenuation of sound (noise cancellation) has a difference of 33.7%. This value is obtained from the comparison of the value of the signal source and the signal value of the opponent. So it can be concluded that the noisy signal can be attenuated by 33.7%.

  11. MIMO Radar Transceiver Design for High Signal-to-Interference-Plus-Noise Ratio

    KAUST Repository

    Lipor, John

    2013-05-12

    Multiple-input multiple-output (MIMO) radar employs orthogonal or partially correlated transmit signals to achieve performance benefits over its phased-array counterpart. It has been shown that MIMO radar can achieve greater spatial resolution, improved signal-to-noise ratio (SNR) and target localization, and greater clutter resolution using space-time adaptive processing (STAP). This thesis explores various methods to improve the signal-to-interference-plus-noise ratio (SINR) via transmit and receive beamforming. In MIMO radar settings, it is often desirable to transmit power only to a given location or set of locations defined by a beampattern. Current methods involve a two- step process of designing the transmit covariance matrix R via iterative solutions and then using R to generate waveforms that fulfill practical constraints such as having a constant-envelope or drawing from a finite alphabet. In this document, a closed- form method to design R is proposed that utilizes the discrete Fourier transform (DFT) coefficients and Toeplitz matrices. The resulting covariance matrix fulfills the practical constraints such as positive semidefiniteness and the uniform elemental power constraint and provides performance similar to that of iterative methods, which require a much greater computation time. Next, a transmit architecture is presented 
that exploits the orthogonality of frequencies at discrete DFT values to transmit a sum of orthogonal signals from each antenna. The resulting waveforms provide a lower mean-square error than current methods at a much lower computational cost, and a simulated detection scenario demonstrates the performance advantages achieved. It is also desirable to receive signal power only from a given set of directions defined by a beampattern. In a later chapter of this document, the problem of receive beampattern matching is formulated and three solutions to this problem are demonstrated. We show that partitioning the received data vector

  12. Enhancement of the Signal-to-Noise Ratio in Sonic Logging Waveforms by Seismic Interferometry

    KAUST Repository

    Aldawood, Ali

    2012-04-01

    Sonic logs are essential tools for reliably identifying interval velocities which, in turn, are used in many seismic processes. One problem that arises, while logging, is irregularities due to washout zones along the borehole surfaces that scatters the transmitted energy and hence weakens the signal recorded at the receivers. To alleviate this problem, I have extended the theory of super-virtual refraction interferometry to enhance the signal-to-noise ratio (SNR) sonic waveforms. Tests on synthetic and real data show noticeable signal-to-noise ratio (SNR) enhancements of refracted P-wave arrivals in the sonic waveforms. The theory of super-virtual interferometric stacking is composed of two redatuming steps followed by a stacking procedure. The first redatuming procedure is of correlation type, where traces are correlated together to get virtual traces with the sources datumed to the refractor. The second datuming step is of convolution type, where traces are convolved together to dedatum the sources back to their original positions. The stacking procedure following each step enhances the signal to noise ratio of the refracted P-wave first arrivals. Datuming with correlation and convolution of traces introduces severe artifacts denoted as correlation artifacts in super-virtual data. To overcome this problem, I replace the datuming with correlation step by datuming with deconvolution. Although the former datuming method is more robust, the latter one reduces the artifacts significantly. Moreover, deconvolution can be a noise amplifier which is why a regularization term is utilized, rendering the datuming with deconvolution more stable. Tests of datuming with deconvolution instead of correlation with synthetic and real data examples show significant reduction of these artifacts. This is especially true when compared with the conventional way of applying the super-virtual refraction interferometry method.

  13. Noise in Optical Amplifiers

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1997-01-01

    Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived.......Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived....

  14. Noise Suppression in ECG Signals through Efficient One-Step Wavelet Processing Techniques

    Directory of Open Access Journals (Sweden)

    E. Castillo

    2013-01-01

    Full Text Available This paper illustrates the application of the discrete wavelet transform (DWT for wandering and noise suppression in electrocardiographic (ECG signals. A novel one-step implementation is presented, which allows improving the overall denoising process. In addition an exhaustive study is carried out, defining threshold limits and thresholding rules for optimal wavelet denoising using this presented technique. The system has been tested using synthetic ECG signals, which allow accurately measuring the effect of the proposed processing. Moreover, results from real abdominal ECG signals acquired from pregnant women are presented in order to validate the presented approach.

  15. Seismic signal and noise on Europa and how to use it

    Science.gov (United States)

    Panning, M. P.; Stähler, S. C.; Bills, B. G.; Castillo, J.; Huang, H. H.; Husker, A. L.; Kedar, S.; Lorenz, R. D.; Pike, W. T.; Schmerr, N. C.; Tsai, V. C.; Vance, S.

    2017-12-01

    Seismology is one of our best tools for detailing interior structure of planetary bodies, and a seismometer is included in the baseline and threshold mission design for a potential Europa lander mission. Guiding mission design and planning for adequate science return, though, requires modeling of both the anticipated signal and noise. Assuming ice seismicity on Europa behaves according to statistical properties observed in Earth catalogs and scaling cumulative seismic moment release to the moon, we simulate long seismic records and estimate background noise and peak signal amplitudes (Panning et al., 2017). This suggests a sensitive instrument comparable to many broadband terrestrial instruments or the SP instrument from the InSight mission to Mars will be able to record signals, while high frequency geophones are likely inadequate. We extend this analysis to also begin incorporation of spatial and temporal variation due to the tidal cycle, which can help inform landing site selection. We also begin exploration of how chaotic terrane at the bottom of the ice shell and inter-ice heterogeneities (i.e. internal melt structures) may affect predicted seismic observations using 2D numerical seismic simulations. We also show some of the key seismic observations to determine interior properties of Europa (Stähler et al., 2017). M. P. Panning, S. C. Stähler, H.-H. Huang, S. D. Vance, S. Kedar, V. C. Tsai, W. T. Pike, R. D. Lorenz, "Expected seismicity and the seismic noise environment of Europa," J. Geophys. Res., in revision, 2017. S. C. Stähler, M. P. Panning, S. D. Vance, R. D. Lorenz, M. van Driel, T. Nissen-Meyer, S. Kedar, "Seismic wave propagation in icy ocean worlds," J. Geophys. Res., in revision, 2017.

  16. Synchronisation and desynchronisation of self-modulation oscillations in a ring chip laser under the action of a periodic signal and noise

    International Nuclear Information System (INIS)

    Dudetskiy, V Yu; Lariontsev, E G; Chekina, S N

    2014-01-01

    The effect of pump noise on the synchronisation of selfmodulation oscillations in a solid-state ring laser with periodic pump modulation is studied numerically and experimentally. It is found that, in contrast to desynchronisation that usually occurs under action of noise in the case of 1/1 synchronisation of self-oscillations by a periodic signal, the effect of noise on 1/2 synchronisation may be positive, namely, at a sufficiently low intensity, pump noise is favourable for synchronisation of self-oscillations, for narrowing of their spectrum, and for increasing the signal-to-noise ratio. (lasers)

  17. Analysis of Signal-to-Noise Ratio of the Laser Doppler Velocimeter

    DEFF Research Database (Denmark)

    Lading, Lars

    1973-01-01

    The signal-to-shot-noise ratio of the photocurrent of a laser Doppler anemometer is calculated as a function of the parameters which describe the system. It is found that the S/N is generally a growing function of receiver area, that few large particles are better than many small ones, and that g...

  18. The persistent signature of tropical cyclones in ambient seismic noise

    KAUST Repository

    Gualtieri, Lucia; Camargo, Suzana J.; Pascale, Salvatore; Pons, Flavio M.E.; Ekströ m, Gö ran

    2017-01-01

    The spectrum of ambient seismic noise shows strong signals associated with tropical cyclones, yet a detailed understanding of these signals and the relationship between them and the storms is currently lacking. Through the analysis of more than a decade of seismic data recorded at several stations located in and adjacent to the northwest Pacific Ocean, here we show that there is a persistent and frequency-dependent signature of tropical cyclones in ambient seismic noise that depends on characteristics of the storm and on the detailed location of the station relative to the storm. An adaptive statistical model shows that the spectral amplitude of ambient seismic noise, and notably of the short-period secondary microseisms, has a strong relationship with tropical cyclone intensity and can be employed to extract information on the tropical cyclones.

  19. The persistent signature of tropical cyclones in ambient seismic noise

    KAUST Repository

    Gualtieri, Lucia

    2017-12-28

    The spectrum of ambient seismic noise shows strong signals associated with tropical cyclones, yet a detailed understanding of these signals and the relationship between them and the storms is currently lacking. Through the analysis of more than a decade of seismic data recorded at several stations located in and adjacent to the northwest Pacific Ocean, here we show that there is a persistent and frequency-dependent signature of tropical cyclones in ambient seismic noise that depends on characteristics of the storm and on the detailed location of the station relative to the storm. An adaptive statistical model shows that the spectral amplitude of ambient seismic noise, and notably of the short-period secondary microseisms, has a strong relationship with tropical cyclone intensity and can be employed to extract information on the tropical cyclones.

  20. Speckle noise reduction technique for Lidar echo signal based on self-adaptive pulse-matching independent component analysis

    Science.gov (United States)

    Xu, Fan; Wang, Jiaxing; Zhu, Daiyin; Tu, Qi

    2018-04-01

    Speckle noise has always been a particularly tricky problem in improving the ranging capability and accuracy of Lidar system especially in harsh environment. Currently, effective speckle de-noising techniques are extremely scarce and should be further developed. In this study, a speckle noise reduction technique has been proposed based on independent component analysis (ICA). Since normally few changes happen in the shape of laser pulse itself, the authors employed the laser source as a reference pulse and executed the ICA decomposition to find the optimal matching position. In order to achieve the self-adaptability of algorithm, local Mean Square Error (MSE) has been defined as an appropriate criterion for investigating the iteration results. The obtained experimental results demonstrated that the self-adaptive pulse-matching ICA (PM-ICA) method could effectively decrease the speckle noise and recover the useful Lidar echo signal component with high quality. Especially, the proposed method achieves 4 dB more improvement of signal-to-noise ratio (SNR) than a traditional homomorphic wavelet method.

  1. Accurate estimation of camera shot noise in the real-time

    Science.gov (United States)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.

    2017-10-01

    Nowadays digital cameras are essential parts of various technological processes and daily tasks. They are widely used in optics and photonics, astronomy, biology and other various fields of science and technology such as control systems and video-surveillance monitoring. One of the main information limitations of photo- and videocameras are noises of photosensor pixels. Camera's photosensor noise can be divided into random and pattern components. Temporal noise includes random noise component while spatial noise includes pattern noise component. Temporal noise can be divided into signal-dependent shot noise and signal-nondependent dark temporal noise. For measurement of camera noise characteristics, the most widely used methods are standards (for example, EMVA Standard 1288). It allows precise shot and dark temporal noise measurement but difficult in implementation and time-consuming. Earlier we proposed method for measurement of temporal noise of photo- and videocameras. It is based on the automatic segmentation of nonuniform targets (ASNT). Only two frames are sufficient for noise measurement with the modified method. In this paper, we registered frames and estimated shot and dark temporal noises of cameras consistently in the real-time. The modified ASNT method is used. Estimation was performed for the cameras: consumer photocamera Canon EOS 400D (CMOS, 10.1 MP, 12 bit ADC), scientific camera MegaPlus II ES11000 (CCD, 10.7 MP, 12 bit ADC), industrial camera PixeLink PL-B781F (CMOS, 6.6 MP, 10 bit ADC) and video-surveillance camera Watec LCL-902C (CCD, 0.47 MP, external 8 bit ADC). Experimental dependencies of temporal noise on signal value are in good agreement with fitted curves based on a Poisson distribution excluding areas near saturation. Time of registering and processing of frames used for temporal noise estimation was measured. Using standard computer, frames were registered and processed during a fraction of second to several seconds only. Also the

  2. Improving the signal-to-noise ratio in mass and ion kinetic energy spectrometers

    International Nuclear Information System (INIS)

    Brenton, A.G.; Beynon, J.H.; Morgan, R.P.

    1979-01-01

    The signal-to-noise ratio in mass and ion kinetic energy spectrometers is limited by noise generated from the presence of scattered ions and neutrals. Methods of eliminating this are illustrated with reference to the ZAB-2F instrument manufactured by VG-Micromass Ltd. It is estimated that after the modifications the instrument is capable, on a routine basis, of measuring peaks corresponding to the arrival of ions at a rate of the order of 1 ion s -1 . (Auth.)

  3. Speech Denoising in White Noise Based on Signal Subspace Low-rank Plus Sparse Decomposition

    Directory of Open Access Journals (Sweden)

    yuan Shuai

    2017-01-01

    Full Text Available In this paper, a new subspace speech enhancement method using low-rank and sparse decomposition is presented. In the proposed method, we firstly structure the corrupted data as a Toeplitz matrix and estimate its effective rank for the underlying human speech signal. Then the low-rank and sparse decomposition is performed with the guidance of speech rank value to remove the noise. Extensive experiments have been carried out in white Gaussian noise condition, and experimental results show the proposed method performs better than conventional speech enhancement methods, in terms of yielding less residual noise and lower speech distortion.

  4. Noise removal in extended depth of field microscope images through nonlinear signal processing.

    Science.gov (United States)

    Zahreddine, Ramzi N; Cormack, Robert H; Cogswell, Carol J

    2013-04-01

    Extended depth of field (EDF) microscopy, achieved through computational optics, allows for real-time 3D imaging of live cell dynamics. EDF is achieved through a combination of point spread function engineering and digital image processing. A linear Wiener filter has been conventionally used to deconvolve the image, but it suffers from high frequency noise amplification and processing artifacts. A nonlinear processing scheme is proposed which extends the depth of field while minimizing background noise. The nonlinear filter is generated via a training algorithm and an iterative optimizer. Biological microscope images processed with the nonlinear filter show a significant improvement in image quality and signal-to-noise ratio over the conventional linear filter.

  5. Barkhausen noise measurements give direct observation of magnetocrystalline anisotropy energy in ferromagnetic polycrystals

    International Nuclear Information System (INIS)

    Espina-Hernández, J H; Pérez-Benítez, J A; Caleyo, F; Hallen, J M; Baudin, T; Helbert, A L

    2013-01-01

    This paper presents experimental evidence of the capability of Barkhausen noise measurements to estimate the angular dependence of the average magnetocrystalline energy in soft magnetic polycrystalline materials. Three different API 5L steel samples, all obtained from out-of-service pipelines, were investigated using crystallographic texture and Barkhausen noise measurements. The angular dependence of the rms voltage of the Barkhausen signal was determined in each sample for the time band corresponding to the saturation-to-remanence part of the hysteresis loop where irreversible domain rotation occurs. For each angular position, the rms voltage of the Barkhausen noise signal in this time band was interpreted as a direct measure of the magnetocrystalline anisotropy energy of the polycrystal in the corresponding direction. A strong correlation between the angular dependence of both the rms voltage of the Barkhausen signal in the time band of interest and the average magnetocrystalline energy obtained from crystallographic texture measurements was found experimentally. (fast track communication)

  6. Reduction of Background Noise in the NASA Ames 40- by 80-Foot Wind Tunnel

    Science.gov (United States)

    Jaeger, Stephen M.; Allen, Christopher S.; Soderman, Paul T.; Olson, Larry E. (Technical Monitor)

    1995-01-01

    Background noise in both open-jet and closed wind tunnels adversely affects the signal-to-noise ratio of acoustic measurements. To measure the noise of increasingly quieter aircraft models, the background noise will have to be reduced by physical means or through signal processing. In a closed wind tunnel, such as the NASA Ames 40- by 80- Foot Wind Tunnel, the principle background noise sources can be classified as: (1) fan drive noise; (2) microphone self-noise; (3) aerodynamically induced noise from test-dependent hardware such as model struts and junctions; and (4) noise from the test section walls and vane set. This paper describes the steps taken to minimize the influence of each of these background noise sources in the 40 x 80.

  7. Noise-driven manifestation of learning in mature neural networks

    International Nuclear Information System (INIS)

    Monterola, Christopher; Saloma, Caesar

    2002-01-01

    We show that the generalization capability of a mature thresholding neural network to process above-threshold disturbances in a noise-free environment is extended to subthreshold disturbances by ambient noise without retraining. The ability to benefit from noise is intrinsic and does not have to be learned separately. Nonlinear dependence of sensitivity with noise strength is significantly narrower than in individual threshold systems. Noise has a minimal effect on network performance for above-threshold signals. We resolve two seemingly contradictory responses of trained networks to noise--their ability to benefit from its presence and their robustness against noisy strong disturbances

  8. Data-driven gating in PET: Influence of respiratory signal noise on motion resolution.

    Science.gov (United States)

    Büther, Florian; Ernst, Iris; Frohwein, Lynn Johann; Pouw, Joost; Schäfers, Klaus Peter; Stegger, Lars

    2018-05-21

    Data-driven gating (DDG) approaches for positron emission tomography (PET) are interesting alternatives to conventional hardware-based gating methods. In DDG, the measured PET data themselves are utilized to calculate a respiratory signal, that is, subsequently used for gating purposes. The success of gating is then highly dependent on the statistical quality of the PET data. In this study, we investigate how this quality determines signal noise and thus motion resolution in clinical PET scans using a center-of-mass-based (COM) DDG approach, specifically with regard to motion management of target structures in future radiotherapy planning applications. PET list mode datasets acquired in one bed position of 19 different radiotherapy patients undergoing pretreatment [ 18 F]FDG PET/CT or [ 18 F]FDG PET/MRI were included into this retrospective study. All scans were performed over a region with organs (myocardium, kidneys) or tumor lesions of high tracer uptake and under free breathing. Aside from the original list mode data, datasets with progressively decreasing PET statistics were generated. From these, COM DDG signals were derived for subsequent amplitude-based gating of the original list mode file. The apparent respiratory shift d from end-expiration to end-inspiration was determined from the gated images and expressed as a function of signal-to-noise ratio SNR of the determined gating signals. This relation was tested against additional 25 [ 18 F]FDG PET/MRI list mode datasets where high-precision MR navigator-like respiratory signals were available as reference signal for respiratory gating of PET data, and data from a dedicated thorax phantom scan. All original 19 high-quality list mode datasets demonstrated the same behavior in terms of motion resolution when reducing the amount of list mode events for DDG signal generation. Ratios and directions of respiratory shifts between end-respiratory gates and the respective nongated image were constant over all

  9. Relationship of signal-to-noise ratio with acquisition parameters in MRI for a given contrast

    International Nuclear Information System (INIS)

    Bittoun, J.; Leroy-Willig, A.; Idy, I.; Halimi, P.; Syrota, A.; Desgrez, A.; Saint-Jalmes, H.

    1987-01-01

    The signal-to-noise ratio (SNR) is certainly the most important characteristic of medical images, since the spatial resolution and the visualization of contrast are dependent on its value. On the other hand, modifying an acquisition variable in magnetic resonance imaging, in order to improve spatial resolution for example, may induce a SNR loss and finally alter the image quality. We have studied a theoretical relation between SNR and 2DFT method acquisition variables with the exception of parameters such as TR, TE and TI; these parameters are determined by the desired contrast in order to confirm a diagnosis. According to this relation SNR is proportional to each dimension of the slice, and to the square root of the number of averaged signals; it is inversely proportional to the number of frequency points and to the square root of the number of phase points. This relation was experimentally verified with phantoms and on an MR system at 1.5 T. It was then plotted as a multiple-entry graph on which operators at the console can read the number of averaged signals necessary to compensate SNR loss induced by a modification of other parameters [fr

  10. Interdependent processing and encoding of speech and concurrent background noise.

    Science.gov (United States)

    Cooper, Angela; Brouwer, Susanne; Bradlow, Ann R

    2015-05-01

    Speech processing can often take place in adverse listening conditions that involve the mixing of speech and background noise. In this study, we investigated processing dependencies between background noise and indexical speech features, using a speeded classification paradigm (Garner, 1974; Exp. 1), and whether background noise is encoded and represented in memory for spoken words in a continuous recognition memory paradigm (Exp. 2). Whether or not the noise spectrally overlapped with the speech signal was also manipulated. The results of Experiment 1 indicated that background noise and indexical features of speech (gender, talker identity) cannot be completely segregated during processing, even when the two auditory streams are spectrally nonoverlapping. Perceptual interference was asymmetric, whereby irrelevant indexical feature variation in the speech signal slowed noise classification to a greater extent than irrelevant noise variation slowed speech classification. This asymmetry may stem from the fact that speech features have greater functional relevance to listeners, and are thus more difficult to selectively ignore than background noise. Experiment 2 revealed that a recognition cost for words embedded in different types of background noise on the first and second occurrences only emerged when the noise and the speech signal were spectrally overlapping. Together, these data suggest integral processing of speech and background noise, modulated by the level of processing and the spectral separation of the speech and noise.

  11. Absence of phase-dependent noise in time-domain reflectivity studies of impulsively excited phonons

    KAUST Repository

    Hussain, A.

    2010-06-17

    There have been several reports of phase-dependent noise in time-domain reflectivity studies of optical phonons excited by femtosecond laser pulses in semiconductors, semimetals, and superconductors. It was suggested that such behavior is associated with the creation of squeezed phonon states although there is no theoretical model that directly supports such a proposal. We have experimentally re-examined the studies of phonons in bismuth and gallium arsenide, and find no evidence of any phase-dependent noise signature associated with the phonons. We place an upper limit on any such noise at least 40–50 dB lower than previously reported.

  12. Absence of phase-dependent noise in time-domain reflectivity studies of impulsively excited phonons

    KAUST Repository

    Hussain, A.; Andrews, S. R.

    2010-01-01

    There have been several reports of phase-dependent noise in time-domain reflectivity studies of optical phonons excited by femtosecond laser pulses in semiconductors, semimetals, and superconductors. It was suggested that such behavior is associated with the creation of squeezed phonon states although there is no theoretical model that directly supports such a proposal. We have experimentally re-examined the studies of phonons in bismuth and gallium arsenide, and find no evidence of any phase-dependent noise signature associated with the phonons. We place an upper limit on any such noise at least 40–50 dB lower than previously reported.

  13. Stochastic amplification and signaling in enzymatic futile cycles through noise-induced bistability with oscillations

    Science.gov (United States)

    Samoilov, Michael; Plyasunov, Sergey; Arkin, Adam P.

    2005-02-01

    Stochastic effects in biomolecular systems have now been recognized as a major physiologically and evolutionarily important factor in the development and function of many living organisms. Nevertheless, they are often thought of as providing only moderate refinements to the behaviors otherwise predicted by the classical deterministic system description. In this work we show by using both analytical and numerical investigation that at least in one ubiquitous class of (bio)chemical-reaction mechanisms, enzymatic futile cycles, the external noise may induce a bistable oscillatory (dynamic switching) behavior that is both quantitatively and qualitatively different from what is predicted or possible deterministically. We further demonstrate that the noise required to produce these distinct properties can itself be caused by a set of auxiliary chemical reactions, making it feasible for biological systems of sufficient complexity to generate such behavior internally. This new stochastic dynamics then serves to confer additional functional modalities on the enzymatic futile cycle mechanism that include stochastic amplification and signaling, the characteristics of which could be controlled by both the type and parameters of the driving noise. Hence, such noise-induced phenomena may, among other roles, potentially offer a novel type of control mechanism in pathways that contain these cycles and the like units. In particular, observations of endogenous or externally driven noise-induced dynamics in regulatory networks may thus provide additional insight into their topology, structure, and kinetics. network motif | signal transduction | chemical reaction | synthetic biology | systems biology

  14. Signal to noise ratio enhancement for Eddy Current testing of steam generator tubes in PWR's

    International Nuclear Information System (INIS)

    Georgel, B.

    1985-01-01

    Noise reduction is a compulsory task when we try to recognize and characterize flaws. The signals we deal with come from Eddy Current testings of steam generator steel tubes. We point out the need for a spectral invariant in digital spectral analysis of 2 components signals. We make clear the pros and cons of classical passband filtering and suggest the use of a new noise cancellation method first discussed by Moriwaki and Tlusty. We generalize this tricky technique and prove it is a very special case of the well-known Wiener filter. In that sense the M-T method is shown to be optimal. 6 refs

  15. BER analysis for MPAM signal constellations in the presence of fading and ADC quantization noise

    NARCIS (Netherlands)

    Rizvi, U.H.; Janssen, G.J.M.; Weber, J.H.

    2009-01-01

    In this letter, closed-form expressions for the bit error rate of M-ary pulse amplitude modulated signal constellations as a function of the analog-to-digital converter word length, the signal-to-noise ratio and the fading distribution, are derived. These results allow for a rapid and accurate

  16. Number-counts slope estimation in the presence of Poisson noise

    Science.gov (United States)

    Schmitt, Juergen H. M. M.; Maccacaro, Tommaso

    1986-01-01

    The slope determination of a power-law number flux relationship in the case of photon-limited sampling. This case is important for high-sensitivity X-ray surveys with imaging telescopes, where the error in an individual source measurement depends on integrated flux and is Poisson, rather than Gaussian, distributed. A bias-free method of slope estimation is developed that takes into account the exact error distribution, the influence of background noise, and the effects of varying limiting sensitivities. It is shown that the resulting bias corrections are quite insensitive to the bias correction procedures applied, as long as only sources with signal-to-noise ratio five or greater are considered. However, if sources with signal-to-noise ratio five or less are included, the derived bias corrections depend sensitively on the shape of the error distribution.

  17. Spin noise amplification and giant noise in optical microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S. [Spin-Optics Laboratory, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Kavokin, A. V. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Spin-Optics Laboratory, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Lagoudakis, P. V. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-06-14

    When studying the spin-noise-induced fluctuations of Kerr rotation in a quantum-well microcavity, we have found a dramatic increase of the noise signal (by more than two orders of magnitude) in the vicinity of anti-crossing of the polariton branches. The effect is explained by nonlinear optical instability of the microcavity giving rise to the light-power-controlled amplification of the polarization noise signal. In the framework of the developed model of built-in amplifier, we also interpret the nontrivial spectral and intensity-related properties of the observed noise signal below the region of anti-crossing of polariton branches. The discovered effect of optically controllable amplification of broadband polarization signals in microcavities in the regime of optical instability may be of interest for detecting weak oscillations of optical anisotropy in fundamental research and for other applications in optical information processing.

  18. Phenomenon of entropic stochastic resonance with asymmetric dichotomous noise and white noise

    International Nuclear Information System (INIS)

    Guo, Feng; Li, Shao-Fu; Cheng, Xiao-Feng

    2012-01-01

    The entropic stochastic resonance (ESR) in a confined system subject to asymmetric dichotomous noise, white noise, and a periodic square-wave signal is investigated. Under the adiabatic approximation condition, by use of the properties of the dichotomous noise, we obtain the expression of the output signal-to-noise ratio (SNR) based on two-state theory. The SNR is shown to be a nonmonotonic function of the strength and asymmetry of the dichotomous noise, the intensity of the white noise, and the amplitude of the square-wave signal. The SNR varies non-monotonically with increases in the parameters of the confined structure. The influence of the correlation rate of the dichotomous noise and the frequency of the external constant force on the SNR is also discussed.

  19. Noise Reduction of MEMS Gyroscope Based on Direct Modeling for an Angular Rate Signal

    Directory of Open Access Journals (Sweden)

    Liang Xue

    2015-02-01

    Full Text Available In this paper, a novel approach for processing the outputs signal of the microelectromechanical systems (MEMS gyroscopes was presented to reduce the bias drift and noise. The principle for the noise reduction was presented, and an optimal Kalman filter (KF was designed by a steady-state filter gain obtained from the analysis of KF observability. In particular, the true angular rate signal was directly modeled to obtain an optimal estimate and make a self-compensation for the gyroscope without needing other sensor’s information, whether in static or dynamic condition. A linear fit equation that describes the relationship between the KF bandwidth and modeling parameter of true angular rate was derived from the analysis of KF frequency response. The test results indicated that the MEMS gyroscope having an ARW noise of 4.87°/h0.5 and a bias instability of 44.41°/h were reduced to 0.4°/h0.5 and 4.13°/h by the KF under a given bandwidth (10 Hz, respectively. The 1σ estimated error was reduced from 1.9°/s to 0.14°/s and 1.7°/s to 0.5°/s in the constant rate test and swing rate test, respectively. It also showed that the filtered angular rate signal could well reflect the dynamic characteristic of the input rate signal in dynamic conditions. The presented algorithm is proved to be effective at improving the measurement precision of the MEMS gyroscope.

  20. Spectral data de-noising using semi-classical signal analysis: application to localized MRS

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2016-09-05

    In this paper, we propose a new post-processing technique called semi-classical signal analysis (SCSA) for MRS data de-noising. Similar to Fourier transformation, SCSA decomposes the input real positive MR spectrum into a set of linear combinations of squared eigenfunctions equivalently represented by localized functions with shape derived from the potential function of the Schrodinger operator. In this manner, the MRS spectral peaks represented as a sum of these \\'shaped like\\' functions are efficiently separated from noise and accurately analyzed. The performance of the method is tested by analyzing simulated and real MRS data. The results obtained demonstrate that the SCSA method is highly efficient in localized MRS data de-noising and allows for an accurate data quantification.

  1. Spectral data de-noising using semi-classical signal analysis: application to localized MRS

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Zhang, Jiayu; Achten, Eric; Serrai, Hacene

    2016-01-01

    In this paper, we propose a new post-processing technique called semi-classical signal analysis (SCSA) for MRS data de-noising. Similar to Fourier transformation, SCSA decomposes the input real positive MR spectrum into a set of linear combinations of squared eigenfunctions equivalently represented by localized functions with shape derived from the potential function of the Schrodinger operator. In this manner, the MRS spectral peaks represented as a sum of these 'shaped like' functions are efficiently separated from noise and accurately analyzed. The performance of the method is tested by analyzing simulated and real MRS data. The results obtained demonstrate that the SCSA method is highly efficient in localized MRS data de-noising and allows for an accurate data quantification.

  2. Signal Processing for MoC brake rattle noise of moving vehicles using prony analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Cheol; Kwak, Yun Sang; Park, Jun Hong [Dept. of Mechanical Convergence Engineering, Hanyang University, Seoul (Korea, Republic of)

    2015-08-15

    To verify the possibility of generating rattling noise from a motor on caliper brake system, a test was conducted using a caliper excited with vibrations similar to that in a vehicle running on actual roads; this test was conducted using a quiet shaker installed in an anechoic room. After several hours of external excitation, the test assembly was loosened, and the frequency of rattling noise generation increased. A microphone was used to record the generated noise. The measured signals were analyzed by conventional spectrum analysis. Since the noise is generated as an impact response, the advantages of employing Prony analysis was discussed, and the results were compared to those obtained using conventional fast Fourier transforms. The accuracy of Prony analysis was through endurance tests on different brake systems.

  3. Enhancing scatterometry CD signal-to-noise ratio for 1x logic and memory challenges

    Science.gov (United States)

    Shaughnessy, Derrick; Krishnan, Shankar; Wei, Lanhua; Shchegrov, Andrei V.

    2013-04-01

    The ongoing transition from 2D to 3D structures in logic and memory has led to an increased adoption of scatterometry CD (SCD) for inline metrology. However, shrinking device dimensions in logic and high aspect ratios in memory represent primary challenges for SCD and require a significant breakthrough in improving signal-to-noise performance. We present a report on the new generation of SCD technology, enabled by a new laser-driven plasma source. The developed light source provides several key advantages over conventional arc lamps typically used in SCD applications. The plasma color temperature of the laser driven source is considerably higher than available with arc lamps resulting in >5X increase in radiance in the visible and >10X increase in radiance in the DUV when compared to sources on previous generation SCD tools while maintaining or improving source intensity noise. This high radiance across such a broad spectrum allows for the use of a single light source from 190-1700nm. When combined with other optical design changes, the higher source radiance enables reduction of measurement box size of our spectroscopic ellipsometer from 45×45um box to 25×25um box without compromising signal to noise ratio. The benefits for 1×nm SCD metrology of the additional photons across the DUV to IR spectrum have been found to be greater than the increase in source signal to noise ratio would suggest. Better light penetration in Si and poly-Si has resulted in improved sensitivity and correlation breaking for critical parameters in 1xnm FinFET and HAR flash memory structures.

  4. Magnetic disturbance effects in noise thermometry

    International Nuclear Information System (INIS)

    Fischer, M.

    1992-01-01

    Due to the very small measurement signals, a compensation process is used, which presupposes undisturbed signals of the measurement resistance and a compensation resistance as necessary conditions. There is a two-channel control for the measurement and compensation circuit, so that parasitic noise voltages from the incoming leads and the electronics can be eliminated by cross-correlation. The sensor which is designed as a combined thermocouple/noise thermometer sensor, permits continuous measurement of temperature by measuring the thermal voltages and the in situ calibration of the thermocouples at all times, which may have considerable drift of the thermal voltages, depending on environmental effects. Leads designed as thermocouples use ferromagnetic materials, in part. (orig./DG) [de

  5. Simulation for noise cancellation using LMS adaptive filter

    Science.gov (United States)

    Lee, Jia-Haw; Ooi, Lu-Ean; Ko, Ying-Hao; Teoh, Choe-Yung

    2017-06-01

    In this paper, the fundamental algorithm of noise cancellation, Least Mean Square (LMS) algorithm is studied and enhanced with adaptive filter. The simulation of the noise cancellation using LMS adaptive filter algorithm is developed. The noise corrupted speech signal and the engine noise signal are used as inputs for LMS adaptive filter algorithm. The filtered signal is compared to the original noise-free speech signal in order to highlight the level of attenuation of the noise signal. The result shows that the noise signal is successfully canceled by the developed adaptive filter. The difference of the noise-free speech signal and filtered signal are calculated and the outcome implies that the filtered signal is approaching the noise-free speech signal upon the adaptive filtering. The frequency range of the successfully canceled noise by the LMS adaptive filter algorithm is determined by performing Fast Fourier Transform (FFT) on the signals. The LMS adaptive filter algorithm shows significant noise cancellation at lower frequency range.

  6. Quality assurance in MRI breast screening: comparing signal-to-noise ratio in dynamic contrast-enhanced imaging protocols

    Science.gov (United States)

    Kousi, Evanthia; Borri, Marco; Dean, Jamie; Panek, Rafal; Scurr, Erica; Leach, Martin O.; Schmidt, Maria A.

    2016-01-01

    MRI has been extensively used in breast cancer staging, management and high risk screening. Detection sensitivity is paramount in breast screening, but variations of signal-to-noise ratio (SNR) as a function of position are often overlooked. We propose and demonstrate practical methods to assess spatial SNR variations in dynamic contrast-enhanced (DCE) breast examinations and apply those methods to different protocols and systems. Four different protocols in three different MRI systems (1.5 and 3.0 T) with receiver coils of different design were employed on oil-filled test objects with and without uniformity filters. Twenty 3D datasets were acquired with each protocol; each dataset was acquired in under 60 s, thus complying with current breast DCE guidelines. In addition to the standard SNR calculated on a pixel-by-pixel basis, we propose other regional indices considering the mean and standard deviation of the signal over a small sub-region centred on each pixel. These regional indices include effects of the spatial variation of coil sensitivity and other structured artefacts. The proposed regional SNR indices demonstrate spatial variations in SNR as well as the presence of artefacts and sensitivity variations, which are otherwise difficult to quantify and might be overlooked in a clinical setting. Spatial variations in SNR depend on protocol choice and hardware characteristics. The use of uniformity filters was shown to lead to a rise of SNR values, altering the noise distribution. Correlation between noise in adjacent pixels was associated with data truncation along the phase encoding direction. Methods to characterise spatial SNR variations using regional information were demonstrated, with implications for quality assurance in breast screening and multi-centre trials.

  7. Experience with a PC-based system for noise and DC signal analysis in PWRs

    International Nuclear Information System (INIS)

    Hashemian, H.M.

    1996-01-01

    A data acquisition system that was originally developed for noise diagnostics in PWRs was expanded to include DC signal analysis in addition to noise analysis. The system has been used in PWRs for reactor diagnostics, determination of root cause of process anomalies, instrument calibration verification, measurement of drop time of control and shutdown rods, testing of timing and sequencing of control rod drive mechanisms, emergency diesel generator monitoring, etc. These applications are reviewed in this paper. (author)

  8. Signal-to-noise ratio estimation in digital computer simulation of lowpass and bandpass systems with applications to analog and digital communications, volume 3

    Science.gov (United States)

    Tranter, W. H.; Turner, M. D.

    1977-01-01

    Techniques are developed to estimate power gain, delay, signal-to-noise ratio, and mean square error in digital computer simulations of lowpass and bandpass systems. The techniques are applied to analog and digital communications. The signal-to-noise ratio estimates are shown to be maximum likelihood estimates in additive white Gaussian noise. The methods are seen to be especially useful for digital communication systems where the mapping from the signal-to-noise ratio to the error probability can be obtained. Simulation results show the techniques developed to be accurate and quite versatile in evaluating the performance of many systems through digital computer simulation.

  9. Noise Gated by Dendrosomatic Interactions Increases Information Transmission

    Science.gov (United States)

    Naud, Richard; Payeur, Alexandre; Longtin, André

    2017-07-01

    We study how noise in active dendrites affects information transmission. A mismatch of both noise and refractoriness between a dendritic compartment and a somatic compartment is shown to lead to an input-dependent exchange of leadership, where the dendrite entrains the soma for weak stimuli and the soma entrains the dendrite for strong stimuli. Using this simple mechanism, the noise in the dendritic compartment can boost weak signals without affecting the output of the neuron for strong stimuli. We show that these mechanisms give rise to a noise-induced increase of information transmission by neural populations.

  10. Optimal signal constellation design for ultra-high-speed optical transport in the presence of nonlinear phase noise.

    Science.gov (United States)

    Liu, Tao; Djordjevic, Ivan B

    2014-12-29

    In this paper, we first describe an optimal signal constellation design algorithm suitable for the coherent optical channels dominated by the linear phase noise. Then, we modify this algorithm to be suitable for the nonlinear phase noise dominated channels. In optimization procedure, the proposed algorithm uses the cumulative log-likelihood function instead of the Euclidian distance. Further, an LDPC coded modulation scheme is proposed to be used in combination with signal constellations obtained by proposed algorithm. Monte Carlo simulations indicate that the LDPC-coded modulation schemes employing the new constellation sets, obtained by our new signal constellation design algorithm, outperform corresponding QAM constellations significantly in terms of transmission distance and have better nonlinearity tolerance.

  11. Noise amplification of plant gravisensing

    Science.gov (United States)

    Ma, Zhong; Hasenstein, Karl H.

    A common problem in sensory physiology is the detection of weak signals, such as that produced by the repositioning of statoliths (amyloplasts) in gravisensing cells, from a noisy background. As in other studied biological mechanosensory systems, it is conceivable that the gravisensing process may be amplified by stochastic resonance and nonlinear noise-assisted effects. We therefore investigated the possible dependency of gravisensing on vibrational or thermodynamic noise by examining the effect of external oscillation and temperature on the rate of gravitropic curvature in flax (Linum usitatissimum L.) roots. Roots were oscillated for 15 min prior to or during gravistimulation, either parallel or perpendicular to the root axis. The effect of oscillation was dependent on its direction as well as frequency and amplitude. Initial curvature was most effectively enhanced by vertical oscillations of 5 Hz and 0.5 mm amplitude prior to reorientation. Vertically oscillated roots reached half-maximal curvature 32 min after reorientation, about 18 min earlier than non-oscillated roots. The enhancing effect of vibration on curvature subsided with a half-time of about 20 min. The temperature dependency of the graviresponse indicated that thermodynamic noise also impacted gravity perception. For vibrations and temperature studies, the presentation times decreased almost 6-fold. Our data indicate that gravisensing may depend on or be enhanced by thermodynamic or mechanical noise.

  12. Noise and signal properties in PSF-based fully 3D PET image reconstruction: an experimental evaluation

    International Nuclear Information System (INIS)

    Tong, S; Alessio, A M; Kinahan, P E

    2010-01-01

    The addition of accurate system modeling in PET image reconstruction results in images with distinct noise texture and characteristics. In particular, the incorporation of point spread functions (PSF) into the system model has been shown to visually reduce image noise, but the noise properties have not been thoroughly studied. This work offers a systematic evaluation of noise and signal properties in different combinations of reconstruction methods and parameters. We evaluate two fully 3D PET reconstruction algorithms: (1) OSEM with exact scanner line of response modeled (OSEM+LOR), (2) OSEM with line of response and a measured point spread function incorporated (OSEM+LOR+PSF), in combination with the effects of four post-reconstruction filtering parameters and 1-10 iterations, representing a range of clinically acceptable settings. We used a modified NEMA image quality (IQ) phantom, which was filled with 68 Ge and consisted of six hot spheres of different sizes with a target/background ratio of 4:1. The phantom was scanned 50 times in 3D mode on a clinical system to provide independent noise realizations. Data were reconstructed with OSEM+LOR and OSEM+LOR+PSF using different reconstruction parameters, and our implementations of the algorithms match the vendor's product algorithms. With access to multiple realizations, background noise characteristics were quantified with four metrics. Image roughness and the standard deviation image measured the pixel-to-pixel variation; background variability and ensemble noise quantified the region-to-region variation. Image roughness is the image noise perceived when viewing an individual image. At matched iterations, the addition of PSF leads to images with less noise defined as image roughness (reduced by 35% for unfiltered data) and as the standard deviation image, while it has no effect on background variability or ensemble noise. In terms of signal to noise performance, PSF-based reconstruction has a 7% improvement in

  13. Poisson-Gaussian Noise Reduction Using the Hidden Markov Model in Contourlet Domain for Fluorescence Microscopy Images

    Science.gov (United States)

    Yang, Sejung; Lee, Byung-Uk

    2015-01-01

    In certain image acquisitions processes, like in fluorescence microscopy or astronomy, only a limited number of photons can be collected due to various physical constraints. The resulting images suffer from signal dependent noise, which can be modeled as a Poisson distribution, and a low signal-to-noise ratio. However, the majority of research on noise reduction algorithms focuses on signal independent Gaussian noise. In this paper, we model noise as a combination of Poisson and Gaussian probability distributions to construct a more accurate model and adopt the contourlet transform which provides a sparse representation of the directional components in images. We also apply hidden Markov models with a framework that neatly describes the spatial and interscale dependencies which are the properties of transformation coefficients of natural images. In this paper, an effective denoising algorithm for Poisson-Gaussian noise is proposed using the contourlet transform, hidden Markov models and noise estimation in the transform domain. We supplement the algorithm by cycle spinning and Wiener filtering for further improvements. We finally show experimental results with simulations and fluorescence microscopy images which demonstrate the improved performance of the proposed approach. PMID:26352138

  14. Non-linear signal response functions and their effects on the statistical and noise cancellation properties of isotope ratio measurements by multi-collector plasma mass spectrometry

    International Nuclear Information System (INIS)

    Doherty, W.

    2013-01-01

    A nebulizer-centric response function model of the analytical inductively coupled argon plasma ion source was used to investigate the statistical frequency distributions and noise reduction factors of simultaneously measured flicker noise limited isotope ion signals and their ratios. The response function model was extended by assuming i) a single gaussian distributed random noise source (nebulizer gas pressure fluctuations) and ii) the isotope ion signal response is a parabolic function of the nebulizer gas pressure. Model calculations of ion signal and signal ratio histograms were obtained by applying the statistical method of translation to the non-linear response function model of the plasma. Histograms of Ni, Cu, Pr, Tl and Pb isotope ion signals measured using a multi-collector plasma mass spectrometer were, without exception, negative skew. Histograms of the corresponding isotope ratios of Ni, Cu, Tl and Pb were either positive or negative skew. There was a complete agreement between the measured and model calculated histogram skew properties. The nebulizer-centric response function model was also used to investigate the effect of non-linear response functions on the effectiveness of noise cancellation by signal division. An alternative noise correction procedure suitable for parabolic signal response functions was derived and applied to measurements of isotope ratios of Cu, Ni, Pb and Tl. The largest noise reduction factors were always obtained when the non-linearity of the response functions was taken into account by the isotope ratio calculation. Possible applications of the nebulizer-centric response function model to other types of analytical instrumentation, large amplitude signal noise sources (e.g., lasers, pumped nebulizers) and analytical error in isotope ratio measurements by multi-collector plasma mass spectrometry are discussed. - Highlights: ► Isotope ion signal noise is modelled as a parabolic transform of a gaussian variable. ► Flicker

  15. A Bayes Formula for Nonlinear Filtering with Gaussian and Cox Noise

    Directory of Open Access Journals (Sweden)

    Vidyadhar Mandrekar

    2011-01-01

    Full Text Available A Bayes-type formula is derived for the nonlinear filter where the observation contains both general Gaussian noise as well as Cox noise whose jump intensity depends on the signal. This formula extends the well-known Kallianpur-Striebel formula in the classical non-linear filter setting. We also discuss Zakai-type equations for both the unnormalized conditional distribution as well as unnormalized conditional density in case the signal is a Markovian jump diffusion.

  16. Chaos weak signal detecting algorithm and its application in the ultrasonic Doppler bloodstream speed measuring

    International Nuclear Information System (INIS)

    Chen, H Y; Lv, J T; Zhang, S Q; Zhang, L G; Li, J

    2005-01-01

    At the present time, the ultrasonic Doppler measuring means has been extensively used in the human body's bloodstream speed measuring. The ultrasonic Doppler measuring means can achieve the measuring of liquid flux by detecting Doppler frequency shift of ultrasonic in the process of liquid spread. However, the detected sound wave is a weak signal that is flooded in the strong noise signal. The traditional measuring method depends on signal-to-noise ratio. Under the very low signal-to-noise ratio or the strong noise signal background, the signal frequency is not measured. This article studied on chaotic movement of Duffing oscillator and intermittent chaotic characteristic on chaotic oscillator of Duffing equation. In the light of the range of the bloodstream speed of human body and the principle of Doppler shift, the paper determines the frequency shift range. An oscillator array including many oscillators is designed according to it. The reflected ultrasonic frequency information can be ascertained accurately by the intermittent chaos quality of the oscillator. The signal-to-noise ratio of -26.5 dB is obtained by the result of the experiment. Compared with the tradition the frequency method compare, the dependence to signal-to-noise ratio is lowered consumedly. The measuring precision of the bloodstream speed is heightened

  17. A Data-Driven Noise Reduction Method and Its Application for the Enhancement of Stress Wave Signals

    Directory of Open Access Journals (Sweden)

    Hai-Lin Feng

    2012-01-01

    Full Text Available Ensemble empirical mode decomposition (EEMD has been recently used to recover a signal from observed noisy data. Typically this is performed by partial reconstruction or thresholding operation. In this paper we describe an efficient noise reduction method. EEMD is used to decompose a signal into several intrinsic mode functions (IMFs. The time intervals between two adjacent zero-crossings within the IMF, called instantaneous half period (IHP, are used as a criterion to detect and classify the noise oscillations. The undesirable waveforms with a larger IHP are set to zero. Furthermore, the optimum threshold in this approach can be derived from the signal itself using the consecutive mean square error (CMSE. The method is fully data driven, and it requires no prior knowledge of the target signals. This method can be verified with the simulative program by using Matlab. The denoising results are proper. In comparison with other EEMD based methods, it is concluded that the means adopted in this paper is suitable to preprocess the stress wave signals in the wood nondestructive testing.

  18. First evaluation of low frequency noise measurements of in core detector signals in the measuring assembly Rheinsberg

    International Nuclear Information System (INIS)

    Collatz, S.

    1982-01-01

    Reactor noise spectra of in core neutron detectors are measured in the low frequency range (0.03 Hz to 1 Hz) and evaluated. The increase of the effective noise signal value is due to pressure oscillations or oscillations of special steam volume portions. Thus boiling monitoring of reactor cores in PWR type reactors may be possible, if the low frequency noise of the whole set of in core detectors is taken into account

  19. Perceptual effects of noise reduction by time-frequency masking of noisy speech.

    Science.gov (United States)

    Brons, Inge; Houben, Rolph; Dreschler, Wouter A

    2012-10-01

    Time-frequency masking is a method for noise reduction that is based on the time-frequency representation of a speech in noise signal. Depending on the estimated signal-to-noise ratio (SNR), each time-frequency unit is either attenuated or not. A special type of a time-frequency mask is the ideal binary mask (IBM), which has access to the real SNR (ideal). The IBM either retains or removes each time-frequency unit (binary mask). The IBM provides large improvements in speech intelligibility and is a valuable tool for investigating how different factors influence intelligibility. This study extends the standard outcome measure (speech intelligibility) with additional perceptual measures relevant for noise reduction: listening effort, noise annoyance, speech naturalness, and overall preference. Four types of time-frequency masking were evaluated: the original IBM, a tempered version of the IBM (called ITM) which applies limited and non-binary attenuation, and non-ideal masking (also tempered) with two different types of noise-estimation algorithms. The results from ideal masking imply that there is a trade-off between intelligibility and sound quality, which depends on the attenuation strength. Additionally, the results for non-ideal masking suggest that subjective measures can show effects of noise reduction even if noise reduction does not lead to differences in intelligibility.

  20. Practical Ranges of Loudness Levels of Various Types of Environmental Noise, Including Traffic Noise, Aircraft Noise, and Industrial Noise

    Directory of Open Access Journals (Sweden)

    Sabine A. Janssen

    2011-05-01

    Full Text Available In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a noise signal varies considerably with the shape of the frequency spectrum of the noise signal. In particular the bandwidth of the spectrum has a large effect on the loudness level, due to the effect of critical bands in the human hearing system. The low-frequency content of the spectrum also has an effect on the loudness level. In this note the relation between loudness level and A-weighted sound level is analyzed for various environmental noise spectra, including spectra of traffic noise, aircraft noise, and industrial noise. From loudness levels calculated for these environmental noise spectra, diagrams are constructed that show the relation between loudness level, A‑weighted sound level, and shape of the spectrum. The diagrams show that the upper limits of the loudness level for broadband environmental noise spectra are about 20 to 40 phon higher than the lower limits for narrowband spectra, which correspond to the loudness levels of pure tones. The diagrams are useful for assessing limitations and potential improvements of environmental noise control methods and policy based on A-weighted sound levels.

  1. Analysis of power tiller noise using diesel-biodiesel fuel blends

    OpenAIRE

    N Keramat Siavash; Gh Najafi; S. R Hassan Beigi Bidgoli; B Ghobadian

    2015-01-01

    Introduction: There are several sources of noise in an industrial and agriculture environment. Machines with rotating or reciprocating engines are sound-producing sources. Also, the audio signal can be analyzed to discover how well a machine operates. Diesel engines complex noise SPL and sound frequency content both strongly depend on fuel combustion, which produces the so-called combustion noise. Actually, the unpleasant sound signature of diesel engines is due to the harsh and irregular sel...

  2. Signal processing for liquid ionization calorimeters

    International Nuclear Information System (INIS)

    Cleland, W.E.; Stern, E.G.

    1992-01-01

    We present the results of a study of the effects of thermal and pileup noise in liquid ionization calorimeters operating in a high luminosity calorimeters operating in a high luminosity environment. The method of optimal filtering of multiply-sampled signals which may be used to improve the timing and amplitude resolution of calorimeter signals is described, and its implications for signal shaping functions are examined. The dependence of the time and amplitude resolution on the relative strength of the pileup and thermal noise, which varies with such parameters as luminosity, rapidity and calorimeter cell size, is examined

  3. Active3 noise reduction

    International Nuclear Information System (INIS)

    Holzfuss, J.

    1996-01-01

    Noise reduction is a problem being encountered in a variety of applications, such as environmental noise cancellation, signal recovery and separation. Passive noise reduction is done with the help of absorbers. Active noise reduction includes the transmission of phase inverted signals for the cancellation. This paper is about a threefold active approach to noise reduction. It includes the separation of a combined source, which consists of both a noise and a signal part. With the help of interaction with the source by scanning it and recording its response, modeling as a nonlinear dynamical system is achieved. The analysis includes phase space analysis and global radial basis functions as tools for the prediction used in a subsequent cancellation procedure. Examples are given which include noise reduction of speech. copyright 1996 American Institute of Physics

  4. Signal-to-noise ratio measurement in parallel MRI with subtraction mapping and consecutive methods

    International Nuclear Information System (INIS)

    Imai, Hiroshi; Miyati, Tosiaki; Ogura, Akio; Doi, Tsukasa; Tsuchihashi, Toshio; Machida, Yoshio; Kobayashi, Masato; Shimizu, Kouzou; Kitou, Yoshihiro

    2008-01-01

    When measuring the signal-to-noise ratio (SNR) of an image the used parallel magnetic resonance imaging, it was confirmed that there was a problem in the application of past SNR measurement. With the method of measuring the noise from the background signal, SNR with parallel imaging was higher than that without parallel imaging. In the subtraction method (NEMA standard), which sets a wide region of interest, the white noise was not evaluated correctly although SNR was close to the theoretical value. We proposed two techniques because SNR in parallel imaging was not uniform according to inhomogeneity of the coil sensitivity distribution and geometry factor. Using the first method (subtraction mapping), two images were scanned with identical parameters. The SNR in each pixel divided the running mean (7 by 7 pixels in neighborhood) by standard deviation/√2 in the same region of interest. Using the second (consecutive) method, more than fifty consecutive scans of the uniform phantom were obtained with identical scan parameters. Then the SNR was calculated from the ratio of mean signal intensity to the standard deviation in each pixel on a series of images. Moreover, geometry factors were calculated from SNRs with and without parallel imaging. The SNR and geometry factor using parallel imaging in the subtraction mapping method agreed with those of the consecutive method. Both methods make it possible to obtain a more detailed determination of SNR in parallel imaging and to calculate the geometry factor. (author)

  5. Separation of random telegraph sSignals from 1/f noise in MOSFETs under constant and switched bias conditions

    NARCIS (Netherlands)

    Kolhatkar, J.S.; Vandamme, L.K.J.; Salm, Cora; Wallinga, Hans

    2004-01-01

    The low-frequency noise power spectrum of small dimension MOSFETs is dominated by Lorentzians arising from random telegraph signals (RTS). The low-frequency noise is observed to decrease when the devices are periodically switched 'off'. The technique of determining the statistical lifetimes and

  6. Novel active signal compression in low-noise analog readout at future X-ray FEL facilities

    Science.gov (United States)

    Manghisoni, M.; Comotti, D.; Gaioni, L.; Lodola, L.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.

    2015-04-01

    This work presents the design of a low-noise front-end implementing a novel active signal compression technique. This feature can be exploited in the design of analog readout channels for application to the next generation free electron laser (FEL) experiments. The readout architecture includes the low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time variant shaper used to process the signal at the preamplifier output and a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC). The channel will be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future XFEL machines. The choice of a 65 nm CMOS technology has been made in order to include all the building blocks in the target pixel pitch of 100 μm. This work has been carried out in the frame of the PixFEL Project funded by the Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  7. Noise-constrained switching times for heteroclinic computing

    Science.gov (United States)

    Neves, Fabio Schittler; Voit, Maximilian; Timme, Marc

    2017-03-01

    Heteroclinic computing offers a novel paradigm for universal computation by collective system dynamics. In such a paradigm, input signals are encoded as complex periodic orbits approaching specific sequences of saddle states. Without inputs, the relevant states together with the heteroclinic connections between them form a network of states—the heteroclinic network. Systems of pulse-coupled oscillators or spiking neurons naturally exhibit such heteroclinic networks of saddles, thereby providing a substrate for general analog computations. Several challenges need to be resolved before it becomes possible to effectively realize heteroclinic computing in hardware. The time scales on which computations are performed crucially depend on the switching times between saddles, which in turn are jointly controlled by the system's intrinsic dynamics and the level of external and measurement noise. The nonlinear dynamics of pulse-coupled systems often strongly deviate from that of time-continuously coupled (e.g., phase-coupled) systems. The factors impacting switching times in pulse-coupled systems are still not well understood. Here we systematically investigate switching times in dependence of the levels of noise and intrinsic dissipation in the system. We specifically reveal how local responses to pulses coact with external noise. Our findings confirm that, like in time-continuous phase-coupled systems, piecewise-continuous pulse-coupled systems exhibit switching times that transiently increase exponentially with the number of switches up to some order of magnitude set by the noise level. Complementarily, we show that switching times may constitute a good predictor for the computation reliability, indicating how often an input signal must be reiterated. By characterizing switching times between two saddles in conjunction with the reliability of a computation, our results provide a first step beyond the coding of input signal identities toward a complementary coding for

  8. Variability of signal-to-noise ratio and the network analysis of gravitational wave burst signals

    International Nuclear Information System (INIS)

    Mohanty, S D; Rakhmanov, M; Klimenko, S; Mitselmakher, G

    2006-01-01

    The detection and estimation of gravitational wave burst signals, with a priori unknown polarization waveforms, requires the use of data from a network of detectors. Maximizing the network likelihood functional over all waveforms and sky positions yields point estimates for them as well as a detection statistic. However, the transformation from the data to estimates can become ill-conditioned over parts of the sky, resulting in significant errors in estimation. We modify the likelihood procedure by introducing a penalty functional which suppresses candidate solutions that display large signal-to-noise ratio (SNR) variability as the source is displaced on the sky. Simulations show that the resulting network analysis method performs significantly better in estimating the sky position of a source. Further, this method can be applied to any network, irrespective of the number or mutual alignment of detectors

  9. Noise properties of Hilbert transform evaluation

    International Nuclear Information System (INIS)

    Pavliček, Pavel; Svak, Vojtěch

    2015-01-01

    The Hilbert transform is a standard method for the calculation of the envelope and phase of a modulated signal in optical measurement methods. Usually, the intensity of light is converted into an electric signal at a detector. Therefore the actual spatially or temporally sampled signal is always affected by noise. Because the noise values of individual samples are independent, the noise can be considered as white. If the envelope and phase are calculated from the noised signal, they will also be affected by the noise. We calculate the variance and spectral density of both the envelope noise and the phase noise. We determine which parameters influence the variance and spectral density of both the envelope noise and the phase noise. Finally, we determine the influence of the noise on the measurement uncertainty in white-light interferometry and fringe-pattern analysis. (paper)

  10. Neutron noise analysis of BWR using time series analysis

    International Nuclear Information System (INIS)

    Fukunishi, Kohyu

    1976-01-01

    The main purpose of this paper is to give more quantitative understanding of noise source in neutron flux and to provide a useful tool for the detection and diagnosis of reactor. The space dependent effects of distributed neutron flux signals at the axial direction of two different strings are investigated by the power contribution ratio among neutron fluxes and the incoherent noise spectra of neutron fluxes derived from autoregressive spectra. The signals are measured on the medium sized commercial BWR of 460 MWe in Japan. From the obtained results, local and global noise sources in neutron flux are discussed. This method is indicated to be a useful tool for detection and diagnosis of anomalous phenomena in BWR. (orig./RW) [de

  11. Removing the Influence of Shimmer in the Calculation of Harmonics-To-Noise Ratios Using Ensemble-Averages in Voice Signals

    OpenAIRE

    Carlos Ferrer; Eduardo González; María E. Hernández-Díaz; Diana Torres; Anesto del Toro

    2009-01-01

    Harmonics-to-noise ratios (HNRs) are affected by general aperiodicity in voiced speech signals. To specifically reflect a signal-to-additive-noise ratio, the measurement should be insensitive to other periodicity perturbations, like jitter, shimmer, and waveform variability. The ensemble averaging technique is a time-domain method which has been gradually refined in terms of its sensitivity to jitter and waveform variability and required number of pulses. In this paper, shimmer is introduced ...

  12. A temporal and spatial analysis of anthropogenic noise sources affecting SNMR

    Science.gov (United States)

    Dalgaard, E.; Christiansen, P.; Larsen, J. J.; Auken, E.

    2014-11-01

    One of the biggest challenges when using the surface nuclear magnetic resonance (SNMR) method in urban areas is a relatively low signal level compared to a high level of background noise. To understand the temporal and spatial behavior of anthropogenic noise sources like powerlines and electric fences, we have developed a multichannel instrument, noiseCollector (nC), which measures the full noise spectrum up to 10 kHz. Combined with advanced signal processing we can interpret the noise as seen by a SNMR instrument and also obtain insight into the more fundamental behavior of the noise. To obtain a specified acceptable noise level for a SNMR sounding the stack size can be determined by quantifying the different noise sources. Two common noise sources, electromagnetic fields stemming from powerlines and fences are analyzed and show a 1/r2 dependency in agreement with theoretical relations. A typical noise map, obtained with the nC instrument prior to a SNMR field campaign, clearly shows the location of noise sources, and thus we can efficiently determine the optimal location for the SNMR sounding from a noise perspective.

  13. Modeling random telegraph signal noise in CMOS image sensor under low light based on binomial distribution

    International Nuclear Information System (INIS)

    Zhang Yu; Wang Guangyi; Lu Xinmiao; Hu Yongcai; Xu Jiangtao

    2016-01-01

    The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result, the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated, and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures. (paper)

  14. Electromagnetic Signals and Earthquakes 2.0: Increasing Signals and Reducing Noise

    Science.gov (United States)

    Dunson, J. C.; Bleier, T.; Heraud, J. A.; Muller, S.; Lindholm, C.; Christman, L.; King, R.; Lemon, J.

    2013-12-01

    QuakeFinder has an international network of 150+ Magnetometers and air conductivity instruments located in California, Peru, Chile, Taiwan, and Greece. Since 2000, QuakeFinder has been collecting electromagnetic data and applying simple algorithms to identify and characterize electromagnetic signals that occur in the few weeks prior to earthquakes greater than M4.5. In this presentation, we show refinements to several aspects of our signal identification techniques that enhance detection of pre-earthquake patterns. Our magnetometers have been improved to show longer pulses, and we are now using second generation algorithms that have been refined to detect the proper shape of the earthquake-generated pulses and to allow individual site adjustments. Independent lightning strike data has also now been included to mask out lightning based on amplitude and distance from a given instrument site. Direction of arrival (Azimuth) algorithms have been added to identify patterns of pulse clustering that occur prior to nearby earthquakes. Likewise, positive and negative air ion concentration detection has been improved by building better enclosures, using stainless screens to eliminate insects and some dirt sources, conformal coating PC boards to reduce moisture contamination, and filtering out contaminated data segments based on relative humidity measurements at each site. Infra Red data from the western GOES satellite has been time-filtered, cloud-filtered, and compared to 3 year averages of each pixel's output (by seasonal month) to arrive at a relevant comparison baseline for each night's temperature/cooling slope. All these efforts have helped improve the detection of multiple, nearly simultaneous, electromagnetic signals due to earthquake preparation processes, while reducing false positive indications due to environmental noise sources.

  15. Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions.

    Science.gov (United States)

    Robson, Philip M; Grant, Aaron K; Madhuranthakam, Ananth J; Lattanzi, Riccardo; Sodickson, Daniel K; McKenzie, Charles A

    2008-10-01

    Parallel imaging reconstructions result in spatially varying noise amplification characterized by the g-factor, precluding conventional measurements of noise from the final image. A simple Monte Carlo based method is proposed for all linear image reconstruction algorithms, which allows measurement of signal-to-noise ratio and g-factor and is demonstrated for SENSE and GRAPPA reconstructions for accelerated acquisitions that have not previously been amenable to such assessment. Only a simple "prescan" measurement of noise amplitude and correlation in the phased-array receiver, and a single accelerated image acquisition are required, allowing robust assessment of signal-to-noise ratio and g-factor. The "pseudo multiple replica" method has been rigorously validated in phantoms and in vivo, showing excellent agreement with true multiple replica and analytical methods. This method is universally applicable to the parallel imaging reconstruction techniques used in clinical applications and will allow pixel-by-pixel image noise measurements for all parallel imaging strategies, allowing quantitative comparison between arbitrary k-space trajectories, image reconstruction, or noise conditioning techniques. (c) 2008 Wiley-Liss, Inc.

  16. Gating in time domain as a tool for improving the signal-to-noise ratio of beam transfer function measurements

    CERN Document Server

    Oeftiger, U; Caspers, Fritz

    1992-01-01

    For the measurement of Beam Transfer Functions the signal-to-noise ratio is of great importance. In order to get a reasonable quality of the measured data one may apply averaging and smoothing. In the following another technique called time gating to improve the quality of the measurement will be described. By this technique the measurement data are Fourier transformed and then modified in time domain. Tune gating suppresses signal contributions that are correlated to a time interval when no interesting information is expected. Afterivards an inverse Fourier transform leads to data in frequency domain with an improved signal to noise ratio.

  17. Signal-to-noise ratio analysis and evaluation of the Hadamard imaging technique

    Science.gov (United States)

    Jobson, D. J.; Katzberg, S. J.; Spiers, R. B., Jr.

    1977-01-01

    The signal-to-noise ratio performance of the Hadamard imaging technique is analyzed and an experimental evaluation of a laboratory Hadamard imager is presented. A comparison between the performances of Hadamard and conventional imaging techniques shows that the Hadamard technique is superior only when the imaging objective lens is required to have an effective F (focus) number of about 2 or slower.

  18. A Background Noise Reduction Technique Using Adaptive Noise Cancellation for Microphone Arrays

    Science.gov (United States)

    Spalt, Taylor B.; Fuller, Christopher R.; Brooks, Thomas F.; Humphreys, William M., Jr.; Brooks, Thomas F.

    2011-01-01

    Background noise in wind tunnel environments poses a challenge to acoustic measurements due to possible low or negative Signal to Noise Ratios (SNRs) present in the testing environment. This paper overviews the application of time domain Adaptive Noise Cancellation (ANC) to microphone array signals with an intended application of background noise reduction in wind tunnels. An experiment was conducted to simulate background noise from a wind tunnel circuit measured by an out-of-flow microphone array in the tunnel test section. A reference microphone was used to acquire a background noise signal which interfered with the desired primary noise source signal at the array. The technique s efficacy was investigated using frequency spectra from the array microphones, array beamforming of the point source region, and subsequent deconvolution using the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm. Comparisons were made with the conventional techniques for improving SNR of spectral and Cross-Spectral Matrix subtraction. The method was seen to recover the primary signal level in SNRs as low as -29 dB and outperform the conventional methods. A second processing approach using the center array microphone as the noise reference was investigated for more general applicability of the ANC technique. It outperformed the conventional methods at the -29 dB SNR but yielded less accurate results when coherence over the array dropped. This approach could possibly improve conventional testing methodology but must be investigated further under more realistic testing conditions.

  19. Complex diffusion process for noise reduction

    DEFF Research Database (Denmark)

    Nadernejad, Ehsan; Barari, A.

    2014-01-01

    equations (PDEs) in image restoration and de-noising prompted many researchers to search for an improvement in the technique. In this paper, a new method is presented for signal de-noising, based on PDEs and Schrodinger equations, named as complex diffusion process (CDP). This method assumes that variations...... for signal de-noising. To evaluate the performance of the proposed method, a number of experiments have been performed using Sinusoid, multi-component and FM signals cluttered with noise. The results indicate that the proposed method outperforms the approaches for signal de-noising known in prior art....

  20. The Cause of an Eddy Current Signal Noise from a Steam Generator Tube and its Effect on the Detectability of a Crack

    International Nuclear Information System (INIS)

    Lee, Deok Hyun; Choi, Myung Sik; Hur, Do Haeng; Kim, Kyung Mo; Han, Jung Ho

    2008-01-01

    An eddy current inspection has been applied for a pre-service and in-service examination of a steam generator in nuclear power plants. The experience from the inspection of steam generators showed that many plants had an excessive number of tubes with eddy current noise signals over several hundreds, which originated from manufacturing anomalies. The plants in U.S suffered significant downstream inspection costs, history reviews, and diagnostic testing because some signals resembled flaws and others masked a flaw. These lessens learned resulted in issuing the guidelines for steam generator tubing specifications and repair, in order to reduce the number of anomalous signals in the tubes and also to provide the requirement of a signal to noise ratio by applying a field type examination with bobbin coil eddy current probes at a manufacturing process. Besides the noise signals of a bobbin coil eddy current probe from manufacturing anomalies, the excessive background noise of the rotating coil eddy current probe signal is frequently observed from a tube and it negatively affects the detection and sizing estimate of a defect. Since the inspection intervals are being extended up to 60 months for the more recent steam generator of corrosion resistant alloy 690TT tubing, the detection of an earlier crack and an accurate sizing are becoming more important in the activity of a non-destructive examination. In this study, the cause of an eddy current signal noise of a rotating coil probe from a steam generator tube was examined and its influence on the detectability of a crack was analyzed

  1. The Protective Effect of Conditioning on Noise-Induced Hearing Loss Is Frequency-Dependent

    Directory of Open Access Journals (Sweden)

    Akram Pourbakht

    2012-10-01

    Full Text Available We compared the extent of temporary threshold shift (TTS and hair cell loss following high level 4 kHz noise exposure with those preconditioned with moderate level 1 and 4 kHz octave band noise. Fifteen Male albino guinea pigs (300- 350 g in weight were randomly allocated into three groups: those exposed to 4 kHz octave band noise at 102 dB SPL (group 1, n=5; those conditioned with 1 kHz octave band noise at 85 dB SPL, 6 hours per day for 5 days, then exposed to noise (group 2, n=5; those conditioned with 4 kHz octave band noise at 85 dB SPL, then exposed to noise (group 3, n=5. An hour and one week after noise exposure, threshold shifts were evaluated by auditory-evoked brainstem response (ABR and then animals were euthanized for histological evaluation. We found that TTS and cochlear damage caused by noise exposure were significantly reduced by 1 kHz and 4 kHz conditioning (P<0.001. We also showed that 4 kHz protocol attenuates noise- induced TTS but no significant TTS reduction occurred by 1 kHz conditioning. Both protocol protected noise-induced cochlear damage. We concluded that lower tone conditioning could not protect against higher tone temporary noise-induced hearing loss, thus conditioning is a local acting and frequency-dependent phenomenon.

  2. FPGA implementation of ICA algorithm for blind signal separation and adaptive noise canceling.

    Science.gov (United States)

    Kim, Chang-Min; Park, Hyung-Min; Kim, Taesu; Choi, Yoon-Kyung; Lee, Soo-Young

    2003-01-01

    An field programmable gate array (FPGA) implementation of independent component analysis (ICA) algorithm is reported for blind signal separation (BSS) and adaptive noise canceling (ANC) in real time. In order to provide enormous computing power for ICA-based algorithms with multipath reverberation, a special digital processor is designed and implemented in FPGA. The chip design fully utilizes modular concept and several chips may be put together for complex applications with a large number of noise sources. Experimental results with a fabricated test board are reported for ANC only, BSS only, and simultaneous ANC/BSS, which demonstrates successful speech enhancement in real environments in real time.

  3. Correlated cone noise decreases rod signal contributions to the post-receptoral pathways.

    Science.gov (United States)

    Hathibelagal, Amithavikram R; Feigl, Beatrix; Zele, Andrew J

    2018-04-01

    This study investigated how invisible extrinsic temporal white noise that correlates with the activity of one of the three [magnocellular (MC), parvocellular (PC), or koniocellular (KC)] post-receptoral pathways alters mesopic rod signaling. A four-primary photostimulator provided independent control of the rod and three cone photoreceptor excitations. The rod contributions to the three post-receptoral pathways were estimated by perceptually matching a 20% contrast rod pulse by independently varying the LMS (MC pathway), +L-M (PC pathway), and S-cone (KC pathway) excitations. We show that extrinsic cone noise caused a predominant decrease in the overall magnitude and ratio of the rod contributions to each pathway. Thus, the relative cone activity in the post-receptoral pathways determines the relative mesopic rod inputs to each pathway.

  4. Signal-to-noise ratio application to seismic marker analysis and fracture detection

    Science.gov (United States)

    Xu, Hui-Qun; Gui, Zhi-Xian

    2014-03-01

    Seismic data with high signal-to-noise ratios (SNRs) are useful in reservoir exploration. To obtain high SNR seismic data, significant effort is required to achieve noise attenuation in seismic data processing, which is costly in materials, and human and financial resources. We introduce a method for improving the SNR of seismic data. The SNR is calculated by using the frequency domain method. Furthermore, we optimize and discuss the critical parameters and calculation procedure. We applied the proposed method on real data and found that the SNR is high in the seismic marker and low in the fracture zone. Consequently, this can be used to extract detailed information about fracture zones that are inferred by structural analysis but not observed in conventional seismic data.

  5. Noise and optimum filtering in spectrometers with semiconductor detectors operating at elevated temperature

    International Nuclear Information System (INIS)

    Dabrowski, W.; Korbel, K.

    1983-01-01

    The importance of the excess noise in the semiconductor detectors operating at the elevated temperature is discussed. Under the assumption of a conventional CR-RC type filtration the variancy of the noise output is determined. The new term ''second noise-corner time constant'' was proposed. The expression for relative signal-to-noise ratio as the dependence on the noise as well as circuits time constants was derived. It was also presented in a graphical form. 12 refs., 6 figs. (author)

  6. Subspace-Based Noise Reduction for Speech Signals via Diagonal and Triangular Matrix Decompositions

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Jensen, Søren Holdt

    We survey the definitions and use of rank-revealing matrix decompositions in single-channel noise reduction algorithms for speech signals. Our algorithms are based on the rank-reduction paradigm and, in particular, signal subspace techniques. The focus is on practical working algorithms, using both...... diagonal (eigenvalue and singular value) decompositions and rank-revealing triangular decompositions (ULV, URV, VSV, ULLV and ULLIV). In addition we show how the subspace-based algorithms can be evaluated and compared by means of simple FIR filter interpretations. The algorithms are illustrated...... with working Matlab code and applications in speech processing....

  7. Active noise control in a duct to cancel broadband noise

    Science.gov (United States)

    Chen, Kuan-Chun; Chang, Cheng-Yuan; Kuo, Sen M.

    2017-09-01

    The paper presents cancelling duct noises by using the active noise control (ANC) techniques. We use the single channel feed forward algorithm with feedback neutralization to realize ANC. Several kinds of ducts noises including tonal noises, sweep tonal signals, and white noise had investigated. Experimental results show that the proposed ANC system can cancel these noises in a PVC duct very well. The noise reduction of white noise can be up to 20 dB.

  8. Stimulation of the Locus Ceruleus Modulates Signal-to-Noise Ratio in the Olfactory Bulb.

    Science.gov (United States)

    Manella, Laura C; Petersen, Nicholas; Linster, Christiane

    2017-11-29

    Norepinephrine (NE) has been shown to influence sensory, and specifically olfactory processing at the behavioral and physiological levels, potentially by regulating signal-to-noise ratio (S/N). The present study is the first to look at NE modulation of olfactory bulb (OB) in regards to S/N in vivo We show, in male rats, that locus ceruleus stimulation and pharmacological infusions of NE into the OB modulate both spontaneous and odor-evoked neural responses. NE in the OB generated a non-monotonic dose-response relationship, suppressing mitral cell activity at high and low, but not intermediate, NE levels. We propose that NE enhances odor responses not through direct potentiation of the afferent signal per se, but rather by reducing the intrinsic noise of the system. This has important implications for the ways in which an animal interacts with its olfactory environment, particularly as the animal shifts from a relaxed to an alert behavioral state. SIGNIFICANCE STATEMENT Sensory perception can be modulated by behavioral states such as hunger, fear, stress, or a change in environmental context. Behavioral state often affects neural processing via the release of circulating neurochemicals such as hormones or neuromodulators. We here show that the neuromodulator norepinephrine modulates olfactory bulb spontaneous activity and odor responses so as to generate an increased signal-to-noise ratio at the output of the olfactory bulb. Our results help interpret and improve existing ideas for neural network mechanisms underlying behaviorally observed improvements in near-threshold odor detection and discrimination. Copyright © 2017 the authors 0270-6474/17/3711605-11$15.00/0.

  9. Filter apparatus for actively reducing noise

    NARCIS (Netherlands)

    Berkhoff, Arthur P.; Nijsse, G.

    2010-01-01

    A filter apparatus for reducing noise from a primary noise source, comprising a secondary source signal connector for generating secondary noise to reduce said primary noise and a sensor connector for connecting to a sensor for measuring said primary and secondary noise as an error signal. A first

  10. Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adamo, M.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderon Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Charlton, P.; Charlton, P.; Chassande-Mottin, E.; Chatterji, S.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P. -F.; Colla, A.; Collette, C. G.; Cominsky, L.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.A.; DeRosa, R. T.; Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Franco, S; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Ghosh, V. Germain Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzlez, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jimenez-Forteza, F.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lueck, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R.M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Puerrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Ruediger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schoenbeck, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, António Dias da; Simakov, D.; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; Van Beuzekom, Martin; van den Brand, J. F. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J.L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    On 14 September 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of

  11. Adaptive noise reduction circuit for a sound reproduction system

    Science.gov (United States)

    Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor)

    1995-01-01

    A noise reduction circuit for a hearing aid having an adaptive filter for producing a signal which estimates the noise components present in an input signal. The circuit includes a second filter for receiving the noise-estimating signal and modifying it as a function of a user's preference or as a function of an expected noise environment. The circuit also includes a gain control for adjusting the magnitude of the modified noise-estimating signal, thereby allowing for the adjustment of the magnitude of the circuit response. The circuit also includes a signal combiner for combining the input signal with the adjusted noise-estimating signal to produce a noise reduced output signal.

  12. The effect of the signal-to-noise ratio and window width on image information in intravenous DSA of various vascular regions

    International Nuclear Information System (INIS)

    Arlart, I.P.; Ertel, R.; Siemens A.G., Erlangen

    1986-01-01

    The diagnostic quality of DSA images depends on numerous factors related to the apparatus and the technique of examination. An improvement in image can be brought about by correct choice of the mask and injected frames, by subsequent correct manipulation of the images and by the choice of the signal-to-noise ratio and window width. In the present study, the effect of these factors was demonstrated on image quality of venous DSA studies in various vascular regions. Practical advice is given for the examination of particular regions and for various diagnostic problems. (orig.)

  13. Electronic noise in CT detectors: Impact on image noise and artifacts.

    Science.gov (United States)

    Duan, Xinhui; Wang, Jia; Leng, Shuai; Schmidt, Bernhard; Allmendinger, Thomas; Grant, Katharine; Flohr, Thomas; McCollough, Cynthia H

    2013-10-01

    The objective of our study was to evaluate in phantoms the differences in CT image noise and artifact level between two types of commercial CT detectors: one with distributed electronics (conventional) and one with integrated electronics intended to decrease system electronic noise. Cylindric water phantoms of 20, 30, and 40 cm in diameter were scanned using two CT scanners, one equipped with integrated detector electronics and one with distributed detector electronics. All other scanning parameters were identical. Scans were acquired at four tube potentials and 10 tube currents. Semianthropomorphic phantoms were scanned to mimic the shoulder and abdominal regions. Images of two patients were also selected to show the clinical values of the integrated detector. Reduction of image noise with the integrated detector depended on phantom size, tube potential, and tube current. Scans that had low detected signal had the greatest reductions in noise, up to 40% for a 30-cm phantom scanned using 80 kV. This noise reduction translated into up to 50% in dose reduction to achieve equivalent image noise. Streak artifacts through regions of high attenuation were reduced by up to 45% on scans obtained using the integrated detector. Patient images also showed superior image quality for the integrated detector. For the same applied radiation level, the use of integrated electronics in a CT detector showed a substantially reduced level of electronic noise, resulting in reductions in image noise and artifacts, compared with detectors having distributed electronics.

  14. Suitable or optimal noise benefits in signal detection

    International Nuclear Information System (INIS)

    Liu, Shujun; Yang, Ting; Tang, Mingchun; Wang, Pin; Zhang, Xinzheng

    2016-01-01

    Highlights: • Six intervals of additive noises divided according to the two constraints. • Derivation of the suitable additive noise to meet the two constraints. • Formulation of the suitable noise for improvability or nonimprovability. • Optimal noises to minimize P FA , maximize P D and maximize the overall improvement. - Abstract: We present an effective way to generate the suitable or the optimal additive noises which can achieve the three goals of the noise enhanced detectability, i.e., the maximum detection probability (P D ), the minimum false alarm probability (P FA ) and the maximum overall improvement of P D and P FA , without increasing P FA and decreasing P D in a binary hypothesis testing problem. The mechanism of our method is that we divide the discrete vectors into six intervals and choose the useful or partial useful vectors from these intervals to form the additive noise according to different requirements. The form of the optimal noise is derived and proven as a randomization of no more than two discrete vectors in our way. Moreover, how to choose suitable and optimal noises from the six intervals are given. Finally, numerous examples are presented to illustrate the theoretical analysis, where the background noises are Gaussian, symmetric and asymmetric Gaussian mixture noise, respectively.

  15. Techniques and software tools for estimating ultrasonic signal-to-noise ratios

    Science.gov (United States)

    Chiou, Chien-Ping; Margetan, Frank J.; McKillip, Matthew; Engle, Brady J.; Roberts, Ronald A.

    2016-02-01

    At Iowa State University's Center for Nondestructive Evaluation (ISU CNDE), the use of models to simulate ultrasonic inspections has played a key role in R&D efforts for over 30 years. To this end a series of wave propagation models, flaw response models, and microstructural backscatter models have been developed to address inspection problems of interest. One use of the combined models is the estimation of signal-to-noise ratios (S/N) in circumstances where backscatter from the microstructure (grain noise) acts to mask sonic echoes from internal defects. Such S/N models have been used in the past to address questions of inspection optimization and reliability. Under the sponsorship of the National Science Foundation's Industry/University Cooperative Research Center at ISU, an effort was recently initiated to improve existing research-grade software by adding graphical user interface (GUI) to become user friendly tools for the rapid estimation of S/N for ultrasonic inspections of metals. The software combines: (1) a Python-based GUI for specifying an inspection scenario and displaying results; and (2) a Fortran-based engine for computing defect signal and backscattered grain noise characteristics. The latter makes use of several models including: the Multi-Gaussian Beam Model for computing sonic fields radiated by commercial transducers; the Thompson-Gray Model for the response from an internal defect; the Independent Scatterer Model for backscattered grain noise; and the Stanke-Kino Unified Model for attenuation. The initial emphasis was on reformulating the research-grade code into a suitable modular form, adding the graphical user interface and performing computations rapidly and robustly. Thus the initial inspection problem being addressed is relatively simple. A normal-incidence pulse/echo immersion inspection is simulated for a curved metal component having a non-uniform microstructure, specifically an equiaxed, untextured microstructure in which the average

  16. A de-noising algorithm based on wavelet threshold-exponential adaptive window width-fitting for ground electrical source airborne transient electromagnetic signal

    Science.gov (United States)

    Ji, Yanju; Li, Dongsheng; Yu, Mingmei; Wang, Yuan; Wu, Qiong; Lin, Jun

    2016-05-01

    The ground electrical source airborne transient electromagnetic system (GREATEM) on an unmanned aircraft enjoys considerable prospecting depth, lateral resolution and detection efficiency, etc. In recent years it has become an important technical means of rapid resources exploration. However, GREATEM data are extremely vulnerable to stationary white noise and non-stationary electromagnetic noise (sferics noise, aircraft engine noise and other human electromagnetic noises). These noises will cause degradation of the imaging quality for data interpretation. Based on the characteristics of the GREATEM data and major noises, we propose a de-noising algorithm utilizing wavelet threshold method and exponential adaptive window width-fitting. Firstly, the white noise is filtered in the measured data using the wavelet threshold method. Then, the data are segmented using data window whose step length is even logarithmic intervals. The data polluted by electromagnetic noise are identified within each window based on the discriminating principle of energy detection, and the attenuation characteristics of the data slope are extracted. Eventually, an exponential fitting algorithm is adopted to fit the attenuation curve of each window, and the data polluted by non-stationary electromagnetic noise are replaced with their fitting results. Thus the non-stationary electromagnetic noise can be effectively removed. The proposed algorithm is verified by the synthetic and real GREATEM signals. The results show that in GREATEM signal, stationary white noise and non-stationary electromagnetic noise can be effectively filtered using the wavelet threshold-exponential adaptive window width-fitting algorithm, which enhances the imaging quality.

  17. A Class of Stochastic Hybrid Systems with State-Dependent Switching Noise

    DEFF Research Database (Denmark)

    Leth, John-Josef; Rasmussen, Jakob Gulddahl; Schiøler, Henrik

    2012-01-01

    In this paper, we develop theoretical results based on a proposed method for modeling switching noise for a class of hybrid systems with piecewise linear partitioned state space, and state-depending switching. We devise a stochastic model of such systems, whose global dynamics is governed...

  18. Critical ratios in harbor porpoises (Phocoena phocoena) for tonal signals between 0.315 and 150 kHz in random Gaussian white noise.

    Science.gov (United States)

    Kastelein, Ronald A; Wensveen, Paul J; Hoek, Lean; Au, Whitlow W L; Terhune, John M; de Jong, Christ A F

    2009-09-01

    A psychoacoustic behavioral technique was used to determine the critical ratios (CRs) of two harbor porpoises for tonal signals with frequencies between 0.315 and 150 kHz, in random Gaussian white noise. The masked 50% detection hearing thresholds were measured using a "go/no-go" response paradigm and an up-down staircase psychometric method. CRs were determined at one masking noise level for each test frequency and were similar in both animals. For signals between 0.315 and 4 kHz, the CRs were relatively constant at around 18 dB. Between 4 and 150 kHz the CR increased gradually from 18 to 39 dB ( approximately 3.3 dB/octave). Generally harbor porpoises can detect tonal signals in Gaussian white noise slightly better than most odontocetes tested so far. By combining the mean CRs found in the present study with the spectrum level of the background noise levels at sea, the basic audiogram, and the directivity index, the detection threshold levels of harbor porpoises for tonal signals in various sea states can be calculated.

  19. Speed of response, pile-up and signal to noise ratio in liquid ionization calorimeters

    International Nuclear Information System (INIS)

    Colas, J.

    1989-11-01

    Although liquid ionization calorimeters have been mostly used up to now with slow readout, their signals have a fast rise time. However, it is not easy to get this fast component of the pulse out of the calorimeter. For this purpose a new connection scheme of the electrodes, the electrostatic transformer, is presented and discussed. This technique reduces the detector capacitance while keeping the number of channels at an acceptable level. Also it allows the use of transmission lines to bring signals from the electrodes to the preamplifiers which could be located in an accessible area. With room temperature liquids the length of these cables can be short, keeping the added noise at a reasonable level. Contributions to the error on the energy measurement from pile up and electronics noise are studied in detail. Even on this issue, room temperature liquids (TMP/TMS) are found to be competitive with cold liquid argon at the expense of a moderately higher gap voltage

  20. Speed of response, pile-up, and signal to noise ratio in liquid ionization calorimeters

    International Nuclear Information System (INIS)

    Colas, J.

    1989-06-01

    Although liquid ionization calorimeters have been mostly used up to now with slow readout, their signals have a fast rise time. However, it is not easy to get this fast component of the pulse out of the calorimeter. For this purpose a new connection scheme of the electrodes, the ''electrostatic transformer,'' is presented. This technique reduces the detector capacitance while keeping the number of channels at an acceptable level. Also it allows the use of transmission lines to bring signals from the electrodes to the preamplifiers which could be located in an accessible area. With room temperature liquids the length of these cables can be short, keeping the added noise at a reasonable level. Contributions to the error on the energy measurement from pile up and electronics noise are studied in detail. Even on this issue, room temperature liquids (TMP/TMS) are found to be competitive with cold liquid argon at the expense of a moderately higher gap voltage. 5 refs., 9 figs., 2 tabs

  1. Average bit error probability of binary coherent signaling over generalized fading channels subject to additive generalized gaussian noise

    KAUST Repository

    Soury, Hamza

    2012-06-01

    This letter considers the average bit error probability of binary coherent signaling over flat fading channels subject to additive generalized Gaussian noise. More specifically, a generic closed form expression in terms of the Fox\\'s H function is offered for the extended generalized-K fading case. Simplifications for some special fading distributions such as generalized-K fading and Nakagami-m fading and special additive noise distributions such as Gaussian and Laplacian noise are then presented. Finally, the mathematical formalism is illustrated by some numerical examples verified by computer based simulations for a variety of fading and additive noise parameters. © 2012 IEEE.

  2. Simulation and Noise Analysis of Multimedia Transmission in Optical CDMA Computer Networks

    Directory of Open Access Journals (Sweden)

    Nasaruddin Nasaruddin

    2013-09-01

    Full Text Available This paper simulates and analyzes noise of multimedia transmission in a flexible optical code division multiple access (OCDMA computer network with different quality of service (QoS requirements. To achieve multimedia transmission in OCDMA, we have proposed strict variable-weight optical orthogonal codes (VW-OOCs, which can guarantee the smallest correlation value of one by the optimal design. In developing multimedia transmission for computer network, a simulation tool is essential in analyzing the effectiveness of various transmissions of services. In this paper, implementation models are proposed to analyze the multimedia transmission in the representative of OCDMA computer networks by using MATLAB simulink tools. Simulation results of the models are discussed including spectrums outputs of transmitted signals, superimposed signals, received signals, and eye diagrams with and without noise. Using the proposed models, multimedia OCDMA computer network using the strict VW-OOC is practically evaluated. Furthermore, system performance is also evaluated by considering avalanche photodiode (APD noise and thermal noise. The results show that the system performance depends on code weight, received laser power, APD noise, and thermal noise which should be considered as important parameters to design and implement multimedia transmission in OCDMA computer networks.

  3. Simulation and Noise Analysis of Multimedia Transmission in Optical CDMA Computer Networks

    Directory of Open Access Journals (Sweden)

    Nasaruddin

    2009-11-01

    Full Text Available This paper simulates and analyzes noise of multimedia transmission in a flexible optical code division multiple access (OCDMA computer network with different quality of service (QoS requirements. To achieve multimedia transmission in OCDMA, we have proposed strict variable-weight optical orthogonal codes (VW-OOCs, which can guarantee the smallest correlation value of one by the optimal design. In developing multimedia transmission for computer network, a simulation tool is essential in analyzing the effectiveness of various transmissions of services. In this paper, implementation models are proposed to analyze the multimedia transmission in the representative of OCDMA computer networks by using MATLAB simulink tools. Simulation results of the models are discussed including spectrums outputs of transmitted signals, superimposed signals, received signals, and eye diagrams with and without noise. Using the proposed models, multimedia OCDMA computer network using the strict VW-OOC is practically evaluated. Furthermore, system performance is also evaluated by considering avalanche photodiode (APD noise and thermal noise. The results show that the system performance depends on code weight, received laser power, APD noise, and thermal noise which should be considered as important parameters to design and implement multimedia transmission in OCDMA computer networks.

  4. Identification of neutron noise sources in a boiling water reactor

    International Nuclear Information System (INIS)

    Sides, W.H. Jr.; Mathis, M.V.; Smith, C.M.

    1977-01-01

    Measurements were made at units 2 and 3 of the Browns Ferry Nuclear Power Plant in order to characterize the noise signatures of the neutron and process signals and to determine the usefulness of such signatures for anomaly detection in BWR-4s. Previous measurements and theoretical analyses of BWR noise by others were concerned with the determination of steam velocity and void fraction (using the local component of neutron noise) and with the sources of global noise. The work described is under a five-part program to develop a complete and systematic analysis and representation of BWR neutron and process noise through complementary measurements and stochastic model developments. The parts are: (1) recording as many neutron detector and process noise signals as are available in a BWR-4; (2) reducing these data to noise signatures in order to perform an empirical analysis of these signatures, and documenting the relationships between the signals from spatially separated neutron detectors and between neutron and process variables; (3) developing spatially dependent neutronic models coupled with thermal-hydraulic models to aid in interpreting the observed relationships among the measured noise signatures, (4) comparing measured noise signatures with model predictions to obtain additional insight into BWR-4 dynamic behavior and to validate the models; and (5) using these models to predict the sensitivity of noise monitoring for detection, surveillance, and diagnosis of postulated in-core anomalies in BWRs. The paper describes the procedures used to obtain the noise recordings and presents initial empirical analysis and observations pertaining to the noise signatures and the relationships between several noise variables in the 0.01- to 1-Hz range. The mathematical models have not been developed sufficiently to report theoretical results or to compare measured spectra with model predictions at this time

  5. General mechanism for the 1 /f noise

    Science.gov (United States)

    Yadav, Avinash Chand; Ramaswamy, Ramakrishna; Dhar, Deepak

    2017-08-01

    We consider the response of a memoryless nonlinear device that acts instantaneously, converting an input signal ξ (t ) into an output η (t ) at the same time t . For input Gaussian noise with power-spectrum 1 /fα , the nonlinearity can modify the spectral index of the output to give a spectrum that varies as 1 /fα ' with α'≠α . We show that the value of α' depends on the nonlinear transformation and can be tuned continuously. This provides a general mechanism for the ubiquitous 1 /f noise found in nature.

  6. Active noise control primer

    CERN Document Server

    Snyder, Scott D

    2000-01-01

    Active noise control - the reduction of noise by generating an acoustic signal that actively interferes with the noise - has become an active area of basic research and engineering applications. The aim of this book is to present all of the basic knowledge one needs for assessing how useful active noise control will be for a given problem and then to provide some guidance for designing, setting up, and tuning an active noise-control system. Written for students who have no prior knowledge of acoustics, signal processing, or noise control but who do have a reasonable grasp of basic physics and mathematics, the book is short and descriptive. It leaves for more advanced texts or research monographs all mathematical details and proofs concerning vibrations, signal processing and the like. The book can thus be used in independent study, in a classroom with laboratories, or in conjunction with a kit for experiment or demonstration. Topics covered include: basic acoustics; human perception and sound; sound intensity...

  7. Chronic anthropogenic noise disrupts glucocorticoid signaling and has multiple effects on fitness in an avian community.

    Science.gov (United States)

    Kleist, Nathan J; Guralnick, Robert P; Cruz, Alexander; Lowry, Christopher A; Francis, Clinton D

    2018-01-23

    Anthropogenic noise is a pervasive pollutant that decreases environmental quality by disrupting a suite of behaviors vital to perception and communication. However, even within populations of noise-sensitive species, individuals still select breeding sites located within areas exposed to high noise levels, with largely unknown physiological and fitness consequences. We use a study system in the natural gas fields of northern New Mexico to test the prediction that exposure to noise causes glucocorticoid-signaling dysfunction and decreases fitness in a community of secondary cavity-nesting birds. In accordance with these predictions, and across all species, we find strong support for noise exposure decreasing baseline corticosterone in adults and nestlings and, conversely, increasing acute stressor-induced corticosterone in nestlings. We also document fitness consequences with increased noise in the form of reduced hatching success in the western bluebird ( Sialia mexicana ), the species most likely to nest in noisiest environments. Nestlings of all three species exhibited accelerated growth of both feathers and body size at intermediate noise amplitudes compared with lower or higher amplitudes. Our results are consistent with recent experimental laboratory studies and show that noise functions as a chronic, inescapable stressor. Anthropogenic noise likely impairs environmental risk perception by species relying on acoustic cues and ultimately leads to impacts on fitness. Our work, when taken together with recent efforts to document noise across the landscape, implies potential widespread, noise-induced chronic stress coupled with reduced fitness for many species reliant on acoustic cues.

  8. Stochastic resonance in an asymmetric bistable system driven by multiplicative colored noise and additive white noise

    International Nuclear Information System (INIS)

    Zhou Bingchang; Xu Wei

    2008-01-01

    The phenomenon of stochastic resonance (SR) in a bistable system driven by multiplicative colored and additive white noises and a periodic rectangular signal with a constant component is studied by using the unified colored noise approximation and the theory of signal-to-noise (SNR) in the adiabatic limit. The analytic expression of the SNR is obtained for arbitrary signal amplitude without being restricted to small amplitudes. The SNR is a non-monotonic function of intensities of multiplicative colored and additive white noises and correlation time of multiplicative colored noise, so SR exhibits in the bistable system. The effects of potential asymmetry r and correlation time τ of multiplicative colored noise on SNR are opposite. Moreover, It is more sensitive to control SR through adjusting the additive white noise intensity D than adjusting the multiplicative colored noise intensity Q

  9. Reactor noise monitoring device

    International Nuclear Information System (INIS)

    Yamanaka, Hiroto.

    1990-01-01

    The present invention concerns a reactor noise monitoring device by detecting abnormal sounds in background noises. Vibration sounds detected by accelerometers are applied to a loose parts detector. The detector generates high alarm if there are sudden impact sounds in the background noises and applies output signals to an accumulation device. If there is slight impact sounds in the vicinity of any of the accelerometers, the accumulation device accumulates the abnormal sounds assumed to be generated from an identical site while synchronizing the waveforms for all of the channels. Then, the device outputs signals in which the background noises are cancelled, as detection signals. Therefore, S/N ratio can be improved and the abnormal sounds contained in the background noises can be detected, to thereby improve the accuracy for estimating the position where the abnormal sounds are generated. (I.S.)

  10. A filter apparatus for actively reducing noise

    NARCIS (Netherlands)

    Berkhoff, Arthur P.; Nijsse, G.

    2006-01-01

    A filter apparatus for reducing noise from a primary noise source, comprising a secondary source signal connector for generating secondary noise to reduce said primary noise and a sensor connector for connecting to a sensor for measuring said primary and secondary noise as an error signal. A first

  11. Ultra-low noise miniaturized neural amplifier with hardware averaging.

    Science.gov (United States)

    Dweiri, Yazan M; Eggers, Thomas; McCallum, Grant; Durand, Dominique M

    2015-08-01

    Peripheral nerves carry neural signals that could be used to control hybrid bionic systems. Cuff electrodes provide a robust and stable interface but the recorded signal amplitude is small (concept of hardware averaging to nerve recordings obtained with cuff electrodes. An optimization procedure is developed to minimize noise and power simultaneously. The novel design was based on existing neural amplifiers (Intan Technologies, LLC) and is validated with signals obtained from the FINE in chronic dog experiments. We showed that hardware averaging leads to a reduction in the total recording noise by a factor of 1/√N or less depending on the source resistance. Chronic recording of physiological activity with FINE using the presented design showed significant improvement on the recorded baseline noise with at least two parallel operation transconductance amplifiers leading to a 46.1% reduction at N = 8. The functionality of these recordings was quantified by the SNR improvement and shown to be significant for N = 3 or more. The present design was shown to be capable of generating hardware averaging on noise improvement for neural recording with cuff electrodes, and can accommodate the presence of high source impedances that are associated with the miniaturized contacts and the high channel count in electrode arrays. This technique can be adopted for other applications where miniaturized and implantable multichannel acquisition systems with ultra-low noise and low power are required.

  12. Modeling of Temperature-Dependent Noise in Silicon Nanowire FETs including Self-Heating Effects

    Directory of Open Access Journals (Sweden)

    P. Anandan

    2014-01-01

    Full Text Available Silicon nanowires are leading the CMOS era towards the downsizing limit and its nature will be effectively suppress the short channel effects. Accurate modeling of thermal noise in nanowires is crucial for RF applications of nano-CMOS emerging technologies. In this work, a perfect temperature-dependent model for silicon nanowires including the self-heating effects has been derived and its effects on device parameters have been observed. The power spectral density as a function of thermal resistance shows significant improvement as the channel length decreases. The effects of thermal noise including self-heating of the device are explored. Moreover, significant reduction in noise with respect to channel thermal resistance, gate length, and biasing is analyzed.

  13. Dynamical response of the Ising model to the time dependent magnetic field with white noise

    Science.gov (United States)

    Akıncı, Ümit

    2018-03-01

    The effect of the white noise in time dependent magnetic field on the dynamic behavior of the Ising model has been investigated within the effective field theory based on Glauber type of stochastic process. Discrete white noise has been chosen from both Gaussian and uniform probability distributions. Detailed investigation on probability distribution of dynamical order parameter results that, both type of noise distributions yield the same probability distribution related to the dynamical order parameter, namely Gaussian probability distribution. The variation of the parameters that describe the probability distribution of dynamical order parameter (mean value and standard deviation) with temperature and strength of the noise have been inspected. Also, it has been shown that, rising strength of the noise can induce dynamical phase transition in the system.

  14. A complex symbol signal-to-noise ratio estimator and its performance

    Science.gov (United States)

    Feria, Y.

    1994-01-01

    This article presents an algorithm for estimating the signal-to-noise ratio (SNR) of signals that contain data on a downconverted suppressed carrier or the first harmonic of a square-wave subcarrier. This algorithm can be used to determine the performance of the full-spectrum combiner for the Galileo S-band (2.2- to 2.3-GHz) mission by measuring the input and output symbol SNR. A performance analysis of the algorithm shows that the estimator can estimate the complex symbol SNR using 10,000 symbols at a true symbol SNR of -5 dB with a mean of -4.9985 dB and a standard deviation of 0.2454 dB, and these analytical results are checked by simulations of 100 runs with a mean of -5.06 dB and a standard deviation of 0.2506 dB.

  15. Acoustics of fish shelters: background noise and signal-to-noise ratio.

    Science.gov (United States)

    Lugli, Marco

    2014-12-01

    Fish shelters (flat stones, shells, artificial covers, etc., with a hollow beneath) increase the sound pressure levels of low frequency sounds (noise ratio (SNR) in the nest. Background noise amplification by the shelter was examined under both laboratory (stones and shells) and field (stones) conditions, and the SNR of tones inside the nest cavity was measured by performing acoustic tests on stones in the stream. Stone and shell shelters amplify the background noise pressure levels inside the cavity with comparable gains and at similar frequencies of an active sound source. Inside the cavity of stream stones, the mean SNR of tones increased significantly below 125 Hz and peaked at 65 Hz (+10 dB). Implications for fish acoustic communication inside nest enclosures are discussed.

  16. Noise-intolerance and state-dependent factors in patients with whiplash associated disorder

    NARCIS (Netherlands)

    Blokhorst, M.G.B.G.; Meeldijk, S.J.; Luijtelaar, E.L.J.M. van; Toor, T. van; Lousberg, R.; Ganzevles, P.

    2005-01-01

    An experiment was carried out in which the level of noise-intolerance in patients with a Whiplash Associated Disorder (WAD) was compared to healthy matched control subjects. In addition, the relationship between state-dependent factors (as headache, neck pain, fatigue and tension) and

  17. An all digital phase locked loop for synchronization of a sinusoidal signal embedded in white Gaussian noise

    Science.gov (United States)

    Reddy, C. P.; Gupta, S. C.

    1973-01-01

    An all digital phase locked loop which tracks the phase of the incoming sinusoidal signal once per carrier cycle is proposed. The different elements and their functions and the phase lock operation are explained in detail. The nonlinear difference equations which govern the operation of the digital loop when the incoming signal is embedded in white Gaussian noise are derived, and a suitable model is specified. The performance of the digital loop is considered for the synchronization of a sinusoidal signal. For this, the noise term is suitably modelled which allows specification of the output probabilities for the two level quantizer in the loop at any given phase error. The loop filter considered increases the probability of proper phase correction. The phase error states in modulo two-pi forms a finite state Markov chain which enables the calculation of steady state probabilities, RMS phase error, transient response and mean time for cycle skipping.

  18. LIMPIC: a computational method for the separation of protein MALDI-TOF-MS signals from noise

    Directory of Open Access Journals (Sweden)

    Di Nicola Marta

    2007-03-01

    Full Text Available Abstract Background Mass spectrometry protein profiling is a promising tool for biomarker discovery in clinical proteomics. However, the development of a reliable approach for the separation of protein signals from noise is required. In this paper, LIMPIC, a computational method for the detection of protein peaks from linear-mode MALDI-TOF data is proposed. LIMPIC is based on novel techniques for background noise reduction and baseline removal. Peak detection is performed considering the presence of a non-homogeneous noise level in the mass spectrum. A comparison of the peaks collected from multiple spectra is used to classify them on the basis of a detection rate parameter, and hence to separate the protein signals from other disturbances. Results LIMPIC preprocessing proves to be superior than other classical preprocessing techniques, allowing for a reliable decomposition of the background noise and the baseline drift from the MALDI-TOF mass spectra. It provides lower coefficient of variation associated with the peak intensity, improving the reliability of the information that can be extracted from single spectra. Our results show that LIMPIC peak-picking is effective even in low protein concentration regimes. The analytical comparison with commercial and freeware peak-picking algorithms demonstrates its superior performances in terms of sensitivity and specificity, both on in-vitro purified protein samples and human plasma samples. Conclusion The quantitative information on the peak intensity extracted with LIMPIC could be used for the recognition of significant protein profiles by means of advanced statistic tools: LIMPIC might be valuable in the perspective of biomarker discovery.

  19. Novel Acoustic Feedback Cancellation Approaches In Hearing Aid Applications Using Probe Noise and Probe Noise Enhancement

    DEFF Research Database (Denmark)

    Guo, Meng; Jensen, Søren Holdt; Jensen, Jesper

    2012-01-01

    . In many cases, this bias problem causes the cancellation system to fail. The traditional probe noise approach, where a noise signal is added to the loudspeaker signal can, in theory, prevent the bias. However, in practice, the probe noise level must often be so high that the noise is clearly audible...... and annoying; this makes the traditional probe noise approach less useful in practical applications. In this work, we explain theoretically the decreased convergence rate when using low-level probe noise in the traditional approach, before we propose and study analytically two new probe noise approaches...... the proposed approaches much more attractive in practical applications. We demonstrate this through a simulation experiment with audio signals in a hearing aid acoustic feedback cancellation system, where the convergence rate is improved by as much as a factor of 10....

  20. Influence of Signal-to-Noise Ratio and Point Spread Function on Limits of Super-Resolution

    NARCIS (Netherlands)

    Pham, T.Q.; Vliet, L.J. van; Schutte, K.

    2005-01-01

    This paper presents a method to predict the limit of possible resolution enhancement given a sequence of low resolution images. Three important parameters influence the outcome of this limit: the total Point Spread Function (PSF), the Signal-to-Noise Ratio (SNR) and the number of input images.

  1. Influence of signal-to-noise ratio and point spread function on limits of super-resolution

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.; Schutte, K.

    2005-01-01

    This paper presents a method to predict the limit of possible resolution enhancement given a sequence of lowresolution images. Three important parameters influence the outcome of this limit: the total Point Spread Function (PSF), the Signal-to-Noise Ratio (SNR) and the number of input images.

  2. High signal to noise ratio THz spectroscopy with ASOPS and signal processing schemes for mapping and controlling molecular and bulk relaxation processes

    International Nuclear Information System (INIS)

    Hadjiloucas, S; Walker, G C; Bowen, J W; Becerra, V M; Zafiropoulos, A; Galvao, R K H

    2009-01-01

    Asynchronous Optical Sampling has the potential to improve signal to noise ratio in THz transient sperctrometry. The design of an inexpensive control scheme for synchronising two femtosecond pulse frequency comb generators at an offset frequency of 20 kHz is discussed. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing recorded THz transients in the time and frequency domain are outlined. Finally, possibilities for femtosecond pulse shaping using genetic algorithms are mentioned.

  3. High signal to noise ratio THz spectroscopy with ASOPS and signal processing schemes for mapping and controlling molecular and bulk relaxation processes

    Energy Technology Data Exchange (ETDEWEB)

    Hadjiloucas, S; Walker, G C; Bowen, J W; Becerra, V M [Cybernetics, School of Systems Engineering, University of Reading, RG6 6AY (United Kingdom); Zafiropoulos, A [Biosystems Engineering Department, School of Agricultural Technology, Technological Educational Institute of Larissa, 411 10, Larissa (Greece); Galvao, R K H, E-mail: s.hadjiloucas@reading.ac.u [Divisao de Engenharia Eletronica, Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, SP, 12228-900 Brazil (Brazil)

    2009-08-01

    Asynchronous Optical Sampling has the potential to improve signal to noise ratio in THz transient sperctrometry. The design of an inexpensive control scheme for synchronising two femtosecond pulse frequency comb generators at an offset frequency of 20 kHz is discussed. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing recorded THz transients in the time and frequency domain are outlined. Finally, possibilities for femtosecond pulse shaping using genetic algorithms are mentioned.

  4. Measurement of two-phase flow variables in a BWR by analysis of in-core neutron detector noise signals

    International Nuclear Information System (INIS)

    Stekelenburg, A.J.C.; Hagen, T.H.J.J. van der

    1996-01-01

    In this paper, the state of the art of the measurement of two-phase flow variables in a boiling water reactor (BWR) by analysis of in-core neutron detector noise signals is given. It is concluded that the neutronic processes involved in neutron noise are quite well understood, but that little is known about the density fluctuations in two-phase flow which are the main cause of the neutron noise. For this reason, the neutron noise measurements, like the well known two-detector velocity measurements, are still difficult to interpret. By analyzing neutron noise measurements in a natural circulation cooled BWR, it is illustrated that, once a theory on the density fluctuations is developed, two-phase flow can be monitored with a single in-core detector. (author). 70 refs, 4 figs

  5. Estimating achievable signal-to-noise ratios of MRI transmit-receive coils from radiofrequency power measurements: applications in quality control

    International Nuclear Information System (INIS)

    Redpath, T.W.

    2000-01-01

    The inverse relationship between the radiofrequency (RF) power needed to transmit a 90 deg. RF pulse, and the signal-to-noise ratio (SNR) available from a transmit-receive RF coil is well known. The theory is restated and a formula given for the signal-to-noise ratio from water, achievable from a single-shot MRI experiment, in terms of the net forward RF power needed for a rectangular 90 deg. RF pulse of known shape and duration. The result is normalized to a signal bandwidth of 1 Hz and a sample mass of 1 g. The RF power information needed is available on most commercial scanners, as it is used to calculate specific absorption rates for RF tissue heating. The achievable SNR figure will normally be larger that that actually observed, mainly because of receiver noise, but also because of inaccuracies in setting RF pulse angles, and relaxation effects. Phantom experiments were performed on the transmit-receive RF head coil of a commercial MRI system at 0.95 T using a projection method. The measured SNR agreed with that expected from the formula for achievable SNR once a correction was made for the noise figure of the receiving chain. Comparisons of measured SNR figures with those calculated from RF power measurements are expected to be of value in acceptance testing and quality control. (author)

  6. Tracking of Nonstationary Noise Based on Data-Driven Recursive Noise Power Estimation

    NARCIS (Netherlands)

    Erkelens, J.S.; Heusdens, R.

    2008-01-01

    This paper considers estimation of the noise spectral variance from speech signals contaminated by highly nonstationary noise sources. The method can accurately track fast changes in noise power level (up to about 10 dB/s). In each time frame, for each frequency bin, the noise variance estimate is

  7. Active noise cancellation in hearing devices

    DEFF Research Database (Denmark)

    2013-01-01

    Disclosed is a hearing device system comprising at least one hearing aid circuitry and at least one active noise cancellation unit, the at least one hearing aid circuitry comprises at least one input transducer adapted to convert a first audio signal to an electric audio signal; a signal processor...... connected to the at least one input transducer and adapted to process said electric audio signal by at least partially correcting for a hearing loss of a user; an output transducer adapted to generate from at least said processed electric audio signal a sound pressure in an ear canal of the user, whereby...... the generated sound pressure is at least partially corrected for the hearing loss of the user; ; the at least one active noise cancellation unit being adapted to provide an active noise cancellation signal adapted to perform active noise cancellation of an acoustical signal entering the ear canal in addition...

  8. Ketamine-Induced Changes in the Signal and Noise of Rule Representation in Working Memory by Lateral Prefrontal Neurons.

    Science.gov (United States)

    Ma, Liya; Skoblenick, Kevin; Seamans, Jeremy K; Everling, Stefan

    2015-08-19

    Working memory dysfunction is an especially debilitating symptom in schizophrenia. The NMDA antagonist ketamine has been successfully used to model working memory deficits in both rodents and nonhuman primates, but how it affects the strength and the consistency of working memory representations remains unclear. Here we recorded single-neuron activity in the lateral prefrontal cortex of macaque monkeys before and after the administration of subanesthetic doses of ketamine in a rule-based working memory task. The rule was instructed with a color cue before each delay period and dictated the correct prosaccadic or antisaccadic response to a peripheral stimulus appearing after the delay. We found that acute ketamine injections both weakened the rule signal across all delay periods and amplified the trial-to-trial variance in neural activities (i.e., noise), both within individual neurons and at the ensemble level, resulting in impaired performance. In the minority of postinjection trials when the animals responded correctly, the preservation of the signal strength during the delay periods was predictive of their subsequent success. Our findings suggest that NMDA receptor function may be critical for establishing the optimal signal-to-noise ratio in information representation by ensembles of prefrontal cortex neurons. In schizophrenia patients, working memory deficit is highly debilitating and currently without any efficacious treatment. An improved understanding of the pathophysiology of this symptom may provide critical information to treatment development. The NMDA antagonist ketamine, when injected at a subanesthetic dose, produces working memory deficit and other schizophrenia-like symptoms in humans and other animals. Here we investigated the effects of ketamine on the representation of abstract rules by prefrontal neurons, while macaque monkeys held the rules in working memory before responding accordingly. We found that ketamine weakened the signal-to-noise

  9. Wideband Low Noise Amplifiers Exploiting Thermal Noise Cancellation

    NARCIS (Netherlands)

    Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram

    2005-01-01

    Low Noise Amplifiers (LNAs) are commonly used to amplify signals that are too weak for direct processing for example in radio or cable receivers. Traditionally, low noise amplifiers are implemented via tuned amplifiers, exploiting inductors and capacitors in resonating LC-circuits. This can render

  10. A method of background noise cancellation for SQUID applications

    International Nuclear Information System (INIS)

    He, D F; Yoshizawa, M

    2003-01-01

    When superconducting quantum inference devices (SQUIDs) operate in low-cost shielding or unshielded environments, the environmental background noise should be reduced to increase the signal-to-noise ratio. In this paper we present a background noise cancellation method based on a spectral subtraction algorithm. We first measure the background noise and estimate the noise spectrum using fast Fourier transform (FFT), then we subtract the spectrum of background noise from that of the observed noisy signal and the signal can be reconstructed by inverse FFT of the subtracted spectrum. With this method, the background noise, especially stationary inferences, can be suppressed well and the signal-to-noise ratio can be increased. Using high-T C radio-frequency SQUID gradiometer and magnetometer, we have measured the magnetic field produced by a watch, which was placed 35 cm under a SQUID. After noise cancellation, the signal-to-noise ratio could be greatly increased. We also used this method to eliminate the vibration noise of a cryocooler SQUID

  11. Gamma noise in CCDs

    International Nuclear Information System (INIS)

    Autio, G.W.; Bafico, M.A.

    1975-01-01

    The overall results indicated that charge coupled devices (CCD) used to read out detector signals or as signal processing electronics in future space sensors can operate real time in a high ionising radiation environment. Future work should be directed towards hardening the CCDs during the fabrication processes in order that they may survive total radiation doses up to 1 x 10 6 Rad (Si) and toward investigating ionising radiation effects in CCDs that are coupled with i.r. detectors. CCD devices employed to read out detector signals can be made capable of handling radiation induced excess noise and high false alarm rates generated in the detector elements. Ionising radiation effects induced in the detectors are expected to dominate those generated directly in the CCD readout structure; how much depends on the relative size of the detector. The low frequency γ induced excess noise measured in the CCD/MOSFET structure could cause problems for space sensors required to operate in real time only at the very high γ flux levels. Discrimination and circumvention techniques at the CCD ERO output are possible. γ pulses measured at the CCD ERO output were distributed in amplitude and exhibited variable pulse widths (some were many times a clock period). (author)

  12. Space-dependent effects of motion on the standard deviation of fMRI signals : a simulation study.

    NARCIS (Netherlands)

    Renken, R; Muresan, L; Duifhuis, H; Roerdink, JBTM; Yaffe, MK; Antonuk, LE

    2003-01-01

    In fMRI, any fluctuation of signal intensity, not recognized as a result of a specific task, is treated as noise. One source for "noise" is subject motion. Normally, motion effects are reduced by applying realignment. We investigate how apt a realignment procedure is in removing motion-related

  13. Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography

    International Nuclear Information System (INIS)

    Thitaikumar, Arun; Krouskop, Thomas A; Ophir, Jonathan

    2007-01-01

    In axial-shear strain elastography, the local axial-shear strain resulting from the application of quasi-static axial compression to an inhomogeneous material is imaged. In this paper, we investigated the image quality of the axial-shear strain estimates in terms of the signal-to-noise ratio (SNR asse ) and contrast-to-noise ratio (CNR asse ) using simulations and experiments. Specifically, we investigated the influence of the system parameters (beamwidth, transducer element pitch and bandwidth), signal processing parameters (correlation window length and axial window shift) and mechanical parameters (Young's modulus contrast, applied axial strain) on the SNR asse and CNR asse . The results of the study show that the CNR asse (SNR asse ) is maximum for axial-shear strain values in the range of 0.005-0.03. For the inclusion/background modulus contrast range considered in this study ( asse (SNR asse ) is maximum for applied axial compressive strain values in the range of 0.005%-0.03%. This suggests that the RF data acquired during axial elastography can be used to obtain axial-shear strain elastograms, since this range is typically used in axial elastography as well. The CNR asse (SNR asse ) remains almost constant with an increase in the beamwidth while it increases as the pitch increases. As expected, the axial shift had only a weak influence on the CNR asse (SNR asse ) of the axial-shear strain estimates. We observed that the differential estimates of the axial-shear strain involve a trade-off between the CNR asse (SNR asse ) and the spatial resolution only with respect to pitch and not with respect to signal processing parameters. Simulation studies were performed to confirm such an observation. The results demonstrate a trade-off between CNR asse and the resolution with respect to pitch

  14. Stochastic resonance in a piecewise nonlinear model driven by multiplicative non-Gaussian noise and additive white noise

    Science.gov (United States)

    Guo, Yongfeng; Shen, Yajun; Tan, Jianguo

    2016-09-01

    The phenomenon of stochastic resonance (SR) in a piecewise nonlinear model driven by a periodic signal and correlated noises for the cases of a multiplicative non-Gaussian noise and an additive Gaussian white noise is investigated. Applying the path integral approach, the unified colored noise approximation and the two-state model theory, the analytical expression of the signal-to-noise ratio (SNR) is derived. It is found that conventional stochastic resonance exists in this system. From numerical computations we obtain that: (i) As a function of the non-Gaussian noise intensity, the SNR is increased when the non-Gaussian noise deviation parameter q is increased. (ii) As a function of the Gaussian noise intensity, the SNR is decreased when q is increased. This demonstrates that the effect of the non-Gaussian noise on SNR is different from that of the Gaussian noise in this system. Moreover, we further discuss the effect of the correlation time of the non-Gaussian noise, cross-correlation strength, the amplitude and frequency of the periodic signal on SR.

  15. Intrinsic low pass filtering improves signal-to-noise ratio in critical-point flexure biosensors

    International Nuclear Information System (INIS)

    Jain, Ankit; Alam, Muhammad Ashraful

    2014-01-01

    A flexure biosensor consists of a suspended beam and a fixed bottom electrode. The adsorption of the target biomolecules on the beam changes its stiffness and results in change of beam's deflection. It is now well established that the sensitivity of sensor is maximized close to the pull-in instability point, where effective stiffness of the beam vanishes. The question: “Do the signal-to-noise ratio (SNR) and the limit-of-detection (LOD) also improve close to the instability point?”, however remains unanswered. In this article, we systematically analyze the noise response to evaluate SNR and establish LOD of critical-point flexure sensors. We find that a flexure sensor acts like an effective low pass filter close to the instability point due to its relatively small resonance frequency, and rejects high frequency noise, leading to improved SNR and LOD. We believe that our conclusions should establish the uniqueness and the technological relevance of critical-point biosensors.

  16. Active noise cancellation of low frequency noise propagating in a duct

    Directory of Open Access Journals (Sweden)

    Farhad Forouharmajd

    2012-01-01

    Conclusions: With regard to the wide range of frequencies of different noise sources, having optimized circumstances in the duct, microphone location on the duct body or even the distance of the speakers may be important in signal processing, noise sampling and anti noise production.

  17. Removing the Influence of Shimmer in the Calculation of Harmonics-To-Noise Ratios Using Ensemble-Averages in Voice Signals

    Directory of Open Access Journals (Sweden)

    Carlos Ferrer

    2009-01-01

    Full Text Available Harmonics-to-noise ratios (HNRs are affected by general aperiodicity in voiced speech signals. To specifically reflect a signal-to-additive-noise ratio, the measurement should be insensitive to other periodicity perturbations, like jitter, shimmer, and waveform variability. The ensemble averaging technique is a time-domain method which has been gradually refined in terms of its sensitivity to jitter and waveform variability and required number of pulses. In this paper, shimmer is introduced in the model of the ensemble average, and a formula is derived which allows the reduction of shimmer effects in HNR calculation. The validity of the technique is evaluated using synthetically shimmered signals, and the prerequisites (glottal pulse positions and amplitudes are obtained by means of fully automated methods. The results demonstrate the feasibility and usefulness of the correction.

  18. Development of electronic system for reactivity measurement and reactor noise analysis

    International Nuclear Information System (INIS)

    Strohl, Claude Emile; Soares, Adalberto Jose

    1996-01-01

    In nuclear power reactors, the neutron detector signal is dependent of the number of fissions and the reactor power level. The detector signal can be divided into two components; a DC component, proportional to the average value and an AC component, which is the fluctuating part superimposed to the DC component. The analysis of the fluctuating part of the signal is called noise analysis and allow us to investigate phenomena occurring within the reactor vessel, such as vibration of fuels elements and coolant density, temperature, pressure and flow changes. On the other hand, the measure of the static DC part allow us to measure the local power density. This paper describes the development of a personal computer based signal conditioning card that, together with a personal computer commercial data acquisition card, can be used for noise analysis measurements and reactivity measurements of signals coming from ionization chambers or SPD's. (author)

  19. Channel noise enhances signal detectability in a model of acoustic neuron through the stochastic resonance paradigm.

    Science.gov (United States)

    Liberti, M; Paffi, A; Maggio, F; De Angelis, A; Apollonio, F; d'Inzeo, G

    2009-01-01

    A number of experimental investigations have evidenced the extraordinary sensitivity of neuronal cells to weak input stimulations, including electromagnetic (EM) fields. Moreover, it has been shown that biological noise, due to random channels gating, acts as a tuning factor in neuronal processing, according to the stochastic resonant (SR) paradigm. In this work the attention is focused on noise arising from the stochastic gating of ionic channels in a model of Ranvier node of acoustic fibers. The small number of channels gives rise to a high noise level, which is able to cause a spike train generation even in the absence of stimulations. A SR behavior has been observed in the model for the detection of sinusoidal signals at frequencies typical of the speech.

  20. Spin noise spectroscopy of ZnO

    Science.gov (United States)

    Horn, H.; Berski, F.; Balocchi, A.; Marie, X.; Mansur-Al-Suleiman, M.; Bakin, A.; Waag, A.; Hübner, J.; Oestreich, M.

    2013-12-01

    We investigate the thermal equilibrium dynamics of electron spins bound to donors in nanoporous ZnO by optical spin noise spectroscopy. The spin noise spectra reveal two noise contributions: A weak spin noise signal from undisturbed localized donor electrons with a dephasing time of 24 ns due to hyperfine interaction and a strong spin noise signal with a spin dephasing time of 5 ns which we attribute to localized donor electrons which interact with lattice defects.

  1. Spin noise spectroscopy of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Horn, H.; Berski, F.; Hübner, J.; Oestreich, M. [Institute for Solid State Physics, Leibniz Universität Hannover, Appelstr. 2, 30167 Hannover (Germany); Balocchi, A.; Marie, X. [INSA-CNRS-UPS, LPCNO, Université de Toulouse, 135 Av. de Rangueil, 31077 Toulouse (France); Mansur-Al-Suleiman, M.; Bakin, A.; Waag, A. [Institute of Semiconductor Technology, Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig (Germany)

    2013-12-04

    We investigate the thermal equilibrium dynamics of electron spins bound to donors in nanoporous ZnO by optical spin noise spectroscopy. The spin noise spectra reveal two noise contributions: A weak spin noise signal from undisturbed localized donor electrons with a dephasing time of 24 ns due to hyperfine interaction and a strong spin noise signal with a spin dephasing time of 5 ns which we attribute to localized donor electrons which interact with lattice defects.

  2. Regional improvement of signal-to-noise and contrast-to-noise ratios in dual-screen CR chest imaging - a phantom study

    International Nuclear Information System (INIS)

    Liu Xinming; Shaw, Chris C.

    2001-01-01

    The improvement of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in dual-screen computed radiography (CR) has been investigated for various regions in images of an anthropomorphic chest phantom. With the dual-screen CR technique, two image plates are placed in a cassette and exposed together during imaging. The exposed plates are separately scanned to form a front image and a back image, which are then registered and superimposed to form a composite image with improved SNRs and CNRs. The improvement can be optimized by applying specifically selected weighting factors during superimposition. In this study, dual-screen CR images of an anthropomorphic chest phantom were acquired and formed with four different combinations of standard resolution (ST) and high-resolution (HR) screens: ST-ST, ST-HR, HR-ST, and HR-HR. SNRs and their improvements were measured and compared over twelve representative regions-of-interest (ROIs) in these images. A 19.1%-45.7% increase of the SNR was observed, depending on the ROI and screen combination used. The optimal weighting factors were found to vary by only 4.5%-12.4%. Largest improvement was found in the lung field for all screen combinations. Improvement of CNRs was investigated over two ROIs in the lung field using the rib bones as the contrast objects and a 29.2%-43.9% improvement of the CNR was observed. Among the four screen combinations, ST-ST resulted in the most SNR and CNR improvement, followed in order by HR-ST, HR-HR, and ST-HR. The HR-ST combination yielded the lowest spatial variation of the optimal weighting factors with improved SNRs and CNRs close to those of the ST-ST combination

  3. Adaptive filtration of speech signals in the presence of correlated noise with random variation of probabilistic characteristics

    OpenAIRE

    M. O. Partala; S. Ya. Zhuk

    2007-01-01

    On the base of mixed Markoff process in discrete time optimal and quasioptimal algorithms is designed for adaptive filtration of speech signals in the presence of correlated noise with random variation of probabilistic characteristics.

  4. Direct Signal-to-Noise Quality Comparison between an Electronic and Conventional Stethoscope aboard the International Space Station

    Science.gov (United States)

    Marshburn, Thomas; Cole, Richard; Ebert, Doug; Bauer, Pete

    2014-01-01

    Introduction: Evaluation of heart, lung, and bowel sounds is routinely performed with the use of a stethoscope to help detect a broad range of medical conditions. Stethoscope acquired information is even more valuable in a resource limited environments such as the International Space Station (ISS) where additional testing is not available. The high ambient noise level aboard the ISS poses a specific challenge to auscultation by stethoscope. An electronic stethoscope's ambient noise-reduction, greater sound amplification, recording capabilities, and sound visualization software may be an advantage to a conventional stethoscope in this environment. Methods: A single operator rated signal-to-noise quality from a conventional stethoscope (Littman 2218BE) and an electronic stethoscope (Litmann 3200). Borborygmi, pulmonic, and cardiac sound quality was ranked with both stethoscopes. Signal-to-noise rankings were preformed on a 1 to 10 subjective scale with 1 being inaudible, 6 the expected quality in an emergency department, 8 the expected quality in a clinic, and 10 the clearest possible quality. Testing took place in the Japanese Pressurized Module (JPM), Unity (Node 2), Destiny (US Lab), Tranquility (Node 3), and the Cupola of the International Space Station. All examinations were conducted at a single point in time. Results: The electronic stethoscope's performance ranked higher than the conventional stethoscope for each body sound in all modules tested. The electronic stethoscope's sound quality was rated between 7 and 10 in all modules tested. In comparison, the traditional stethoscope's sound quality was rated between 4 and 7. The signal to noise ratio of borborygmi showed the biggest difference between stethoscopes. In the modules tested, the auscultation of borborygmi was rated between 5 and 7 by the conventional stethoscope and consistently 10 by the electronic stethoscope. Discussion: This stethoscope comparison was limited to a single operator. However, we

  5. Time-Distance Helioseismology: Noise Estimation

    Science.gov (United States)

    Gizon, L.; Birch, A. C.

    2004-10-01

    As in global helioseismology, the dominant source of noise in time-distance helioseismology measurements is realization noise due to the stochastic nature of the excitation mechanism of solar oscillations. Characterizing noise is important for the interpretation and inversion of time-distance measurements. In this paper we introduce a robust definition of travel time that can be applied to very noisy data. We then derive a simple model for the full covariance matrix of the travel-time measurements. This model depends only on the expectation value of the filtered power spectrum and assumes that solar oscillations are stationary and homogeneous on the solar surface. The validity of the model is confirmed through comparison with SOHO MDI measurements in a quiet-Sun region. We show that the correlation length of the noise in the travel times is about half the dominant wavelength of the filtered power spectrum. We also show that the signal-to-noise ratio in quiet-Sun travel-time maps increases roughly as the square root of the observation time and is at maximum for a distance near half the length scale of supergranulation.

  6. A density-dependent switch drives stochastic clustering and polarization of signaling molecules.

    Directory of Open Access Journals (Sweden)

    Alexandra Jilkine

    2011-11-01

    Full Text Available Positive feedback plays a key role in the ability of signaling molecules to form highly localized clusters in the membrane or cytosol of cells. Such clustering can occur in the absence of localizing mechanisms such as pre-existing spatial cues, diffusional barriers, or molecular cross-linking. What prevents positive feedback from amplifying inevitable biological noise when an un-clustered "off" state is desired? And, what limits the spread of clusters when an "on" state is desired? Here, we show that a minimal positive feedback circuit provides the general principle for both suppressing and amplifying noise: below a critical density of signaling molecules, clustering switches off; above this threshold, highly localized clusters are recurrently generated. Clustering occurs only in the stochastic regime, suggesting that finite sizes of molecular populations cannot be ignored in signal transduction networks. The emergence of a dominant cluster for finite numbers of molecules is partly a phenomenon of random sampling, analogous to the fixation or loss of neutral mutations in finite populations. We refer to our model as the "neutral drift polarity model." Regulating the density of signaling molecules provides a simple mechanism for a positive feedback circuit to robustly switch between clustered and un-clustered states. The intrinsic ability of positive feedback both to create and suppress clustering is a general mechanism that could operate within diverse biological networks to create dynamic spatial organization.

  7. Quantum noise and superluminal propagation

    International Nuclear Information System (INIS)

    Segev, Bilha; Milonni, Peter W.; Babb, James F.; Chiao, Raymond Y.

    2000-01-01

    Causal ''superluminal'' effects have recently been observed and discussed in various contexts. The question arises whether such effects could be observed with extremely weak pulses, and what would prevent the observation of an ''optical tachyon.'' Aharonov, Reznik, and Stern (ARS) [Phys. Rev. Lett. 81, 2190 (1998)] have argued that quantum noise will preclude the observation of a superluminal group velocity when the pulse consists of one or a few photons. In this paper we reconsider this question both in a general framework and in the specific example, suggested by Chiao, Kozhekin, and Kurizki (CKK) [Phys. Rev. 77, 1254 (1996)], of off-resonant, short-pulse propagation in an optical amplifier. We derive in the case of the amplifier a signal-to-noise ratio that is consistent with the general ARS conclusions when we impose their criteria for distinguishing between superluminal propagation and propagation at the speed c. However, results consistent with the semiclassical arguments of CKK are obtained if weaker criteria are imposed, in which case the signal can exceed the noise without being ''exponentially large.'' We show that the quantum fluctuations of the field considered by ARS are closely related to superfluorescence noise. More generally, we consider the implications of unitarity for superluminal propagation and quantum noise and study, in addition to the complete and truncated wave packets considered by ARS, the residual wave packet formed by their difference. This leads to the conclusion that the noise is mostly luminal and delayed with respect to the superluminal signal. In the limit of a very weak incident signal pulse, the superluminal signal will be dominated by the noise part, and the signal-to-noise ratio will therefore be very small. (c) 2000 The American Physical Society

  8. Exact Symbol Error Probability of Square M-QAM Signaling over Generalized Fading Channels subject to Additive Generalized Gaussian Noise

    KAUST Repository

    Soury, Hamza

    2013-07-01

    This paper considers the average symbol error probability of square Quadrature Amplitude Modulation (QAM) coherent signaling over flat fading channels subject to additive generalized Gaussian noise. More specifically, a generic closedform expression in terms of the Fox H function and the bivariate Fox H function is offered for the extended generalized-K fading case. Simplifications for some special fading distributions such as generalized-K fading, Nakagami-m fading, and Rayleigh fading and special additive noise distributions such as Gaussian and Laplacian noise are then presented. Finally, the mathematical formalism is illustrated by some numerical examples verified by computer based simulations for a variety of fading and additive noise parameters.

  9. From noise to signal - a new approach to LHCb muon optimization

    CERN Document Server

    Kashchuk, A P

    2010-01-01

    One has to exploit the LHCb muon detector at the lowest possible gas gain and operational voltage in order to minimize the charge accumulated during 10 years of the LHCb experiment keeping the aging effects as low as possible. The detector lifetime prolongation 1.5-2 times can be achieved following the optimization of the LHCb muon system proposed in this note. An optimization of the LHCb muon system assumes: minimization of the electronics thresholds and detector gas gain, a choice of the working point near the knee of the efficiency plateau at high enough efficiency at stabilization the signal-to-noise ratio during long-term data taking runs by gas gain stabilization. An efficiency of each chamber tuned once by a time alignment remains constant at the constant gas gain. Cluster size, cross-talks, multi-hits become constant and minimal at constant and minimal gas gain. It is shown in the note how to reconstruct the noise distribution in each chamber already installed in the pit and to measure precisely offse...

  10. A comparison between the first-fit settings of two multichannel digital signal-processing strategies: music quality ratings and speech-in-noise scores.

    Science.gov (United States)

    Higgins, Paul; Searchfield, Grant; Coad, Gavin

    2012-06-01

    The aim of this study was to determine which level-dependent hearing aid digital signal-processing strategy (DSP) participants preferred when listening to music and/or performing a speech-in-noise task. Two receiver-in-the-ear hearing aids were compared: one using 32-channel adaptive dynamic range optimization (ADRO) and the other wide dynamic range compression (WDRC) incorporating dual fast (4 channel) and slow (15 channel) processing. The manufacturers' first-fit settings based on participants' audiograms were used in both cases. Results were obtained from 18 participants on a quick speech-in-noise (QuickSIN; Killion, Niquette, Gudmundsen, Revit, & Banerjee, 2004) task and for 3 music listening conditions (classical, jazz, and rock). Participants preferred the quality of music and performed better at the QuickSIN task using the hearing aids with ADRO processing. A potential reason for the better performance of the ADRO hearing aids was less fluctuation in output with change in sound dynamics. ADRO processing has advantages for both music quality and speech recognition in noise over the multichannel WDRC processing that was used in the study. Further evaluations of which DSP aspects contribute to listener preference are required.

  11. Coding of time-dependent stimuli in homogeneous and heterogeneous neural populations.

    Science.gov (United States)

    Beiran, Manuel; Kruscha, Alexandra; Benda, Jan; Lindner, Benjamin

    2018-04-01

    We compare the information transmission of a time-dependent signal by two types of uncoupled neuron populations that differ in their sources of variability: i) a homogeneous population whose units receive independent noise and ii) a deterministic heterogeneous population, where each unit exhibits a different baseline firing rate ('disorder'). Our criterion for making both sources of variability quantitatively comparable is that the interspike-interval distributions are identical for both systems. Numerical simulations using leaky integrate-and-fire neurons unveil that a non-zero amount of both noise or disorder maximizes the encoding efficiency of the homogeneous and heterogeneous system, respectively, as a particular case of suprathreshold stochastic resonance. Our findings thus illustrate that heterogeneity can render similarly profitable effects for neuronal populations as dynamic noise. The optimal noise/disorder depends on the system size and the properties of the stimulus such as its intensity or cutoff frequency. We find that weak stimuli are better encoded by a noiseless heterogeneous population, whereas for strong stimuli a homogeneous population outperforms an equivalent heterogeneous system up to a moderate noise level. Furthermore, we derive analytical expressions of the coherence function for the cases of very strong noise and of vanishing intrinsic noise or heterogeneity, which predict the existence of an optimal noise intensity. Our results show that, depending on the type of signal, noise as well as heterogeneity can enhance the encoding performance of neuronal populations.

  12. Toward quantitative fast diffusion kurtosis imaging with b-values chosen in consideration of signal-to-noise ratio and model fidelity.

    Science.gov (United States)

    Kuo, Yen-Shu; Yang, Shun-Chung; Chung, Hsiao-Wen; Wu, Wen-Chau

    2018-02-01

    Diffusion kurtosis (DK) imaging is a variant of conventional diffusion magnetic resonance (MR) imaging that allows assessment of non-Gaussian diffusion. Fast DK imaging expedites the procedure by decreasing both scan time (acquiring the minimally required number of b-values) and computation time (obviating least-square curve fitting). This study aimed to investigate the applicability of fast DK imaging for both cerebral gray matter and white matter as a quantitative method. Seventeen healthy volunteers were recruited and each provided written informed consent before participation. On a 3-Tesla clinical MR system, diffusion imaging was performed with 12 b-values ranging from 0 to 4000 s/mm 2 . Diffusion encoding was along three orthogonal directions (slice selection, phase encoding, and frequency encoding) in separate series. Candidate b-values were chosen by first determining the maximum b-value (b max ) in the context of signal-to-noise ratio and then assessing the model fidelity for all b-value combinations within b max . Diffusion coefficient (D) and diffusion kurtosis coefficient (K) were derived from these candidates and assessed for their dependence on b-value combination. Our data suggested b max to be 2200 s/mm 2 as a trade-off between the percentage (~80%) of voxels statistically detectable against background and the sensitivity to non-Gaussian diffusion in both gray matter and white matter. The measurement dependence on b-value was observed predominantly in areas with a considerable amount of cerebrospinal fluid. In most gray matter and white matter, b-value combinations do not cause statistical difference in the calculated D and K. For fast DK imaging to be quantitatively applicable in both gray matter and white matter, b max should be chosen to ensure adequate signal-to-noise ratio in the majority of gray/white matter and the two nonzero b-values should be chosen in consideration of model fidelity to mitigate the dependence of derived indices on b

  13. Nonlinearity and Phase Noise Tolerant 75-110 GHz Signal over Fiber System Using Phase Modulation Technique

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Zhang, Xu

    2013-01-01

    We report on the transmission of 8 Gb/s 0 dB PAPR 16QAM-OFDM W-band (75-110 GHz) signals over 22.8km SMF without phase noise compensation by using a phase modulator in the optical heterodyne up-convertor....

  14. The tradeoff between signal detection and recognition rules auditory sensitivity under variable background noise conditions.

    Science.gov (United States)

    Lugli, Marco

    2015-12-07

    Animal acoustic communication commonly takes place under masked conditions. For instance, sound signals relevant for mating and survival are very often masked by background noise, which makes their detection and recognition by organisms difficult. Ambient noise (AN) varies in level and shape among different habitats, but also remarkable variations in time and space occurs within the same habitat. Variable AN conditions mask hearing thresholds of the receiver in complex and unpredictable ways, thereby causing distortions in sound perception. When communication takes place in a noisy environment, a highly sensitive system might confer no advantage to the receiver compared to a less sensitive one. The effects of noise masking on auditory thresholds and hearing-related functions are well known, and the potential role of AN in the evolution of the species' auditory sensitivity has been recognized by few authors. The mechanism of the underlying selection process has never been explored, however. Here I present a simple fitness model that seeks for the best sensitivity of a hearing system performing the detection and recognition of the sound under variable AN conditions. The model predicts higher sensitivity (i.e. lower hearing thresholds) as best strategy for species living in quiet habitats and lower sensitivity (i.e. higher hearing thresholds) as best strategy for those living in noisy habitats provided the cost of incorrect recognition is not low. The tradeoff between detection and recognition of acoustic signals appears to be a key factor determining the best level of hearing sensitivity of a species when acoustic communication is corrupted by noise. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. ECG De-noising

    DEFF Research Database (Denmark)

    Kærgaard, Kevin; Jensen, Søren Hjøllund; Puthusserypady, Sadasivan

    2015-01-01

    Electrocardiogram (ECG) is a widely used noninvasive method to study the rhythmic activity of the heart and thereby to detect the abnormalities. However, these signals are often obscured by artifacts from various sources and minimization of these artifacts are of paramount important. This paper...... proposes two adaptive techniques, namely the EEMD-BLMS (Ensemble Empirical Mode Decomposition in conjunction with the Block Least Mean Square algorithm) and DWT-NN (Discrete Wavelet Transform followed by Neural Network) methods in minimizing the artifacts from recorded ECG signals, and compares...... their performance. These methods were first compared on two types of simulated noise corrupted ECG signals: Type-I (desired ECG+noise frequencies outside the ECG frequency band) and Type-II (ECG+noise frequencies both inside and outside the ECG frequency band). Subsequently, they were tested on real ECG recordings...

  16. Vibration measurement with nonlinear converter in the presence of noise

    Science.gov (United States)

    Mozuras, Almantas

    2017-10-01

    Conventional vibration measurement methods use the linear properties of physical converters. These methods are strongly influenced by nonlinear distortions, because ideal linear converters are not available. Practically, any converter can be considered as a linear one, when an output signal is very small. However, the influence of noise increases significantly and signal-to-noise ratio decreases at lower signals. When the output signal is increasing, the nonlinear distortions are also augmenting. If the wide spectrum vibration is measured, conventional methods face a harmonic distortion as well as intermodulation effects. Purpose of this research is to develop a measurement method of wide spectrum vibration by using a converter described by a nonlinear function of type f(x), where x =x(t) denotes the dependence of coordinate x on time t due to the vibration. Parameter x(t) describing the vibration is expressed as Fourier series. The spectral components of the converter output f(x(t)) are determined by using Fourier transform. The obtained system of nonlinear equations is solved using the least squares technique that permits to find x(t) in the presence of noise. This method allows one to carry out the absolute or relative vibration measurements. High resistance to noise is typical for the absolute vibration measurement, but it is necessary to know the Taylor expansion coefficients of the function f(x). If the Taylor expansion is not known, the relative measurement of vibration parameters is also possible, but with lower resistance to noise. This method allows one to eliminate the influence of nonlinear distortions to the measurement results, and consequently to eliminate harmonic distortion and intermodulation effects. The use of nonlinear properties of the converter for measurement gives some advantages related to an increased frequency range of the output signal (consequently increasing the number of equations) that allows one to decrease the noise influence on

  17. A CMOS power-efficient low-noise current-mode front-end amplifier for neural signal recording.

    Science.gov (United States)

    Wu, Chung-Yu; Chen, Wei-Ming; Kuo, Liang-Ting

    2013-04-01

    In this paper, a new current-mode front-end amplifier (CMFEA) for neural signal recording systems is proposed. In the proposed CMFEA, a current-mode preamplifier with an active feedback loop operated at very low frequency is designed as the first gain stage to bypass any dc offset current generated by the electrode-tissue interface and to achieve a low high-pass cutoff frequency below 0.5 Hz. No reset signal or ultra-large pseudo resistor is required. The current-mode preamplifier has low dc operation current to enhance low-noise performance and decrease power consumption. A programmable current gain stage is adopted to provide adjustable gain for adaptive signal scaling. A following current-mode filter is designed to adjust the low-pass cutoff frequency for different neural signals. The proposed CMFEA is designed and fabricated in 0.18-μm CMOS technology and the area of the core circuit is 0.076 mm(2). The measured high-pass cutoff frequency is as low as 0.3 Hz and the low-pass cutoff frequency is adjustable from 1 kHz to 10 kHz. The measured maximum current gain is 55.9 dB. The measured input-referred current noise density is 153 fA /√Hz , and the power consumption is 13 μW at 1-V power supply. The fabricated CMFEA has been successfully applied to the animal test for recording the seizure ECoG of Long-Evan rats.

  18. An Analytical Solution for Signal Background and Signal to background Ratio for a Low Frequency Active Sonar in a Pekerisch Waveguide Satisfying Lambert's Rule

    NARCIS (Netherlands)

    Ainslie, M.A.; Harrison, C.H.; Zampolli, M.

    2011-01-01

    Previously published equations for the time dependence of the echo and reverberation in a Pekeris waveguide are combined with an expression derived for surface-generated noise. These closed form solutions are applied to the calculation of signal to reverberation ratio and signal to total background

  19. Entropy-Based Method of Choosing the Decomposition Level in Wavelet Threshold De-noising

    Directory of Open Access Journals (Sweden)

    Yan-Fang Sang

    2010-06-01

    Full Text Available In this paper, the energy distributions of various noises following normal, log-normal and Pearson-III distributions are first described quantitatively using the wavelet energy entropy (WEE, and the results are compared and discussed. Then, on the basis of these analytic results, a method for use in choosing the decomposition level (DL in wavelet threshold de-noising (WTD is put forward. Finally, the performance of the proposed method is verified by analysis of both synthetic and observed series. Analytic results indicate that the proposed method is easy to operate and suitable for various signals. Moreover, contrary to traditional white noise testing which depends on “autocorrelations”, the proposed method uses energy distributions to distinguish real signals and noise in noisy series, therefore the chosen DL is reliable, and the WTD results of time series can be improved.

  20. Simulation of range imaging-based estimation of respiratory lung motion. Influence of noise, signal dimensionality and sampling patterns.

    Science.gov (United States)

    Wilms, M; Werner, R; Blendowski, M; Ortmüller, J; Handels, H

    2014-01-01

    A major problem associated with the irradiation of thoracic and abdominal tumors is respiratory motion. In clinical practice, motion compensation approaches are frequently steered by low-dimensional breathing signals (e.g., spirometry) and patient-specific correspondence models, which are used to estimate the sought internal motion given a signal measurement. Recently, the use of multidimensional signals derived from range images of the moving skin surface has been proposed to better account for complex motion patterns. In this work, a simulation study is carried out to investigate the motion estimation accuracy of such multidimensional signals and the influence of noise, the signal dimensionality, and different sampling patterns (points, lines, regions). A diffeomorphic correspondence modeling framework is employed to relate multidimensional breathing signals derived from simulated range images to internal motion patterns represented by diffeomorphic non-linear transformations. Furthermore, an automatic approach for the selection of optimal signal combinations/patterns within this framework is presented. This simulation study focuses on lung motion estimation and is based on 28 4D CT data sets. The results show that the use of multidimensional signals instead of one-dimensional signals significantly improves the motion estimation accuracy, which is, however, highly affected by noise. Only small differences exist between different multidimensional sampling patterns (lines and regions). Automatically determined optimal combinations of points and lines do not lead to accuracy improvements compared to results obtained by using all points or lines. Our results show the potential of multidimensional breathing signals derived from range images for the model-based estimation of respiratory motion in radiation therapy.

  1. Fabricating off-diagonal components of frequency-dependent linear and nonlinear polarizabilities of doped quantum dots by Gaussian white noise

    International Nuclear Information System (INIS)

    Saha, Surajit; Ganguly, Jayanta; Ghosh, Manas

    2015-01-01

    We make a rigorous exploration of the profiles of off-diagonal components of frequency-dependent linear (α xy , α yx ), first nonlinear (β xyy , β yxx ), and second nonlinear (γ xxyy , γ yyxx ) polarizabilities of quantum dots driven by Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been applied additively and multiplicatively to the system. An external oscillatory electric field has also been applied to the system. Gradual variations of external frequency, dopant location, and noise strength give rise to interesting features of polarizability components. The observations reveal intricate interplay between noise strength and dopant location which designs the polarizability profiles. Moreover, the mode of application of noise also modulates the polarizability components. Interestingly, in case of additive noise the noise strength has no role on polarizabilities whereas multiplicative noise invites greater delicacy in them. The said interplay provides a rather involved framework to attain stable, enhanced, and often maximized output of linear and nonlinear polarizabilities. - Highlights: • Linear and nonlinear polarizabilities of quantum dot are studied. • The polarizability components are off-diagonal and frequency-dependent. • Quantum dot is doped with a repulsive impurity. • Doped system is subject to Gaussian white noise. • Mode of noise application affects polarizabilities

  2. Investigations on the relationship between power spectrum and signal-to-noise ratio of frequency-swept pulses

    International Nuclear Information System (INIS)

    Zhang Zhuhong; Fan Diayuan

    1993-01-01

    The criterion for obtaining compressed chirp pulses with high signal-to-noise ratio is the shape of the power spectrum, a chirp pulse of Gaussian shaped power spectrum without modulation is needed in CPA system to get the clean compressed pulses. 4 refs., 2 figs

  3. Impact of noise on molecular network inference.

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Nagarajan

    Full Text Available Molecular entities work in concert as a system and mediate phenotypic outcomes and disease states. There has been recent interest in modelling the associations between molecular entities from their observed expression profiles as networks using a battery of algorithms. These networks have proven to be useful abstractions of the underlying pathways and signalling mechanisms. Noise is ubiquitous in molecular data and can have a pronounced effect on the inferred network. Noise can be an outcome of several factors including: inherent stochastic mechanisms at the molecular level, variation in the abundance of molecules, heterogeneity, sensitivity of the biological assay or measurement artefacts prevalent especially in high-throughput settings. The present study investigates the impact of discrepancies in noise variance on pair-wise dependencies, conditional dependencies and constraint-based Bayesian network structure learning algorithms that incorporate conditional independence tests as a part of the learning process. Popular network motifs and fundamental connections, namely: (a common-effect, (b three-chain, and (c coherent type-I feed-forward loop (FFL are investigated. The choice of these elementary networks can be attributed to their prevalence across more complex networks. Analytical expressions elucidating the impact of discrepancies in noise variance on pairwise dependencies and conditional dependencies for special cases of these motifs are presented. Subsequently, the impact of noise on two popular constraint-based Bayesian network structure learning algorithms such as Grow-Shrink (GS and Incremental Association Markov Blanket (IAMB that implicitly incorporate tests for conditional independence is investigated. Finally, the impact of noise on networks inferred from publicly available single cell molecular expression profiles is investigated. While discrepancies in noise variance are overlooked in routine molecular network inference, the

  4. Improved Denoising via Poisson Mixture Modeling of Image Sensor Noise.

    Science.gov (United States)

    Zhang, Jiachao; Hirakawa, Keigo

    2017-04-01

    This paper describes a study aimed at comparing the real image sensor noise distribution to the models of noise often assumed in image denoising designs. A quantile analysis in pixel, wavelet transform, and variance stabilization domains reveal that the tails of Poisson, signal-dependent Gaussian, and Poisson-Gaussian models are too short to capture real sensor noise behavior. A new Poisson mixture noise model is proposed to correct the mismatch of tail behavior. Based on the fact that noise model mismatch results in image denoising that undersmoothes real sensor data, we propose a mixture of Poisson denoising method to remove the denoising artifacts without affecting image details, such as edge and textures. Experiments with real sensor data verify that denoising for real image sensor data is indeed improved by this new technique.

  5. Noise analysis of a digital radiography system

    International Nuclear Information System (INIS)

    Arnold, B.A.; Scheibe, P.O.

    1984-01-01

    The sources of noise in a digital video subtraction angiography system were identified and analyzed. Signal-to-noise ratios of digital radiography systems were measured using the digital image data recorded in the computer. The major sources of noise include quantum noise, TV camera electronic noise, quantization noise from the analog-to-digital converter, time jitter, structure noise in the image intensifier, and video recorder electronic noise. A new noise source was identified, which results from the interplay of fixed pattern noise and the lack of image registration. This type of noise may result from image-intensifier structure noise in combination with TV camera time jitter or recorder time jitter. A similar noise source is generated from the interplay of patient absorption inhomogeneities and patient motion or image re-registration. Signal-to-noise ratios were measured for a variety of experimental conditions using subtracted digital images. Image-intensifier structure noise was shown to be a dominant noise source in unsubtracted images at medium to high radiation exposure levels. A total-system signal-to-noise ratio (SNR) of 750:1 was measured for an input exposure of 1 mR/frame at the image intensifier input. The effect of scattered radiation on subtracted image SNR was found to be greater than previously reported. The detail SNR was found to vary approximately as one plus the scatter degradation factor. Quantization error noise with 8-bit image processors (signal-to-noise ratio of 890:1) was shown to be of increased importance after recent improvements in TV cameras. The results of the analysis are useful both in the design of future digital radiography systems and the selection of optimum clinical techniques

  6. Automated pattern recognition system for noise analysis

    International Nuclear Information System (INIS)

    Sides, W.H. Jr.; Piety, K.R.

    1980-01-01

    A pattern recognition system was developed at ORNL for on-line monitoring of noise signals from sensors in a nuclear power plant. The system continuousy measures the power spectral density (PSD) values of the signals and the statistical characteristics of the PSDs in unattended operation. Through statistical comparison of current with past PSDs (pattern recognition), the system detects changes in the noise signals. Because the noise signals contain information about the current operational condition of the plant, a change in these signals could indicate a change, either normal or abnormal, in the operational condition

  7. Algorithmic-Reducibility = Renormalization-Group Fixed-Points; ``Noise''-Induced Phase-Transitions (NITs) to Accelerate Algorithmics (``NIT-Picking'') Replacing CRUTCHES!!!: Gauss Modular/Clock-Arithmetic Congruences = Signal X Noise PRODUCTS..

    Science.gov (United States)

    Siegel, J.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Cook-Levin computational-"complexity"(C-C) algorithmic-equivalence reduction-theorem reducibility equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited with Gauss modular/clock-arithmetic/model congruences = signal X noise PRODUCT reinterpretation. Siegel-Baez FUZZYICS=CATEGORYICS(SON of ``TRIZ''): Category-Semantics(C-S) tabular list-format truth-table matrix analytics predicts and implements "noise"-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics(1987)]-Sipser[Intro. Theory Computation(1997) algorithmic C-C: "NIT-picking" to optimize optimization-problems optimally(OOPO). Versus iso-"noise" power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, this "NIT-picking" is "noise" power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-"science" algorithmic C-C models: Turing-machine, finite-state-models/automata, are identified as early-days once-workable but NOW ONLY LIMITING CRUTCHES IMPEDING latter-days new-insights!!!

  8. Parallel Array Bistable Stochastic Resonance System with Independent Input and Its Signal-to-Noise Ratio Improvement

    Directory of Open Access Journals (Sweden)

    Wei Li

    2014-01-01

    with independent components and averaged output; second, we give a deduction of the output signal-to-noise ratio (SNR for this system to show the performance. Our examples show the enhancement of the system and how different parameters influence the performance of the proposed parallel array.

  9. Experimental study of stochastic noise propagation in SPECT images reconstructed using the conjugate gradient algorithm.

    Science.gov (United States)

    Mariano-Goulart, D; Fourcade, M; Bernon, J L; Rossi, M; Zanca, M

    2003-01-01

    Thanks to an experimental study based on simulated and physical phantoms, the propagation of the stochastic noise in slices reconstructed using the conjugate gradient algorithm has been analysed versus iterations. After a first increase corresponding to the reconstruction of the signal, the noise stabilises before increasing linearly with iterations. The level of the plateau as well as the slope of the subsequent linear increase depends on the noise in the projection data.

  10. Performance Analysis of the Effect of Pulsed-Noise Interference on WLAN Signals Transmitted Over a Nakagami Fading Channel

    National Research Council Canada - National Science Library

    Tsoumanis, Andreas

    2004-01-01

    ...) coding with soft decision decoding (SDD) and maximum- likelihood detection improves performance as compared to uncoded signals, In addition, the combination of maximum-likelihood detection and error connection coding renders pulsed-noise...

  11. Noise from wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fegeant, Olivier [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Building Sciences

    2002-02-01

    A rapid growth of installed wind power capacity is expected in the next few years. However, the siting of wind turbines on a large scale raises concerns about their environmental impact, notably with respect to noise. To this end, variable speed wind turbines offer a promising solution for applications in densely populated areas like the European countries, as this design would enable an efficient utilisation of the masking effect due to ambient noise. In rural and recreational areas where wind turbines are sited, the ambient noise originates from the action of wind on the vegetation and about the listener's ear (pseudo-noise). It shows a wind speed dependence similar to that of the noise from a variable speed wind turbine and can therefore mask the latter for a wide range of conditions. However, a problem inherent to the design of these machines is their proclivity to pure tone generation, because of the enhanced difficulty of avoiding structural resonances in the mechanical parts. Pure tones are deemed highly annoying and are severely regulated by most noise policies. In relation to this problem, the vibration transmission of structure-borne sound to the tower of the turbine is investigated, in particular when the tower is stiffened at its upper end. Furthermore, since noise annoyance due to wind turbine is mostly a masking issue, the wind-related sources of ambient noise are studied and their masking potentials assessed. With this aim, prediction models for wind-induced vegetation noise and pseudo-noise have been developed. Finally, closely related to the effect of masking, is the difficulty, regularly encountered by local authorities and wind farm developers, to measure noise immission from wind turbines. A new measurement technique has thus been developed in the course of this work. Through improving the signal-to-noise ratio between wind turbine noise and ambient noise, the new technique yields more accurate measurement results.

  12. 1/f noise in graphene nanopores

    International Nuclear Information System (INIS)

    Heerema, S J; Schneider, G F; Rozemuller, M; Vicarelli, L; Zandbergen, H W; Dekker, C

    2015-01-01

    Graphene nanopores are receiving great attention due to their atomically thin membranes and intrinsic electrical properties that appear greatly beneficial for biosensing and DNA sequencing. Here, we present an extensive study of the low-frequency 1/f noise in the ionic current through graphene nanopores and compare it to noise levels in silicon nitride pore currents. We find that the 1/f noise magnitude is very high for graphene nanopores: typically two orders of magnitude higher than for silicon nitride pores. This is a drawback as it significantly lowers the signal-to-noise ratio in DNA translocation experiments. We evaluate possible explanations for these exceptionally high noise levels in graphene pores. From examining the noise for pores of different diameters and at various salt concentrations, we find that in contrast to silicon nitride pores, the 1/f noise in graphene pores does not follow Hooge’s relation. In addition, from studying the dependence on the buffer pH, we show that the increased noise cannot be explained by charge fluctuations of chemical groups on the pore rim. Finally, we compare single and bilayer graphene to few-layer and multi-layer graphene and boron nitride (h-BN), and we find that the noise reduces with layer thickness for both materials, which suggests that mechanical fluctuations may be the underlying cause of the high 1/f noise levels in monolayer graphene nanopore devices. (paper)

  13. Particle image velocimetry correlation signal-to-noise ratio metrics and measurement uncertainty quantification

    International Nuclear Information System (INIS)

    Xue, Zhenyu; Charonko, John J; Vlachos, Pavlos P

    2014-01-01

    In particle image velocimetry (PIV) the measurement signal is contained in the recorded intensity of the particle image pattern superimposed on a variety of noise sources. The signal-to-noise-ratio (SNR) strength governs the resulting PIV cross correlation and ultimately the accuracy and uncertainty of the resulting PIV measurement. Hence we posit that correlation SNR metrics calculated from the correlation plane can be used to quantify the quality of the correlation and the resulting uncertainty of an individual measurement. In this paper we extend the original work by Charonko and Vlachos and present a framework for evaluating the correlation SNR using a set of different metrics, which in turn are used to develop models for uncertainty estimation. Several corrections have been applied in this work. The SNR metrics and corresponding models presented herein are expanded to be applicable to both standard and filtered correlations by applying a subtraction of the minimum correlation value to remove the effect of the background image noise. In addition, the notion of a ‘valid’ measurement is redefined with respect to the correlation peak width in order to be consistent with uncertainty quantification principles and distinct from an ‘outlier’ measurement. Finally the type and significance of the error distribution function is investigated. These advancements lead to more robust and reliable uncertainty estimation models compared with the original work by Charonko and Vlachos. The models are tested against both synthetic benchmark data as well as experimental measurements. In this work, U 68.5 uncertainties are estimated at the 68.5% confidence level while U 95 uncertainties are estimated at 95% confidence level. For all cases the resulting calculated coverage factors approximate the expected theoretical confidence intervals, thus demonstrating the applicability of these new models for estimation of uncertainty for individual PIV measurements. (paper)

  14. Particle image velocimetry correlation signal-to-noise ratio metrics and measurement uncertainty quantification

    Science.gov (United States)

    Xue, Zhenyu; Charonko, John J.; Vlachos, Pavlos P.

    2014-11-01

    In particle image velocimetry (PIV) the measurement signal is contained in the recorded intensity of the particle image pattern superimposed on a variety of noise sources. The signal-to-noise-ratio (SNR) strength governs the resulting PIV cross correlation and ultimately the accuracy and uncertainty of the resulting PIV measurement. Hence we posit that correlation SNR metrics calculated from the correlation plane can be used to quantify the quality of the correlation and the resulting uncertainty of an individual measurement. In this paper we extend the original work by Charonko and Vlachos and present a framework for evaluating the correlation SNR using a set of different metrics, which in turn are used to develop models for uncertainty estimation. Several corrections have been applied in this work. The SNR metrics and corresponding models presented herein are expanded to be applicable to both standard and filtered correlations by applying a subtraction of the minimum correlation value to remove the effect of the background image noise. In addition, the notion of a ‘valid’ measurement is redefined with respect to the correlation peak width in order to be consistent with uncertainty quantification principles and distinct from an ‘outlier’ measurement. Finally the type and significance of the error distribution function is investigated. These advancements lead to more robust and reliable uncertainty estimation models compared with the original work by Charonko and Vlachos. The models are tested against both synthetic benchmark data as well as experimental measurements. In this work, {{U}68.5} uncertainties are estimated at the 68.5% confidence level while {{U}95} uncertainties are estimated at 95% confidence level. For all cases the resulting calculated coverage factors approximate the expected theoretical confidence intervals, thus demonstrating the applicability of these new models for estimation of uncertainty for individual PIV measurements.

  15. Stochastic resonance: noise-enhanced order

    International Nuclear Information System (INIS)

    Anishchenko, Vadim S; Neiman, Arkady B; Moss, F; Shimansky-Geier, L

    1999-01-01

    Stochastic resonance (SR) provides a glaring example of a noise-induced transition in a nonlinear system driven by an information signal and noise simultaneously. In the regime of SR some characteristics of the information signal (amplification factor, signal-to-noise ratio, the degrees of coherence and of order, etc.) at the output of the system are significantly improved at a certain optimal noise level. SR is realized only in nonlinear systems for which a noise-intensity-controlled characteristic time becomes available. In the present review the physical mechanism and methods of theoretical description of SR are briefly discussed. SR features determined by the structure of the information signal, noise statistics and properties of particular systems with SR are studied. A nontrivial phenomenon of stochastic synchronization defined as locking of the instantaneous phase and switching frequency of a bistable system by external periodic force is analyzed in detail. Stochastic synchronization is explored in single and coupled bistable oscillators, including ensembles. The effects of SR and stochastic synchronization of ensembles of stochastic resonators are studied both with and without coupling between the elements. SR is considered in dynamical and nondynamical (threshold) systems. The SR effect is analyzed from the viewpoint of information and entropy characteristics of the signal, which determine the degree of order or self-organization in the system. Applications of the SR concept to explaining the results of a series of biological experiments are discussed. (reviews of topical problems)

  16. Stochastic resonance: noise-enhanced order

    Energy Technology Data Exchange (ETDEWEB)

    Anishchenko, Vadim S; Neiman, Arkady B [N.G. Chernyshevskii Saratov State University, Saratov (Russian Federation); Moss, F [Department of Physics and Astronomy, University of Missouri at St. Louis (United States); Shimansky-Geier, L [Humboldt University at Berlin (Germany)

    1999-01-31

    Stochastic resonance (SR) provides a glaring example of a noise-induced transition in a nonlinear system driven by an information signal and noise simultaneously. In the regime of SR some characteristics of the information signal (amplification factor, signal-to-noise ratio, the degrees of coherence and of order, etc.) at the output of the system are significantly improved at a certain optimal noise level. SR is realized only in nonlinear systems for which a noise-intensity-controlled characteristic time becomes available. In the present review the physical mechanism and methods of theoretical description of SR are briefly discussed. SR features determined by the structure of the information signal, noise statistics and properties of particular systems with SR are studied. A nontrivial phenomenon of stochastic synchronization defined as locking of the instantaneous phase and switching frequency of a bistable system by external periodic force is analyzed in detail. Stochastic synchronization is explored in single and coupled bistable oscillators, including ensembles. The effects of SR and stochastic synchronization of ensembles of stochastic resonators are studied both with and without coupling between the elements. SR is considered in dynamical and nondynamical (threshold) systems. The SR effect is analyzed from the viewpoint of information and entropy characteristics of the signal, which determine the degree of order or self-organization in the system. Applications of the SR concept to explaining the results of a series of biological experiments are discussed. (reviews of topical problems)

  17. Noise reduction with complex bilateral filter.

    Science.gov (United States)

    Matsumoto, Mitsuharu

    2017-12-01

    This study introduces a noise reduction technique that uses a complex bilateral filter. A bilateral filter is a nonlinear filter originally developed for images that can reduce noise while preserving edge information. It is an attractive filter and has been used in many applications in image processing. When it is applied to an acoustical signal, small-amplitude noise is reduced while the speech signal is preserved. However, a bilateral filter cannot handle noise with relatively large amplitudes owing to its innate characteristics. In this study, the noisy signal is transformed into the time-frequency domain and the filter is improved to handle complex spectra. The high-amplitude noise is reduced in the time-frequency domain via the proposed filter. The features and the potential of the proposed filter are also confirmed through experiments.

  18. Improving Signal-to-Noise Ratio in Susceptibility Weighted Imaging: A Novel Multicomponent Non-Local Approach.

    Directory of Open Access Journals (Sweden)

    Pasquale Borrelli

    Full Text Available In susceptibility-weighted imaging (SWI, the high resolution required to obtain a proper contrast generation leads to a reduced signal-to-noise ratio (SNR. The application of a denoising filter to produce images with higher SNR and still preserve small structures from excessive blurring is therefore extremely desirable. However, as the distributions of magnitude and phase noise may introduce biases during image restoration, the application of a denoising filter is non-trivial. Taking advantage of the potential multispectral nature of MR images, a multicomponent approach using a Non-Local Means (MNLM denoising filter may perform better than a component-by-component image restoration method. Here we present a new MNLM-based method (Multicomponent-Imaginary-Real-SWI, hereafter MIR-SWI to produce SWI images with high SNR and improved conspicuity. Both qualitative and quantitative comparisons of MIR-SWI with the original SWI scheme and previously proposed SWI restoring pipelines showed that MIR-SWI fared consistently better than the other approaches. Noise removal with MIR-SWI also provided improvement in contrast-to-noise ratio (CNR and vessel conspicuity at higher factors of phase mask multiplications than the one suggested in the literature for SWI vessel imaging. We conclude that a proper handling of noise in the complex MR dataset may lead to improved image quality for SWI data.

  19. Acceptance noise level: effects of the speech signal, babble, and listener language.

    Science.gov (United States)

    Shi, Lu-Feng; Azcona, Gabrielly; Buten, Lupe

    2015-04-01

    The acceptable noise level (ANL) measure has gained much research/clinical interest in recent years. The present study examined how the characteristics of the speech signal and the babble used in the measure may affect the ANL in listeners with different native languages. Fifteen English monolingual, 16 Russian-English bilingual, and 24 Spanish-English bilingual listeners participated. The ANL was obtained in eight conditions varying in the language of the signal (English and Spanish), language of the babble (English and Spanish), and number of talkers in the babble (4 and 12). Test conditions were randomized across listeners. The ANL for each condition was based on a minimum of two trials. Russian-English bilinguals yielded higher ANLs than other listeners; the intergroup difference of 4-5 dB was statistically and clinically significant. Spanish signals yielded significantly higher ANLs than English signals, but this difference of 0.5 dB was clinically negligible. The language and composition of the babble had a significant effect on Russian-English bilinguals, who yielded higher ANLs with the Spanish than English 12-talker babble. The above findings do not fully support the notion that the ANL is language- and population-independent. Clinicians should be aware of possible effects on ANL measures due to listeners' linguistic/cultural background.

  20. Testing Time and Frequency Fiber-Optic Link Transfer by Hardware Emulation of Acoustic-Band Optical Noise

    Directory of Open Access Journals (Sweden)

    Lipiński Marcin

    2016-06-01

    Full Text Available The low-frequency optical-signal phase noise induced by mechanical vibration of the base occurs in field-deployed fibers. Typical telecommunication data transfer is insensitive to this type of noise but the phenomenon may influence links dedicated to precise Time and Frequency (T&F fiber-optic transfer that exploit the idea of stabilization of phase or propagation delay of the link. To measure effectiveness of suppression of acoustic noise in such a link, a dedicated measurement setup is necessary. The setup should enable to introduce a low-frequency phase corruption to the optical signal in a controllable way. In the paper, a concept of a setup in which the mechanically induced acoustic-band optical signal phase corruption is described and its own features and measured parameters are presented. Next, the experimental measurement results of the T&F transfer TFTS-2 system’s immunity as a function of the fibre-optic length vs. the acoustic-band noise are presented. Then, the dependency of the system immunity on the location of a noise source along the link is also pointed out.

  1. How Angular Velocity Features and Different Gyroscope Noise Types Interact and Determine Orientation Estimation Accuracy

    Directory of Open Access Journals (Sweden)

    Ilaria Pasciuto

    2015-09-01

    Full Text Available In human movement analysis, 3D body segment orientation can be obtained through the numerical integration of gyroscope signals. These signals, however, are affected by errors that, for the case of micro-electro-mechanical systems, are mainly due to: constant bias, scale factor, white noise, and bias instability. The aim of this study is to assess how the orientation estimation accuracy is affected by each of these disturbances, and whether it is influenced by the angular velocity magnitude and 3D distribution across the gyroscope axes. Reference angular velocity signals, either constant or representative of human walking, were corrupted with each of the four noise types within a simulation framework. The magnitude of the angular velocity affected the error in the orientation estimation due to each noise type, except for the white noise. Additionally, the error caused by the constant bias was also influenced by the angular velocity 3D distribution. As the orientation error depends not only on the noise itself but also on the signal it is applied to, different sensor placements could enhance or mitigate the error due to each disturbance, and special attention must be paid in providing and interpreting measures of accuracy for orientation estimation algorithms.

  2. How Angular Velocity Features and Different Gyroscope Noise Types Interact and Determine Orientation Estimation Accuracy

    Science.gov (United States)

    Pasciuto, Ilaria; Ligorio, Gabriele; Bergamini, Elena; Vannozzi, Giuseppe; Sabatini, Angelo Maria; Cappozzo, Aurelio

    2015-01-01

    In human movement analysis, 3D body segment orientation can be obtained through the numerical integration of gyroscope signals. These signals, however, are affected by errors that, for the case of micro-electro-mechanical systems, are mainly due to: constant bias, scale factor, white noise, and bias instability. The aim of this study is to assess how the orientation estimation accuracy is affected by each of these disturbances, and whether it is influenced by the angular velocity magnitude and 3D distribution across the gyroscope axes. Reference angular velocity signals, either constant or representative of human walking, were corrupted with each of the four noise types within a simulation framework. The magnitude of the angular velocity affected the error in the orientation estimation due to each noise type, except for the white noise. Additionally, the error caused by the constant bias was also influenced by the angular velocity 3D distribution. As the orientation error depends not only on the noise itself but also on the signal it is applied to, different sensor placements could enhance or mitigate the error due to each disturbance, and special attention must be paid in providing and interpreting measures of accuracy for orientation estimation algorithms. PMID:26393606

  3. How Angular Velocity Features and Different Gyroscope Noise Types Interact and Determine Orientation Estimation Accuracy.

    Science.gov (United States)

    Pasciuto, Ilaria; Ligorio, Gabriele; Bergamini, Elena; Vannozzi, Giuseppe; Sabatini, Angelo Maria; Cappozzo, Aurelio

    2015-09-18

    In human movement analysis, 3D body segment orientation can be obtained through the numerical integration of gyroscope signals. These signals, however, are affected by errors that, for the case of micro-electro-mechanical systems, are mainly due to: constant bias, scale factor, white noise, and bias instability. The aim of this study is to assess how the orientation estimation accuracy is affected by each of these disturbances, and whether it is influenced by the angular velocity magnitude and 3D distribution across the gyroscope axes. Reference angular velocity signals, either constant or representative of human walking, were corrupted with each of the four noise types within a simulation framework. The magnitude of the angular velocity affected the error in the orientation estimation due to each noise type, except for the white noise. Additionally, the error caused by the constant bias was also influenced by the angular velocity 3D distribution. As the orientation error depends not only on the noise itself but also on the signal it is applied to, different sensor placements could enhance or mitigate the error due to each disturbance, and special attention must be paid in providing and interpreting measures of accuracy for orientation estimation algorithms.

  4. The meaning of city noises: Investigating sound quality in Paris (France)

    Science.gov (United States)

    Dubois, Daniele; Guastavino, Catherine; Maffiolo, Valerie; Guastavino, Catherine; Maffiolo, Valerie

    2004-05-01

    The sound quality of Paris (France) was investigated by using field inquiries in actual environments (open questionnaires) and using recordings under laboratory conditions (free-sorting tasks). Cognitive categories of soundscapes were inferred by means of psycholinguistic analyses of verbal data and of mathematical analyses of similarity judgments. Results show that auditory judgments mainly rely on source identification. The appraisal of urban noise therefore depends on the qualitative evaluation of noise sources. The salience of human sounds in public spaces has been demonstrated, in relation to pleasantness judgments: soundscapes with human presence tend to be perceived as more pleasant than soundscapes consisting solely of mechanical sounds. Furthermore, human sounds are qualitatively processed as indicators of human outdoor activities, such as open markets, pedestrian areas, and sidewalk cafe districts that reflect city life. In contrast, mechanical noises (mainly traffic noise) are commonly described in terms of physical properties (temporal structure, intensity) of a permanent background noise that also characterizes urban areas. This connotes considering both quantitative and qualitative descriptions to account for the diversity of cognitive interpretations of urban soundscapes, since subjective evaluations depend both on the meaning attributed to noise sources and on inherent properties of the acoustic signal.

  5. Nitric oxide signaling depends on biotin in Jurkat human lymphoma cells.

    Science.gov (United States)

    Rodriguez-Melendez, Rocio; Zempleni, Janos

    2009-03-01

    Biotin affects gene expression through a diverse array of cell signaling pathways. Previous studies provided evidence that cGMP-dependent signaling also depends on biotin, but the mechanistic sequence of cGMP regulation by biotin is unknown. Here we tested the hypothesis that the effects of biotin in cGMP-dependent cell signaling are mediated by nitric oxide (NO). Human lymphoid (Jurkat) cells were cultured in media containing deficient (0.025 nmol/L), physiological (0.25 nmol/L), and pharmacological (10 nmol/L) concentrations of biotin for 5 wk. Both levels of intracellular biotin and NO exhibited a dose-dependent relationship in regard to biotin concentrations in culture media. Effects of biotin on NO levels were disrupted by the NO synthase (NOS) inhibitor N-monomethyl-arginine. Biotin-dependent production of NO was linked with biotin-dependent expression of endothelial and neuronal NOS, but not inducible NOS. Previous studies revealed that NO is an activator of guanylate cyclase. Consistent with these previous observations, biotin-dependent generation of NO increased the abundance of cGMP in Jurkat cells. Finally, the biotin-dependent generation of cGMP increased protein kinase G activity. Collectively, the results of this study are consistent with the hypothesis that biotin-dependent cGMP signaling in human lymphoid cells is mediated by NO.

  6. Speech recognition in natural background noise.

    Directory of Open Access Journals (Sweden)

    Julien Meyer

    Full Text Available In the real world, human speech recognition nearly always involves listening in background noise. The impact of such noise on speech signals and on intelligibility performance increases with the separation of the listener from the speaker. The present behavioral experiment provides an overview of the effects of such acoustic disturbances on speech perception in conditions approaching ecologically valid contexts. We analysed the intelligibility loss in spoken word lists with increasing listener-to-speaker distance in a typical low-level natural background noise. The noise was combined with the simple spherical amplitude attenuation due to distance, basically changing the signal-to-noise ratio (SNR. Therefore, our study draws attention to some of the most basic environmental constraints that have pervaded spoken communication throughout human history. We evaluated the ability of native French participants to recognize French monosyllabic words (spoken at 65.3 dB(A, reference at 1 meter at distances between 11 to 33 meters, which corresponded to the SNRs most revealing of the progressive effect of the selected natural noise (-8.8 dB to -18.4 dB. Our results showed that in such conditions, identity of vowels is mostly preserved, with the striking peculiarity of the absence of confusion in vowels. The results also confirmed the functional role of consonants during lexical identification. The extensive analysis of recognition scores, confusion patterns and associated acoustic cues revealed that sonorant, sibilant and burst properties were the most important parameters influencing phoneme recognition. . Altogether these analyses allowed us to extract a resistance scale from consonant recognition scores. We also identified specific perceptual consonant confusion groups depending of the place in the words (onset vs. coda. Finally our data suggested that listeners may access some acoustic cues of the CV transition, opening interesting perspectives for

  7. Speech recognition in natural background noise.

    Science.gov (United States)

    Meyer, Julien; Dentel, Laure; Meunier, Fanny

    2013-01-01

    In the real world, human speech recognition nearly always involves listening in background noise. The impact of such noise on speech signals and on intelligibility performance increases with the separation of the listener from the speaker. The present behavioral experiment provides an overview of the effects of such acoustic disturbances on speech perception in conditions approaching ecologically valid contexts. We analysed the intelligibility loss in spoken word lists with increasing listener-to-speaker distance in a typical low-level natural background noise. The noise was combined with the simple spherical amplitude attenuation due to distance, basically changing the signal-to-noise ratio (SNR). Therefore, our study draws attention to some of the most basic environmental constraints that have pervaded spoken communication throughout human history. We evaluated the ability of native French participants to recognize French monosyllabic words (spoken at 65.3 dB(A), reference at 1 meter) at distances between 11 to 33 meters, which corresponded to the SNRs most revealing of the progressive effect of the selected natural noise (-8.8 dB to -18.4 dB). Our results showed that in such conditions, identity of vowels is mostly preserved, with the striking peculiarity of the absence of confusion in vowels. The results also confirmed the functional role of consonants during lexical identification. The extensive analysis of recognition scores, confusion patterns and associated acoustic cues revealed that sonorant, sibilant and burst properties were the most important parameters influencing phoneme recognition. . Altogether these analyses allowed us to extract a resistance scale from consonant recognition scores. We also identified specific perceptual consonant confusion groups depending of the place in the words (onset vs. coda). Finally our data suggested that listeners may access some acoustic cues of the CV transition, opening interesting perspectives for future studies.

  8. Synthesis of multi-wavelength temporal phase-shifting algorithms optimized for high signal-to-noise ratio and high detuning robustness using the frequency transfer function.

    Science.gov (United States)

    Servin, Manuel; Padilla, Moises; Garnica, Guillermo

    2016-05-02

    Synthesis of single-wavelength temporal phase-shifting algorithms (PSA) for interferometry is well-known and firmly based on the frequency transfer function (FTF) paradigm. Here we extend the single-wavelength FTF-theory to dual and multi-wavelength PSA-synthesis when several simultaneous laser-colors are present. The FTF-based synthesis for dual-wavelength (DW) PSA is optimized for high signal-to-noise ratio and minimum number of temporal phase-shifted interferograms. The DW-PSA synthesis herein presented may be used for interferometric contouring of discontinuous industrial objects. Also DW-PSA may be useful for DW shop-testing of deep free-form aspheres. As shown here, using the FTF-based synthesis one may easily find explicit DW-PSA formulae optimized for high signal-to-noise and high detuning robustness. To this date, no general synthesis and analysis for temporal DW-PSAs has been given; only ad hoc DW-PSAs formulas have been reported. Consequently, no explicit formulae for their spectra, their signal-to-noise, their detuning and harmonic robustness has been given. Here for the first time a fully general procedure for designing DW-PSAs (or triple-wavelengths PSAs) with desire spectrum, signal-to-noise ratio and detuning robustness is given. We finally generalize DW-PSA to higher number of wavelength temporal PSAs.

  9. Applications of digital processing for noise removal from plasma diagnostics

    International Nuclear Information System (INIS)

    Kane, R.J.; Candy, J.V.; Casper, T.A.

    1985-01-01

    The use of digital signal techniques for removal of noise components present in plasma diagnostic signals is discussed, particularly with reference to diamagnetic loop signals. These signals contain noise due to power supply ripple in addition to plasma characteristics. The application of noise canceling techniques, such as adaptive noise canceling and model-based estimation, will be discussed. The use of computer codes such as SIG is described. 19 refs., 5 figs

  10. Optimal configuration of partial Mueller matrix polarimeter for measuring the ellipsometric parameters in the presence of Poisson shot noise and Gaussian noise

    Science.gov (United States)

    Quan, Naicheng; Zhang, Chunmin; Mu, Tingkui

    2018-05-01

    We address the optimal configuration of a partial Mueller matrix polarimeter used to determine the ellipsometric parameters in the presence of additive Gaussian noise and signal-dependent shot noise. The numerical results show that, for the PSG/PSA consisting of a variable retarder and a fixed polarizer, the detection process immune to these two types of noise can be optimally composed by 121.2° retardation with a pair of azimuths ±71.34° and a 144.48° retardation with a pair of azimuths ±31.56° for four Mueller matrix elements measurement. Compared with the existing configurations, the configuration presented in this paper can effectively decrease the measurement variance and thus statistically improve the measurement precision of the ellipsometric parameters.

  11. Free Energy Adjusted Peak Signal to Noise Ratio (FEA-PSNR) for Image Quality Assessment

    Science.gov (United States)

    Liu, Ning; Zhai, Guangtao

    2017-12-01

    Peak signal to noise ratio (PSNR), the de facto universal image quality metric has been widely criticized as having poor correlation with human subjective quality ratings. In this paper, it will be illustrated that the low performance of PSNR as an image quality metric is partially due to its inability of differentiating image contents. And it is revealed that the deviation between subjective score and PSNR for each type of distortions can be systematically captured by perceptual complexity of the target image. The free energy modelling technique is then introduced to simulate the human cognitive process and measure perceptual complexity of an image. Then it is shown that performance of PSNR can be effectively improved using a linear score mapping process considering image free energy and distortion type. The proposed free energy adjusted peak signal to noise ratio (FEA-PSNR) does not change computational steps the of ordinary PSNR and therefore it inherits the merits of being simple, derivable and physically meaningful. So FEA-PSNR can be easily integrated into existing PSNR based image processing systems to achieve more visually plausible results. And the proposed analysis approach can be extended to other types of image quality metrics for enhanced performance.

  12. Denoising of Mechanical Vibration Signals Using Quantum-Inspired Adaptive Wavelet Shrinkage

    Directory of Open Access Journals (Sweden)

    Yan-long Chen

    2014-01-01

    Full Text Available The potential application of a quantum-inspired adaptive wavelet shrinkage (QAWS technique to mechanical vibration signals with a focus on noise reduction is studied in this paper. This quantum-inspired shrinkage algorithm combines three elements: an adaptive non-Gaussian statistical model of dual-tree complex wavelet transform (DTCWT coefficients proposed to improve practicability of prior information, the quantum superposition introduced to describe the interscale dependencies of DTCWT coefficients, and the quantum-inspired probability of noise defined to shrink wavelet coefficients in a Bayesian framework. By combining all these elements, this signal processing scheme incorporating the DTCWT with quantum theory can both reduce noise and preserve signal details. A practical vibration signal measured from a power-shift steering transmission is utilized to evaluate the denoising ability of QAWS. Application results demonstrate the effectiveness of the proposed method. Moreover, it achieves better performance than hard and soft thresholding.

  13. Transient Properties of Probability Distribution for a Markov Process with Size-dependent Additive Noise

    Science.gov (United States)

    Yamada, Yuhei; Yamazaki, Yoshihiro

    2018-04-01

    This study considered a stochastic model for cluster growth in a Markov process with a cluster size dependent additive noise. According to this model, the probability distribution of the cluster size transiently becomes an exponential or a log-normal distribution depending on the initial condition of the growth. In this letter, a master equation is obtained for this model, and derivation of the distributions is discussed.

  14. Experimental Demonstration of Nonlinearity and Phase Noise Tolerant 16-QAM OFDM W-Band (75–110 GHz) Signal Over Fiber System

    DEFF Research Database (Denmark)

    Deng, Lei; Pang, Xiaodan; Tafur Monroy, Idelfonso

    2014-01-01

    We propose a nonlinearity and phase noise tolerant orthogonal frequency division multiplexing (OFDM) W-band signal over fiber system based on phase modulation and photonic heterodyne up-conversion techniques. By heterodyne mixing the phase-modulated optical OFDM signal with a free-running laser i...

  15. Use of the Kalman filter in signal processing to reduce beam requirements for alpha-particle diagnostics

    International Nuclear Information System (INIS)

    Cooper, W.S.

    1986-01-01

    Several techniques proposed for diagnosing the velocity distribution of fast alpha-particles in a burning plasma require the injection of a beam of fast neutral atoms as probes. The author discusses how improving signal detection techniques is a high leverage factor in reducing the cost of the diagnostic beam. Optimal estimation theory provides a computational algorithm, the Kalman filter, that can optimally estimate the amplitude of a signal with arbitrary (but known) time dependence in the presence of noise. In one example presented, based on a square-wave signal and assumed noise levels, the Kalman filter achieves an enhancement of signal detection efficiency of about a factor of 10 (as compared with the straightforward observation of the signal superimposed on noise) with an observation time of 100 signal periods

  16. Correlation techniques for the improvement of signal-to-noise ratio in measurements with stochastic processes

    CERN Document Server

    Reddy, V R; Reddy, T G; Reddy, P Y; Reddy, K R

    2003-01-01

    An AC modulation technique is described to convert stochastic signal variations into an amplitude variation and its retrieval through Fourier analysis. It is shown that this AC detection of signals of stochastic processes when processed through auto- and cross-correlation techniques improve the signal-to-noise ratio; the correlation techniques serve a similar purpose of frequency and phase filtering as that of phase-sensitive detection. A few model calculations applied to nuclear spectroscopy measurements such as Angular Correlations, Mossbauer spectroscopy and Pulse Height Analysis reveal considerable improvement in the sensitivity of signal detection. Experimental implementation of the technique is presented in terms of amplitude variations of harmonics representing the derivatives of normal spectra. Improved detection sensitivity to spectral variations is shown to be significant. These correlation techniques are general and can be made applicable to all the fields of particle counting where measurements ar...

  17. Effects of Colored Noise on Stochastic Resonance in Sensory Neurons

    International Nuclear Information System (INIS)

    Nozaki, D.; Mar, D.J.; Collins, J.J.; Grigg, P.

    1999-01-01

    Noise can assist neurons in the detection of weak signals via a mechanism known as stochastic resonance (SR). We demonstrate experimentally that SR-type effects can be obtained in rat sensory neurons with white noise, 1/f noise, or 1/f 2 noise. For low-frequency input noise, we show that the optimal noise intensity is the lowest and the output signal-to-noise ratio the highest for conventional white noise. We also show that under certain circumstances, 1/f noise can be better than white noise for enhancing the response of a neuron to a weak signal. We present a theory to account for these results and discuss the biological implications of 1/f noise. copyright 1999 The American Physical Society

  18. Vocal Noise Cancellation From Respiratory Sounds

    National Research Council Canada - National Science Library

    Moussavi, Zahra

    2001-01-01

    Although background noise cancellation for speech or electrocardiographic recording is well established, however when the background noise contains vocal noises and the main signal is a breath sound...

  19. Binaural noise reduction via cue-preserving MMSE filter and adaptive-blocking-based noise PSD estimation

    Science.gov (United States)

    Azarpour, Masoumeh; Enzner, Gerald

    2017-12-01

    Binaural noise reduction, with applications for instance in hearing aids, has been a very significant challenge. This task relates to the optimal utilization of the available microphone signals for the estimation of the ambient noise characteristics and for the optimal filtering algorithm to separate the desired speech from the noise. The additional requirements of low computational complexity and low latency further complicate the design. A particular challenge results from the desired reconstruction of binaural speech input with spatial cue preservation. The latter essentially diminishes the utility of multiple-input/single-output filter-and-sum techniques such as beamforming. In this paper, we propose a comprehensive and effective signal processing configuration with which most of the aforementioned criteria can be met suitably. This relates especially to the requirement of efficient online adaptive processing for noise estimation and optimal filtering while preserving the binaural cues. Regarding noise estimation, we consider three different architectures: interaural (ITF), cross-relation (CR), and principal-component (PCA) target blocking. An objective comparison with two other noise PSD estimation algorithms demonstrates the superiority of the blocking-based noise estimators, especially the CR-based and ITF-based blocking architectures. Moreover, we present a new noise reduction filter based on minimum mean-square error (MMSE), which belongs to the class of common gain filters, hence being rigorous in terms of spatial cue preservation but also efficient and competitive for the acoustic noise reduction task. A formal real-time subjective listening test procedure is also developed in this paper. The proposed listening test enables a real-time assessment of the proposed computationally efficient noise reduction algorithms in a realistic acoustic environment, e.g., considering time-varying room impulse responses and the Lombard effect. The listening test outcome

  20. ”Sound [signal] noise

    DEFF Research Database (Denmark)

    Bjørnsten, Thomas

    2012-01-01

    The article discusses the intricate relationship between sound and signification through notions of noise. The emergence of new fields of sonic artistic practices has generated several questions of how to approach sound as aesthetic form and material. During the past decade an increased attention...... has been paid to, for instance, a category such as ‘sound art’ together with an equally strengthened interest in phenomena and concepts that fall outside the accepted aesthetic procedures and constructions of what we traditionally would term as musical sound – a recurring example being ‘noise’....

  1. Listening to the Deep: live monitoring of ocean noise and cetacean acoustic signals.

    Science.gov (United States)

    André, M; van der Schaar, M; Zaugg, S; Houégnigan, L; Sánchez, A M; Castell, J V

    2011-01-01

    The development and broad use of passive acoustic monitoring techniques have the potential to help assessing the large-scale influence of artificial noise on marine organisms and ecosystems. Deep-sea observatories have the potential to play a key role in understanding these recent acoustic changes. LIDO (Listening to the Deep Ocean Environment) is an international project that is allowing the real-time long-term monitoring of marine ambient noise as well as marine mammal sounds at cabled and standalone observatories. Here, we present the overall development of the project and the use of passive acoustic monitoring (PAM) techniques to provide the scientific community with real-time data at large spatial and temporal scales. Special attention is given to the extraction and identification of high frequency cetacean echolocation signals given the relevance of detecting target species, e.g. beaked whales, in mitigation processes, e.g. during military exercises. Copyright © 2011. Published by Elsevier Ltd.

  2. Comparison of contrast-to-noise ratios of transmission and dark-field signal in grating-based X-ray imaging for healthy murine lung tissue

    International Nuclear Information System (INIS)

    Schwab, Felix; Schleede, Simone; Hahn, Dieter

    2013-01-01

    Purpose: An experimental comparison of the contrast-to-noise ratio (CNR) between transmission and dark-field signals in grating-based X-ray imaging for ex-vivo murine lung tissue. Materials and Methods: Lungs from three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Background noise of transmission and dark-field signal was quantified by measuring the standard deviation in a region of interest (ROI) placed in a homogeneous area outside the specimen. Image contrast was quantified by measuring the signal range in rectangular ROIs placed in central and peripheral lung parenchyma. The relative contrast gain (RCG) of dark-field over transmission images was calculated as CNRDF / CNRT. Results: In all images, there was a trend for contrast-to-noise ratios of dark-field images (CNRDF) to be higher than for transmission images (CNRT) for all ROIs (median 61 vs. 38, p = 0.10), but the difference was statistically significant only for peripheral ROIs (61 vs. 32, p = 0.03). Median RCG was >1 for all ROIs (1.84). RCG values were significantly smaller for central ROIs than for peripheral ROIs (1.34 vs. 2.43, p = 0.03). Conclusion: The contrast-to-noise ratio of dark-field images compares more favorably to the contrast-to-noise ratio of transmission images for peripheral lung regions as compared to central regions. For any specific specimen, a calculation of the RCG allows comparing which X-ray modality (dark-field or transmission imaging) produces better contrast-to-noise characteristics in a well-defined ROI. (orig.)

  3. Low Delay Noise Reduction and Dereverberation for Hearing Aids

    Directory of Open Access Journals (Sweden)

    Heinrich W. Löllmann

    2009-01-01

    Full Text Available A new system for single-channel speech enhancement is proposed which achieves a joint suppression of late reverberant speech and background noise with a low signal delay and low computational complexity. It is based on a generalized spectral subtraction rule which depends on the variances of the late reverberant speech and background noise. The calculation of the spectral variances of the late reverberant speech requires an estimate of the reverberation time (RT which is accomplished by a maximum likelihood (ML approach. The enhancement with this blind RT estimation achieves almost the same speech quality as by using the actual RT. In comparison to commonly used post-filters in hearing aids which only perform a noise reduction, a significantly better objective and subjective speech quality is achieved. The proposed system performs time-domain filtering with coefficients adapted in the non-uniform (Bark-scaled frequency-domain. This allows to achieve a high speech quality with low signal delay which is important for speech enhancement in hearing aids or related applications such as hands-free communication systems.

  4. Collective signaling behavior in a networked-oscillator model

    Science.gov (United States)

    Liu, Z.-H.; Hui, P. M.

    2007-09-01

    We propose and study the collective behavior of a model of networked signaling objects that incorporates several ingredients of real-life systems. These ingredients include spatial inhomogeneity with grouping of signaling objects, signal attenuation with distance, and delayed and impulsive coupling between non-identical signaling objects. Depending on the coupling strength and/or time-delay effect, the model exhibits completely, partially, and locally collective signaling behavior. In particular, a correlated signaling (CS) behavior is observed in which there exist time durations when nearly a constant fraction of oscillators in the system are in the signaling state. These time durations are much longer than the duration of a spike when a single oscillator signals, and they are separated by regular intervals in which nearly all oscillators are silent. Such CS behavior is similar to that observed in biological systems such as fireflies, cicadas, crickets, and frogs. The robustness of the CS behavior against noise is also studied. It is found that properly adjusting the coupling strength and noise level could enhance the correlated behavior.

  5. The psychosis-like effects of Δ(9)-tetrahydrocannabinol are associated with increased cortical noise in healthy humans.

    Science.gov (United States)

    Cortes-Briones, Jose A; Cahill, John D; Skosnik, Patrick D; Mathalon, Daniel H; Williams, Ashley; Sewell, R Andrew; Roach, Brian J; Ford, Judith M; Ranganathan, Mohini; D'Souza, Deepak Cyril

    2015-12-01

    Drugs that induce psychosis may do so by increasing the level of task-irrelevant random neural activity or neural noise. Increased levels of neural noise have been demonstrated in psychotic disorders. We tested the hypothesis that neural noise could also be involved in the psychotomimetic effects of delta-9-tetrahydrocannabinol (Δ(9)-THC), the principal active constituent of cannabis. Neural noise was indexed by measuring the level of randomness in the electroencephalogram during the prestimulus baseline period of an oddball task using Lempel-Ziv complexity, a nonlinear measure of signal randomness. The acute, dose-related effects of Δ(9)-THC on Lempel-Ziv complexity and signal power were studied in humans (n = 24) who completed 3 test days during which they received intravenous Δ(9)-THC (placebo, .015 and .03 mg/kg) in a double-blind, randomized, crossover, and counterbalanced design. Δ(9)-THC increased neural noise in a dose-related manner. Furthermore, there was a strong positive relationship between neural noise and the psychosis-like positive and disorganization symptoms induced by Δ(9)-THC, which was independent of total signal power. Instead, there was no relationship between noise and negative-like symptoms. In addition, Δ(9)-THC reduced total signal power during both active drug conditions compared with placebo, but no relationship was detected between signal power and psychosis-like symptoms. At doses that produced psychosis-like effects, Δ(9)-THC increased neural noise in humans in a dose-dependent manner. Furthermore, increases in neural noise were related with increases in Δ(9)-THC-induced psychosis-like symptoms but not negative-like symptoms. These findings suggest that increases in neural noise may contribute to the psychotomimetic effects of Δ(9)-THC. Published by Elsevier Inc.

  6. Detection of low-contrast images in film-grain noise.

    Science.gov (United States)

    Naderi, F; Sawchuk, A A

    1978-09-15

    When low contrast photographic images are digitized by a very small aperture, extreme film-grain noise almost completely obliterates the image information. Using a large aperture to average out the noise destroys the fine details of the image. In these situations conventional statistical restoration techniques have little effect, and well chosen heuristic algorithms have yielded better results. In this paper we analyze the noisecheating algorithm of Zweig et al. [J. Opt. Soc. Am. 65, 1347 (1975)] and show that it can be justified by classical maximum-likelihood detection theory. A more general algorithm applicable to a broader class of images is then developed by considering the signal-dependent nature of film-grain noise. Finally, a Bayesian detection algorithm with improved performance is presented.

  7. Signal-to-noise analysis of a birefringent spectral zooming imaging spectrometer

    Science.gov (United States)

    Li, Jie; Zhang, Xiaotong; Wu, Haiying; Qi, Chun

    2018-05-01

    Study of signal-to-noise ratio (SNR) of a novel spectral zooming imaging spectrometer (SZIS) based on two identical Wollaston prisms is conducted. According to the theory of radiometry and Fourier transform spectroscopy, we deduce the theoretical equations of SNR of SZIS in spectral domain with consideration of the incident wavelength and the adjustable spectral resolution. An example calculation of SNR of SZIS is performed over 400-1000 nm. The calculation results indicate that SNR with different spectral resolutions of SZIS can be optionally selected by changing the spacing between the two identical Wollaston prisms. This will provide theoretical basis for the design, development and engineering of the developed imaging spectrometer for broad spectrum and SNR requirements.

  8. ON THE ANISOTROPIC NORM OF DISCRETE TIME STOCHASTIC SYSTEMS WITH STATE DEPENDENT NOISE

    Directory of Open Access Journals (Sweden)

    Isaac Yaesh

    2013-01-01

    Full Text Available The purpose of this paper is to determine conditions for the bound-edness of the anisotropic norm of discrete-time linear stochastic sys-tems with state dependent noise. It is proved that these conditions canbe expressed in terms of the feasibility of a specific system of matrixinequalities.

  9. Compressive sensing for sparse time-frequency representation of nonstationary signals in the presence of impulsive noise

    Science.gov (United States)

    Orović, Irena; Stanković, Srdjan; Amin, Moeness

    2013-05-01

    A modified robust two-dimensional compressive sensing algorithm for reconstruction of sparse time-frequency representation (TFR) is proposed. The ambiguity function domain is assumed to be the domain of observations. The two-dimensional Fourier bases are used to linearly relate the observations to the sparse TFR, in lieu of the Wigner distribution. We assume that a set of available samples in the ambiguity domain is heavily corrupted by an impulsive type of noise. Consequently, the problem of sparse TFR reconstruction cannot be tackled using standard compressive sensing optimization algorithms. We introduce a two-dimensional L-statistics based modification into the transform domain representation. It provides suitable initial conditions that will produce efficient convergence of the reconstruction algorithm. This approach applies sorting and weighting operations to discard an expected amount of samples corrupted by noise. The remaining samples serve as observations used in sparse reconstruction of the time-frequency signal representation. The efficiency of the proposed approach is demonstrated on numerical examples that comprise both cases of monocomponent and multicomponent signals.

  10. Survey on Johnson noise thermometry for temperature instrumentation

    International Nuclear Information System (INIS)

    Hwang, I. K.; Kim, Y. K.; Kim, J. S.; Moon, B. S.

    2002-01-01

    Johnson Noise Thermometry is an drift-free temperature measurement method which is able to maintain the best accuracy without calibration for a long period. Resistance Temperature Detectors (RTDs) and Thermocouples used widely in power plants have the drift problem which causes a measurement error. Despite the advantage of Johnson Noise thermometry, it has not been used because it is very sensitive to electromagnetic noise and environment. It also requires more complicated signal processing methods. This paper presents the characteristics of Johnson Noise thermometry and various implementation method proposed over the past decades time period. The key factor in development of a noise thermometer is how to extract the tiny noise signal from the sensor and discriminate out the unnecessary noise interference from the environments. The new digital technology of fast signal processing skill will useful to challenge the existing problems fir commercialization of noise thermometry

  11. Effect of uncompensated SPN detector cables on neutron noise signals measured in VVER-440 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, S. E-mail: kisss@sunserv.kfki.hu; Lipcsei, S. E-mail: lipcsei@sunserv.kfki.hu; Hazi, G. E-mail: gah@sunserv.kfki.hu

    2003-03-01

    The Self Powered Neutron Detector (SPND) noise measurements of an operating VVER-440 nuclear reactor are described and characterised. Signal characteristics may be radically influenced by the geometrical properties of the detector and the cable, and by the measuring arrangement. Simulator is used as a means of studying the structure of those phase spectra that show propagating perturbations measured on uncompensated SPN detectors. The paper presents measurements with detectors of very different sizes (i.e. 20 cm length SPNDs and the 200 cm length compensation cables), where the ratios of the global and local component differ significantly for the different detector sizes. This phenomenon is used up for signal compensation.

  12. Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM

    Energy Technology Data Exchange (ETDEWEB)

    McGinty, J; Requejo-Isidro, J; Munro, I; Talbot, C B; Dunsby, C; Neil, M A A; French, P M W [Photonics Group, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2BW (United Kingdom); Kellett, P A; Hares, J D, E-mail: james.mcginty@imperial.ac.u [Kentech Instruments Ltd, Isis Building, Howbery Park, Wallingford, OX10 8BA (United Kingdom)

    2009-07-07

    Time-gated imaging using gated optical intensifiers provides a means to realize high speed fluorescence lifetime imaging (FLIM) for the study of fast events and for high throughput imaging. We present a signal-to-noise characterization of CCD-coupled micro-channel plate gated intensifiers used with this technique and determine the optimal acquisition parameters (intensifier gain voltage, CCD integration time and frame averaging) for measuring mono-exponential fluorescence lifetimes in the shortest image acquisition time for a given signal flux. We explore the use of unequal CCD integration times for different gate delays and show that this can improve the lifetime accuracy for a given total acquisition time.

  13. Asymmetry between ON and OFF α ganglion cells of mouse retina: integration of signal and noise from synaptic inputs.

    Science.gov (United States)

    Freed, Michael A

    2017-11-15

    Bipolar and amacrine cells presynaptic to the ON sustained α cell of mouse retina provide currents with a higher signal-to-noise power ratio (SNR) than those presynaptic to the OFF sustained α cell. Yet the ON cell loses proportionately more SNR from synaptic inputs to spike output than the OFF cell does. The higher SNR of ON bipolar cells at the beginning of the ON pathway compensates for losses incurred by the ON ganglion cell, and improves the processing of positive contrasts. ON and OFF pathways in the retina include functional pairs of neurons that, at first glance, appear to have symmetrically similar responses to brightening and darkening, respectively. Upon careful examination, however, functional pairs exhibit asymmetries in receptive field size and response kinetics. Until now, descriptions of how light-adapted retinal circuitry maintains a preponderance of signal over the noise have not distinguished between ON and OFF pathways. Here I present evidence of marked asymmetries between members of a functional pair of sustained α ganglion cells in the mouse retina. The ON cell exhibited a proportionately greater loss of signal-to-noise power ratio (SNR) from its presynaptic arrays to its postsynaptic currents. Thus the ON cell combines signal and noise from its presynaptic arrays of bipolar and amacrine cells less efficiently than the OFF cell does. Yet the inefficiency of the ON cell is compensated by its presynaptic arrays providing a higher SNR than the arrays presynaptic to the OFF cell, apparently to improve visual processing of positive contrasts. Dynamic clamp experiments were performed that introduced synaptic conductances into ON and OFF cells. When the amacrine-modulated conductance was removed, the ON cell's spike train exhibited an increase in SNR. The OFF cell, however, showed the opposite effect of removing amacrine input, which was a decrease in SNR. Thus ON and OFF cells have different modes of synaptic integration with direct effects on

  14. Interferometric Imaging of Geostationary Satellites: Signal-to-Noise Considerations

    Science.gov (United States)

    Jorgensen, A.; Schmitt, H.; Mozurkewich, D.; Armstrong, J.; Restaino, S.; Hindsley, R.

    2011-09-01

    Geostationary satellites are generally too small to image at high resolution with conventional single-dish telescopes. Obtaining many resolution elements across a typical geostationary satellite body requires a single-dish telescope with a diameter of 10’s of m or more, with a good adaptive optics system. An alternative is to use an optical/infrared interferometer consisting of multiple smaller telescopes in an array configuration. In this paper and companion papers1, 2 we discuss the performance of a common-mount 30-element interferometer. The instrument design is presented by Mozurkewich et al.,1 and imaging performance is presented by Schmitt et al.2 In this paper we discuss signal-to-noise ratio for both fringe-tracking and imaging. We conclude that the common-mount interferometer is sufficiently sensitive to track fringes on the majority of geostationary satellites. We also find that high-fidelity images can be obtained after a short integration time of a few minutes to a few tens of minutes.

  15. Noise reduction methods for nucleic acid and macromolecule sequencing

    Science.gov (United States)

    Schuller, Ivan K.; Di Ventra, Massimiliano; Balatsky, Alexander

    2018-05-08

    Methods, systems, and devices are disclosed for processing macromolecule sequencing data with substantial noise reduction. In one aspect, a method for reducing noise in a sequential measurement of a macromolecule comprising serial subunits includes cross-correlating multiple measured signals of a physical property of subunits of interest of the macromolecule, the multiple measured signals including the time data associated with the measurement of the signal, to remove or at least reduce signal noise that is not in the same frequency and in phase with the systematic signal contribution of the measured signals.

  16. Remaining useful life prediction based on noisy condition monitoring signals using constrained Kalman filter

    International Nuclear Information System (INIS)

    Son, Junbo; Zhou, Shiyu; Sankavaram, Chaitanya; Du, Xinyu; Zhang, Yilu

    2016-01-01

    In this paper, a statistical prognostic method to predict the remaining useful life (RUL) of individual units based on noisy condition monitoring signals is proposed. The prediction accuracy of existing data-driven prognostic methods depends on the capability of accurately modeling the evolution of condition monitoring (CM) signals. Therefore, it is inevitable that the RUL prediction accuracy depends on the amount of random noise in CM signals. When signals are contaminated by a large amount of random noise, RUL prediction even becomes infeasible in some cases. To mitigate this issue, a robust RUL prediction method based on constrained Kalman filter is proposed. The proposed method models the CM signals subject to a set of inequality constraints so that satisfactory prediction accuracy can be achieved regardless of the noise level of signal evolution. The advantageous features of the proposed RUL prediction method is demonstrated by both numerical study and case study with real world data from automotive lead-acid batteries. - Highlights: • A computationally efficient constrained Kalman filter is proposed. • Proposed filter is integrated into an online failure prognosis framework. • A set of proper constraints significantly improves the failure prediction accuracy. • Promising results are reported in the application of battery failure prognosis.

  17. Development of an electrometer/amplifier and filter set for analysis of reactor noise

    International Nuclear Information System (INIS)

    Strohl, Claude Emile

    1996-01-01

    In nuclear power reactors, the neutron detector signal is dependent on the number of fissions and the reactor power level. The detector signal can be divided into two components: a D C component, proportional to the average value and an A C component, which is the fluctuating part superimposed to the D C component. The analysis of the fluctuating part of the signal is called noise analysis and allow us to investigate phenomena occurring within the reactor vessel, such as vibrational of fuel elements and coolant density, temperature, pressure and flow changes. On the other hand, the measure of the static D C part allows us to measure the local power density. This work describes the development of a personal computer based signal conditioning card that, together with a personal computer commercial data acquisition card, can be used for noise analysis and reactivity measurements of signals coming from ionization chambers or SPD's. (author)

  18. Noise and DC balanced outlet temperature signals for monitoring coolant flow in LMFBR fuel elements

    International Nuclear Information System (INIS)

    Edelmann, M.

    1977-01-01

    Local cooling disturbances in LMFBR fuel elements may have serious safety implications for the whole reactor core. They have to be detected reliably in an early stage of their formation therefore. This can be accomplished in principle by individual monitoring of the coolant flow rate or the coolant outlet temperature of the sub-assemblies with high precision. In this paper a method is proposed to increase the sensitivity of outlet temperature signals to cooling disturbances. Using balanced temperature signals provides a means for eliminating the normal variations from the original signals which limit the sensitivity and speed of response to cooling disturbances. It is shown that a balanced signal can be derived easily from the original temperature signal by subtracting an inlet temperature and a neutron detector signal with appropriate time shift. The method was tested with tape-recorded noise signals of the KNK I reactor at Karlsruhe. The experimental results confirm the theoretical predictions. A significant reduction of the uncertainty of measured outlet temperatures was achieved. This enables very sensitive and fast response monitoring of coolant flow. Furthermore, it was found that minimizing the variance of the balanced signal offers the possibility for a rough determination of the heat transfer coefficient of the fuel rods during normal reactor operation at power. (author)

  19. Noise Considerations in Resistance Bridges

    DEFF Research Database (Denmark)

    Diamond, Joseph M.

    1963-01-01

    A signal-to-noise analysis is made of the Wheatstone bridge, where the unknown and standard resistors may be at different temperatures, a situation which occurs in resistance thermometry. The limiting condition is assumed to be dissipation in the unknown resistor. It is shown that the ratio arms...... thermometry, where the noise in the unknown resistor will predominate strongly. An impedance step-up device (transformer or tuned circuit) is valuable in raising the bridge signal and noise level above the noise of the first amplifier tube. However, as the step-up ratio is increased, two counterfactors appear....... With certain assumptions about the noise and grid current of the first tube it is found that the equivalent temperature of a unity ratio (Mueller) bridge used for liquid helium measurements may be 400°K....

  20. Correlation of Respiratory Signals and Electrocardiogram Signals via Empirical Mode Decomposition

    KAUST Repository

    El Fiky, Ahmed Osama

    2011-05-24

    Recently Electrocardiogram (ECG) signals are being broadly used as an essential diagnosing tool in different clinical applications as they carry a reliable representation not only for cardiac activities, but also for other associated biological processes, like respiration. However, the process of recording and collecting them has usually suffered from the presence of some undesired noises, which in turn affects the reliability of such representations.Therefore, de-noising ECG signals became a hot research field for signal processing experts to ensure better and clear representation of the different cardiac activities. Given the nonlinear and non-stationary properties of ECGs, it is not a simple task to cancel the undesired noise terms without affecting the biological physics of them. In this study, we are interested in correlating the ECG signals with respiratory parameters, specifically the lung volume and lung pressure. We have focused on the concept of de-noising ECG signals by means of signal decomposition using an algorithm called the Empirical Mode Decomposition (EMD) where the original ECG signals are being decomposed into a set of intrinsic mode functions (IMF). Then, we have provided criteria based on which some of these IMFs have been adapted to reconstruct de-noised ECG version. Finally, we have utilized de-noised ECGs as well as IMFs for to study the correlation with lung volume and lung pressure. These correlation studies have showed some clear resemblance especially between the oscillations of ECGs and lung pressures.

  1. Dependence of regular background noise of VLF radiation and thunder-storm activity on solar wind proton density

    International Nuclear Information System (INIS)

    Sobolev, A.V.; Kozlov, V.I.

    1997-01-01

    Correlation of the intensity of slowly changing regular background noise within 9.7 kHz frequency in Yakutsk (L = 3) and of the solar wind density protons was determined. This result explains the reverse dependence of the intensity of the regular background noise on the solar activity, 27-day frequency, increase before and following geomagnetic storms, absence of relation with K p index of geomagnetic activity. Conclusion is made that growth of density of the solar wind protons results in increase of the regular background noise and thunderstorm activity

  2. Coherence method of identifying signal noise model

    International Nuclear Information System (INIS)

    Vavrin, J.

    1981-01-01

    The noise analysis method is discussed in identifying perturbance models and their parameters by a stochastic analysis of the noise model of variables measured on a reactor. The analysis of correlations is made in the frequency region using coherence analysis methods. In identifying an actual specific perturbance, its model should be determined and recognized in a compound model of the perturbance system using the results of observation. The determination of the optimum estimate of the perturbance system model is based on estimates of related spectral densities which are determined from the spectral density matrix of the measured variables. Partial and multiple coherence, partial transfers, the power spectral densities of the input and output variables of the noise model are determined from the related spectral densities. The possibilities of applying the coherence identification methods were tested on a simple case of a simulated stochastic system. Good agreement was found of the initial analytic frequency filters and the transfers identified. (B.S.)

  3. Experimental testing of the noise-canceling processor.

    Science.gov (United States)

    Collins, Michael D; Baer, Ralph N; Simpson, Harry J

    2011-09-01

    Signal-processing techniques for localizing an acoustic source buried in noise are tested in a tank experiment. Noise is generated using a discrete source, a bubble generator, and a sprinkler. The experiment has essential elements of a realistic scenario in matched-field processing, including complex source and noise time series in a waveguide with water, sediment, and multipath propagation. The noise-canceling processor is found to outperform the Bartlett processor and provide the correct source range for signal-to-noise ratios below -10 dB. The multivalued Bartlett processor is found to outperform the Bartlett processor but not the noise-canceling processor. © 2011 Acoustical Society of America

  4. Multi-Stage Adaptive Noise Cancellation Technique for Synthetic Hard-α Inclusion

    International Nuclear Information System (INIS)

    Kim, Jae Joon

    2003-01-01

    Adaptive noise cancellation techniques are ideally suitable for reducing spatially varying noise due to the grain structure of material in ultrasonic nondestructive evaluation. Grain noises have an un-correlation property, while flaw echoes are correlated. Thus, adaptive filtering algorithms use the correlation properties of signals to enhance the signal-to-noise ratio (SNR) of the output signal. In this paper, a multi-stage adaptive noise cancellation (MANC) method using adaptive least mean square error (LMSE) filter for enhancing flaw detection in ultrasonic signals is proposed

  5. High Resolution of the ECG Signal by Polynomial Approximation

    Directory of Open Access Journals (Sweden)

    G. Rozinaj

    2006-04-01

    Full Text Available Averaging techniques as temporal averaging and space averaging have been successfully used in many applications for attenuating interference [6], [7], [8], [9], [10]. In this paper we introduce interference removing of the ECG signal by polynomial approximation, with smoothing discrete dependencies, to make up for averaging methods. The method is suitable for low-level signals of the electrical activity of the heart often less than 10 m V. Most low-level signals arising from PR, ST and TP segments which can be detected eventually and their physiologic meaning can be appreciated. Of special importance for the diagnostic of the electrical activity of the heart is the activity bundle of His between P and R waveforms. We have established an artificial sine wave to ECG signal between P and R wave. The aim focus is to verify the smoothing method by polynomial approximation if the SNR (signal-to-noise ratio is negative (i.e. a signal is lower than noise.

  6. Bootstrap Signal-to-Noise Confidence Intervals: An Objective Method for Subject Exclusion and Quality Control in ERP Studies

    Science.gov (United States)

    Parks, Nathan A.; Gannon, Matthew A.; Long, Stephanie M.; Young, Madeleine E.

    2016-01-01

    Analysis of event-related potential (ERP) data includes several steps to ensure that ERPs meet an appropriate level of signal quality. One such step, subject exclusion, rejects subject data if ERP waveforms fail to meet an appropriate level of signal quality. Subject exclusion is an important quality control step in the ERP analysis pipeline as it ensures that statistical inference is based only upon those subjects exhibiting clear evoked brain responses. This critical quality control step is most often performed simply through visual inspection of subject-level ERPs by investigators. Such an approach is qualitative, subjective, and susceptible to investigator bias, as there are no standards as to what constitutes an ERP of sufficient signal quality. Here, we describe a standardized and objective method for quantifying waveform quality in individual subjects and establishing criteria for subject exclusion. The approach uses bootstrap resampling of ERP waveforms (from a pool of all available trials) to compute a signal-to-noise ratio confidence interval (SNR-CI) for individual subject waveforms. The lower bound of this SNR-CI (SNRLB) yields an effective and objective measure of signal quality as it ensures that ERP waveforms statistically exceed a desired signal-to-noise criterion. SNRLB provides a quantifiable metric of individual subject ERP quality and eliminates the need for subjective evaluation of waveform quality by the investigator. We detail the SNR-CI methodology, establish the efficacy of employing this approach with Monte Carlo simulations, and demonstrate its utility in practice when applied to ERP datasets. PMID:26903849

  7. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    Science.gov (United States)

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  8. Assuring SS7 dependability: A robustness characterization of signaling network elements

    Science.gov (United States)

    Karmarkar, Vikram V.

    1994-04-01

    Current and evolving telecommunication services will rely on signaling network performance and reliability properties to build competitive call and connection control mechanisms under increasing demands on flexibility without compromising on quality. The dimensions of signaling dependability most often evaluated are the Rate of Call Loss and End-to-End Route Unavailability. A third dimension of dependability that captures the concern about large or catastrophic failures can be termed Network Robustness. This paper is concerned with the dependability aspects of the evolving Signaling System No. 7 (SS7) networks and attempts to strike a balance between the probabilistic and deterministic measures that must be evaluated to accomplish a risk-trend assessment to drive architecture decisions. Starting with high-level network dependability objectives and field experience with SS7 in the U.S., potential areas of growing stringency in network element (NE) dependability are identified to improve against current measures of SS7 network quality, as per-call signaling interactions increase. A sensitivity analysis is presented to highlight the impact due to imperfect coverage of duplex network component or element failures (i.e., correlated failures), to assist in the setting of requirements on NE robustness. A benefit analysis, covering several dimensions of dependability, is used to generate the domain of solutions available to the network architect in terms of network and network element fault tolerance that may be specified to meet the desired signaling quality goals.

  9. Annual modulation of the galactic binary confusion noise background and LISA data analysis

    International Nuclear Information System (INIS)

    Seto, Naoki

    2004-01-01

    We study the anisotropies of the galactic confusion noise background and its effects on LISA data analysis. LISA has two data streams of gravitational wave signals relevant for the low frequency regime. Because of the anisotropies of the background, the matrix for their confusion noises has off-diagonal components and depends strongly on the orientation of the detector plane. We find that the sky-averaged confusion noise level √(S(f)) could change by a factor of 2 in 3 months and would be minimum when the orbital position of LISA is around either the spring or autumn equinox

  10. Constructive influence of noise flatness and friction on the resonant behavior of a harmonic oscillator with fluctuating frequency.

    Science.gov (United States)

    Laas, Katrin; Mankin, Romi; Rekker, Astrid

    2009-05-01

    The influences of noise flatness and friction coefficient on the long-time behavior of the first two moments and the correlation function for the output signal of a harmonic oscillator with fluctuating frequency subjected to an external periodic force are considered. The colored fluctuations of the oscillator frequency are modeled as a trichotomous noise. The study is a follow up of the previous investigation of a stochastic oscillator [Phys. Rev. E 78, 031120 (2008)], where the connection between the occurrence of energetic instability and stochastic multiresonance is established. Here we report some unexpected results not considered in the previous work. Notably, we have found a nonmonotonic dependence of several stochastic resonance characteristics such as spectral amplification, variance of the output signal, and signal-to-noise ratio on the friction coefficient and on the noise flatness. In particular, in certain parameter regions spectral amplification exhibits a resonancelike enhancement at intermediate values of the friction coefficient.

  11. Modeling Random Telegraph Noise Under Switched Bias Conditions Using Cyclostationary RTS Noise

    NARCIS (Netherlands)

    van der Wel, A.P.; Klumperink, Eric A.M.; Vandamme, L.K.J.; Nauta, Bram

    In this paper, we present measurements and simulation of random telegraph signal (RTS) noise in n-channel MOSFETs under periodic large signal gate-source excitation (switched bias conditions). This is particularly relevant to analog CMOS circuit design where large signal swings occur and where LF

  12. Conducted and radiated noise in detection devices

    International Nuclear Information System (INIS)

    Moisa, D.

    2001-01-01

    frequencies of oscillations (eigen frequencies). Because a Fourier analyzer was not available, the eigen-frequencies were just evaluated by the oscilloscope. The conclusions are: 1. For a 8 ns width pulse, the oscillation is damped in time with a constant between about 100 ns for cooper bars and double-shielded coaxes and up to around 600 ns for twisted-pair ribbons; 2. The frequency of these oscillations depends on the conductor under test and so they are eigen-frequencies of that conductor. For a RG 59BU cable (F and G) the dominant EF was 20 MHZ as for the same RG59U (Amphenol) the EF was 69 MHZ. This is so because the technology to make the shielding is different. For a cooper bar for instance EF was measures as 46 MHz for 3.7 mm diameter and 26 MHz for 2.35 mm diameter. To understand if these EM pulses which propagate everywhere are important or not we have to remind that these pulses propagate on the surface of the conductors. For a shielded coax, they cannot go inside to change the signal. The situation in totally different when such pulse reaches a twisted-pair cable. The signal is superimposed on the useful signal and is propagated as a 'normal' signal. For this situation, the receiver of a twisted pair cable is differential so that the common mode signal could be rejected by a proper designed receiver. This is so only at the receiver side. If such noise propagates toward the source of signal (the output of the preamplifier for instance), when this EM energy goes inside the transmitter, the electronic device reacts at these EM pulses. Its reaction can be a signal which goes back to line and this is impossible to be rejected by receiver because is like a normal differential signal. For a user it looks like being generated by the detector. In an experiment, a real preamplifier, a real ribbon (about 5 meter long) and a real receiver were connected on a table. An 8 ns pulse was inserted somewhere on that 5 meter twisted-pair cable and the signal on the receiver was

  13. Aspect-dependent radiated noise analysis of an underway autonomous underwater vehicle.

    Science.gov (United States)

    Gebbie, John; Siderius, Martin; Allen, John S

    2012-11-01

    This paper presents an analysis of the acoustic emissions emitted by an underway REMUS-100 autonomous underwater vehicle (AUV) that were obtained near Honolulu Harbor, HI using a fixed, bottom-mounted horizontal line array (HLA). Spectral analysis, beamforming, and cross-correlation facilitate identification of independent sources of noise originating from the AUV. Fusion of navigational records from the AUV with acoustic data from the HLA allows for an aspect-dependent presentation of calculated source levels of the strongest propulsion tone.

  14. Effects of the physiological parameters on the signal-to-noise ratio of single myoelectric channel

    Directory of Open Access Journals (Sweden)

    Zhang YT

    2007-08-01

    Full Text Available Abstract Background An important measure of the performance of a myoelectric (ME control system for powered artificial limbs is the signal-to-noise ratio (SNR at the output of ME channel. However, few studies illustrated the neuron-muscular interactive effects on the SNR at ME control channel output. In order to obtain a comprehensive understanding on the relationship between the physiology of individual motor unit and the ME control performance, this study investigates the effects of physiological factors on the SNR of single ME channel by an analytical and simulation approach, where the SNR is defined as the ratio of the mean squared value estimation at the channel output and the variance of the estimation. Methods Mathematical models are formulated based on three fundamental elements: a motoneuron firing mechanism, motor unit action potential (MUAP module, and signal processor. Myoelectric signals of a motor unit are synthesized with different physiological parameters, and the corresponding SNR of single ME channel is numerically calculated. Effects of physiological multi factors on the SNR are investigated, including properties of the motoneuron, MUAP waveform, recruitment order, and firing pattern, etc. Results The results of the mathematical model, supported by simulation, indicate that the SNR of a single ME channel is associated with the voluntary contraction level. We showed that a model-based approach can provide insight into the key factors and bioprocess in ME control. The results of this modelling work can be potentially used in the improvement of ME control performance and for the training of amputees with powered prostheses. Conclusion The SNR of single ME channel is a force, neuronal and muscular property dependent parameter. The theoretical model provides possible guidance to enhance the SNR of ME channel by controlling physiological variables or conscious contraction level.

  15. West Texas array experiment: Noise and source characterization of short-range infrasound and acoustic signals, along with lab and field evaluation of Intermountain Laboratories infrasound microphones

    Science.gov (United States)

    Fisher, Aileen

    The term infrasound describes atmospheric sound waves with frequencies below 20 Hz, while acoustics are classified within the audible range of 20 Hz to 20 kHz. Infrasound and acoustic monitoring in the scientific community is hampered by low signal-to-noise ratios and a limited number of studies on regional and short-range noise and source characterization. The JASON Report (2005) suggests the infrasound community focus on more broad-frequency, observational studies within a tactical distance of 10 km. In keeping with that recommendation, this paper presents a study of regional and short-range atmospheric acoustic and infrasonic noise characterization, at a desert site in West Texas, covering a broad frequency range of 0.2 to 100 Hz. To spatially sample the band, a large number of infrasound gauges was needed. A laboratory instrument analysis is presented of the set of low-cost infrasound sensors used in this study, manufactured by Inter-Mountain Laboratories (IML). Analysis includes spectra, transfer functions and coherences to assess the stability and range of the gauges, and complements additional instrument testing by Sandia National Laboratories. The IMLs documented here have been found reliably coherent from 0.1 to 7 Hz without instrument correction. Corrections were built using corresponding time series from the commercially available and more expensive Chaparral infrasound gauge, so that the corrected IML outputs were able to closely mimic the Chaparral output. Arrays of gauges are needed for atmospheric sound signal processing. Our West Texas experiment consisted of a 1.5 km aperture, 23-gauge infrasound/acoustic array of IMLs, with a compact, 12 m diameter grid-array of rented IMLs at the center. To optimize signal recording, signal-to-noise ratio needs to be quantified with respect to both frequency band and coherence length. The higher-frequency grid array consisted of 25 microphones arranged in a five by five pattern with 3 meter spacing, without

  16. The importance of stimulus noise analysis for self-motion studies.

    Directory of Open Access Journals (Sweden)

    Alessandro Nesti

    Full Text Available Motion simulators are widely employed in basic and applied research to study the neural mechanisms of perception and action during inertial stimulation. In these studies, uncontrolled simulator-introduced noise inevitably leads to a disparity between the reproduced motion and the trajectories meticulously designed by the experimenter, possibly resulting in undesired motion cues to the investigated system. Understanding actual simulator responses to different motion commands is therefore a crucial yet often underestimated step towards the interpretation of experimental results. In this work, we developed analysis methods based on signal processing techniques to quantify the noise in the actual motion, and its deterministic and stochastic components. Our methods allow comparisons between commanded and actual motion as well as between different actual motion profiles. A specific practical example from one of our studies is used to illustrate the methodologies and their relevance, but this does not detract from its general applicability. Analyses of the simulator's inertial recordings show direction-dependent noise and nonlinearity related to the command amplitude. The Signal-to-Noise Ratio is one order of magnitude higher for the larger motion amplitudes we tested, compared to the smaller motion amplitudes. Simulator-introduced noise is found to be primarily of deterministic nature, particularly for the stronger motion intensities. The effect of simulator noise on quantification of animal/human motion sensitivity is discussed. We conclude that accurate recording and characterization of executed simulator motion are a crucial prerequisite for the investigation of uncertainty in self-motion perception.

  17. Analysis and Extension of the PCA Method, Estimating a Noise Curve from a Single Image

    Directory of Open Access Journals (Sweden)

    Miguel Colom

    2016-12-01

    Full Text Available In the article 'Image Noise Level Estimation by Principal Component Analysis', S. Pyatykh, J. Hesser, and L. Zheng propose a new method to estimate the variance of the noise in an image from the eigenvalues of the covariance matrix of the overlapping blocks of the noisy image. Instead of using all the patches of the noisy image, the authors propose an iterative strategy to adaptively choose the optimal set containing the patches with lowest variance. Although the method measures uniform Gaussian noise, it can be easily adapted to deal with signal-dependent noise, which is realistic with the Poisson noise model obtained by a CMOS or CCD device in a digital camera.

  18. Evaluating signal-to-noise ratios, loudness, and related measures as indicators of airborne sound insulation.

    Science.gov (United States)

    Park, H K; Bradley, J S

    2009-09-01

    Subjective ratings of the audibility, annoyance, and loudness of music and speech sounds transmitted through 20 different simulated walls were used to identify better single number ratings of airborne sound insulation. The first part of this research considered standard measures such as the sound transmission class the weighted sound reduction index (R(w)) and variations of these measures [H. K. Park and J. S. Bradley, J. Acoust. Soc. Am. 126, 208-219 (2009)]. This paper considers a number of other measures including signal-to-noise ratios related to the intelligibility of speech and measures related to the loudness of sounds. An exploration of the importance of the included frequencies showed that the optimum ranges of included frequencies were different for speech and music sounds. Measures related to speech intelligibility were useful indicators of responses to speech sounds but were not as successful for music sounds. A-weighted level differences, signal-to-noise ratios and an A-weighted sound transmission loss measure were good predictors of responses when the included frequencies were optimized for each type of sound. The addition of new spectrum adaptation terms to R(w) values were found to be the most practical approach for achieving more accurate predictions of subjective ratings of transmitted speech and music sounds.

  19. Suppression of excess noise in Transition-Edge Sensors using magnetic field and geometry

    International Nuclear Information System (INIS)

    Ullom, J.N.; Doriese, W.B.; Hilton, G.C.; Beall, J.A.; Deiker, S.; Irwin, K.D.; Reintsema, C.D.; Vale, L.R.; Xu, Y.

    2004-01-01

    We report recent progress at NIST on Mo/Cu Transition-Edge Sensors (TESs). While the signal-band noise of our sensors agrees with theory, we observe excess high-frequency noise. We describe this noise and demonstrate that it can be strongly suppressed by a magnetic field perpendicular to the plane of the sensor. Both the excess noise and α=(T/R)(dR/dT) depend strongly on field so our results show that accurate comparisons between devices are only possible when the field is well known or constant. We also present results showing the noise performance of TES designs incorporating parallel and perpendicular normal metal bars, an array of normal metal islands, and in wedge-shaped devices. We demonstrate significant reduction of high-frequency noise with the perpendicular bar devices at the cost of reduced α. Both the bars and the magnetic field are useful noise reduction techniques for bolometers

  20. Op-amp based low noise amplifier for magnetic particle spectroscopy

    Directory of Open Access Journals (Sweden)

    Malhotra Ankit

    2017-09-01

    Full Text Available Magnetic particle spectrometry (MPS is a novel technique used to measure the magnetization response of superparamagnetic iron oxide nanoparticles (SPIONs. Therefore, it is one of the most important tools for the characterization of the SPIONs for imaging modalities such as magnetic particle imaging (MPI and Magnetic Resonance Imaging (MRI. In MPS, change in the particle magnetization induces a voltage in a dedicated receive coil. The amplitude of the signal can be very low (ranging from a few nV to 100 μV depending upon the concentration of the nanoparticles. Hence, the received signal needs to be amplified with a low noise amplifier (LNA. LNA’s paramount task is to amplify the received signal while keeping the noise induced by its own circuitry minimum. In the current research, we purpose modeling, design, and development of a prototyped LNA for MPS. The designed prototype LNA is based on the parallelization technique of Op-amps. The prototyped LNA consists of 16 Op-amps in parallel and is manufactured on a printed circuit board (PCB, with a size of 110.38 mm × 59.46 mm and 234 components. The input noise of the amplifier is approx. 546 pV/√Hz with a noise figure (NF of approx. 1.4 dB with a receive coil termination. Furthermore, a comparison between the prototyped LNA and a commercially available amplifier is shown.